mm: memcontrol: rewrite charge API
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
b2145145
WL
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499{
a7c6d554 500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
501}
502
70ddf637
AV
503/* Some nice accessors for the vmpressure. */
504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505{
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509}
510
511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512{
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514}
515
7ffc0edc
MH
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
4219b2da
LZ
521/*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525#define MEM_CGROUP_ID_MAX USHRT_MAX
526
34c00c31
LZ
527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528{
15a4c835 529 return memcg->css.id;
34c00c31
LZ
530}
531
532static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533{
534 struct cgroup_subsys_state *css;
535
7d699ddb 536 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
537 return mem_cgroup_from_css(css);
538}
539
e1aab161 540/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 541#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 542
e1aab161
GC
543void sock_update_memcg(struct sock *sk)
544{
376be5ff 545 if (mem_cgroup_sockets_enabled) {
e1aab161 546 struct mem_cgroup *memcg;
3f134619 547 struct cg_proto *cg_proto;
e1aab161
GC
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
f3f511e1
GC
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 561 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
562 return;
563 }
564
e1aab161
GC
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
3f134619 567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 568 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
3f134619 571 sk->sk_cgrp = cg_proto;
e1aab161
GC
572 }
573 rcu_read_unlock();
574 }
575}
576EXPORT_SYMBOL(sock_update_memcg);
577
578void sock_release_memcg(struct sock *sk)
579{
376be5ff 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
5347e5ae 584 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
585 }
586}
d1a4c0b3
GC
587
588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589{
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
2e685cad 593 return &memcg->tcp_mem;
d1a4c0b3
GC
594}
595EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 596
3f134619
GC
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
2e685cad 599 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602}
603#else
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606}
607#endif
608
a8964b9b 609#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
610/*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
55007d84
GC
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
623int memcg_limited_groups_array_size;
624
55007d84
GC
625/*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
b8627835 631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
635 * increase ours as well if it increases.
636 */
637#define MEMCG_CACHES_MIN_SIZE 4
b8627835 638#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 639
d7f25f8a
GC
640/*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
a8964b9b 646struct static_key memcg_kmem_enabled_key;
d7f25f8a 647EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
648
649static void disarm_kmem_keys(struct mem_cgroup *memcg)
650{
55007d84 651 if (memcg_kmem_is_active(memcg)) {
a8964b9b 652 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
bea207c8
GC
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
660}
661#else
662static void disarm_kmem_keys(struct mem_cgroup *memcg)
663{
664}
665#endif /* CONFIG_MEMCG_KMEM */
666
667static void disarm_static_keys(struct mem_cgroup *memcg)
668{
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671}
672
c0ff4b85 673static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 674
f64c3f54 675static struct mem_cgroup_per_zone *
e231875b 676mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 677{
e231875b
JZ
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
54f72fe0 681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
682}
683
c0ff4b85 684struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 685{
c0ff4b85 686 return &memcg->css;
d324236b
WF
687}
688
f64c3f54 689static struct mem_cgroup_per_zone *
e231875b 690mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 691{
97a6c37b
JW
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
f64c3f54 694
e231875b 695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
696}
697
bb4cc1a8
AM
698static struct mem_cgroup_tree_per_zone *
699soft_limit_tree_node_zone(int nid, int zid)
700{
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702}
703
704static struct mem_cgroup_tree_per_zone *
705soft_limit_tree_from_page(struct page *page)
706{
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711}
712
cf2c8127
JW
713static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
bb4cc1a8
AM
716{
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743}
744
cf2c8127
JW
745static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
747{
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752}
753
cf2c8127
JW
754static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
756{
757 spin_lock(&mctz->lock);
cf2c8127 758 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
759 spin_unlock(&mctz->lock);
760}
761
762
763static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
764{
765 unsigned long long excess;
766 struct mem_cgroup_per_zone *mz;
767 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 768
e231875b 769 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
770 /*
771 * Necessary to update all ancestors when hierarchy is used.
772 * because their event counter is not touched.
773 */
774 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 775 mz = mem_cgroup_page_zoneinfo(memcg, page);
bb4cc1a8
AM
776 excess = res_counter_soft_limit_excess(&memcg->res);
777 /*
778 * We have to update the tree if mz is on RB-tree or
779 * mem is over its softlimit.
780 */
781 if (excess || mz->on_tree) {
782 spin_lock(&mctz->lock);
783 /* if on-tree, remove it */
784 if (mz->on_tree)
cf2c8127 785 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
786 /*
787 * Insert again. mz->usage_in_excess will be updated.
788 * If excess is 0, no tree ops.
789 */
cf2c8127 790 __mem_cgroup_insert_exceeded(mz, mctz, excess);
bb4cc1a8
AM
791 spin_unlock(&mctz->lock);
792 }
793 }
794}
795
796static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
797{
bb4cc1a8 798 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
799 struct mem_cgroup_per_zone *mz;
800 int nid, zid;
bb4cc1a8 801
e231875b
JZ
802 for_each_node(nid) {
803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
804 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
805 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 806 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
807 }
808 }
809}
810
811static struct mem_cgroup_per_zone *
812__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813{
814 struct rb_node *rightmost = NULL;
815 struct mem_cgroup_per_zone *mz;
816
817retry:
818 mz = NULL;
819 rightmost = rb_last(&mctz->rb_root);
820 if (!rightmost)
821 goto done; /* Nothing to reclaim from */
822
823 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
824 /*
825 * Remove the node now but someone else can add it back,
826 * we will to add it back at the end of reclaim to its correct
827 * position in the tree.
828 */
cf2c8127 829 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8 830 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
ec903c0c 831 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
832 goto retry;
833done:
834 return mz;
835}
836
837static struct mem_cgroup_per_zone *
838mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
839{
840 struct mem_cgroup_per_zone *mz;
841
842 spin_lock(&mctz->lock);
843 mz = __mem_cgroup_largest_soft_limit_node(mctz);
844 spin_unlock(&mctz->lock);
845 return mz;
846}
847
711d3d2c
KH
848/*
849 * Implementation Note: reading percpu statistics for memcg.
850 *
851 * Both of vmstat[] and percpu_counter has threshold and do periodic
852 * synchronization to implement "quick" read. There are trade-off between
853 * reading cost and precision of value. Then, we may have a chance to implement
854 * a periodic synchronizion of counter in memcg's counter.
855 *
856 * But this _read() function is used for user interface now. The user accounts
857 * memory usage by memory cgroup and he _always_ requires exact value because
858 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
859 * have to visit all online cpus and make sum. So, for now, unnecessary
860 * synchronization is not implemented. (just implemented for cpu hotplug)
861 *
862 * If there are kernel internal actions which can make use of some not-exact
863 * value, and reading all cpu value can be performance bottleneck in some
864 * common workload, threashold and synchonization as vmstat[] should be
865 * implemented.
866 */
c0ff4b85 867static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 868 enum mem_cgroup_stat_index idx)
c62b1a3b 869{
7a159cc9 870 long val = 0;
c62b1a3b 871 int cpu;
c62b1a3b 872
711d3d2c
KH
873 get_online_cpus();
874 for_each_online_cpu(cpu)
c0ff4b85 875 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 876#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
877 spin_lock(&memcg->pcp_counter_lock);
878 val += memcg->nocpu_base.count[idx];
879 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
880#endif
881 put_online_cpus();
c62b1a3b
KH
882 return val;
883}
884
c0ff4b85 885static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
886 bool charge)
887{
888 int val = (charge) ? 1 : -1;
bff6bb83 889 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
890}
891
c0ff4b85 892static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
893 enum mem_cgroup_events_index idx)
894{
895 unsigned long val = 0;
896 int cpu;
897
9c567512 898 get_online_cpus();
e9f8974f 899 for_each_online_cpu(cpu)
c0ff4b85 900 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 901#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.events[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 905#endif
9c567512 906 put_online_cpus();
e9f8974f
JW
907 return val;
908}
909
c0ff4b85 910static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 911 struct page *page,
b2402857 912 bool anon, int nr_pages)
d52aa412 913{
b2402857
KH
914 /*
915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 * counted as CACHE even if it's on ANON LRU.
917 */
918 if (anon)
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 920 nr_pages);
d52aa412 921 else
b2402857 922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 923 nr_pages);
55e462b0 924
b070e65c
DR
925 if (PageTransHuge(page))
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 nr_pages);
928
e401f176
KH
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
c0ff4b85 931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 932 else {
c0ff4b85 933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
934 nr_pages = -nr_pages; /* for event */
935 }
e401f176 936
13114716 937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
938}
939
e231875b 940unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
941{
942 struct mem_cgroup_per_zone *mz;
943
944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 return mz->lru_size[lru];
946}
947
e231875b
JZ
948static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 int nid,
950 unsigned int lru_mask)
bb2a0de9 951{
e231875b 952 unsigned long nr = 0;
889976db
YH
953 int zid;
954
e231875b 955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 956
e231875b
JZ
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960
961 for_each_lru(lru) {
962 if (!(BIT(lru) & lru_mask))
963 continue;
964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 nr += mz->lru_size[lru];
966 }
967 }
968 return nr;
889976db 969}
bb2a0de9 970
c0ff4b85 971static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 972 unsigned int lru_mask)
6d12e2d8 973{
e231875b 974 unsigned long nr = 0;
889976db 975 int nid;
6d12e2d8 976
31aaea4a 977 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 return nr;
d52aa412
KH
980}
981
f53d7ce3
JW
982static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 enum mem_cgroup_events_target target)
7a159cc9
JW
984{
985 unsigned long val, next;
986
13114716 987 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 988 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 989 /* from time_after() in jiffies.h */
f53d7ce3
JW
990 if ((long)next - (long)val < 0) {
991 switch (target) {
992 case MEM_CGROUP_TARGET_THRESH:
993 next = val + THRESHOLDS_EVENTS_TARGET;
994 break;
bb4cc1a8
AM
995 case MEM_CGROUP_TARGET_SOFTLIMIT:
996 next = val + SOFTLIMIT_EVENTS_TARGET;
997 break;
f53d7ce3
JW
998 case MEM_CGROUP_TARGET_NUMAINFO:
999 next = val + NUMAINFO_EVENTS_TARGET;
1000 break;
1001 default:
1002 break;
1003 }
1004 __this_cpu_write(memcg->stat->targets[target], next);
1005 return true;
7a159cc9 1006 }
f53d7ce3 1007 return false;
d2265e6f
KH
1008}
1009
1010/*
1011 * Check events in order.
1012 *
1013 */
c0ff4b85 1014static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1015{
4799401f 1016 preempt_disable();
d2265e6f 1017 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1018 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1020 bool do_softlimit;
82b3f2a7 1021 bool do_numainfo __maybe_unused;
f53d7ce3 1022
bb4cc1a8
AM
1023 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1024 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1025#if MAX_NUMNODES > 1
1026 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_NUMAINFO);
1028#endif
1029 preempt_enable();
1030
c0ff4b85 1031 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1032 if (unlikely(do_softlimit))
1033 mem_cgroup_update_tree(memcg, page);
453a9bf3 1034#if MAX_NUMNODES > 1
f53d7ce3 1035 if (unlikely(do_numainfo))
c0ff4b85 1036 atomic_inc(&memcg->numainfo_events);
453a9bf3 1037#endif
f53d7ce3
JW
1038 } else
1039 preempt_enable();
d2265e6f
KH
1040}
1041
cf475ad2 1042struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1043{
31a78f23
BS
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
073219e9 1052 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1053}
1054
df381975 1055static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1056{
c0ff4b85 1057 struct mem_cgroup *memcg = NULL;
0b7f569e 1058
54595fe2
KH
1059 rcu_read_lock();
1060 do {
6f6acb00
MH
1061 /*
1062 * Page cache insertions can happen withou an
1063 * actual mm context, e.g. during disk probing
1064 * on boot, loopback IO, acct() writes etc.
1065 */
1066 if (unlikely(!mm))
df381975 1067 memcg = root_mem_cgroup;
6f6acb00
MH
1068 else {
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
1071 memcg = root_mem_cgroup;
1072 }
ec903c0c 1073 } while (!css_tryget_online(&memcg->css));
54595fe2 1074 rcu_read_unlock();
c0ff4b85 1075 return memcg;
54595fe2
KH
1076}
1077
16248d8f
MH
1078/*
1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080 * ref. count) or NULL if the whole root's subtree has been visited.
1081 *
1082 * helper function to be used by mem_cgroup_iter
1083 */
1084static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1085 struct mem_cgroup *last_visited)
16248d8f 1086{
492eb21b 1087 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1088
bd8815a6 1089 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1090skip_node:
492eb21b 1091 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1099 *
1100 * We do not take a reference on the root of the tree walk
1101 * because we might race with the root removal when it would
1102 * be the only node in the iterated hierarchy and mem_cgroup_iter
1103 * would end up in an endless loop because it expects that at
1104 * least one valid node will be returned. Root cannot disappear
1105 * because caller of the iterator should hold it already so
1106 * skipping css reference should be safe.
16248d8f 1107 */
492eb21b 1108 if (next_css) {
ce48225f 1109 if ((next_css == &root->css) ||
ec903c0c
TH
1110 ((next_css->flags & CSS_ONLINE) &&
1111 css_tryget_online(next_css)))
d8ad3055 1112 return mem_cgroup_from_css(next_css);
0eef6156
MH
1113
1114 prev_css = next_css;
1115 goto skip_node;
16248d8f
MH
1116 }
1117
1118 return NULL;
1119}
1120
519ebea3
JW
1121static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122{
1123 /*
1124 * When a group in the hierarchy below root is destroyed, the
1125 * hierarchy iterator can no longer be trusted since it might
1126 * have pointed to the destroyed group. Invalidate it.
1127 */
1128 atomic_inc(&root->dead_count);
1129}
1130
1131static struct mem_cgroup *
1132mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *root,
1134 int *sequence)
1135{
1136 struct mem_cgroup *position = NULL;
1137 /*
1138 * A cgroup destruction happens in two stages: offlining and
1139 * release. They are separated by a RCU grace period.
1140 *
1141 * If the iterator is valid, we may still race with an
1142 * offlining. The RCU lock ensures the object won't be
1143 * released, tryget will fail if we lost the race.
1144 */
1145 *sequence = atomic_read(&root->dead_count);
1146 if (iter->last_dead_count == *sequence) {
1147 smp_rmb();
1148 position = iter->last_visited;
ecc736fc
MH
1149
1150 /*
1151 * We cannot take a reference to root because we might race
1152 * with root removal and returning NULL would end up in
1153 * an endless loop on the iterator user level when root
1154 * would be returned all the time.
1155 */
1156 if (position && position != root &&
ec903c0c 1157 !css_tryget_online(&position->css))
519ebea3
JW
1158 position = NULL;
1159 }
1160 return position;
1161}
1162
1163static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 struct mem_cgroup *last_visited,
1165 struct mem_cgroup *new_position,
ecc736fc 1166 struct mem_cgroup *root,
519ebea3
JW
1167 int sequence)
1168{
ecc736fc
MH
1169 /* root reference counting symmetric to mem_cgroup_iter_load */
1170 if (last_visited && last_visited != root)
519ebea3
JW
1171 css_put(&last_visited->css);
1172 /*
1173 * We store the sequence count from the time @last_visited was
1174 * loaded successfully instead of rereading it here so that we
1175 * don't lose destruction events in between. We could have
1176 * raced with the destruction of @new_position after all.
1177 */
1178 iter->last_visited = new_position;
1179 smp_wmb();
1180 iter->last_dead_count = sequence;
1181}
1182
5660048c
JW
1183/**
1184 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1185 * @root: hierarchy root
1186 * @prev: previously returned memcg, NULL on first invocation
1187 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188 *
1189 * Returns references to children of the hierarchy below @root, or
1190 * @root itself, or %NULL after a full round-trip.
1191 *
1192 * Caller must pass the return value in @prev on subsequent
1193 * invocations for reference counting, or use mem_cgroup_iter_break()
1194 * to cancel a hierarchy walk before the round-trip is complete.
1195 *
1196 * Reclaimers can specify a zone and a priority level in @reclaim to
1197 * divide up the memcgs in the hierarchy among all concurrent
1198 * reclaimers operating on the same zone and priority.
1199 */
694fbc0f 1200struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1201 struct mem_cgroup *prev,
694fbc0f 1202 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1203{
9f3a0d09 1204 struct mem_cgroup *memcg = NULL;
542f85f9 1205 struct mem_cgroup *last_visited = NULL;
711d3d2c 1206
694fbc0f
AM
1207 if (mem_cgroup_disabled())
1208 return NULL;
5660048c 1209
9f3a0d09
JW
1210 if (!root)
1211 root = root_mem_cgroup;
7d74b06f 1212
9f3a0d09 1213 if (prev && !reclaim)
542f85f9 1214 last_visited = prev;
14067bb3 1215
9f3a0d09
JW
1216 if (!root->use_hierarchy && root != root_mem_cgroup) {
1217 if (prev)
c40046f3 1218 goto out_css_put;
694fbc0f 1219 return root;
9f3a0d09 1220 }
14067bb3 1221
542f85f9 1222 rcu_read_lock();
9f3a0d09 1223 while (!memcg) {
527a5ec9 1224 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1225 int uninitialized_var(seq);
711d3d2c 1226
527a5ec9 1227 if (reclaim) {
527a5ec9
JW
1228 struct mem_cgroup_per_zone *mz;
1229
e231875b 1230 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1231 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1232 if (prev && reclaim->generation != iter->generation) {
5f578161 1233 iter->last_visited = NULL;
542f85f9
MH
1234 goto out_unlock;
1235 }
5f578161 1236
519ebea3 1237 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1238 }
7d74b06f 1239
694fbc0f 1240 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1241
527a5ec9 1242 if (reclaim) {
ecc736fc
MH
1243 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1244 seq);
542f85f9 1245
19f39402 1246 if (!memcg)
527a5ec9
JW
1247 iter->generation++;
1248 else if (!prev && memcg)
1249 reclaim->generation = iter->generation;
1250 }
9f3a0d09 1251
694fbc0f 1252 if (prev && !memcg)
542f85f9 1253 goto out_unlock;
9f3a0d09 1254 }
542f85f9
MH
1255out_unlock:
1256 rcu_read_unlock();
c40046f3
MH
1257out_css_put:
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260
9f3a0d09 1261 return memcg;
14067bb3 1262}
7d74b06f 1263
5660048c
JW
1264/**
1265 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1266 * @root: hierarchy root
1267 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1268 */
1269void mem_cgroup_iter_break(struct mem_cgroup *root,
1270 struct mem_cgroup *prev)
9f3a0d09
JW
1271{
1272 if (!root)
1273 root = root_mem_cgroup;
1274 if (prev && prev != root)
1275 css_put(&prev->css);
1276}
7d74b06f 1277
9f3a0d09
JW
1278/*
1279 * Iteration constructs for visiting all cgroups (under a tree). If
1280 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1281 * be used for reference counting.
1282 */
1283#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1284 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1285 iter != NULL; \
527a5ec9 1286 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1287
9f3a0d09 1288#define for_each_mem_cgroup(iter) \
527a5ec9 1289 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1290 iter != NULL; \
527a5ec9 1291 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1292
68ae564b 1293void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1294{
c0ff4b85 1295 struct mem_cgroup *memcg;
456f998e 1296
456f998e 1297 rcu_read_lock();
c0ff4b85
R
1298 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1299 if (unlikely(!memcg))
456f998e
YH
1300 goto out;
1301
1302 switch (idx) {
456f998e 1303 case PGFAULT:
0e574a93
JW
1304 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1305 break;
1306 case PGMAJFAULT:
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1308 break;
1309 default:
1310 BUG();
1311 }
1312out:
1313 rcu_read_unlock();
1314}
68ae564b 1315EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1316
925b7673
JW
1317/**
1318 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1319 * @zone: zone of the wanted lruvec
fa9add64 1320 * @memcg: memcg of the wanted lruvec
925b7673
JW
1321 *
1322 * Returns the lru list vector holding pages for the given @zone and
1323 * @mem. This can be the global zone lruvec, if the memory controller
1324 * is disabled.
1325 */
1326struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1327 struct mem_cgroup *memcg)
1328{
1329 struct mem_cgroup_per_zone *mz;
bea8c150 1330 struct lruvec *lruvec;
925b7673 1331
bea8c150
HD
1332 if (mem_cgroup_disabled()) {
1333 lruvec = &zone->lruvec;
1334 goto out;
1335 }
925b7673 1336
e231875b 1337 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1338 lruvec = &mz->lruvec;
1339out:
1340 /*
1341 * Since a node can be onlined after the mem_cgroup was created,
1342 * we have to be prepared to initialize lruvec->zone here;
1343 * and if offlined then reonlined, we need to reinitialize it.
1344 */
1345 if (unlikely(lruvec->zone != zone))
1346 lruvec->zone = zone;
1347 return lruvec;
925b7673
JW
1348}
1349
08e552c6
KH
1350/*
1351 * Following LRU functions are allowed to be used without PCG_LOCK.
1352 * Operations are called by routine of global LRU independently from memcg.
1353 * What we have to take care of here is validness of pc->mem_cgroup.
1354 *
1355 * Changes to pc->mem_cgroup happens when
1356 * 1. charge
1357 * 2. moving account
1358 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1359 * It is added to LRU before charge.
1360 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1361 * When moving account, the page is not on LRU. It's isolated.
1362 */
4f98a2fe 1363
925b7673 1364/**
fa9add64 1365 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1366 * @page: the page
fa9add64 1367 * @zone: zone of the page
925b7673 1368 */
fa9add64 1369struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1370{
08e552c6 1371 struct mem_cgroup_per_zone *mz;
925b7673
JW
1372 struct mem_cgroup *memcg;
1373 struct page_cgroup *pc;
bea8c150 1374 struct lruvec *lruvec;
6d12e2d8 1375
bea8c150
HD
1376 if (mem_cgroup_disabled()) {
1377 lruvec = &zone->lruvec;
1378 goto out;
1379 }
925b7673 1380
08e552c6 1381 pc = lookup_page_cgroup(page);
38c5d72f 1382 memcg = pc->mem_cgroup;
7512102c
HD
1383
1384 /*
fa9add64 1385 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1386 * an uncharged page off lru does nothing to secure
1387 * its former mem_cgroup from sudden removal.
1388 *
1389 * Our caller holds lru_lock, and PageCgroupUsed is updated
1390 * under page_cgroup lock: between them, they make all uses
1391 * of pc->mem_cgroup safe.
1392 */
fa9add64 1393 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1394 pc->mem_cgroup = memcg = root_mem_cgroup;
1395
e231875b 1396 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1397 lruvec = &mz->lruvec;
1398out:
1399 /*
1400 * Since a node can be onlined after the mem_cgroup was created,
1401 * we have to be prepared to initialize lruvec->zone here;
1402 * and if offlined then reonlined, we need to reinitialize it.
1403 */
1404 if (unlikely(lruvec->zone != zone))
1405 lruvec->zone = zone;
1406 return lruvec;
08e552c6 1407}
b69408e8 1408
925b7673 1409/**
fa9add64
HD
1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411 * @lruvec: mem_cgroup per zone lru vector
1412 * @lru: index of lru list the page is sitting on
1413 * @nr_pages: positive when adding or negative when removing
925b7673 1414 *
fa9add64
HD
1415 * This function must be called when a page is added to or removed from an
1416 * lru list.
3f58a829 1417 */
fa9add64
HD
1418void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 int nr_pages)
3f58a829
MK
1420{
1421 struct mem_cgroup_per_zone *mz;
fa9add64 1422 unsigned long *lru_size;
3f58a829
MK
1423
1424 if (mem_cgroup_disabled())
1425 return;
1426
fa9add64
HD
1427 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1428 lru_size = mz->lru_size + lru;
1429 *lru_size += nr_pages;
1430 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1431}
544122e5 1432
3e92041d 1433/*
c0ff4b85 1434 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1435 * hierarchy subtree
1436 */
c3ac9a8a
JW
1437bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1438 struct mem_cgroup *memcg)
3e92041d 1439{
91c63734
JW
1440 if (root_memcg == memcg)
1441 return true;
3a981f48 1442 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1443 return false;
b47f77b5 1444 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1445}
1446
1447static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1448 struct mem_cgroup *memcg)
1449{
1450 bool ret;
1451
91c63734 1452 rcu_read_lock();
c3ac9a8a 1453 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1454 rcu_read_unlock();
1455 return ret;
3e92041d
MH
1456}
1457
ffbdccf5
DR
1458bool task_in_mem_cgroup(struct task_struct *task,
1459 const struct mem_cgroup *memcg)
4c4a2214 1460{
0b7f569e 1461 struct mem_cgroup *curr = NULL;
158e0a2d 1462 struct task_struct *p;
ffbdccf5 1463 bool ret;
4c4a2214 1464
158e0a2d 1465 p = find_lock_task_mm(task);
de077d22 1466 if (p) {
df381975 1467 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1468 task_unlock(p);
1469 } else {
1470 /*
1471 * All threads may have already detached their mm's, but the oom
1472 * killer still needs to detect if they have already been oom
1473 * killed to prevent needlessly killing additional tasks.
