memcg: rename mem_cgroup_zone_nr_pages() to mem_cgroup_zone_nr_lru_pages()
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
76
d52aa412
KH
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
90 MEM_CGROUP_STAT_NSTATS,
91};
92
e9f8974f
JW
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_NSTATS,
98};
7a159cc9
JW
99/*
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
104 */
105enum mem_cgroup_events_target {
106 MEM_CGROUP_TARGET_THRESH,
107 MEM_CGROUP_TARGET_SOFTLIMIT,
108 MEM_CGROUP_NTARGETS,
109};
110#define THRESHOLDS_EVENTS_TARGET (128)
111#define SOFTLIMIT_EVENTS_TARGET (1024)
e9f8974f 112
d52aa412 113struct mem_cgroup_stat_cpu {
7a159cc9 114 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 115 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 116 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
117};
118
6d12e2d8
KH
119/*
120 * per-zone information in memory controller.
121 */
6d12e2d8 122struct mem_cgroup_per_zone {
072c56c1
KH
123 /*
124 * spin_lock to protect the per cgroup LRU
125 */
b69408e8
CL
126 struct list_head lists[NR_LRU_LISTS];
127 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
128
129 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
130 struct rb_node tree_node; /* RB tree node */
131 unsigned long long usage_in_excess;/* Set to the value by which */
132 /* the soft limit is exceeded*/
133 bool on_tree;
4e416953
BS
134 struct mem_cgroup *mem; /* Back pointer, we cannot */
135 /* use container_of */
6d12e2d8
KH
136};
137/* Macro for accessing counter */
138#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
139
140struct mem_cgroup_per_node {
141 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_lru_info {
145 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
146};
147
f64c3f54
BS
148/*
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
151 */
152
153struct mem_cgroup_tree_per_zone {
154 struct rb_root rb_root;
155 spinlock_t lock;
156};
157
158struct mem_cgroup_tree_per_node {
159 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
160};
161
162struct mem_cgroup_tree {
163 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
164};
165
166static struct mem_cgroup_tree soft_limit_tree __read_mostly;
167
2e72b634
KS
168struct mem_cgroup_threshold {
169 struct eventfd_ctx *eventfd;
170 u64 threshold;
171};
172
9490ff27 173/* For threshold */
2e72b634
KS
174struct mem_cgroup_threshold_ary {
175 /* An array index points to threshold just below usage. */
5407a562 176 int current_threshold;
2e72b634
KS
177 /* Size of entries[] */
178 unsigned int size;
179 /* Array of thresholds */
180 struct mem_cgroup_threshold entries[0];
181};
2c488db2
KS
182
183struct mem_cgroup_thresholds {
184 /* Primary thresholds array */
185 struct mem_cgroup_threshold_ary *primary;
186 /*
187 * Spare threshold array.
188 * This is needed to make mem_cgroup_unregister_event() "never fail".
189 * It must be able to store at least primary->size - 1 entries.
190 */
191 struct mem_cgroup_threshold_ary *spare;
192};
193
9490ff27
KH
194/* for OOM */
195struct mem_cgroup_eventfd_list {
196 struct list_head list;
197 struct eventfd_ctx *eventfd;
198};
2e72b634 199
2e72b634 200static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 201static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 202
8cdea7c0
BS
203/*
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
208 *
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
8cdea7c0
BS
213 */
214struct mem_cgroup {
215 struct cgroup_subsys_state css;
216 /*
217 * the counter to account for memory usage
218 */
219 struct res_counter res;
8c7c6e34
KH
220 /*
221 * the counter to account for mem+swap usage.
222 */
223 struct res_counter memsw;
78fb7466
PE
224 /*
225 * Per cgroup active and inactive list, similar to the
226 * per zone LRU lists.
78fb7466 227 */
6d12e2d8 228 struct mem_cgroup_lru_info info;
6d61ef40 229 /*
af901ca1 230 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 231 * reclaimed from.
6d61ef40 232 */
04046e1a 233 int last_scanned_child;
889976db
YH
234 int last_scanned_node;
235#if MAX_NUMNODES > 1
236 nodemask_t scan_nodes;
237 unsigned long next_scan_node_update;
238#endif
18f59ea7
BS
239 /*
240 * Should the accounting and control be hierarchical, per subtree?
241 */
242 bool use_hierarchy;
867578cb 243 atomic_t oom_lock;
8c7c6e34 244 atomic_t refcnt;
14797e23 245
a7885eb8 246 unsigned int swappiness;
3c11ecf4
KH
247 /* OOM-Killer disable */
248 int oom_kill_disable;
a7885eb8 249
22a668d7
KH
250 /* set when res.limit == memsw.limit */
251 bool memsw_is_minimum;
252
2e72b634
KS
253 /* protect arrays of thresholds */
254 struct mutex thresholds_lock;
255
256 /* thresholds for memory usage. RCU-protected */
2c488db2 257 struct mem_cgroup_thresholds thresholds;
907860ed 258
2e72b634 259 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 260 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 261
9490ff27
KH
262 /* For oom notifier event fd */
263 struct list_head oom_notify;
264
7dc74be0
DN
265 /*
266 * Should we move charges of a task when a task is moved into this
267 * mem_cgroup ? And what type of charges should we move ?
268 */
269 unsigned long move_charge_at_immigrate;
d52aa412 270 /*
c62b1a3b 271 * percpu counter.
d52aa412 272 */
c62b1a3b 273 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
274 /*
275 * used when a cpu is offlined or other synchronizations
276 * See mem_cgroup_read_stat().
277 */
278 struct mem_cgroup_stat_cpu nocpu_base;
279 spinlock_t pcp_counter_lock;
8cdea7c0
BS
280};
281
7dc74be0
DN
282/* Stuffs for move charges at task migration. */
283/*
284 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
285 * left-shifted bitmap of these types.
286 */
287enum move_type {
4ffef5fe 288 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 289 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
290 NR_MOVE_TYPE,
291};
292
4ffef5fe
DN
293/* "mc" and its members are protected by cgroup_mutex */
294static struct move_charge_struct {
b1dd693e 295 spinlock_t lock; /* for from, to */
4ffef5fe
DN
296 struct mem_cgroup *from;
297 struct mem_cgroup *to;
298 unsigned long precharge;
854ffa8d 299 unsigned long moved_charge;
483c30b5 300 unsigned long moved_swap;
8033b97c
DN
301 struct task_struct *moving_task; /* a task moving charges */
302 wait_queue_head_t waitq; /* a waitq for other context */
303} mc = {
2bd9bb20 304 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
305 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
306};
4ffef5fe 307
90254a65
DN
308static bool move_anon(void)
309{
310 return test_bit(MOVE_CHARGE_TYPE_ANON,
311 &mc.to->move_charge_at_immigrate);
312}
313
87946a72
DN
314static bool move_file(void)
315{
316 return test_bit(MOVE_CHARGE_TYPE_FILE,
317 &mc.to->move_charge_at_immigrate);
318}
319
4e416953
BS
320/*
321 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
322 * limit reclaim to prevent infinite loops, if they ever occur.
323 */
324#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
325#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
326
217bc319
KH
327enum charge_type {
328 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
329 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 330 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 331 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 332 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 333 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
334 NR_CHARGE_TYPE,
335};
336
8c7c6e34
KH
337/* for encoding cft->private value on file */
338#define _MEM (0)
339#define _MEMSWAP (1)
9490ff27 340#define _OOM_TYPE (2)
8c7c6e34
KH
341#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
344/* Used for OOM nofiier */
345#define OOM_CONTROL (0)
8c7c6e34 346
75822b44
BS
347/*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
354#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 356
8c7c6e34
KH
357static void mem_cgroup_get(struct mem_cgroup *mem);
358static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 360static void drain_all_stock_async(void);
8c7c6e34 361
f64c3f54
BS
362static struct mem_cgroup_per_zone *
363mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364{
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366}
367
d324236b
WF
368struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369{
370 return &mem->css;
371}
372
f64c3f54 373static struct mem_cgroup_per_zone *
97a6c37b 374page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 375{
97a6c37b
JW
376 int nid = page_to_nid(page);
377 int zid = page_zonenum(page);
f64c3f54 378
f64c3f54
BS
379 return mem_cgroup_zoneinfo(mem, nid, zid);
380}
381
382static struct mem_cgroup_tree_per_zone *
383soft_limit_tree_node_zone(int nid, int zid)
384{
385 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
386}
387
388static struct mem_cgroup_tree_per_zone *
389soft_limit_tree_from_page(struct page *page)
390{
391 int nid = page_to_nid(page);
392 int zid = page_zonenum(page);
393
394 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
395}
396
397static void
4e416953 398__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 399 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
400 struct mem_cgroup_tree_per_zone *mctz,
401 unsigned long long new_usage_in_excess)
f64c3f54
BS
402{
403 struct rb_node **p = &mctz->rb_root.rb_node;
404 struct rb_node *parent = NULL;
405 struct mem_cgroup_per_zone *mz_node;
406
407 if (mz->on_tree)
408 return;
409
ef8745c1
KH
410 mz->usage_in_excess = new_usage_in_excess;
411 if (!mz->usage_in_excess)
412 return;
f64c3f54
BS
413 while (*p) {
414 parent = *p;
415 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
416 tree_node);
417 if (mz->usage_in_excess < mz_node->usage_in_excess)
418 p = &(*p)->rb_left;
419 /*
420 * We can't avoid mem cgroups that are over their soft
421 * limit by the same amount
422 */
423 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
424 p = &(*p)->rb_right;
425 }
426 rb_link_node(&mz->tree_node, parent, p);
427 rb_insert_color(&mz->tree_node, &mctz->rb_root);
428 mz->on_tree = true;
4e416953
BS
429}
430
431static void
432__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
433 struct mem_cgroup_per_zone *mz,
434 struct mem_cgroup_tree_per_zone *mctz)
435{
436 if (!mz->on_tree)
437 return;
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440}
441
f64c3f54
BS
442static void
443mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
444 struct mem_cgroup_per_zone *mz,
445 struct mem_cgroup_tree_per_zone *mctz)
446{
447 spin_lock(&mctz->lock);
4e416953 448 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
449 spin_unlock(&mctz->lock);
450}
451
f64c3f54
BS
452
453static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
454{
ef8745c1 455 unsigned long long excess;
f64c3f54
BS
456 struct mem_cgroup_per_zone *mz;
457 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
458 int nid = page_to_nid(page);
459 int zid = page_zonenum(page);
f64c3f54
BS
460 mctz = soft_limit_tree_from_page(page);
461
462 /*
4e649152
KH
463 * Necessary to update all ancestors when hierarchy is used.
464 * because their event counter is not touched.
f64c3f54 465 */
4e649152
KH
466 for (; mem; mem = parent_mem_cgroup(mem)) {
467 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 468 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
469 /*
470 * We have to update the tree if mz is on RB-tree or
471 * mem is over its softlimit.
472 */
ef8745c1 473 if (excess || mz->on_tree) {
4e649152
KH
474 spin_lock(&mctz->lock);
475 /* if on-tree, remove it */
476 if (mz->on_tree)
477 __mem_cgroup_remove_exceeded(mem, mz, mctz);
478 /*
ef8745c1
KH
479 * Insert again. mz->usage_in_excess will be updated.
480 * If excess is 0, no tree ops.
4e649152 481 */
ef8745c1 482 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
483 spin_unlock(&mctz->lock);
484 }
f64c3f54
BS
485 }
486}
487
488static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
489{
490 int node, zone;
491 struct mem_cgroup_per_zone *mz;
492 struct mem_cgroup_tree_per_zone *mctz;
493
494 for_each_node_state(node, N_POSSIBLE) {
495 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
496 mz = mem_cgroup_zoneinfo(mem, node, zone);
497 mctz = soft_limit_tree_node_zone(node, zone);
498 mem_cgroup_remove_exceeded(mem, mz, mctz);
499 }
500 }
501}
502
4e416953
BS
503static struct mem_cgroup_per_zone *
504__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
505{
506 struct rb_node *rightmost = NULL;
26251eaf 507 struct mem_cgroup_per_zone *mz;
4e416953
BS
508
509retry:
26251eaf 510 mz = NULL;
4e416953
BS
511 rightmost = rb_last(&mctz->rb_root);
512 if (!rightmost)
513 goto done; /* Nothing to reclaim from */
514
515 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
516 /*
517 * Remove the node now but someone else can add it back,
518 * we will to add it back at the end of reclaim to its correct
519 * position in the tree.
520 */
521 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
522 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
523 !css_tryget(&mz->mem->css))
524 goto retry;
525done:
526 return mz;
527}
528
529static struct mem_cgroup_per_zone *
530mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
531{
532 struct mem_cgroup_per_zone *mz;
533
534 spin_lock(&mctz->lock);
535 mz = __mem_cgroup_largest_soft_limit_node(mctz);
536 spin_unlock(&mctz->lock);
537 return mz;
538}
539
711d3d2c
KH
540/*
541 * Implementation Note: reading percpu statistics for memcg.
542 *
543 * Both of vmstat[] and percpu_counter has threshold and do periodic
544 * synchronization to implement "quick" read. There are trade-off between
545 * reading cost and precision of value. Then, we may have a chance to implement
546 * a periodic synchronizion of counter in memcg's counter.
547 *
548 * But this _read() function is used for user interface now. The user accounts
549 * memory usage by memory cgroup and he _always_ requires exact value because
550 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
551 * have to visit all online cpus and make sum. So, for now, unnecessary
552 * synchronization is not implemented. (just implemented for cpu hotplug)
553 *
554 * If there are kernel internal actions which can make use of some not-exact
555 * value, and reading all cpu value can be performance bottleneck in some
556 * common workload, threashold and synchonization as vmstat[] should be
557 * implemented.
558 */
7a159cc9
JW
559static long mem_cgroup_read_stat(struct mem_cgroup *mem,
560 enum mem_cgroup_stat_index idx)
c62b1a3b 561{
7a159cc9 562 long val = 0;
c62b1a3b 563 int cpu;
c62b1a3b 564
711d3d2c
KH
565 get_online_cpus();
566 for_each_online_cpu(cpu)
c62b1a3b 567 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
568#ifdef CONFIG_HOTPLUG_CPU
569 spin_lock(&mem->pcp_counter_lock);
570 val += mem->nocpu_base.count[idx];
571 spin_unlock(&mem->pcp_counter_lock);
572#endif
573 put_online_cpus();
c62b1a3b
KH
574 return val;
575}
576
7a159cc9 577static long mem_cgroup_local_usage(struct mem_cgroup *mem)
c62b1a3b 578{
7a159cc9 579 long ret;
c62b1a3b
KH
580
581 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
582 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
583 return ret;
584}
585
0c3e73e8
BS
586static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
587 bool charge)
588{
589 int val = (charge) ? 1 : -1;
c62b1a3b 590 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
591}
592
e9f8974f
JW
593static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
594 enum mem_cgroup_events_index idx)
595{
596 unsigned long val = 0;
597 int cpu;
598
599 for_each_online_cpu(cpu)
600 val += per_cpu(mem->stat->events[idx], cpu);
601#ifdef CONFIG_HOTPLUG_CPU
602 spin_lock(&mem->pcp_counter_lock);
603 val += mem->nocpu_base.events[idx];
604 spin_unlock(&mem->pcp_counter_lock);
605#endif
606 return val;
607}
608
c05555b5 609static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 610 bool file, int nr_pages)
d52aa412 611{
c62b1a3b
KH
612 preempt_disable();
613
e401f176
KH
614 if (file)
615 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 616 else
e401f176 617 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 618
e401f176
KH
619 /* pagein of a big page is an event. So, ignore page size */
620 if (nr_pages > 0)
e9f8974f 621 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 622 else {
e9f8974f 623 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
624 nr_pages = -nr_pages; /* for event */
625 }
e401f176 626
e9f8974f 627 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 628
c62b1a3b 629 preempt_enable();
6d12e2d8
KH
630}
631
889976db
YH
632static unsigned long
633mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
634{
635 struct mem_cgroup_per_zone *mz;
636 u64 total = 0;
637 int zid;
638
639 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
640 mz = mem_cgroup_zoneinfo(mem, nid, zid);
641 total += MEM_CGROUP_ZSTAT(mz, idx);
642 }
643 return total;
644}
14067bb3 645static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 646 enum lru_list idx)
6d12e2d8 647{
889976db 648 int nid;
6d12e2d8
KH
649 u64 total = 0;
650
651 for_each_online_node(nid)
889976db 652 total += mem_cgroup_get_zonestat_node(mem, nid, idx);
6d12e2d8 653 return total;
d52aa412
KH
654}
655
7a159cc9
JW
656static bool __memcg_event_check(struct mem_cgroup *mem, int target)
657{
658 unsigned long val, next;
659
660 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
661 next = this_cpu_read(mem->stat->targets[target]);
662 /* from time_after() in jiffies.h */
663 return ((long)next - (long)val < 0);
664}
665
666static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 667{
7a159cc9 668 unsigned long val, next;
d2265e6f 669
e9f8974f 670 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 671
7a159cc9
JW
672 switch (target) {
673 case MEM_CGROUP_TARGET_THRESH:
674 next = val + THRESHOLDS_EVENTS_TARGET;
675 break;
676 case MEM_CGROUP_TARGET_SOFTLIMIT:
677 next = val + SOFTLIMIT_EVENTS_TARGET;
678 break;
679 default:
680 return;
681 }
682
683 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
684}
685
686/*
687 * Check events in order.
