ARM: dts: add syscon compatible string for AP syscon
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
e231875b 628 unsigned long nr = 0;
ef8f2327
MG
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
e231875b
JZ
639 }
640 return nr;
889976db 641}
bb2a0de9 642
c0ff4b85 643static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 644 unsigned int lru_mask)
6d12e2d8 645{
e231875b 646 unsigned long nr = 0;
889976db 647 int nid;
6d12e2d8 648
31aaea4a 649 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
d52aa412
KH
652}
653
f53d7ce3
JW
654static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
7a159cc9
JW
656{
657 unsigned long val, next;
658
13114716 659 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 660 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 661 /* from time_after() in jiffies.h */
f53d7ce3
JW
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
bb4cc1a8
AM
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
f53d7ce3
JW
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
7a159cc9 678 }
f53d7ce3 679 return false;
d2265e6f
KH
680}
681
682/*
683 * Check events in order.
684 *
685 */
c0ff4b85 686static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
687{
688 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 691 bool do_softlimit;
82b3f2a7 692 bool do_numainfo __maybe_unused;
f53d7ce3 693
bb4cc1a8
AM
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
696#if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699#endif
c0ff4b85 700 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
453a9bf3 703#if MAX_NUMNODES > 1
f53d7ce3 704 if (unlikely(do_numainfo))
c0ff4b85 705 atomic_inc(&memcg->numainfo_events);
453a9bf3 706#endif
0a31bc97 707 }
d2265e6f
KH
708}
709
cf475ad2 710struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 711{
31a78f23
BS
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
073219e9 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 721}
33398cf2 722EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 723
df381975 724static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 725{
c0ff4b85 726 struct mem_cgroup *memcg = NULL;
0b7f569e 727
54595fe2
KH
728 rcu_read_lock();
729 do {
6f6acb00
MH
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
df381975 736 memcg = root_mem_cgroup;
6f6acb00
MH
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
ec903c0c 742 } while (!css_tryget_online(&memcg->css));
54595fe2 743 rcu_read_unlock();
c0ff4b85 744 return memcg;
54595fe2
KH
745}
746
5660048c
JW
747/**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
694fbc0f 764struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 765 struct mem_cgroup *prev,
694fbc0f 766 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 767{
33398cf2 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 769 struct cgroup_subsys_state *css = NULL;
9f3a0d09 770 struct mem_cgroup *memcg = NULL;
5ac8fb31 771 struct mem_cgroup *pos = NULL;
711d3d2c 772
694fbc0f
AM
773 if (mem_cgroup_disabled())
774 return NULL;
5660048c 775
9f3a0d09
JW
776 if (!root)
777 root = root_mem_cgroup;
7d74b06f 778
9f3a0d09 779 if (prev && !reclaim)
5ac8fb31 780 pos = prev;
14067bb3 781
9f3a0d09
JW
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
5ac8fb31 784 goto out;
694fbc0f 785 return root;
9f3a0d09 786 }
14067bb3 787
542f85f9 788 rcu_read_lock();
5f578161 789
5ac8fb31 790 if (reclaim) {
ef8f2327 791 struct mem_cgroup_per_node *mz;
5ac8fb31 792
ef8f2327 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
6df38689 799 while (1) {
4db0c3c2 800 pos = READ_ONCE(iter->position);
6df38689
VD
801 if (!pos || css_tryget(&pos->css))
802 break;
5ac8fb31 803 /*
6df38689
VD
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
5ac8fb31
JW
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
527a5ec9 830 }
7d74b06f 831
5ac8fb31
JW
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
14067bb3 838
5ac8fb31
JW
839 if (css == &root->css)
840 break;
14067bb3 841
0b8f73e1
JW
842 if (css_tryget(css))
843 break;
9f3a0d09 844
5ac8fb31 845 memcg = NULL;
9f3a0d09 846 }
5ac8fb31
JW
847
848 if (reclaim) {
5ac8fb31 849 /*
6df38689
VD
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 853 */
6df38689
VD
854 (void)cmpxchg(&iter->position, pos, memcg);
855
5ac8fb31
JW
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
9f3a0d09 863 }
5ac8fb31 864
542f85f9
MH
865out_unlock:
866 rcu_read_unlock();
5ac8fb31 867out:
c40046f3
MH
868 if (prev && prev != root)
869 css_put(&prev->css);
870
9f3a0d09 871 return memcg;
14067bb3 872}
7d74b06f 873
5660048c
JW
874/**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
9f3a0d09
JW
881{
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886}
7d74b06f 887
6df38689
VD
888static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889{
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
892 struct mem_cgroup_per_node *mz;
893 int nid;
6df38689
VD
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
ef8f2327
MG
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
6df38689
VD
903 }
904 }
905 }
906}
907
9f3a0d09
JW
908/*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 915 iter != NULL; \
527a5ec9 916 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 917
9f3a0d09 918#define for_each_mem_cgroup(iter) \
527a5ec9 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 920 iter != NULL; \
527a5ec9 921 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 922
925b7673 923/**
dfe0e773 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 925 * @page: the page
fa9add64 926 * @zone: zone of the page
dfe0e773
JW
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 931 */
599d0c95 932struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 933{
ef8f2327 934 struct mem_cgroup_per_node *mz;
925b7673 935 struct mem_cgroup *memcg;
bea8c150 936 struct lruvec *lruvec;
6d12e2d8 937
bea8c150 938 if (mem_cgroup_disabled()) {
599d0c95 939 lruvec = &pgdat->lruvec;
bea8c150
HD
940 goto out;
941 }
925b7673 942
1306a85a 943 memcg = page->mem_cgroup;
7512102c 944 /*
dfe0e773 945 * Swapcache readahead pages are added to the LRU - and
29833315 946 * possibly migrated - before they are charged.
7512102c 947 */
29833315
JW
948 if (!memcg)
949 memcg = root_mem_cgroup;
7512102c 950
ef8f2327 951 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
952 lruvec = &mz->lruvec;
953out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
599d0c95
MG
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
bea8c150 961 return lruvec;
08e552c6 962}
b69408e8 963
925b7673 964/**
fa9add64
HD
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
968 * @nr_pages: positive when adding or negative when removing
925b7673 969 *
ca707239
HD
970 * This function must be called under lru_lock, just before a page is added
971 * to or just after a page is removed from an lru list (that ordering being
972 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 973 */
fa9add64 974void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
7ee36a14 975 int nr_pages)
3f58a829 976{
ef8f2327 977 struct mem_cgroup_per_node *mz;
fa9add64 978 unsigned long *lru_size;
ca707239
HD
979 long size;
980 bool empty;
3f58a829
MK
981
982 if (mem_cgroup_disabled())
983 return;
984
ef8f2327 985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
fa9add64 986 lru_size = mz->lru_size + lru;
ca707239
HD
987 empty = list_empty(lruvec->lists + lru);
988
989 if (nr_pages < 0)
990 *lru_size += nr_pages;
991
992 size = *lru_size;
993 if (WARN_ONCE(size < 0 || empty != !size,
994 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
996 VM_BUG_ON(1);
997 *lru_size = 0;
998 }
999
1000 if (nr_pages > 0)
1001 *lru_size += nr_pages;
08e552c6 1002}
544122e5 1003
2314b42d 1004bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1005{
2314b42d 1006 struct mem_cgroup *task_memcg;
158e0a2d 1007 struct task_struct *p;
ffbdccf5 1008 bool ret;
4c4a2214 1009
158e0a2d 1010 p = find_lock_task_mm(task);
de077d22 1011 if (p) {
2314b42d 1012 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1013 task_unlock(p);
1014 } else {
1015 /*
1016 * All threads may have already detached their mm's, but the oom
1017 * killer still needs to detect if they have already been oom
1018 * killed to prevent needlessly killing additional tasks.
1019 */
ffbdccf5 1020 rcu_read_lock();
2314b42d
JW
1021 task_memcg = mem_cgroup_from_task(task);
1022 css_get(&task_memcg->css);
ffbdccf5 1023 rcu_read_unlock();
de077d22 1024 }
2314b42d
JW
1025 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1026 css_put(&task_memcg->css);
4c4a2214
DR
1027 return ret;
1028}
1029
19942822 1030/**
9d11ea9f 1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1032 * @memcg: the memory cgroup
19942822 1033 *
9d11ea9f 1034 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1035 * pages.
19942822 1036 */
c0ff4b85 1037static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1038{
3e32cb2e
JW
1039 unsigned long margin = 0;
1040 unsigned long count;
1041 unsigned long limit;
9d11ea9f 1042
3e32cb2e 1043 count = page_counter_read(&memcg->memory);
4db0c3c2 1044 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1045 if (count < limit)
1046 margin = limit - count;
1047
7941d214 1048 if (do_memsw_account()) {
3e32cb2e 1049 count = page_counter_read(&memcg->memsw);
4db0c3c2 1050 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1051 if (count <= limit)
1052 margin = min(margin, limit - count);
cbedbac3
LR
1053 else
1054 margin = 0;
3e32cb2e
JW
1055 }
1056
1057 return margin;
19942822
JW
1058}
1059
32047e2a 1060/*
bdcbb659 1061 * A routine for checking "mem" is under move_account() or not.
32047e2a 1062 *
bdcbb659
QH
1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1064 * moving cgroups. This is for waiting at high-memory pressure
1065 * caused by "move".
32047e2a 1066 */
c0ff4b85 1067static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1068{
2bd9bb20
KH
1069 struct mem_cgroup *from;
1070 struct mem_cgroup *to;
4b534334 1071 bool ret = false;
2bd9bb20
KH
1072 /*
1073 * Unlike task_move routines, we access mc.to, mc.from not under
1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1075 */
1076 spin_lock(&mc.lock);
1077 from = mc.from;
1078 to = mc.to;
1079 if (!from)
1080 goto unlock;
3e92041d 1081
2314b42d
JW
1082 ret = mem_cgroup_is_descendant(from, memcg) ||
1083 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1084unlock:
1085 spin_unlock(&mc.lock);
4b534334
KH
1086 return ret;
1087}
1088
c0ff4b85 1089static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1090{
1091 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1092 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1093 DEFINE_WAIT(wait);
1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1095 /* moving charge context might have finished. */
1096 if (mc.moving_task)
1097 schedule();
1098 finish_wait(&mc.waitq, &wait);
1099 return true;
1100 }
1101 }
1102 return false;
1103}
1104
58cf188e 1105#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1106/**
58cf188e 1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1108 * @memcg: The memory cgroup that went over limit
1109 * @p: Task that is going to be killed
1110 *
1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1112 * enabled
1113 */
1114void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1115{
58cf188e
SZ
1116 struct mem_cgroup *iter;
1117 unsigned int i;
e222432b 1118
e222432b
BS
1119 rcu_read_lock();
1120
2415b9f5
BV
1121 if (p) {
1122 pr_info("Task in ");
1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1124 pr_cont(" killed as a result of limit of ");
1125 } else {
1126 pr_info("Memory limit reached of cgroup ");
1127 }
1128
e61734c5 1129 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1130 pr_cont("\n");
e222432b 1131
e222432b
BS
1132 rcu_read_unlock();
1133
3e32cb2e
JW
1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1135 K((u64)page_counter_read(&memcg->memory)),
1136 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memsw)),
1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->kmem)),
1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1143
1144 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1145 pr_info("Memory cgroup stats for ");
1146 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1147 pr_cont(":");
1148
1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1151 continue;
484ebb3b 1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1153 K(mem_cgroup_read_stat(iter, i)));
1154 }
1155
1156 for (i = 0; i < NR_LRU_LISTS; i++)
1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1159
1160 pr_cont("\n");
1161 }
e222432b
BS
1162}
1163
81d39c20
KH
1164/*
1165 * This function returns the number of memcg under hierarchy tree. Returns
1166 * 1(self count) if no children.
1167 */
c0ff4b85 1168static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1169{
1170 int num = 0;
7d74b06f
KH
1171 struct mem_cgroup *iter;
1172
c0ff4b85 1173 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1174 num++;
81d39c20
KH
1175 return num;
1176}
1177
a63d83f4
DR
1178/*
1179 * Return the memory (and swap, if configured) limit for a memcg.
1180 */
3e32cb2e 1181static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1182{
3e32cb2e 1183 unsigned long limit;
f3e8eb70 1184
3e32cb2e 1185 limit = memcg->memory.limit;
9a5a8f19 1186 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1187 unsigned long memsw_limit;
37e84351 1188 unsigned long swap_limit;
9a5a8f19 1189
3e32cb2e 1190 memsw_limit = memcg->memsw.limit;
37e84351
VD
1191 swap_limit = memcg->swap.limit;
1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1193 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1194 }
9a5a8f19 1195 return limit;
a63d83f4
DR
1196}
1197
b6e6edcf 1198static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1199 int order)
9cbb78bb 1200{
6e0fc46d
DR
1201 struct oom_control oc = {
1202 .zonelist = NULL,
1203 .nodemask = NULL,
2a966b77 1204 .memcg = memcg,
6e0fc46d
DR
1205 .gfp_mask = gfp_mask,
1206 .order = order,
6e0fc46d 1207 };
9cbb78bb
DR
1208 struct mem_cgroup *iter;
1209 unsigned long chosen_points = 0;
1210 unsigned long totalpages;
1211 unsigned int points = 0;
1212 struct task_struct *chosen = NULL;
1213
dc56401f
JW
1214 mutex_lock(&oom_lock);
1215
876aafbf 1216 /*
465adcf1
DR
1217 * If current has a pending SIGKILL or is exiting, then automatically
1218 * select it. The goal is to allow it to allocate so that it may
1219 * quickly exit and free its memory.
876aafbf 1220 */
1af8bb43 1221 if (task_will_free_mem(current)) {
16e95196 1222 mark_oom_victim(current);
1af8bb43 1223 wake_oom_reaper(current);
dc56401f 1224 goto unlock;
876aafbf
DR
1225 }
1226
2a966b77 1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
3e32cb2e 1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1229 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1230 struct css_task_iter it;
9cbb78bb
DR
1231 struct task_struct *task;
1232
72ec7029
TH
1233 css_task_iter_start(&iter->css, &it);
1234 while ((task = css_task_iter_next(&it))) {
fbe84a09 1235 switch (oom_scan_process_thread(&oc, task)) {
9cbb78bb
DR
1236 case OOM_SCAN_SELECT:
1237 if (chosen)
1238 put_task_struct(chosen);
1239 chosen = task;
1240 chosen_points = ULONG_MAX;
1241 get_task_struct(chosen);
1242 /* fall through */
1243 case OOM_SCAN_CONTINUE:
1244 continue;
1245 case OOM_SCAN_ABORT:
72ec7029 1246 css_task_iter_end(&it);
9cbb78bb
DR
1247 mem_cgroup_iter_break(memcg, iter);
1248 if (chosen)
1249 put_task_struct(chosen);
1ebab2db
TH
1250 /* Set a dummy value to return "true". */
1251 chosen = (void *) 1;
dc56401f 1252 goto unlock;
9cbb78bb
DR
1253 case OOM_SCAN_OK:
1254 break;
1255 };
1256 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1257 if (!points || points < chosen_points)
1258 continue;
1259 /* Prefer thread group leaders for display purposes */
1260 if (points == chosen_points &&
1261 thread_group_leader(chosen))
1262 continue;
1263
1264 if (chosen)
1265 put_task_struct(chosen);
1266 chosen = task;
1267 chosen_points = points;
1268 get_task_struct(chosen);
9cbb78bb 1269 }
72ec7029 1270 css_task_iter_end(&it);
9cbb78bb
DR
1271 }
1272
dc56401f
JW
1273 if (chosen) {
1274 points = chosen_points * 1000 / totalpages;
2a966b77 1275 oom_kill_process(&oc, chosen, points, totalpages,
6e0fc46d 1276 "Memory cgroup out of memory");
dc56401f
JW
1277 }
1278unlock:
1279 mutex_unlock(&oom_lock);
b6e6edcf 1280 return chosen;
9cbb78bb
DR
1281}
1282
ae6e71d3
MC
1283#if MAX_NUMNODES > 1
1284
4d0c066d
KH
1285/**
1286 * test_mem_cgroup_node_reclaimable
dad7557e 1287 * @memcg: the target memcg
4d0c066d
KH
1288 * @nid: the node ID to be checked.
1289 * @noswap : specify true here if the user wants flle only information.
1290 *
1291 * This function returns whether the specified memcg contains any
1292 * reclaimable pages on a node. Returns true if there are any reclaimable
1293 * pages in the node.
1294 */
c0ff4b85 1295static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1296 int nid, bool noswap)
1297{
c0ff4b85 1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1299 return true;
1300 if (noswap || !total_swap_pages)
1301 return false;
c0ff4b85 1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1303 return true;
1304 return false;
1305
1306}
889976db
YH
1307
1308/*
1309 * Always updating the nodemask is not very good - even if we have an empty
1310 * list or the wrong list here, we can start from some node and traverse all
1311 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1312 *
1313 */
c0ff4b85 1314static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1315{
1316 int nid;
453a9bf3
KH
1317 /*
1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1319 * pagein/pageout changes since the last update.
1320 */
c0ff4b85 1321 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1322 return;
c0ff4b85 1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1324 return;
1325
889976db 1326 /* make a nodemask where this memcg uses memory from */
31aaea4a 1327 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1328
31aaea4a 1329 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1330
c0ff4b85
R
1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1332 node_clear(nid, memcg->scan_nodes);
889976db 1333 }
453a9bf3 1334
c0ff4b85
R
1335 atomic_set(&memcg->numainfo_events, 0);
1336 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1337}
1338
1339/*
1340 * Selecting a node where we start reclaim from. Because what we need is just
1341 * reducing usage counter, start from anywhere is O,K. Considering
1342 * memory reclaim from current node, there are pros. and cons.
1343 *
1344 * Freeing memory from current node means freeing memory from a node which
1345 * we'll use or we've used. So, it may make LRU bad. And if several threads
1346 * hit limits, it will see a contention on a node. But freeing from remote
1347 * node means more costs for memory reclaim because of memory latency.
1348 *
1349 * Now, we use round-robin. Better algorithm is welcomed.
1350 */
c0ff4b85 1351int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 int node;
1354
c0ff4b85
R
1355 mem_cgroup_may_update_nodemask(memcg);
1356 node = memcg->last_scanned_node;
889976db 1357
0edaf86c 1358 node = next_node_in(node, memcg->scan_nodes);
889976db 1359 /*
fda3d69b
MH
1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1361 * last time it really checked all the LRUs due to rate limiting.
1362 * Fallback to the current node in that case for simplicity.
889976db
YH
1363 */
1364 if (unlikely(node == MAX_NUMNODES))
1365 node = numa_node_id();
1366
c0ff4b85 1367 memcg->last_scanned_node = node;
889976db
YH
1368 return node;
1369}
889976db 1370#else
c0ff4b85 1371int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1372{
1373 return 0;
1374}
1375#endif
1376
0608f43d 1377static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1378 pg_data_t *pgdat,
0608f43d
AM
1379 gfp_t gfp_mask,
1380 unsigned long *total_scanned)
1381{
1382 struct mem_cgroup *victim = NULL;
1383 int total = 0;
1384 int loop = 0;
1385 unsigned long excess;
1386 unsigned long nr_scanned;
1387 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1388 .pgdat = pgdat,
0608f43d
AM
1389 .priority = 0,
1390 };
1391
3e32cb2e 1392 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1393
1394 while (1) {
1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1396 if (!victim) {
1397 loop++;
1398 if (loop >= 2) {
1399 /*
1400 * If we have not been able to reclaim
1401 * anything, it might because there are
1402 * no reclaimable pages under this hierarchy
1403 */
1404 if (!total)
1405 break;
1406 /*
1407 * We want to do more targeted reclaim.