1474 */
ffbdccf5 1475 rcu_read_lock();
de077d22
DR
1476 curr = mem_cgroup_from_task(task);
1477 if (curr)
1478 css_get(&curr->css);
ffbdccf5 1479 rcu_read_unlock();
de077d22 1480 }
d31f56db 1481 /*
c0ff4b85 1482 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1483 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1484 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1485 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1486 */
c0ff4b85 1487 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1488 css_put(&curr->css);
4c4a2214
DR
1489 return ret;
1490}
1491
c56d5c7d 1492int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1493{
9b272977 1494 unsigned long inactive_ratio;
14797e23 1495 unsigned long inactive;
9b272977 1496 unsigned long active;
c772be93 1497 unsigned long gb;
14797e23 1498
4d7dcca2
HD
1499 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1500 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1501
c772be93
KM
1502 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1503 if (gb)
1504 inactive_ratio = int_sqrt(10 * gb);
1505 else
1506 inactive_ratio = 1;
1507
9b272977 1508 return inactive * inactive_ratio < active;
14797e23
KM
1509}
1510
6d61ef40
BS
1511#define mem_cgroup_from_res_counter(counter, member) \
1512 container_of(counter, struct mem_cgroup, member)
1513
19942822 1514/**
9d11ea9f 1515 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1516 * @memcg: the memory cgroup
19942822 1517 *
9d11ea9f 1518 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1519 * pages.
19942822 1520 */
c0ff4b85 1521static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1522{
9d11ea9f
JW
1523 unsigned long long margin;
1524
c0ff4b85 1525 margin = res_counter_margin(&memcg->res);
9d11ea9f 1526 if (do_swap_account)
c0ff4b85 1527 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1528 return margin >> PAGE_SHIFT;
19942822
JW
1529}
1530
1f4c025b 1531int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1532{
a7885eb8 1533 /* root ? */
14208b0e 1534 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1535 return vm_swappiness;
1536
bf1ff263 1537 return memcg->swappiness;
a7885eb8
KM
1538}
1539
619d094b
KH
1540/*
1541 * memcg->moving_account is used for checking possibility that some thread is
1542 * calling move_account(). When a thread on CPU-A starts moving pages under
1543 * a memcg, other threads should check memcg->moving_account under
1544 * rcu_read_lock(), like this:
1545 *
1546 * CPU-A CPU-B
1547 * rcu_read_lock()
1548 * memcg->moving_account+1 if (memcg->mocing_account)
1549 * take heavy locks.
1550 * synchronize_rcu() update something.
1551 * rcu_read_unlock()
1552 * start move here.
1553 */
4331f7d3
KH
1554
1555/* for quick checking without looking up memcg */
1556atomic_t memcg_moving __read_mostly;
1557
c0ff4b85 1558static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1559{
4331f7d3 1560 atomic_inc(&memcg_moving);
619d094b 1561 atomic_inc(&memcg->moving_account);
32047e2a
KH
1562 synchronize_rcu();
1563}
1564
c0ff4b85 1565static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1566{
619d094b
KH
1567 /*
1568 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1569 * We check NULL in callee rather than caller.
1570 */
4331f7d3
KH
1571 if (memcg) {
1572 atomic_dec(&memcg_moving);
619d094b 1573 atomic_dec(&memcg->moving_account);
4331f7d3 1574 }
32047e2a 1575}
619d094b 1576
32047e2a 1577/*
bdcbb659 1578 * A routine for checking "mem" is under move_account() or not.
32047e2a 1579 *
bdcbb659
QH
1580 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1581 * moving cgroups. This is for waiting at high-memory pressure
1582 * caused by "move".
32047e2a 1583 */
c0ff4b85 1584static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1585{
2bd9bb20
KH
1586 struct mem_cgroup *from;
1587 struct mem_cgroup *to;
4b534334 1588 bool ret = false;
2bd9bb20
KH
1589 /*
1590 * Unlike task_move routines, we access mc.to, mc.from not under
1591 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 */
1593 spin_lock(&mc.lock);
1594 from = mc.from;
1595 to = mc.to;
1596 if (!from)
1597 goto unlock;
3e92041d 1598
c0ff4b85
R
1599 ret = mem_cgroup_same_or_subtree(memcg, from)
1600 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1601unlock:
1602 spin_unlock(&mc.lock);
4b534334
KH
1603 return ret;
1604}
1605
c0ff4b85 1606static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1607{
1608 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1609 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1610 DEFINE_WAIT(wait);
1611 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1612 /* moving charge context might have finished. */
1613 if (mc.moving_task)
1614 schedule();
1615 finish_wait(&mc.waitq, &wait);
1616 return true;
1617 }
1618 }
1619 return false;
1620}
1621
312734c0
KH
1622/*
1623 * Take this lock when
1624 * - a code tries to modify page's memcg while it's USED.
1625 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1626 */
1627static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629{
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1631}
1632
1633static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635{
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637}
1638
58cf188e 1639#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1640/**
58cf188e 1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649{
e61734c5 1650 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1651 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1652 struct mem_cgroup *iter;
1653 unsigned int i;
e222432b 1654
58cf188e 1655 if (!p)
e222432b
BS
1656 return;
1657
08088cb9 1658 mutex_lock(&oom_info_lock);
e222432b
BS
1659 rcu_read_lock();
1660
e61734c5
TH
1661 pr_info("Task in ");
1662 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1663 pr_info(" killed as a result of limit of ");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_info("\n");
e222432b 1666
e222432b
BS
1667 rcu_read_unlock();
1668
d045197f 1669 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1670 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1671 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1672 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1673 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1674 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1675 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1676 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1677 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1678 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1681
1682 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1685 pr_cont(":");
1686
1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 continue;
1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 K(mem_cgroup_read_stat(iter, i)));
1692 }
1693
1694 for (i = 0; i < NR_LRU_LISTS; i++)
1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697
1698 pr_cont("\n");
1699 }
08088cb9 1700 mutex_unlock(&oom_info_lock);
e222432b
BS
1701}
1702
81d39c20
KH
1703/*
1704 * This function returns the number of memcg under hierarchy tree. Returns
1705 * 1(self count) if no children.
1706 */
c0ff4b85 1707static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1708{
1709 int num = 0;
7d74b06f
KH
1710 struct mem_cgroup *iter;
1711
c0ff4b85 1712 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1713 num++;
81d39c20
KH
1714 return num;
1715}
1716
a63d83f4
DR
1717/*
1718 * Return the memory (and swap, if configured) limit for a memcg.
1719 */
9cbb78bb 1720static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1721{
1722 u64 limit;
a63d83f4 1723
f3e8eb70 1724 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1725
a63d83f4 1726 /*
9a5a8f19 1727 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1728 */
9a5a8f19
MH
1729 if (mem_cgroup_swappiness(memcg)) {
1730 u64 memsw;
1731
1732 limit += total_swap_pages << PAGE_SHIFT;
1733 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1734
1735 /*
1736 * If memsw is finite and limits the amount of swap space
1737 * available to this memcg, return that limit.
1738 */
1739 limit = min(limit, memsw);
1740 }
1741
1742 return limit;
a63d83f4
DR
1743}
1744
19965460
DR
1745static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1746 int order)
9cbb78bb
DR
1747{
1748 struct mem_cgroup *iter;
1749 unsigned long chosen_points = 0;
1750 unsigned long totalpages;
1751 unsigned int points = 0;
1752 struct task_struct *chosen = NULL;
1753
876aafbf 1754 /*
465adcf1
DR
1755 * If current has a pending SIGKILL or is exiting, then automatically
1756 * select it. The goal is to allow it to allocate so that it may
1757 * quickly exit and free its memory.
876aafbf 1758 */
465adcf1 1759 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1760 set_thread_flag(TIF_MEMDIE);
1761 return;
1762 }
1763
1764 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1765 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1766 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1767 struct css_task_iter it;
9cbb78bb
DR
1768 struct task_struct *task;
1769
72ec7029
TH
1770 css_task_iter_start(&iter->css, &it);
1771 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1772 switch (oom_scan_process_thread(task, totalpages, NULL,
1773 false)) {
1774 case OOM_SCAN_SELECT:
1775 if (chosen)
1776 put_task_struct(chosen);
1777 chosen = task;
1778 chosen_points = ULONG_MAX;
1779 get_task_struct(chosen);
1780 /* fall through */
1781 case OOM_SCAN_CONTINUE:
1782 continue;
1783 case OOM_SCAN_ABORT:
72ec7029 1784 css_task_iter_end(&it);
9cbb78bb
DR
1785 mem_cgroup_iter_break(memcg, iter);
1786 if (chosen)
1787 put_task_struct(chosen);
1788 return;
1789 case OOM_SCAN_OK:
1790 break;
1791 };
1792 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1793 if (!points || points < chosen_points)
1794 continue;
1795 /* Prefer thread group leaders for display purposes */
1796 if (points == chosen_points &&
1797 thread_group_leader(chosen))
1798 continue;
1799
1800 if (chosen)
1801 put_task_struct(chosen);
1802 chosen = task;
1803 chosen_points = points;
1804 get_task_struct(chosen);
9cbb78bb 1805 }
72ec7029 1806 css_task_iter_end(&it);
9cbb78bb
DR
1807 }
1808
1809 if (!chosen)
1810 return;
1811 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1812 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1813 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1814}
1815
5660048c
JW
1816static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1817 gfp_t gfp_mask,
1818 unsigned long flags)
1819{
1820 unsigned long total = 0;
1821 bool noswap = false;
1822 int loop;
1823
1824 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1825 noswap = true;
1826 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1827 noswap = true;
1828
1829 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1830 if (loop)
1831 drain_all_stock_async(memcg);
1832 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1833 /*
1834 * Allow limit shrinkers, which are triggered directly
1835 * by userspace, to catch signals and stop reclaim
1836 * after minimal progress, regardless of the margin.
1837 */
1838 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1839 break;
1840 if (mem_cgroup_margin(memcg))
1841 break;
1842 /*
1843 * If nothing was reclaimed after two attempts, there
1844 * may be no reclaimable pages in this hierarchy.
1845 */
1846 if (loop && !total)
1847 break;
1848 }
1849 return total;
1850}
1851
4d0c066d
KH
1852/**
1853 * test_mem_cgroup_node_reclaimable
dad7557e 1854 * @memcg: the target memcg
4d0c066d
KH
1855 * @nid: the node ID to be checked.
1856 * @noswap : specify true here if the user wants flle only information.
1857 *
1858 * This function returns whether the specified memcg contains any
1859 * reclaimable pages on a node. Returns true if there are any reclaimable
1860 * pages in the node.
1861 */
c0ff4b85 1862static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1863 int nid, bool noswap)
1864{
c0ff4b85 1865 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1866 return true;
1867 if (noswap || !total_swap_pages)
1868 return false;
c0ff4b85 1869 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1870 return true;
1871 return false;
1872
1873}
bb4cc1a8 1874#if MAX_NUMNODES > 1
889976db
YH
1875
1876/*
1877 * Always updating the nodemask is not very good - even if we have an empty
1878 * list or the wrong list here, we can start from some node and traverse all
1879 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1880 *
1881 */
c0ff4b85 1882static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1883{
1884 int nid;
453a9bf3
KH
1885 /*
1886 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1887 * pagein/pageout changes since the last update.
1888 */
c0ff4b85 1889 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1890 return;
c0ff4b85 1891 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1892 return;
1893
889976db 1894 /* make a nodemask where this memcg uses memory from */
31aaea4a 1895 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1896
31aaea4a 1897 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1898
c0ff4b85
R
1899 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1900 node_clear(nid, memcg->scan_nodes);
889976db 1901 }
453a9bf3 1902
c0ff4b85
R
1903 atomic_set(&memcg->numainfo_events, 0);
1904 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1905}
1906
1907/*
1908 * Selecting a node where we start reclaim from. Because what we need is just
1909 * reducing usage counter, start from anywhere is O,K. Considering
1910 * memory reclaim from current node, there are pros. and cons.
1911 *
1912 * Freeing memory from current node means freeing memory from a node which
1913 * we'll use or we've used. So, it may make LRU bad. And if several threads
1914 * hit limits, it will see a contention on a node. But freeing from remote
1915 * node means more costs for memory reclaim because of memory latency.
1916 *
1917 * Now, we use round-robin. Better algorithm is welcomed.
1918 */
c0ff4b85 1919int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1920{
1921 int node;
1922
c0ff4b85
R
1923 mem_cgroup_may_update_nodemask(memcg);
1924 node = memcg->last_scanned_node;
889976db 1925
c0ff4b85 1926 node = next_node(node, memcg->scan_nodes);
889976db 1927 if (node == MAX_NUMNODES)
c0ff4b85 1928 node = first_node(memcg->scan_nodes);
889976db
YH
1929 /*
1930 * We call this when we hit limit, not when pages are added to LRU.
1931 * No LRU may hold pages because all pages are UNEVICTABLE or
1932 * memcg is too small and all pages are not on LRU. In that case,
1933 * we use curret node.
1934 */
1935 if (unlikely(node == MAX_NUMNODES))
1936 node = numa_node_id();
1937
c0ff4b85 1938 memcg->last_scanned_node = node;
889976db
YH
1939 return node;
1940}
1941
bb4cc1a8
AM
1942/*
1943 * Check all nodes whether it contains reclaimable pages or not.
1944 * For quick scan, we make use of scan_nodes. This will allow us to skip
1945 * unused nodes. But scan_nodes is lazily updated and may not cotain
1946 * enough new information. We need to do double check.
1947 */
1948static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1949{
1950 int nid;
1951
1952 /*
1953 * quick check...making use of scan_node.
1954 * We can skip unused nodes.
1955 */
1956 if (!nodes_empty(memcg->scan_nodes)) {
1957 for (nid = first_node(memcg->scan_nodes);
1958 nid < MAX_NUMNODES;
1959 nid = next_node(nid, memcg->scan_nodes)) {
1960
1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 return true;
1963 }
1964 }
1965 /*
1966 * Check rest of nodes.
1967 */
1968 for_each_node_state(nid, N_MEMORY) {
1969 if (node_isset(nid, memcg->scan_nodes))
1970 continue;
1971 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1972 return true;
1973 }
1974 return false;
1975}
1976
889976db 1977#else
c0ff4b85 1978int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1979{
1980 return 0;
1981}
4d0c066d 1982
bb4cc1a8
AM
1983static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1984{
1985 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1986}
889976db
YH
1987#endif
1988
0608f43d
AM
1989static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1990 struct zone *zone,
1991 gfp_t gfp_mask,
1992 unsigned long *total_scanned)
1993{
1994 struct mem_cgroup *victim = NULL;
1995 int total = 0;
1996 int loop = 0;
1997 unsigned long excess;
1998 unsigned long nr_scanned;
1999 struct mem_cgroup_reclaim_cookie reclaim = {
2000 .zone = zone,
2001 .priority = 0,
2002 };
2003
2004 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2005
2006 while (1) {
2007 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2008 if (!victim) {
2009 loop++;
2010 if (loop >= 2) {
2011 /*
2012 * If we have not been able to reclaim
2013 * anything, it might because there are
2014 * no reclaimable pages under this hierarchy
2015 */
2016 if (!total)
2017 break;
2018 /*
2019 * We want to do more targeted reclaim.
2020 * excess >> 2 is not to excessive so as to
2021 * reclaim too much, nor too less that we keep
2022 * coming back to reclaim from this cgroup
2023 */
2024 if (total >= (excess >> 2) ||
2025 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2026 break;
2027 }
2028 continue;
2029 }
2030 if (!mem_cgroup_reclaimable(victim, false))
2031 continue;
2032 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2033 zone, &nr_scanned);
2034 *total_scanned += nr_scanned;
2035 if (!res_counter_soft_limit_excess(&root_memcg->res))
2036 break;
6d61ef40 2037 }
0608f43d
AM
2038 mem_cgroup_iter_break(root_memcg, victim);
2039 return total;
6d61ef40
BS
2040}
2041
0056f4e6
JW
2042#ifdef CONFIG_LOCKDEP
2043static struct lockdep_map memcg_oom_lock_dep_map = {
2044 .name = "memcg_oom_lock",
2045};
2046#endif
2047
fb2a6fc5
JW
2048static DEFINE_SPINLOCK(memcg_oom_lock);
2049
867578cb
KH
2050/*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
2053 */
fb2a6fc5 2054static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2055{
79dfdacc 2056 struct mem_cgroup *iter, *failed = NULL;
a636b327 2057
fb2a6fc5
JW
2058 spin_lock(&memcg_oom_lock);
2059
9f3a0d09 2060 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2061 if (iter->oom_lock) {
79dfdacc
MH
2062 /*
2063 * this subtree of our hierarchy is already locked
2064 * so we cannot give a lock.
2065 */
79dfdacc 2066 failed = iter;
9f3a0d09
JW
2067 mem_cgroup_iter_break(memcg, iter);
2068 break;
23751be0
JW
2069 } else
2070 iter->oom_lock = true;
7d74b06f 2071 }
867578cb 2072
fb2a6fc5
JW
2073 if (failed) {
2074 /*
2075 * OK, we failed to lock the whole subtree so we have
2076 * to clean up what we set up to the failing subtree
2077 */
2078 for_each_mem_cgroup_tree(iter, memcg) {
2079 if (iter == failed) {
2080 mem_cgroup_iter_break(memcg, iter);
2081 break;
2082 }
2083 iter->oom_lock = false;
79dfdacc 2084 }
0056f4e6
JW
2085 } else
2086 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2087
2088 spin_unlock(&memcg_oom_lock);
2089
2090 return !failed;
a636b327 2091}
0b7f569e 2092
fb2a6fc5 2093static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2094{
7d74b06f
KH
2095 struct mem_cgroup *iter;
2096
fb2a6fc5 2097 spin_lock(&memcg_oom_lock);
0056f4e6 2098 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2099 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2100 iter->oom_lock = false;
fb2a6fc5 2101 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2102}
2103
c0ff4b85 2104static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2105{
2106 struct mem_cgroup *iter;
2107
c0ff4b85 2108 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2109 atomic_inc(&iter->under_oom);
2110}
2111
c0ff4b85 2112static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2113{
2114 struct mem_cgroup *iter;
2115
867578cb
KH
2116 /*
2117 * When a new child is created while the hierarchy is under oom,
2118 * mem_cgroup_oom_lock() may not be called. We have to use
2119 * atomic_add_unless() here.
2120 */
c0ff4b85 2121 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2122 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2123}
2124
867578cb
KH
2125static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2126
dc98df5a 2127struct oom_wait_info {
d79154bb 2128 struct mem_cgroup *memcg;
dc98df5a
KH
2129 wait_queue_t wait;
2130};
2131
2132static int memcg_oom_wake_function(wait_queue_t *wait,
2133 unsigned mode, int sync, void *arg)
2134{
d79154bb
HD
2135 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2136 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2137 struct oom_wait_info *oom_wait_info;
2138
2139 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2140 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2141
dc98df5a 2142 /*
d79154bb 2143 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2144 * Then we can use css_is_ancestor without taking care of RCU.
2145 */
c0ff4b85
R
2146 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2147 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2148 return 0;
dc98df5a
KH
2149 return autoremove_wake_function(wait, mode, sync, arg);
2150}
2151
c0ff4b85 2152static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2153{
3812c8c8 2154 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2155 /* for filtering, pass "memcg" as argument. */
2156 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2157}
2158
c0ff4b85 2159static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2160{
c0ff4b85
R
2161 if (memcg && atomic_read(&memcg->under_oom))
2162 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2163}
2164
3812c8c8 2165static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2166{
3812c8c8
JW
2167 if (!current->memcg_oom.may_oom)
2168 return;
867578cb 2169 /*
49426420
JW
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2173 *
2174 * Also, the caller may handle a failed allocation gracefully
2175 * (like optional page cache readahead) and so an OOM killer
2176 * invocation might not even be necessary.
2177 *
2178 * That's why we don't do anything here except remember the
2179 * OOM context and then deal with it at the end of the page
2180 * fault when the stack is unwound, the locks are released,
2181 * and when we know whether the fault was overall successful.
867578cb 2182 */
49426420
JW
2183 css_get(&memcg->css);
2184 current->memcg_oom.memcg = memcg;
2185 current->memcg_oom.gfp_mask = mask;
2186 current->memcg_oom.order = order;
3812c8c8
JW
2187}
2188
2189/**
2190 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2191 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2192 *
49426420
JW
2193 * This has to be called at the end of a page fault if the memcg OOM
2194 * handler was enabled.
3812c8c8 2195 *
49426420 2196 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2197 * sleep on a waitqueue until the userspace task resolves the
2198 * situation. Sleeping directly in the charge context with all kinds
2199 * of locks held is not a good idea, instead we remember an OOM state
2200 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2201 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2202 *
2203 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2204 * completed, %false otherwise.
3812c8c8 2205 */
49426420 2206bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2207{
49426420 2208 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2209 struct oom_wait_info owait;
49426420 2210 bool locked;
3812c8c8
JW
2211
2212 /* OOM is global, do not handle */
3812c8c8 2213 if (!memcg)
49426420 2214 return false;
3812c8c8 2215
49426420
JW
2216 if (!handle)
2217 goto cleanup;
3812c8c8
JW
2218
2219 owait.memcg = memcg;
2220 owait.wait.flags = 0;
2221 owait.wait.func = memcg_oom_wake_function;
2222 owait.wait.private = current;
2223 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2224
3812c8c8 2225 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2226 mem_cgroup_mark_under_oom(memcg);
2227
2228 locked = mem_cgroup_oom_trylock(memcg);
2229
2230 if (locked)
2231 mem_cgroup_oom_notify(memcg);
2232
2233 if (locked && !memcg->oom_kill_disable) {
2234 mem_cgroup_unmark_under_oom(memcg);
2235 finish_wait(&memcg_oom_waitq, &owait.wait);
2236 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2237 current->memcg_oom.order);
2238 } else {
3812c8c8 2239 schedule();
49426420
JW
2240 mem_cgroup_unmark_under_oom(memcg);
2241 finish_wait(&memcg_oom_waitq, &owait.wait);
2242 }
2243
2244 if (locked) {
fb2a6fc5
JW
2245 mem_cgroup_oom_unlock(memcg);
2246 /*
2247 * There is no guarantee that an OOM-lock contender
2248 * sees the wakeups triggered by the OOM kill
2249 * uncharges. Wake any sleepers explicitely.
2250 */
2251 memcg_oom_recover(memcg);
2252 }
49426420
JW
2253cleanup:
2254 current->memcg_oom.memcg = NULL;
3812c8c8 2255 css_put(&memcg->css);
867578cb 2256 return true;
0b7f569e
KH
2257}
2258
d69b042f 2259/*
b5ffc856 2260 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2261 *
2262 * Notes: Race condition
2263 *
b5ffc856 2264 * We usually use lock_page_cgroup() for accessing page_cgroup member but
32047e2a
KH
2265 * it tends to be costly. But considering some conditions, we doesn't need
2266 * to do so _always_.
2267 *
2268 * Considering "charge", lock_page_cgroup() is not required because all
2269 * file-stat operations happen after a page is attached to radix-tree. There
2270 * are no race with "charge".
2271 *
2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274 * if there are race with "uncharge". Statistics itself is properly handled
2275 * by flags.
2276 *
2277 * Considering "move", this is an only case we see a race. To make the race
b5ffc856
QH
2278 * small, we check memcg->moving_account and detect there are possibility
2279 * of race or not. If there is, we take a lock.
d69b042f 2280 */
26174efd 2281
89c06bd5
KH
2282void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 bool *locked, unsigned long *flags)
2284{
2285 struct mem_cgroup *memcg;
2286 struct page_cgroup *pc;
2287
2288 pc = lookup_page_cgroup(page);
2289again:
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 return;
2293 /*
2294 * If this memory cgroup is not under account moving, we don't
da92c47d 2295 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2296 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2297 * rcu_read_unlock().
89c06bd5 2298 */
bdcbb659
QH
2299 VM_BUG_ON(!rcu_read_lock_held());
2300 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2301 return;
2302
2303 move_lock_mem_cgroup(memcg, flags);
2304 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2305 move_unlock_mem_cgroup(memcg, flags);
2306 goto again;
2307 }
2308 *locked = true;
2309}
2310
2311void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2312{
2313 struct page_cgroup *pc = lookup_page_cgroup(page);
2314
2315 /*
2316 * It's guaranteed that pc->mem_cgroup never changes while
2317 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2318 * should take move_lock_mem_cgroup().