688 *
689 */
690static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
691{
692 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 693 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 694 mem_cgroup_threshold(mem);
7a159cc9
JW
695 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
696 if (unlikely(__memcg_event_check(mem,
697 MEM_CGROUP_TARGET_SOFTLIMIT))){
d2265e6f 698 mem_cgroup_update_tree(mem, page);
7a159cc9
JW
699 __mem_cgroup_target_update(mem,
700 MEM_CGROUP_TARGET_SOFTLIMIT);
701 }
d2265e6f
KH
702 }
703}
704
d5b69e38 705static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
706{
707 return container_of(cgroup_subsys_state(cont,
708 mem_cgroup_subsys_id), struct mem_cgroup,
709 css);
710}
711
cf475ad2 712struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 713{
31a78f23
BS
714 /*
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
718 */
719 if (unlikely(!p))
720 return NULL;
721
78fb7466
PE
722 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
723 struct mem_cgroup, css);
724}
725
54595fe2
KH
726static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
727{
728 struct mem_cgroup *mem = NULL;
0b7f569e
KH
729
730 if (!mm)
731 return NULL;
54595fe2
KH
732 /*
733 * Because we have no locks, mm->owner's may be being moved to other
734 * cgroup. We use css_tryget() here even if this looks
735 * pessimistic (rather than adding locks here).
736 */
737 rcu_read_lock();
738 do {
739 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
740 if (unlikely(!mem))
741 break;
742 } while (!css_tryget(&mem->css));
743 rcu_read_unlock();
744 return mem;
745}
746
7d74b06f
KH
747/* The caller has to guarantee "mem" exists before calling this */
748static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 749{
711d3d2c
KH
750 struct cgroup_subsys_state *css;
751 int found;
752
753 if (!mem) /* ROOT cgroup has the smallest ID */
754 return root_mem_cgroup; /*css_put/get against root is ignored*/
755 if (!mem->use_hierarchy) {
756 if (css_tryget(&mem->css))
757 return mem;
758 return NULL;
759 }
760 rcu_read_lock();
761 /*
762 * searching a memory cgroup which has the smallest ID under given
763 * ROOT cgroup. (ID >= 1)
764 */
765 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
766 if (css && css_tryget(css))
767 mem = container_of(css, struct mem_cgroup, css);
768 else
769 mem = NULL;
770 rcu_read_unlock();
771 return mem;
7d74b06f
KH
772}
773
774static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
775 struct mem_cgroup *root,
776 bool cond)
777{
778 int nextid = css_id(&iter->css) + 1;
779 int found;
780 int hierarchy_used;
14067bb3 781 struct cgroup_subsys_state *css;
14067bb3 782
7d74b06f 783 hierarchy_used = iter->use_hierarchy;
14067bb3 784
7d74b06f 785 css_put(&iter->css);
711d3d2c
KH
786 /* If no ROOT, walk all, ignore hierarchy */
787 if (!cond || (root && !hierarchy_used))
7d74b06f 788 return NULL;
14067bb3 789
711d3d2c
KH
790 if (!root)
791 root = root_mem_cgroup;
792
7d74b06f
KH
793 do {
794 iter = NULL;
14067bb3 795 rcu_read_lock();
7d74b06f
KH
796
797 css = css_get_next(&mem_cgroup_subsys, nextid,
798 &root->css, &found);
14067bb3 799 if (css && css_tryget(css))
7d74b06f 800 iter = container_of(css, struct mem_cgroup, css);
14067bb3 801 rcu_read_unlock();
7d74b06f 802 /* If css is NULL, no more cgroups will be found */
14067bb3 803 nextid = found + 1;
7d74b06f 804 } while (css && !iter);
14067bb3 805
7d74b06f 806 return iter;
14067bb3 807}
7d74b06f
KH
808/*
809 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
810 * be careful that "break" loop is not allowed. We have reference count.
811 * Instead of that modify "cond" to be false and "continue" to exit the loop.
812 */
813#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
814 for (iter = mem_cgroup_start_loop(root);\
815 iter != NULL;\
816 iter = mem_cgroup_get_next(iter, root, cond))
817
818#define for_each_mem_cgroup_tree(iter, root) \
819 for_each_mem_cgroup_tree_cond(iter, root, true)
820
711d3d2c
KH
821#define for_each_mem_cgroup_all(iter) \
822 for_each_mem_cgroup_tree_cond(iter, NULL, true)
823
14067bb3 824
4b3bde4c
BS
825static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
826{
827 return (mem == root_mem_cgroup);
828}
829
08e552c6
KH
830/*
831 * Following LRU functions are allowed to be used without PCG_LOCK.
832 * Operations are called by routine of global LRU independently from memcg.
833 * What we have to take care of here is validness of pc->mem_cgroup.
834 *
835 * Changes to pc->mem_cgroup happens when
836 * 1. charge
837 * 2. moving account
838 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
839 * It is added to LRU before charge.
840 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
841 * When moving account, the page is not on LRU. It's isolated.
842 */
4f98a2fe 843
08e552c6
KH
844void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
845{
846 struct page_cgroup *pc;
08e552c6 847 struct mem_cgroup_per_zone *mz;
6d12e2d8 848
f8d66542 849 if (mem_cgroup_disabled())
08e552c6
KH
850 return;
851 pc = lookup_page_cgroup(page);
852 /* can happen while we handle swapcache. */
4b3bde4c 853 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 854 return;
4b3bde4c 855 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
856 /*
857 * We don't check PCG_USED bit. It's cleared when the "page" is finally
858 * removed from global LRU.
859 */
97a6c37b 860 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
861 /* huge page split is done under lru_lock. so, we have no races. */
862 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
863 if (mem_cgroup_is_root(pc->mem_cgroup))
864 return;
865 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 866 list_del_init(&pc->lru);
6d12e2d8
KH
867}
868
08e552c6 869void mem_cgroup_del_lru(struct page *page)
6d12e2d8 870{
08e552c6
KH
871 mem_cgroup_del_lru_list(page, page_lru(page));
872}
b69408e8 873
3f58a829
MK
874/*
875 * Writeback is about to end against a page which has been marked for immediate
876 * reclaim. If it still appears to be reclaimable, move it to the tail of the
877 * inactive list.
878 */
879void mem_cgroup_rotate_reclaimable_page(struct page *page)
880{
881 struct mem_cgroup_per_zone *mz;
882 struct page_cgroup *pc;
883 enum lru_list lru = page_lru(page);
884
885 if (mem_cgroup_disabled())
886 return;
887
888 pc = lookup_page_cgroup(page);
889 /* unused or root page is not rotated. */
890 if (!PageCgroupUsed(pc))
891 return;
892 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
893 smp_rmb();
894 if (mem_cgroup_is_root(pc->mem_cgroup))
895 return;
97a6c37b 896 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
897 list_move_tail(&pc->lru, &mz->lists[lru]);
898}
899
08e552c6
KH
900void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
901{
902 struct mem_cgroup_per_zone *mz;
903 struct page_cgroup *pc;
b69408e8 904
f8d66542 905 if (mem_cgroup_disabled())
08e552c6 906 return;
6d12e2d8 907
08e552c6 908 pc = lookup_page_cgroup(page);
4b3bde4c 909 /* unused or root page is not rotated. */
713735b4
JW
910 if (!PageCgroupUsed(pc))
911 return;
912 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
913 smp_rmb();
914 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 915 return;
97a6c37b 916 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 917 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
918}
919
08e552c6 920void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 921{
08e552c6
KH
922 struct page_cgroup *pc;
923 struct mem_cgroup_per_zone *mz;
6d12e2d8 924
f8d66542 925 if (mem_cgroup_disabled())
08e552c6
KH
926 return;
927 pc = lookup_page_cgroup(page);
4b3bde4c 928 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 929 if (!PageCgroupUsed(pc))
894bc310 930 return;
713735b4
JW
931 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
932 smp_rmb();
97a6c37b 933 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
934 /* huge page split is done under lru_lock. so, we have no races. */
935 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
936 SetPageCgroupAcctLRU(pc);
937 if (mem_cgroup_is_root(pc->mem_cgroup))
938 return;
08e552c6
KH
939 list_add(&pc->lru, &mz->lists[lru]);
940}
544122e5 941
08e552c6 942/*
5a6475a4
KH
943 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
944 * while it's linked to lru because the page may be reused after it's fully
945 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
946 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 947 */
5a6475a4 948static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 949{
544122e5
KH
950 unsigned long flags;
951 struct zone *zone = page_zone(page);
952 struct page_cgroup *pc = lookup_page_cgroup(page);
953
5a6475a4
KH
954 /*
955 * Doing this check without taking ->lru_lock seems wrong but this
956 * is safe. Because if page_cgroup's USED bit is unset, the page
957 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
958 * set, the commit after this will fail, anyway.
959 * This all charge/uncharge is done under some mutual execustion.
960 * So, we don't need to taking care of changes in USED bit.
961 */
962 if (likely(!PageLRU(page)))
963 return;
964
544122e5
KH
965 spin_lock_irqsave(&zone->lru_lock, flags);
966 /*
967 * Forget old LRU when this page_cgroup is *not* used. This Used bit
968 * is guarded by lock_page() because the page is SwapCache.
969 */
970 if (!PageCgroupUsed(pc))
971 mem_cgroup_del_lru_list(page, page_lru(page));
972 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
973}
974
5a6475a4 975static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
976{
977 unsigned long flags;
978 struct zone *zone = page_zone(page);
979 struct page_cgroup *pc = lookup_page_cgroup(page);
980
5a6475a4
KH
981 /* taking care of that the page is added to LRU while we commit it */
982 if (likely(!PageLRU(page)))
983 return;
544122e5
KH
984 spin_lock_irqsave(&zone->lru_lock, flags);
985 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 986 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
987 mem_cgroup_add_lru_list(page, page_lru(page));
988 spin_unlock_irqrestore(&zone->lru_lock, flags);
989}
990
991
08e552c6
KH
992void mem_cgroup_move_lists(struct page *page,
993 enum lru_list from, enum lru_list to)
994{
f8d66542 995 if (mem_cgroup_disabled())
08e552c6
KH
996 return;
997 mem_cgroup_del_lru_list(page, from);
998 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
999}
1000
4c4a2214
DR
1001int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1002{
1003 int ret;
0b7f569e 1004 struct mem_cgroup *curr = NULL;
158e0a2d 1005 struct task_struct *p;
4c4a2214 1006
158e0a2d
KH
1007 p = find_lock_task_mm(task);
1008 if (!p)
1009 return 0;
1010 curr = try_get_mem_cgroup_from_mm(p->mm);
1011 task_unlock(p);
0b7f569e
KH
1012 if (!curr)
1013 return 0;
d31f56db
DN
1014 /*
1015 * We should check use_hierarchy of "mem" not "curr". Because checking
1016 * use_hierarchy of "curr" here make this function true if hierarchy is
1017 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1018 * hierarchy(even if use_hierarchy is disabled in "mem").
1019 */
1020 if (mem->use_hierarchy)
0b7f569e
KH
1021 ret = css_is_ancestor(&curr->css, &mem->css);
1022 else
1023 ret = (curr == mem);
1024 css_put(&curr->css);
4c4a2214
DR
1025 return ret;
1026}
1027
c772be93 1028static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1029{
1030 unsigned long active;
1031 unsigned long inactive;
c772be93
KM
1032 unsigned long gb;
1033 unsigned long inactive_ratio;
14797e23 1034
14067bb3
KH
1035 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1036 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 1037
c772be93
KM
1038 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1039 if (gb)
1040 inactive_ratio = int_sqrt(10 * gb);
1041 else
1042 inactive_ratio = 1;
1043
1044 if (present_pages) {
1045 present_pages[0] = inactive;
1046 present_pages[1] = active;
1047 }
1048
1049 return inactive_ratio;
1050}
1051
1052int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1053{
1054 unsigned long active;
1055 unsigned long inactive;
1056 unsigned long present_pages[2];
1057 unsigned long inactive_ratio;
1058
1059 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1060
1061 inactive = present_pages[0];
1062 active = present_pages[1];
1063
1064 if (inactive * inactive_ratio < active)
14797e23
KM
1065 return 1;
1066
1067 return 0;
1068}
1069
56e49d21
RR
1070int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1071{
1072 unsigned long active;
1073 unsigned long inactive;
1074
1075 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1076 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1077
1078 return (active > inactive);
1079}
1080
1bac180b
YH
1081unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1082 struct zone *zone,
1083 enum lru_list lru)
a3d8e054 1084{
13d7e3a2 1085 int nid = zone_to_nid(zone);
a3d8e054
KM
1086 int zid = zone_idx(zone);
1087 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1088
1089 return MEM_CGROUP_ZSTAT(mz, lru);
1090}
1091
3e2f41f1
KM
1092struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1093 struct zone *zone)
1094{
13d7e3a2 1095 int nid = zone_to_nid(zone);
3e2f41f1
KM
1096 int zid = zone_idx(zone);
1097 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1098
1099 return &mz->reclaim_stat;
1100}
1101
1102struct zone_reclaim_stat *
1103mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1104{
1105 struct page_cgroup *pc;
1106 struct mem_cgroup_per_zone *mz;
1107
1108 if (mem_cgroup_disabled())
1109 return NULL;
1110
1111 pc = lookup_page_cgroup(page);
bd112db8
DN
1112 if (!PageCgroupUsed(pc))
1113 return NULL;
713735b4
JW
1114 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1115 smp_rmb();
97a6c37b 1116 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1117 return &mz->reclaim_stat;
1118}
1119
66e1707b
BS
1120unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1121 struct list_head *dst,
1122 unsigned long *scanned, int order,
1123 int mode, struct zone *z,
1124 struct mem_cgroup *mem_cont,
4f98a2fe 1125 int active, int file)
66e1707b
BS
1126{
1127 unsigned long nr_taken = 0;
1128 struct page *page;
1129 unsigned long scan;
1130 LIST_HEAD(pc_list);
1131 struct list_head *src;
ff7283fa 1132 struct page_cgroup *pc, *tmp;
13d7e3a2 1133 int nid = zone_to_nid(z);
1ecaab2b
KH
1134 int zid = zone_idx(z);
1135 struct mem_cgroup_per_zone *mz;
b7c46d15 1136 int lru = LRU_FILE * file + active;
2ffebca6 1137 int ret;
66e1707b 1138
cf475ad2 1139 BUG_ON(!mem_cont);
1ecaab2b 1140 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1141 src = &mz->lists[lru];
66e1707b 1142
ff7283fa
KH
1143 scan = 0;
1144 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1145 if (scan >= nr_to_scan)
ff7283fa 1146 break;
08e552c6 1147
52d4b9ac
KH
1148 if (unlikely(!PageCgroupUsed(pc)))
1149 continue;
5564e88b 1150
6b3ae58e 1151 page = lookup_cgroup_page(pc);
5564e88b 1152
436c6541 1153 if (unlikely(!PageLRU(page)))
ff7283fa 1154 continue;
ff7283fa 1155
436c6541 1156 scan++;
2ffebca6
KH
1157 ret = __isolate_lru_page(page, mode, file);
1158 switch (ret) {
1159 case 0:
66e1707b 1160 list_move(&page->lru, dst);
2ffebca6 1161 mem_cgroup_del_lru(page);
2c888cfb 1162 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1163 break;
1164 case -EBUSY:
1165 /* we don't affect global LRU but rotate in our LRU */
1166 mem_cgroup_rotate_lru_list(page, page_lru(page));
1167 break;
1168 default:
1169 break;
66e1707b
BS
1170 }
1171 }
1172
66e1707b 1173 *scanned = scan;
cc8e970c
KM
1174
1175 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1176 0, 0, 0, mode);
1177
66e1707b
BS
1178 return nr_taken;
1179}
1180
6d61ef40
BS
1181#define mem_cgroup_from_res_counter(counter, member) \
1182 container_of(counter, struct mem_cgroup, member)
1183
19942822 1184/**
9d11ea9f
JW
1185 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1186 * @mem: the memory cgroup
19942822 1187 *
9d11ea9f 1188 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1189 * pages.
19942822 1190 */
7ec99d62 1191static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1192{
9d11ea9f
JW
1193 unsigned long long margin;
1194
1195 margin = res_counter_margin(&mem->res);
1196 if (do_swap_account)
1197 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1198 return margin >> PAGE_SHIFT;
19942822
JW
1199}
1200
a7885eb8
KM
1201static unsigned int get_swappiness(struct mem_cgroup *memcg)
1202{
1203 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1204
1205 /* root ? */
1206 if (cgrp->parent == NULL)
1207 return vm_swappiness;
1208
bf1ff263 1209 return memcg->swappiness;
a7885eb8
KM
1210}
1211
32047e2a
KH
1212static void mem_cgroup_start_move(struct mem_cgroup *mem)
1213{
1214 int cpu;
1489ebad
KH
1215
1216 get_online_cpus();
1217 spin_lock(&mem->pcp_counter_lock);
1218 for_each_online_cpu(cpu)
32047e2a 1219 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1220 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1221 spin_unlock(&mem->pcp_counter_lock);
1222 put_online_cpus();
32047e2a
KH
1223
1224 synchronize_rcu();
1225}
1226
1227static void mem_cgroup_end_move(struct mem_cgroup *mem)
1228{
1229 int cpu;
1230
1231 if (!mem)
1232 return;
1489ebad
KH
1233 get_online_cpus();
1234 spin_lock(&mem->pcp_counter_lock);
1235 for_each_online_cpu(cpu)
32047e2a 1236 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1237 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1238 spin_unlock(&mem->pcp_counter_lock);
1239 put_online_cpus();
32047e2a
KH
1240}
1241/*
1242 * 2 routines for checking "mem" is under move_account() or not.