1408 * excess >> 2 is not to excessive so as to
1409 * reclaim too much, nor too less that we keep
1410 * coming back to reclaim from this cgroup
1411 */
1412 if (total >= (excess >> 2) ||
1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1414 break;
1415 }
1416 continue;
1417 }
a9dd0a83 1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1419 pgdat, &nr_scanned);
0608f43d 1420 *total_scanned += nr_scanned;
3e32cb2e 1421 if (!soft_limit_excess(root_memcg))
0608f43d 1422 break;
6d61ef40 1423 }
0608f43d
AM
1424 mem_cgroup_iter_break(root_memcg, victim);
1425 return total;
6d61ef40
BS
1426}
1427
0056f4e6
JW
1428#ifdef CONFIG_LOCKDEP
1429static struct lockdep_map memcg_oom_lock_dep_map = {
1430 .name = "memcg_oom_lock",
1431};
1432#endif
1433
fb2a6fc5
JW
1434static DEFINE_SPINLOCK(memcg_oom_lock);
1435
867578cb
KH
1436/*
1437 * Check OOM-Killer is already running under our hierarchy.
1438 * If someone is running, return false.
1439 */
fb2a6fc5 1440static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1441{
79dfdacc 1442 struct mem_cgroup *iter, *failed = NULL;
a636b327 1443
fb2a6fc5
JW
1444 spin_lock(&memcg_oom_lock);
1445
9f3a0d09 1446 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1447 if (iter->oom_lock) {
79dfdacc
MH
1448 /*
1449 * this subtree of our hierarchy is already locked
1450 * so we cannot give a lock.
1451 */
79dfdacc 1452 failed = iter;
9f3a0d09
JW
1453 mem_cgroup_iter_break(memcg, iter);
1454 break;
23751be0
JW
1455 } else
1456 iter->oom_lock = true;
7d74b06f 1457 }
867578cb 1458
fb2a6fc5
JW
1459 if (failed) {
1460 /*
1461 * OK, we failed to lock the whole subtree so we have
1462 * to clean up what we set up to the failing subtree
1463 */
1464 for_each_mem_cgroup_tree(iter, memcg) {
1465 if (iter == failed) {
1466 mem_cgroup_iter_break(memcg, iter);
1467 break;
1468 }
1469 iter->oom_lock = false;
79dfdacc 1470 }
0056f4e6
JW
1471 } else
1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1473
1474 spin_unlock(&memcg_oom_lock);
1475
1476 return !failed;
a636b327 1477}
0b7f569e 1478
fb2a6fc5 1479static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1480{
7d74b06f
KH
1481 struct mem_cgroup *iter;
1482
fb2a6fc5 1483 spin_lock(&memcg_oom_lock);
0056f4e6 1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1485 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1486 iter->oom_lock = false;
fb2a6fc5 1487 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1488}
1489
c0ff4b85 1490static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1491{
1492 struct mem_cgroup *iter;
1493
c2b42d3c 1494 spin_lock(&memcg_oom_lock);
c0ff4b85 1495 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1496 iter->under_oom++;
1497 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1498}
1499
c0ff4b85 1500static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1501{
1502 struct mem_cgroup *iter;
1503
867578cb
KH
1504 /*
1505 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1507 */
c2b42d3c 1508 spin_lock(&memcg_oom_lock);
c0ff4b85 1509 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1510 if (iter->under_oom > 0)
1511 iter->under_oom--;
1512 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1513}
1514
867578cb
KH
1515static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1516
dc98df5a 1517struct oom_wait_info {
d79154bb 1518 struct mem_cgroup *memcg;
dc98df5a
KH
1519 wait_queue_t wait;
1520};
1521
1522static int memcg_oom_wake_function(wait_queue_t *wait,
1523 unsigned mode, int sync, void *arg)
1524{
d79154bb
HD
1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1526 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1527 struct oom_wait_info *oom_wait_info;
1528
1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1530 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1531
2314b42d
JW
1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1534 return 0;
dc98df5a
KH
1535 return autoremove_wake_function(wait, mode, sync, arg);
1536}
1537
c0ff4b85 1538static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1539{
c2b42d3c
TH
1540 /*
1541 * For the following lockless ->under_oom test, the only required
1542 * guarantee is that it must see the state asserted by an OOM when
1543 * this function is called as a result of userland actions
1544 * triggered by the notification of the OOM. This is trivially
1545 * achieved by invoking mem_cgroup_mark_under_oom() before
1546 * triggering notification.
1547 */
1548 if (memcg && memcg->under_oom)
f4b90b70 1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1550}
1551
3812c8c8 1552static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1553{
d0db7afa 1554 if (!current->memcg_may_oom)
3812c8c8 1555 return;
867578cb 1556 /*
49426420
JW
1557 * We are in the middle of the charge context here, so we
1558 * don't want to block when potentially sitting on a callstack
1559 * that holds all kinds of filesystem and mm locks.
1560 *
1561 * Also, the caller may handle a failed allocation gracefully
1562 * (like optional page cache readahead) and so an OOM killer
1563 * invocation might not even be necessary.
1564 *
1565 * That's why we don't do anything here except remember the
1566 * OOM context and then deal with it at the end of the page
1567 * fault when the stack is unwound, the locks are released,
1568 * and when we know whether the fault was overall successful.
867578cb 1569 */
49426420 1570 css_get(&memcg->css);
626ebc41
TH
1571 current->memcg_in_oom = memcg;
1572 current->memcg_oom_gfp_mask = mask;
1573 current->memcg_oom_order = order;
3812c8c8
JW
1574}
1575
1576/**
1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1578 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1579 *
49426420
JW
1580 * This has to be called at the end of a page fault if the memcg OOM
1581 * handler was enabled.
3812c8c8 1582 *
49426420 1583 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1584 * sleep on a waitqueue until the userspace task resolves the
1585 * situation. Sleeping directly in the charge context with all kinds
1586 * of locks held is not a good idea, instead we remember an OOM state
1587 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1588 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1589 *
1590 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1591 * completed, %false otherwise.
3812c8c8 1592 */
49426420 1593bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1594{
626ebc41 1595 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1596 struct oom_wait_info owait;
49426420 1597 bool locked;
3812c8c8
JW
1598
1599 /* OOM is global, do not handle */
3812c8c8 1600 if (!memcg)
49426420 1601 return false;
3812c8c8 1602
c32b3cbe 1603 if (!handle || oom_killer_disabled)
49426420 1604 goto cleanup;
3812c8c8
JW
1605
1606 owait.memcg = memcg;
1607 owait.wait.flags = 0;
1608 owait.wait.func = memcg_oom_wake_function;
1609 owait.wait.private = current;
1610 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1611
3812c8c8 1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1613 mem_cgroup_mark_under_oom(memcg);
1614
1615 locked = mem_cgroup_oom_trylock(memcg);
1616
1617 if (locked)
1618 mem_cgroup_oom_notify(memcg);
1619
1620 if (locked && !memcg->oom_kill_disable) {
1621 mem_cgroup_unmark_under_oom(memcg);
1622 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1624 current->memcg_oom_order);
49426420 1625 } else {
3812c8c8 1626 schedule();
49426420
JW
1627 mem_cgroup_unmark_under_oom(memcg);
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630
1631 if (locked) {
fb2a6fc5
JW
1632 mem_cgroup_oom_unlock(memcg);
1633 /*
1634 * There is no guarantee that an OOM-lock contender
1635 * sees the wakeups triggered by the OOM kill
1636 * uncharges. Wake any sleepers explicitely.
1637 */
1638 memcg_oom_recover(memcg);
1639 }
49426420 1640cleanup:
626ebc41 1641 current->memcg_in_oom = NULL;
3812c8c8 1642 css_put(&memcg->css);
867578cb 1643 return true;
0b7f569e
KH
1644}
1645
d7365e78 1646/**
81f8c3a4
JW
1647 * lock_page_memcg - lock a page->mem_cgroup binding
1648 * @page: the page
32047e2a 1649 *
81f8c3a4
JW
1650 * This function protects unlocked LRU pages from being moved to
1651 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1652 */
62cccb8c 1653void lock_page_memcg(struct page *page)
89c06bd5
KH
1654{
1655 struct mem_cgroup *memcg;
6de22619 1656 unsigned long flags;
89c06bd5 1657
6de22619
JW
1658 /*
1659 * The RCU lock is held throughout the transaction. The fast
1660 * path can get away without acquiring the memcg->move_lock
1661 * because page moving starts with an RCU grace period.
6de22619 1662 */
d7365e78
JW
1663 rcu_read_lock();
1664
1665 if (mem_cgroup_disabled())
62cccb8c 1666 return;
89c06bd5 1667again:
1306a85a 1668 memcg = page->mem_cgroup;
29833315 1669 if (unlikely(!memcg))
62cccb8c 1670 return;
d7365e78 1671
bdcbb659 1672 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1673 return;
89c06bd5 1674
6de22619 1675 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1676 if (memcg != page->mem_cgroup) {
6de22619 1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1678 goto again;
1679 }
6de22619
JW
1680
1681 /*
1682 * When charge migration first begins, we can have locked and
1683 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1684 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1685 */
1686 memcg->move_lock_task = current;
1687 memcg->move_lock_flags = flags;
d7365e78 1688
62cccb8c 1689 return;
89c06bd5 1690}
81f8c3a4 1691EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1692
d7365e78 1693/**
81f8c3a4 1694 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1695 * @page: the page
d7365e78 1696 */
62cccb8c 1697void unlock_page_memcg(struct page *page)
89c06bd5 1698{
62cccb8c
JW
1699 struct mem_cgroup *memcg = page->mem_cgroup;
1700
6de22619
JW
1701 if (memcg && memcg->move_lock_task == current) {
1702 unsigned long flags = memcg->move_lock_flags;
1703
1704 memcg->move_lock_task = NULL;
1705 memcg->move_lock_flags = 0;
1706
1707 spin_unlock_irqrestore(&memcg->move_lock, flags);
1708 }
89c06bd5 1709
d7365e78 1710 rcu_read_unlock();
89c06bd5 1711}
81f8c3a4 1712EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1713
cdec2e42
KH
1714/*
1715 * size of first charge trial. "32" comes from vmscan.c's magic value.
1716 * TODO: maybe necessary to use big numbers in big irons.
1717 */
7ec99d62 1718#define CHARGE_BATCH 32U
cdec2e42
KH
1719struct memcg_stock_pcp {
1720 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1721 unsigned int nr_pages;
cdec2e42 1722 struct work_struct work;
26fe6168 1723 unsigned long flags;
a0db00fc 1724#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1725};
1726static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1727static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1728
a0956d54
SS
1729/**
1730 * consume_stock: Try to consume stocked charge on this cpu.
1731 * @memcg: memcg to consume from.
1732 * @nr_pages: how many pages to charge.
1733 *
1734 * The charges will only happen if @memcg matches the current cpu's memcg
1735 * stock, and at least @nr_pages are available in that stock. Failure to
1736 * service an allocation will refill the stock.
1737 *
1738 * returns true if successful, false otherwise.
cdec2e42 1739 */
a0956d54 1740static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1741{
1742 struct memcg_stock_pcp *stock;
3e32cb2e 1743 bool ret = false;
cdec2e42 1744
a0956d54 1745 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1746 return ret;
a0956d54 1747
cdec2e42 1748 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1749 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1750 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1751 ret = true;
1752 }
cdec2e42
KH
1753 put_cpu_var(memcg_stock);
1754 return ret;
1755}
1756
1757/*
3e32cb2e 1758 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1759 */
1760static void drain_stock(struct memcg_stock_pcp *stock)
1761{
1762 struct mem_cgroup *old = stock->cached;
1763
11c9ea4e 1764 if (stock->nr_pages) {
3e32cb2e 1765 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1766 if (do_memsw_account())
3e32cb2e 1767 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1768 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1769 stock->nr_pages = 0;
cdec2e42
KH
1770 }
1771 stock->cached = NULL;
cdec2e42
KH
1772}
1773
1774/*
1775 * This must be called under preempt disabled or must be called by
1776 * a thread which is pinned to local cpu.
1777 */
1778static void drain_local_stock(struct work_struct *dummy)
1779{
7c8e0181 1780 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1781 drain_stock(stock);
26fe6168 1782 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1783}
1784
1785/*
3e32cb2e 1786 * Cache charges(val) to local per_cpu area.
320cc51d 1787 * This will be consumed by consume_stock() function, later.
cdec2e42 1788 */
c0ff4b85 1789static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1790{
1791 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1792
c0ff4b85 1793 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1794 drain_stock(stock);
c0ff4b85 1795 stock->cached = memcg;
cdec2e42 1796 }
11c9ea4e 1797 stock->nr_pages += nr_pages;
cdec2e42
KH
1798 put_cpu_var(memcg_stock);
1799}
1800
1801/*
c0ff4b85 1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1803 * of the hierarchy under it.
cdec2e42 1804 */
6d3d6aa2 1805static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1806{
26fe6168 1807 int cpu, curcpu;
d38144b7 1808
6d3d6aa2
JW
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex))
1811 return;
cdec2e42 1812 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1813 get_online_cpus();
5af12d0e 1814 curcpu = get_cpu();
cdec2e42
KH
1815 for_each_online_cpu(cpu) {
1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1817 struct mem_cgroup *memcg;
26fe6168 1818
c0ff4b85
R
1819 memcg = stock->cached;
1820 if (!memcg || !stock->nr_pages)
26fe6168 1821 continue;
2314b42d 1822 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1823 continue;
d1a05b69
MH
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 if (cpu == curcpu)
1826 drain_local_stock(&stock->work);
1827 else
1828 schedule_work_on(cpu, &stock->work);
1829 }
cdec2e42 1830 }
5af12d0e 1831 put_cpu();
f894ffa8 1832 put_online_cpus();
9f50fad6 1833 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1834}
1835
0db0628d 1836static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1837 unsigned long action,
1838 void *hcpu)
1839{
1840 int cpu = (unsigned long)hcpu;
1841 struct memcg_stock_pcp *stock;
1842
619d094b 1843 if (action == CPU_ONLINE)
1489ebad 1844 return NOTIFY_OK;
1489ebad 1845
d833049b 1846 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1847 return NOTIFY_OK;
711d3d2c 1848
cdec2e42
KH
1849 stock = &per_cpu(memcg_stock, cpu);
1850 drain_stock(stock);
1851 return NOTIFY_OK;
1852}
1853
f7e1cb6e
JW
1854static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857{
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1872}
1873
b23afb93
TH
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1881 struct mem_cgroup *memcg;
b23afb93
TH
1882
1883 if (likely(!nr_pages))
1884 return;
1885
f7e1cb6e
JW
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890}
1891
00501b53
JW
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
8a9f3ccd 1894{
7ec99d62 1895 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1897 struct mem_cgroup *mem_over_limit;
3e32cb2e 1898 struct page_counter *counter;
6539cc05 1899 unsigned long nr_reclaimed;
b70a2a21
JW
1900 bool may_swap = true;
1901 bool drained = false;
a636b327 1902
ce00a967 1903 if (mem_cgroup_is_root(memcg))
10d53c74 1904 return 0;
6539cc05 1905retry:
b6b6cc72 1906 if (consume_stock(memcg, nr_pages))
10d53c74 1907 return 0;
8a9f3ccd 1908
7941d214 1909 if (!do_memsw_account() ||
6071ca52
JW
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1912 goto done_restock;
7941d214 1913 if (do_memsw_account())
3e32cb2e
JW
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1916 } else {
3e32cb2e 1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1918 may_swap = false;
3fbe7244 1919 }
7a81b88c 1920
6539cc05
JW
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
6d61ef40 1925
06b078fc
JW
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
10d53c74 1935 goto force;
06b078fc
JW
1936
1937 if (unlikely(task_in_memcg_oom(current)))
1938 goto nomem;
1939
d0164adc 1940 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1941 goto nomem;
4b534334 1942
241994ed
JW
1943 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1944
b70a2a21
JW
1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 gfp_mask, may_swap);
6539cc05 1947
61e02c74 1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1949 goto retry;
28c34c29 1950
b70a2a21 1951 if (!drained) {
6d3d6aa2 1952 drain_all_stock(mem_over_limit);
b70a2a21
JW
1953 drained = true;
1954 goto retry;
1955 }
1956
28c34c29
JW
1957 if (gfp_mask & __GFP_NORETRY)
1958 goto nomem;
6539cc05
JW
1959 /*
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1963 *
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1967 */
61e02c74 1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1969 goto retry;
1970 /*
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1973 */
1974 if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 goto retry;
1976
9b130619
JW
1977 if (nr_retries--)
1978 goto retry;
1979
06b078fc 1980 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1981 goto force;
06b078fc 1982
6539cc05 1983 if (fatal_signal_pending(current))
10d53c74 1984 goto force;
6539cc05 1985
241994ed
JW
1986 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1987
3608de07
JM
1988 mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1990nomem:
6d1fdc48 1991 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1992 return -ENOMEM;
10d53c74
TH
1993force:
1994 /*
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1998 */
1999 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2000 if (do_memsw_account())
10d53c74
TH
2001 page_counter_charge(&memcg->memsw, nr_pages);
2002 css_get_many(&memcg->css, nr_pages);
2003
2004 return 0;
6539cc05
JW
2005
2006done_restock:
e8ea14cc 2007 css_get_many(&memcg->css, batch);
6539cc05
JW
2008 if (batch > nr_pages)
2009 refill_stock(memcg, batch - nr_pages);
b23afb93 2010
241994ed 2011 /*
b23afb93
TH
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2019 */
2020 do {
b23afb93 2021 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg->high_work);
2025 break;
2026 }
9516a18a 2027 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2028 set_notify_resume(current);
2029 break;
2030 }
241994ed 2031 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2032
2033 return 0;
7a81b88c 2034}
8a9f3ccd 2035
00501b53 2036static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2037{
ce00a967
JW
2038 if (mem_cgroup_is_root(memcg))
2039 return;
2040
3e32cb2e 2041 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2042 if (do_memsw_account())
3e32cb2e 2043 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2044
e8ea14cc 2045 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2046}
2047
0a31bc97
JW
2048static void lock_page_lru(struct page *page, int *isolated)
2049{
2050 struct zone *zone = page_zone(page);
2051
a52633d8 2052 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2053 if (PageLRU(page)) {
2054 struct lruvec *lruvec;
2055
599d0c95 2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2057 ClearPageLRU(page);
2058 del_page_from_lru_list(page, lruvec, page_lru(page));
2059 *isolated = 1;
2060 } else
2061 *isolated = 0;
2062}
2063
2064static void unlock_page_lru(struct page *page, int isolated)
2065{
2066 struct zone *zone = page_zone(page);
2067
2068 if (isolated) {
2069 struct lruvec *lruvec;
2070
599d0c95 2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2072 VM_BUG_ON_PAGE(PageLRU(page), page);
2073 SetPageLRU(page);
2074 add_page_to_lru_list(page, lruvec, page_lru(page));
2075 }
a52633d8 2076 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2077}
2078
00501b53 2079static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2080 bool lrucare)
7a81b88c 2081{
0a31bc97 2082 int isolated;
9ce70c02 2083
1306a85a 2084 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2085
2086 /*
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2089 */
0a31bc97
JW
2090 if (lrucare)
2091 lock_page_lru(page, &isolated);
9ce70c02 2092
0a31bc97
JW
2093 /*
2094 * Nobody should be changing or seriously looking at
1306a85a 2095 * page->mem_cgroup at this point:
0a31bc97
JW
2096 *
2097 * - the page is uncharged
2098 *
2099 * - the page is off-LRU
2100 *
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2103 *
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2106 */
1306a85a 2107 page->mem_cgroup = memcg;
9ce70c02 2108
0a31bc97
JW
2109 if (lrucare)
2110 unlock_page_lru(page, isolated);
7a81b88c 2111}
66e1707b 2112
127424c8 2113#ifndef CONFIG_SLOB
f3bb3043 2114static int memcg_alloc_cache_id(void)
55007d84 2115{
f3bb3043
VD
2116 int id, size;
2117 int err;
2118
dbcf73e2 2119 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 if (id < 0)
2122 return id;
55007d84 2123
dbcf73e2 2124 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2125 return id;
2126
2127 /*
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2130 */
05257a1a 2131 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2132
2133 size = 2 * (id + 1);
55007d84
GC
2134 if (size < MEMCG_CACHES_MIN_SIZE)
2135 size = MEMCG_CACHES_MIN_SIZE;
2136 else if (size > MEMCG_CACHES_MAX_SIZE)
2137 size = MEMCG_CACHES_MAX_SIZE;
2138
f3bb3043 2139 err = memcg_update_all_caches(size);
60d3fd32
VD
2140 if (!err)
2141 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2142 if (!err)
2143 memcg_nr_cache_ids = size;
2144
2145 up_write(&memcg_cache_ids_sem);
2146
f3bb3043 2147 if (err) {
dbcf73e2 2148 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2149 return err;
2150 }
2151 return id;
2152}
2153
2154static void memcg_free_cache_id(int id)
2155{
dbcf73e2 2156 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2157}
2158
d5b3cf71 2159struct memcg_kmem_cache_create_work {
5722d094
VD
2160 struct mem_cgroup *memcg;
2161 struct kmem_cache *cachep;
2162 struct work_struct work;
2163};
2164
d5b3cf71 2165static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2166{
d5b3cf71
VD
2167 struct memcg_kmem_cache_create_work *cw =
2168 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2169 struct mem_cgroup *memcg = cw->memcg;
2170 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2171
d5b3cf71 2172 memcg_create_kmem_cache(memcg, cachep);
bd673145 2173
5722d094 2174 css_put(&memcg->css);
d7f25f8a
GC
2175 kfree(cw);
2176}
2177
2178/*
2179 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2180 */
d5b3cf71
VD
2181static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 struct kmem_cache *cachep)
d7f25f8a 2183{
d5b3cf71 2184 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2185
776ed0f0 2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2187 if (!cw)
d7f25f8a 2188 return;
8135be5a
VD
2189
2190 css_get(&memcg->css);
d7f25f8a
GC
2191
2192 cw->memcg = memcg;
2193 cw->cachep = cachep;
d5b3cf71 2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2195
d7f25f8a
GC
2196 schedule_work(&cw->work);
2197}
2198
d5b3cf71
VD
2199static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 struct kmem_cache *cachep)
0e9d92f2
GC
2201{
2202 /*
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2205 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2206 *
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2212 */
6f185c29 2213 current->memcg_kmem_skip_account = 1;
d5b3cf71 2214 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2215 current->memcg_kmem_skip_account = 0;
0e9d92f2 2216}
c67a8a68 2217
45264778
VD
2218static inline bool memcg_kmem_bypass(void)
2219{
2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 return true;
2222 return false;
2223}
2224
2225/**
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2228 *
d7f25f8a
GC
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2231 *
45264778
VD
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
d7f25f8a 2235 *
45264778
VD
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2239 * reference.