89c06bd5
KH
2319 */
2320 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2321}
2322
2a7106f2 2323void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2324 enum mem_cgroup_stat_index idx, int val)
d69b042f 2325{
c0ff4b85 2326 struct mem_cgroup *memcg;
32047e2a 2327 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2328 unsigned long uninitialized_var(flags);
d69b042f 2329
cfa44946 2330 if (mem_cgroup_disabled())
d69b042f 2331 return;
89c06bd5 2332
658b72c5 2333 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2334 memcg = pc->mem_cgroup;
2335 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2336 return;
26174efd 2337
c0ff4b85 2338 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2339}
26174efd 2340
cdec2e42
KH
2341/*
2342 * size of first charge trial. "32" comes from vmscan.c's magic value.
2343 * TODO: maybe necessary to use big numbers in big irons.
2344 */
7ec99d62 2345#define CHARGE_BATCH 32U
cdec2e42
KH
2346struct memcg_stock_pcp {
2347 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2348 unsigned int nr_pages;
cdec2e42 2349 struct work_struct work;
26fe6168 2350 unsigned long flags;
a0db00fc 2351#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2352};
2353static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2354static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2355
a0956d54
SS
2356/**
2357 * consume_stock: Try to consume stocked charge on this cpu.
2358 * @memcg: memcg to consume from.
2359 * @nr_pages: how many pages to charge.
2360 *
2361 * The charges will only happen if @memcg matches the current cpu's memcg
2362 * stock, and at least @nr_pages are available in that stock. Failure to
2363 * service an allocation will refill the stock.
2364 *
2365 * returns true if successful, false otherwise.
cdec2e42 2366 */
a0956d54 2367static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2368{
2369 struct memcg_stock_pcp *stock;
2370 bool ret = true;
2371
a0956d54
SS
2372 if (nr_pages > CHARGE_BATCH)
2373 return false;
2374
cdec2e42 2375 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2376 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2377 stock->nr_pages -= nr_pages;
cdec2e42
KH
2378 else /* need to call res_counter_charge */
2379 ret = false;
2380 put_cpu_var(memcg_stock);
2381 return ret;
2382}
2383
2384/*
2385 * Returns stocks cached in percpu to res_counter and reset cached information.
2386 */
2387static void drain_stock(struct memcg_stock_pcp *stock)
2388{
2389 struct mem_cgroup *old = stock->cached;
2390
11c9ea4e
JW
2391 if (stock->nr_pages) {
2392 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2393
2394 res_counter_uncharge(&old->res, bytes);
cdec2e42 2395 if (do_swap_account)
11c9ea4e
JW
2396 res_counter_uncharge(&old->memsw, bytes);
2397 stock->nr_pages = 0;
cdec2e42
KH
2398 }
2399 stock->cached = NULL;
cdec2e42
KH
2400}
2401
2402/*
2403 * This must be called under preempt disabled or must be called by
2404 * a thread which is pinned to local cpu.
2405 */
2406static void drain_local_stock(struct work_struct *dummy)
2407{
7c8e0181 2408 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2409 drain_stock(stock);
26fe6168 2410 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2411}
2412
e4777496
MH
2413static void __init memcg_stock_init(void)
2414{
2415 int cpu;
2416
2417 for_each_possible_cpu(cpu) {
2418 struct memcg_stock_pcp *stock =
2419 &per_cpu(memcg_stock, cpu);
2420 INIT_WORK(&stock->work, drain_local_stock);
2421 }
2422}
2423
cdec2e42
KH
2424/*
2425 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2426 * This will be consumed by consume_stock() function, later.
cdec2e42 2427 */
c0ff4b85 2428static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2429{
2430 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2431
c0ff4b85 2432 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2433 drain_stock(stock);
c0ff4b85 2434 stock->cached = memcg;
cdec2e42 2435 }
11c9ea4e 2436 stock->nr_pages += nr_pages;
cdec2e42
KH
2437 put_cpu_var(memcg_stock);
2438}
2439
2440/*
c0ff4b85 2441 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2442 * of the hierarchy under it. sync flag says whether we should block
2443 * until the work is done.
cdec2e42 2444 */
c0ff4b85 2445static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2446{
26fe6168 2447 int cpu, curcpu;
d38144b7 2448
cdec2e42 2449 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2450 get_online_cpus();
5af12d0e 2451 curcpu = get_cpu();
cdec2e42
KH
2452 for_each_online_cpu(cpu) {
2453 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2454 struct mem_cgroup *memcg;
26fe6168 2455
c0ff4b85
R
2456 memcg = stock->cached;
2457 if (!memcg || !stock->nr_pages)
26fe6168 2458 continue;
c0ff4b85 2459 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2460 continue;
d1a05b69
MH
2461 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2462 if (cpu == curcpu)
2463 drain_local_stock(&stock->work);
2464 else
2465 schedule_work_on(cpu, &stock->work);
2466 }
cdec2e42 2467 }
5af12d0e 2468 put_cpu();
d38144b7
MH
2469
2470 if (!sync)
2471 goto out;
2472
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2475 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2476 flush_work(&stock->work);
2477 }
2478out:
f894ffa8 2479 put_online_cpus();
d38144b7
MH
2480}
2481
2482/*
2483 * Tries to drain stocked charges in other cpus. This function is asynchronous
2484 * and just put a work per cpu for draining localy on each cpu. Caller can
2485 * expects some charges will be back to res_counter later but cannot wait for
2486 * it.
2487 */
c0ff4b85 2488static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2489{
9f50fad6
MH
2490 /*
2491 * If someone calls draining, avoid adding more kworker runs.
2492 */
2493 if (!mutex_trylock(&percpu_charge_mutex))
2494 return;
c0ff4b85 2495 drain_all_stock(root_memcg, false);
9f50fad6 2496 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2497}
2498
2499/* This is a synchronous drain interface. */
c0ff4b85 2500static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2501{
2502 /* called when force_empty is called */
9f50fad6 2503 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2504 drain_all_stock(root_memcg, true);
9f50fad6 2505 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2506}
2507
711d3d2c
KH
2508/*
2509 * This function drains percpu counter value from DEAD cpu and
2510 * move it to local cpu. Note that this function can be preempted.
2511 */
c0ff4b85 2512static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2513{
2514 int i;
2515
c0ff4b85 2516 spin_lock(&memcg->pcp_counter_lock);
6104621d 2517 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2518 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2519
c0ff4b85
R
2520 per_cpu(memcg->stat->count[i], cpu) = 0;
2521 memcg->nocpu_base.count[i] += x;
711d3d2c 2522 }
e9f8974f 2523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2524 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2525
c0ff4b85
R
2526 per_cpu(memcg->stat->events[i], cpu) = 0;
2527 memcg->nocpu_base.events[i] += x;
e9f8974f 2528 }
c0ff4b85 2529 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2530}
2531
0db0628d 2532static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2533 unsigned long action,
2534 void *hcpu)
2535{
2536 int cpu = (unsigned long)hcpu;
2537 struct memcg_stock_pcp *stock;
711d3d2c 2538 struct mem_cgroup *iter;
cdec2e42 2539
619d094b 2540 if (action == CPU_ONLINE)
1489ebad 2541 return NOTIFY_OK;
1489ebad 2542
d833049b 2543 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2544 return NOTIFY_OK;
711d3d2c 2545
9f3a0d09 2546 for_each_mem_cgroup(iter)
711d3d2c
KH
2547 mem_cgroup_drain_pcp_counter(iter, cpu);
2548
cdec2e42
KH
2549 stock = &per_cpu(memcg_stock, cpu);
2550 drain_stock(stock);
2551 return NOTIFY_OK;
2552}
2553
00501b53
JW
2554static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2555 unsigned int nr_pages)
8a9f3ccd 2556{
7ec99d62 2557 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2558 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05
JW
2559 struct mem_cgroup *mem_over_limit;
2560 struct res_counter *fail_res;
2561 unsigned long nr_reclaimed;
2562 unsigned long flags = 0;
2563 unsigned long long size;
05b84301 2564 int ret = 0;
a636b327 2565
6539cc05 2566retry:
b6b6cc72
MH
2567 if (consume_stock(memcg, nr_pages))
2568 goto done;
8a9f3ccd 2569
6539cc05
JW
2570 size = batch * PAGE_SIZE;
2571 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2572 if (!do_swap_account)
2573 goto done_restock;
2574 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2575 goto done_restock;
2576 res_counter_uncharge(&memcg->res, size);
2577 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2578 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2579 } else
2580 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
7a81b88c 2581
6539cc05
JW
2582 if (batch > nr_pages) {
2583 batch = nr_pages;
2584 goto retry;
2585 }
6d61ef40 2586
06b078fc
JW
2587 /*
2588 * Unlike in global OOM situations, memcg is not in a physical
2589 * memory shortage. Allow dying and OOM-killed tasks to
2590 * bypass the last charges so that they can exit quickly and
2591 * free their memory.
2592 */
2593 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2594 fatal_signal_pending(current) ||
2595 current->flags & PF_EXITING))
2596 goto bypass;
2597
2598 if (unlikely(task_in_memcg_oom(current)))
2599 goto nomem;
2600
6539cc05
JW
2601 if (!(gfp_mask & __GFP_WAIT))
2602 goto nomem;
4b534334 2603
6539cc05
JW
2604 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2605
61e02c74 2606 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2607 goto retry;
28c34c29
JW
2608
2609 if (gfp_mask & __GFP_NORETRY)
2610 goto nomem;
6539cc05
JW
2611 /*
2612 * Even though the limit is exceeded at this point, reclaim
2613 * may have been able to free some pages. Retry the charge
2614 * before killing the task.
2615 *
2616 * Only for regular pages, though: huge pages are rather
2617 * unlikely to succeed so close to the limit, and we fall back
2618 * to regular pages anyway in case of failure.
2619 */
61e02c74 2620 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2621 goto retry;
2622 /*
2623 * At task move, charge accounts can be doubly counted. So, it's
2624 * better to wait until the end of task_move if something is going on.
2625 */
2626 if (mem_cgroup_wait_acct_move(mem_over_limit))
2627 goto retry;
2628
9b130619
JW
2629 if (nr_retries--)
2630 goto retry;
2631
06b078fc
JW
2632 if (gfp_mask & __GFP_NOFAIL)
2633 goto bypass;
2634
6539cc05
JW
2635 if (fatal_signal_pending(current))
2636 goto bypass;
2637
61e02c74 2638 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2639nomem:
6d1fdc48 2640 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2641 return -ENOMEM;
867578cb 2642bypass:
05b84301
JW
2643 memcg = root_mem_cgroup;
2644 ret = -EINTR;
2645 goto retry;
6539cc05
JW
2646
2647done_restock:
2648 if (batch > nr_pages)
2649 refill_stock(memcg, batch - nr_pages);
2650done:
05b84301 2651 return ret;
7a81b88c 2652}
8a9f3ccd 2653
00501b53 2654static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2655{
05b84301 2656 unsigned long bytes = nr_pages * PAGE_SIZE;
e7018b8d 2657
05b84301
JW
2658 res_counter_uncharge(&memcg->res, bytes);
2659 if (do_swap_account)
2660 res_counter_uncharge(&memcg->memsw, bytes);
854ffa8d
DN
2661}
2662
d01dd17f
KH
2663/*
2664 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2665 * This is useful when moving usage to parent cgroup.
2666 */
2667static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2668 unsigned int nr_pages)
2669{
2670 unsigned long bytes = nr_pages * PAGE_SIZE;
2671
d01dd17f
KH
2672 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2673 if (do_swap_account)
2674 res_counter_uncharge_until(&memcg->memsw,
2675 memcg->memsw.parent, bytes);
2676}
2677
a3b2d692
KH
2678/*
2679 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2680 * rcu_read_lock(). The caller is responsible for calling
2681 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2682 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2683 */
2684static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2685{
a3b2d692
KH
2686 /* ID 0 is unused ID */
2687 if (!id)
2688 return NULL;
34c00c31 2689 return mem_cgroup_from_id(id);
a3b2d692
KH
2690}
2691
e42d9d5d 2692struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2693{
c0ff4b85 2694 struct mem_cgroup *memcg = NULL;
3c776e64 2695 struct page_cgroup *pc;
a3b2d692 2696 unsigned short id;
b5a84319
KH
2697 swp_entry_t ent;
2698
309381fe 2699 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2700
3c776e64 2701 pc = lookup_page_cgroup(page);
c0bd3f63 2702 lock_page_cgroup(pc);
a3b2d692 2703 if (PageCgroupUsed(pc)) {
c0ff4b85 2704 memcg = pc->mem_cgroup;
ec903c0c 2705 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2706 memcg = NULL;
e42d9d5d 2707 } else if (PageSwapCache(page)) {
3c776e64 2708 ent.val = page_private(page);
9fb4b7cc 2709 id = lookup_swap_cgroup_id(ent);
a3b2d692 2710 rcu_read_lock();
c0ff4b85 2711 memcg = mem_cgroup_lookup(id);
ec903c0c 2712 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2713 memcg = NULL;
a3b2d692 2714 rcu_read_unlock();
3c776e64 2715 }
c0bd3f63 2716 unlock_page_cgroup(pc);
c0ff4b85 2717 return memcg;
b5a84319
KH
2718}
2719
00501b53
JW
2720static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2721 unsigned int nr_pages, bool anon, bool lrucare)
7a81b88c 2722{
ce587e65 2723 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2724 struct zone *uninitialized_var(zone);
fa9add64 2725 struct lruvec *lruvec;
9ce70c02
HD
2726 bool was_on_lru = false;
2727
ca3e0214 2728 lock_page_cgroup(pc);
309381fe 2729 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2730 /*
2731 * we don't need page_cgroup_lock about tail pages, becase they are not
2732 * accessed by any other context at this point.
2733 */
9ce70c02
HD
2734
2735 /*
2736 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2737 * may already be on some other mem_cgroup's LRU. Take care of it.
2738 */
2739 if (lrucare) {
2740 zone = page_zone(page);
2741 spin_lock_irq(&zone->lru_lock);
2742 if (PageLRU(page)) {
fa9add64 2743 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2744 ClearPageLRU(page);
fa9add64 2745 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2746 was_on_lru = true;
2747 }
2748 }
2749
c0ff4b85 2750 pc->mem_cgroup = memcg;
b2402857 2751 SetPageCgroupUsed(pc);
3be91277 2752
9ce70c02
HD
2753 if (lrucare) {
2754 if (was_on_lru) {
fa9add64 2755 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2756 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2757 SetPageLRU(page);
fa9add64 2758 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2759 }
2760 spin_unlock_irq(&zone->lru_lock);
2761 }
2762
b070e65c 2763 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2764 unlock_page_cgroup(pc);
9ce70c02 2765
430e4863 2766 /*
bb4cc1a8
AM
2767 * "charge_statistics" updated event counter. Then, check it.
2768 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2769 * if they exceeds softlimit.
430e4863 2770 */
c0ff4b85 2771 memcg_check_events(memcg, page);
7a81b88c 2772}
66e1707b 2773
7cf27982
GC
2774static DEFINE_MUTEX(set_limit_mutex);
2775
7ae1e1d0 2776#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2777/*
2778 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2779 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2780 */
2781static DEFINE_MUTEX(memcg_slab_mutex);
2782
d6441637
VD
2783static DEFINE_MUTEX(activate_kmem_mutex);
2784
7ae1e1d0
GC
2785static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2786{
2787 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2788 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2789}
2790
1f458cbf
GC
2791/*
2792 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2793 * in the memcg_cache_params struct.
2794 */
2795static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2796{
2797 struct kmem_cache *cachep;
2798
2799 VM_BUG_ON(p->is_root_cache);
2800 cachep = p->root_cache;
7a67d7ab 2801 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2802}
2803
749c5415 2804#ifdef CONFIG_SLABINFO
2da8ca82 2805static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2806{
2da8ca82 2807 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2808 struct memcg_cache_params *params;
2809
2810 if (!memcg_can_account_kmem(memcg))
2811 return -EIO;
2812
2813 print_slabinfo_header(m);
2814
bd673145 2815 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2816 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2817 cache_show(memcg_params_to_cache(params), m);
bd673145 2818 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2819
2820 return 0;
2821}
2822#endif
2823
c67a8a68 2824static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2825{
2826 struct res_counter *fail_res;
7ae1e1d0 2827 int ret = 0;
7ae1e1d0
GC
2828
2829 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2830 if (ret)
2831 return ret;
2832
00501b53 2833 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
7ae1e1d0
GC
2834 if (ret == -EINTR) {
2835 /*
00501b53
JW
2836 * try_charge() chose to bypass to root due to OOM kill or
2837 * fatal signal. Since our only options are to either fail
2838 * the allocation or charge it to this cgroup, do it as a
2839 * temporary condition. But we can't fail. From a kmem/slab
2840 * perspective, the cache has already been selected, by
2841 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2842 * our minds.
2843 *
2844 * This condition will only trigger if the task entered
00501b53
JW
2845 * memcg_charge_kmem in a sane state, but was OOM-killed
2846 * during try_charge() above. Tasks that were already dying
2847 * when the allocation triggers should have been already
7ae1e1d0
GC
2848 * directed to the root cgroup in memcontrol.h
2849 */
2850 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2851 if (do_swap_account)
2852 res_counter_charge_nofail(&memcg->memsw, size,
2853 &fail_res);
2854 ret = 0;
2855 } else if (ret)
2856 res_counter_uncharge(&memcg->kmem, size);
2857
2858 return ret;
2859}
2860
c67a8a68 2861static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2862{
7ae1e1d0
GC
2863 res_counter_uncharge(&memcg->res, size);
2864 if (do_swap_account)
2865 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2866
2867 /* Not down to 0 */
2868 if (res_counter_uncharge(&memcg->kmem, size))
2869 return;
2870
10d5ebf4
LZ
2871 /*
2872 * Releases a reference taken in kmem_cgroup_css_offline in case
2873 * this last uncharge is racing with the offlining code or it is
2874 * outliving the memcg existence.
2875 *
2876 * The memory barrier imposed by test&clear is paired with the
2877 * explicit one in memcg_kmem_mark_dead().
2878 */
7de37682 2879 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2880 css_put(&memcg->css);
7ae1e1d0
GC
2881}
2882
2633d7a0
GC
2883/*
2884 * helper for acessing a memcg's index. It will be used as an index in the
2885 * child cache array in kmem_cache, and also to derive its name. This function
2886 * will return -1 when this is not a kmem-limited memcg.
2887 */
2888int memcg_cache_id(struct mem_cgroup *memcg)
2889{
2890 return memcg ? memcg->kmemcg_id : -1;
2891}
2892
55007d84
GC
2893static size_t memcg_caches_array_size(int num_groups)
2894{
2895 ssize_t size;
2896 if (num_groups <= 0)
2897 return 0;
2898
2899 size = 2 * num_groups;
2900 if (size < MEMCG_CACHES_MIN_SIZE)
2901 size = MEMCG_CACHES_MIN_SIZE;
2902 else if (size > MEMCG_CACHES_MAX_SIZE)
2903 size = MEMCG_CACHES_MAX_SIZE;
2904
2905 return size;
2906}
2907
2908/*
2909 * We should update the current array size iff all caches updates succeed. This
2910 * can only be done from the slab side. The slab mutex needs to be held when
2911 * calling this.
2912 */
2913void memcg_update_array_size(int num)
2914{
2915 if (num > memcg_limited_groups_array_size)
2916 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2917}
2918
2919int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2920{
2921 struct memcg_cache_params *cur_params = s->memcg_params;
2922
f35c3a8e 2923 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
2924
2925 if (num_groups > memcg_limited_groups_array_size) {
2926 int i;
f8570263 2927 struct memcg_cache_params *new_params;
55007d84
GC
2928 ssize_t size = memcg_caches_array_size(num_groups);
2929
2930 size *= sizeof(void *);
90c7a79c 2931 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 2932
f8570263
VD
2933 new_params = kzalloc(size, GFP_KERNEL);
2934 if (!new_params)
55007d84 2935 return -ENOMEM;
55007d84 2936
f8570263 2937 new_params->is_root_cache = true;
55007d84
GC
2938
2939 /*
2940 * There is the chance it will be bigger than
2941 * memcg_limited_groups_array_size, if we failed an allocation
2942 * in a cache, in which case all caches updated before it, will
2943 * have a bigger array.
2944 *
2945 * But if that is the case, the data after
2946 * memcg_limited_groups_array_size is certainly unused
2947 */
2948 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2949 if (!cur_params->memcg_caches[i])
2950 continue;
f8570263 2951 new_params->memcg_caches[i] =
55007d84
GC
2952 cur_params->memcg_caches[i];
2953 }
2954
2955 /*
2956 * Ideally, we would wait until all caches succeed, and only
2957 * then free the old one. But this is not worth the extra
2958 * pointer per-cache we'd have to have for this.
2959 *
2960 * It is not a big deal if some caches are left with a size
2961 * bigger than the others. And all updates will reset this
2962 * anyway.
2963 */
f8570263
VD
2964 rcu_assign_pointer(s->memcg_params, new_params);
2965 if (cur_params)
2966 kfree_rcu(cur_params, rcu_head);
55007d84
GC
2967 }
2968 return 0;
2969}
2970
363a044f
VD
2971int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
2972 struct kmem_cache *root_cache)
2633d7a0 2973{
90c7a79c 2974 size_t size;
2633d7a0
GC
2975
2976 if (!memcg_kmem_enabled())
2977 return 0;
2978
90c7a79c
AV
2979 if (!memcg) {
2980 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 2981 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
2982 } else
2983 size = sizeof(struct memcg_cache_params);
55007d84 2984
2633d7a0
GC
2985 s->memcg_params = kzalloc(size, GFP_KERNEL);
2986 if (!s->memcg_params)
2987 return -ENOMEM;
2988
943a451a 2989 if (memcg) {
2633d7a0 2990 s->memcg_params->memcg = memcg;
943a451a 2991 s->memcg_params->root_cache = root_cache;
051dd460 2992 css_get(&memcg->css);
4ba902b5
GC
2993 } else
2994 s->memcg_params->is_root_cache = true;
2995
2633d7a0
GC
2996 return 0;
2997}
2998
363a044f
VD
2999void memcg_free_cache_params(struct kmem_cache *s)
3000{
051dd460
VD
3001 if (!s->memcg_params)
3002 return;
3003 if (!s->memcg_params->is_root_cache)
3004 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3005 kfree(s->memcg_params);
3006}
3007
776ed0f0
VD
3008static void memcg_register_cache(struct mem_cgroup *memcg,
3009 struct kmem_cache *root_cache)
2633d7a0 3010{
93f39eea
VD
3011 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3012 memcg_slab_mutex */
bd673145 3013 struct kmem_cache *cachep;
d7f25f8a
GC
3014 int id;
3015
bd673145
VD
3016 lockdep_assert_held(&memcg_slab_mutex);
3017
3018 id = memcg_cache_id(memcg);
3019
3020 /*
3021 * Since per-memcg caches are created asynchronously on first
3022 * allocation (see memcg_kmem_get_cache()), several threads can try to
3023 * create the same cache, but only one of them may succeed.
3024 */
3025 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
3026 return;
3027
073ee1c6 3028 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 3029 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 3030 /*
bd673145
VD
3031 * If we could not create a memcg cache, do not complain, because
3032 * that's not critical at all as we can always proceed with the root
3033 * cache.
2edefe11 3034 */
bd673145
VD
3035 if (!cachep)
3036 return;
2edefe11 3037
bd673145 3038 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 3039
d7f25f8a 3040 /*
959c8963
VD
3041 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3042 * barrier here to ensure nobody will see the kmem_cache partially
3043 * initialized.
d7f25f8a 3044 */
959c8963
VD
3045 smp_wmb();
3046
bd673145
VD
3047 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3048 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 3049}
d7f25f8a 3050
776ed0f0 3051static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 3052{
bd673145 3053 struct kmem_cache *root_cache;
1aa13254
VD
3054 struct mem_cgroup *memcg;
3055 int id;
3056
bd673145 3057 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3058
bd673145 3059 BUG_ON(is_root_cache(cachep));
2edefe11 3060
bd673145
VD
3061 root_cache = cachep->memcg_params->root_cache;
3062 memcg = cachep->memcg_params->memcg;
96403da2 3063 id = memcg_cache_id(memcg);
d7f25f8a 3064
bd673145
VD
3065 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3066 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3067
bd673145
VD
3068 list_del(&cachep->memcg_params->list);
3069
3070 kmem_cache_destroy(cachep);
2633d7a0
GC
3071}
3072
0e9d92f2
GC
3073/*
3074 * During the creation a new cache, we need to disable our accounting mechanism
3075 * altogether. This is true even if we are not creating, but rather just
3076 * enqueing new caches to be created.
3077 *
3078 * This is because that process will trigger allocations; some visible, like
3079 * explicit kmallocs to auxiliary data structures, name strings and internal
3080 * cache structures; some well concealed, like INIT_WORK() that can allocate
3081 * objects during debug.
3082 *
3083 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3084 * to it. This may not be a bounded recursion: since the first cache creation
3085 * failed to complete (waiting on the allocation), we'll just try to create the
3086 * cache again, failing at the same point.