1243 *
1244 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1245 * for avoiding race in accounting. If true,
1246 * pc->mem_cgroup may be overwritten.
1247 *
1248 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1249 * under hierarchy of moving cgroups. This is for
1250 * waiting at hith-memory prressure caused by "move".
1251 */
1252
1253static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1254{
1255 VM_BUG_ON(!rcu_read_lock_held());
1256 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1257}
4b534334
KH
1258
1259static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1260{
2bd9bb20
KH
1261 struct mem_cgroup *from;
1262 struct mem_cgroup *to;
4b534334 1263 bool ret = false;
2bd9bb20
KH
1264 /*
1265 * Unlike task_move routines, we access mc.to, mc.from not under
1266 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1267 */
1268 spin_lock(&mc.lock);
1269 from = mc.from;
1270 to = mc.to;
1271 if (!from)
1272 goto unlock;
1273 if (from == mem || to == mem
1274 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1275 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1276 ret = true;
1277unlock:
1278 spin_unlock(&mc.lock);
4b534334
KH
1279 return ret;
1280}
1281
1282static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1283{
1284 if (mc.moving_task && current != mc.moving_task) {
1285 if (mem_cgroup_under_move(mem)) {
1286 DEFINE_WAIT(wait);
1287 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1288 /* moving charge context might have finished. */
1289 if (mc.moving_task)
1290 schedule();
1291 finish_wait(&mc.waitq, &wait);
1292 return true;
1293 }
1294 }
1295 return false;
1296}
1297
e222432b 1298/**
6a6135b6 1299 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1300 * @memcg: The memory cgroup that went over limit
1301 * @p: Task that is going to be killed
1302 *
1303 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1304 * enabled
1305 */
1306void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1307{
1308 struct cgroup *task_cgrp;
1309 struct cgroup *mem_cgrp;
1310 /*
1311 * Need a buffer in BSS, can't rely on allocations. The code relies
1312 * on the assumption that OOM is serialized for memory controller.
1313 * If this assumption is broken, revisit this code.
1314 */
1315 static char memcg_name[PATH_MAX];
1316 int ret;
1317
d31f56db 1318 if (!memcg || !p)
e222432b
BS
1319 return;
1320
1321
1322 rcu_read_lock();
1323
1324 mem_cgrp = memcg->css.cgroup;
1325 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1326
1327 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1328 if (ret < 0) {
1329 /*
1330 * Unfortunately, we are unable to convert to a useful name
1331 * But we'll still print out the usage information
1332 */
1333 rcu_read_unlock();
1334 goto done;
1335 }
1336 rcu_read_unlock();
1337
1338 printk(KERN_INFO "Task in %s killed", memcg_name);
1339
1340 rcu_read_lock();
1341 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1342 if (ret < 0) {
1343 rcu_read_unlock();
1344 goto done;
1345 }
1346 rcu_read_unlock();
1347
1348 /*
1349 * Continues from above, so we don't need an KERN_ level
1350 */
1351 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1352done:
1353
1354 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1355 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1356 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1357 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1358 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1359 "failcnt %llu\n",
1360 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1361 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1362 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1363}
1364
81d39c20
KH
1365/*
1366 * This function returns the number of memcg under hierarchy tree. Returns
1367 * 1(self count) if no children.
1368 */
1369static int mem_cgroup_count_children(struct mem_cgroup *mem)
1370{
1371 int num = 0;
7d74b06f
KH
1372 struct mem_cgroup *iter;
1373
1374 for_each_mem_cgroup_tree(iter, mem)
1375 num++;
81d39c20
KH
1376 return num;
1377}
1378
a63d83f4
DR
1379/*
1380 * Return the memory (and swap, if configured) limit for a memcg.
1381 */
1382u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1383{
1384 u64 limit;
1385 u64 memsw;
1386
f3e8eb70
JW
1387 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1388 limit += total_swap_pages << PAGE_SHIFT;
1389
a63d83f4
DR
1390 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1391 /*
1392 * If memsw is finite and limits the amount of swap space available
1393 * to this memcg, return that limit.
1394 */
1395 return min(limit, memsw);
1396}
1397
6d61ef40 1398/*
04046e1a
KH
1399 * Visit the first child (need not be the first child as per the ordering
1400 * of the cgroup list, since we track last_scanned_child) of @mem and use
1401 * that to reclaim free pages from.
1402 */
1403static struct mem_cgroup *
1404mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1405{
1406 struct mem_cgroup *ret = NULL;
1407 struct cgroup_subsys_state *css;
1408 int nextid, found;
1409
1410 if (!root_mem->use_hierarchy) {
1411 css_get(&root_mem->css);
1412 ret = root_mem;
1413 }
1414
1415 while (!ret) {
1416 rcu_read_lock();
1417 nextid = root_mem->last_scanned_child + 1;
1418 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1419 &found);
1420 if (css && css_tryget(css))
1421 ret = container_of(css, struct mem_cgroup, css);
1422
1423 rcu_read_unlock();
1424 /* Updates scanning parameter */
04046e1a
KH
1425 if (!css) {
1426 /* this means start scan from ID:1 */
1427 root_mem->last_scanned_child = 0;
1428 } else
1429 root_mem->last_scanned_child = found;
04046e1a
KH
1430 }
1431
1432 return ret;
1433}
1434
889976db
YH
1435#if MAX_NUMNODES > 1
1436
1437/*
1438 * Always updating the nodemask is not very good - even if we have an empty
1439 * list or the wrong list here, we can start from some node and traverse all
1440 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1441 *
1442 */
1443static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1444{
1445 int nid;
1446
1447 if (time_after(mem->next_scan_node_update, jiffies))
1448 return;
1449
1450 mem->next_scan_node_update = jiffies + 10*HZ;
1451 /* make a nodemask where this memcg uses memory from */
1452 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1453
1454 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1455
1456 if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
1457 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
1458 continue;
1459
1460 if (total_swap_pages &&
1461 (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
1462 mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
1463 continue;
1464 node_clear(nid, mem->scan_nodes);
1465 }
1466}
1467
1468/*
1469 * Selecting a node where we start reclaim from. Because what we need is just
1470 * reducing usage counter, start from anywhere is O,K. Considering
1471 * memory reclaim from current node, there are pros. and cons.
1472 *
1473 * Freeing memory from current node means freeing memory from a node which
1474 * we'll use or we've used. So, it may make LRU bad. And if several threads
1475 * hit limits, it will see a contention on a node. But freeing from remote
1476 * node means more costs for memory reclaim because of memory latency.
1477 *
1478 * Now, we use round-robin. Better algorithm is welcomed.
1479 */
1480int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1481{
1482 int node;
1483
1484 mem_cgroup_may_update_nodemask(mem);
1485 node = mem->last_scanned_node;
1486
1487 node = next_node(node, mem->scan_nodes);
1488 if (node == MAX_NUMNODES)
1489 node = first_node(mem->scan_nodes);
1490 /*
1491 * We call this when we hit limit, not when pages are added to LRU.
1492 * No LRU may hold pages because all pages are UNEVICTABLE or
1493 * memcg is too small and all pages are not on LRU. In that case,
1494 * we use curret node.
1495 */
1496 if (unlikely(node == MAX_NUMNODES))
1497 node = numa_node_id();
1498
1499 mem->last_scanned_node = node;
1500 return node;
1501}
1502
1503#else
1504int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1505{
1506 return 0;
1507}
1508#endif
1509
04046e1a
KH
1510/*
1511 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1512 * we reclaimed from, so that we don't end up penalizing one child extensively
1513 * based on its position in the children list.
6d61ef40
BS
1514 *
1515 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1516 *
1517 * We give up and return to the caller when we visit root_mem twice.
1518 * (other groups can be removed while we're walking....)
81d39c20
KH
1519 *
1520 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1521 */
1522static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1523 struct zone *zone,
75822b44 1524 gfp_t gfp_mask,
0ae5e89c
YH
1525 unsigned long reclaim_options,
1526 unsigned long *total_scanned)
6d61ef40 1527{
04046e1a
KH
1528 struct mem_cgroup *victim;
1529 int ret, total = 0;
1530 int loop = 0;
75822b44
BS
1531 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1532 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1533 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f 1534 unsigned long excess;
0ae5e89c 1535 unsigned long nr_scanned;
9d11ea9f
JW
1536
1537 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1538
22a668d7
KH
1539 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1540 if (root_mem->memsw_is_minimum)
1541 noswap = true;
1542
4e416953 1543 while (1) {
04046e1a 1544 victim = mem_cgroup_select_victim(root_mem);
4e416953 1545 if (victim == root_mem) {
04046e1a 1546 loop++;
cdec2e42
KH
1547 if (loop >= 1)
1548 drain_all_stock_async();
4e416953
BS
1549 if (loop >= 2) {
1550 /*
1551 * If we have not been able to reclaim
1552 * anything, it might because there are
1553 * no reclaimable pages under this hierarchy
1554 */
1555 if (!check_soft || !total) {
1556 css_put(&victim->css);
1557 break;
1558 }
1559 /*
25985edc 1560 * We want to do more targeted reclaim.
4e416953
BS
1561 * excess >> 2 is not to excessive so as to
1562 * reclaim too much, nor too less that we keep
1563 * coming back to reclaim from this cgroup
1564 */
1565 if (total >= (excess >> 2) ||
1566 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1567 css_put(&victim->css);
1568 break;
1569 }
1570 }
1571 }
c62b1a3b 1572 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1573 /* this cgroup's local usage == 0 */
1574 css_put(&victim->css);
6d61ef40
BS
1575 continue;
1576 }
04046e1a 1577 /* we use swappiness of local cgroup */
0ae5e89c 1578 if (check_soft) {
4e416953 1579 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
0ae5e89c
YH
1580 noswap, get_swappiness(victim), zone,
1581 &nr_scanned);
1582 *total_scanned += nr_scanned;
1583 } else
4e416953
BS
1584 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1585 noswap, get_swappiness(victim));
04046e1a 1586 css_put(&victim->css);
81d39c20
KH
1587 /*
1588 * At shrinking usage, we can't check we should stop here or
1589 * reclaim more. It's depends on callers. last_scanned_child
1590 * will work enough for keeping fairness under tree.
1591 */
1592 if (shrink)
1593 return ret;
04046e1a 1594 total += ret;
4e416953 1595 if (check_soft) {
9d11ea9f 1596 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1597 return total;
9d11ea9f 1598 } else if (mem_cgroup_margin(root_mem))
4fd14ebf 1599 return total;
6d61ef40 1600 }
04046e1a 1601 return total;
6d61ef40
BS
1602}
1603
867578cb
KH
1604/*
1605 * Check OOM-Killer is already running under our hierarchy.
1606 * If someone is running, return false.
1607 */
1608static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1609{
7d74b06f
KH
1610 int x, lock_count = 0;
1611 struct mem_cgroup *iter;
a636b327 1612
7d74b06f
KH
1613 for_each_mem_cgroup_tree(iter, mem) {
1614 x = atomic_inc_return(&iter->oom_lock);
1615 lock_count = max(x, lock_count);
1616 }
867578cb
KH
1617
1618 if (lock_count == 1)
1619 return true;
1620 return false;
a636b327 1621}
0b7f569e 1622
7d74b06f 1623static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1624{
7d74b06f
KH
1625 struct mem_cgroup *iter;
1626
867578cb
KH
1627 /*
1628 * When a new child is created while the hierarchy is under oom,
1629 * mem_cgroup_oom_lock() may not be called. We have to use
1630 * atomic_add_unless() here.
1631 */
7d74b06f
KH
1632 for_each_mem_cgroup_tree(iter, mem)
1633 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1634 return 0;
1635}
1636
867578cb
KH
1637
1638static DEFINE_MUTEX(memcg_oom_mutex);
1639static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1640
dc98df5a
KH
1641struct oom_wait_info {
1642 struct mem_cgroup *mem;
1643 wait_queue_t wait;
1644};
1645
1646static int memcg_oom_wake_function(wait_queue_t *wait,
1647 unsigned mode, int sync, void *arg)
1648{
1649 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1650 struct oom_wait_info *oom_wait_info;
1651
1652 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1653
1654 if (oom_wait_info->mem == wake_mem)
1655 goto wakeup;
1656 /* if no hierarchy, no match */
1657 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1658 return 0;
1659 /*
1660 * Both of oom_wait_info->mem and wake_mem are stable under us.
1661 * Then we can use css_is_ancestor without taking care of RCU.
1662 */
1663 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1664 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1665 return 0;
1666
1667wakeup:
1668 return autoremove_wake_function(wait, mode, sync, arg);
1669}
1670
1671static void memcg_wakeup_oom(struct mem_cgroup *mem)
1672{
1673 /* for filtering, pass "mem" as argument. */
1674 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1675}
1676
3c11ecf4
KH
1677static void memcg_oom_recover(struct mem_cgroup *mem)
1678{
2bd9bb20 1679 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1680 memcg_wakeup_oom(mem);
1681}
1682
867578cb
KH
1683/*
1684 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1685 */
1686bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1687{
dc98df5a 1688 struct oom_wait_info owait;
3c11ecf4 1689 bool locked, need_to_kill;
867578cb 1690
dc98df5a
KH
1691 owait.mem = mem;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1696 need_to_kill = true;
867578cb
KH
1697 /* At first, try to OOM lock hierarchy under mem.*/
1698 mutex_lock(&memcg_oom_mutex);
1699 locked = mem_cgroup_oom_lock(mem);
1700 /*
1701 * Even if signal_pending(), we can't quit charge() loop without
1702 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1703 * under OOM is always welcomed, use TASK_KILLABLE here.
1704 */
3c11ecf4
KH
1705 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1706 if (!locked || mem->oom_kill_disable)
1707 need_to_kill = false;
1708 if (locked)
9490ff27 1709 mem_cgroup_oom_notify(mem);
867578cb
KH
1710 mutex_unlock(&memcg_oom_mutex);
1711
3c11ecf4
KH
1712 if (need_to_kill) {
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1714 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1715 } else {
867578cb 1716 schedule();
dc98df5a 1717 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1718 }
1719 mutex_lock(&memcg_oom_mutex);
1720 mem_cgroup_oom_unlock(mem);
dc98df5a 1721 memcg_wakeup_oom(mem);
867578cb
KH
1722 mutex_unlock(&memcg_oom_mutex);
1723
1724 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1725 return false;
1726 /* Give chance to dying process */
1727 schedule_timeout(1);
1728 return true;
0b7f569e
KH
1729}
1730
d69b042f
BS
1731/*
1732 * Currently used to update mapped file statistics, but the routine can be
1733 * generalized to update other statistics as well.
32047e2a
KH
1734 *
1735 * Notes: Race condition
1736 *
1737 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1738 * it tends to be costly. But considering some conditions, we doesn't need
1739 * to do so _always_.
1740 *
1741 * Considering "charge", lock_page_cgroup() is not required because all
1742 * file-stat operations happen after a page is attached to radix-tree. There
1743 * are no race with "charge".
1744 *
1745 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1746 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1747 * if there are race with "uncharge". Statistics itself is properly handled
1748 * by flags.
1749 *
1750 * Considering "move", this is an only case we see a race. To make the race
1751 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1752 * possibility of race condition. If there is, we take a lock.
d69b042f 1753 */
26174efd 1754
2a7106f2
GT
1755void mem_cgroup_update_page_stat(struct page *page,
1756 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1757{
1758 struct mem_cgroup *mem;
32047e2a
KH
1759 struct page_cgroup *pc = lookup_page_cgroup(page);
1760 bool need_unlock = false;
dbd4ea78 1761 unsigned long uninitialized_var(flags);
d69b042f 1762
d69b042f
BS
1763 if (unlikely(!pc))
1764 return;
1765
32047e2a 1766 rcu_read_lock();
d69b042f 1767 mem = pc->mem_cgroup;
32047e2a
KH
1768 if (unlikely(!mem || !PageCgroupUsed(pc)))
1769 goto out;
1770 /* pc->mem_cgroup is unstable ? */
ca3e0214 1771 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1772 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1773 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1774 need_unlock = true;
1775 mem = pc->mem_cgroup;
1776 if (!mem || !PageCgroupUsed(pc))
1777 goto out;
1778 }
26174efd 1779
26174efd 1780 switch (idx) {
2a7106f2 1781 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1782 if (val > 0)
1783 SetPageCgroupFileMapped(pc);
1784 else if (!page_mapped(page))
0c270f8f 1785 ClearPageCgroupFileMapped(pc);
2a7106f2 1786 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1787 break;
1788 default:
1789 BUG();
8725d541 1790 }
d69b042f 1791
2a7106f2
GT
1792 this_cpu_add(mem->stat->count[idx], val);
1793
32047e2a
KH
1794out:
1795 if (unlikely(need_unlock))
dbd4ea78 1796 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1797 rcu_read_unlock();
1798 return;
d69b042f 1799}
2a7106f2 1800EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1801
cdec2e42
KH
1802/*
1803 * size of first charge trial. "32" comes from vmscan.c's magic value.