d7f25f8a 2240 */
45264778 2241struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2242{
2243 struct mem_cgroup *memcg;
959c8963 2244 struct kmem_cache *memcg_cachep;
2a4db7eb 2245 int kmemcg_id;
d7f25f8a 2246
f7ce3190 2247 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2248
45264778 2249 if (memcg_kmem_bypass())
230e9fc2
VD
2250 return cachep;
2251
9d100c5e 2252 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2253 return cachep;
2254
8135be5a 2255 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2257 if (kmemcg_id < 0)
ca0dde97 2258 goto out;
d7f25f8a 2259
2a4db7eb 2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2261 if (likely(memcg_cachep))
2262 return memcg_cachep;
ca0dde97
LZ
2263
2264 /*
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2269 *
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2274 * defer everything.
ca0dde97 2275 */
d5b3cf71 2276 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2277out:
8135be5a 2278 css_put(&memcg->css);
ca0dde97 2279 return cachep;
d7f25f8a 2280}
d7f25f8a 2281
45264778
VD
2282/**
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2285 */
2286void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2287{
2288 if (!is_root_cache(cachep))
f7ce3190 2289 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2290}
2291
45264778
VD
2292/**
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 struct mem_cgroup *memcg)
7ae1e1d0 2303{
f3ccb2c4
VD
2304 unsigned int nr_pages = 1 << order;
2305 struct page_counter *counter;
7ae1e1d0
GC
2306 int ret;
2307
f3ccb2c4 2308 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2309 if (ret)
f3ccb2c4 2310 return ret;
52c29b04
JW
2311
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 cancel_charge(memcg, nr_pages);
2315 return -ENOMEM;
7ae1e1d0
GC
2316 }
2317
f3ccb2c4 2318 page->mem_cgroup = memcg;
7ae1e1d0 2319
f3ccb2c4 2320 return 0;
7ae1e1d0
GC
2321}
2322
45264778
VD
2323/**
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 *
2329 * Returns 0 on success, an error code on failure.
2330 */
2331int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2332{
f3ccb2c4 2333 struct mem_cgroup *memcg;
fcff7d7e 2334 int ret = 0;
7ae1e1d0 2335
45264778
VD
2336 if (memcg_kmem_bypass())
2337 return 0;
2338
f3ccb2c4 2339 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2340 if (!mem_cgroup_is_root(memcg))
45264778 2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2342 css_put(&memcg->css);
d05e83a6 2343 return ret;
7ae1e1d0 2344}
45264778
VD
2345/**
2346 * memcg_kmem_uncharge: uncharge a kmem page
2347 * @page: page to uncharge
2348 * @order: allocation order
2349 */
2350void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2351{
1306a85a 2352 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2353 unsigned int nr_pages = 1 << order;
7ae1e1d0 2354
7ae1e1d0
GC
2355 if (!memcg)
2356 return;
2357
309381fe 2358 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2359
52c29b04
JW
2360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2361 page_counter_uncharge(&memcg->kmem, nr_pages);
2362
f3ccb2c4 2363 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2364 if (do_memsw_account())
f3ccb2c4 2365 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2366
1306a85a 2367 page->mem_cgroup = NULL;
f3ccb2c4 2368 css_put_many(&memcg->css, nr_pages);
60d3fd32 2369}
127424c8 2370#endif /* !CONFIG_SLOB */
7ae1e1d0 2371
ca3e0214
KH
2372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2373
ca3e0214
KH
2374/*
2375 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2376 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2377 */
e94c8a9c 2378void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2379{
e94c8a9c 2380 int i;
ca3e0214 2381
3d37c4a9
KH
2382 if (mem_cgroup_disabled())
2383 return;
b070e65c 2384
29833315 2385 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2386 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2387
1306a85a 2388 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2389 HPAGE_PMD_NR);
ca3e0214 2390}
12d27107 2391#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2392
c255a458 2393#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2394static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2395 bool charge)
d13d1443 2396{
0a31bc97
JW
2397 int val = (charge) ? 1 : -1;
2398 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2399}
02491447
DN
2400
2401/**
2402 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2403 * @entry: swap entry to be moved
2404 * @from: mem_cgroup which the entry is moved from
2405 * @to: mem_cgroup which the entry is moved to
2406 *
2407 * It succeeds only when the swap_cgroup's record for this entry is the same
2408 * as the mem_cgroup's id of @from.
2409 *
2410 * Returns 0 on success, -EINVAL on failure.
2411 *
3e32cb2e 2412 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2413 * both res and memsw, and called css_get().
2414 */
2415static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2416 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2417{
2418 unsigned short old_id, new_id;
2419
34c00c31
LZ
2420 old_id = mem_cgroup_id(from);
2421 new_id = mem_cgroup_id(to);
02491447
DN
2422
2423 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2424 mem_cgroup_swap_statistics(from, false);
483c30b5 2425 mem_cgroup_swap_statistics(to, true);
02491447
DN
2426 return 0;
2427 }
2428 return -EINVAL;
2429}
2430#else
2431static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2432 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2433{
2434 return -EINVAL;
2435}
8c7c6e34 2436#endif
d13d1443 2437
3e32cb2e 2438static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2439
d38d2a75 2440static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2441 unsigned long limit)
628f4235 2442{
3e32cb2e
JW
2443 unsigned long curusage;
2444 unsigned long oldusage;
2445 bool enlarge = false;
81d39c20 2446 int retry_count;
3e32cb2e 2447 int ret;
81d39c20
KH
2448
2449 /*
2450 * For keeping hierarchical_reclaim simple, how long we should retry
2451 * is depends on callers. We set our retry-count to be function
2452 * of # of children which we should visit in this loop.
2453 */
3e32cb2e
JW
2454 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2455 mem_cgroup_count_children(memcg);
81d39c20 2456
3e32cb2e 2457 oldusage = page_counter_read(&memcg->memory);
628f4235 2458
3e32cb2e 2459 do {
628f4235
KH
2460 if (signal_pending(current)) {
2461 ret = -EINTR;
2462 break;
2463 }
3e32cb2e
JW
2464
2465 mutex_lock(&memcg_limit_mutex);
2466 if (limit > memcg->memsw.limit) {
2467 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2468 ret = -EINVAL;
628f4235
KH
2469 break;
2470 }
3e32cb2e
JW
2471 if (limit > memcg->memory.limit)
2472 enlarge = true;
2473 ret = page_counter_limit(&memcg->memory, limit);
2474 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2475
2476 if (!ret)
2477 break;
2478
b70a2a21
JW
2479 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2480
3e32cb2e 2481 curusage = page_counter_read(&memcg->memory);
81d39c20 2482 /* Usage is reduced ? */
f894ffa8 2483 if (curusage >= oldusage)
81d39c20
KH
2484 retry_count--;
2485 else
2486 oldusage = curusage;
3e32cb2e
JW
2487 } while (retry_count);
2488
3c11ecf4
KH
2489 if (!ret && enlarge)
2490 memcg_oom_recover(memcg);
14797e23 2491
8c7c6e34
KH
2492 return ret;
2493}
2494
338c8431 2495static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2496 unsigned long limit)
8c7c6e34 2497{
3e32cb2e
JW
2498 unsigned long curusage;
2499 unsigned long oldusage;
2500 bool enlarge = false;
81d39c20 2501 int retry_count;
3e32cb2e 2502 int ret;
8c7c6e34 2503
81d39c20 2504 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2505 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2506 mem_cgroup_count_children(memcg);
2507
2508 oldusage = page_counter_read(&memcg->memsw);
2509
2510 do {
8c7c6e34
KH
2511 if (signal_pending(current)) {
2512 ret = -EINTR;
2513 break;
2514 }
3e32cb2e
JW
2515
2516 mutex_lock(&memcg_limit_mutex);
2517 if (limit < memcg->memory.limit) {
2518 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2519 ret = -EINVAL;
8c7c6e34
KH
2520 break;
2521 }
3e32cb2e
JW
2522 if (limit > memcg->memsw.limit)
2523 enlarge = true;
2524 ret = page_counter_limit(&memcg->memsw, limit);
2525 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2526
2527 if (!ret)
2528 break;
2529
b70a2a21
JW
2530 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2531
3e32cb2e 2532 curusage = page_counter_read(&memcg->memsw);
81d39c20 2533 /* Usage is reduced ? */
8c7c6e34 2534 if (curusage >= oldusage)
628f4235 2535 retry_count--;
81d39c20
KH
2536 else
2537 oldusage = curusage;
3e32cb2e
JW
2538 } while (retry_count);
2539
3c11ecf4
KH
2540 if (!ret && enlarge)
2541 memcg_oom_recover(memcg);
3e32cb2e 2542
628f4235
KH
2543 return ret;
2544}
2545
ef8f2327 2546unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2547 gfp_t gfp_mask,
2548 unsigned long *total_scanned)
2549{
2550 unsigned long nr_reclaimed = 0;
ef8f2327 2551 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2552 unsigned long reclaimed;
2553 int loop = 0;
ef8f2327 2554 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2555 unsigned long excess;
0608f43d
AM
2556 unsigned long nr_scanned;
2557
2558 if (order > 0)
2559 return 0;
2560
ef8f2327 2561 mctz = soft_limit_tree_node(pgdat->node_id);
0608f43d
AM
2562 /*
2563 * This loop can run a while, specially if mem_cgroup's continuously
2564 * keep exceeding their soft limit and putting the system under
2565 * pressure
2566 */
2567 do {
2568 if (next_mz)
2569 mz = next_mz;
2570 else
2571 mz = mem_cgroup_largest_soft_limit_node(mctz);
2572 if (!mz)
2573 break;
2574
2575 nr_scanned = 0;
ef8f2327 2576 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2577 gfp_mask, &nr_scanned);
2578 nr_reclaimed += reclaimed;
2579 *total_scanned += nr_scanned;
0a31bc97 2580 spin_lock_irq(&mctz->lock);
bc2f2e7f 2581 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2582
2583 /*
2584 * If we failed to reclaim anything from this memory cgroup
2585 * it is time to move on to the next cgroup
2586 */
2587 next_mz = NULL;
bc2f2e7f
VD
2588 if (!reclaimed)
2589 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
3e32cb2e 2591 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2592 /*
2593 * One school of thought says that we should not add
2594 * back the node to the tree if reclaim returns 0.
2595 * But our reclaim could return 0, simply because due
2596 * to priority we are exposing a smaller subset of
2597 * memory to reclaim from. Consider this as a longer
2598 * term TODO.
2599 */
2600 /* If excess == 0, no tree ops */
cf2c8127 2601 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2602 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2603 css_put(&mz->memcg->css);
2604 loop++;
2605 /*
2606 * Could not reclaim anything and there are no more
2607 * mem cgroups to try or we seem to be looping without
2608 * reclaiming anything.
2609 */
2610 if (!nr_reclaimed &&
2611 (next_mz == NULL ||
2612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613 break;
2614 } while (!nr_reclaimed);
2615 if (next_mz)
2616 css_put(&next_mz->memcg->css);
2617 return nr_reclaimed;
2618}
2619
ea280e7b
TH
2620/*
2621 * Test whether @memcg has children, dead or alive. Note that this
2622 * function doesn't care whether @memcg has use_hierarchy enabled and
2623 * returns %true if there are child csses according to the cgroup
2624 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2625 */
b5f99b53
GC
2626static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627{
ea280e7b
TH
2628 bool ret;
2629
ea280e7b
TH
2630 rcu_read_lock();
2631 ret = css_next_child(NULL, &memcg->css);
2632 rcu_read_unlock();
2633 return ret;
b5f99b53
GC
2634}
2635
c26251f9 2636/*
51038171 2637 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2638 *
2639 * Caller is responsible for holding css reference for memcg.
2640 */
2641static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642{
2643 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2644
c1e862c1
KH
2645 /* we call try-to-free pages for make this cgroup empty */
2646 lru_add_drain_all();
f817ed48 2647 /* try to free all pages in this cgroup */
3e32cb2e 2648 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2649 int progress;
c1e862c1 2650
c26251f9
MH
2651 if (signal_pending(current))
2652 return -EINTR;
2653
b70a2a21
JW
2654 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655 GFP_KERNEL, true);
c1e862c1 2656 if (!progress) {
f817ed48 2657 nr_retries--;
c1e862c1 2658 /* maybe some writeback is necessary */
8aa7e847 2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2660 }
f817ed48
KH
2661
2662 }
ab5196c2
MH
2663
2664 return 0;
cc847582
KH
2665}
2666
6770c64e
TH
2667static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668 char *buf, size_t nbytes,
2669 loff_t off)
c1e862c1 2670{
6770c64e 2671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2672
d8423011
MH
2673 if (mem_cgroup_is_root(memcg))
2674 return -EINVAL;
6770c64e 2675 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2676}
2677
182446d0
TH
2678static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679 struct cftype *cft)
18f59ea7 2680{
182446d0 2681 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2682}
2683
182446d0
TH
2684static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685 struct cftype *cft, u64 val)
18f59ea7
BS
2686{
2687 int retval = 0;
182446d0 2688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2689 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2690
567fb435 2691 if (memcg->use_hierarchy == val)
0b8f73e1 2692 return 0;
567fb435 2693
18f59ea7 2694 /*
af901ca1 2695 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2696 * in the child subtrees. If it is unset, then the change can
2697 * occur, provided the current cgroup has no children.
2698 *
2699 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 * set if there are no children.