3087 *
3088 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3089 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3090 * inside the following two functions.
3091 */
3092static inline void memcg_stop_kmem_account(void)
3093{
3094 VM_BUG_ON(!current->mm);
3095 current->memcg_kmem_skip_account++;
3096}
3097
3098static inline void memcg_resume_kmem_account(void)
3099{
3100 VM_BUG_ON(!current->mm);
3101 current->memcg_kmem_skip_account--;
3102}
3103
776ed0f0 3104int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3105{
3106 struct kmem_cache *c;
b8529907 3107 int i, failed = 0;
7cf27982 3108
bd673145 3109 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3110 for_each_memcg_cache_index(i) {
3111 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3112 if (!c)
3113 continue;
3114
776ed0f0 3115 memcg_unregister_cache(c);
b8529907
VD
3116
3117 if (cache_from_memcg_idx(s, i))
3118 failed++;
7cf27982 3119 }
bd673145 3120 mutex_unlock(&memcg_slab_mutex);
b8529907 3121 return failed;
7cf27982
GC
3122}
3123
776ed0f0 3124static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3125{
3126 struct kmem_cache *cachep;
bd673145 3127 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3128
3129 if (!memcg_kmem_is_active(memcg))
3130 return;
3131
bd673145
VD
3132 mutex_lock(&memcg_slab_mutex);
3133 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3134 cachep = memcg_params_to_cache(params);
bd673145
VD
3135 kmem_cache_shrink(cachep);
3136 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3137 memcg_unregister_cache(cachep);
1f458cbf 3138 }
bd673145 3139 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3140}
3141
776ed0f0 3142struct memcg_register_cache_work {
5722d094
VD
3143 struct mem_cgroup *memcg;
3144 struct kmem_cache *cachep;
3145 struct work_struct work;
3146};
3147
776ed0f0 3148static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3149{
776ed0f0
VD
3150 struct memcg_register_cache_work *cw =
3151 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3152 struct mem_cgroup *memcg = cw->memcg;
3153 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3154
bd673145 3155 mutex_lock(&memcg_slab_mutex);
776ed0f0 3156 memcg_register_cache(memcg, cachep);
bd673145
VD
3157 mutex_unlock(&memcg_slab_mutex);
3158
5722d094 3159 css_put(&memcg->css);
d7f25f8a
GC
3160 kfree(cw);
3161}
3162
3163/*
3164 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3165 */
776ed0f0
VD
3166static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3167 struct kmem_cache *cachep)
d7f25f8a 3168{
776ed0f0 3169 struct memcg_register_cache_work *cw;
d7f25f8a 3170
776ed0f0 3171 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3172 if (cw == NULL) {
3173 css_put(&memcg->css);
d7f25f8a
GC
3174 return;
3175 }
3176
3177 cw->memcg = memcg;
3178 cw->cachep = cachep;
3179
776ed0f0 3180 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3181 schedule_work(&cw->work);
3182}
3183
776ed0f0
VD
3184static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3185 struct kmem_cache *cachep)
0e9d92f2
GC
3186{
3187 /*
3188 * We need to stop accounting when we kmalloc, because if the
3189 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3190 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3191 *
3192 * However, it is better to enclose the whole function. Depending on
3193 * the debugging options enabled, INIT_WORK(), for instance, can
3194 * trigger an allocation. This too, will make us recurse. Because at
3195 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3196 * the safest choice is to do it like this, wrapping the whole function.
3197 */
3198 memcg_stop_kmem_account();
776ed0f0 3199 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3200 memcg_resume_kmem_account();
3201}
c67a8a68
VD
3202
3203int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3204{
3205 int res;
3206
3207 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3208 PAGE_SIZE << order);
3209 if (!res)
3210 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3211 return res;
3212}
3213
3214void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3215{
3216 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3217 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3218}
3219
d7f25f8a
GC
3220/*
3221 * Return the kmem_cache we're supposed to use for a slab allocation.
3222 * We try to use the current memcg's version of the cache.
3223 *
3224 * If the cache does not exist yet, if we are the first user of it,
3225 * we either create it immediately, if possible, or create it asynchronously
3226 * in a workqueue.
3227 * In the latter case, we will let the current allocation go through with
3228 * the original cache.
3229 *
3230 * Can't be called in interrupt context or from kernel threads.
3231 * This function needs to be called with rcu_read_lock() held.
3232 */
3233struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3234 gfp_t gfp)
3235{
3236 struct mem_cgroup *memcg;
959c8963 3237 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3238
3239 VM_BUG_ON(!cachep->memcg_params);
3240 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3241
0e9d92f2
GC
3242 if (!current->mm || current->memcg_kmem_skip_account)
3243 return cachep;
3244
d7f25f8a
GC
3245 rcu_read_lock();
3246 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3247
3248 if (!memcg_can_account_kmem(memcg))
ca0dde97 3249 goto out;
d7f25f8a 3250
959c8963
VD
3251 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3252 if (likely(memcg_cachep)) {
3253 cachep = memcg_cachep;
ca0dde97 3254 goto out;
d7f25f8a
GC
3255 }
3256
ca0dde97 3257 /* The corresponding put will be done in the workqueue. */
ec903c0c 3258 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3259 goto out;
3260 rcu_read_unlock();
3261
3262 /*
3263 * If we are in a safe context (can wait, and not in interrupt
3264 * context), we could be be predictable and return right away.
3265 * This would guarantee that the allocation being performed
3266 * already belongs in the new cache.
3267 *
3268 * However, there are some clashes that can arrive from locking.
3269 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3270 * memcg_create_kmem_cache, this means no further allocation
3271 * could happen with the slab_mutex held. So it's better to
3272 * defer everything.
ca0dde97 3273 */
776ed0f0 3274 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3275 return cachep;
3276out:
3277 rcu_read_unlock();
3278 return cachep;
d7f25f8a 3279}
d7f25f8a 3280
7ae1e1d0
GC
3281/*
3282 * We need to verify if the allocation against current->mm->owner's memcg is
3283 * possible for the given order. But the page is not allocated yet, so we'll
3284 * need a further commit step to do the final arrangements.
3285 *
3286 * It is possible for the task to switch cgroups in this mean time, so at
3287 * commit time, we can't rely on task conversion any longer. We'll then use
3288 * the handle argument to return to the caller which cgroup we should commit
3289 * against. We could also return the memcg directly and avoid the pointer
3290 * passing, but a boolean return value gives better semantics considering
3291 * the compiled-out case as well.
3292 *
3293 * Returning true means the allocation is possible.
3294 */
3295bool
3296__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3297{
3298 struct mem_cgroup *memcg;
3299 int ret;
3300
3301 *_memcg = NULL;
6d42c232
GC
3302
3303 /*
3304 * Disabling accounting is only relevant for some specific memcg
3305 * internal allocations. Therefore we would initially not have such
52383431
VD
3306 * check here, since direct calls to the page allocator that are
3307 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3308 * outside memcg core. We are mostly concerned with cache allocations,
3309 * and by having this test at memcg_kmem_get_cache, we are already able
3310 * to relay the allocation to the root cache and bypass the memcg cache
3311 * altogether.
6d42c232
GC
3312 *
3313 * There is one exception, though: the SLUB allocator does not create
3314 * large order caches, but rather service large kmallocs directly from
3315 * the page allocator. Therefore, the following sequence when backed by
3316 * the SLUB allocator:
3317 *
f894ffa8
AM
3318 * memcg_stop_kmem_account();
3319 * kmalloc(<large_number>)
3320 * memcg_resume_kmem_account();
6d42c232
GC
3321 *
3322 * would effectively ignore the fact that we should skip accounting,
3323 * since it will drive us directly to this function without passing
3324 * through the cache selector memcg_kmem_get_cache. Such large
3325 * allocations are extremely rare but can happen, for instance, for the
3326 * cache arrays. We bring this test here.
3327 */
3328 if (!current->mm || current->memcg_kmem_skip_account)
3329 return true;
3330
df381975 3331 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3332
3333 if (!memcg_can_account_kmem(memcg)) {
3334 css_put(&memcg->css);
3335 return true;
3336 }
3337
7ae1e1d0
GC
3338 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3339 if (!ret)
3340 *_memcg = memcg;
7ae1e1d0
GC
3341
3342 css_put(&memcg->css);
3343 return (ret == 0);
3344}
3345
3346void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3347 int order)
3348{
3349 struct page_cgroup *pc;
3350
3351 VM_BUG_ON(mem_cgroup_is_root(memcg));
3352
3353 /* The page allocation failed. Revert */
3354 if (!page) {
3355 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3356 return;
3357 }
a840cda6
JW
3358 /*
3359 * The page is freshly allocated and not visible to any
3360 * outside callers yet. Set up pc non-atomically.
3361 */
7ae1e1d0 3362 pc = lookup_page_cgroup(page);
7ae1e1d0 3363 pc->mem_cgroup = memcg;
a840cda6 3364 pc->flags = PCG_USED;
7ae1e1d0
GC
3365}
3366
3367void __memcg_kmem_uncharge_pages(struct page *page, int order)
3368{
3369 struct mem_cgroup *memcg = NULL;
3370 struct page_cgroup *pc;
3371
3372
3373 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3374 if (!PageCgroupUsed(pc))
3375 return;
3376
a840cda6
JW
3377 memcg = pc->mem_cgroup;
3378 pc->flags = 0;
7ae1e1d0
GC
3379
3380 /*
3381 * We trust that only if there is a memcg associated with the page, it
3382 * is a valid allocation
3383 */
3384 if (!memcg)
3385 return;
3386
309381fe 3387 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3388 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3389}
1f458cbf 3390#else
776ed0f0 3391static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3392{
3393}
7ae1e1d0
GC
3394#endif /* CONFIG_MEMCG_KMEM */
3395
ca3e0214
KH
3396#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3397
a0db00fc 3398#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3399/*
3400 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3401 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3402 * charge/uncharge will be never happen and move_account() is done under
3403 * compound_lock(), so we don't have to take care of races.
ca3e0214 3404 */
e94c8a9c 3405void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3406{
3407 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3408 struct page_cgroup *pc;
b070e65c 3409 struct mem_cgroup *memcg;
e94c8a9c 3410 int i;
ca3e0214 3411
3d37c4a9
KH
3412 if (mem_cgroup_disabled())
3413 return;
b070e65c
DR
3414
3415 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3416 for (i = 1; i < HPAGE_PMD_NR; i++) {
3417 pc = head_pc + i;
b070e65c 3418 pc->mem_cgroup = memcg;
e94c8a9c
KH
3419 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3420 }
b070e65c
DR
3421 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3422 HPAGE_PMD_NR);
ca3e0214 3423}
12d27107 3424#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3425
f817ed48 3426/**
de3638d9 3427 * mem_cgroup_move_account - move account of the page
5564e88b 3428 * @page: the page
7ec99d62 3429 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3430 * @pc: page_cgroup of the page.
3431 * @from: mem_cgroup which the page is moved from.
3432 * @to: mem_cgroup which the page is moved to. @from != @to.
3433 *
3434 * The caller must confirm following.
08e552c6 3435 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3436 * - compound_lock is held when nr_pages > 1
f817ed48 3437 *
2f3479b1
KH
3438 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3439 * from old cgroup.
f817ed48 3440 */
7ec99d62
JW
3441static int mem_cgroup_move_account(struct page *page,
3442 unsigned int nr_pages,
3443 struct page_cgroup *pc,
3444 struct mem_cgroup *from,
2f3479b1 3445 struct mem_cgroup *to)
f817ed48 3446{
de3638d9
JW
3447 unsigned long flags;
3448 int ret;
b2402857 3449 bool anon = PageAnon(page);
987eba66 3450
f817ed48 3451 VM_BUG_ON(from == to);
309381fe 3452 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3453 /*
3454 * The page is isolated from LRU. So, collapse function
3455 * will not handle this page. But page splitting can happen.
3456 * Do this check under compound_page_lock(). The caller should
3457 * hold it.
3458 */
3459 ret = -EBUSY;
7ec99d62 3460 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3461 goto out;
3462
3463 lock_page_cgroup(pc);
3464
3465 ret = -EINVAL;
3466 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3467 goto unlock;
3468
312734c0 3469 move_lock_mem_cgroup(from, &flags);
f817ed48 3470
59d1d256
JW
3471 if (!anon && page_mapped(page)) {
3472 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3473 nr_pages);
3474 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3475 nr_pages);
3476 }
3ea67d06 3477
59d1d256
JW
3478 if (PageWriteback(page)) {
3479 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3480 nr_pages);
3481 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3482 nr_pages);
3483 }
3ea67d06 3484
b070e65c 3485 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3486
854ffa8d 3487 /* caller should have done css_get */
08e552c6 3488 pc->mem_cgroup = to;
b070e65c 3489 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3490 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3491 ret = 0;
3492unlock:
57f9fd7d 3493 unlock_page_cgroup(pc);
d2265e6f
KH
3494 /*
3495 * check events
3496 */
5564e88b
JW
3497 memcg_check_events(to, page);
3498 memcg_check_events(from, page);
de3638d9 3499out:
f817ed48
KH
3500 return ret;
3501}
3502
2ef37d3f
MH
3503/**
3504 * mem_cgroup_move_parent - moves page to the parent group
3505 * @page: the page to move
3506 * @pc: page_cgroup of the page
3507 * @child: page's cgroup
3508 *
3509 * move charges to its parent or the root cgroup if the group has no
3510 * parent (aka use_hierarchy==0).
3511 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3512 * mem_cgroup_move_account fails) the failure is always temporary and
3513 * it signals a race with a page removal/uncharge or migration. In the
3514 * first case the page is on the way out and it will vanish from the LRU
3515 * on the next attempt and the call should be retried later.
3516 * Isolation from the LRU fails only if page has been isolated from
3517 * the LRU since we looked at it and that usually means either global
3518 * reclaim or migration going on. The page will either get back to the
3519 * LRU or vanish.
3520 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3521 * (!PageCgroupUsed) or moved to a different group. The page will
3522 * disappear in the next attempt.
f817ed48 3523 */
5564e88b
JW
3524static int mem_cgroup_move_parent(struct page *page,
3525 struct page_cgroup *pc,
6068bf01 3526 struct mem_cgroup *child)
f817ed48 3527{
f817ed48 3528 struct mem_cgroup *parent;
7ec99d62 3529 unsigned int nr_pages;
4be4489f 3530 unsigned long uninitialized_var(flags);
f817ed48
KH
3531 int ret;
3532
d8423011 3533 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3534
57f9fd7d
DN
3535 ret = -EBUSY;
3536 if (!get_page_unless_zero(page))
3537 goto out;
3538 if (isolate_lru_page(page))
3539 goto put;
52dbb905 3540
7ec99d62 3541 nr_pages = hpage_nr_pages(page);
08e552c6 3542
cc926f78
KH
3543 parent = parent_mem_cgroup(child);
3544 /*
3545 * If no parent, move charges to root cgroup.
3546 */
3547 if (!parent)
3548 parent = root_mem_cgroup;
f817ed48 3549
2ef37d3f 3550 if (nr_pages > 1) {
309381fe 3551 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3552 flags = compound_lock_irqsave(page);
2ef37d3f 3553 }
987eba66 3554
cc926f78 3555 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3556 pc, child, parent);
cc926f78
KH
3557 if (!ret)
3558 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3559
7ec99d62 3560 if (nr_pages > 1)
987eba66 3561 compound_unlock_irqrestore(page, flags);
08e552c6 3562 putback_lru_page(page);
57f9fd7d 3563put:
40d58138 3564 put_page(page);
57f9fd7d 3565out:
f817ed48
KH
3566 return ret;
3567}
3568
c0ff4b85 3569static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3570 unsigned int nr_pages,
3571 const enum charge_type ctype)
569b846d
KH
3572{
3573 struct memcg_batch_info *batch = NULL;
3574 bool uncharge_memsw = true;
7ec99d62 3575
569b846d
KH
3576 /* If swapout, usage of swap doesn't decrease */
3577 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3578 uncharge_memsw = false;
569b846d
KH
3579
3580 batch = &current->memcg_batch;
3581 /*
3582 * In usual, we do css_get() when we remember memcg pointer.
3583 * But in this case, we keep res->usage until end of a series of
3584 * uncharges. Then, it's ok to ignore memcg's refcnt.
3585 */
3586 if (!batch->memcg)
c0ff4b85 3587 batch->memcg = memcg;
3c11ecf4
KH
3588 /*
3589 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3590 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3591 * the same cgroup and we have chance to coalesce uncharges.
3592 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3593 * because we want to do uncharge as soon as possible.
3594 */
3595
3596 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3597 goto direct_uncharge;
3598
7ec99d62 3599 if (nr_pages > 1)
ec168510
AA
3600 goto direct_uncharge;
3601
569b846d
KH
3602 /*
3603 * In typical case, batch->memcg == mem. This means we can
3604 * merge a series of uncharges to an uncharge of res_counter.
3605 * If not, we uncharge res_counter ony by one.
3606 */
c0ff4b85 3607 if (batch->memcg != memcg)
569b846d
KH
3608 goto direct_uncharge;
3609 /* remember freed charge and uncharge it later */
7ffd4ca7 3610 batch->nr_pages++;
569b846d 3611 if (uncharge_memsw)
7ffd4ca7 3612 batch->memsw_nr_pages++;
569b846d
KH
3613 return;
3614direct_uncharge:
c0ff4b85 3615 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3616 if (uncharge_memsw)
c0ff4b85
R
3617 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3618 if (unlikely(batch->memcg != memcg))
3619 memcg_oom_recover(memcg);
569b846d 3620}
7a81b88c 3621
8a9f3ccd 3622/*
69029cd5 3623 * uncharge if !page_mapped(page)
8a9f3ccd 3624 */
8c7c6e34 3625static struct mem_cgroup *
0030f535
JW
3626__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3627 bool end_migration)
8a9f3ccd 3628{
c0ff4b85 3629 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3630 unsigned int nr_pages = 1;
3631 struct page_cgroup *pc;
b2402857 3632 bool anon;
8a9f3ccd 3633
f8d66542 3634 if (mem_cgroup_disabled())
8c7c6e34 3635 return NULL;
4077960e 3636
37c2ac78 3637 if (PageTransHuge(page)) {
7ec99d62 3638 nr_pages <<= compound_order(page);
309381fe 3639 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 3640 }
8697d331 3641 /*
3c541e14 3642 * Check if our page_cgroup is valid
8697d331 3643 */
52d4b9ac 3644 pc = lookup_page_cgroup(page);
cfa44946 3645 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3646 return NULL;
b9c565d5 3647
52d4b9ac 3648 lock_page_cgroup(pc);
d13d1443 3649
c0ff4b85 3650 memcg = pc->mem_cgroup;
8c7c6e34 3651
d13d1443
KH
3652 if (!PageCgroupUsed(pc))
3653 goto unlock_out;
3654
b2402857
KH
3655 anon = PageAnon(page);
3656
d13d1443 3657 switch (ctype) {
41326c17 3658 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3659 /*
3660 * Generally PageAnon tells if it's the anon statistics to be
3661 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3662 * used before page reached the stage of being marked PageAnon.
3663 */
b2402857
KH
3664 anon = true;
3665 /* fallthrough */
8a9478ca 3666 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3667 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3668 if (page_mapped(page))
3669 goto unlock_out;
3670 /*
3671 * Pages under migration may not be uncharged. But
3672 * end_migration() /must/ be the one uncharging the
3673 * unused post-migration page and so it has to call
3674 * here with the migration bit still set. See the
3675 * res_counter handling below.
3676 */
3677 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3678 goto unlock_out;
3679 break;
3680 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3681 if (!PageAnon(page)) { /* Shared memory */
3682 if (page->mapping && !page_is_file_cache(page))
3683 goto unlock_out;
3684 } else if (page_mapped(page)) /* Anon */
3685 goto unlock_out;
3686 break;
3687 default:
3688 break;
52d4b9ac 3689 }
d13d1443 3690
b070e65c 3691 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 3692
52d4b9ac 3693 ClearPageCgroupUsed(pc);
544122e5
KH
3694 /*
3695 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3696 * freed from LRU. This is safe because uncharged page is expected not
3697 * to be reused (freed soon). Exception is SwapCache, it's handled by
3698 * special functions.
3699 */
b9c565d5 3700
52d4b9ac 3701 unlock_page_cgroup(pc);
f75ca962 3702 /*
c0ff4b85 3703 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 3704 * will never be freed, so it's safe to call css_get().
f75ca962 3705 */
c0ff4b85 3706 memcg_check_events(memcg, page);
f75ca962 3707 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 3708 mem_cgroup_swap_statistics(memcg, true);
4050377b 3709 css_get(&memcg->css);
f75ca962 3710 }
0030f535
JW
3711 /*
3712 * Migration does not charge the res_counter for the
3713 * replacement page, so leave it alone when phasing out the
3714 * page that is unused after the migration.
3715 */
05b84301 3716 if (!end_migration)
c0ff4b85 3717 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3718
c0ff4b85 3719 return memcg;
d13d1443
KH
3720
3721unlock_out:
3722 unlock_page_cgroup(pc);
8c7c6e34 3723 return NULL;
3c541e14
BS
3724}
3725
69029cd5
KH
3726void mem_cgroup_uncharge_page(struct page *page)
3727{
52d4b9ac
KH
3728 /* early check. */
3729 if (page_mapped(page))
3730 return;
309381fe 3731 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
3732 /*
3733 * If the page is in swap cache, uncharge should be deferred
3734 * to the swap path, which also properly accounts swap usage
3735 * and handles memcg lifetime.
3736 *
3737 * Note that this check is not stable and reclaim may add the
3738 * page to swap cache at any time after this. However, if the
3739 * page is not in swap cache by the time page->mapcount hits
3740 * 0, there won't be any page table references to the swap
3741 * slot, and reclaim will free it and not actually write the
3742 * page to disk.
3743 */
0c59b89c
JW
3744 if (PageSwapCache(page))
3745 return;
0030f535 3746 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3747}
3748
3749void mem_cgroup_uncharge_cache_page(struct page *page)
3750{
309381fe
SL
3751 VM_BUG_ON_PAGE(page_mapped(page), page);
3752 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 3753 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3754}
3755
569b846d
KH
3756/*
3757 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3758 * In that cases, pages are freed continuously and we can expect pages
3759 * are in the same memcg. All these calls itself limits the number of
3760 * pages freed at once, then uncharge_start/end() is called properly.
3761 * This may be called prural(2) times in a context,
3762 */
3763
3764void mem_cgroup_uncharge_start(void)
3765{
3766 current->memcg_batch.do_batch++;
3767 /* We can do nest. */
3768 if (current->memcg_batch.do_batch == 1) {
3769 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3770 current->memcg_batch.nr_pages = 0;
3771 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3772 }
3773}
3774
3775void mem_cgroup_uncharge_end(void)
3776{
3777 struct memcg_batch_info *batch = &current->memcg_batch;
3778
3779 if (!batch->do_batch)
3780 return;
3781
3782 batch->do_batch--;
3783 if (batch->do_batch) /* If stacked, do nothing. */
3784 return;
3785
3786 if (!batch->memcg)
3787 return;
3788 /*
3789 * This "batch->memcg" is valid without any css_get/put etc...
3790 * bacause we hide charges behind us.
3791 */
7ffd4ca7
JW
3792 if (batch->nr_pages)
3793 res_counter_uncharge(&batch->memcg->res,
3794 batch->nr_pages * PAGE_SIZE);
3795 if (batch->memsw_nr_pages)
3796 res_counter_uncharge(&batch->memcg->memsw,
3797 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3798 memcg_oom_recover(batch->memcg);
569b846d
KH
3799 /* forget this pointer (for sanity check) */
3800 batch->memcg = NULL;
3801}
3802
e767e056 3803#ifdef CONFIG_SWAP
8c7c6e34 3804/*
e767e056 3805 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3806 * memcg information is recorded to swap_cgroup of "ent"
3807 */
8a9478ca
KH
3808void
3809mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3810{
3811 struct mem_cgroup *memcg;
8a9478ca
KH
3812 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3813
3814 if (!swapout) /* this was a swap cache but the swap is unused ! */
3815 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3816
0030f535 3817 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3818
f75ca962
KH
3819 /*
3820 * record memcg information, if swapout && memcg != NULL,
4050377b 3821 * css_get() was called in uncharge().
f75ca962
KH
3822 */
3823 if (do_swap_account && swapout && memcg)
34c00c31 3824 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 3825}
e767e056 3826#endif
8c7c6e34 3827
c255a458 3828#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3829/*
3830 * called from swap_entry_free(). remove record in swap_cgroup and
3831 * uncharge "memsw" account.