1804 * TODO: maybe necessary to use big numbers in big irons.
1805 */
7ec99d62 1806#define CHARGE_BATCH 32U
cdec2e42
KH
1807struct memcg_stock_pcp {
1808 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1809 unsigned int nr_pages;
cdec2e42
KH
1810 struct work_struct work;
1811};
1812static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1813static atomic_t memcg_drain_count;
1814
1815/*
11c9ea4e 1816 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1817 * from local stock and true is returned. If the stock is 0 or charges from a
1818 * cgroup which is not current target, returns false. This stock will be
1819 * refilled.
1820 */
1821static bool consume_stock(struct mem_cgroup *mem)
1822{
1823 struct memcg_stock_pcp *stock;
1824 bool ret = true;
1825
1826 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
1827 if (mem == stock->cached && stock->nr_pages)
1828 stock->nr_pages--;
cdec2e42
KH
1829 else /* need to call res_counter_charge */
1830 ret = false;
1831 put_cpu_var(memcg_stock);
1832 return ret;
1833}
1834
1835/*
1836 * Returns stocks cached in percpu to res_counter and reset cached information.
1837 */
1838static void drain_stock(struct memcg_stock_pcp *stock)
1839{
1840 struct mem_cgroup *old = stock->cached;
1841
11c9ea4e
JW
1842 if (stock->nr_pages) {
1843 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1844
1845 res_counter_uncharge(&old->res, bytes);
cdec2e42 1846 if (do_swap_account)
11c9ea4e
JW
1847 res_counter_uncharge(&old->memsw, bytes);
1848 stock->nr_pages = 0;
cdec2e42
KH
1849 }
1850 stock->cached = NULL;
cdec2e42
KH
1851}
1852
1853/*
1854 * This must be called under preempt disabled or must be called by
1855 * a thread which is pinned to local cpu.
1856 */
1857static void drain_local_stock(struct work_struct *dummy)
1858{
1859 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1860 drain_stock(stock);
1861}
1862
1863/*
1864 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1865 * This will be consumed by consume_stock() function, later.
cdec2e42 1866 */
11c9ea4e 1867static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
1868{
1869 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1870
1871 if (stock->cached != mem) { /* reset if necessary */
1872 drain_stock(stock);
1873 stock->cached = mem;
1874 }
11c9ea4e 1875 stock->nr_pages += nr_pages;
cdec2e42
KH
1876 put_cpu_var(memcg_stock);
1877}
1878
1879/*
1880 * Tries to drain stocked charges in other cpus. This function is asynchronous
1881 * and just put a work per cpu for draining localy on each cpu. Caller can
1882 * expects some charges will be back to res_counter later but cannot wait for
1883 * it.
1884 */
1885static void drain_all_stock_async(void)
1886{
1887 int cpu;
1888 /* This function is for scheduling "drain" in asynchronous way.
1889 * The result of "drain" is not directly handled by callers. Then,
1890 * if someone is calling drain, we don't have to call drain more.
1891 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1892 * there is a race. We just do loose check here.
1893 */
1894 if (atomic_read(&memcg_drain_count))
1895 return;
1896 /* Notify other cpus that system-wide "drain" is running */
1897 atomic_inc(&memcg_drain_count);
1898 get_online_cpus();
1899 for_each_online_cpu(cpu) {
1900 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1901 schedule_work_on(cpu, &stock->work);
1902 }
1903 put_online_cpus();
1904 atomic_dec(&memcg_drain_count);
1905 /* We don't wait for flush_work */
1906}
1907
1908/* This is a synchronous drain interface. */
1909static void drain_all_stock_sync(void)
1910{
1911 /* called when force_empty is called */
1912 atomic_inc(&memcg_drain_count);
1913 schedule_on_each_cpu(drain_local_stock);
1914 atomic_dec(&memcg_drain_count);
1915}
1916
711d3d2c
KH
1917/*
1918 * This function drains percpu counter value from DEAD cpu and
1919 * move it to local cpu. Note that this function can be preempted.
1920 */
1921static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1922{
1923 int i;
1924
1925 spin_lock(&mem->pcp_counter_lock);
1926 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 1927 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
1928
1929 per_cpu(mem->stat->count[i], cpu) = 0;
1930 mem->nocpu_base.count[i] += x;
1931 }
e9f8974f
JW
1932 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1933 unsigned long x = per_cpu(mem->stat->events[i], cpu);
1934
1935 per_cpu(mem->stat->events[i], cpu) = 0;
1936 mem->nocpu_base.events[i] += x;
1937 }
1489ebad
KH
1938 /* need to clear ON_MOVE value, works as a kind of lock. */
1939 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1940 spin_unlock(&mem->pcp_counter_lock);
1941}
1942
1943static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1944{
1945 int idx = MEM_CGROUP_ON_MOVE;
1946
1947 spin_lock(&mem->pcp_counter_lock);
1948 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1949 spin_unlock(&mem->pcp_counter_lock);
1950}
1951
1952static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1953 unsigned long action,
1954 void *hcpu)
1955{
1956 int cpu = (unsigned long)hcpu;
1957 struct memcg_stock_pcp *stock;
711d3d2c 1958 struct mem_cgroup *iter;
cdec2e42 1959
1489ebad
KH
1960 if ((action == CPU_ONLINE)) {
1961 for_each_mem_cgroup_all(iter)
1962 synchronize_mem_cgroup_on_move(iter, cpu);
1963 return NOTIFY_OK;
1964 }
1965
711d3d2c 1966 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1967 return NOTIFY_OK;
711d3d2c
KH
1968
1969 for_each_mem_cgroup_all(iter)
1970 mem_cgroup_drain_pcp_counter(iter, cpu);
1971
cdec2e42
KH
1972 stock = &per_cpu(memcg_stock, cpu);
1973 drain_stock(stock);
1974 return NOTIFY_OK;
1975}
1976
4b534334
KH
1977
1978/* See __mem_cgroup_try_charge() for details */
1979enum {
1980 CHARGE_OK, /* success */
1981 CHARGE_RETRY, /* need to retry but retry is not bad */
1982 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1983 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1984 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1985};
1986
7ec99d62
JW
1987static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1988 unsigned int nr_pages, bool oom_check)
4b534334 1989{
7ec99d62 1990 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
1991 struct mem_cgroup *mem_over_limit;
1992 struct res_counter *fail_res;
1993 unsigned long flags = 0;
1994 int ret;
1995
1996 ret = res_counter_charge(&mem->res, csize, &fail_res);
1997
1998 if (likely(!ret)) {
1999 if (!do_swap_account)
2000 return CHARGE_OK;
2001 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2002 if (likely(!ret))
2003 return CHARGE_OK;
2004
01c88e2d 2005 res_counter_uncharge(&mem->res, csize);
4b534334
KH
2006 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2007 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2008 } else
2009 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2010 /*
7ec99d62
JW
2011 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2012 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2013 *
2014 * Never reclaim on behalf of optional batching, retry with a
2015 * single page instead.
2016 */
7ec99d62 2017 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2018 return CHARGE_RETRY;
2019
2020 if (!(gfp_mask & __GFP_WAIT))
2021 return CHARGE_WOULDBLOCK;
2022
2023 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2024 gfp_mask, flags, NULL);
7ec99d62 2025 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2026 return CHARGE_RETRY;
4b534334 2027 /*
19942822
JW
2028 * Even though the limit is exceeded at this point, reclaim
2029 * may have been able to free some pages. Retry the charge
2030 * before killing the task.
2031 *
2032 * Only for regular pages, though: huge pages are rather
2033 * unlikely to succeed so close to the limit, and we fall back
2034 * to regular pages anyway in case of failure.
4b534334 2035 */
7ec99d62 2036 if (nr_pages == 1 && ret)
4b534334
KH
2037 return CHARGE_RETRY;
2038
2039 /*
2040 * At task move, charge accounts can be doubly counted. So, it's
2041 * better to wait until the end of task_move if something is going on.
2042 */
2043 if (mem_cgroup_wait_acct_move(mem_over_limit))
2044 return CHARGE_RETRY;
2045
2046 /* If we don't need to call oom-killer at el, return immediately */
2047 if (!oom_check)
2048 return CHARGE_NOMEM;
2049 /* check OOM */
2050 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2051 return CHARGE_OOM_DIE;
2052
2053 return CHARGE_RETRY;
2054}
2055
f817ed48
KH
2056/*
2057 * Unlike exported interface, "oom" parameter is added. if oom==true,
2058 * oom-killer can be invoked.
8a9f3ccd 2059 */
f817ed48 2060static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2061 gfp_t gfp_mask,
7ec99d62
JW
2062 unsigned int nr_pages,
2063 struct mem_cgroup **memcg,
2064 bool oom)
8a9f3ccd 2065{
7ec99d62 2066 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
2067 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2068 struct mem_cgroup *mem = NULL;
2069 int ret;
a636b327 2070
867578cb
KH
2071 /*
2072 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2073 * in system level. So, allow to go ahead dying process in addition to
2074 * MEMDIE process.
2075 */
2076 if (unlikely(test_thread_flag(TIF_MEMDIE)
2077 || fatal_signal_pending(current)))
2078 goto bypass;
a636b327 2079
8a9f3ccd 2080 /*
3be91277
HD
2081 * We always charge the cgroup the mm_struct belongs to.
2082 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2083 * thread group leader migrates. It's possible that mm is not
2084 * set, if so charge the init_mm (happens for pagecache usage).
2085 */
f75ca962
KH
2086 if (!*memcg && !mm)
2087 goto bypass;
2088again:
2089 if (*memcg) { /* css should be a valid one */
4b534334 2090 mem = *memcg;
f75ca962
KH
2091 VM_BUG_ON(css_is_removed(&mem->css));
2092 if (mem_cgroup_is_root(mem))
2093 goto done;
7ec99d62 2094 if (nr_pages == 1 && consume_stock(mem))
f75ca962 2095 goto done;
4b534334
KH
2096 css_get(&mem->css);
2097 } else {
f75ca962 2098 struct task_struct *p;
54595fe2 2099
f75ca962
KH
2100 rcu_read_lock();
2101 p = rcu_dereference(mm->owner);
f75ca962 2102 /*
ebb76ce1
KH
2103 * Because we don't have task_lock(), "p" can exit.
2104 * In that case, "mem" can point to root or p can be NULL with
2105 * race with swapoff. Then, we have small risk of mis-accouning.
2106 * But such kind of mis-account by race always happens because
2107 * we don't have cgroup_mutex(). It's overkill and we allo that
2108 * small race, here.
2109 * (*) swapoff at el will charge against mm-struct not against
2110 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2111 */
2112 mem = mem_cgroup_from_task(p);
ebb76ce1 2113 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2114 rcu_read_unlock();
2115 goto done;
2116 }
7ec99d62 2117 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2118 /*
2119 * It seems dagerous to access memcg without css_get().
2120 * But considering how consume_stok works, it's not
2121 * necessary. If consume_stock success, some charges
2122 * from this memcg are cached on this cpu. So, we
2123 * don't need to call css_get()/css_tryget() before
2124 * calling consume_stock().
2125 */
2126 rcu_read_unlock();
2127 goto done;
2128 }
2129 /* after here, we may be blocked. we need to get refcnt */
2130 if (!css_tryget(&mem->css)) {
2131 rcu_read_unlock();
2132 goto again;
2133 }
2134 rcu_read_unlock();
2135 }
8a9f3ccd 2136
4b534334
KH
2137 do {
2138 bool oom_check;
7a81b88c 2139
4b534334 2140 /* If killed, bypass charge */
f75ca962
KH
2141 if (fatal_signal_pending(current)) {
2142 css_put(&mem->css);
4b534334 2143 goto bypass;
f75ca962 2144 }
6d61ef40 2145
4b534334
KH
2146 oom_check = false;
2147 if (oom && !nr_oom_retries) {
2148 oom_check = true;
2149 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2150 }
66e1707b 2151
7ec99d62 2152 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2153 switch (ret) {
2154 case CHARGE_OK:
2155 break;
2156 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2157 batch = nr_pages;
f75ca962
KH
2158 css_put(&mem->css);
2159 mem = NULL;
2160 goto again;
4b534334 2161 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2162 css_put(&mem->css);
4b534334
KH
2163 goto nomem;
2164 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2165 if (!oom) {
2166 css_put(&mem->css);
867578cb 2167 goto nomem;
f75ca962 2168 }
4b534334
KH
2169 /* If oom, we never return -ENOMEM */
2170 nr_oom_retries--;
2171 break;
2172 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2173 css_put(&mem->css);
867578cb 2174 goto bypass;
66e1707b 2175 }
4b534334
KH
2176 } while (ret != CHARGE_OK);
2177
7ec99d62
JW
2178 if (batch > nr_pages)
2179 refill_stock(mem, batch - nr_pages);
f75ca962 2180 css_put(&mem->css);
0c3e73e8 2181done:
f75ca962 2182 *memcg = mem;
7a81b88c
KH
2183 return 0;
2184nomem:
f75ca962 2185 *memcg = NULL;
7a81b88c 2186 return -ENOMEM;
867578cb
KH
2187bypass:
2188 *memcg = NULL;
2189 return 0;
7a81b88c 2190}
8a9f3ccd 2191
a3032a2c
DN
2192/*
2193 * Somemtimes we have to undo a charge we got by try_charge().
2194 * This function is for that and do uncharge, put css's refcnt.
2195 * gotten by try_charge().
2196 */
854ffa8d 2197static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2198 unsigned int nr_pages)
a3032a2c
DN
2199{
2200 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2201 unsigned long bytes = nr_pages * PAGE_SIZE;
2202
2203 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2204 if (do_swap_account)
e7018b8d 2205 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2206 }
854ffa8d
DN
2207}
2208
a3b2d692
KH
2209/*
2210 * A helper function to get mem_cgroup from ID. must be called under
2211 * rcu_read_lock(). The caller must check css_is_removed() or some if
2212 * it's concern. (dropping refcnt from swap can be called against removed
2213 * memcg.)
2214 */
2215static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2216{
2217 struct cgroup_subsys_state *css;
2218
2219 /* ID 0 is unused ID */
2220 if (!id)
2221 return NULL;
2222 css = css_lookup(&mem_cgroup_subsys, id);
2223 if (!css)
2224 return NULL;
2225 return container_of(css, struct mem_cgroup, css);
2226}
2227
e42d9d5d 2228struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2229{
e42d9d5d 2230 struct mem_cgroup *mem = NULL;
3c776e64 2231 struct page_cgroup *pc;
a3b2d692 2232 unsigned short id;
b5a84319
KH
2233 swp_entry_t ent;
2234
3c776e64
DN
2235 VM_BUG_ON(!PageLocked(page));
2236
3c776e64 2237 pc = lookup_page_cgroup(page);
c0bd3f63 2238 lock_page_cgroup(pc);
a3b2d692 2239 if (PageCgroupUsed(pc)) {
3c776e64 2240 mem = pc->mem_cgroup;
a3b2d692
KH
2241 if (mem && !css_tryget(&mem->css))
2242 mem = NULL;
e42d9d5d 2243 } else if (PageSwapCache(page)) {
3c776e64 2244 ent.val = page_private(page);
a3b2d692
KH
2245 id = lookup_swap_cgroup(ent);
2246 rcu_read_lock();
2247 mem = mem_cgroup_lookup(id);
2248 if (mem && !css_tryget(&mem->css))
2249 mem = NULL;
2250 rcu_read_unlock();
3c776e64 2251 }
c0bd3f63 2252 unlock_page_cgroup(pc);
b5a84319
KH
2253 return mem;
2254}
2255
ca3e0214 2256static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2257 struct page *page,
7ec99d62 2258 unsigned int nr_pages,
ca3e0214 2259 struct page_cgroup *pc,
7ec99d62 2260 enum charge_type ctype)
7a81b88c 2261{
ca3e0214
KH
2262 lock_page_cgroup(pc);
2263 if (unlikely(PageCgroupUsed(pc))) {
2264 unlock_page_cgroup(pc);
e7018b8d 2265 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2266 return;
2267 }
2268 /*
2269 * we don't need page_cgroup_lock about tail pages, becase they are not
2270 * accessed by any other context at this point.
2271 */
8a9f3ccd 2272 pc->mem_cgroup = mem;
261fb61a
KH
2273 /*
2274 * We access a page_cgroup asynchronously without lock_page_cgroup().
2275 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2276 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2277 * before USED bit, we need memory barrier here.
2278 * See mem_cgroup_add_lru_list(), etc.
2279 */
08e552c6 2280 smp_wmb();
4b3bde4c
BS
2281 switch (ctype) {
2282 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2283 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2284 SetPageCgroupCache(pc);
2285 SetPageCgroupUsed(pc);
2286 break;
2287 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2288 ClearPageCgroupCache(pc);
2289 SetPageCgroupUsed(pc);
2290 break;
2291 default:
2292 break;
2293 }
3be91277 2294
ca3e0214 2295 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2296 unlock_page_cgroup(pc);
430e4863
KH
2297 /*
2298 * "charge_statistics" updated event counter. Then, check it.
2299 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2300 * if they exceeds softlimit.