2701 */
c0ff4b85 2702 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2703 (val == 1 || val == 0)) {
ea280e7b 2704 if (!memcg_has_children(memcg))
c0ff4b85 2705 memcg->use_hierarchy = val;
18f59ea7
BS
2706 else
2707 retval = -EBUSY;
2708 } else
2709 retval = -EINVAL;
567fb435 2710
18f59ea7
BS
2711 return retval;
2712}
2713
72b54e73 2714static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2715{
2716 struct mem_cgroup *iter;
72b54e73 2717 int i;
ce00a967 2718
72b54e73 2719 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2720
72b54e73
VD
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_STAT; i++)
2723 stat[i] += mem_cgroup_read_stat(iter, i);
2724 }
ce00a967
JW
2725}
2726
72b54e73 2727static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2728{
2729 struct mem_cgroup *iter;
72b54e73 2730 int i;
587d9f72 2731
72b54e73 2732 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2733
72b54e73
VD
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736 events[i] += mem_cgroup_read_events(iter, i);
2737 }
587d9f72
JW
2738}
2739
6f646156 2740static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2741{
72b54e73 2742 unsigned long val = 0;
ce00a967 2743
3e32cb2e 2744 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2745 struct mem_cgroup *iter;
2746
2747 for_each_mem_cgroup_tree(iter, memcg) {
2748 val += mem_cgroup_read_stat(iter,
2749 MEM_CGROUP_STAT_CACHE);
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_RSS);
2752 if (swap)
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_SWAP);
2755 }
3e32cb2e 2756 } else {
ce00a967 2757 if (!swap)
3e32cb2e 2758 val = page_counter_read(&memcg->memory);
ce00a967 2759 else
3e32cb2e 2760 val = page_counter_read(&memcg->memsw);
ce00a967 2761 }
c12176d3 2762 return val;
ce00a967
JW
2763}
2764
3e32cb2e
JW
2765enum {
2766 RES_USAGE,
2767 RES_LIMIT,
2768 RES_MAX_USAGE,
2769 RES_FAILCNT,
2770 RES_SOFT_LIMIT,
2771};
ce00a967 2772
791badbd 2773static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2774 struct cftype *cft)
8cdea7c0 2775{
182446d0 2776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2777 struct page_counter *counter;
af36f906 2778
3e32cb2e 2779 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2780 case _MEM:
3e32cb2e
JW
2781 counter = &memcg->memory;
2782 break;
8c7c6e34 2783 case _MEMSWAP:
3e32cb2e
JW
2784 counter = &memcg->memsw;
2785 break;
510fc4e1 2786 case _KMEM:
3e32cb2e 2787 counter = &memcg->kmem;
510fc4e1 2788 break;
d55f90bf 2789 case _TCP:
0db15298 2790 counter = &memcg->tcpmem;
d55f90bf 2791 break;
8c7c6e34
KH
2792 default:
2793 BUG();
8c7c6e34 2794 }
3e32cb2e
JW
2795
2796 switch (MEMFILE_ATTR(cft->private)) {
2797 case RES_USAGE:
2798 if (counter == &memcg->memory)
c12176d3 2799 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2800 if (counter == &memcg->memsw)
c12176d3 2801 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2802 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803 case RES_LIMIT:
2804 return (u64)counter->limit * PAGE_SIZE;
2805 case RES_MAX_USAGE:
2806 return (u64)counter->watermark * PAGE_SIZE;
2807 case RES_FAILCNT:
2808 return counter->failcnt;
2809 case RES_SOFT_LIMIT:
2810 return (u64)memcg->soft_limit * PAGE_SIZE;
2811 default:
2812 BUG();
2813 }
8cdea7c0 2814}
510fc4e1 2815
127424c8 2816#ifndef CONFIG_SLOB
567e9ab2 2817static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2818{
d6441637
VD
2819 int memcg_id;
2820
b313aeee
VD
2821 if (cgroup_memory_nokmem)
2822 return 0;
2823
2a4db7eb 2824 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2825 BUG_ON(memcg->kmem_state);
d6441637 2826
f3bb3043 2827 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2828 if (memcg_id < 0)
2829 return memcg_id;
d6441637 2830
ef12947c 2831 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2832 /*
567e9ab2 2833 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2834 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2835 * guarantee no one starts accounting before all call sites are
2836 * patched.
2837 */
900a38f0 2838 memcg->kmemcg_id = memcg_id;
567e9ab2 2839 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2840
2841 return 0;
d6441637
VD
2842}
2843
8e0a8912
JW
2844static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845{
2846 struct cgroup_subsys_state *css;
2847 struct mem_cgroup *parent, *child;
2848 int kmemcg_id;
2849
2850 if (memcg->kmem_state != KMEM_ONLINE)
2851 return;
2852 /*
2853 * Clear the online state before clearing memcg_caches array
2854 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855 * guarantees that no cache will be created for this cgroup
2856 * after we are done (see memcg_create_kmem_cache()).
2857 */
2858 memcg->kmem_state = KMEM_ALLOCATED;
2859
2860 memcg_deactivate_kmem_caches(memcg);
2861
2862 kmemcg_id = memcg->kmemcg_id;
2863 BUG_ON(kmemcg_id < 0);
2864
2865 parent = parent_mem_cgroup(memcg);
2866 if (!parent)
2867 parent = root_mem_cgroup;
2868
2869 /*
2870 * Change kmemcg_id of this cgroup and all its descendants to the
2871 * parent's id, and then move all entries from this cgroup's list_lrus
2872 * to ones of the parent. After we have finished, all list_lrus
2873 * corresponding to this cgroup are guaranteed to remain empty. The
2874 * ordering is imposed by list_lru_node->lock taken by
2875 * memcg_drain_all_list_lrus().
2876 */
3a06bb78 2877 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2878 css_for_each_descendant_pre(css, &memcg->css) {
2879 child = mem_cgroup_from_css(css);
2880 BUG_ON(child->kmemcg_id != kmemcg_id);
2881 child->kmemcg_id = parent->kmemcg_id;
2882 if (!memcg->use_hierarchy)
2883 break;
2884 }
3a06bb78
TH
2885 rcu_read_unlock();
2886
8e0a8912
JW
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
0b8f73e1
JW
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
8e0a8912
JW
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
8e0a8912 2903}
d6441637 2904#else
0b8f73e1 2905static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
d6441637 2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2918 unsigned long limit)
d6441637 2919{
b313aeee 2920 int ret;
127424c8
JW
2921
2922 mutex_lock(&memcg_limit_mutex);
127424c8 2923 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
d6441637 2926}
510fc4e1 2927
d55f90bf
VD
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
0db15298 2934 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2935 if (ret)
2936 goto out;
2937
0db15298 2938 if (!memcg->tcpmem_active) {
d55f90bf
VD
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2956 memcg->tcpmem_active = true;
d55f90bf
VD
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
d55f90bf 2962
628f4235
KH
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
451af504
TH
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2969{
451af504 2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2971 unsigned long nr_pages;
628f4235
KH
2972 int ret;
2973
451af504 2974 buf = strstrip(buf);
650c5e56 2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2976 if (ret)
2977 return ret;
af36f906 2978
3e32cb2e 2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2980 case RES_LIMIT:
4b3bde4c
BS
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
3e32cb2e
JW
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2988 break;
3e32cb2e
JW
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2991 break;
3e32cb2e
JW
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
d55f90bf
VD
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
3e32cb2e 2998 }
296c81d8 2999 break;
3e32cb2e
JW
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
628f4235
KH
3003 break;
3004 }
451af504 3005 return ret ?: nbytes;
8cdea7c0
BS
3006}
3007
6770c64e
TH
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
c84872e1 3010{
6770c64e 3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3012 struct page_counter *counter;
c84872e1 3013
3e32cb2e
JW
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
d55f90bf 3024 case _TCP:
0db15298 3025 counter = &memcg->tcpmem;
d55f90bf 3026 break;
3e32cb2e
JW
3027 default:
3028 BUG();
3029 }
af36f906 3030
3e32cb2e 3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3032 case RES_MAX_USAGE:
3e32cb2e 3033 page_counter_reset_watermark(counter);
29f2a4da
PE
3034 break;
3035 case RES_FAILCNT:
3e32cb2e 3036 counter->failcnt = 0;
29f2a4da 3037 break;
3e32cb2e
JW
3038 default:
3039 BUG();
29f2a4da 3040 }
f64c3f54 3041
6770c64e 3042 return nbytes;
c84872e1
PE
3043}
3044
182446d0 3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3046 struct cftype *cft)
3047{
182446d0 3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3049}
3050
02491447 3051#ifdef CONFIG_MMU
182446d0 3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3053 struct cftype *cft, u64 val)
3054{
182446d0 3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3056
1dfab5ab 3057 if (val & ~MOVE_MASK)
7dc74be0 3058 return -EINVAL;
ee5e8472 3059
7dc74be0 3060 /*
ee5e8472
GC
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
7dc74be0 3065 */
c0ff4b85 3066 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3067 return 0;
3068}
02491447 3069#else
182446d0 3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
7dc74be0 3076
406eb0c9 3077#ifdef CONFIG_NUMA
2da8ca82 3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3079{
25485de6
GT
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
406eb0c9 3092 int nid;
25485de6 3093 unsigned long nr;
2da8ca82 3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3095
25485de6
GT
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
406eb0c9 3105 }
406eb0c9 3106
071aee13
YH
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
406eb0c9 3122 }
406eb0c9 3123
406eb0c9
YH
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
2da8ca82 3128static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3129{
2da8ca82 3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3131 unsigned long memory, memsw;
af7c4b0e
JW
3132 struct mem_cgroup *mi;
3133 unsigned int i;
406eb0c9 3134
0ca44b14
GT
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
af7c4b0e 3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3143 continue;
484ebb3b 3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3146 }
7b854121 3147
af7c4b0e
JW
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
14067bb3 3156 /* Hierarchical information */
3e32cb2e
JW
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
fee7b548 3161 }
3e32cb2e
JW
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
7941d214 3164 if (do_memsw_account())
3e32cb2e
JW
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
7f016ee8 3167
af7c4b0e 3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3169 unsigned long long val = 0;
af7c4b0e 3170
7941d214 3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3172 continue;
af7c4b0e
JW
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3193 }
14067bb3 3194
7f016ee8 3195#ifdef CONFIG_DEBUG_VM
7f016ee8 3196 {
ef8f2327
MG
3197 pg_data_t *pgdat;
3198 struct mem_cgroup_per_node *mz;
89abfab1 3199 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
ef8f2327
MG
3203 for_each_online_pgdat(pgdat) {
3204 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3205 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3206
ef8f2327
MG
3207 recent_rotated[0] += rstat->recent_rotated[0];
3208 recent_rotated[1] += rstat->recent_rotated[1];
3209 recent_scanned[0] += rstat->recent_scanned[0];
3210 recent_scanned[1] += rstat->recent_scanned[1];
3211 }
78ccf5b5
JW
3212 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3216 }
3217#endif
3218
d2ceb9b7
KH
3219 return 0;
3220}
3221
182446d0
TH
3222static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223 struct cftype *cft)
a7885eb8 3224{
182446d0 3225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3226
1f4c025b 3227 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3228}
3229
182446d0
TH
3230static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231 struct cftype *cft, u64 val)
a7885eb8 3232{
182446d0 3233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3234
3dae7fec 3235 if (val > 100)
a7885eb8
KM
3236 return -EINVAL;
3237
14208b0e 3238 if (css->parent)
3dae7fec
JW
3239 memcg->swappiness = val;
3240 else
3241 vm_swappiness = val;
068b38c1 3242
a7885eb8
KM
3243 return 0;
3244}
3245
2e72b634
KS
3246static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247{
3248 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3249 unsigned long usage;
2e72b634
KS
3250 int i;
3251
3252 rcu_read_lock();
3253 if (!swap)
2c488db2 3254 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3255 else
2c488db2 3256 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3257
3258 if (!t)
3259 goto unlock;
3260
ce00a967 3261 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3262
3263 /*
748dad36 3264 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3265 * If it's not true, a threshold was crossed after last
3266 * call of __mem_cgroup_threshold().
3267 */
5407a562 3268 i = t->current_threshold;
2e72b634
KS
3269
3270 /*
3271 * Iterate backward over array of thresholds starting from
3272 * current_threshold and check if a threshold is crossed.
3273 * If none of thresholds below usage is crossed, we read
3274 * only one element of the array here.
3275 */
3276 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279 /* i = current_threshold + 1 */
3280 i++;
3281
3282 /*
3283 * Iterate forward over array of thresholds starting from
3284 * current_threshold+1 and check if a threshold is crossed.
3285 * If none of thresholds above usage is crossed, we read
3286 * only one element of the array here.
3287 */
3288 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291 /* Update current_threshold */
5407a562 3292 t->current_threshold = i - 1;
2e72b634
KS
3293unlock:
3294 rcu_read_unlock();
3295}
3296
3297static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298{
ad4ca5f4
KS
3299 while (memcg) {
3300 __mem_cgroup_threshold(memcg, false);
7941d214 3301 if (do_memsw_account())
ad4ca5f4
KS
3302 __mem_cgroup_threshold(memcg, true);
3303
3304 memcg = parent_mem_cgroup(memcg);
3305 }
2e72b634
KS
3306}
3307
3308static int compare_thresholds(const void *a, const void *b)
3309{
3310 const struct mem_cgroup_threshold *_a = a;
3311 const struct mem_cgroup_threshold *_b = b;
3312
2bff24a3
GT
3313 if (_a->threshold > _b->threshold)
3314 return 1;
3315
3316 if (_a->threshold < _b->threshold)
3317 return -1;
3318
3319 return 0;
2e72b634
KS
3320}
3321
c0ff4b85 3322static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3323{
3324 struct mem_cgroup_eventfd_list *ev;
3325
2bcf2e92
MH
3326 spin_lock(&memcg_oom_lock);
3327
c0ff4b85 3328 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3329 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3330
3331 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3332 return 0;
3333}
3334
c0ff4b85 3335static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3336{
7d74b06f
KH
3337 struct mem_cgroup *iter;
3338
c0ff4b85 3339 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3340 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3341}
3342
59b6f873 3343static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3344 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3345{
2c488db2
KS
3346 struct mem_cgroup_thresholds *thresholds;
3347 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3348 unsigned long threshold;
3349 unsigned long usage;
2c488db2 3350 int i, size, ret;
2e72b634 3351
650c5e56 3352 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3353 if (ret)
3354 return ret;
3355
3356 mutex_lock(&memcg->thresholds_lock);
2c488db2 3357
05b84301 3358 if (type == _MEM) {
2c488db2 3359 thresholds = &memcg->thresholds;
ce00a967 3360 usage = mem_cgroup_usage(memcg, false);
05b84301 3361 } else if (type == _MEMSWAP) {
2c488db2 3362 thresholds = &memcg->memsw_thresholds;
ce00a967 3363 usage = mem_cgroup_usage(memcg, true);
05b84301 3364 } else
2e72b634
KS
3365 BUG();
3366
2e72b634 3367 /* Check if a threshold crossed before adding a new one */
2c488db2 3368 if (thresholds->primary)
2e72b634
KS
3369 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
2c488db2 3371 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3372
3373 /* Allocate memory for new array of thresholds */
2c488db2 3374 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3375 GFP_KERNEL);
2c488db2 3376 if (!new) {
2e72b634
KS
3377 ret = -ENOMEM;
3378 goto unlock;
3379 }
2c488db2 3380 new->size = size;
2e72b634
KS
3381
3382 /* Copy thresholds (if any) to new array */
2c488db2
KS
3383 if (thresholds->primary) {
3384 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3385 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3386 }
3387
2e72b634 3388 /* Add new threshold */
2c488db2
KS
3389 new->entries[size - 1].eventfd = eventfd;
3390 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3391
3392 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3393 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3394 compare_thresholds, NULL);
3395
3396 /* Find current threshold */
2c488db2 3397 new->current_threshold = -1;
2e72b634 3398 for (i = 0; i < size; i++) {
748dad36 3399 if (new->entries[i].threshold <= usage) {
2e72b634 3400 /*
2c488db2
KS
3401 * new->current_threshold will not be used until
3402 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3403 * it here.
3404 */
2c488db2 3405 ++new->current_threshold;
748dad36
SZ
3406 } else
3407 break;
2e72b634
KS
3408 }
3409
2c488db2
KS
3410 /* Free old spare buffer and save old primary buffer as spare */
3411 kfree(thresholds->spare);
3412 thresholds->spare = thresholds->primary;
3413
3414 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3415
907860ed 3416 /* To be sure that nobody uses thresholds */
2e72b634
KS
3417 synchronize_rcu();
3418
2e72b634
KS
3419unlock:
3420 mutex_unlock(&memcg->thresholds_lock);
3421
3422 return ret;
3423}
3424
59b6f873 3425static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3426 struct eventfd_ctx *eventfd, const char *args)
3427{
59b6f873 3428 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3429}
3430
59b6f873 3431static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3432 struct eventfd_ctx *eventfd, const char *args)
3433{
59b6f873 3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3435}
3436
59b6f873 3437static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3438 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3439{
2c488db2
KS
3440 struct mem_cgroup_thresholds *thresholds;
3441 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3442 unsigned long usage;
2c488db2 3443 int i, j, size;
2e72b634
KS
3444
3445 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3446
3447 if (type == _MEM) {
2c488db2 3448 thresholds = &memcg->thresholds;
ce00a967 3449 usage = mem_cgroup_usage(memcg, false);
05b84301 3450 } else if (type == _MEMSWAP) {
2c488db2 3451 thresholds = &memcg->memsw_thresholds;
ce00a967 3452 usage = mem_cgroup_usage(memcg, true);
05b84301 3453 } else
2e72b634
KS
3454 BUG();
3455
371528ca
AV
3456 if (!thresholds->primary)
3457 goto unlock;
3458
2e72b634
KS
3459 /* Check if a threshold crossed before removing */
3460 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462 /* Calculate new number of threshold */
2c488db2
KS
3463 size = 0;
3464 for (i = 0; i < thresholds->primary->size; i++) {
3465 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3466 size++;
3467 }
3468
2c488db2 3469 new = thresholds->spare;
907860ed 3470
2e72b634
KS
3471 /* Set thresholds array to NULL if we don't have thresholds */
3472 if (!size) {
2c488db2
KS
3473 kfree(new);
3474 new = NULL;
907860ed 3475 goto swap_buffers;
2e72b634
KS
3476 }
3477
2c488db2 3478 new->size = size;
2e72b634
KS
3479
3480 /* Copy thresholds and find current threshold */
2c488db2
KS
3481 new->current_threshold = -1;
3482 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3484 continue;
3485
2c488db2 3486 new->entries[j] = thresholds->primary->entries[i];
748dad36 3487 if (new->entries[j].threshold <= usage) {
2e72b634 3488 /*
2c488db2 3489 * new->current_threshold will not be used
2e72b634
KS
3490 * until rcu_assign_pointer(), so it's safe to increment
3491 * it here.