3832 */
3833void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3834{
8c7c6e34 3835 struct mem_cgroup *memcg;
a3b2d692 3836 unsigned short id;
8c7c6e34
KH
3837
3838 if (!do_swap_account)
3839 return;
3840
a3b2d692
KH
3841 id = swap_cgroup_record(ent, 0);
3842 rcu_read_lock();
3843 memcg = mem_cgroup_lookup(id);
8c7c6e34 3844 if (memcg) {
a3b2d692 3845 /*
ec903c0c
TH
3846 * We uncharge this because swap is freed. This memcg can
3847 * be obsolete one. We avoid calling css_tryget_online().
a3b2d692 3848 */
05b84301 3849 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3850 mem_cgroup_swap_statistics(memcg, false);
4050377b 3851 css_put(&memcg->css);
8c7c6e34 3852 }
a3b2d692 3853 rcu_read_unlock();
d13d1443 3854}
02491447
DN
3855
3856/**
3857 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3858 * @entry: swap entry to be moved
3859 * @from: mem_cgroup which the entry is moved from
3860 * @to: mem_cgroup which the entry is moved to
3861 *
3862 * It succeeds only when the swap_cgroup's record for this entry is the same
3863 * as the mem_cgroup's id of @from.
3864 *
3865 * Returns 0 on success, -EINVAL on failure.
3866 *
3867 * The caller must have charged to @to, IOW, called res_counter_charge() about
3868 * both res and memsw, and called css_get().
3869 */
3870static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3871 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3872{
3873 unsigned short old_id, new_id;
3874
34c00c31
LZ
3875 old_id = mem_cgroup_id(from);
3876 new_id = mem_cgroup_id(to);
02491447
DN
3877
3878 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3879 mem_cgroup_swap_statistics(from, false);
483c30b5 3880 mem_cgroup_swap_statistics(to, true);
02491447 3881 /*
483c30b5
DN
3882 * This function is only called from task migration context now.
3883 * It postpones res_counter and refcount handling till the end
3884 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3885 * improvement. But we cannot postpone css_get(to) because if
3886 * the process that has been moved to @to does swap-in, the
3887 * refcount of @to might be decreased to 0.
3888 *
3889 * We are in attach() phase, so the cgroup is guaranteed to be
3890 * alive, so we can just call css_get().
02491447 3891 */
4050377b 3892 css_get(&to->css);
02491447
DN
3893 return 0;
3894 }
3895 return -EINVAL;
3896}
3897#else
3898static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3899 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3900{
3901 return -EINVAL;
3902}
8c7c6e34 3903#endif
d13d1443 3904
ae41be37 3905/*
01b1ae63
KH
3906 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3907 * page belongs to.
ae41be37 3908 */
0030f535
JW
3909void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3910 struct mem_cgroup **memcgp)
ae41be37 3911{
c0ff4b85 3912 struct mem_cgroup *memcg = NULL;
b32967ff 3913 unsigned int nr_pages = 1;
7ec99d62 3914 struct page_cgroup *pc;
8869b8f6 3915
72835c86 3916 *memcgp = NULL;
56039efa 3917
f8d66542 3918 if (mem_cgroup_disabled())
0030f535 3919 return;
4077960e 3920
b32967ff
MG
3921 if (PageTransHuge(page))
3922 nr_pages <<= compound_order(page);
3923
52d4b9ac
KH
3924 pc = lookup_page_cgroup(page);
3925 lock_page_cgroup(pc);
3926 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3927 memcg = pc->mem_cgroup;
3928 css_get(&memcg->css);
ac39cf8c 3929 /*
3930 * At migrating an anonymous page, its mapcount goes down
3931 * to 0 and uncharge() will be called. But, even if it's fully
3932 * unmapped, migration may fail and this page has to be
3933 * charged again. We set MIGRATION flag here and delay uncharge
3934 * until end_migration() is called
3935 *
3936 * Corner Case Thinking
3937 * A)
3938 * When the old page was mapped as Anon and it's unmap-and-freed
3939 * while migration was ongoing.
3940 * If unmap finds the old page, uncharge() of it will be delayed
3941 * until end_migration(). If unmap finds a new page, it's
3942 * uncharged when it make mapcount to be 1->0. If unmap code
3943 * finds swap_migration_entry, the new page will not be mapped
3944 * and end_migration() will find it(mapcount==0).
3945 *
3946 * B)
3947 * When the old page was mapped but migraion fails, the kernel
3948 * remaps it. A charge for it is kept by MIGRATION flag even
3949 * if mapcount goes down to 0. We can do remap successfully
3950 * without charging it again.
3951 *
3952 * C)
3953 * The "old" page is under lock_page() until the end of
3954 * migration, so, the old page itself will not be swapped-out.
3955 * If the new page is swapped out before end_migraton, our
3956 * hook to usual swap-out path will catch the event.
3957 */
3958 if (PageAnon(page))
3959 SetPageCgroupMigration(pc);
e8589cc1 3960 }
52d4b9ac 3961 unlock_page_cgroup(pc);
ac39cf8c 3962 /*
3963 * If the page is not charged at this point,
3964 * we return here.
3965 */
c0ff4b85 3966 if (!memcg)
0030f535 3967 return;
01b1ae63 3968
72835c86 3969 *memcgp = memcg;
ac39cf8c 3970 /*
3971 * We charge new page before it's used/mapped. So, even if unlock_page()
3972 * is called before end_migration, we can catch all events on this new
3973 * page. In the case new page is migrated but not remapped, new page's
3974 * mapcount will be finally 0 and we call uncharge in end_migration().
3975 */
0030f535
JW
3976 /*
3977 * The page is committed to the memcg, but it's not actually
3978 * charged to the res_counter since we plan on replacing the
3979 * old one and only one page is going to be left afterwards.
3980 */
00501b53 3981 commit_charge(newpage, memcg, nr_pages, PageAnon(page), false);
ae41be37 3982}
8869b8f6 3983
69029cd5 3984/* remove redundant charge if migration failed*/
c0ff4b85 3985void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3986 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3987{
ac39cf8c 3988 struct page *used, *unused;
01b1ae63 3989 struct page_cgroup *pc;
b2402857 3990 bool anon;
01b1ae63 3991
c0ff4b85 3992 if (!memcg)
01b1ae63 3993 return;
b25ed609 3994
50de1dd9 3995 if (!migration_ok) {
ac39cf8c 3996 used = oldpage;
3997 unused = newpage;
01b1ae63 3998 } else {
ac39cf8c 3999 used = newpage;
01b1ae63
KH
4000 unused = oldpage;
4001 }
0030f535 4002 anon = PageAnon(used);
7d188958
JW
4003 __mem_cgroup_uncharge_common(unused,
4004 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4005 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4006 true);
0030f535 4007 css_put(&memcg->css);
69029cd5 4008 /*
ac39cf8c 4009 * We disallowed uncharge of pages under migration because mapcount
4010 * of the page goes down to zero, temporarly.
4011 * Clear the flag and check the page should be charged.
01b1ae63 4012 */
ac39cf8c 4013 pc = lookup_page_cgroup(oldpage);
4014 lock_page_cgroup(pc);
4015 ClearPageCgroupMigration(pc);
4016 unlock_page_cgroup(pc);
ac39cf8c 4017
01b1ae63 4018 /*
ac39cf8c 4019 * If a page is a file cache, radix-tree replacement is very atomic
4020 * and we can skip this check. When it was an Anon page, its mapcount
4021 * goes down to 0. But because we added MIGRATION flage, it's not
4022 * uncharged yet. There are several case but page->mapcount check
4023 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4024 * check. (see prepare_charge() also)
69029cd5 4025 */
b2402857 4026 if (anon)
ac39cf8c 4027 mem_cgroup_uncharge_page(used);
ae41be37 4028}
78fb7466 4029
ab936cbc
KH
4030/*
4031 * At replace page cache, newpage is not under any memcg but it's on
4032 * LRU. So, this function doesn't touch res_counter but handles LRU
4033 * in correct way. Both pages are locked so we cannot race with uncharge.
4034 */
4035void mem_cgroup_replace_page_cache(struct page *oldpage,
4036 struct page *newpage)
4037{
bde05d1c 4038 struct mem_cgroup *memcg = NULL;
ab936cbc 4039 struct page_cgroup *pc;
ab936cbc
KH
4040
4041 if (mem_cgroup_disabled())
4042 return;
4043
4044 pc = lookup_page_cgroup(oldpage);
4045 /* fix accounting on old pages */
4046 lock_page_cgroup(pc);
bde05d1c
HD
4047 if (PageCgroupUsed(pc)) {
4048 memcg = pc->mem_cgroup;
b070e65c 4049 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4050 ClearPageCgroupUsed(pc);
4051 }
ab936cbc
KH
4052 unlock_page_cgroup(pc);
4053
bde05d1c
HD
4054 /*
4055 * When called from shmem_replace_page(), in some cases the
4056 * oldpage has already been charged, and in some cases not.
4057 */
4058 if (!memcg)
4059 return;
ab936cbc
KH
4060 /*
4061 * Even if newpage->mapping was NULL before starting replacement,
4062 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4063 * LRU while we overwrite pc->mem_cgroup.
4064 */
00501b53 4065 commit_charge(newpage, memcg, 1, false, true);
ab936cbc
KH
4066}
4067
f212ad7c
DN
4068#ifdef CONFIG_DEBUG_VM
4069static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4070{
4071 struct page_cgroup *pc;
4072
4073 pc = lookup_page_cgroup(page);
cfa44946
JW
4074 /*
4075 * Can be NULL while feeding pages into the page allocator for
4076 * the first time, i.e. during boot or memory hotplug;
4077 * or when mem_cgroup_disabled().
4078 */
f212ad7c
DN
4079 if (likely(pc) && PageCgroupUsed(pc))
4080 return pc;
4081 return NULL;
4082}
4083
4084bool mem_cgroup_bad_page_check(struct page *page)
4085{
4086 if (mem_cgroup_disabled())
4087 return false;
4088
4089 return lookup_page_cgroup_used(page) != NULL;
4090}
4091
4092void mem_cgroup_print_bad_page(struct page *page)
4093{
4094 struct page_cgroup *pc;
4095
4096 pc = lookup_page_cgroup_used(page);
4097 if (pc) {
d045197f
AM
4098 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4099 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4100 }
4101}
4102#endif
4103
d38d2a75 4104static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4105 unsigned long long val)
628f4235 4106{
81d39c20 4107 int retry_count;
3c11ecf4 4108 u64 memswlimit, memlimit;
628f4235 4109 int ret = 0;
81d39c20
KH
4110 int children = mem_cgroup_count_children(memcg);
4111 u64 curusage, oldusage;
3c11ecf4 4112 int enlarge;
81d39c20
KH
4113
4114 /*
4115 * For keeping hierarchical_reclaim simple, how long we should retry
4116 * is depends on callers. We set our retry-count to be function
4117 * of # of children which we should visit in this loop.
4118 */
4119 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4120
4121 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4122
3c11ecf4 4123 enlarge = 0;
8c7c6e34 4124 while (retry_count) {
628f4235
KH
4125 if (signal_pending(current)) {
4126 ret = -EINTR;
4127 break;
4128 }
8c7c6e34
KH
4129 /*
4130 * Rather than hide all in some function, I do this in
4131 * open coded manner. You see what this really does.
aaad153e 4132 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4133 */
4134 mutex_lock(&set_limit_mutex);
4135 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4136 if (memswlimit < val) {
4137 ret = -EINVAL;
4138 mutex_unlock(&set_limit_mutex);
628f4235
KH
4139 break;
4140 }
3c11ecf4
KH
4141
4142 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4143 if (memlimit < val)
4144 enlarge = 1;
4145
8c7c6e34 4146 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4147 if (!ret) {
4148 if (memswlimit == val)
4149 memcg->memsw_is_minimum = true;
4150 else
4151 memcg->memsw_is_minimum = false;
4152 }
8c7c6e34
KH
4153 mutex_unlock(&set_limit_mutex);
4154
4155 if (!ret)
4156 break;
4157
5660048c
JW
4158 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4159 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4160 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4161 /* Usage is reduced ? */
f894ffa8 4162 if (curusage >= oldusage)
81d39c20
KH
4163 retry_count--;
4164 else
4165 oldusage = curusage;
8c7c6e34 4166 }
3c11ecf4
KH
4167 if (!ret && enlarge)
4168 memcg_oom_recover(memcg);
14797e23 4169
8c7c6e34
KH
4170 return ret;
4171}
4172
338c8431
LZ
4173static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4174 unsigned long long val)
8c7c6e34 4175{
81d39c20 4176 int retry_count;
3c11ecf4 4177 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4178 int children = mem_cgroup_count_children(memcg);
4179 int ret = -EBUSY;
3c11ecf4 4180 int enlarge = 0;
8c7c6e34 4181
81d39c20 4182 /* see mem_cgroup_resize_res_limit */
f894ffa8 4183 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4184 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4185 while (retry_count) {
4186 if (signal_pending(current)) {
4187 ret = -EINTR;
4188 break;
4189 }
4190 /*
4191 * Rather than hide all in some function, I do this in
4192 * open coded manner. You see what this really does.
aaad153e 4193 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4194 */
4195 mutex_lock(&set_limit_mutex);
4196 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4197 if (memlimit > val) {
4198 ret = -EINVAL;
4199 mutex_unlock(&set_limit_mutex);
4200 break;
4201 }
3c11ecf4
KH
4202 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4203 if (memswlimit < val)
4204 enlarge = 1;
8c7c6e34 4205 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4206 if (!ret) {
4207 if (memlimit == val)
4208 memcg->memsw_is_minimum = true;
4209 else
4210 memcg->memsw_is_minimum = false;
4211 }
8c7c6e34
KH
4212 mutex_unlock(&set_limit_mutex);
4213
4214 if (!ret)
4215 break;
4216
5660048c
JW
4217 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4218 MEM_CGROUP_RECLAIM_NOSWAP |
4219 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4220 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4221 /* Usage is reduced ? */
8c7c6e34 4222 if (curusage >= oldusage)
628f4235 4223 retry_count--;
81d39c20
KH
4224 else
4225 oldusage = curusage;
628f4235 4226 }
3c11ecf4
KH
4227 if (!ret && enlarge)
4228 memcg_oom_recover(memcg);
628f4235
KH
4229 return ret;
4230}
4231
0608f43d
AM
4232unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4233 gfp_t gfp_mask,
4234 unsigned long *total_scanned)
4235{
4236 unsigned long nr_reclaimed = 0;
4237 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4238 unsigned long reclaimed;
4239 int loop = 0;
4240 struct mem_cgroup_tree_per_zone *mctz;
4241 unsigned long long excess;
4242 unsigned long nr_scanned;
4243
4244 if (order > 0)
4245 return 0;
4246
4247 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4248 /*
4249 * This loop can run a while, specially if mem_cgroup's continuously
4250 * keep exceeding their soft limit and putting the system under
4251 * pressure
4252 */
4253 do {
4254 if (next_mz)
4255 mz = next_mz;
4256 else
4257 mz = mem_cgroup_largest_soft_limit_node(mctz);
4258 if (!mz)
4259 break;
4260
4261 nr_scanned = 0;
4262 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4263 gfp_mask, &nr_scanned);
4264 nr_reclaimed += reclaimed;
4265 *total_scanned += nr_scanned;
4266 spin_lock(&mctz->lock);
4267
4268 /*
4269 * If we failed to reclaim anything from this memory cgroup
4270 * it is time to move on to the next cgroup
4271 */
4272 next_mz = NULL;
4273 if (!reclaimed) {
4274 do {
4275 /*
4276 * Loop until we find yet another one.
4277 *
4278 * By the time we get the soft_limit lock
4279 * again, someone might have aded the
4280 * group back on the RB tree. Iterate to
4281 * make sure we get a different mem.
4282 * mem_cgroup_largest_soft_limit_node returns
4283 * NULL if no other cgroup is present on
4284 * the tree
4285 */
4286 next_mz =
4287 __mem_cgroup_largest_soft_limit_node(mctz);
4288 if (next_mz == mz)
4289 css_put(&next_mz->memcg->css);
4290 else /* next_mz == NULL or other memcg */
4291 break;
4292 } while (1);
4293 }
cf2c8127 4294 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
4295 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4296 /*
4297 * One school of thought says that we should not add
4298 * back the node to the tree if reclaim returns 0.
4299 * But our reclaim could return 0, simply because due
4300 * to priority we are exposing a smaller subset of
4301 * memory to reclaim from. Consider this as a longer
4302 * term TODO.
4303 */
4304 /* If excess == 0, no tree ops */
cf2c8127 4305 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0608f43d
AM
4306 spin_unlock(&mctz->lock);
4307 css_put(&mz->memcg->css);
4308 loop++;
4309 /*
4310 * Could not reclaim anything and there are no more
4311 * mem cgroups to try or we seem to be looping without
4312 * reclaiming anything.
4313 */
4314 if (!nr_reclaimed &&
4315 (next_mz == NULL ||
4316 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4317 break;
4318 } while (!nr_reclaimed);
4319 if (next_mz)
4320 css_put(&next_mz->memcg->css);
4321 return nr_reclaimed;
4322}
4323
2ef37d3f
MH
4324/**
4325 * mem_cgroup_force_empty_list - clears LRU of a group
4326 * @memcg: group to clear
4327 * @node: NUMA node
4328 * @zid: zone id
4329 * @lru: lru to to clear
4330 *
3c935d18 4331 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4332 * reclaim the pages page themselves - pages are moved to the parent (or root)
4333 * group.
cc847582 4334 */
2ef37d3f 4335static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4336 int node, int zid, enum lru_list lru)
cc847582 4337{
bea8c150 4338 struct lruvec *lruvec;
2ef37d3f 4339 unsigned long flags;
072c56c1 4340 struct list_head *list;
925b7673
JW
4341 struct page *busy;
4342 struct zone *zone;
072c56c1 4343
08e552c6 4344 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4345 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4346 list = &lruvec->lists[lru];
cc847582 4347
f817ed48 4348 busy = NULL;
2ef37d3f 4349 do {
925b7673 4350 struct page_cgroup *pc;
5564e88b
JW
4351 struct page *page;
4352
08e552c6 4353 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4354 if (list_empty(list)) {
08e552c6 4355 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4356 break;
f817ed48 4357 }
925b7673
JW
4358 page = list_entry(list->prev, struct page, lru);
4359 if (busy == page) {
4360 list_move(&page->lru, list);
648bcc77 4361 busy = NULL;
08e552c6 4362 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4363 continue;
4364 }
08e552c6 4365 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4366
925b7673 4367 pc = lookup_page_cgroup(page);
5564e88b 4368
3c935d18 4369 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4370 /* found lock contention or "pc" is obsolete. */
925b7673 4371 busy = page;
f817ed48
KH
4372 } else
4373 busy = NULL;
2a7a0e0f 4374 cond_resched();
2ef37d3f 4375 } while (!list_empty(list));
cc847582
KH
4376}
4377
4378/*
c26251f9
MH
4379 * make mem_cgroup's charge to be 0 if there is no task by moving
4380 * all the charges and pages to the parent.
cc847582 4381 * This enables deleting this mem_cgroup.
c26251f9
MH
4382 *
4383 * Caller is responsible for holding css reference on the memcg.
cc847582 4384 */
ab5196c2 4385static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4386{
c26251f9 4387 int node, zid;
bea207c8 4388 u64 usage;
f817ed48 4389
fce66477 4390 do {
52d4b9ac
KH
4391 /* This is for making all *used* pages to be on LRU. */
4392 lru_add_drain_all();
c0ff4b85 4393 drain_all_stock_sync(memcg);
c0ff4b85 4394 mem_cgroup_start_move(memcg);
31aaea4a 4395 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4396 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4397 enum lru_list lru;
4398 for_each_lru(lru) {
2ef37d3f 4399 mem_cgroup_force_empty_list(memcg,
f156ab93 4400 node, zid, lru);
f817ed48 4401 }
1ecaab2b 4402 }
f817ed48 4403 }
c0ff4b85
R
4404 mem_cgroup_end_move(memcg);
4405 memcg_oom_recover(memcg);
52d4b9ac 4406 cond_resched();
f817ed48 4407
2ef37d3f 4408 /*
bea207c8
GC
4409 * Kernel memory may not necessarily be trackable to a specific
4410 * process. So they are not migrated, and therefore we can't
4411 * expect their value to drop to 0 here.
4412 * Having res filled up with kmem only is enough.
4413 *
2ef37d3f
MH
4414 * This is a safety check because mem_cgroup_force_empty_list
4415 * could have raced with mem_cgroup_replace_page_cache callers
4416 * so the lru seemed empty but the page could have been added
4417 * right after the check. RES_USAGE should be safe as we always
4418 * charge before adding to the LRU.
4419 */
bea207c8
GC
4420 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4421 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4422 } while (usage > 0);
c26251f9
MH
4423}
4424
ea280e7b
TH
4425/*
4426 * Test whether @memcg has children, dead or alive. Note that this
4427 * function doesn't care whether @memcg has use_hierarchy enabled and
4428 * returns %true if there are child csses according to the cgroup
4429 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4430 */
b5f99b53
GC
4431static inline bool memcg_has_children(struct mem_cgroup *memcg)
4432{
ea280e7b
TH
4433 bool ret;
4434
696ac172 4435 /*
ea280e7b
TH
4436 * The lock does not prevent addition or deletion of children, but
4437 * it prevents a new child from being initialized based on this
4438 * parent in css_online(), so it's enough to decide whether
4439 * hierarchically inherited attributes can still be changed or not.
696ac172 4440 */
ea280e7b
TH
4441 lockdep_assert_held(&memcg_create_mutex);
4442
4443 rcu_read_lock();
4444 ret = css_next_child(NULL, &memcg->css);
4445 rcu_read_unlock();
4446 return ret;
b5f99b53
GC
4447}
4448
c26251f9
MH
4449/*
4450 * Reclaims as many pages from the given memcg as possible and moves
4451 * the rest to the parent.
4452 *
4453 * Caller is responsible for holding css reference for memcg.
4454 */
4455static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4456{
4457 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 4458
c1e862c1
KH
4459 /* we call try-to-free pages for make this cgroup empty */
4460 lru_add_drain_all();
f817ed48 4461 /* try to free all pages in this cgroup */
569530fb 4462 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4463 int progress;
c1e862c1 4464
c26251f9
MH
4465 if (signal_pending(current))
4466 return -EINTR;
4467
c0ff4b85 4468 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4469 false);
c1e862c1 4470 if (!progress) {
f817ed48 4471 nr_retries--;
c1e862c1 4472 /* maybe some writeback is necessary */
8aa7e847 4473 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4474 }
f817ed48
KH
4475
4476 }
ab5196c2
MH
4477
4478 return 0;
cc847582
KH
4479}
4480
6770c64e
TH
4481static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4482 char *buf, size_t nbytes,
4483 loff_t off)
c1e862c1 4484{
6770c64e 4485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 4486
d8423011
MH
4487 if (mem_cgroup_is_root(memcg))
4488 return -EINVAL;
6770c64e 4489 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
4490}
4491
182446d0
TH
4492static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4493 struct cftype *cft)
18f59ea7 4494{
182446d0 4495 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4496}
4497
182446d0
TH
4498static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4499 struct cftype *cft, u64 val)
18f59ea7
BS
4500{
4501 int retval = 0;
182446d0 4502 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4503 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 4504
0999821b 4505 mutex_lock(&memcg_create_mutex);
567fb435
GC
4506
4507 if (memcg->use_hierarchy == val)
4508 goto out;
4509
18f59ea7 4510 /*
af901ca1 4511 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4512 * in the child subtrees. If it is unset, then the change can
4513 * occur, provided the current cgroup has no children.
4514 *
4515 * For the root cgroup, parent_mem is NULL, we allow value to be
4516 * set if there are no children.
4517 */
c0ff4b85 4518 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4519 (val == 1 || val == 0)) {
ea280e7b 4520 if (!memcg_has_children(memcg))
c0ff4b85 4521 memcg->use_hierarchy = val;
18f59ea7
BS
4522 else
4523 retval = -EBUSY;
4524 } else
4525 retval = -EINVAL;
567fb435
GC
4526
4527out:
0999821b 4528 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4529
4530 return retval;
4531}
4532
791badbd 4533static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 4534 struct cftype *cft)
8cdea7c0 4535{
182446d0 4536 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
05b84301
JW
4537 enum res_type type = MEMFILE_TYPE(cft->private);
4538 int name = MEMFILE_ATTR(cft->private);
af36f906 4539
8c7c6e34
KH
4540 switch (type) {
4541 case _MEM:
05b84301 4542 return res_counter_read_u64(&memcg->res, name);
8c7c6e34 4543 case _MEMSWAP:
05b84301 4544 return res_counter_read_u64(&memcg->memsw, name);
510fc4e1 4545 case _KMEM:
05b84301 4546 return res_counter_read_u64(&memcg->kmem, name);
510fc4e1 4547 break;
8c7c6e34
KH
4548 default:
4549 BUG();
8c7c6e34 4550 }
8cdea7c0 4551}
510fc4e1 4552
510fc4e1 4553#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4554/* should be called with activate_kmem_mutex held */
4555static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4556 unsigned long long limit)
4557{
4558 int err = 0;
4559 int memcg_id;
4560
4561 if (memcg_kmem_is_active(memcg))
4562 return 0;
4563
4564 /*
4565 * We are going to allocate memory for data shared by all memory
4566 * cgroups so let's stop accounting here.