2301 */
5564e88b 2302 memcg_check_events(mem, page);
7a81b88c 2303}
66e1707b 2304
ca3e0214
KH
2305#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2306
2307#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2308 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2309/*
2310 * Because tail pages are not marked as "used", set it. We're under
2311 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2312 */
2313void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2314{
2315 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2316 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2317 unsigned long flags;
2318
3d37c4a9
KH
2319 if (mem_cgroup_disabled())
2320 return;
ca3e0214 2321 /*
ece35ca8 2322 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2323 * page state accounting.
2324 */
2325 move_lock_page_cgroup(head_pc, &flags);
2326
2327 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2328 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2329 if (PageCgroupAcctLRU(head_pc)) {
2330 enum lru_list lru;
2331 struct mem_cgroup_per_zone *mz;
2332
2333 /*
2334 * LRU flags cannot be copied because we need to add tail
2335 *.page to LRU by generic call and our hook will be called.
2336 * We hold lru_lock, then, reduce counter directly.
2337 */
2338 lru = page_lru(head);
97a6c37b 2339 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2340 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2341 }
ca3e0214
KH
2342 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2343 move_unlock_page_cgroup(head_pc, &flags);
2344}
2345#endif
2346
f817ed48 2347/**
de3638d9 2348 * mem_cgroup_move_account - move account of the page
5564e88b 2349 * @page: the page
7ec99d62 2350 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2351 * @pc: page_cgroup of the page.
2352 * @from: mem_cgroup which the page is moved from.
2353 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2354 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2355 *
2356 * The caller must confirm following.
08e552c6 2357 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2358 * - compound_lock is held when nr_pages > 1
f817ed48 2359 *
854ffa8d 2360 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2361 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2362 * true, this function does "uncharge" from old cgroup, but it doesn't if
2363 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2364 */
7ec99d62
JW
2365static int mem_cgroup_move_account(struct page *page,
2366 unsigned int nr_pages,
2367 struct page_cgroup *pc,
2368 struct mem_cgroup *from,
2369 struct mem_cgroup *to,
2370 bool uncharge)
f817ed48 2371{
de3638d9
JW
2372 unsigned long flags;
2373 int ret;
987eba66 2374
f817ed48 2375 VM_BUG_ON(from == to);
5564e88b 2376 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2377 /*
2378 * The page is isolated from LRU. So, collapse function
2379 * will not handle this page. But page splitting can happen.
2380 * Do this check under compound_page_lock(). The caller should
2381 * hold it.
2382 */
2383 ret = -EBUSY;
7ec99d62 2384 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2385 goto out;
2386
2387 lock_page_cgroup(pc);
2388
2389 ret = -EINVAL;
2390 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2391 goto unlock;
2392
2393 move_lock_page_cgroup(pc, &flags);
f817ed48 2394
8725d541 2395 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2396 /* Update mapped_file data for mem_cgroup */
2397 preempt_disable();
2398 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2399 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2400 preempt_enable();
d69b042f 2401 }
987eba66 2402 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2403 if (uncharge)
2404 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2405 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2406
854ffa8d 2407 /* caller should have done css_get */
08e552c6 2408 pc->mem_cgroup = to;
987eba66 2409 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2410 /*
2411 * We charges against "to" which may not have any tasks. Then, "to"
2412 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2413 * this function is just force_empty() and move charge, so it's
25985edc 2414 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2415 * status here.
88703267 2416 */
de3638d9
JW
2417 move_unlock_page_cgroup(pc, &flags);
2418 ret = 0;
2419unlock:
57f9fd7d 2420 unlock_page_cgroup(pc);
d2265e6f
KH
2421 /*
2422 * check events
2423 */
5564e88b
JW
2424 memcg_check_events(to, page);
2425 memcg_check_events(from, page);
de3638d9 2426out:
f817ed48
KH
2427 return ret;
2428}
2429
2430/*
2431 * move charges to its parent.
2432 */
2433
5564e88b
JW
2434static int mem_cgroup_move_parent(struct page *page,
2435 struct page_cgroup *pc,
f817ed48
KH
2436 struct mem_cgroup *child,
2437 gfp_t gfp_mask)
2438{
2439 struct cgroup *cg = child->css.cgroup;
2440 struct cgroup *pcg = cg->parent;
2441 struct mem_cgroup *parent;
7ec99d62 2442 unsigned int nr_pages;
4be4489f 2443 unsigned long uninitialized_var(flags);
f817ed48
KH
2444 int ret;
2445
2446 /* Is ROOT ? */
2447 if (!pcg)
2448 return -EINVAL;
2449
57f9fd7d
DN
2450 ret = -EBUSY;
2451 if (!get_page_unless_zero(page))
2452 goto out;
2453 if (isolate_lru_page(page))
2454 goto put;
52dbb905 2455
7ec99d62 2456 nr_pages = hpage_nr_pages(page);
08e552c6 2457
f817ed48 2458 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2459 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2460 if (ret || !parent)
57f9fd7d 2461 goto put_back;
f817ed48 2462
7ec99d62 2463 if (nr_pages > 1)
987eba66
KH
2464 flags = compound_lock_irqsave(page);
2465
7ec99d62 2466 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2467 if (ret)
7ec99d62 2468 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2469
7ec99d62 2470 if (nr_pages > 1)
987eba66 2471 compound_unlock_irqrestore(page, flags);
8dba474f 2472put_back:
08e552c6 2473 putback_lru_page(page);
57f9fd7d 2474put:
40d58138 2475 put_page(page);
57f9fd7d 2476out:
f817ed48
KH
2477 return ret;
2478}
2479
7a81b88c
KH
2480/*
2481 * Charge the memory controller for page usage.
2482 * Return
2483 * 0 if the charge was successful
2484 * < 0 if the cgroup is over its limit
2485 */
2486static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2487 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2488{
73045c47 2489 struct mem_cgroup *mem = NULL;
7ec99d62 2490 unsigned int nr_pages = 1;
7a81b88c 2491 struct page_cgroup *pc;
8493ae43 2492 bool oom = true;
7a81b88c 2493 int ret;
ec168510 2494
37c2ac78 2495 if (PageTransHuge(page)) {
7ec99d62 2496 nr_pages <<= compound_order(page);
37c2ac78 2497 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2498 /*
2499 * Never OOM-kill a process for a huge page. The
2500 * fault handler will fall back to regular pages.
2501 */
2502 oom = false;
37c2ac78 2503 }
7a81b88c
KH
2504
2505 pc = lookup_page_cgroup(page);
af4a6621 2506 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2507
7ec99d62 2508 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2509 if (ret || !mem)
7a81b88c
KH
2510 return ret;
2511
7ec99d62 2512 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2513 return 0;
8a9f3ccd
BS
2514}
2515
7a81b88c
KH
2516int mem_cgroup_newpage_charge(struct page *page,
2517 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2518{
f8d66542 2519 if (mem_cgroup_disabled())
cede86ac 2520 return 0;
69029cd5
KH
2521 /*
2522 * If already mapped, we don't have to account.
2523 * If page cache, page->mapping has address_space.
2524 * But page->mapping may have out-of-use anon_vma pointer,
2525 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2526 * is NULL.
2527 */
2528 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2529 return 0;
2530 if (unlikely(!mm))
2531 mm = &init_mm;
217bc319 2532 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2533 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2534}
2535
83aae4c7
DN
2536static void
2537__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2538 enum charge_type ctype);
2539
5a6475a4
KH
2540static void
2541__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2542 enum charge_type ctype)
2543{
2544 struct page_cgroup *pc = lookup_page_cgroup(page);
2545 /*
2546 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2547 * is already on LRU. It means the page may on some other page_cgroup's
2548 * LRU. Take care of it.
2549 */
2550 mem_cgroup_lru_del_before_commit(page);
2551 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2552 mem_cgroup_lru_add_after_commit(page);
2553 return;
2554}
2555
e1a1cd59
BS
2556int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2557 gfp_t gfp_mask)
8697d331 2558{
5a6475a4 2559 struct mem_cgroup *mem = NULL;
b5a84319
KH
2560 int ret;
2561
f8d66542 2562 if (mem_cgroup_disabled())
cede86ac 2563 return 0;
52d4b9ac
KH
2564 if (PageCompound(page))
2565 return 0;
accf163e
KH
2566 /*
2567 * Corner case handling. This is called from add_to_page_cache()
2568 * in usual. But some FS (shmem) precharges this page before calling it
2569 * and call add_to_page_cache() with GFP_NOWAIT.
2570 *
2571 * For GFP_NOWAIT case, the page may be pre-charged before calling
2572 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2573 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2574 * And when the page is SwapCache, it should take swap information
2575 * into account. This is under lock_page() now.
accf163e
KH
2576 */
2577 if (!(gfp_mask & __GFP_WAIT)) {
2578 struct page_cgroup *pc;
2579
52d4b9ac
KH
2580 pc = lookup_page_cgroup(page);
2581 if (!pc)
2582 return 0;
2583 lock_page_cgroup(pc);
2584 if (PageCgroupUsed(pc)) {
2585 unlock_page_cgroup(pc);
accf163e
KH
2586 return 0;
2587 }
52d4b9ac 2588 unlock_page_cgroup(pc);
accf163e
KH
2589 }
2590
73045c47 2591 if (unlikely(!mm))
8697d331 2592 mm = &init_mm;
accf163e 2593
5a6475a4
KH
2594 if (page_is_file_cache(page)) {
2595 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2596 if (ret || !mem)
2597 return ret;
b5a84319 2598
5a6475a4
KH
2599 /*
2600 * FUSE reuses pages without going through the final
2601 * put that would remove them from the LRU list, make
2602 * sure that they get relinked properly.
2603 */
2604 __mem_cgroup_commit_charge_lrucare(page, mem,
2605 MEM_CGROUP_CHARGE_TYPE_CACHE);
2606 return ret;
2607 }
83aae4c7
DN
2608 /* shmem */
2609 if (PageSwapCache(page)) {
2610 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2611 if (!ret)
2612 __mem_cgroup_commit_charge_swapin(page, mem,
2613 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2614 } else
2615 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2616 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2617
b5a84319 2618 return ret;
e8589cc1
KH
2619}
2620
54595fe2
KH
2621/*
2622 * While swap-in, try_charge -> commit or cancel, the page is locked.
2623 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2624 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2625 * "commit()" or removed by "cancel()"
2626 */
8c7c6e34
KH
2627int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2628 struct page *page,
2629 gfp_t mask, struct mem_cgroup **ptr)
2630{
2631 struct mem_cgroup *mem;
54595fe2 2632 int ret;
8c7c6e34 2633
56039efa
KH
2634 *ptr = NULL;
2635
f8d66542 2636 if (mem_cgroup_disabled())
8c7c6e34
KH
2637 return 0;
2638
2639 if (!do_swap_account)
2640 goto charge_cur_mm;
8c7c6e34
KH
2641 /*
2642 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2643 * the pte, and even removed page from swap cache: in those cases
2644 * do_swap_page()'s pte_same() test will fail; but there's also a
2645 * KSM case which does need to charge the page.
8c7c6e34
KH
2646 */
2647 if (!PageSwapCache(page))
407f9c8b 2648 goto charge_cur_mm;
e42d9d5d 2649 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2650 if (!mem)
2651 goto charge_cur_mm;
8c7c6e34 2652 *ptr = mem;
7ec99d62 2653 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2654 css_put(&mem->css);
2655 return ret;
8c7c6e34
KH
2656charge_cur_mm:
2657 if (unlikely(!mm))
2658 mm = &init_mm;
7ec99d62 2659 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2660}
2661
83aae4c7
DN
2662static void
2663__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2664 enum charge_type ctype)
7a81b88c 2665{
f8d66542 2666 if (mem_cgroup_disabled())
7a81b88c
KH
2667 return;
2668 if (!ptr)
2669 return;
88703267 2670 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2671
2672 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2673 /*
2674 * Now swap is on-memory. This means this page may be
2675 * counted both as mem and swap....double count.
03f3c433
KH
2676 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2677 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2678 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2679 */
03f3c433 2680 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2681 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2682 unsigned short id;
8c7c6e34 2683 struct mem_cgroup *memcg;
a3b2d692
KH
2684
2685 id = swap_cgroup_record(ent, 0);
2686 rcu_read_lock();
2687 memcg = mem_cgroup_lookup(id);
8c7c6e34 2688 if (memcg) {
a3b2d692
KH
2689 /*
2690 * This recorded memcg can be obsolete one. So, avoid
2691 * calling css_tryget
2692 */
0c3e73e8 2693 if (!mem_cgroup_is_root(memcg))
4e649152 2694 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2695 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2696 mem_cgroup_put(memcg);
2697 }
a3b2d692 2698 rcu_read_unlock();
8c7c6e34 2699 }
88703267
KH
2700 /*
2701 * At swapin, we may charge account against cgroup which has no tasks.
2702 * So, rmdir()->pre_destroy() can be called while we do this charge.
2703 * In that case, we need to call pre_destroy() again. check it here.
2704 */
2705 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2706}
2707
83aae4c7
DN
2708void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2709{
2710 __mem_cgroup_commit_charge_swapin(page, ptr,
2711 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2712}
2713
7a81b88c
KH
2714void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2715{
f8d66542 2716 if (mem_cgroup_disabled())
7a81b88c
KH
2717 return;
2718 if (!mem)
2719 return;
e7018b8d 2720 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
2721}
2722
7ec99d62
JW
2723static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2724 unsigned int nr_pages,
2725 const enum charge_type ctype)
569b846d
KH
2726{
2727 struct memcg_batch_info *batch = NULL;
2728 bool uncharge_memsw = true;
7ec99d62 2729
569b846d
KH
2730 /* If swapout, usage of swap doesn't decrease */
2731 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2732 uncharge_memsw = false;
569b846d
KH
2733
2734 batch = &current->memcg_batch;
2735 /*
2736 * In usual, we do css_get() when we remember memcg pointer.
2737 * But in this case, we keep res->usage until end of a series of
2738 * uncharges. Then, it's ok to ignore memcg's refcnt.
2739 */
2740 if (!batch->memcg)
2741 batch->memcg = mem;
3c11ecf4
KH
2742 /*
2743 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2744 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2745 * the same cgroup and we have chance to coalesce uncharges.
2746 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2747 * because we want to do uncharge as soon as possible.
2748 */
2749
2750 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2751 goto direct_uncharge;
2752
7ec99d62 2753 if (nr_pages > 1)
ec168510
AA
2754 goto direct_uncharge;
2755
569b846d
KH
2756 /*
2757 * In typical case, batch->memcg == mem. This means we can
2758 * merge a series of uncharges to an uncharge of res_counter.
2759 * If not, we uncharge res_counter ony by one.
2760 */
2761 if (batch->memcg != mem)
2762 goto direct_uncharge;
2763 /* remember freed charge and uncharge it later */
7ffd4ca7 2764 batch->nr_pages++;
569b846d 2765 if (uncharge_memsw)
7ffd4ca7 2766 batch->memsw_nr_pages++;
569b846d
KH
2767 return;
2768direct_uncharge:
7ec99d62 2769 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 2770 if (uncharge_memsw)
7ec99d62 2771 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
2772 if (unlikely(batch->memcg != mem))
2773 memcg_oom_recover(mem);
569b846d
KH
2774 return;
2775}
7a81b88c 2776
8a9f3ccd 2777/*
69029cd5 2778 * uncharge if !page_mapped(page)
8a9f3ccd 2779 */
8c7c6e34 2780static struct mem_cgroup *
69029cd5 2781__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2782{
8c7c6e34 2783 struct mem_cgroup *mem = NULL;
7ec99d62
JW
2784 unsigned int nr_pages = 1;
2785 struct page_cgroup *pc;
8a9f3ccd 2786
f8d66542 2787 if (mem_cgroup_disabled())
8c7c6e34 2788 return NULL;
4077960e 2789
d13d1443 2790 if (PageSwapCache(page))
8c7c6e34 2791 return NULL;
d13d1443 2792
37c2ac78 2793 if (PageTransHuge(page)) {
7ec99d62 2794 nr_pages <<= compound_order(page);
37c2ac78
AA
2795 VM_BUG_ON(!PageTransHuge(page));
2796 }
8697d331 2797 /*
3c541e14 2798 * Check if our page_cgroup is valid
8697d331 2799 */
52d4b9ac
KH
2800 pc = lookup_page_cgroup(page);
2801 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2802 return NULL;
b9c565d5 2803
52d4b9ac 2804 lock_page_cgroup(pc);
d13d1443 2805
8c7c6e34
KH
2806 mem = pc->mem_cgroup;
2807
d13d1443
KH
2808 if (!PageCgroupUsed(pc))
2809 goto unlock_out;
2810
2811 switch (ctype) {
2812 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2813 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2814 /* See mem_cgroup_prepare_migration() */
2815 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2816 goto unlock_out;
2817 break;
2818 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2819 if (!PageAnon(page)) { /* Shared memory */
2820 if (page->mapping && !page_is_file_cache(page))
2821 goto unlock_out;
2822 } else if (page_mapped(page)) /* Anon */
2823 goto unlock_out;
2824 break;
2825 default:
2826 break;
52d4b9ac 2827 }
d13d1443 2828
7ec99d62 2829 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 2830
52d4b9ac 2831 ClearPageCgroupUsed(pc);
544122e5
KH
2832 /*
2833 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2834 * freed from LRU. This is safe because uncharged page is expected not
2835 * to be reused (freed soon). Exception is SwapCache, it's handled by
2836 * special functions.