3492 */
2c488db2 3493 ++new->current_threshold;
2e72b634
KS
3494 }
3495 j++;
3496 }
3497
907860ed 3498swap_buffers:
2c488db2
KS
3499 /* Swap primary and spare array */
3500 thresholds->spare = thresholds->primary;
8c757763 3501
2c488db2 3502 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3503
907860ed 3504 /* To be sure that nobody uses thresholds */
2e72b634 3505 synchronize_rcu();
6611d8d7
MC
3506
3507 /* If all events are unregistered, free the spare array */
3508 if (!new) {
3509 kfree(thresholds->spare);
3510 thresholds->spare = NULL;
3511 }
371528ca 3512unlock:
2e72b634 3513 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3514}
c1e862c1 3515
59b6f873 3516static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3517 struct eventfd_ctx *eventfd)
3518{
59b6f873 3519 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3520}
3521
59b6f873 3522static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3523 struct eventfd_ctx *eventfd)
3524{
59b6f873 3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3526}
3527
59b6f873 3528static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3529 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3530{
9490ff27 3531 struct mem_cgroup_eventfd_list *event;
9490ff27 3532
9490ff27
KH
3533 event = kmalloc(sizeof(*event), GFP_KERNEL);
3534 if (!event)
3535 return -ENOMEM;
3536
1af8efe9 3537 spin_lock(&memcg_oom_lock);
9490ff27
KH
3538
3539 event->eventfd = eventfd;
3540 list_add(&event->list, &memcg->oom_notify);
3541
3542 /* already in OOM ? */
c2b42d3c 3543 if (memcg->under_oom)
9490ff27 3544 eventfd_signal(eventfd, 1);
1af8efe9 3545 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3546
3547 return 0;
3548}
3549
59b6f873 3550static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3551 struct eventfd_ctx *eventfd)
9490ff27 3552{
9490ff27 3553 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3554
1af8efe9 3555 spin_lock(&memcg_oom_lock);
9490ff27 3556
c0ff4b85 3557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3558 if (ev->eventfd == eventfd) {
3559 list_del(&ev->list);
3560 kfree(ev);
3561 }
3562 }
3563
1af8efe9 3564 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3565}
3566
2da8ca82 3567static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3568{
2da8ca82 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3570
791badbd 3571 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3572 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3573 return 0;
3574}
3575
182446d0 3576static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3577 struct cftype *cft, u64 val)
3578{
182446d0 3579 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3580
3581 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3582 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3583 return -EINVAL;
3584
c0ff4b85 3585 memcg->oom_kill_disable = val;
4d845ebf 3586 if (!val)
c0ff4b85 3587 memcg_oom_recover(memcg);
3dae7fec 3588
3c11ecf4
KH
3589 return 0;
3590}
3591
52ebea74
TH
3592#ifdef CONFIG_CGROUP_WRITEBACK
3593
3594struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595{
3596 return &memcg->cgwb_list;
3597}
3598
841710aa
TH
3599static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600{
3601 return wb_domain_init(&memcg->cgwb_domain, gfp);
3602}
3603
3604static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605{
3606 wb_domain_exit(&memcg->cgwb_domain);
3607}
3608
2529bb3a
TH
3609static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610{
3611 wb_domain_size_changed(&memcg->cgwb_domain);
3612}
3613
841710aa
TH
3614struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615{
3616 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618 if (!memcg->css.parent)
3619 return NULL;
3620
3621 return &memcg->cgwb_domain;
3622}
3623
c2aa723a
TH
3624/**
3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626 * @wb: bdi_writeback in question
c5edf9cd
TH
3627 * @pfilepages: out parameter for number of file pages
3628 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3629 * @pdirty: out parameter for number of dirty pages
3630 * @pwriteback: out parameter for number of pages under writeback
3631 *
c5edf9cd
TH
3632 * Determine the numbers of file, headroom, dirty, and writeback pages in
3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3634 * is a bit more involved.
c2aa723a 3635 *
c5edf9cd
TH
3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3637 * headroom is calculated as the lowest headroom of itself and the
3638 * ancestors. Note that this doesn't consider the actual amount of
3639 * available memory in the system. The caller should further cap
3640 * *@pheadroom accordingly.
c2aa723a 3641 */
c5edf9cd
TH
3642void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643 unsigned long *pheadroom, unsigned long *pdirty,
3644 unsigned long *pwriteback)
c2aa723a
TH
3645{
3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647 struct mem_cgroup *parent;
c2aa723a
TH
3648
3649 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651 /* this should eventually include NR_UNSTABLE_NFS */
3652 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3653 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654 (1 << LRU_ACTIVE_FILE));
3655 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3656
c2aa723a
TH
3657 while ((parent = parent_mem_cgroup(memcg))) {
3658 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659 unsigned long used = page_counter_read(&memcg->memory);
3660
c5edf9cd 3661 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3662 memcg = parent;
3663 }
c2aa723a
TH
3664}
3665
841710aa
TH
3666#else /* CONFIG_CGROUP_WRITEBACK */
3667
3668static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669{
3670 return 0;
3671}
3672
3673static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674{
3675}
3676
2529bb3a
TH
3677static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678{
3679}
3680
52ebea74
TH
3681#endif /* CONFIG_CGROUP_WRITEBACK */
3682
3bc942f3
TH
3683/*
3684 * DO NOT USE IN NEW FILES.
3685 *
3686 * "cgroup.event_control" implementation.
3687 *
3688 * This is way over-engineered. It tries to support fully configurable
3689 * events for each user. Such level of flexibility is completely
3690 * unnecessary especially in the light of the planned unified hierarchy.
3691 *
3692 * Please deprecate this and replace with something simpler if at all
3693 * possible.
3694 */
3695
79bd9814
TH
3696/*
3697 * Unregister event and free resources.
3698 *
3699 * Gets called from workqueue.
3700 */
3bc942f3 3701static void memcg_event_remove(struct work_struct *work)
79bd9814 3702{
3bc942f3
TH
3703 struct mem_cgroup_event *event =
3704 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3705 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3706
3707 remove_wait_queue(event->wqh, &event->wait);
3708
59b6f873 3709 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3710
3711 /* Notify userspace the event is going away. */
3712 eventfd_signal(event->eventfd, 1);
3713
3714 eventfd_ctx_put(event->eventfd);
3715 kfree(event);
59b6f873 3716 css_put(&memcg->css);
79bd9814
TH
3717}
3718
3719/*
3720 * Gets called on POLLHUP on eventfd when user closes it.
3721 *
3722 * Called with wqh->lock held and interrupts disabled.
3723 */
3bc942f3
TH
3724static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725 int sync, void *key)
79bd9814 3726{
3bc942f3
TH
3727 struct mem_cgroup_event *event =
3728 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3729 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3730 unsigned long flags = (unsigned long)key;
3731
3732 if (flags & POLLHUP) {
3733 /*
3734 * If the event has been detached at cgroup removal, we
3735 * can simply return knowing the other side will cleanup
3736 * for us.
3737 *
3738 * We can't race against event freeing since the other
3739 * side will require wqh->lock via remove_wait_queue(),
3740 * which we hold.
3741 */
fba94807 3742 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3743 if (!list_empty(&event->list)) {
3744 list_del_init(&event->list);
3745 /*
3746 * We are in atomic context, but cgroup_event_remove()
3747 * may sleep, so we have to call it in workqueue.
3748 */
3749 schedule_work(&event->remove);
3750 }
fba94807 3751 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3752 }
3753
3754 return 0;
3755}
3756
3bc942f3 3757static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3758 wait_queue_head_t *wqh, poll_table *pt)
3759{
3bc942f3
TH
3760 struct mem_cgroup_event *event =
3761 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3762
3763 event->wqh = wqh;
3764 add_wait_queue(wqh, &event->wait);
3765}
3766
3767/*
3bc942f3
TH
3768 * DO NOT USE IN NEW FILES.
3769 *
79bd9814
TH
3770 * Parse input and register new cgroup event handler.
3771 *
3772 * Input must be in format '<event_fd> <control_fd> <args>'.
3773 * Interpretation of args is defined by control file implementation.
3774 */
451af504
TH
3775static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776 char *buf, size_t nbytes, loff_t off)
79bd9814 3777{
451af504 3778 struct cgroup_subsys_state *css = of_css(of);
fba94807 3779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3780 struct mem_cgroup_event *event;
79bd9814
TH
3781 struct cgroup_subsys_state *cfile_css;
3782 unsigned int efd, cfd;
3783 struct fd efile;
3784 struct fd cfile;
fba94807 3785 const char *name;
79bd9814
TH
3786 char *endp;
3787 int ret;
3788
451af504
TH
3789 buf = strstrip(buf);
3790
3791 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3792 if (*endp != ' ')
3793 return -EINVAL;
451af504 3794 buf = endp + 1;
79bd9814 3795
451af504 3796 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3797 if ((*endp != ' ') && (*endp != '\0'))
3798 return -EINVAL;
451af504 3799 buf = endp + 1;
79bd9814
TH
3800
3801 event = kzalloc(sizeof(*event), GFP_KERNEL);
3802 if (!event)
3803 return -ENOMEM;
3804
59b6f873 3805 event->memcg = memcg;
79bd9814 3806 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3807 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3810
3811 efile = fdget(efd);
3812 if (!efile.file) {
3813 ret = -EBADF;
3814 goto out_kfree;
3815 }
3816
3817 event->eventfd = eventfd_ctx_fileget(efile.file);
3818 if (IS_ERR(event->eventfd)) {
3819 ret = PTR_ERR(event->eventfd);
3820 goto out_put_efile;
3821 }
3822
3823 cfile = fdget(cfd);
3824 if (!cfile.file) {
3825 ret = -EBADF;
3826 goto out_put_eventfd;
3827 }
3828
3829 /* the process need read permission on control file */
3830 /* AV: shouldn't we check that it's been opened for read instead? */
3831 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832 if (ret < 0)
3833 goto out_put_cfile;
3834
fba94807
TH
3835 /*
3836 * Determine the event callbacks and set them in @event. This used
3837 * to be done via struct cftype but cgroup core no longer knows
3838 * about these events. The following is crude but the whole thing
3839 * is for compatibility anyway.
3bc942f3
TH
3840 *
3841 * DO NOT ADD NEW FILES.
fba94807 3842 */
b583043e 3843 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3844
3845 if (!strcmp(name, "memory.usage_in_bytes")) {
3846 event->register_event = mem_cgroup_usage_register_event;
3847 event->unregister_event = mem_cgroup_usage_unregister_event;
3848 } else if (!strcmp(name, "memory.oom_control")) {
3849 event->register_event = mem_cgroup_oom_register_event;
3850 event->unregister_event = mem_cgroup_oom_unregister_event;
3851 } else if (!strcmp(name, "memory.pressure_level")) {
3852 event->register_event = vmpressure_register_event;
3853 event->unregister_event = vmpressure_unregister_event;
3854 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3855 event->register_event = memsw_cgroup_usage_register_event;
3856 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3857 } else {
3858 ret = -EINVAL;
3859 goto out_put_cfile;
3860 }
3861
79bd9814 3862 /*
b5557c4c
TH
3863 * Verify @cfile should belong to @css. Also, remaining events are
3864 * automatically removed on cgroup destruction but the removal is
3865 * asynchronous, so take an extra ref on @css.
79bd9814 3866 */
b583043e 3867 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3868 &memory_cgrp_subsys);
79bd9814 3869 ret = -EINVAL;
5a17f543 3870 if (IS_ERR(cfile_css))
79bd9814 3871 goto out_put_cfile;
5a17f543
TH
3872 if (cfile_css != css) {
3873 css_put(cfile_css);
79bd9814 3874 goto out_put_cfile;
5a17f543 3875 }
79bd9814 3876
451af504 3877 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3878 if (ret)
3879 goto out_put_css;
3880
3881 efile.file->f_op->poll(efile.file, &event->pt);
3882
fba94807
TH
3883 spin_lock(&memcg->event_list_lock);
3884 list_add(&event->list, &memcg->event_list);
3885 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3886
3887 fdput(cfile);
3888 fdput(efile);
3889
451af504 3890 return nbytes;
79bd9814
TH
3891
3892out_put_css:
b5557c4c 3893 css_put(css);
79bd9814
TH
3894out_put_cfile:
3895 fdput(cfile);
3896out_put_eventfd:
3897 eventfd_ctx_put(event->eventfd);
3898out_put_efile:
3899 fdput(efile);
3900out_kfree:
3901 kfree(event);
3902
3903 return ret;
3904}
3905
241994ed 3906static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3907 {
0eea1030 3908 .name = "usage_in_bytes",
8c7c6e34 3909 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3910 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3911 },
c84872e1
PE
3912 {
3913 .name = "max_usage_in_bytes",
8c7c6e34 3914 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3915 .write = mem_cgroup_reset,
791badbd 3916 .read_u64 = mem_cgroup_read_u64,
c84872e1 3917 },
8cdea7c0 3918 {
0eea1030 3919 .name = "limit_in_bytes",
8c7c6e34 3920 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3921 .write = mem_cgroup_write,
791badbd 3922 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3923 },
296c81d8
BS
3924 {
3925 .name = "soft_limit_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3927 .write = mem_cgroup_write,
791badbd 3928 .read_u64 = mem_cgroup_read_u64,
296c81d8 3929 },
8cdea7c0
BS
3930 {
3931 .name = "failcnt",
8c7c6e34 3932 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3933 .write = mem_cgroup_reset,
791badbd 3934 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3935 },
d2ceb9b7
KH
3936 {
3937 .name = "stat",
2da8ca82 3938 .seq_show = memcg_stat_show,
d2ceb9b7 3939 },
c1e862c1
KH
3940 {
3941 .name = "force_empty",
6770c64e 3942 .write = mem_cgroup_force_empty_write,
c1e862c1 3943 },
18f59ea7
BS
3944 {
3945 .name = "use_hierarchy",
3946 .write_u64 = mem_cgroup_hierarchy_write,
3947 .read_u64 = mem_cgroup_hierarchy_read,
3948 },
79bd9814 3949 {
3bc942f3 3950 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3951 .write = memcg_write_event_control,
7dbdb199 3952 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3953 },
a7885eb8
KM
3954 {
3955 .name = "swappiness",
3956 .read_u64 = mem_cgroup_swappiness_read,
3957 .write_u64 = mem_cgroup_swappiness_write,
3958 },
7dc74be0
DN
3959 {
3960 .name = "move_charge_at_immigrate",
3961 .read_u64 = mem_cgroup_move_charge_read,
3962 .write_u64 = mem_cgroup_move_charge_write,
3963 },
9490ff27
KH
3964 {
3965 .name = "oom_control",
2da8ca82 3966 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3967 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3968 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969 },
70ddf637
AV
3970 {
3971 .name = "pressure_level",
70ddf637 3972 },
406eb0c9
YH
3973#ifdef CONFIG_NUMA
3974 {
3975 .name = "numa_stat",
2da8ca82 3976 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3977 },
3978#endif
510fc4e1
GC
3979 {
3980 .name = "kmem.limit_in_bytes",
3981 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3982 .write = mem_cgroup_write,
791badbd 3983 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3984 },
3985 {
3986 .name = "kmem.usage_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3988 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3989 },
3990 {
3991 .name = "kmem.failcnt",
3992 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3993 .write = mem_cgroup_reset,
791badbd 3994 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3995 },
3996 {
3997 .name = "kmem.max_usage_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 3999 .write = mem_cgroup_reset,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4001 },
749c5415
GC
4002#ifdef CONFIG_SLABINFO
4003 {
4004 .name = "kmem.slabinfo",
b047501c
VD
4005 .seq_start = slab_start,
4006 .seq_next = slab_next,
4007 .seq_stop = slab_stop,
4008 .seq_show = memcg_slab_show,
749c5415
GC
4009 },
4010#endif
d55f90bf
VD
4011 {
4012 .name = "kmem.tcp.limit_in_bytes",
4013 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014 .write = mem_cgroup_write,
4015 .read_u64 = mem_cgroup_read_u64,
4016 },
4017 {
4018 .name = "kmem.tcp.usage_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020 .read_u64 = mem_cgroup_read_u64,
4021 },
4022 {
4023 .name = "kmem.tcp.failcnt",
4024 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025 .write = mem_cgroup_reset,
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.max_usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
6bc10349 4034 { }, /* terminate */
af36f906 4035};
8c7c6e34 4036
73f576c0
JW
4037/*
4038 * Private memory cgroup IDR
4039 *
4040 * Swap-out records and page cache shadow entries need to store memcg
4041 * references in constrained space, so we maintain an ID space that is
4042 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043 * memory-controlled cgroups to 64k.
4044 *
4045 * However, there usually are many references to the oflline CSS after
4046 * the cgroup has been destroyed, such as page cache or reclaimable
4047 * slab objects, that don't need to hang on to the ID. We want to keep
4048 * those dead CSS from occupying IDs, or we might quickly exhaust the
4049 * relatively small ID space and prevent the creation of new cgroups
4050 * even when there are much fewer than 64k cgroups - possibly none.
4051 *
4052 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053 * be freed and recycled when it's no longer needed, which is usually
4054 * when the CSS is offlined.
4055 *
4056 * The only exception to that are records of swapped out tmpfs/shmem
4057 * pages that need to be attributed to live ancestors on swapin. But
4058 * those references are manageable from userspace.
4059 */
4060
4061static DEFINE_IDR(mem_cgroup_idr);
4062
4063static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4064{
4065 atomic_inc(&memcg->id.ref);
4066}
4067
4068static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4069{
4070 if (atomic_dec_and_test(&memcg->id.ref)) {
4071 idr_remove(&mem_cgroup_idr, memcg->id.id);
4072 memcg->id.id = 0;
4073
4074 /* Memcg ID pins CSS */
4075 css_put(&memcg->css);
4076 }
4077}
4078
4079/**
4080 * mem_cgroup_from_id - look up a memcg from a memcg id
4081 * @id: the memcg id to look up
4082 *
4083 * Caller must hold rcu_read_lock().
4084 */
4085struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4086{
4087 WARN_ON_ONCE(!rcu_read_lock_held());
4088 return idr_find(&mem_cgroup_idr, id);
4089}
4090
ef8f2327 4091static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4092{
4093 struct mem_cgroup_per_node *pn;
ef8f2327 4094 int tmp = node;
1ecaab2b
KH
4095 /*
4096 * This routine is called against possible nodes.
4097 * But it's BUG to call kmalloc() against offline node.
4098 *
4099 * TODO: this routine can waste much memory for nodes which will
4100 * never be onlined. It's better to use memory hotplug callback
4101 * function.
4102 */
41e3355d
KH
4103 if (!node_state(node, N_NORMAL_MEMORY))
4104 tmp = -1;
17295c88 4105 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4106 if (!pn)
4107 return 1;
1ecaab2b 4108
ef8f2327
MG
4109 lruvec_init(&pn->lruvec);
4110 pn->usage_in_excess = 0;
4111 pn->on_tree = false;
4112 pn->memcg = memcg;
4113
54f72fe0 4114 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4115 return 0;
4116}
4117
ef8f2327 4118static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4119{
54f72fe0 4120 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4121}
4122
0b8f73e1 4123static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4124{
c8b2a36f 4125 int node;
59927fb9 4126
0b8f73e1 4127 memcg_wb_domain_exit(memcg);
c8b2a36f 4128 for_each_node(node)
ef8f2327 4129 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4130 free_percpu(memcg->stat);
8ff69e2c 4131 kfree(memcg);
59927fb9 4132}
3afe36b1 4133
0b8f73e1 4134static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4135{
d142e3e6 4136 struct mem_cgroup *memcg;
0b8f73e1 4137 size_t size;
6d12e2d8 4138 int node;
8cdea7c0 4139
0b8f73e1
JW
4140 size = sizeof(struct mem_cgroup);
4141 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4142
4143 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4144 if (!memcg)
0b8f73e1
JW
4145 return NULL;
4146
73f576c0
JW
4147 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4148 1, MEM_CGROUP_ID_MAX,
4149 GFP_KERNEL);
4150 if (memcg->id.id < 0)
4151 goto fail;
4152
0b8f73e1
JW
4153 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4154 if (!memcg->stat)
4155 goto fail;
78fb7466 4156
3ed28fa1 4157 for_each_node(node)
ef8f2327 4158 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4159 goto fail;
f64c3f54 4160
0b8f73e1
JW
4161 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4162 goto fail;
28dbc4b6 4163
f7e1cb6e 4164 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4165 memcg->last_scanned_node = MAX_NUMNODES;
4166 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4167 mutex_init(&memcg->thresholds_lock);
4168 spin_lock_init(&memcg->move_lock);
70ddf637 4169 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4170 INIT_LIST_HEAD(&memcg->event_list);
4171 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4172 memcg->socket_pressure = jiffies;
127424c8 4173#ifndef CONFIG_SLOB
900a38f0 4174 memcg->kmemcg_id = -1;
900a38f0 4175#endif
52ebea74
TH
4176#ifdef CONFIG_CGROUP_WRITEBACK
4177 INIT_LIST_HEAD(&memcg->cgwb_list);
4178#endif
73f576c0 4179 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4180 return memcg;
4181fail:
73f576c0
JW
4182 if (memcg->id.id > 0)
4183 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4184 mem_cgroup_free(memcg);
4185 return NULL;
d142e3e6
GC
4186}
4187
0b8f73e1
JW
4188static struct cgroup_subsys_state * __ref
4189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4190{
0b8f73e1
JW
4191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4192 struct mem_cgroup *memcg;
4193 long error = -ENOMEM;
d142e3e6 4194
0b8f73e1
JW
4195 memcg = mem_cgroup_alloc();
4196 if (!memcg)
4197 return ERR_PTR(error);
d142e3e6 4198
0b8f73e1
JW
4199 memcg->high = PAGE_COUNTER_MAX;
4200 memcg->soft_limit = PAGE_COUNTER_MAX;
4201 if (parent) {
4202 memcg->swappiness = mem_cgroup_swappiness(parent);
4203 memcg->oom_kill_disable = parent->oom_kill_disable;
4204 }
4205 if (parent && parent->use_hierarchy) {
4206 memcg->use_hierarchy = true;
3e32cb2e 4207 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4208 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4209 page_counter_init(&memcg->memsw, &parent->memsw);
4210 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4211 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4212 } else {
3e32cb2e 4213 page_counter_init(&memcg->memory, NULL);
37e84351 4214 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4215 page_counter_init(&memcg->memsw, NULL);
4216 page_counter_init(&memcg->kmem, NULL);
0db15298 4217 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4218 /*
4219 * Deeper hierachy with use_hierarchy == false doesn't make
4220 * much sense so let cgroup subsystem know about this
4221 * unfortunate state in our controller.