4567 */
4568 memcg_stop_kmem_account();
4569
510fc4e1
GC
4570 /*
4571 * For simplicity, we won't allow this to be disabled. It also can't
4572 * be changed if the cgroup has children already, or if tasks had
4573 * already joined.
4574 *
4575 * If tasks join before we set the limit, a person looking at
4576 * kmem.usage_in_bytes will have no way to determine when it took
4577 * place, which makes the value quite meaningless.
4578 *
4579 * After it first became limited, changes in the value of the limit are
4580 * of course permitted.
510fc4e1 4581 */
0999821b 4582 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4583 if (cgroup_has_tasks(memcg->css.cgroup) ||
4584 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4585 err = -EBUSY;
4586 mutex_unlock(&memcg_create_mutex);
4587 if (err)
4588 goto out;
510fc4e1 4589
d6441637
VD
4590 memcg_id = ida_simple_get(&kmem_limited_groups,
4591 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4592 if (memcg_id < 0) {
4593 err = memcg_id;
4594 goto out;
4595 }
4596
4597 /*
4598 * Make sure we have enough space for this cgroup in each root cache's
4599 * memcg_params.
4600 */
bd673145 4601 mutex_lock(&memcg_slab_mutex);
d6441637 4602 err = memcg_update_all_caches(memcg_id + 1);
bd673145 4603 mutex_unlock(&memcg_slab_mutex);
d6441637
VD
4604 if (err)
4605 goto out_rmid;
4606
4607 memcg->kmemcg_id = memcg_id;
4608 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4609
4610 /*
4611 * We couldn't have accounted to this cgroup, because it hasn't got the
4612 * active bit set yet, so this should succeed.
4613 */
4614 err = res_counter_set_limit(&memcg->kmem, limit);
4615 VM_BUG_ON(err);
4616
4617 static_key_slow_inc(&memcg_kmem_enabled_key);
4618 /*
4619 * Setting the active bit after enabling static branching will
4620 * guarantee no one starts accounting before all call sites are
4621 * patched.
4622 */
4623 memcg_kmem_set_active(memcg);
510fc4e1 4624out:
d6441637
VD
4625 memcg_resume_kmem_account();
4626 return err;
4627
4628out_rmid:
4629 ida_simple_remove(&kmem_limited_groups, memcg_id);
4630 goto out;
4631}
4632
4633static int memcg_activate_kmem(struct mem_cgroup *memcg,
4634 unsigned long long limit)
4635{
4636 int ret;
4637
4638 mutex_lock(&activate_kmem_mutex);
4639 ret = __memcg_activate_kmem(memcg, limit);
4640 mutex_unlock(&activate_kmem_mutex);
4641 return ret;
4642}
4643
4644static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4645 unsigned long long val)
4646{
4647 int ret;
4648
4649 if (!memcg_kmem_is_active(memcg))
4650 ret = memcg_activate_kmem(memcg, val);
4651 else
4652 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
4653 return ret;
4654}
4655
55007d84 4656static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4657{
55007d84 4658 int ret = 0;
510fc4e1 4659 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4660
d6441637
VD
4661 if (!parent)
4662 return 0;
55007d84 4663
d6441637 4664 mutex_lock(&activate_kmem_mutex);
55007d84 4665 /*
d6441637
VD
4666 * If the parent cgroup is not kmem-active now, it cannot be activated
4667 * after this point, because it has at least one child already.
55007d84 4668 */
d6441637
VD
4669 if (memcg_kmem_is_active(parent))
4670 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4671 mutex_unlock(&activate_kmem_mutex);
55007d84 4672 return ret;
510fc4e1 4673}
d6441637
VD
4674#else
4675static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4676 unsigned long long val)
4677{
4678 return -EINVAL;
4679}
6d043990 4680#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4681
628f4235
KH
4682/*
4683 * The user of this function is...
4684 * RES_LIMIT.
4685 */
451af504
TH
4686static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4687 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4688{
451af504 4689 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4690 enum res_type type;
4691 int name;
628f4235
KH
4692 unsigned long long val;
4693 int ret;
4694
451af504
TH
4695 buf = strstrip(buf);
4696 type = MEMFILE_TYPE(of_cft(of)->private);
4697 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4698
8c7c6e34 4699 switch (name) {
628f4235 4700 case RES_LIMIT:
4b3bde4c
BS
4701 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4702 ret = -EINVAL;
4703 break;
4704 }
628f4235 4705 /* This function does all necessary parse...reuse it */
451af504 4706 ret = res_counter_memparse_write_strategy(buf, &val);
8c7c6e34
KH
4707 if (ret)
4708 break;
4709 if (type == _MEM)
628f4235 4710 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4711 else if (type == _MEMSWAP)
8c7c6e34 4712 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 4713 else if (type == _KMEM)
d6441637 4714 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
4715 else
4716 return -EINVAL;
628f4235 4717 break;
296c81d8 4718 case RES_SOFT_LIMIT:
451af504 4719 ret = res_counter_memparse_write_strategy(buf, &val);
296c81d8
BS
4720 if (ret)
4721 break;
4722 /*
4723 * For memsw, soft limits are hard to implement in terms
4724 * of semantics, for now, we support soft limits for
4725 * control without swap
4726 */
4727 if (type == _MEM)
4728 ret = res_counter_set_soft_limit(&memcg->res, val);
4729 else
4730 ret = -EINVAL;
4731 break;
628f4235
KH
4732 default:
4733 ret = -EINVAL; /* should be BUG() ? */
4734 break;
4735 }
451af504 4736 return ret ?: nbytes;
8cdea7c0
BS
4737}
4738
fee7b548
KH
4739static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4740 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4741{
fee7b548
KH
4742 unsigned long long min_limit, min_memsw_limit, tmp;
4743
4744 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4745 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
4746 if (!memcg->use_hierarchy)
4747 goto out;
4748
5c9d535b
TH
4749 while (memcg->css.parent) {
4750 memcg = mem_cgroup_from_css(memcg->css.parent);
fee7b548
KH
4751 if (!memcg->use_hierarchy)
4752 break;
4753 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4754 min_limit = min(min_limit, tmp);
4755 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4756 min_memsw_limit = min(min_memsw_limit, tmp);
4757 }
4758out:
4759 *mem_limit = min_limit;
4760 *memsw_limit = min_memsw_limit;
fee7b548
KH
4761}
4762
6770c64e
TH
4763static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4764 size_t nbytes, loff_t off)
c84872e1 4765{
6770c64e 4766 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4767 int name;
4768 enum res_type type;
c84872e1 4769
6770c64e
TH
4770 type = MEMFILE_TYPE(of_cft(of)->private);
4771 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4772
8c7c6e34 4773 switch (name) {
29f2a4da 4774 case RES_MAX_USAGE:
8c7c6e34 4775 if (type == _MEM)
c0ff4b85 4776 res_counter_reset_max(&memcg->res);
510fc4e1 4777 else if (type == _MEMSWAP)
c0ff4b85 4778 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4779 else if (type == _KMEM)
4780 res_counter_reset_max(&memcg->kmem);
4781 else
4782 return -EINVAL;
29f2a4da
PE
4783 break;
4784 case RES_FAILCNT:
8c7c6e34 4785 if (type == _MEM)
c0ff4b85 4786 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4787 else if (type == _MEMSWAP)
c0ff4b85 4788 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4789 else if (type == _KMEM)
4790 res_counter_reset_failcnt(&memcg->kmem);
4791 else
4792 return -EINVAL;
29f2a4da
PE
4793 break;
4794 }
f64c3f54 4795
6770c64e 4796 return nbytes;
c84872e1
PE
4797}
4798
182446d0 4799static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4800 struct cftype *cft)
4801{
182446d0 4802 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4803}
4804
02491447 4805#ifdef CONFIG_MMU
182446d0 4806static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4807 struct cftype *cft, u64 val)
4808{
182446d0 4809 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4810
4811 if (val >= (1 << NR_MOVE_TYPE))
4812 return -EINVAL;
ee5e8472 4813
7dc74be0 4814 /*
ee5e8472
GC
4815 * No kind of locking is needed in here, because ->can_attach() will
4816 * check this value once in the beginning of the process, and then carry
4817 * on with stale data. This means that changes to this value will only
4818 * affect task migrations starting after the change.
7dc74be0 4819 */
c0ff4b85 4820 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4821 return 0;
4822}
02491447 4823#else
182446d0 4824static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4825 struct cftype *cft, u64 val)
4826{
4827 return -ENOSYS;
4828}
4829#endif
7dc74be0 4830
406eb0c9 4831#ifdef CONFIG_NUMA
2da8ca82 4832static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4833{
25485de6
GT
4834 struct numa_stat {
4835 const char *name;
4836 unsigned int lru_mask;
4837 };
4838
4839 static const struct numa_stat stats[] = {
4840 { "total", LRU_ALL },
4841 { "file", LRU_ALL_FILE },
4842 { "anon", LRU_ALL_ANON },
4843 { "unevictable", BIT(LRU_UNEVICTABLE) },
4844 };
4845 const struct numa_stat *stat;
406eb0c9 4846 int nid;
25485de6 4847 unsigned long nr;
2da8ca82 4848 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4849
25485de6
GT
4850 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4851 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4852 seq_printf(m, "%s=%lu", stat->name, nr);
4853 for_each_node_state(nid, N_MEMORY) {
4854 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4855 stat->lru_mask);
4856 seq_printf(m, " N%d=%lu", nid, nr);
4857 }
4858 seq_putc(m, '\n');
406eb0c9 4859 }
406eb0c9 4860
071aee13
YH
4861 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4862 struct mem_cgroup *iter;
4863
4864 nr = 0;
4865 for_each_mem_cgroup_tree(iter, memcg)
4866 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4867 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4868 for_each_node_state(nid, N_MEMORY) {
4869 nr = 0;
4870 for_each_mem_cgroup_tree(iter, memcg)
4871 nr += mem_cgroup_node_nr_lru_pages(
4872 iter, nid, stat->lru_mask);
4873 seq_printf(m, " N%d=%lu", nid, nr);
4874 }
4875 seq_putc(m, '\n');
406eb0c9 4876 }
406eb0c9 4877
406eb0c9
YH
4878 return 0;
4879}
4880#endif /* CONFIG_NUMA */
4881
af7c4b0e
JW
4882static inline void mem_cgroup_lru_names_not_uptodate(void)
4883{
4884 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4885}
4886
2da8ca82 4887static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4888{
2da8ca82 4889 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
4890 struct mem_cgroup *mi;
4891 unsigned int i;
406eb0c9 4892
af7c4b0e 4893 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4894 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4895 continue;
af7c4b0e
JW
4896 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4897 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4898 }
7b854121 4899
af7c4b0e
JW
4900 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4901 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4902 mem_cgroup_read_events(memcg, i));
4903
4904 for (i = 0; i < NR_LRU_LISTS; i++)
4905 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4906 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4907
14067bb3 4908 /* Hierarchical information */
fee7b548
KH
4909 {
4910 unsigned long long limit, memsw_limit;
d79154bb 4911 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4912 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4913 if (do_swap_account)
78ccf5b5
JW
4914 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4915 memsw_limit);
fee7b548 4916 }
7f016ee8 4917
af7c4b0e
JW
4918 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4919 long long val = 0;
4920
bff6bb83 4921 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4922 continue;
af7c4b0e
JW
4923 for_each_mem_cgroup_tree(mi, memcg)
4924 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4925 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4926 }
4927
4928 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4929 unsigned long long val = 0;
4930
4931 for_each_mem_cgroup_tree(mi, memcg)
4932 val += mem_cgroup_read_events(mi, i);
4933 seq_printf(m, "total_%s %llu\n",
4934 mem_cgroup_events_names[i], val);
4935 }
4936
4937 for (i = 0; i < NR_LRU_LISTS; i++) {
4938 unsigned long long val = 0;
4939
4940 for_each_mem_cgroup_tree(mi, memcg)
4941 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4942 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4943 }
14067bb3 4944
7f016ee8 4945#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4946 {
4947 int nid, zid;
4948 struct mem_cgroup_per_zone *mz;
89abfab1 4949 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4950 unsigned long recent_rotated[2] = {0, 0};
4951 unsigned long recent_scanned[2] = {0, 0};
4952
4953 for_each_online_node(nid)
4954 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4955 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4956 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4957
89abfab1
HD
4958 recent_rotated[0] += rstat->recent_rotated[0];
4959 recent_rotated[1] += rstat->recent_rotated[1];
4960 recent_scanned[0] += rstat->recent_scanned[0];
4961 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4962 }
78ccf5b5
JW
4963 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4964 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4965 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4966 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4967 }
4968#endif
4969
d2ceb9b7
KH
4970 return 0;
4971}
4972
182446d0
TH
4973static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4974 struct cftype *cft)
a7885eb8 4975{
182446d0 4976 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4977
1f4c025b 4978 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4979}
4980
182446d0
TH
4981static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4982 struct cftype *cft, u64 val)
a7885eb8 4983{
182446d0 4984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4985
3dae7fec 4986 if (val > 100)
a7885eb8
KM
4987 return -EINVAL;
4988
14208b0e 4989 if (css->parent)
3dae7fec
JW
4990 memcg->swappiness = val;
4991 else
4992 vm_swappiness = val;
068b38c1 4993
a7885eb8
KM
4994 return 0;
4995}
4996
2e72b634
KS
4997static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4998{
4999 struct mem_cgroup_threshold_ary *t;
5000 u64 usage;
5001 int i;
5002
5003 rcu_read_lock();
5004 if (!swap)
2c488db2 5005 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5006 else
2c488db2 5007 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5008
5009 if (!t)
5010 goto unlock;
5011
05b84301
JW
5012 if (!swap)
5013 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
5014 else
5015 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2e72b634
KS
5016
5017 /*
748dad36 5018 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5019 * If it's not true, a threshold was crossed after last
5020 * call of __mem_cgroup_threshold().
5021 */
5407a562 5022 i = t->current_threshold;
2e72b634
KS
5023
5024 /*
5025 * Iterate backward over array of thresholds starting from
5026 * current_threshold and check if a threshold is crossed.
5027 * If none of thresholds below usage is crossed, we read
5028 * only one element of the array here.
5029 */
5030 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5031 eventfd_signal(t->entries[i].eventfd, 1);
5032
5033 /* i = current_threshold + 1 */
5034 i++;
5035
5036 /*
5037 * Iterate forward over array of thresholds starting from
5038 * current_threshold+1 and check if a threshold is crossed.
5039 * If none of thresholds above usage is crossed, we read
5040 * only one element of the array here.
5041 */
5042 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5043 eventfd_signal(t->entries[i].eventfd, 1);
5044
5045 /* Update current_threshold */
5407a562 5046 t->current_threshold = i - 1;
2e72b634
KS
5047unlock:
5048 rcu_read_unlock();
5049}
5050
5051static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5052{
ad4ca5f4
KS
5053 while (memcg) {
5054 __mem_cgroup_threshold(memcg, false);
5055 if (do_swap_account)
5056 __mem_cgroup_threshold(memcg, true);
5057
5058 memcg = parent_mem_cgroup(memcg);
5059 }
2e72b634
KS
5060}
5061
5062static int compare_thresholds(const void *a, const void *b)
5063{
5064 const struct mem_cgroup_threshold *_a = a;
5065 const struct mem_cgroup_threshold *_b = b;
5066
2bff24a3
GT
5067 if (_a->threshold > _b->threshold)
5068 return 1;
5069
5070 if (_a->threshold < _b->threshold)
5071 return -1;
5072
5073 return 0;
2e72b634
KS
5074}
5075
c0ff4b85 5076static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5077{
5078 struct mem_cgroup_eventfd_list *ev;
5079
2bcf2e92
MH
5080 spin_lock(&memcg_oom_lock);
5081
c0ff4b85 5082 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 5083 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
5084
5085 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5086 return 0;
5087}
5088
c0ff4b85 5089static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5090{
7d74b06f
KH
5091 struct mem_cgroup *iter;
5092
c0ff4b85 5093 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5094 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5095}
5096
59b6f873 5097static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5098 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5099{
2c488db2
KS
5100 struct mem_cgroup_thresholds *thresholds;
5101 struct mem_cgroup_threshold_ary *new;
2e72b634 5102 u64 threshold, usage;
2c488db2 5103 int i, size, ret;
2e72b634
KS
5104
5105 ret = res_counter_memparse_write_strategy(args, &threshold);
5106 if (ret)
5107 return ret;
5108
5109 mutex_lock(&memcg->thresholds_lock);
2c488db2 5110
05b84301 5111 if (type == _MEM) {
2c488db2 5112 thresholds = &memcg->thresholds;
05b84301
JW
5113 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
5114 } else if (type == _MEMSWAP) {
2c488db2 5115 thresholds = &memcg->memsw_thresholds;
05b84301
JW
5116 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
5117 } else
2e72b634
KS
5118 BUG();
5119
2e72b634 5120 /* Check if a threshold crossed before adding a new one */
2c488db2 5121 if (thresholds->primary)
2e72b634
KS
5122 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5123
2c488db2 5124 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5125
5126 /* Allocate memory for new array of thresholds */
2c488db2 5127 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5128 GFP_KERNEL);
2c488db2 5129 if (!new) {
2e72b634
KS
5130 ret = -ENOMEM;
5131 goto unlock;
5132 }
2c488db2 5133 new->size = size;
2e72b634
KS
5134
5135 /* Copy thresholds (if any) to new array */
2c488db2
KS
5136 if (thresholds->primary) {
5137 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5138 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5139 }
5140
2e72b634 5141 /* Add new threshold */
2c488db2
KS
5142 new->entries[size - 1].eventfd = eventfd;
5143 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5144
5145 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5146 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5147 compare_thresholds, NULL);
5148
5149 /* Find current threshold */
2c488db2 5150 new->current_threshold = -1;
2e72b634 5151 for (i = 0; i < size; i++) {
748dad36 5152 if (new->entries[i].threshold <= usage) {
2e72b634 5153 /*
2c488db2
KS
5154 * new->current_threshold will not be used until
5155 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5156 * it here.
5157 */
2c488db2 5158 ++new->current_threshold;
748dad36
SZ
5159 } else
5160 break;
2e72b634
KS
5161 }
5162
2c488db2
KS
5163 /* Free old spare buffer and save old primary buffer as spare */
5164 kfree(thresholds->spare);
5165 thresholds->spare = thresholds->primary;
5166
5167 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5168
907860ed 5169 /* To be sure that nobody uses thresholds */
2e72b634
KS
5170 synchronize_rcu();
5171
2e72b634
KS
5172unlock:
5173 mutex_unlock(&memcg->thresholds_lock);
5174
5175 return ret;
5176}
5177
59b6f873 5178static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5179 struct eventfd_ctx *eventfd, const char *args)
5180{
59b6f873 5181 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5182}
5183
59b6f873 5184static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5185 struct eventfd_ctx *eventfd, const char *args)
5186{
59b6f873 5187 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5188}
5189
59b6f873 5190static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5191 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5192{
2c488db2
KS
5193 struct mem_cgroup_thresholds *thresholds;
5194 struct mem_cgroup_threshold_ary *new;
2e72b634 5195 u64 usage;
2c488db2 5196 int i, j, size;
2e72b634
KS
5197
5198 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
5199
5200 if (type == _MEM) {
2c488db2 5201 thresholds = &memcg->thresholds;
05b84301
JW
5202 usage = res_counter_read_u64(&memcg->res, RES_USAGE);
5203 } else if (type == _MEMSWAP) {
2c488db2 5204 thresholds = &memcg->memsw_thresholds;
05b84301
JW
5205 usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
5206 } else
2e72b634
KS
5207 BUG();
5208
371528ca
AV
5209 if (!thresholds->primary)
5210 goto unlock;
5211
2e72b634
KS
5212 /* Check if a threshold crossed before removing */
5213 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5214
5215 /* Calculate new number of threshold */
2c488db2
KS
5216 size = 0;
5217 for (i = 0; i < thresholds->primary->size; i++) {
5218 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5219 size++;
5220 }
5221
2c488db2 5222 new = thresholds->spare;
907860ed 5223
2e72b634
KS
5224 /* Set thresholds array to NULL if we don't have thresholds */
5225 if (!size) {
2c488db2
KS
5226 kfree(new);
5227 new = NULL;
907860ed 5228 goto swap_buffers;
2e72b634
KS
5229 }
5230
2c488db2 5231 new->size = size;
2e72b634
KS
5232
5233 /* Copy thresholds and find current threshold */
2c488db2
KS
5234 new->current_threshold = -1;
5235 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5236 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5237 continue;
5238
2c488db2 5239 new->entries[j] = thresholds->primary->entries[i];
748dad36 5240 if (new->entries[j].threshold <= usage) {
2e72b634 5241 /*
2c488db2 5242 * new->current_threshold will not be used
2e72b634
KS
5243 * until rcu_assign_pointer(), so it's safe to increment
5244 * it here.
5245 */
2c488db2 5246 ++new->current_threshold;
2e72b634
KS
5247 }
5248 j++;
5249 }
5250
907860ed 5251swap_buffers:
2c488db2
KS
5252 /* Swap primary and spare array */
5253 thresholds->spare = thresholds->primary;
8c757763
SZ
5254 /* If all events are unregistered, free the spare array */
5255 if (!new) {
5256 kfree(thresholds->spare);
5257 thresholds->spare = NULL;
5258 }
5259
2c488db2 5260 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5261
907860ed 5262 /* To be sure that nobody uses thresholds */
2e72b634 5263 synchronize_rcu();
371528ca 5264unlock:
2e72b634 5265 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5266}
c1e862c1 5267
59b6f873 5268static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5269 struct eventfd_ctx *eventfd)
5270{
59b6f873 5271 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5272}
5273
59b6f873 5274static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5275 struct eventfd_ctx *eventfd)
5276{
59b6f873 5277 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5278}
5279
59b6f873 5280static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5281 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5282{
9490ff27 5283 struct mem_cgroup_eventfd_list *event;
9490ff27 5284
9490ff27
KH
5285 event = kmalloc(sizeof(*event), GFP_KERNEL);
5286 if (!event)
5287 return -ENOMEM;
5288
1af8efe9 5289 spin_lock(&memcg_oom_lock);
9490ff27
KH
5290
5291 event->eventfd = eventfd;
5292 list_add(&event->list, &memcg->oom_notify);
5293
5294 /* already in OOM ? */
79dfdacc 5295 if (atomic_read(&memcg->under_oom))
9490ff27 5296 eventfd_signal(eventfd, 1);
1af8efe9 5297 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5298
5299 return 0;
5300}
5301
59b6f873 5302static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5303 struct eventfd_ctx *eventfd)
9490ff27 5304{
9490ff27 5305 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5306
1af8efe9 5307 spin_lock(&memcg_oom_lock);
9490ff27 5308
c0ff4b85 5309 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5310 if (ev->eventfd == eventfd) {
5311 list_del(&ev->list);
5312 kfree(ev);
5313 }
5314 }
5315
1af8efe9 5316 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5317}
5318
2da8ca82 5319static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5320{
2da8ca82 5321 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5322
791badbd
TH
5323 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5324 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5325 return 0;
5326}
5327
182446d0 5328static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5329 struct cftype *cft, u64 val)
5330{
182446d0 5331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
5332
5333 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 5334 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5335 return -EINVAL;
5336
c0ff4b85 5337 memcg->oom_kill_disable = val;
4d845ebf 5338 if (!val)
c0ff4b85 5339 memcg_oom_recover(memcg);
3dae7fec 5340
3c11ecf4
KH
5341 return 0;
5342}
5343
c255a458 5344#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5345static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5346{
55007d84
GC
5347 int ret;
5348
2633d7a0 5349 memcg->kmemcg_id = -1;
55007d84
GC
5350 ret = memcg_propagate_kmem(memcg);
5351 if (ret)
5352 return ret;
2633d7a0 5353
1d62e436 5354 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5355}
e5671dfa 5356
10d5ebf4 5357static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5358{
1d62e436 5359 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5360}
5361
5362static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5363{
5364 if (!memcg_kmem_is_active(memcg))
5365 return;
5366
5367 /*
5368 * kmem charges can outlive the cgroup. In the case of slab
5369 * pages, for instance, a page contain objects from various
5370 * processes. As we prevent from taking a reference for every
5371 * such allocation we have to be careful when doing uncharge
5372 * (see memcg_uncharge_kmem) and here during offlining.
5373 *
5374 * The idea is that that only the _last_ uncharge which sees
5375 * the dead memcg will drop the last reference. An additional
5376 * reference is taken here before the group is marked dead
5377 * which is then paired with css_put during uncharge resp. here.