2837 */
b9c565d5 2838
52d4b9ac 2839 unlock_page_cgroup(pc);
f75ca962
KH
2840 /*
2841 * even after unlock, we have mem->res.usage here and this memcg
2842 * will never be freed.
2843 */
d2265e6f 2844 memcg_check_events(mem, page);
f75ca962
KH
2845 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2846 mem_cgroup_swap_statistics(mem, true);
2847 mem_cgroup_get(mem);
2848 }
2849 if (!mem_cgroup_is_root(mem))
7ec99d62 2850 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 2851
8c7c6e34 2852 return mem;
d13d1443
KH
2853
2854unlock_out:
2855 unlock_page_cgroup(pc);
8c7c6e34 2856 return NULL;
3c541e14
BS
2857}
2858
69029cd5
KH
2859void mem_cgroup_uncharge_page(struct page *page)
2860{
52d4b9ac
KH
2861 /* early check. */
2862 if (page_mapped(page))
2863 return;
2864 if (page->mapping && !PageAnon(page))
2865 return;
69029cd5
KH
2866 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2867}
2868
2869void mem_cgroup_uncharge_cache_page(struct page *page)
2870{
2871 VM_BUG_ON(page_mapped(page));
b7abea96 2872 VM_BUG_ON(page->mapping);
69029cd5
KH
2873 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2874}
2875
569b846d
KH
2876/*
2877 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2878 * In that cases, pages are freed continuously and we can expect pages
2879 * are in the same memcg. All these calls itself limits the number of
2880 * pages freed at once, then uncharge_start/end() is called properly.
2881 * This may be called prural(2) times in a context,
2882 */
2883
2884void mem_cgroup_uncharge_start(void)
2885{
2886 current->memcg_batch.do_batch++;
2887 /* We can do nest. */
2888 if (current->memcg_batch.do_batch == 1) {
2889 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
2890 current->memcg_batch.nr_pages = 0;
2891 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
2892 }
2893}
2894
2895void mem_cgroup_uncharge_end(void)
2896{
2897 struct memcg_batch_info *batch = &current->memcg_batch;
2898
2899 if (!batch->do_batch)
2900 return;
2901
2902 batch->do_batch--;
2903 if (batch->do_batch) /* If stacked, do nothing. */
2904 return;
2905
2906 if (!batch->memcg)
2907 return;
2908 /*
2909 * This "batch->memcg" is valid without any css_get/put etc...
2910 * bacause we hide charges behind us.
2911 */
7ffd4ca7
JW
2912 if (batch->nr_pages)
2913 res_counter_uncharge(&batch->memcg->res,
2914 batch->nr_pages * PAGE_SIZE);
2915 if (batch->memsw_nr_pages)
2916 res_counter_uncharge(&batch->memcg->memsw,
2917 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 2918 memcg_oom_recover(batch->memcg);
569b846d
KH
2919 /* forget this pointer (for sanity check) */
2920 batch->memcg = NULL;
2921}
2922
e767e056 2923#ifdef CONFIG_SWAP
8c7c6e34 2924/*
e767e056 2925 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2926 * memcg information is recorded to swap_cgroup of "ent"
2927 */
8a9478ca
KH
2928void
2929mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2930{
2931 struct mem_cgroup *memcg;
8a9478ca
KH
2932 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2933
2934 if (!swapout) /* this was a swap cache but the swap is unused ! */
2935 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2936
2937 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2938
f75ca962
KH
2939 /*
2940 * record memcg information, if swapout && memcg != NULL,
2941 * mem_cgroup_get() was called in uncharge().
2942 */
2943 if (do_swap_account && swapout && memcg)
a3b2d692 2944 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2945}
e767e056 2946#endif
8c7c6e34
KH
2947
2948#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2949/*
2950 * called from swap_entry_free(). remove record in swap_cgroup and
2951 * uncharge "memsw" account.
2952 */
2953void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2954{
8c7c6e34 2955 struct mem_cgroup *memcg;
a3b2d692 2956 unsigned short id;
8c7c6e34
KH
2957
2958 if (!do_swap_account)
2959 return;
2960
a3b2d692
KH
2961 id = swap_cgroup_record(ent, 0);
2962 rcu_read_lock();
2963 memcg = mem_cgroup_lookup(id);
8c7c6e34 2964 if (memcg) {
a3b2d692
KH
2965 /*
2966 * We uncharge this because swap is freed.
2967 * This memcg can be obsolete one. We avoid calling css_tryget
2968 */
0c3e73e8 2969 if (!mem_cgroup_is_root(memcg))
4e649152 2970 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2971 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2972 mem_cgroup_put(memcg);
2973 }
a3b2d692 2974 rcu_read_unlock();
d13d1443 2975}
02491447
DN
2976
2977/**
2978 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2979 * @entry: swap entry to be moved
2980 * @from: mem_cgroup which the entry is moved from
2981 * @to: mem_cgroup which the entry is moved to
483c30b5 2982 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2983 *
2984 * It succeeds only when the swap_cgroup's record for this entry is the same
2985 * as the mem_cgroup's id of @from.
2986 *
2987 * Returns 0 on success, -EINVAL on failure.
2988 *
2989 * The caller must have charged to @to, IOW, called res_counter_charge() about
2990 * both res and memsw, and called css_get().
2991 */
2992static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2993 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2994{
2995 unsigned short old_id, new_id;
2996
2997 old_id = css_id(&from->css);
2998 new_id = css_id(&to->css);
2999
3000 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3001 mem_cgroup_swap_statistics(from, false);
483c30b5 3002 mem_cgroup_swap_statistics(to, true);
02491447 3003 /*
483c30b5
DN
3004 * This function is only called from task migration context now.
3005 * It postpones res_counter and refcount handling till the end
3006 * of task migration(mem_cgroup_clear_mc()) for performance
3007 * improvement. But we cannot postpone mem_cgroup_get(to)
3008 * because if the process that has been moved to @to does
3009 * swap-in, the refcount of @to might be decreased to 0.
02491447 3010 */
02491447 3011 mem_cgroup_get(to);
483c30b5
DN
3012 if (need_fixup) {
3013 if (!mem_cgroup_is_root(from))
3014 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3015 mem_cgroup_put(from);
3016 /*
3017 * we charged both to->res and to->memsw, so we should
3018 * uncharge to->res.
3019 */
3020 if (!mem_cgroup_is_root(to))
3021 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3022 }
02491447
DN
3023 return 0;
3024 }
3025 return -EINVAL;
3026}
3027#else
3028static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3029 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3030{
3031 return -EINVAL;
3032}
8c7c6e34 3033#endif
d13d1443 3034
ae41be37 3035/*
01b1ae63
KH
3036 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3037 * page belongs to.
ae41be37 3038 */
ac39cf8c 3039int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3040 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3041{
e8589cc1 3042 struct mem_cgroup *mem = NULL;
7ec99d62 3043 struct page_cgroup *pc;
ac39cf8c 3044 enum charge_type ctype;
e8589cc1 3045 int ret = 0;
8869b8f6 3046
56039efa
KH
3047 *ptr = NULL;
3048
ec168510 3049 VM_BUG_ON(PageTransHuge(page));
f8d66542 3050 if (mem_cgroup_disabled())
4077960e
BS
3051 return 0;
3052
52d4b9ac
KH
3053 pc = lookup_page_cgroup(page);
3054 lock_page_cgroup(pc);
3055 if (PageCgroupUsed(pc)) {
e8589cc1
KH
3056 mem = pc->mem_cgroup;
3057 css_get(&mem->css);
ac39cf8c 3058 /*
3059 * At migrating an anonymous page, its mapcount goes down
3060 * to 0 and uncharge() will be called. But, even if it's fully
3061 * unmapped, migration may fail and this page has to be
3062 * charged again. We set MIGRATION flag here and delay uncharge
3063 * until end_migration() is called
3064 *
3065 * Corner Case Thinking
3066 * A)
3067 * When the old page was mapped as Anon and it's unmap-and-freed
3068 * while migration was ongoing.
3069 * If unmap finds the old page, uncharge() of it will be delayed
3070 * until end_migration(). If unmap finds a new page, it's
3071 * uncharged when it make mapcount to be 1->0. If unmap code
3072 * finds swap_migration_entry, the new page will not be mapped
3073 * and end_migration() will find it(mapcount==0).
3074 *
3075 * B)
3076 * When the old page was mapped but migraion fails, the kernel
3077 * remaps it. A charge for it is kept by MIGRATION flag even
3078 * if mapcount goes down to 0. We can do remap successfully
3079 * without charging it again.
3080 *
3081 * C)
3082 * The "old" page is under lock_page() until the end of
3083 * migration, so, the old page itself will not be swapped-out.
3084 * If the new page is swapped out before end_migraton, our
3085 * hook to usual swap-out path will catch the event.
3086 */
3087 if (PageAnon(page))
3088 SetPageCgroupMigration(pc);
e8589cc1 3089 }
52d4b9ac 3090 unlock_page_cgroup(pc);
ac39cf8c 3091 /*
3092 * If the page is not charged at this point,
3093 * we return here.
3094 */
3095 if (!mem)
3096 return 0;
01b1ae63 3097
93d5c9be 3098 *ptr = mem;
7ec99d62 3099 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c 3100 css_put(&mem->css);/* drop extra refcnt */
3101 if (ret || *ptr == NULL) {
3102 if (PageAnon(page)) {
3103 lock_page_cgroup(pc);
3104 ClearPageCgroupMigration(pc);
3105 unlock_page_cgroup(pc);
3106 /*
3107 * The old page may be fully unmapped while we kept it.
3108 */
3109 mem_cgroup_uncharge_page(page);
3110 }
3111 return -ENOMEM;
e8589cc1 3112 }
ac39cf8c 3113 /*
3114 * We charge new page before it's used/mapped. So, even if unlock_page()
3115 * is called before end_migration, we can catch all events on this new
3116 * page. In the case new page is migrated but not remapped, new page's
3117 * mapcount will be finally 0 and we call uncharge in end_migration().
3118 */
3119 pc = lookup_page_cgroup(newpage);
3120 if (PageAnon(page))
3121 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3122 else if (page_is_file_cache(page))
3123 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3124 else
3125 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 3126 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3127 return ret;
ae41be37 3128}
8869b8f6 3129
69029cd5 3130/* remove redundant charge if migration failed*/
01b1ae63 3131void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3132 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3133{
ac39cf8c 3134 struct page *used, *unused;
01b1ae63 3135 struct page_cgroup *pc;
01b1ae63
KH
3136
3137 if (!mem)
3138 return;
ac39cf8c 3139 /* blocks rmdir() */
88703267 3140 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3141 if (!migration_ok) {
ac39cf8c 3142 used = oldpage;
3143 unused = newpage;
01b1ae63 3144 } else {
ac39cf8c 3145 used = newpage;
01b1ae63
KH
3146 unused = oldpage;
3147 }
69029cd5 3148 /*
ac39cf8c 3149 * We disallowed uncharge of pages under migration because mapcount
3150 * of the page goes down to zero, temporarly.
3151 * Clear the flag and check the page should be charged.
01b1ae63 3152 */
ac39cf8c 3153 pc = lookup_page_cgroup(oldpage);
3154 lock_page_cgroup(pc);
3155 ClearPageCgroupMigration(pc);
3156 unlock_page_cgroup(pc);
01b1ae63 3157
ac39cf8c 3158 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3159
01b1ae63 3160 /*
ac39cf8c 3161 * If a page is a file cache, radix-tree replacement is very atomic
3162 * and we can skip this check. When it was an Anon page, its mapcount
3163 * goes down to 0. But because we added MIGRATION flage, it's not
3164 * uncharged yet. There are several case but page->mapcount check
3165 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3166 * check. (see prepare_charge() also)
69029cd5 3167 */
ac39cf8c 3168 if (PageAnon(used))
3169 mem_cgroup_uncharge_page(used);
88703267 3170 /*
ac39cf8c 3171 * At migration, we may charge account against cgroup which has no
3172 * tasks.
88703267
KH
3173 * So, rmdir()->pre_destroy() can be called while we do this charge.
3174 * In that case, we need to call pre_destroy() again. check it here.
3175 */
3176 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3177}
78fb7466 3178
c9b0ed51 3179/*
ae3abae6
DN
3180 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3181 * Calling hierarchical_reclaim is not enough because we should update
3182 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3183 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3184 * not from the memcg which this page would be charged to.
3185 * try_charge_swapin does all of these works properly.
c9b0ed51 3186 */
ae3abae6 3187int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3188 struct mm_struct *mm,
3189 gfp_t gfp_mask)
c9b0ed51 3190{
56039efa 3191 struct mem_cgroup *mem;
ae3abae6 3192 int ret;
c9b0ed51 3193
f8d66542 3194 if (mem_cgroup_disabled())
cede86ac 3195 return 0;
c9b0ed51 3196
ae3abae6
DN
3197 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3198 if (!ret)
3199 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3200
ae3abae6 3201 return ret;
c9b0ed51
KH
3202}
3203
f212ad7c
DN
3204#ifdef CONFIG_DEBUG_VM
3205static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3206{
3207 struct page_cgroup *pc;
3208
3209 pc = lookup_page_cgroup(page);
3210 if (likely(pc) && PageCgroupUsed(pc))
3211 return pc;
3212 return NULL;
3213}
3214
3215bool mem_cgroup_bad_page_check(struct page *page)
3216{
3217 if (mem_cgroup_disabled())
3218 return false;
3219
3220 return lookup_page_cgroup_used(page) != NULL;
3221}
3222
3223void mem_cgroup_print_bad_page(struct page *page)
3224{
3225 struct page_cgroup *pc;
3226
3227 pc = lookup_page_cgroup_used(page);
3228 if (pc) {
3229 int ret = -1;
3230 char *path;
3231
3232 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3233 pc, pc->flags, pc->mem_cgroup);
3234
3235 path = kmalloc(PATH_MAX, GFP_KERNEL);
3236 if (path) {
3237 rcu_read_lock();
3238 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3239 path, PATH_MAX);
3240 rcu_read_unlock();
3241 }
3242
3243 printk(KERN_CONT "(%s)\n",
3244 (ret < 0) ? "cannot get the path" : path);
3245 kfree(path);
3246 }
3247}
3248#endif
3249
8c7c6e34
KH
3250static DEFINE_MUTEX(set_limit_mutex);
3251
d38d2a75 3252static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3253 unsigned long long val)
628f4235 3254{
81d39c20 3255 int retry_count;
3c11ecf4 3256 u64 memswlimit, memlimit;
628f4235 3257 int ret = 0;
81d39c20
KH
3258 int children = mem_cgroup_count_children(memcg);
3259 u64 curusage, oldusage;
3c11ecf4 3260 int enlarge;
81d39c20
KH
3261
3262 /*
3263 * For keeping hierarchical_reclaim simple, how long we should retry
3264 * is depends on callers. We set our retry-count to be function
3265 * of # of children which we should visit in this loop.
3266 */
3267 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3268
3269 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3270
3c11ecf4 3271 enlarge = 0;
8c7c6e34 3272 while (retry_count) {
628f4235
KH
3273 if (signal_pending(current)) {
3274 ret = -EINTR;
3275 break;
3276 }
8c7c6e34
KH
3277 /*
3278 * Rather than hide all in some function, I do this in
3279 * open coded manner. You see what this really does.
3280 * We have to guarantee mem->res.limit < mem->memsw.limit.
3281 */
3282 mutex_lock(&set_limit_mutex);
3283 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3284 if (memswlimit < val) {
3285 ret = -EINVAL;
3286 mutex_unlock(&set_limit_mutex);
628f4235
KH
3287 break;
3288 }
3c11ecf4
KH
3289
3290 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3291 if (memlimit < val)
3292 enlarge = 1;
3293
8c7c6e34 3294 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3295 if (!ret) {
3296 if (memswlimit == val)
3297 memcg->memsw_is_minimum = true;
3298 else
3299 memcg->memsw_is_minimum = false;
3300 }
8c7c6e34
KH
3301 mutex_unlock(&set_limit_mutex);
3302
3303 if (!ret)
3304 break;
3305
aa20d489 3306 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3307 MEM_CGROUP_RECLAIM_SHRINK,
3308 NULL);
81d39c20
KH
3309 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3310 /* Usage is reduced ? */
3311 if (curusage >= oldusage)
3312 retry_count--;
3313 else
3314 oldusage = curusage;
8c7c6e34 3315 }
3c11ecf4
KH
3316 if (!ret && enlarge)
3317 memcg_oom_recover(memcg);
14797e23 3318
8c7c6e34
KH
3319 return ret;
3320}
3321
338c8431
LZ
3322static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3323 unsigned long long val)
8c7c6e34 3324{
81d39c20 3325 int retry_count;
3c11ecf4 3326 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3327 int children = mem_cgroup_count_children(memcg);
3328 int ret = -EBUSY;
3c11ecf4 3329 int enlarge = 0;
8c7c6e34 3330
81d39c20
KH
3331 /* see mem_cgroup_resize_res_limit */
3332 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3333 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3334 while (retry_count) {
3335 if (signal_pending(current)) {
3336 ret = -EINTR;
3337 break;
3338 }
3339 /*
3340 * Rather than hide all in some function, I do this in
3341 * open coded manner. You see what this really does.