4222 */
d142e3e6 4223 if (parent != root_mem_cgroup)
073219e9 4224 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4225 }
d6441637 4226
0b8f73e1
JW
4227 /* The following stuff does not apply to the root */
4228 if (!parent) {
4229 root_mem_cgroup = memcg;
4230 return &memcg->css;
4231 }
4232
b313aeee 4233 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4234 if (error)
4235 goto fail;
127424c8 4236
f7e1cb6e 4237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4238 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4239
0b8f73e1
JW
4240 return &memcg->css;
4241fail:
4242 mem_cgroup_free(memcg);
ea3a9645 4243 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4244}
4245
73f576c0 4246static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4247{
73f576c0
JW
4248 /* Online state pins memcg ID, memcg ID pins CSS */
4249 mem_cgroup_id_get(mem_cgroup_from_css(css));
4250 css_get(css);
2f7dd7a4 4251 return 0;
8cdea7c0
BS
4252}
4253
eb95419b 4254static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4255{
eb95419b 4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4257 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4258
4259 /*
4260 * Unregister events and notify userspace.
4261 * Notify userspace about cgroup removing only after rmdir of cgroup
4262 * directory to avoid race between userspace and kernelspace.
4263 */
fba94807
TH
4264 spin_lock(&memcg->event_list_lock);
4265 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4266 list_del_init(&event->list);
4267 schedule_work(&event->remove);
4268 }
fba94807 4269 spin_unlock(&memcg->event_list_lock);
ec64f515 4270
567e9ab2 4271 memcg_offline_kmem(memcg);
52ebea74 4272 wb_memcg_offline(memcg);
73f576c0
JW
4273
4274 mem_cgroup_id_put(memcg);
df878fb0
KH
4275}
4276
6df38689
VD
4277static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4278{
4279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4280
4281 invalidate_reclaim_iterators(memcg);
4282}
4283
eb95419b 4284static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4285{
eb95419b 4286 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4287
f7e1cb6e 4288 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4289 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4290
0db15298 4291 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4292 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4293
0b8f73e1
JW
4294 vmpressure_cleanup(&memcg->vmpressure);
4295 cancel_work_sync(&memcg->high_work);
4296 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4297 memcg_free_kmem(memcg);
0b8f73e1 4298 mem_cgroup_free(memcg);
8cdea7c0
BS
4299}
4300
1ced953b
TH
4301/**
4302 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4303 * @css: the target css
4304 *
4305 * Reset the states of the mem_cgroup associated with @css. This is
4306 * invoked when the userland requests disabling on the default hierarchy
4307 * but the memcg is pinned through dependency. The memcg should stop
4308 * applying policies and should revert to the vanilla state as it may be
4309 * made visible again.
4310 *
4311 * The current implementation only resets the essential configurations.
4312 * This needs to be expanded to cover all the visible parts.
4313 */
4314static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4315{
4316 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4317
d334c9bc
VD
4318 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4319 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4320 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4321 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4322 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4323 memcg->low = 0;
4324 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4325 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4326 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4327}
4328
02491447 4329#ifdef CONFIG_MMU
7dc74be0 4330/* Handlers for move charge at task migration. */
854ffa8d 4331static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4332{
05b84301 4333 int ret;
9476db97 4334
d0164adc
MG
4335 /* Try a single bulk charge without reclaim first, kswapd may wake */
4336 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4337 if (!ret) {
854ffa8d 4338 mc.precharge += count;
854ffa8d
DN
4339 return ret;
4340 }
9476db97
JW
4341
4342 /* Try charges one by one with reclaim */
854ffa8d 4343 while (count--) {
00501b53 4344 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4345 if (ret)
38c5d72f 4346 return ret;
854ffa8d 4347 mc.precharge++;
9476db97 4348 cond_resched();
854ffa8d 4349 }
9476db97 4350 return 0;
4ffef5fe
DN
4351}
4352
4ffef5fe
DN
4353union mc_target {
4354 struct page *page;
02491447 4355 swp_entry_t ent;
4ffef5fe
DN
4356};
4357
4ffef5fe 4358enum mc_target_type {
8d32ff84 4359 MC_TARGET_NONE = 0,
4ffef5fe 4360 MC_TARGET_PAGE,
02491447 4361 MC_TARGET_SWAP,
4ffef5fe
DN
4362};
4363
90254a65
DN
4364static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4365 unsigned long addr, pte_t ptent)
4ffef5fe 4366{
90254a65 4367 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4368
90254a65
DN
4369 if (!page || !page_mapped(page))
4370 return NULL;
4371 if (PageAnon(page)) {
1dfab5ab 4372 if (!(mc.flags & MOVE_ANON))
90254a65 4373 return NULL;
1dfab5ab
JW
4374 } else {
4375 if (!(mc.flags & MOVE_FILE))
4376 return NULL;
4377 }
90254a65
DN
4378 if (!get_page_unless_zero(page))
4379 return NULL;
4380
4381 return page;
4382}
4383
4b91355e 4384#ifdef CONFIG_SWAP
90254a65 4385static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4386 pte_t ptent, swp_entry_t *entry)
90254a65 4387{
90254a65
DN
4388 struct page *page = NULL;
4389 swp_entry_t ent = pte_to_swp_entry(ptent);
4390
1dfab5ab 4391 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4392 return NULL;
4b91355e
KH
4393 /*
4394 * Because lookup_swap_cache() updates some statistics counter,
4395 * we call find_get_page() with swapper_space directly.
4396 */
33806f06 4397 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4398 if (do_memsw_account())
90254a65
DN
4399 entry->val = ent.val;
4400
4401 return page;
4402}
4b91355e
KH
4403#else
4404static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4405 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4406{
4407 return NULL;
4408}
4409#endif
90254a65 4410
87946a72
DN
4411static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4412 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4413{
4414 struct page *page = NULL;
87946a72
DN
4415 struct address_space *mapping;
4416 pgoff_t pgoff;
4417
4418 if (!vma->vm_file) /* anonymous vma */
4419 return NULL;
1dfab5ab 4420 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4421 return NULL;
4422
87946a72 4423 mapping = vma->vm_file->f_mapping;
0661a336 4424 pgoff = linear_page_index(vma, addr);
87946a72
DN
4425
4426 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4427#ifdef CONFIG_SWAP
4428 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4429 if (shmem_mapping(mapping)) {
4430 page = find_get_entry(mapping, pgoff);
4431 if (radix_tree_exceptional_entry(page)) {
4432 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4433 if (do_memsw_account())
139b6a6f
JW
4434 *entry = swp;
4435 page = find_get_page(swap_address_space(swp), swp.val);
4436 }
4437 } else
4438 page = find_get_page(mapping, pgoff);
4439#else
4440 page = find_get_page(mapping, pgoff);
aa3b1895 4441#endif
87946a72
DN
4442 return page;
4443}
4444
b1b0deab
CG
4445/**
4446 * mem_cgroup_move_account - move account of the page
4447 * @page: the page
25843c2b 4448 * @compound: charge the page as compound or small page
b1b0deab
CG
4449 * @from: mem_cgroup which the page is moved from.
4450 * @to: mem_cgroup which the page is moved to. @from != @to.
4451 *
3ac808fd 4452 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4453 *
4454 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4455 * from old cgroup.
4456 */
4457static int mem_cgroup_move_account(struct page *page,
f627c2f5 4458 bool compound,
b1b0deab
CG
4459 struct mem_cgroup *from,
4460 struct mem_cgroup *to)
4461{
4462 unsigned long flags;
f627c2f5 4463 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4464 int ret;
c4843a75 4465 bool anon;
b1b0deab
CG
4466
4467 VM_BUG_ON(from == to);
4468 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4469 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4470
4471 /*
6a93ca8f 4472 * Prevent mem_cgroup_migrate() from looking at
45637bab 4473 * page->mem_cgroup of its source page while we change it.
b1b0deab 4474 */
f627c2f5 4475 ret = -EBUSY;
b1b0deab
CG
4476 if (!trylock_page(page))
4477 goto out;
4478
4479 ret = -EINVAL;
4480 if (page->mem_cgroup != from)
4481 goto out_unlock;
4482
c4843a75
GT
4483 anon = PageAnon(page);
4484
b1b0deab
CG
4485 spin_lock_irqsave(&from->move_lock, flags);
4486
c4843a75 4487 if (!anon && page_mapped(page)) {
b1b0deab
CG
4488 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4489 nr_pages);
4490 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4491 nr_pages);
4492 }
4493
c4843a75
GT
4494 /*
4495 * move_lock grabbed above and caller set from->moving_account, so
4496 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4497 * So mapping should be stable for dirty pages.
4498 */
4499 if (!anon && PageDirty(page)) {
4500 struct address_space *mapping = page_mapping(page);
4501
4502 if (mapping_cap_account_dirty(mapping)) {
4503 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4504 nr_pages);
4505 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4506 nr_pages);
4507 }
4508 }
4509
b1b0deab
CG
4510 if (PageWriteback(page)) {
4511 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4512 nr_pages);
4513 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4514 nr_pages);
4515 }
4516
4517 /*
4518 * It is safe to change page->mem_cgroup here because the page
4519 * is referenced, charged, and isolated - we can't race with
4520 * uncharging, charging, migration, or LRU putback.
4521 */
4522
4523 /* caller should have done css_get */
4524 page->mem_cgroup = to;
4525 spin_unlock_irqrestore(&from->move_lock, flags);
4526
4527 ret = 0;
4528
4529 local_irq_disable();
f627c2f5 4530 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4531 memcg_check_events(to, page);
f627c2f5 4532 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4533 memcg_check_events(from, page);
4534 local_irq_enable();
4535out_unlock:
4536 unlock_page(page);
4537out:
4538 return ret;
4539}
4540
7cf7806c
LR
4541/**
4542 * get_mctgt_type - get target type of moving charge
4543 * @vma: the vma the pte to be checked belongs
4544 * @addr: the address corresponding to the pte to be checked
4545 * @ptent: the pte to be checked
4546 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4547 *
4548 * Returns
4549 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4550 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4551 * move charge. if @target is not NULL, the page is stored in target->page
4552 * with extra refcnt got(Callers should handle it).
4553 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4554 * target for charge migration. if @target is not NULL, the entry is stored
4555 * in target->ent.
4556 *
4557 * Called with pte lock held.
4558 */
4559
8d32ff84 4560static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4561 unsigned long addr, pte_t ptent, union mc_target *target)
4562{
4563 struct page *page = NULL;
8d32ff84 4564 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4565 swp_entry_t ent = { .val = 0 };
4566
4567 if (pte_present(ptent))
4568 page = mc_handle_present_pte(vma, addr, ptent);
4569 else if (is_swap_pte(ptent))
48406ef8 4570 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4571 else if (pte_none(ptent))
87946a72 4572 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4573
4574 if (!page && !ent.val)
8d32ff84 4575 return ret;
02491447 4576 if (page) {
02491447 4577 /*
0a31bc97 4578 * Do only loose check w/o serialization.
1306a85a 4579 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4580 * not under LRU exclusion.
02491447 4581 */
1306a85a 4582 if (page->mem_cgroup == mc.from) {
02491447
DN
4583 ret = MC_TARGET_PAGE;
4584 if (target)
4585 target->page = page;
4586 }
4587 if (!ret || !target)
4588 put_page(page);
4589 }
90254a65
DN
4590 /* There is a swap entry and a page doesn't exist or isn't charged */
4591 if (ent.val && !ret &&
34c00c31 4592 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4593 ret = MC_TARGET_SWAP;
4594 if (target)
4595 target->ent = ent;
4ffef5fe 4596 }
4ffef5fe
DN
4597 return ret;
4598}
4599
12724850
NH
4600#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4601/*
4602 * We don't consider swapping or file mapped pages because THP does not
4603 * support them for now.
4604 * Caller should make sure that pmd_trans_huge(pmd) is true.
4605 */
4606static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4607 unsigned long addr, pmd_t pmd, union mc_target *target)
4608{
4609 struct page *page = NULL;
12724850
NH
4610 enum mc_target_type ret = MC_TARGET_NONE;
4611
4612 page = pmd_page(pmd);
309381fe 4613 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4614 if (!(mc.flags & MOVE_ANON))
12724850 4615 return ret;
1306a85a 4616 if (page->mem_cgroup == mc.from) {
12724850
NH
4617 ret = MC_TARGET_PAGE;
4618 if (target) {
4619 get_page(page);
4620 target->page = page;
4621 }
4622 }
4623 return ret;
4624}
4625#else
4626static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4627 unsigned long addr, pmd_t pmd, union mc_target *target)
4628{
4629 return MC_TARGET_NONE;
4630}
4631#endif
4632
4ffef5fe
DN
4633static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4634 unsigned long addr, unsigned long end,
4635 struct mm_walk *walk)
4636{
26bcd64a 4637 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4638 pte_t *pte;
4639 spinlock_t *ptl;
4640
b6ec57f4
KS
4641 ptl = pmd_trans_huge_lock(pmd, vma);
4642 if (ptl) {
12724850
NH
4643 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4644 mc.precharge += HPAGE_PMD_NR;
bf929152 4645 spin_unlock(ptl);
1a5a9906 4646 return 0;
12724850 4647 }
03319327 4648
45f83cef
AA
4649 if (pmd_trans_unstable(pmd))
4650 return 0;
4ffef5fe
DN
4651 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4652 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4653 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4654 mc.precharge++; /* increment precharge temporarily */
4655 pte_unmap_unlock(pte - 1, ptl);
4656 cond_resched();
4657
7dc74be0
DN
4658 return 0;
4659}
4660
4ffef5fe
DN
4661static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4662{
4663 unsigned long precharge;
4ffef5fe 4664
26bcd64a
NH
4665 struct mm_walk mem_cgroup_count_precharge_walk = {
4666 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4667 .mm = mm,
4668 };
dfe076b0 4669 down_read(&mm->mmap_sem);
26bcd64a 4670 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4671 up_read(&mm->mmap_sem);
4ffef5fe
DN
4672
4673 precharge = mc.precharge;
4674 mc.precharge = 0;
4675
4676 return precharge;
4677}
4678
4ffef5fe
DN
4679static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4680{
dfe076b0
DN
4681 unsigned long precharge = mem_cgroup_count_precharge(mm);
4682
4683 VM_BUG_ON(mc.moving_task);
4684 mc.moving_task = current;
4685 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4686}
4687
dfe076b0
DN
4688/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4689static void __mem_cgroup_clear_mc(void)
4ffef5fe 4690{
2bd9bb20
KH
4691 struct mem_cgroup *from = mc.from;
4692 struct mem_cgroup *to = mc.to;
4693
4ffef5fe 4694 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4695 if (mc.precharge) {
00501b53 4696 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4697 mc.precharge = 0;
4698 }
4699 /*
4700 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4701 * we must uncharge here.
4702 */
4703 if (mc.moved_charge) {
00501b53 4704 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4705 mc.moved_charge = 0;
4ffef5fe 4706 }
483c30b5
DN
4707 /* we must fixup refcnts and charges */
4708 if (mc.moved_swap) {
483c30b5 4709 /* uncharge swap account from the old cgroup */
ce00a967 4710 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4711 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4712
05b84301 4713 /*
3e32cb2e
JW
4714 * we charged both to->memory and to->memsw, so we
4715 * should uncharge to->memory.
05b84301 4716 */
ce00a967 4717 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4718 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4719
e8ea14cc 4720 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4721
4050377b 4722 /* we've already done css_get(mc.to) */
483c30b5
DN
4723 mc.moved_swap = 0;
4724 }
dfe076b0
DN
4725 memcg_oom_recover(from);
4726 memcg_oom_recover(to);
4727 wake_up_all(&mc.waitq);
4728}
4729
4730static void mem_cgroup_clear_mc(void)
4731{
264a0ae1
TH
4732 struct mm_struct *mm = mc.mm;
4733
dfe076b0
DN
4734 /*
4735 * we must clear moving_task before waking up waiters at the end of
4736 * task migration.
4737 */
4738 mc.moving_task = NULL;
4739 __mem_cgroup_clear_mc();
2bd9bb20 4740 spin_lock(&mc.lock);
4ffef5fe
DN
4741 mc.from = NULL;
4742 mc.to = NULL;
264a0ae1 4743 mc.mm = NULL;
2bd9bb20 4744 spin_unlock(&mc.lock);
264a0ae1
TH
4745
4746 mmput(mm);
4ffef5fe
DN
4747}
4748
1f7dd3e5 4749static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4750{
1f7dd3e5 4751 struct cgroup_subsys_state *css;
eed67d75 4752 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4753 struct mem_cgroup *from;
4530eddb 4754 struct task_struct *leader, *p;
9f2115f9 4755 struct mm_struct *mm;
1dfab5ab 4756 unsigned long move_flags;
9f2115f9 4757 int ret = 0;
7dc74be0 4758
1f7dd3e5
TH
4759 /* charge immigration isn't supported on the default hierarchy */
4760 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4761 return 0;
4762
4530eddb
TH
4763 /*
4764 * Multi-process migrations only happen on the default hierarchy
4765 * where charge immigration is not used. Perform charge
4766 * immigration if @tset contains a leader and whine if there are
4767 * multiple.
4768 */
4769 p = NULL;
1f7dd3e5 4770 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4771 WARN_ON_ONCE(p);
4772 p = leader;
1f7dd3e5 4773 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4774 }
4775 if (!p)
4776 return 0;
4777
1f7dd3e5
TH
4778 /*
4779 * We are now commited to this value whatever it is. Changes in this
4780 * tunable will only affect upcoming migrations, not the current one.
4781 * So we need to save it, and keep it going.