5378 *
5379 * Although this might sound strange as this path is called from
ec903c0c
TH
5380 * css_offline() when the referencemight have dropped down to 0 and
5381 * shouldn't be incremented anymore (css_tryget_online() would
5382 * fail) we do not have other options because of the kmem
5383 * allocations lifetime.
10d5ebf4
LZ
5384 */
5385 css_get(&memcg->css);
7de37682
GC
5386
5387 memcg_kmem_mark_dead(memcg);
5388
5389 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5390 return;
5391
7de37682 5392 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5393 css_put(&memcg->css);
d1a4c0b3 5394}
e5671dfa 5395#else
cbe128e3 5396static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5397{
5398 return 0;
5399}
d1a4c0b3 5400
10d5ebf4
LZ
5401static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5402{
5403}
5404
5405static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5406{
5407}
e5671dfa
GC
5408#endif
5409
3bc942f3
TH
5410/*
5411 * DO NOT USE IN NEW FILES.
5412 *
5413 * "cgroup.event_control" implementation.
5414 *
5415 * This is way over-engineered. It tries to support fully configurable
5416 * events for each user. Such level of flexibility is completely
5417 * unnecessary especially in the light of the planned unified hierarchy.
5418 *
5419 * Please deprecate this and replace with something simpler if at all
5420 * possible.
5421 */
5422
79bd9814
TH
5423/*
5424 * Unregister event and free resources.
5425 *
5426 * Gets called from workqueue.
5427 */
3bc942f3 5428static void memcg_event_remove(struct work_struct *work)
79bd9814 5429{
3bc942f3
TH
5430 struct mem_cgroup_event *event =
5431 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5432 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5433
5434 remove_wait_queue(event->wqh, &event->wait);
5435
59b6f873 5436 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5437
5438 /* Notify userspace the event is going away. */
5439 eventfd_signal(event->eventfd, 1);
5440
5441 eventfd_ctx_put(event->eventfd);
5442 kfree(event);
59b6f873 5443 css_put(&memcg->css);
79bd9814
TH
5444}
5445
5446/*
5447 * Gets called on POLLHUP on eventfd when user closes it.
5448 *
5449 * Called with wqh->lock held and interrupts disabled.
5450 */
3bc942f3
TH
5451static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5452 int sync, void *key)
79bd9814 5453{
3bc942f3
TH
5454 struct mem_cgroup_event *event =
5455 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5456 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5457 unsigned long flags = (unsigned long)key;
5458
5459 if (flags & POLLHUP) {
5460 /*
5461 * If the event has been detached at cgroup removal, we
5462 * can simply return knowing the other side will cleanup
5463 * for us.
5464 *
5465 * We can't race against event freeing since the other
5466 * side will require wqh->lock via remove_wait_queue(),
5467 * which we hold.
5468 */
fba94807 5469 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5470 if (!list_empty(&event->list)) {
5471 list_del_init(&event->list);
5472 /*
5473 * We are in atomic context, but cgroup_event_remove()
5474 * may sleep, so we have to call it in workqueue.
5475 */
5476 schedule_work(&event->remove);
5477 }
fba94807 5478 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5479 }
5480
5481 return 0;
5482}
5483
3bc942f3 5484static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5485 wait_queue_head_t *wqh, poll_table *pt)
5486{
3bc942f3
TH
5487 struct mem_cgroup_event *event =
5488 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5489
5490 event->wqh = wqh;
5491 add_wait_queue(wqh, &event->wait);
5492}
5493
5494/*
3bc942f3
TH
5495 * DO NOT USE IN NEW FILES.
5496 *
79bd9814
TH
5497 * Parse input and register new cgroup event handler.
5498 *
5499 * Input must be in format '<event_fd> <control_fd> <args>'.
5500 * Interpretation of args is defined by control file implementation.
5501 */
451af504
TH
5502static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5503 char *buf, size_t nbytes, loff_t off)
79bd9814 5504{
451af504 5505 struct cgroup_subsys_state *css = of_css(of);
fba94807 5506 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5507 struct mem_cgroup_event *event;
79bd9814
TH
5508 struct cgroup_subsys_state *cfile_css;
5509 unsigned int efd, cfd;
5510 struct fd efile;
5511 struct fd cfile;
fba94807 5512 const char *name;
79bd9814
TH
5513 char *endp;
5514 int ret;
5515
451af504
TH
5516 buf = strstrip(buf);
5517
5518 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5519 if (*endp != ' ')
5520 return -EINVAL;
451af504 5521 buf = endp + 1;
79bd9814 5522
451af504 5523 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5524 if ((*endp != ' ') && (*endp != '\0'))
5525 return -EINVAL;
451af504 5526 buf = endp + 1;
79bd9814
TH
5527
5528 event = kzalloc(sizeof(*event), GFP_KERNEL);
5529 if (!event)
5530 return -ENOMEM;
5531
59b6f873 5532 event->memcg = memcg;
79bd9814 5533 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5534 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5535 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5536 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5537
5538 efile = fdget(efd);
5539 if (!efile.file) {
5540 ret = -EBADF;
5541 goto out_kfree;
5542 }
5543
5544 event->eventfd = eventfd_ctx_fileget(efile.file);
5545 if (IS_ERR(event->eventfd)) {
5546 ret = PTR_ERR(event->eventfd);
5547 goto out_put_efile;
5548 }
5549
5550 cfile = fdget(cfd);
5551 if (!cfile.file) {
5552 ret = -EBADF;
5553 goto out_put_eventfd;
5554 }
5555
5556 /* the process need read permission on control file */
5557 /* AV: shouldn't we check that it's been opened for read instead? */
5558 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5559 if (ret < 0)
5560 goto out_put_cfile;
5561
fba94807
TH
5562 /*
5563 * Determine the event callbacks and set them in @event. This used
5564 * to be done via struct cftype but cgroup core no longer knows
5565 * about these events. The following is crude but the whole thing
5566 * is for compatibility anyway.
3bc942f3
TH
5567 *
5568 * DO NOT ADD NEW FILES.
fba94807
TH
5569 */
5570 name = cfile.file->f_dentry->d_name.name;
5571
5572 if (!strcmp(name, "memory.usage_in_bytes")) {
5573 event->register_event = mem_cgroup_usage_register_event;
5574 event->unregister_event = mem_cgroup_usage_unregister_event;
5575 } else if (!strcmp(name, "memory.oom_control")) {
5576 event->register_event = mem_cgroup_oom_register_event;
5577 event->unregister_event = mem_cgroup_oom_unregister_event;
5578 } else if (!strcmp(name, "memory.pressure_level")) {
5579 event->register_event = vmpressure_register_event;
5580 event->unregister_event = vmpressure_unregister_event;
5581 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5582 event->register_event = memsw_cgroup_usage_register_event;
5583 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5584 } else {
5585 ret = -EINVAL;
5586 goto out_put_cfile;
5587 }
5588
79bd9814 5589 /*
b5557c4c
TH
5590 * Verify @cfile should belong to @css. Also, remaining events are
5591 * automatically removed on cgroup destruction but the removal is
5592 * asynchronous, so take an extra ref on @css.
79bd9814 5593 */
ec903c0c
TH
5594 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5595 &memory_cgrp_subsys);
79bd9814 5596 ret = -EINVAL;
5a17f543 5597 if (IS_ERR(cfile_css))
79bd9814 5598 goto out_put_cfile;
5a17f543
TH
5599 if (cfile_css != css) {
5600 css_put(cfile_css);
79bd9814 5601 goto out_put_cfile;
5a17f543 5602 }
79bd9814 5603
451af504 5604 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5605 if (ret)
5606 goto out_put_css;
5607
5608 efile.file->f_op->poll(efile.file, &event->pt);
5609
fba94807
TH
5610 spin_lock(&memcg->event_list_lock);
5611 list_add(&event->list, &memcg->event_list);
5612 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5613
5614 fdput(cfile);
5615 fdput(efile);
5616
451af504 5617 return nbytes;
79bd9814
TH
5618
5619out_put_css:
b5557c4c 5620 css_put(css);
79bd9814
TH
5621out_put_cfile:
5622 fdput(cfile);
5623out_put_eventfd:
5624 eventfd_ctx_put(event->eventfd);
5625out_put_efile:
5626 fdput(efile);
5627out_kfree:
5628 kfree(event);
5629
5630 return ret;
5631}
5632
8cdea7c0
BS
5633static struct cftype mem_cgroup_files[] = {
5634 {
0eea1030 5635 .name = "usage_in_bytes",
8c7c6e34 5636 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5637 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5638 },
c84872e1
PE
5639 {
5640 .name = "max_usage_in_bytes",
8c7c6e34 5641 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5642 .write = mem_cgroup_reset,
791badbd 5643 .read_u64 = mem_cgroup_read_u64,
c84872e1 5644 },
8cdea7c0 5645 {
0eea1030 5646 .name = "limit_in_bytes",
8c7c6e34 5647 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5648 .write = mem_cgroup_write,
791badbd 5649 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5650 },
296c81d8
BS
5651 {
5652 .name = "soft_limit_in_bytes",
5653 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5654 .write = mem_cgroup_write,
791badbd 5655 .read_u64 = mem_cgroup_read_u64,
296c81d8 5656 },
8cdea7c0
BS
5657 {
5658 .name = "failcnt",
8c7c6e34 5659 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5660 .write = mem_cgroup_reset,
791badbd 5661 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5662 },
d2ceb9b7
KH
5663 {
5664 .name = "stat",
2da8ca82 5665 .seq_show = memcg_stat_show,
d2ceb9b7 5666 },
c1e862c1
KH
5667 {
5668 .name = "force_empty",
6770c64e 5669 .write = mem_cgroup_force_empty_write,
c1e862c1 5670 },
18f59ea7
BS
5671 {
5672 .name = "use_hierarchy",
5673 .write_u64 = mem_cgroup_hierarchy_write,
5674 .read_u64 = mem_cgroup_hierarchy_read,
5675 },
79bd9814 5676 {
3bc942f3 5677 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5678 .write = memcg_write_event_control,
79bd9814
TH
5679 .flags = CFTYPE_NO_PREFIX,
5680 .mode = S_IWUGO,
5681 },
a7885eb8
KM
5682 {
5683 .name = "swappiness",
5684 .read_u64 = mem_cgroup_swappiness_read,
5685 .write_u64 = mem_cgroup_swappiness_write,
5686 },
7dc74be0
DN
5687 {
5688 .name = "move_charge_at_immigrate",
5689 .read_u64 = mem_cgroup_move_charge_read,
5690 .write_u64 = mem_cgroup_move_charge_write,
5691 },
9490ff27
KH
5692 {
5693 .name = "oom_control",
2da8ca82 5694 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5695 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5696 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5697 },
70ddf637
AV
5698 {
5699 .name = "pressure_level",
70ddf637 5700 },
406eb0c9
YH
5701#ifdef CONFIG_NUMA
5702 {
5703 .name = "numa_stat",
2da8ca82 5704 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5705 },
5706#endif
510fc4e1
GC
5707#ifdef CONFIG_MEMCG_KMEM
5708 {
5709 .name = "kmem.limit_in_bytes",
5710 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5711 .write = mem_cgroup_write,
791badbd 5712 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5713 },
5714 {
5715 .name = "kmem.usage_in_bytes",
5716 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5717 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5718 },
5719 {
5720 .name = "kmem.failcnt",
5721 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5722 .write = mem_cgroup_reset,
791badbd 5723 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5724 },
5725 {
5726 .name = "kmem.max_usage_in_bytes",
5727 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5728 .write = mem_cgroup_reset,
791badbd 5729 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5730 },
749c5415
GC
5731#ifdef CONFIG_SLABINFO
5732 {
5733 .name = "kmem.slabinfo",
2da8ca82 5734 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5735 },
5736#endif
8c7c6e34 5737#endif
6bc10349 5738 { }, /* terminate */
af36f906 5739};
8c7c6e34 5740
2d11085e
MH
5741#ifdef CONFIG_MEMCG_SWAP
5742static struct cftype memsw_cgroup_files[] = {
5743 {
5744 .name = "memsw.usage_in_bytes",
5745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5746 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5747 },
5748 {
5749 .name = "memsw.max_usage_in_bytes",
5750 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5751 .write = mem_cgroup_reset,
791badbd 5752 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5753 },
5754 {
5755 .name = "memsw.limit_in_bytes",
5756 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5757 .write = mem_cgroup_write,
791badbd 5758 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5759 },
5760 {
5761 .name = "memsw.failcnt",
5762 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5763 .write = mem_cgroup_reset,
791badbd 5764 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5765 },
5766 { }, /* terminate */
5767};
5768#endif
c0ff4b85 5769static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5770{
5771 struct mem_cgroup_per_node *pn;
1ecaab2b 5772 struct mem_cgroup_per_zone *mz;
41e3355d 5773 int zone, tmp = node;
1ecaab2b
KH
5774 /*
5775 * This routine is called against possible nodes.
5776 * But it's BUG to call kmalloc() against offline node.
5777 *
5778 * TODO: this routine can waste much memory for nodes which will
5779 * never be onlined. It's better to use memory hotplug callback
5780 * function.
5781 */
41e3355d
KH
5782 if (!node_state(node, N_NORMAL_MEMORY))
5783 tmp = -1;
17295c88 5784 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5785 if (!pn)
5786 return 1;
1ecaab2b 5787
1ecaab2b
KH
5788 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5789 mz = &pn->zoneinfo[zone];
bea8c150 5790 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5791 mz->usage_in_excess = 0;
5792 mz->on_tree = false;
d79154bb 5793 mz->memcg = memcg;
1ecaab2b 5794 }
54f72fe0 5795 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5796 return 0;
5797}
5798
c0ff4b85 5799static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5800{
54f72fe0 5801 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5802}
5803
33327948
KH
5804static struct mem_cgroup *mem_cgroup_alloc(void)
5805{
d79154bb 5806 struct mem_cgroup *memcg;
8ff69e2c 5807 size_t size;
33327948 5808
8ff69e2c
VD
5809 size = sizeof(struct mem_cgroup);
5810 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5811
8ff69e2c 5812 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5813 if (!memcg)
e7bbcdf3
DC
5814 return NULL;
5815
d79154bb
HD
5816 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5817 if (!memcg->stat)
d2e61b8d 5818 goto out_free;
d79154bb
HD
5819 spin_lock_init(&memcg->pcp_counter_lock);
5820 return memcg;
d2e61b8d
DC
5821
5822out_free:
8ff69e2c 5823 kfree(memcg);
d2e61b8d 5824 return NULL;
33327948
KH
5825}
5826
59927fb9 5827/*
c8b2a36f
GC
5828 * At destroying mem_cgroup, references from swap_cgroup can remain.
5829 * (scanning all at force_empty is too costly...)
5830 *
5831 * Instead of clearing all references at force_empty, we remember
5832 * the number of reference from swap_cgroup and free mem_cgroup when
5833 * it goes down to 0.
5834 *
5835 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5836 */
c8b2a36f
GC
5837
5838static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5839{
c8b2a36f 5840 int node;
59927fb9 5841
bb4cc1a8 5842 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5843
5844 for_each_node(node)
5845 free_mem_cgroup_per_zone_info(memcg, node);
5846
5847 free_percpu(memcg->stat);
5848
3f134619
GC
5849 /*
5850 * We need to make sure that (at least for now), the jump label
5851 * destruction code runs outside of the cgroup lock. This is because
5852 * get_online_cpus(), which is called from the static_branch update,
5853 * can't be called inside the cgroup_lock. cpusets are the ones
5854 * enforcing this dependency, so if they ever change, we might as well.
5855 *
5856 * schedule_work() will guarantee this happens. Be careful if you need
5857 * to move this code around, and make sure it is outside
5858 * the cgroup_lock.
5859 */
a8964b9b 5860 disarm_static_keys(memcg);
8ff69e2c 5861 kfree(memcg);
59927fb9 5862}
3afe36b1 5863
7bcc1bb1
DN
5864/*
5865 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5866 */
e1aab161 5867struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5868{
c0ff4b85 5869 if (!memcg->res.parent)
7bcc1bb1 5870 return NULL;
c0ff4b85 5871 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5872}
e1aab161 5873EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5874
bb4cc1a8
AM
5875static void __init mem_cgroup_soft_limit_tree_init(void)
5876{
5877 struct mem_cgroup_tree_per_node *rtpn;
5878 struct mem_cgroup_tree_per_zone *rtpz;
5879 int tmp, node, zone;
5880
5881 for_each_node(node) {
5882 tmp = node;
5883 if (!node_state(node, N_NORMAL_MEMORY))
5884 tmp = -1;
5885 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5886 BUG_ON(!rtpn);
5887
5888 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5889
5890 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5891 rtpz = &rtpn->rb_tree_per_zone[zone];
5892 rtpz->rb_root = RB_ROOT;
5893 spin_lock_init(&rtpz->lock);
5894 }
5895 }
5896}
5897
0eb253e2 5898static struct cgroup_subsys_state * __ref
eb95419b 5899mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5900{
d142e3e6 5901 struct mem_cgroup *memcg;
04046e1a 5902 long error = -ENOMEM;
6d12e2d8 5903 int node;
8cdea7c0 5904
c0ff4b85
R
5905 memcg = mem_cgroup_alloc();
5906 if (!memcg)
04046e1a 5907 return ERR_PTR(error);
78fb7466 5908
3ed28fa1 5909 for_each_node(node)
c0ff4b85 5910 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5911 goto free_out;
f64c3f54 5912
c077719b 5913 /* root ? */
eb95419b 5914 if (parent_css == NULL) {
a41c58a6 5915 root_mem_cgroup = memcg;
d142e3e6
GC
5916 res_counter_init(&memcg->res, NULL);
5917 res_counter_init(&memcg->memsw, NULL);
5918 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5919 }
28dbc4b6 5920
d142e3e6
GC
5921 memcg->last_scanned_node = MAX_NUMNODES;
5922 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5923 memcg->move_charge_at_immigrate = 0;
5924 mutex_init(&memcg->thresholds_lock);
5925 spin_lock_init(&memcg->move_lock);
70ddf637 5926 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5927 INIT_LIST_HEAD(&memcg->event_list);
5928 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5929
5930 return &memcg->css;
5931
5932free_out:
5933 __mem_cgroup_free(memcg);
5934 return ERR_PTR(error);
5935}
5936
5937static int
eb95419b 5938mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5939{
eb95419b 5940 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5941 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
d142e3e6 5942
15a4c835 5943 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5944 return -ENOSPC;
5945
63876986 5946 if (!parent)
d142e3e6
GC
5947 return 0;
5948
0999821b 5949 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5950
5951 memcg->use_hierarchy = parent->use_hierarchy;
5952 memcg->oom_kill_disable = parent->oom_kill_disable;
5953 memcg->swappiness = mem_cgroup_swappiness(parent);
5954
5955 if (parent->use_hierarchy) {
c0ff4b85
R
5956 res_counter_init(&memcg->res, &parent->res);
5957 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5958 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5959
7bcc1bb1 5960 /*
8d76a979
LZ
5961 * No need to take a reference to the parent because cgroup
5962 * core guarantees its existence.
7bcc1bb1 5963 */
18f59ea7 5964 } else {
05b84301
JW
5965 res_counter_init(&memcg->res, &root_mem_cgroup->res);
5966 res_counter_init(&memcg->memsw, &root_mem_cgroup->memsw);
5967 res_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
8c7f6edb
TH
5968 /*
5969 * Deeper hierachy with use_hierarchy == false doesn't make
5970 * much sense so let cgroup subsystem know about this
5971 * unfortunate state in our controller.
5972 */
d142e3e6 5973 if (parent != root_mem_cgroup)
073219e9 5974 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5975 }
0999821b 5976 mutex_unlock(&memcg_create_mutex);
d6441637 5977
073219e9 5978 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
5979}
5980
5f578161
MH
5981/*
5982 * Announce all parents that a group from their hierarchy is gone.
5983 */
5984static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5985{
5986 struct mem_cgroup *parent = memcg;
5987
5988 while ((parent = parent_mem_cgroup(parent)))
519ebea3 5989 mem_cgroup_iter_invalidate(parent);
5f578161
MH
5990
5991 /*
5992 * if the root memcg is not hierarchical we have to check it
5993 * explicitely.
5994 */
5995 if (!root_mem_cgroup->use_hierarchy)
519ebea3 5996 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
5997}
5998
eb95419b 5999static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6000{
eb95419b 6001 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6002 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6003 struct cgroup_subsys_state *iter;
79bd9814
TH
6004
6005 /*
6006 * Unregister events and notify userspace.
6007 * Notify userspace about cgroup removing only after rmdir of cgroup
6008 * directory to avoid race between userspace and kernelspace.
6009 */
fba94807
TH
6010 spin_lock(&memcg->event_list_lock);
6011 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6012 list_del_init(&event->list);
6013 schedule_work(&event->remove);
6014 }
fba94807 6015 spin_unlock(&memcg->event_list_lock);
ec64f515 6016
10d5ebf4
LZ
6017 kmem_cgroup_css_offline(memcg);
6018
5f578161 6019 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6020
6021 /*
6022 * This requires that offlining is serialized. Right now that is
6023 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6024 */
6025 css_for_each_descendant_post(iter, css)
6026 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6027
776ed0f0 6028 memcg_unregister_all_caches(memcg);
33cb876e 6029 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6030}
6031
eb95419b 6032static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6033{
eb95419b 6034 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6035 /*
6036 * XXX: css_offline() would be where we should reparent all
6037 * memory to prepare the cgroup for destruction. However,
ec903c0c 6038 * memcg does not do css_tryget_online() and res_counter charging
96f1c58d
JW
6039 * under the same RCU lock region, which means that charging
6040 * could race with offlining. Offlining only happens to
6041 * cgroups with no tasks in them but charges can show up
6042 * without any tasks from the swapin path when the target
6043 * memcg is looked up from the swapout record and not from the
6044 * current task as it usually is. A race like this can leak
6045 * charges and put pages with stale cgroup pointers into
6046 * circulation:
6047 *
6048 * #0 #1
6049 * lookup_swap_cgroup_id()
6050 * rcu_read_lock()
6051 * mem_cgroup_lookup()
ec903c0c 6052 * css_tryget_online()
96f1c58d 6053 * rcu_read_unlock()
ec903c0c 6054 * disable css_tryget_online()
96f1c58d
JW
6055 * call_rcu()
6056 * offline_css()
6057 * reparent_charges()
6058 * res_counter_charge()
6059 * css_put()
6060 * css_free()
6061 * pc->mem_cgroup = dead memcg
6062 * add page to lru
6063 *
6064 * The bulk of the charges are still moved in offline_css() to
6065 * avoid pinning a lot of pages in case a long-term reference
6066 * like a swapout record is deferring the css_free() to long
6067 * after offlining. But this makes sure we catch any charges
6068 * made after offlining:
6069 */
6070 mem_cgroup_reparent_charges(memcg);
c268e994 6071
10d5ebf4 6072 memcg_destroy_kmem(memcg);
465939a1 6073 __mem_cgroup_free(memcg);
8cdea7c0
BS
6074}
6075
1ced953b
TH
6076/**
6077 * mem_cgroup_css_reset - reset the states of a mem_cgroup
6078 * @css: the target css
6079 *
6080 * Reset the states of the mem_cgroup associated with @css. This is
6081 * invoked when the userland requests disabling on the default hierarchy
6082 * but the memcg is pinned through dependency. The memcg should stop
6083 * applying policies and should revert to the vanilla state as it may be
6084 * made visible again.
6085 *
6086 * The current implementation only resets the essential configurations.
6087 * This needs to be expanded to cover all the visible parts.
6088 */
6089static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
6090{
6091 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6092
6093 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
6094 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
6095 memcg_update_kmem_limit(memcg, ULLONG_MAX);
6096 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
6097}
6098
02491447 6099#ifdef CONFIG_MMU
7dc74be0 6100/* Handlers for move charge at task migration. */
854ffa8d 6101static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6102{
05b84301 6103 int ret;
9476db97
JW
6104
6105 /* Try a single bulk charge without reclaim first */
00501b53 6106 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 6107 if (!ret) {
854ffa8d 6108 mc.precharge += count;
854ffa8d
DN
6109 return ret;
6110 }
692e7c45 6111 if (ret == -EINTR) {
00501b53 6112 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
6113 return ret;
6114 }
9476db97
JW
6115
6116 /* Try charges one by one with reclaim */
854ffa8d 6117 while (count--) {
00501b53 6118 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
6119 /*
6120 * In case of failure, any residual charges against
6121 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
6122 * later on. However, cancel any charges that are
6123 * bypassed to root right away or they'll be lost.