3342 * We have to guarantee mem->res.limit < mem->memsw.limit.
3343 */
3344 mutex_lock(&set_limit_mutex);
3345 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3346 if (memlimit > val) {
3347 ret = -EINVAL;
3348 mutex_unlock(&set_limit_mutex);
3349 break;
3350 }
3c11ecf4
KH
3351 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3352 if (memswlimit < val)
3353 enlarge = 1;
8c7c6e34 3354 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3355 if (!ret) {
3356 if (memlimit == val)
3357 memcg->memsw_is_minimum = true;
3358 else
3359 memcg->memsw_is_minimum = false;
3360 }
8c7c6e34
KH
3361 mutex_unlock(&set_limit_mutex);
3362
3363 if (!ret)
3364 break;
3365
4e416953 3366 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3367 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3368 MEM_CGROUP_RECLAIM_SHRINK,
3369 NULL);
8c7c6e34 3370 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3371 /* Usage is reduced ? */
8c7c6e34 3372 if (curusage >= oldusage)
628f4235 3373 retry_count--;
81d39c20
KH
3374 else
3375 oldusage = curusage;
628f4235 3376 }
3c11ecf4
KH
3377 if (!ret && enlarge)
3378 memcg_oom_recover(memcg);
628f4235
KH
3379 return ret;
3380}
3381
4e416953 3382unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3383 gfp_t gfp_mask,
3384 unsigned long *total_scanned)
4e416953
BS
3385{
3386 unsigned long nr_reclaimed = 0;
3387 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3388 unsigned long reclaimed;
3389 int loop = 0;
3390 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3391 unsigned long long excess;
0ae5e89c 3392 unsigned long nr_scanned;
4e416953
BS
3393
3394 if (order > 0)
3395 return 0;
3396
00918b6a 3397 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3398 /*
3399 * This loop can run a while, specially if mem_cgroup's continuously
3400 * keep exceeding their soft limit and putting the system under
3401 * pressure
3402 */
3403 do {
3404 if (next_mz)
3405 mz = next_mz;
3406 else
3407 mz = mem_cgroup_largest_soft_limit_node(mctz);
3408 if (!mz)
3409 break;
3410
0ae5e89c 3411 nr_scanned = 0;
4e416953
BS
3412 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3413 gfp_mask,
0ae5e89c
YH
3414 MEM_CGROUP_RECLAIM_SOFT,
3415 &nr_scanned);
4e416953 3416 nr_reclaimed += reclaimed;
0ae5e89c 3417 *total_scanned += nr_scanned;
4e416953
BS
3418 spin_lock(&mctz->lock);
3419
3420 /*
3421 * If we failed to reclaim anything from this memory cgroup
3422 * it is time to move on to the next cgroup
3423 */
3424 next_mz = NULL;
3425 if (!reclaimed) {
3426 do {
3427 /*
3428 * Loop until we find yet another one.
3429 *
3430 * By the time we get the soft_limit lock
3431 * again, someone might have aded the
3432 * group back on the RB tree. Iterate to
3433 * make sure we get a different mem.
3434 * mem_cgroup_largest_soft_limit_node returns
3435 * NULL if no other cgroup is present on
3436 * the tree
3437 */
3438 next_mz =
3439 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3440 if (next_mz == mz)
4e416953 3441 css_put(&next_mz->mem->css);
39cc98f1 3442 else /* next_mz == NULL or other memcg */
4e416953
BS
3443 break;
3444 } while (1);
3445 }
4e416953 3446 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3447 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3448 /*
3449 * One school of thought says that we should not add
3450 * back the node to the tree if reclaim returns 0.
3451 * But our reclaim could return 0, simply because due
3452 * to priority we are exposing a smaller subset of
3453 * memory to reclaim from. Consider this as a longer
3454 * term TODO.
3455 */
ef8745c1
KH
3456 /* If excess == 0, no tree ops */
3457 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3458 spin_unlock(&mctz->lock);
3459 css_put(&mz->mem->css);
3460 loop++;
3461 /*
3462 * Could not reclaim anything and there are no more
3463 * mem cgroups to try or we seem to be looping without
3464 * reclaiming anything.
3465 */
3466 if (!nr_reclaimed &&
3467 (next_mz == NULL ||
3468 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3469 break;
3470 } while (!nr_reclaimed);
3471 if (next_mz)
3472 css_put(&next_mz->mem->css);
3473 return nr_reclaimed;
3474}
3475
cc847582
KH
3476/*
3477 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3478 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3479 */
f817ed48 3480static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3481 int node, int zid, enum lru_list lru)
cc847582 3482{
08e552c6
KH
3483 struct zone *zone;
3484 struct mem_cgroup_per_zone *mz;
f817ed48 3485 struct page_cgroup *pc, *busy;
08e552c6 3486 unsigned long flags, loop;
072c56c1 3487 struct list_head *list;
f817ed48 3488 int ret = 0;
072c56c1 3489
08e552c6
KH
3490 zone = &NODE_DATA(node)->node_zones[zid];
3491 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3492 list = &mz->lists[lru];
cc847582 3493
f817ed48
KH
3494 loop = MEM_CGROUP_ZSTAT(mz, lru);
3495 /* give some margin against EBUSY etc...*/
3496 loop += 256;
3497 busy = NULL;
3498 while (loop--) {
5564e88b
JW
3499 struct page *page;
3500
f817ed48 3501 ret = 0;
08e552c6 3502 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3503 if (list_empty(list)) {
08e552c6 3504 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3505 break;
f817ed48
KH
3506 }
3507 pc = list_entry(list->prev, struct page_cgroup, lru);
3508 if (busy == pc) {
3509 list_move(&pc->lru, list);
648bcc77 3510 busy = NULL;
08e552c6 3511 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3512 continue;
3513 }
08e552c6 3514 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3515
6b3ae58e 3516 page = lookup_cgroup_page(pc);
5564e88b
JW
3517
3518 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3519 if (ret == -ENOMEM)
52d4b9ac 3520 break;
f817ed48
KH
3521
3522 if (ret == -EBUSY || ret == -EINVAL) {
3523 /* found lock contention or "pc" is obsolete. */
3524 busy = pc;
3525 cond_resched();
3526 } else
3527 busy = NULL;
cc847582 3528 }
08e552c6 3529
f817ed48
KH
3530 if (!ret && !list_empty(list))
3531 return -EBUSY;
3532 return ret;
cc847582
KH
3533}
3534
3535/*
3536 * make mem_cgroup's charge to be 0 if there is no task.
3537 * This enables deleting this mem_cgroup.
3538 */
c1e862c1 3539static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3540{
f817ed48
KH
3541 int ret;
3542 int node, zid, shrink;
3543 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3544 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3545
cc847582 3546 css_get(&mem->css);
f817ed48
KH
3547
3548 shrink = 0;
c1e862c1
KH
3549 /* should free all ? */
3550 if (free_all)
3551 goto try_to_free;
f817ed48 3552move_account:
fce66477 3553 do {
f817ed48 3554 ret = -EBUSY;
c1e862c1
KH
3555 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3556 goto out;
3557 ret = -EINTR;
3558 if (signal_pending(current))
cc847582 3559 goto out;
52d4b9ac
KH
3560 /* This is for making all *used* pages to be on LRU. */
3561 lru_add_drain_all();
cdec2e42 3562 drain_all_stock_sync();
f817ed48 3563 ret = 0;
32047e2a 3564 mem_cgroup_start_move(mem);
299b4eaa 3565 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3566 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3567 enum lru_list l;
f817ed48
KH
3568 for_each_lru(l) {
3569 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3570 node, zid, l);
f817ed48
KH
3571 if (ret)
3572 break;
3573 }
1ecaab2b 3574 }
f817ed48
KH
3575 if (ret)
3576 break;
3577 }
32047e2a 3578 mem_cgroup_end_move(mem);
3c11ecf4 3579 memcg_oom_recover(mem);
f817ed48
KH
3580 /* it seems parent cgroup doesn't have enough mem */
3581 if (ret == -ENOMEM)
3582 goto try_to_free;
52d4b9ac 3583 cond_resched();
fce66477
DN
3584 /* "ret" should also be checked to ensure all lists are empty. */
3585 } while (mem->res.usage > 0 || ret);
cc847582
KH
3586out:
3587 css_put(&mem->css);
3588 return ret;
f817ed48
KH
3589
3590try_to_free:
c1e862c1
KH
3591 /* returns EBUSY if there is a task or if we come here twice. */
3592 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3593 ret = -EBUSY;
3594 goto out;
3595 }
c1e862c1
KH
3596 /* we call try-to-free pages for make this cgroup empty */
3597 lru_add_drain_all();
f817ed48
KH
3598 /* try to free all pages in this cgroup */
3599 shrink = 1;
3600 while (nr_retries && mem->res.usage > 0) {
3601 int progress;
c1e862c1
KH
3602
3603 if (signal_pending(current)) {
3604 ret = -EINTR;
3605 goto out;
3606 }
a7885eb8
KM
3607 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3608 false, get_swappiness(mem));
c1e862c1 3609 if (!progress) {
f817ed48 3610 nr_retries--;
c1e862c1 3611 /* maybe some writeback is necessary */
8aa7e847 3612 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3613 }
f817ed48
KH
3614
3615 }
08e552c6 3616 lru_add_drain();
f817ed48 3617 /* try move_account...there may be some *locked* pages. */
fce66477 3618 goto move_account;
cc847582
KH
3619}
3620
c1e862c1
KH
3621int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3622{
3623 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3624}
3625
3626
18f59ea7
BS
3627static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3628{
3629 return mem_cgroup_from_cont(cont)->use_hierarchy;
3630}
3631
3632static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3633 u64 val)
3634{
3635 int retval = 0;
3636 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3637 struct cgroup *parent = cont->parent;
3638 struct mem_cgroup *parent_mem = NULL;
3639
3640 if (parent)
3641 parent_mem = mem_cgroup_from_cont(parent);
3642
3643 cgroup_lock();
3644 /*
af901ca1 3645 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3646 * in the child subtrees. If it is unset, then the change can
3647 * occur, provided the current cgroup has no children.
3648 *
3649 * For the root cgroup, parent_mem is NULL, we allow value to be
3650 * set if there are no children.
3651 */
3652 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3653 (val == 1 || val == 0)) {
3654 if (list_empty(&cont->children))
3655 mem->use_hierarchy = val;
3656 else
3657 retval = -EBUSY;
3658 } else
3659 retval = -EINVAL;
3660 cgroup_unlock();
3661
3662 return retval;
3663}
3664
0c3e73e8 3665
7a159cc9
JW
3666static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3667 enum mem_cgroup_stat_index idx)
0c3e73e8 3668{
7d74b06f 3669 struct mem_cgroup *iter;
7a159cc9 3670 long val = 0;
0c3e73e8 3671
7a159cc9 3672 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3673 for_each_mem_cgroup_tree(iter, mem)
3674 val += mem_cgroup_read_stat(iter, idx);
3675
3676 if (val < 0) /* race ? */
3677 val = 0;
3678 return val;
0c3e73e8
BS
3679}
3680
104f3928
KS
3681static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3682{
7d74b06f 3683 u64 val;
104f3928
KS
3684
3685 if (!mem_cgroup_is_root(mem)) {
3686 if (!swap)
3687 return res_counter_read_u64(&mem->res, RES_USAGE);
3688 else
3689 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3690 }
3691
7a159cc9
JW
3692 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3693 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3694
7d74b06f 3695 if (swap)
7a159cc9 3696 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3697
3698 return val << PAGE_SHIFT;
3699}
3700
2c3daa72 3701static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3702{
8c7c6e34 3703 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3704 u64 val;
8c7c6e34
KH
3705 int type, name;
3706
3707 type = MEMFILE_TYPE(cft->private);
3708 name = MEMFILE_ATTR(cft->private);
3709 switch (type) {
3710 case _MEM:
104f3928
KS
3711 if (name == RES_USAGE)
3712 val = mem_cgroup_usage(mem, false);
3713 else
0c3e73e8 3714 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3715 break;
3716 case _MEMSWAP:
104f3928
KS
3717 if (name == RES_USAGE)
3718 val = mem_cgroup_usage(mem, true);
3719 else
0c3e73e8 3720 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3721 break;
3722 default:
3723 BUG();
3724 break;
3725 }
3726 return val;
8cdea7c0 3727}
628f4235
KH
3728/*
3729 * The user of this function is...
3730 * RES_LIMIT.
3731 */
856c13aa
PM
3732static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3733 const char *buffer)
8cdea7c0 3734{
628f4235 3735 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3736 int type, name;
628f4235
KH
3737 unsigned long long val;
3738 int ret;
3739
8c7c6e34
KH
3740 type = MEMFILE_TYPE(cft->private);
3741 name = MEMFILE_ATTR(cft->private);
3742 switch (name) {
628f4235 3743 case RES_LIMIT:
4b3bde4c
BS
3744 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3745 ret = -EINVAL;
3746 break;
3747 }
628f4235
KH
3748 /* This function does all necessary parse...reuse it */
3749 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3750 if (ret)
3751 break;
3752 if (type == _MEM)
628f4235 3753 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3754 else
3755 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3756 break;
296c81d8
BS
3757 case RES_SOFT_LIMIT:
3758 ret = res_counter_memparse_write_strategy(buffer, &val);
3759 if (ret)
3760 break;
3761 /*
3762 * For memsw, soft limits are hard to implement in terms
3763 * of semantics, for now, we support soft limits for
3764 * control without swap
3765 */
3766 if (type == _MEM)
3767 ret = res_counter_set_soft_limit(&memcg->res, val);
3768 else
3769 ret = -EINVAL;
3770 break;
628f4235
KH
3771 default:
3772 ret = -EINVAL; /* should be BUG() ? */
3773 break;
3774 }
3775 return ret;
8cdea7c0
BS
3776}
3777
fee7b548
KH
3778static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3779 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3780{
3781 struct cgroup *cgroup;
3782 unsigned long long min_limit, min_memsw_limit, tmp;
3783
3784 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3785 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3786 cgroup = memcg->css.cgroup;
3787 if (!memcg->use_hierarchy)
3788 goto out;
3789
3790 while (cgroup->parent) {
3791 cgroup = cgroup->parent;
3792 memcg = mem_cgroup_from_cont(cgroup);
3793 if (!memcg->use_hierarchy)
3794 break;
3795 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3796 min_limit = min(min_limit, tmp);
3797 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3798 min_memsw_limit = min(min_memsw_limit, tmp);
3799 }
3800out:
3801 *mem_limit = min_limit;
3802 *memsw_limit = min_memsw_limit;
3803 return;
3804}
3805
29f2a4da 3806static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3807{
3808 struct mem_cgroup *mem;
8c7c6e34 3809 int type, name;
c84872e1
PE
3810
3811 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3812 type = MEMFILE_TYPE(event);
3813 name = MEMFILE_ATTR(event);
3814 switch (name) {
29f2a4da 3815 case RES_MAX_USAGE:
8c7c6e34
KH
3816 if (type == _MEM)
3817 res_counter_reset_max(&mem->res);
3818 else
3819 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3820 break;
3821 case RES_FAILCNT:
8c7c6e34
KH
3822 if (type == _MEM)
3823 res_counter_reset_failcnt(&mem->res);
3824 else
3825 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3826 break;
3827 }
f64c3f54 3828
85cc59db 3829 return 0;
c84872e1
PE
3830}
3831
7dc74be0
DN
3832static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3833 struct cftype *cft)
3834{
3835 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3836}
3837
02491447 3838#ifdef CONFIG_MMU
7dc74be0
DN
3839static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3840 struct cftype *cft, u64 val)
3841{
3842 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3843
3844 if (val >= (1 << NR_MOVE_TYPE))
3845 return -EINVAL;
3846 /*
3847 * We check this value several times in both in can_attach() and
3848 * attach(), so we need cgroup lock to prevent this value from being
3849 * inconsistent.