4782 */
4783 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4784 if (!move_flags)
4785 return 0;
4786
9f2115f9
TH
4787 from = mem_cgroup_from_task(p);
4788
4789 VM_BUG_ON(from == memcg);
4790
4791 mm = get_task_mm(p);
4792 if (!mm)
4793 return 0;
4794 /* We move charges only when we move a owner of the mm */
4795 if (mm->owner == p) {
4796 VM_BUG_ON(mc.from);
4797 VM_BUG_ON(mc.to);
4798 VM_BUG_ON(mc.precharge);
4799 VM_BUG_ON(mc.moved_charge);
4800 VM_BUG_ON(mc.moved_swap);
4801
4802 spin_lock(&mc.lock);
264a0ae1 4803 mc.mm = mm;
9f2115f9
TH
4804 mc.from = from;
4805 mc.to = memcg;
4806 mc.flags = move_flags;
4807 spin_unlock(&mc.lock);
4808 /* We set mc.moving_task later */
4809
4810 ret = mem_cgroup_precharge_mc(mm);
4811 if (ret)
4812 mem_cgroup_clear_mc();
264a0ae1
TH
4813 } else {
4814 mmput(mm);
7dc74be0
DN
4815 }
4816 return ret;
4817}
4818
1f7dd3e5 4819static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4820{
4e2f245d
JW
4821 if (mc.to)
4822 mem_cgroup_clear_mc();
7dc74be0
DN
4823}
4824
4ffef5fe
DN
4825static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4826 unsigned long addr, unsigned long end,
4827 struct mm_walk *walk)
7dc74be0 4828{
4ffef5fe 4829 int ret = 0;
26bcd64a 4830 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4831 pte_t *pte;
4832 spinlock_t *ptl;
12724850
NH
4833 enum mc_target_type target_type;
4834 union mc_target target;
4835 struct page *page;
4ffef5fe 4836
b6ec57f4
KS
4837 ptl = pmd_trans_huge_lock(pmd, vma);
4838 if (ptl) {
62ade86a 4839 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4840 spin_unlock(ptl);
12724850
NH
4841 return 0;
4842 }
4843 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4844 if (target_type == MC_TARGET_PAGE) {
4845 page = target.page;
4846 if (!isolate_lru_page(page)) {
f627c2f5 4847 if (!mem_cgroup_move_account(page, true,
1306a85a 4848 mc.from, mc.to)) {
12724850
NH
4849 mc.precharge -= HPAGE_PMD_NR;
4850 mc.moved_charge += HPAGE_PMD_NR;
4851 }
4852 putback_lru_page(page);
4853 }
4854 put_page(page);
4855 }
bf929152 4856 spin_unlock(ptl);
1a5a9906 4857 return 0;
12724850
NH
4858 }
4859
45f83cef
AA
4860 if (pmd_trans_unstable(pmd))
4861 return 0;
4ffef5fe
DN
4862retry:
4863 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4864 for (; addr != end; addr += PAGE_SIZE) {
4865 pte_t ptent = *(pte++);
02491447 4866 swp_entry_t ent;
4ffef5fe
DN
4867
4868 if (!mc.precharge)
4869 break;
4870
8d32ff84 4871 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4872 case MC_TARGET_PAGE:
4873 page = target.page;
53f9263b
KS
4874 /*
4875 * We can have a part of the split pmd here. Moving it
4876 * can be done but it would be too convoluted so simply
4877 * ignore such a partial THP and keep it in original
4878 * memcg. There should be somebody mapping the head.
4879 */
4880 if (PageTransCompound(page))
4881 goto put;
4ffef5fe
DN
4882 if (isolate_lru_page(page))
4883 goto put;
f627c2f5
KS
4884 if (!mem_cgroup_move_account(page, false,
4885 mc.from, mc.to)) {
4ffef5fe 4886 mc.precharge--;
854ffa8d
DN
4887 /* we uncharge from mc.from later. */
4888 mc.moved_charge++;
4ffef5fe
DN
4889 }
4890 putback_lru_page(page);
8d32ff84 4891put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4892 put_page(page);
4893 break;
02491447
DN
4894 case MC_TARGET_SWAP:
4895 ent = target.ent;
e91cbb42 4896 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4897 mc.precharge--;
483c30b5
DN
4898 /* we fixup refcnts and charges later. */
4899 mc.moved_swap++;
4900 }
02491447 4901 break;
4ffef5fe
DN
4902 default:
4903 break;
4904 }
4905 }
4906 pte_unmap_unlock(pte - 1, ptl);
4907 cond_resched();
4908
4909 if (addr != end) {
4910 /*
4911 * We have consumed all precharges we got in can_attach().
4912 * We try charge one by one, but don't do any additional
4913 * charges to mc.to if we have failed in charge once in attach()
4914 * phase.
4915 */
854ffa8d 4916 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4917 if (!ret)
4918 goto retry;
4919 }
4920
4921 return ret;
4922}
4923
264a0ae1 4924static void mem_cgroup_move_charge(void)
4ffef5fe 4925{
26bcd64a
NH
4926 struct mm_walk mem_cgroup_move_charge_walk = {
4927 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4928 .mm = mc.mm,
26bcd64a 4929 };
4ffef5fe
DN
4930
4931 lru_add_drain_all();
312722cb 4932 /*
81f8c3a4
JW
4933 * Signal lock_page_memcg() to take the memcg's move_lock
4934 * while we're moving its pages to another memcg. Then wait
4935 * for already started RCU-only updates to finish.
312722cb
JW
4936 */
4937 atomic_inc(&mc.from->moving_account);
4938 synchronize_rcu();
dfe076b0 4939retry:
264a0ae1 4940 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4941 /*
4942 * Someone who are holding the mmap_sem might be waiting in
4943 * waitq. So we cancel all extra charges, wake up all waiters,
4944 * and retry. Because we cancel precharges, we might not be able
4945 * to move enough charges, but moving charge is a best-effort
4946 * feature anyway, so it wouldn't be a big problem.
4947 */
4948 __mem_cgroup_clear_mc();
4949 cond_resched();
4950 goto retry;
4951 }
26bcd64a
NH
4952 /*
4953 * When we have consumed all precharges and failed in doing
4954 * additional charge, the page walk just aborts.
4955 */
4956 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4957 up_read(&mc.mm->mmap_sem);
312722cb 4958 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4959}
4960
264a0ae1 4961static void mem_cgroup_move_task(void)
67e465a7 4962{
264a0ae1
TH
4963 if (mc.to) {
4964 mem_cgroup_move_charge();
a433658c 4965 mem_cgroup_clear_mc();
264a0ae1 4966 }
67e465a7 4967}
5cfb80a7 4968#else /* !CONFIG_MMU */
1f7dd3e5 4969static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4970{
4971 return 0;
4972}
1f7dd3e5 4973static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4974{
4975}
264a0ae1 4976static void mem_cgroup_move_task(void)
5cfb80a7
DN
4977{
4978}
4979#endif
67e465a7 4980
f00baae7
TH
4981/*
4982 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4983 * to verify whether we're attached to the default hierarchy on each mount
4984 * attempt.
f00baae7 4985 */
eb95419b 4986static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4987{
4988 /*
aa6ec29b 4989 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4990 * guarantees that @root doesn't have any children, so turning it
4991 * on for the root memcg is enough.
4992 */
9e10a130 4993 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4994 root_mem_cgroup->use_hierarchy = true;
4995 else
4996 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4997}
4998
241994ed
JW
4999static u64 memory_current_read(struct cgroup_subsys_state *css,
5000 struct cftype *cft)
5001{
f5fc3c5d
JW
5002 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5003
5004 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5005}
5006
5007static int memory_low_show(struct seq_file *m, void *v)
5008{
5009 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5010 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5011
5012 if (low == PAGE_COUNTER_MAX)
d2973697 5013 seq_puts(m, "max\n");
241994ed
JW
5014 else
5015 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5016
5017 return 0;
5018}
5019
5020static ssize_t memory_low_write(struct kernfs_open_file *of,
5021 char *buf, size_t nbytes, loff_t off)
5022{
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5024 unsigned long low;
5025 int err;
5026
5027 buf = strstrip(buf);
d2973697 5028 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5029 if (err)
5030 return err;
5031
5032 memcg->low = low;
5033
5034 return nbytes;
5035}
5036
5037static int memory_high_show(struct seq_file *m, void *v)
5038{
5039 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5040 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5041
5042 if (high == PAGE_COUNTER_MAX)
d2973697 5043 seq_puts(m, "max\n");
241994ed
JW
5044 else
5045 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5046
5047 return 0;
5048}
5049
5050static ssize_t memory_high_write(struct kernfs_open_file *of,
5051 char *buf, size_t nbytes, loff_t off)
5052{
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5054 unsigned long nr_pages;
241994ed
JW
5055 unsigned long high;
5056 int err;
5057
5058 buf = strstrip(buf);
d2973697 5059 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5060 if (err)
5061 return err;
5062
5063 memcg->high = high;
5064
588083bb
JW
5065 nr_pages = page_counter_read(&memcg->memory);
5066 if (nr_pages > high)
5067 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5068 GFP_KERNEL, true);
5069
2529bb3a 5070 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5071 return nbytes;
5072}
5073
5074static int memory_max_show(struct seq_file *m, void *v)
5075{
5076 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5077 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5078
5079 if (max == PAGE_COUNTER_MAX)
d2973697 5080 seq_puts(m, "max\n");
241994ed
JW
5081 else
5082 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5083
5084 return 0;
5085}
5086
5087static ssize_t memory_max_write(struct kernfs_open_file *of,
5088 char *buf, size_t nbytes, loff_t off)
5089{
5090 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5091 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5092 bool drained = false;
241994ed
JW
5093 unsigned long max;
5094 int err;
5095
5096 buf = strstrip(buf);
d2973697 5097 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5098 if (err)
5099 return err;
5100
b6e6edcf
JW
5101 xchg(&memcg->memory.limit, max);
5102
5103 for (;;) {
5104 unsigned long nr_pages = page_counter_read(&memcg->memory);
5105
5106 if (nr_pages <= max)
5107 break;
5108
5109 if (signal_pending(current)) {
5110 err = -EINTR;
5111 break;
5112 }
5113
5114 if (!drained) {
5115 drain_all_stock(memcg);
5116 drained = true;
5117 continue;
5118 }
5119
5120 if (nr_reclaims) {
5121 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5122 GFP_KERNEL, true))
5123 nr_reclaims--;
5124 continue;
5125 }
5126
5127 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5128 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5129 break;
5130 }
241994ed 5131
2529bb3a 5132 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5133 return nbytes;
5134}
5135
5136static int memory_events_show(struct seq_file *m, void *v)
5137{
5138 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5139
5140 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5141 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5142 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5143 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5144
5145 return 0;
5146}
5147
587d9f72
JW
5148static int memory_stat_show(struct seq_file *m, void *v)
5149{
5150 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5151 unsigned long stat[MEMCG_NR_STAT];
5152 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5153 int i;
5154
5155 /*
5156 * Provide statistics on the state of the memory subsystem as
5157 * well as cumulative event counters that show past behavior.
5158 *
5159 * This list is ordered following a combination of these gradients:
5160 * 1) generic big picture -> specifics and details
5161 * 2) reflecting userspace activity -> reflecting kernel heuristics
5162 *
5163 * Current memory state:
5164 */
5165
72b54e73
VD
5166 tree_stat(memcg, stat);
5167 tree_events(memcg, events);
5168
587d9f72 5169 seq_printf(m, "anon %llu\n",
72b54e73 5170 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5171 seq_printf(m, "file %llu\n",
72b54e73 5172 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5173 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5174 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5175 seq_printf(m, "slab %llu\n",
5176 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5177 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5178 seq_printf(m, "sock %llu\n",
72b54e73 5179 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5180
5181 seq_printf(m, "file_mapped %llu\n",
72b54e73 5182 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5183 seq_printf(m, "file_dirty %llu\n",
72b54e73 5184 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5185 seq_printf(m, "file_writeback %llu\n",
72b54e73 5186 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5187
5188 for (i = 0; i < NR_LRU_LISTS; i++) {
5189 struct mem_cgroup *mi;
5190 unsigned long val = 0;
5191
5192 for_each_mem_cgroup_tree(mi, memcg)
5193 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5194 seq_printf(m, "%s %llu\n",
5195 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5196 }
5197
27ee57c9
VD
5198 seq_printf(m, "slab_reclaimable %llu\n",
5199 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5200 seq_printf(m, "slab_unreclaimable %llu\n",
5201 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5202
587d9f72
JW
5203 /* Accumulated memory events */
5204
5205 seq_printf(m, "pgfault %lu\n",
72b54e73 5206 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5207 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5208 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5209
5210 return 0;
5211}
5212
241994ed
JW
5213static struct cftype memory_files[] = {
5214 {
5215 .name = "current",
f5fc3c5d 5216 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5217 .read_u64 = memory_current_read,
5218 },
5219 {
5220 .name = "low",
5221 .flags = CFTYPE_NOT_ON_ROOT,
5222 .seq_show = memory_low_show,
5223 .write = memory_low_write,
5224 },
5225 {
5226 .name = "high",
5227 .flags = CFTYPE_NOT_ON_ROOT,
5228 .seq_show = memory_high_show,
5229 .write = memory_high_write,
5230 },
5231 {
5232 .name = "max",
5233 .flags = CFTYPE_NOT_ON_ROOT,
5234 .seq_show = memory_max_show,
5235 .write = memory_max_write,
5236 },
5237 {
5238 .name = "events",
5239 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5240 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5241 .seq_show = memory_events_show,
5242 },
587d9f72
JW
5243 {
5244 .name = "stat",
5245 .flags = CFTYPE_NOT_ON_ROOT,
5246 .seq_show = memory_stat_show,
5247 },
241994ed
JW
5248 { } /* terminate */
5249};
5250
073219e9 5251struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5252 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5253 .css_online = mem_cgroup_css_online,
92fb9748 5254 .css_offline = mem_cgroup_css_offline,
6df38689 5255 .css_released = mem_cgroup_css_released,
92fb9748 5256 .css_free = mem_cgroup_css_free,
1ced953b 5257 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5258 .can_attach = mem_cgroup_can_attach,
5259 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5260 .post_attach = mem_cgroup_move_task,
f00baae7 5261 .bind = mem_cgroup_bind,
241994ed
JW
5262 .dfl_cftypes = memory_files,
5263 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5264 .early_init = 0,
8cdea7c0 5265};
c077719b 5266
241994ed
JW
5267/**
5268 * mem_cgroup_low - check if memory consumption is below the normal range
5269 * @root: the highest ancestor to consider
5270 * @memcg: the memory cgroup to check
5271 *
5272 * Returns %true if memory consumption of @memcg, and that of all
5273 * configurable ancestors up to @root, is below the normal range.
5274 */
5275bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5276{
5277 if (mem_cgroup_disabled())
5278 return false;
5279
5280 /*
5281 * The toplevel group doesn't have a configurable range, so
5282 * it's never low when looked at directly, and it is not
5283 * considered an ancestor when assessing the hierarchy.
5284 */
5285
5286 if (memcg == root_mem_cgroup)
5287 return false;
5288
4e54dede 5289 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5290 return false;
5291
5292 while (memcg != root) {
5293 memcg = parent_mem_cgroup(memcg);
5294
5295 if (memcg == root_mem_cgroup)
5296 break;
5297
4e54dede 5298 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5299 return false;
5300 }
5301 return true;
5302}
5303
00501b53
JW
5304/**
5305 * mem_cgroup_try_charge - try charging a page
5306 * @page: page to charge
5307 * @mm: mm context of the victim
5308 * @gfp_mask: reclaim mode
5309 * @memcgp: charged memcg return
25843c2b 5310 * @compound: charge the page as compound or small page
00501b53
JW
5311 *
5312 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5313 * pages according to @gfp_mask if necessary.
5314 *
5315 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5316 * Otherwise, an error code is returned.
5317 *
5318 * After page->mapping has been set up, the caller must finalize the
5319 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5320 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5321 */
5322int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5323 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5324 bool compound)
00501b53
JW
5325{
5326 struct mem_cgroup *memcg = NULL;
f627c2f5 5327 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5328 int ret = 0;
5329
5330 if (mem_cgroup_disabled())
5331 goto out;
5332
5333 if (PageSwapCache(page)) {
00501b53
JW
5334 /*
5335 * Every swap fault against a single page tries to charge the
5336 * page, bail as early as possible. shmem_unuse() encounters
5337 * already charged pages, too. The USED bit is protected by
5338 * the page lock, which serializes swap cache removal, which
5339 * in turn serializes uncharging.
5340 */
e993d905 5341 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5342 if (page->mem_cgroup)
00501b53 5343 goto out;
e993d905 5344
37e84351 5345 if (do_swap_account) {
e993d905
VD
5346 swp_entry_t ent = { .val = page_private(page), };
5347 unsigned short id = lookup_swap_cgroup_id(ent);
5348
5349 rcu_read_lock();
5350 memcg = mem_cgroup_from_id(id);
5351 if (memcg && !css_tryget_online(&memcg->css))
5352 memcg = NULL;
5353 rcu_read_unlock();
5354 }
00501b53
JW
5355 }
5356
00501b53
JW
5357 if (!memcg)
5358 memcg = get_mem_cgroup_from_mm(mm);
5359
5360 ret = try_charge(memcg, gfp_mask, nr_pages);
5361
5362 css_put(&memcg->css);
00501b53
JW
5363out:
5364 *memcgp = memcg;
5365 return ret;
5366}
5367
5368/**
5369 * mem_cgroup_commit_charge - commit a page charge
5370 * @page: page to charge
5371 * @memcg: memcg to charge the page to
5372 * @lrucare: page might be on LRU already
25843c2b 5373 * @compound: charge the page as compound or small page
00501b53
JW
5374 *
5375 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5376 * after page->mapping has been set up. This must happen atomically
5377 * as part of the page instantiation, i.e. under the page table lock
5378 * for anonymous pages, under the page lock for page and swap cache.
5379 *
5380 * In addition, the page must not be on the LRU during the commit, to
5381 * prevent racing with task migration. If it might be, use @lrucare.
5382 *
5383 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5384 */
5385void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5386 bool lrucare, bool compound)
00501b53 5387{
f627c2f5 5388 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5389
5390 VM_BUG_ON_PAGE(!page->mapping, page);
5391 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5392
5393 if (mem_cgroup_disabled())
5394 return;
5395 /*
5396 * Swap faults will attempt to charge the same page multiple
5397 * times. But reuse_swap_page() might have removed the page
5398 * from swapcache already, so we can't check PageSwapCache().
5399 */
5400 if (!memcg)
5401 return;
5402
6abb5a86
JW
5403 commit_charge(page, memcg, lrucare);
5404
6abb5a86 5405 local_irq_disable();
f627c2f5 5406 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5407 memcg_check_events(memcg, page);
5408 local_irq_enable();
00501b53 5409
7941d214 5410 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5411 swp_entry_t entry = { .val = page_private(page) };
5412 /*
5413 * The swap entry might not get freed for a long time,
5414 * let's not wait for it. The page already received a
5415 * memory+swap charge, drop the swap entry duplicate.
5416 */
5417 mem_cgroup_uncharge_swap(entry);
5418 }
5419}
5420
5421/**
5422 * mem_cgroup_cancel_charge - cancel a page charge
5423 * @page: page to charge
5424 * @memcg: memcg to charge the page to
25843c2b 5425 * @compound: charge the page as compound or small page
00501b53
JW
5426 *
5427 * Cancel a charge transaction started by mem_cgroup_try_charge().