9476db97 6124 */
692e7c45 6125 if (ret == -EINTR)
00501b53 6126 cancel_charge(root_mem_cgroup, 1);
38c5d72f 6127 if (ret)
38c5d72f 6128 return ret;
854ffa8d 6129 mc.precharge++;
9476db97 6130 cond_resched();
854ffa8d 6131 }
9476db97 6132 return 0;
4ffef5fe
DN
6133}
6134
6135/**
8d32ff84 6136 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6137 * @vma: the vma the pte to be checked belongs
6138 * @addr: the address corresponding to the pte to be checked
6139 * @ptent: the pte to be checked
02491447 6140 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6141 *
6142 * Returns
6143 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6144 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6145 * move charge. if @target is not NULL, the page is stored in target->page
6146 * with extra refcnt got(Callers should handle it).
02491447
DN
6147 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6148 * target for charge migration. if @target is not NULL, the entry is stored
6149 * in target->ent.
4ffef5fe
DN
6150 *
6151 * Called with pte lock held.
6152 */
4ffef5fe
DN
6153union mc_target {
6154 struct page *page;
02491447 6155 swp_entry_t ent;
4ffef5fe
DN
6156};
6157
4ffef5fe 6158enum mc_target_type {
8d32ff84 6159 MC_TARGET_NONE = 0,
4ffef5fe 6160 MC_TARGET_PAGE,
02491447 6161 MC_TARGET_SWAP,
4ffef5fe
DN
6162};
6163
90254a65
DN
6164static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6165 unsigned long addr, pte_t ptent)
4ffef5fe 6166{
90254a65 6167 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6168
90254a65
DN
6169 if (!page || !page_mapped(page))
6170 return NULL;
6171 if (PageAnon(page)) {
6172 /* we don't move shared anon */
4b91355e 6173 if (!move_anon())
90254a65 6174 return NULL;
87946a72
DN
6175 } else if (!move_file())
6176 /* we ignore mapcount for file pages */
90254a65
DN
6177 return NULL;
6178 if (!get_page_unless_zero(page))
6179 return NULL;
6180
6181 return page;
6182}
6183
4b91355e 6184#ifdef CONFIG_SWAP
90254a65
DN
6185static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6186 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6187{
90254a65
DN
6188 struct page *page = NULL;
6189 swp_entry_t ent = pte_to_swp_entry(ptent);
6190
6191 if (!move_anon() || non_swap_entry(ent))
6192 return NULL;
4b91355e
KH
6193 /*
6194 * Because lookup_swap_cache() updates some statistics counter,
6195 * we call find_get_page() with swapper_space directly.
6196 */
33806f06 6197 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6198 if (do_swap_account)
6199 entry->val = ent.val;
6200
6201 return page;
6202}
4b91355e
KH
6203#else
6204static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6205 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6206{
6207 return NULL;
6208}
6209#endif
90254a65 6210
87946a72
DN
6211static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6212 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6213{
6214 struct page *page = NULL;
87946a72
DN
6215 struct address_space *mapping;
6216 pgoff_t pgoff;
6217
6218 if (!vma->vm_file) /* anonymous vma */
6219 return NULL;
6220 if (!move_file())
6221 return NULL;
6222
87946a72
DN
6223 mapping = vma->vm_file->f_mapping;
6224 if (pte_none(ptent))
6225 pgoff = linear_page_index(vma, addr);
6226 else /* pte_file(ptent) is true */
6227 pgoff = pte_to_pgoff(ptent);
6228
6229 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6230#ifdef CONFIG_SWAP
6231 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
6232 if (shmem_mapping(mapping)) {
6233 page = find_get_entry(mapping, pgoff);
6234 if (radix_tree_exceptional_entry(page)) {
6235 swp_entry_t swp = radix_to_swp_entry(page);
6236 if (do_swap_account)
6237 *entry = swp;
6238 page = find_get_page(swap_address_space(swp), swp.val);
6239 }
6240 } else
6241 page = find_get_page(mapping, pgoff);
6242#else
6243 page = find_get_page(mapping, pgoff);
aa3b1895 6244#endif
87946a72
DN
6245 return page;
6246}
6247
8d32ff84 6248static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6249 unsigned long addr, pte_t ptent, union mc_target *target)
6250{
6251 struct page *page = NULL;
6252 struct page_cgroup *pc;
8d32ff84 6253 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6254 swp_entry_t ent = { .val = 0 };
6255
6256 if (pte_present(ptent))
6257 page = mc_handle_present_pte(vma, addr, ptent);
6258 else if (is_swap_pte(ptent))
6259 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6260 else if (pte_none(ptent) || pte_file(ptent))
6261 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6262
6263 if (!page && !ent.val)
8d32ff84 6264 return ret;
02491447
DN
6265 if (page) {
6266 pc = lookup_page_cgroup(page);
6267 /*
6268 * Do only loose check w/o page_cgroup lock.
6269 * mem_cgroup_move_account() checks the pc is valid or not under
6270 * the lock.
6271 */
6272 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6273 ret = MC_TARGET_PAGE;
6274 if (target)
6275 target->page = page;
6276 }
6277 if (!ret || !target)
6278 put_page(page);
6279 }
90254a65
DN
6280 /* There is a swap entry and a page doesn't exist or isn't charged */
6281 if (ent.val && !ret &&
34c00c31 6282 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6283 ret = MC_TARGET_SWAP;
6284 if (target)
6285 target->ent = ent;
4ffef5fe 6286 }
4ffef5fe
DN
6287 return ret;
6288}
6289
12724850
NH
6290#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6291/*
6292 * We don't consider swapping or file mapped pages because THP does not
6293 * support them for now.
6294 * Caller should make sure that pmd_trans_huge(pmd) is true.
6295 */
6296static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6297 unsigned long addr, pmd_t pmd, union mc_target *target)
6298{
6299 struct page *page = NULL;
6300 struct page_cgroup *pc;
6301 enum mc_target_type ret = MC_TARGET_NONE;
6302
6303 page = pmd_page(pmd);
309381fe 6304 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6305 if (!move_anon())
6306 return ret;
6307 pc = lookup_page_cgroup(page);
6308 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6309 ret = MC_TARGET_PAGE;
6310 if (target) {
6311 get_page(page);
6312 target->page = page;
6313 }
6314 }
6315 return ret;
6316}
6317#else
6318static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6319 unsigned long addr, pmd_t pmd, union mc_target *target)
6320{
6321 return MC_TARGET_NONE;
6322}
6323#endif
6324
4ffef5fe
DN
6325static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6326 unsigned long addr, unsigned long end,
6327 struct mm_walk *walk)
6328{
6329 struct vm_area_struct *vma = walk->private;
6330 pte_t *pte;
6331 spinlock_t *ptl;
6332
bf929152 6333 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6334 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6335 mc.precharge += HPAGE_PMD_NR;
bf929152 6336 spin_unlock(ptl);
1a5a9906 6337 return 0;
12724850 6338 }
03319327 6339
45f83cef
AA
6340 if (pmd_trans_unstable(pmd))
6341 return 0;
4ffef5fe
DN
6342 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6343 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6344 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6345 mc.precharge++; /* increment precharge temporarily */
6346 pte_unmap_unlock(pte - 1, ptl);
6347 cond_resched();
6348
7dc74be0
DN
6349 return 0;
6350}
6351
4ffef5fe
DN
6352static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6353{
6354 unsigned long precharge;
6355 struct vm_area_struct *vma;
6356
dfe076b0 6357 down_read(&mm->mmap_sem);
4ffef5fe
DN
6358 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6359 struct mm_walk mem_cgroup_count_precharge_walk = {
6360 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6361 .mm = mm,
6362 .private = vma,
6363 };
6364 if (is_vm_hugetlb_page(vma))
6365 continue;
4ffef5fe
DN
6366 walk_page_range(vma->vm_start, vma->vm_end,
6367 &mem_cgroup_count_precharge_walk);
6368 }
dfe076b0 6369 up_read(&mm->mmap_sem);
4ffef5fe
DN
6370
6371 precharge = mc.precharge;
6372 mc.precharge = 0;
6373
6374 return precharge;
6375}
6376
4ffef5fe
DN
6377static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6378{
dfe076b0
DN
6379 unsigned long precharge = mem_cgroup_count_precharge(mm);
6380
6381 VM_BUG_ON(mc.moving_task);
6382 mc.moving_task = current;
6383 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6384}
6385
dfe076b0
DN
6386/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6387static void __mem_cgroup_clear_mc(void)
4ffef5fe 6388{
2bd9bb20
KH
6389 struct mem_cgroup *from = mc.from;
6390 struct mem_cgroup *to = mc.to;
4050377b 6391 int i;
2bd9bb20 6392
4ffef5fe 6393 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6394 if (mc.precharge) {
00501b53 6395 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6396 mc.precharge = 0;
6397 }
6398 /*
6399 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6400 * we must uncharge here.
6401 */
6402 if (mc.moved_charge) {
00501b53 6403 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6404 mc.moved_charge = 0;
4ffef5fe 6405 }
483c30b5
DN
6406 /* we must fixup refcnts and charges */
6407 if (mc.moved_swap) {
483c30b5 6408 /* uncharge swap account from the old cgroup */
05b84301
JW
6409 res_counter_uncharge(&mc.from->memsw,
6410 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6411
6412 for (i = 0; i < mc.moved_swap; i++)
6413 css_put(&mc.from->css);
483c30b5 6414
05b84301
JW
6415 /*
6416 * we charged both to->res and to->memsw, so we should
6417 * uncharge to->res.
6418 */
6419 res_counter_uncharge(&mc.to->res,
6420 PAGE_SIZE * mc.moved_swap);
4050377b 6421 /* we've already done css_get(mc.to) */
483c30b5
DN
6422 mc.moved_swap = 0;
6423 }
dfe076b0
DN
6424 memcg_oom_recover(from);
6425 memcg_oom_recover(to);
6426 wake_up_all(&mc.waitq);
6427}
6428
6429static void mem_cgroup_clear_mc(void)
6430{
6431 struct mem_cgroup *from = mc.from;
6432
6433 /*
6434 * we must clear moving_task before waking up waiters at the end of
6435 * task migration.
6436 */
6437 mc.moving_task = NULL;
6438 __mem_cgroup_clear_mc();
2bd9bb20 6439 spin_lock(&mc.lock);
4ffef5fe
DN
6440 mc.from = NULL;
6441 mc.to = NULL;
2bd9bb20 6442 spin_unlock(&mc.lock);
32047e2a 6443 mem_cgroup_end_move(from);
4ffef5fe
DN
6444}
6445
eb95419b 6446static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6447 struct cgroup_taskset *tset)
7dc74be0 6448{
2f7ee569 6449 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6450 int ret = 0;
eb95419b 6451 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6452 unsigned long move_charge_at_immigrate;
7dc74be0 6453
ee5e8472
GC
6454 /*
6455 * We are now commited to this value whatever it is. Changes in this
6456 * tunable will only affect upcoming migrations, not the current one.
6457 * So we need to save it, and keep it going.
6458 */
6459 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6460 if (move_charge_at_immigrate) {
7dc74be0
DN
6461 struct mm_struct *mm;
6462 struct mem_cgroup *from = mem_cgroup_from_task(p);
6463
c0ff4b85 6464 VM_BUG_ON(from == memcg);
7dc74be0
DN
6465
6466 mm = get_task_mm(p);
6467 if (!mm)
6468 return 0;
7dc74be0 6469 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6470 if (mm->owner == p) {
6471 VM_BUG_ON(mc.from);
6472 VM_BUG_ON(mc.to);
6473 VM_BUG_ON(mc.precharge);
854ffa8d 6474 VM_BUG_ON(mc.moved_charge);
483c30b5 6475 VM_BUG_ON(mc.moved_swap);
32047e2a 6476 mem_cgroup_start_move(from);
2bd9bb20 6477 spin_lock(&mc.lock);
4ffef5fe 6478 mc.from = from;
c0ff4b85 6479 mc.to = memcg;
ee5e8472 6480 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6481 spin_unlock(&mc.lock);
dfe076b0 6482 /* We set mc.moving_task later */
4ffef5fe
DN
6483
6484 ret = mem_cgroup_precharge_mc(mm);
6485 if (ret)
6486 mem_cgroup_clear_mc();
dfe076b0
DN
6487 }
6488 mmput(mm);
7dc74be0
DN
6489 }
6490 return ret;
6491}
6492
eb95419b 6493static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6494 struct cgroup_taskset *tset)
7dc74be0 6495{
4ffef5fe 6496 mem_cgroup_clear_mc();
7dc74be0
DN
6497}
6498
4ffef5fe
DN
6499static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6500 unsigned long addr, unsigned long end,
6501 struct mm_walk *walk)
7dc74be0 6502{
4ffef5fe
DN
6503 int ret = 0;
6504 struct vm_area_struct *vma = walk->private;
6505 pte_t *pte;
6506 spinlock_t *ptl;
12724850
NH
6507 enum mc_target_type target_type;
6508 union mc_target target;
6509 struct page *page;
6510 struct page_cgroup *pc;
4ffef5fe 6511
12724850
NH
6512 /*
6513 * We don't take compound_lock() here but no race with splitting thp
6514 * happens because:
6515 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6516 * under splitting, which means there's no concurrent thp split,
6517 * - if another thread runs into split_huge_page() just after we
6518 * entered this if-block, the thread must wait for page table lock
6519 * to be unlocked in __split_huge_page_splitting(), where the main
6520 * part of thp split is not executed yet.
6521 */
bf929152 6522 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6523 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6524 spin_unlock(ptl);
12724850
NH
6525 return 0;
6526 }
6527 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6528 if (target_type == MC_TARGET_PAGE) {
6529 page = target.page;
6530 if (!isolate_lru_page(page)) {
6531 pc = lookup_page_cgroup(page);
6532 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6533 pc, mc.from, mc.to)) {
12724850
NH
6534 mc.precharge -= HPAGE_PMD_NR;
6535 mc.moved_charge += HPAGE_PMD_NR;
6536 }
6537 putback_lru_page(page);
6538 }
6539 put_page(page);
6540 }
bf929152 6541 spin_unlock(ptl);
1a5a9906 6542 return 0;
12724850
NH
6543 }
6544
45f83cef
AA
6545 if (pmd_trans_unstable(pmd))
6546 return 0;
4ffef5fe
DN
6547retry:
6548 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6549 for (; addr != end; addr += PAGE_SIZE) {
6550 pte_t ptent = *(pte++);
02491447 6551 swp_entry_t ent;
4ffef5fe
DN
6552
6553 if (!mc.precharge)
6554 break;
6555
8d32ff84 6556 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6557 case MC_TARGET_PAGE:
6558 page = target.page;
6559 if (isolate_lru_page(page))
6560 goto put;
6561 pc = lookup_page_cgroup(page);
7ec99d62 6562 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6563 mc.from, mc.to)) {
4ffef5fe 6564 mc.precharge--;
854ffa8d
DN
6565 /* we uncharge from mc.from later. */
6566 mc.moved_charge++;
4ffef5fe
DN
6567 }
6568 putback_lru_page(page);
8d32ff84 6569put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6570 put_page(page);
6571 break;
02491447
DN
6572 case MC_TARGET_SWAP:
6573 ent = target.ent;
e91cbb42 6574 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6575 mc.precharge--;
483c30b5
DN
6576 /* we fixup refcnts and charges later. */
6577 mc.moved_swap++;
6578 }
02491447 6579 break;
4ffef5fe
DN
6580 default:
6581 break;
6582 }
6583 }
6584 pte_unmap_unlock(pte - 1, ptl);
6585 cond_resched();
6586
6587 if (addr != end) {
6588 /*
6589 * We have consumed all precharges we got in can_attach().
6590 * We try charge one by one, but don't do any additional
6591 * charges to mc.to if we have failed in charge once in attach()
6592 * phase.
6593 */
854ffa8d 6594 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6595 if (!ret)
6596 goto retry;
6597 }
6598
6599 return ret;
6600}
6601
6602static void mem_cgroup_move_charge(struct mm_struct *mm)
6603{
6604 struct vm_area_struct *vma;
6605
6606 lru_add_drain_all();
dfe076b0
DN
6607retry:
6608 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6609 /*
6610 * Someone who are holding the mmap_sem might be waiting in
6611 * waitq. So we cancel all extra charges, wake up all waiters,
6612 * and retry. Because we cancel precharges, we might not be able
6613 * to move enough charges, but moving charge is a best-effort
6614 * feature anyway, so it wouldn't be a big problem.
6615 */
6616 __mem_cgroup_clear_mc();
6617 cond_resched();
6618 goto retry;
6619 }
4ffef5fe
DN
6620 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6621 int ret;
6622 struct mm_walk mem_cgroup_move_charge_walk = {
6623 .pmd_entry = mem_cgroup_move_charge_pte_range,
6624 .mm = mm,
6625 .private = vma,
6626 };
6627 if (is_vm_hugetlb_page(vma))
6628 continue;
4ffef5fe
DN
6629 ret = walk_page_range(vma->vm_start, vma->vm_end,
6630 &mem_cgroup_move_charge_walk);
6631 if (ret)
6632 /*
6633 * means we have consumed all precharges and failed in
6634 * doing additional charge. Just abandon here.
6635 */
6636 break;
6637 }
dfe076b0 6638 up_read(&mm->mmap_sem);
7dc74be0
DN
6639}
6640
eb95419b 6641static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6642 struct cgroup_taskset *tset)
67e465a7 6643{
2f7ee569 6644 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6645 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6646
dfe076b0 6647 if (mm) {
a433658c
KM
6648 if (mc.to)
6649 mem_cgroup_move_charge(mm);
dfe076b0
DN
6650 mmput(mm);
6651 }
a433658c
KM
6652 if (mc.to)
6653 mem_cgroup_clear_mc();
67e465a7 6654}
5cfb80a7 6655#else /* !CONFIG_MMU */
eb95419b 6656static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6657 struct cgroup_taskset *tset)
5cfb80a7
DN
6658{
6659 return 0;
6660}
eb95419b 6661static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6662 struct cgroup_taskset *tset)
5cfb80a7
DN
6663{
6664}
eb95419b 6665static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6666 struct cgroup_taskset *tset)
5cfb80a7
DN
6667{
6668}
6669#endif
67e465a7 6670
f00baae7
TH
6671/*
6672 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6673 * to verify whether we're attached to the default hierarchy on each mount
6674 * attempt.
f00baae7 6675 */
eb95419b 6676static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6677{
6678 /*
aa6ec29b 6679 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6680 * guarantees that @root doesn't have any children, so turning it
6681 * on for the root memcg is enough.
6682 */
aa6ec29b 6683 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6684 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6685}
6686
073219e9 6687struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6688 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6689 .css_online = mem_cgroup_css_online,
92fb9748
TH
6690 .css_offline = mem_cgroup_css_offline,
6691 .css_free = mem_cgroup_css_free,
1ced953b 6692 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6693 .can_attach = mem_cgroup_can_attach,
6694 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6695 .attach = mem_cgroup_move_task,
f00baae7 6696 .bind = mem_cgroup_bind,
5577964e 6697 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6698 .early_init = 0,
8cdea7c0 6699};
c077719b 6700
c255a458 6701#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6702static int __init enable_swap_account(char *s)
6703{
a2c8990a 6704 if (!strcmp(s, "1"))
a42c390c 6705 really_do_swap_account = 1;
a2c8990a 6706 else if (!strcmp(s, "0"))
a42c390c
MH
6707 really_do_swap_account = 0;
6708 return 1;
6709}
a2c8990a 6710__setup("swapaccount=", enable_swap_account);
c077719b 6711
2d11085e
MH
6712static void __init memsw_file_init(void)
6713{
2cf669a5
TH
6714 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6715 memsw_cgroup_files));
6acc8b02
MH
6716}
6717
6718static void __init enable_swap_cgroup(void)
6719{
6720 if (!mem_cgroup_disabled() && really_do_swap_account) {
6721 do_swap_account = 1;
6722 memsw_file_init();
6723 }
2d11085e 6724}
6acc8b02 6725
2d11085e 6726#else
6acc8b02 6727static void __init enable_swap_cgroup(void)
2d11085e
MH
6728{
6729}
c077719b 6730#endif
2d11085e 6731
00501b53
JW
6732/**
6733 * mem_cgroup_try_charge - try charging a page
6734 * @page: page to charge
6735 * @mm: mm context of the victim
6736 * @gfp_mask: reclaim mode
6737 * @memcgp: charged memcg return
6738 *
6739 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6740 * pages according to @gfp_mask if necessary.
6741 *
6742 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6743 * Otherwise, an error code is returned.
6744 *
6745 * After page->mapping has been set up, the caller must finalize the
6746 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6747 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6748 */
6749int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6750 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6751{
6752 struct mem_cgroup *memcg = NULL;
6753 unsigned int nr_pages = 1;
6754 int ret = 0;
6755
6756 if (mem_cgroup_disabled())
6757 goto out;
6758
6759 if (PageSwapCache(page)) {
6760 struct page_cgroup *pc = lookup_page_cgroup(page);
6761 /*
6762 * Every swap fault against a single page tries to charge the
6763 * page, bail as early as possible. shmem_unuse() encounters
6764 * already charged pages, too. The USED bit is protected by
6765 * the page lock, which serializes swap cache removal, which
6766 * in turn serializes uncharging.
6767 */
6768 if (PageCgroupUsed(pc))
6769 goto out;
6770 }
6771
6772 if (PageTransHuge(page)) {
6773 nr_pages <<= compound_order(page);
6774 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6775 }
6776
6777 if (do_swap_account && PageSwapCache(page))
6778 memcg = try_get_mem_cgroup_from_page(page);
6779 if (!memcg)
6780 memcg = get_mem_cgroup_from_mm(mm);
6781
6782 ret = try_charge(memcg, gfp_mask, nr_pages);
6783
6784 css_put(&memcg->css);
6785
6786 if (ret == -EINTR) {
6787 memcg = root_mem_cgroup;
6788 ret = 0;
6789 }
6790out:
6791 *memcgp = memcg;
6792 return ret;
6793}
6794
6795/**
6796 * mem_cgroup_commit_charge - commit a page charge
6797 * @page: page to charge
6798 * @memcg: memcg to charge the page to
6799 * @lrucare: page might be on LRU already
6800 *
6801 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6802 * after page->mapping has been set up. This must happen atomically
6803 * as part of the page instantiation, i.e. under the page table lock
6804 * for anonymous pages, under the page lock for page and swap cache.
6805 *
6806 * In addition, the page must not be on the LRU during the commit, to
6807 * prevent racing with task migration. If it might be, use @lrucare.
6808 *
6809 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6810 */
6811void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6812 bool lrucare)
6813{
6814 unsigned int nr_pages = 1;
6815
6816 VM_BUG_ON_PAGE(!page->mapping, page);
6817 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6818
6819 if (mem_cgroup_disabled())
6820 return;
6821 /*
6822 * Swap faults will attempt to charge the same page multiple
6823 * times. But reuse_swap_page() might have removed the page
6824 * from swapcache already, so we can't check PageSwapCache().
6825 */
6826 if (!memcg)
6827 return;
6828
6829 if (PageTransHuge(page)) {
6830 nr_pages <<= compound_order(page);
6831 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6832 }
6833
6834 commit_charge(page, memcg, nr_pages, PageAnon(page), lrucare);
6835
6836 if (do_swap_account && PageSwapCache(page)) {
6837 swp_entry_t entry = { .val = page_private(page) };
6838 /*
6839 * The swap entry might not get freed for a long time,
6840 * let's not wait for it. The page already received a
6841 * memory+swap charge, drop the swap entry duplicate.
6842 */
6843 mem_cgroup_uncharge_swap(entry);
6844 }
6845}
6846
6847/**
6848 * mem_cgroup_cancel_charge - cancel a page charge
6849 * @page: page to charge
6850 * @memcg: memcg to charge the page to
6851 *
6852 * Cancel a charge transaction started by mem_cgroup_try_charge().
6853 */
6854void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6855{
6856 unsigned int nr_pages = 1;
6857
6858 if (mem_cgroup_disabled())
6859 return;
6860 /*
6861 * Swap faults will attempt to charge the same page multiple
6862 * times. But reuse_swap_page() might have removed the page
6863 * from swapcache already, so we can't check PageSwapCache().
6864 */
6865 if (!memcg)
6866 return;
6867
6868 if (PageTransHuge(page)) {
6869 nr_pages <<= compound_order(page);
6870 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6871 }
6872
6873 cancel_charge(memcg, nr_pages);
6874}
6875
2d11085e 6876/*
1081312f
MH
6877 * subsys_initcall() for memory controller.
6878 *
6879 * Some parts like hotcpu_notifier() have to be initialized from this context
6880 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6881 * everything that doesn't depend on a specific mem_cgroup structure should
6882 * be initialized from here.
2d11085e
MH
6883 */
6884static int __init mem_cgroup_init(void)
6885{
6886 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6887 enable_swap_cgroup();
bb4cc1a8 6888 mem_cgroup_soft_limit_tree_init();
e4777496 6889 memcg_stock_init();
2d11085e
MH
6890 return 0;
6891}
6892subsys_initcall(mem_cgroup_init);
This page took 1.161608 seconds and 5 git commands to generate.