5428 */
f627c2f5
KS
5429void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5430 bool compound)
00501b53 5431{
f627c2f5 5432 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5433
5434 if (mem_cgroup_disabled())
5435 return;
5436 /*
5437 * Swap faults will attempt to charge the same page multiple
5438 * times. But reuse_swap_page() might have removed the page
5439 * from swapcache already, so we can't check PageSwapCache().
5440 */
5441 if (!memcg)
5442 return;
5443
00501b53
JW
5444 cancel_charge(memcg, nr_pages);
5445}
5446
747db954 5447static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5448 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5449 unsigned long nr_huge, unsigned long nr_kmem,
5450 struct page *dummy_page)
747db954 5451{
5e8d35f8 5452 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5453 unsigned long flags;
5454
ce00a967 5455 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5456 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5457 if (do_memsw_account())
18eca2e6 5458 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5459 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5460 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5461 memcg_oom_recover(memcg);
5462 }
747db954
JW
5463
5464 local_irq_save(flags);
5465 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5466 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5467 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5468 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5469 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5470 memcg_check_events(memcg, dummy_page);
5471 local_irq_restore(flags);
e8ea14cc
JW
5472
5473 if (!mem_cgroup_is_root(memcg))
18eca2e6 5474 css_put_many(&memcg->css, nr_pages);
747db954
JW
5475}
5476
5477static void uncharge_list(struct list_head *page_list)
5478{
5479 struct mem_cgroup *memcg = NULL;
747db954
JW
5480 unsigned long nr_anon = 0;
5481 unsigned long nr_file = 0;
5482 unsigned long nr_huge = 0;
5e8d35f8 5483 unsigned long nr_kmem = 0;
747db954 5484 unsigned long pgpgout = 0;
747db954
JW
5485 struct list_head *next;
5486 struct page *page;
5487
8b592656
JW
5488 /*
5489 * Note that the list can be a single page->lru; hence the
5490 * do-while loop instead of a simple list_for_each_entry().
5491 */
747db954
JW
5492 next = page_list->next;
5493 do {
747db954
JW
5494 page = list_entry(next, struct page, lru);
5495 next = page->lru.next;
5496
5497 VM_BUG_ON_PAGE(PageLRU(page), page);
5498 VM_BUG_ON_PAGE(page_count(page), page);
5499
1306a85a 5500 if (!page->mem_cgroup)
747db954
JW
5501 continue;
5502
5503 /*
5504 * Nobody should be changing or seriously looking at
1306a85a 5505 * page->mem_cgroup at this point, we have fully
29833315 5506 * exclusive access to the page.
747db954
JW
5507 */
5508
1306a85a 5509 if (memcg != page->mem_cgroup) {
747db954 5510 if (memcg) {
18eca2e6 5511 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5512 nr_huge, nr_kmem, page);
5513 pgpgout = nr_anon = nr_file =
5514 nr_huge = nr_kmem = 0;
747db954 5515 }
1306a85a 5516 memcg = page->mem_cgroup;
747db954
JW
5517 }
5518
5e8d35f8
VD
5519 if (!PageKmemcg(page)) {
5520 unsigned int nr_pages = 1;
747db954 5521
5e8d35f8
VD
5522 if (PageTransHuge(page)) {
5523 nr_pages <<= compound_order(page);
5e8d35f8
VD
5524 nr_huge += nr_pages;
5525 }
5526 if (PageAnon(page))
5527 nr_anon += nr_pages;
5528 else
5529 nr_file += nr_pages;
5530 pgpgout++;
5531 } else
5532 nr_kmem += 1 << compound_order(page);
747db954 5533
1306a85a 5534 page->mem_cgroup = NULL;
747db954
JW
5535 } while (next != page_list);
5536
5537 if (memcg)
18eca2e6 5538 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5539 nr_huge, nr_kmem, page);
747db954
JW
5540}
5541
0a31bc97
JW
5542/**
5543 * mem_cgroup_uncharge - uncharge a page
5544 * @page: page to uncharge
5545 *
5546 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5547 * mem_cgroup_commit_charge().
5548 */
5549void mem_cgroup_uncharge(struct page *page)
5550{
0a31bc97
JW
5551 if (mem_cgroup_disabled())
5552 return;
5553
747db954 5554 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5555 if (!page->mem_cgroup)
0a31bc97
JW
5556 return;
5557
747db954
JW
5558 INIT_LIST_HEAD(&page->lru);
5559 uncharge_list(&page->lru);
5560}
0a31bc97 5561
747db954
JW
5562/**
5563 * mem_cgroup_uncharge_list - uncharge a list of page
5564 * @page_list: list of pages to uncharge
5565 *
5566 * Uncharge a list of pages previously charged with
5567 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5568 */
5569void mem_cgroup_uncharge_list(struct list_head *page_list)
5570{
5571 if (mem_cgroup_disabled())
5572 return;
0a31bc97 5573
747db954
JW
5574 if (!list_empty(page_list))
5575 uncharge_list(page_list);
0a31bc97
JW
5576}
5577
5578/**
6a93ca8f
JW
5579 * mem_cgroup_migrate - charge a page's replacement
5580 * @oldpage: currently circulating page
5581 * @newpage: replacement page
0a31bc97 5582 *
6a93ca8f
JW
5583 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5584 * be uncharged upon free.
0a31bc97
JW
5585 *
5586 * Both pages must be locked, @newpage->mapping must be set up.
5587 */
6a93ca8f 5588void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5589{
29833315 5590 struct mem_cgroup *memcg;
44b7a8d3
JW
5591 unsigned int nr_pages;
5592 bool compound;
d93c4130 5593 unsigned long flags;
0a31bc97
JW
5594
5595 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5596 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5597 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5598 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5599 newpage);
0a31bc97
JW
5600
5601 if (mem_cgroup_disabled())
5602 return;
5603
5604 /* Page cache replacement: new page already charged? */
1306a85a 5605 if (newpage->mem_cgroup)
0a31bc97
JW
5606 return;
5607
45637bab 5608 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5609 memcg = oldpage->mem_cgroup;
29833315 5610 if (!memcg)
0a31bc97
JW
5611 return;
5612
44b7a8d3
JW
5613 /* Force-charge the new page. The old one will be freed soon */
5614 compound = PageTransHuge(newpage);
5615 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5616
5617 page_counter_charge(&memcg->memory, nr_pages);
5618 if (do_memsw_account())
5619 page_counter_charge(&memcg->memsw, nr_pages);
5620 css_get_many(&memcg->css, nr_pages);
0a31bc97 5621
9cf7666a 5622 commit_charge(newpage, memcg, false);
44b7a8d3 5623
d93c4130 5624 local_irq_save(flags);
44b7a8d3
JW
5625 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5626 memcg_check_events(memcg, newpage);
d93c4130 5627 local_irq_restore(flags);
0a31bc97
JW
5628}
5629
ef12947c 5630DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5631EXPORT_SYMBOL(memcg_sockets_enabled_key);
5632
5633void sock_update_memcg(struct sock *sk)
5634{
5635 struct mem_cgroup *memcg;
5636
5637 /* Socket cloning can throw us here with sk_cgrp already
5638 * filled. It won't however, necessarily happen from
5639 * process context. So the test for root memcg given
5640 * the current task's memcg won't help us in this case.
5641 *
5642 * Respecting the original socket's memcg is a better
5643 * decision in this case.
5644 */
5645 if (sk->sk_memcg) {
5646 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5647 css_get(&sk->sk_memcg->css);
5648 return;
5649 }
5650
5651 rcu_read_lock();
5652 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5653 if (memcg == root_mem_cgroup)
5654 goto out;
0db15298 5655 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5656 goto out;
f7e1cb6e 5657 if (css_tryget_online(&memcg->css))
11092087 5658 sk->sk_memcg = memcg;
f7e1cb6e 5659out:
11092087
JW
5660 rcu_read_unlock();
5661}
5662EXPORT_SYMBOL(sock_update_memcg);
5663
5664void sock_release_memcg(struct sock *sk)
5665{
5666 WARN_ON(!sk->sk_memcg);
5667 css_put(&sk->sk_memcg->css);
5668}
5669
5670/**
5671 * mem_cgroup_charge_skmem - charge socket memory
5672 * @memcg: memcg to charge
5673 * @nr_pages: number of pages to charge
5674 *
5675 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5676 * @memcg's configured limit, %false if the charge had to be forced.
5677 */
5678bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5679{
f7e1cb6e 5680 gfp_t gfp_mask = GFP_KERNEL;
11092087 5681
f7e1cb6e 5682 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5683 struct page_counter *fail;
f7e1cb6e 5684
0db15298
JW
5685 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5686 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5687 return true;
5688 }
0db15298
JW
5689 page_counter_charge(&memcg->tcpmem, nr_pages);
5690 memcg->tcpmem_pressure = 1;
f7e1cb6e 5691 return false;
11092087 5692 }
d886f4e4 5693
f7e1cb6e
JW
5694 /* Don't block in the packet receive path */
5695 if (in_softirq())
5696 gfp_mask = GFP_NOWAIT;
5697
b2807f07
JW
5698 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5699
f7e1cb6e
JW
5700 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5701 return true;
5702
5703 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5704 return false;
5705}
5706
5707/**
5708 * mem_cgroup_uncharge_skmem - uncharge socket memory
5709 * @memcg - memcg to uncharge
5710 * @nr_pages - number of pages to uncharge
5711 */
5712void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5713{
f7e1cb6e 5714 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5715 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5716 return;
5717 }
d886f4e4 5718
b2807f07
JW
5719 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5720
f7e1cb6e
JW
5721 page_counter_uncharge(&memcg->memory, nr_pages);
5722 css_put_many(&memcg->css, nr_pages);
11092087
JW
5723}
5724
f7e1cb6e
JW
5725static int __init cgroup_memory(char *s)
5726{
5727 char *token;
5728
5729 while ((token = strsep(&s, ",")) != NULL) {
5730 if (!*token)
5731 continue;
5732 if (!strcmp(token, "nosocket"))
5733 cgroup_memory_nosocket = true;
04823c83
VD
5734 if (!strcmp(token, "nokmem"))
5735 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5736 }
5737 return 0;
5738}
5739__setup("cgroup.memory=", cgroup_memory);
11092087 5740
2d11085e 5741/*
1081312f
MH
5742 * subsys_initcall() for memory controller.
5743 *
5744 * Some parts like hotcpu_notifier() have to be initialized from this context
5745 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5746 * everything that doesn't depend on a specific mem_cgroup structure should
5747 * be initialized from here.
2d11085e
MH
5748 */
5749static int __init mem_cgroup_init(void)
5750{
95a045f6
JW
5751 int cpu, node;
5752
2d11085e 5753 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5754
5755 for_each_possible_cpu(cpu)
5756 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5757 drain_local_stock);
5758
5759 for_each_node(node) {
5760 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5761
5762 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5763 node_online(node) ? node : NUMA_NO_NODE);
5764
ef8f2327
MG
5765 rtpn->rb_root = RB_ROOT;
5766 spin_lock_init(&rtpn->lock);
95a045f6
JW
5767 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5768 }
5769
2d11085e
MH
5770 return 0;
5771}
5772subsys_initcall(mem_cgroup_init);
21afa38e
JW
5773
5774#ifdef CONFIG_MEMCG_SWAP
5775/**
5776 * mem_cgroup_swapout - transfer a memsw charge to swap
5777 * @page: page whose memsw charge to transfer
5778 * @entry: swap entry to move the charge to
5779 *
5780 * Transfer the memsw charge of @page to @entry.
5781 */
5782void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5783{
5784 struct mem_cgroup *memcg;
5785 unsigned short oldid;
5786
5787 VM_BUG_ON_PAGE(PageLRU(page), page);
5788 VM_BUG_ON_PAGE(page_count(page), page);
5789
7941d214 5790 if (!do_memsw_account())
21afa38e
JW
5791 return;
5792
5793 memcg = page->mem_cgroup;
5794
5795 /* Readahead page, never charged */
5796 if (!memcg)
5797 return;
5798
73f576c0 5799 mem_cgroup_id_get(memcg);
21afa38e
JW
5800 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5801 VM_BUG_ON_PAGE(oldid, page);
5802 mem_cgroup_swap_statistics(memcg, true);
5803
5804 page->mem_cgroup = NULL;
5805
5806 if (!mem_cgroup_is_root(memcg))
5807 page_counter_uncharge(&memcg->memory, 1);
5808
ce9ce665
SAS
5809 /*
5810 * Interrupts should be disabled here because the caller holds the
5811 * mapping->tree_lock lock which is taken with interrupts-off. It is
5812 * important here to have the interrupts disabled because it is the
5813 * only synchronisation we have for udpating the per-CPU variables.
5814 */
5815 VM_BUG_ON(!irqs_disabled());
f627c2f5 5816 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5817 memcg_check_events(memcg, page);
73f576c0
JW
5818
5819 if (!mem_cgroup_is_root(memcg))
5820 css_put(&memcg->css);
21afa38e
JW
5821}
5822
37e84351
VD
5823/*
5824 * mem_cgroup_try_charge_swap - try charging a swap entry
5825 * @page: page being added to swap
5826 * @entry: swap entry to charge
5827 *
5828 * Try to charge @entry to the memcg that @page belongs to.
5829 *
5830 * Returns 0 on success, -ENOMEM on failure.
5831 */
5832int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5833{
5834 struct mem_cgroup *memcg;
5835 struct page_counter *counter;
5836 unsigned short oldid;
5837
5838 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5839 return 0;
5840
5841 memcg = page->mem_cgroup;
5842
5843 /* Readahead page, never charged */
5844 if (!memcg)
5845 return 0;
5846
5847 if (!mem_cgroup_is_root(memcg) &&
5848 !page_counter_try_charge(&memcg->swap, 1, &counter))
5849 return -ENOMEM;
5850
73f576c0 5851 mem_cgroup_id_get(memcg);
37e84351
VD
5852 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5853 VM_BUG_ON_PAGE(oldid, page);
5854 mem_cgroup_swap_statistics(memcg, true);
5855
37e84351
VD
5856 return 0;
5857}
5858
21afa38e
JW
5859/**
5860 * mem_cgroup_uncharge_swap - uncharge a swap entry
5861 * @entry: swap entry to uncharge
5862 *
37e84351 5863 * Drop the swap charge associated with @entry.
21afa38e
JW
5864 */
5865void mem_cgroup_uncharge_swap(swp_entry_t entry)
5866{
5867 struct mem_cgroup *memcg;
5868 unsigned short id;
5869
37e84351 5870 if (!do_swap_account)
21afa38e
JW
5871 return;
5872
5873 id = swap_cgroup_record(entry, 0);
5874 rcu_read_lock();
adbe427b 5875 memcg = mem_cgroup_from_id(id);
21afa38e 5876 if (memcg) {
37e84351
VD
5877 if (!mem_cgroup_is_root(memcg)) {
5878 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5879 page_counter_uncharge(&memcg->swap, 1);
5880 else
5881 page_counter_uncharge(&memcg->memsw, 1);
5882 }
21afa38e 5883 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5884 mem_cgroup_id_put(memcg);
21afa38e
JW
5885 }
5886 rcu_read_unlock();
5887}
5888
d8b38438
VD
5889long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5890{
5891 long nr_swap_pages = get_nr_swap_pages();
5892
5893 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5894 return nr_swap_pages;
5895 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5896 nr_swap_pages = min_t(long, nr_swap_pages,
5897 READ_ONCE(memcg->swap.limit) -
5898 page_counter_read(&memcg->swap));
5899 return nr_swap_pages;
5900}
5901
5ccc5aba
VD
5902bool mem_cgroup_swap_full(struct page *page)
5903{
5904 struct mem_cgroup *memcg;
5905
5906 VM_BUG_ON_PAGE(!PageLocked(page), page);
5907
5908 if (vm_swap_full())
5909 return true;
5910 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5911 return false;
5912
5913 memcg = page->mem_cgroup;
5914 if (!memcg)
5915 return false;
5916
5917 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5918 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5919 return true;
5920
5921 return false;
5922}
5923
21afa38e
JW
5924/* for remember boot option*/
5925#ifdef CONFIG_MEMCG_SWAP_ENABLED
5926static int really_do_swap_account __initdata = 1;
5927#else
5928static int really_do_swap_account __initdata;
5929#endif
5930
5931static int __init enable_swap_account(char *s)
5932{
5933 if (!strcmp(s, "1"))
5934 really_do_swap_account = 1;
5935 else if (!strcmp(s, "0"))
5936 really_do_swap_account = 0;
5937 return 1;
5938}
5939__setup("swapaccount=", enable_swap_account);
5940
37e84351
VD
5941static u64 swap_current_read(struct cgroup_subsys_state *css,
5942 struct cftype *cft)
5943{
5944 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5945
5946 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5947}
5948
5949static int swap_max_show(struct seq_file *m, void *v)
5950{
5951 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5952 unsigned long max = READ_ONCE(memcg->swap.limit);
5953
5954 if (max == PAGE_COUNTER_MAX)
5955 seq_puts(m, "max\n");
5956 else
5957 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5958
5959 return 0;
5960}
5961
5962static ssize_t swap_max_write(struct kernfs_open_file *of,
5963 char *buf, size_t nbytes, loff_t off)
5964{
5965 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5966 unsigned long max;
5967 int err;
5968
5969 buf = strstrip(buf);
5970 err = page_counter_memparse(buf, "max", &max);
5971 if (err)
5972 return err;
5973
5974 mutex_lock(&memcg_limit_mutex);
5975 err = page_counter_limit(&memcg->swap, max);
5976 mutex_unlock(&memcg_limit_mutex);
5977 if (err)
5978 return err;
5979
5980 return nbytes;
5981}
5982
5983static struct cftype swap_files[] = {
5984 {
5985 .name = "swap.current",
5986 .flags = CFTYPE_NOT_ON_ROOT,
5987 .read_u64 = swap_current_read,
5988 },
5989 {
5990 .name = "swap.max",
5991 .flags = CFTYPE_NOT_ON_ROOT,
5992 .seq_show = swap_max_show,
5993 .write = swap_max_write,
5994 },
5995 { } /* terminate */
5996};
5997
21afa38e
JW
5998static struct cftype memsw_cgroup_files[] = {
5999 {
6000 .name = "memsw.usage_in_bytes",
6001 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6002 .read_u64 = mem_cgroup_read_u64,
6003 },
6004 {
6005 .name = "memsw.max_usage_in_bytes",
6006 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6007 .write = mem_cgroup_reset,
6008 .read_u64 = mem_cgroup_read_u64,
6009 },
6010 {
6011 .name = "memsw.limit_in_bytes",
6012 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6013 .write = mem_cgroup_write,
6014 .read_u64 = mem_cgroup_read_u64,
6015 },
6016 {
6017 .name = "memsw.failcnt",
6018 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6019 .write = mem_cgroup_reset,
6020 .read_u64 = mem_cgroup_read_u64,
6021 },
6022 { }, /* terminate */
6023};
6024
6025static int __init mem_cgroup_swap_init(void)
6026{
6027 if (!mem_cgroup_disabled() && really_do_swap_account) {
6028 do_swap_account = 1;
37e84351
VD
6029 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6030 swap_files));
21afa38e
JW
6031 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6032 memsw_cgroup_files));
6033 }
6034 return 0;
6035}
6036subsys_initcall(mem_cgroup_swap_init);
6037
6038#endif /* CONFIG_MEMCG_SWAP */
This page took 1.330649 seconds and 5 git commands to generate.