3850 */
3851 cgroup_lock();
3852 mem->move_charge_at_immigrate = val;
3853 cgroup_unlock();
3854
3855 return 0;
3856}
02491447
DN
3857#else
3858static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3859 struct cftype *cft, u64 val)
3860{
3861 return -ENOSYS;
3862}
3863#endif
7dc74be0 3864
14067bb3
KH
3865
3866/* For read statistics */
3867enum {
3868 MCS_CACHE,
3869 MCS_RSS,
d8046582 3870 MCS_FILE_MAPPED,
14067bb3
KH
3871 MCS_PGPGIN,
3872 MCS_PGPGOUT,
1dd3a273 3873 MCS_SWAP,
14067bb3
KH
3874 MCS_INACTIVE_ANON,
3875 MCS_ACTIVE_ANON,
3876 MCS_INACTIVE_FILE,
3877 MCS_ACTIVE_FILE,
3878 MCS_UNEVICTABLE,
3879 NR_MCS_STAT,
3880};
3881
3882struct mcs_total_stat {
3883 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3884};
3885
14067bb3
KH
3886struct {
3887 char *local_name;
3888 char *total_name;
3889} memcg_stat_strings[NR_MCS_STAT] = {
3890 {"cache", "total_cache"},
3891 {"rss", "total_rss"},
d69b042f 3892 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3893 {"pgpgin", "total_pgpgin"},
3894 {"pgpgout", "total_pgpgout"},
1dd3a273 3895 {"swap", "total_swap"},
14067bb3
KH
3896 {"inactive_anon", "total_inactive_anon"},
3897 {"active_anon", "total_active_anon"},
3898 {"inactive_file", "total_inactive_file"},
3899 {"active_file", "total_active_file"},
3900 {"unevictable", "total_unevictable"}
3901};
3902
3903
7d74b06f
KH
3904static void
3905mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3906{
14067bb3
KH
3907 s64 val;
3908
3909 /* per cpu stat */
c62b1a3b 3910 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3911 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3912 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3913 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3914 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3915 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 3916 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 3917 s->stat[MCS_PGPGIN] += val;
e9f8974f 3918 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 3919 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3920 if (do_swap_account) {
c62b1a3b 3921 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3922 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3923 }
14067bb3
KH
3924
3925 /* per zone stat */
3926 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3927 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3928 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3929 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3930 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3931 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3932 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3933 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3934 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3935 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3936}
3937
3938static void
3939mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3940{
7d74b06f
KH
3941 struct mem_cgroup *iter;
3942
3943 for_each_mem_cgroup_tree(iter, mem)
3944 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3945}
3946
c64745cf
PM
3947static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3948 struct cgroup_map_cb *cb)
d2ceb9b7 3949{
d2ceb9b7 3950 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3951 struct mcs_total_stat mystat;
d2ceb9b7
KH
3952 int i;
3953
14067bb3
KH
3954 memset(&mystat, 0, sizeof(mystat));
3955 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3956
1dd3a273
DN
3957 for (i = 0; i < NR_MCS_STAT; i++) {
3958 if (i == MCS_SWAP && !do_swap_account)
3959 continue;
14067bb3 3960 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3961 }
7b854121 3962
14067bb3 3963 /* Hierarchical information */
fee7b548
KH
3964 {
3965 unsigned long long limit, memsw_limit;
3966 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3967 cb->fill(cb, "hierarchical_memory_limit", limit);
3968 if (do_swap_account)
3969 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3970 }
7f016ee8 3971
14067bb3
KH
3972 memset(&mystat, 0, sizeof(mystat));
3973 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3974 for (i = 0; i < NR_MCS_STAT; i++) {
3975 if (i == MCS_SWAP && !do_swap_account)
3976 continue;
14067bb3 3977 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3978 }
14067bb3 3979
7f016ee8 3980#ifdef CONFIG_DEBUG_VM
c772be93 3981 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3982
3983 {
3984 int nid, zid;
3985 struct mem_cgroup_per_zone *mz;
3986 unsigned long recent_rotated[2] = {0, 0};
3987 unsigned long recent_scanned[2] = {0, 0};
3988
3989 for_each_online_node(nid)
3990 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3991 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3992
3993 recent_rotated[0] +=
3994 mz->reclaim_stat.recent_rotated[0];
3995 recent_rotated[1] +=
3996 mz->reclaim_stat.recent_rotated[1];
3997 recent_scanned[0] +=
3998 mz->reclaim_stat.recent_scanned[0];
3999 recent_scanned[1] +=
4000 mz->reclaim_stat.recent_scanned[1];
4001 }
4002 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4003 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4004 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4005 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4006 }
4007#endif
4008
d2ceb9b7
KH
4009 return 0;
4010}
4011
a7885eb8
KM
4012static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4013{
4014 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4015
4016 return get_swappiness(memcg);
4017}
4018
4019static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4020 u64 val)
4021{
4022 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4023 struct mem_cgroup *parent;
068b38c1 4024
a7885eb8
KM
4025 if (val > 100)
4026 return -EINVAL;
4027
4028 if (cgrp->parent == NULL)
4029 return -EINVAL;
4030
4031 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4032
4033 cgroup_lock();
4034
a7885eb8
KM
4035 /* If under hierarchy, only empty-root can set this value */
4036 if ((parent->use_hierarchy) ||
068b38c1
LZ
4037 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4038 cgroup_unlock();
a7885eb8 4039 return -EINVAL;
068b38c1 4040 }
a7885eb8 4041
a7885eb8 4042 memcg->swappiness = val;
a7885eb8 4043
068b38c1
LZ
4044 cgroup_unlock();
4045
a7885eb8
KM
4046 return 0;
4047}
4048
2e72b634
KS
4049static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4050{
4051 struct mem_cgroup_threshold_ary *t;
4052 u64 usage;
4053 int i;
4054
4055 rcu_read_lock();
4056 if (!swap)
2c488db2 4057 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4058 else
2c488db2 4059 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4060
4061 if (!t)
4062 goto unlock;
4063
4064 usage = mem_cgroup_usage(memcg, swap);
4065
4066 /*
4067 * current_threshold points to threshold just below usage.
4068 * If it's not true, a threshold was crossed after last
4069 * call of __mem_cgroup_threshold().
4070 */
5407a562 4071 i = t->current_threshold;
2e72b634
KS
4072
4073 /*
4074 * Iterate backward over array of thresholds starting from
4075 * current_threshold and check if a threshold is crossed.
4076 * If none of thresholds below usage is crossed, we read
4077 * only one element of the array here.
4078 */
4079 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4080 eventfd_signal(t->entries[i].eventfd, 1);
4081
4082 /* i = current_threshold + 1 */
4083 i++;
4084
4085 /*
4086 * Iterate forward over array of thresholds starting from
4087 * current_threshold+1 and check if a threshold is crossed.
4088 * If none of thresholds above usage is crossed, we read
4089 * only one element of the array here.
4090 */
4091 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4092 eventfd_signal(t->entries[i].eventfd, 1);
4093
4094 /* Update current_threshold */
5407a562 4095 t->current_threshold = i - 1;
2e72b634
KS
4096unlock:
4097 rcu_read_unlock();
4098}
4099
4100static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4101{
ad4ca5f4
KS
4102 while (memcg) {
4103 __mem_cgroup_threshold(memcg, false);
4104 if (do_swap_account)
4105 __mem_cgroup_threshold(memcg, true);
4106
4107 memcg = parent_mem_cgroup(memcg);
4108 }
2e72b634
KS
4109}
4110
4111static int compare_thresholds(const void *a, const void *b)
4112{
4113 const struct mem_cgroup_threshold *_a = a;
4114 const struct mem_cgroup_threshold *_b = b;
4115
4116 return _a->threshold - _b->threshold;
4117}
4118
7d74b06f 4119static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
4120{
4121 struct mem_cgroup_eventfd_list *ev;
4122
4123 list_for_each_entry(ev, &mem->oom_notify, list)
4124 eventfd_signal(ev->eventfd, 1);
4125 return 0;
4126}
4127
4128static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4129{
7d74b06f
KH
4130 struct mem_cgroup *iter;
4131
4132 for_each_mem_cgroup_tree(iter, mem)
4133 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4134}
4135
4136static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4137 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4138{
4139 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4140 struct mem_cgroup_thresholds *thresholds;
4141 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4142 int type = MEMFILE_TYPE(cft->private);
4143 u64 threshold, usage;
2c488db2 4144 int i, size, ret;
2e72b634
KS
4145
4146 ret = res_counter_memparse_write_strategy(args, &threshold);
4147 if (ret)
4148 return ret;
4149
4150 mutex_lock(&memcg->thresholds_lock);
2c488db2 4151
2e72b634 4152 if (type == _MEM)
2c488db2 4153 thresholds = &memcg->thresholds;
2e72b634 4154 else if (type == _MEMSWAP)
2c488db2 4155 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4156 else
4157 BUG();
4158
4159 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4160
4161 /* Check if a threshold crossed before adding a new one */
2c488db2 4162 if (thresholds->primary)
2e72b634
KS
4163 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4164
2c488db2 4165 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4166
4167 /* Allocate memory for new array of thresholds */
2c488db2 4168 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4169 GFP_KERNEL);
2c488db2 4170 if (!new) {
2e72b634
KS
4171 ret = -ENOMEM;
4172 goto unlock;
4173 }
2c488db2 4174 new->size = size;
2e72b634
KS
4175
4176 /* Copy thresholds (if any) to new array */
2c488db2
KS
4177 if (thresholds->primary) {
4178 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4179 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4180 }
4181
2e72b634 4182 /* Add new threshold */
2c488db2
KS
4183 new->entries[size - 1].eventfd = eventfd;
4184 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4185
4186 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4187 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4188 compare_thresholds, NULL);
4189
4190 /* Find current threshold */
2c488db2 4191 new->current_threshold = -1;
2e72b634 4192 for (i = 0; i < size; i++) {
2c488db2 4193 if (new->entries[i].threshold < usage) {
2e72b634 4194 /*
2c488db2
KS
4195 * new->current_threshold will not be used until
4196 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4197 * it here.
4198 */
2c488db2 4199 ++new->current_threshold;
2e72b634
KS
4200 }
4201 }
4202
2c488db2
KS
4203 /* Free old spare buffer and save old primary buffer as spare */
4204 kfree(thresholds->spare);
4205 thresholds->spare = thresholds->primary;
4206
4207 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4208
907860ed 4209 /* To be sure that nobody uses thresholds */
2e72b634
KS
4210 synchronize_rcu();
4211
2e72b634
KS
4212unlock:
4213 mutex_unlock(&memcg->thresholds_lock);
4214
4215 return ret;
4216}
4217
907860ed 4218static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4219 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4220{
4221 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4222 struct mem_cgroup_thresholds *thresholds;
4223 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4224 int type = MEMFILE_TYPE(cft->private);
4225 u64 usage;
2c488db2 4226 int i, j, size;
2e72b634
KS
4227
4228 mutex_lock(&memcg->thresholds_lock);
4229 if (type == _MEM)
2c488db2 4230 thresholds = &memcg->thresholds;
2e72b634 4231 else if (type == _MEMSWAP)
2c488db2 4232 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4233 else
4234 BUG();
4235
4236 /*
4237 * Something went wrong if we trying to unregister a threshold
4238 * if we don't have thresholds
4239 */
4240 BUG_ON(!thresholds);
4241
4242 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4243
4244 /* Check if a threshold crossed before removing */
4245 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4246
4247 /* Calculate new number of threshold */
2c488db2
KS
4248 size = 0;
4249 for (i = 0; i < thresholds->primary->size; i++) {
4250 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4251 size++;
4252 }
4253
2c488db2 4254 new = thresholds->spare;
907860ed 4255
2e72b634
KS
4256 /* Set thresholds array to NULL if we don't have thresholds */
4257 if (!size) {
2c488db2
KS
4258 kfree(new);
4259 new = NULL;
907860ed 4260 goto swap_buffers;
2e72b634
KS
4261 }
4262
2c488db2 4263 new->size = size;
2e72b634
KS
4264
4265 /* Copy thresholds and find current threshold */
2c488db2
KS
4266 new->current_threshold = -1;
4267 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4268 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4269 continue;
4270
2c488db2
KS
4271 new->entries[j] = thresholds->primary->entries[i];
4272 if (new->entries[j].threshold < usage) {
2e72b634 4273 /*
2c488db2 4274 * new->current_threshold will not be used
2e72b634
KS
4275 * until rcu_assign_pointer(), so it's safe to increment
4276 * it here.
4277 */
2c488db2 4278 ++new->current_threshold;
2e72b634
KS
4279 }
4280 j++;
4281 }
4282
907860ed 4283swap_buffers:
2c488db2
KS
4284 /* Swap primary and spare array */
4285 thresholds->spare = thresholds->primary;
4286 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4287
907860ed 4288 /* To be sure that nobody uses thresholds */
2e72b634
KS
4289 synchronize_rcu();
4290
2e72b634 4291 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4292}
c1e862c1 4293
9490ff27
KH
4294static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4295 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4296{
4297 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4298 struct mem_cgroup_eventfd_list *event;
4299 int type = MEMFILE_TYPE(cft->private);
4300
4301 BUG_ON(type != _OOM_TYPE);
4302 event = kmalloc(sizeof(*event), GFP_KERNEL);
4303 if (!event)
4304 return -ENOMEM;
4305
4306 mutex_lock(&memcg_oom_mutex);
4307
4308 event->eventfd = eventfd;
4309 list_add(&event->list, &memcg->oom_notify);
4310
4311 /* already in OOM ? */
4312 if (atomic_read(&memcg->oom_lock))
4313 eventfd_signal(eventfd, 1);
4314 mutex_unlock(&memcg_oom_mutex);
4315
4316 return 0;
4317}
4318
907860ed 4319static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4320 struct cftype *cft, struct eventfd_ctx *eventfd)
4321{
4322 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4323 struct mem_cgroup_eventfd_list *ev, *tmp;
4324 int type = MEMFILE_TYPE(cft->private);
4325
4326 BUG_ON(type != _OOM_TYPE);
4327
4328 mutex_lock(&memcg_oom_mutex);
4329
4330 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4331 if (ev->eventfd == eventfd) {
4332 list_del(&ev->list);
4333 kfree(ev);
4334 }
4335 }
4336
4337 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4338}
4339
3c11ecf4
KH
4340static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4341 struct cftype *cft, struct cgroup_map_cb *cb)
4342{
4343 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4344
4345 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4346
4347 if (atomic_read(&mem->oom_lock))
4348 cb->fill(cb, "under_oom", 1);
4349 else
4350 cb->fill(cb, "under_oom", 0);
4351 return 0;
4352}
4353
3c11ecf4
KH
4354static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4355 struct cftype *cft, u64 val)
4356{
4357 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4358 struct mem_cgroup *parent;
4359
4360 /* cannot set to root cgroup and only 0 and 1 are allowed */
4361 if (!cgrp->parent || !((val == 0) || (val == 1)))
4362 return -EINVAL;
4363
4364 parent = mem_cgroup_from_cont(cgrp->parent);
4365
4366 cgroup_lock();
4367 /* oom-kill-disable is a flag for subhierarchy. */
4368 if ((parent->use_hierarchy) ||
4369 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4370 cgroup_unlock();
4371 return -EINVAL;
4372 }
4373 mem->oom_kill_disable = val;
4d845ebf
KH
4374 if (!val)
4375 memcg_oom_recover(mem);
3c11ecf4
KH
4376 cgroup_unlock();
4377 return 0;
4378}
4379
8cdea7c0
BS
4380static struct cftype mem_cgroup_files[] = {
4381 {
0eea1030 4382 .name = "usage_in_bytes",
8c7c6e34 4383 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4384 .read_u64 = mem_cgroup_read,
9490ff27
KH
4385 .register_event = mem_cgroup_usage_register_event,
4386 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4387 },
c84872e1
PE
4388 {
4389 .name = "max_usage_in_bytes",
8c7c6e34 4390 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4391 .trigger = mem_cgroup_reset,
c84872e1
PE
4392 .read_u64 = mem_cgroup_read,
4393 },
8cdea7c0 4394 {
0eea1030 4395 .name = "limit_in_bytes",
8c7c6e34 4396 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4397 .write_string = mem_cgroup_write,
2c3daa72 4398 .read_u64 = mem_cgroup_read,
8cdea7c0 4399 },
296c81d8
BS
4400 {
4401 .name = "soft_limit_in_bytes",
4402 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4403 .write_string = mem_cgroup_write,
4404 .read_u64 = mem_cgroup_read,
4405 },
8cdea7c0
BS
4406 {
4407 .name = "failcnt",
8c7c6e34 4408 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4409 .trigger = mem_cgroup_reset,
2c3daa72 4410 .read_u64 = mem_cgroup_read,
8cdea7c0 4411 },
d2ceb9b7
KH
4412 {
4413 .name = "stat",
c64745cf 4414 .read_map = mem_control_stat_show,
d2ceb9b7 4415 },
c1e862c1
KH
4416 {
4417 .name = "force_empty",
4418 .trigger = mem_cgroup_force_empty_write,
4419 },
18f59ea7
BS
4420 {
4421 .name = "use_hierarchy",
4422 .write_u64 = mem_cgroup_hierarchy_write,
4423 .read_u64 = mem_cgroup_hierarchy_read,
4424 },
a7885eb8
KM
4425 {
4426 .name = "swappiness",
4427 .read_u64 = mem_cgroup_swappiness_read,
4428 .write_u64 = mem_cgroup_swappiness_write,
4429 },
7dc74be0
DN
4430 {
4431 .name = "move_charge_at_immigrate",
4432 .read_u64 = mem_cgroup_move_charge_read,
4433 .write_u64 = mem_cgroup_move_charge_write,
4434 },
9490ff27
KH
4435 {
4436 .name = "oom_control",
3c11ecf4
KH
4437 .read_map = mem_cgroup_oom_control_read,
4438 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4439 .register_event = mem_cgroup_oom_register_event,
4440 .unregister_event = mem_cgroup_oom_unregister_event,
4441 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4442 },
8cdea7c0
BS
4443};
4444
8c7c6e34
KH
4445#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4446static struct cftype memsw_cgroup_files[] = {
4447 {
4448 .name = "memsw.usage_in_bytes",
4449 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4450 .read_u64 = mem_cgroup_read,
9490ff27
KH
4451 .register_event = mem_cgroup_usage_register_event,
4452 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4453 },
4454 {
4455 .name = "memsw.max_usage_in_bytes",
4456 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4457 .trigger = mem_cgroup_reset,
4458 .read_u64 = mem_cgroup_read,
4459 },
4460 {
4461 .name = "memsw.limit_in_bytes",
4462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4463 .write_string = mem_cgroup_write,
4464 .read_u64 = mem_cgroup_read,
4465 },
4466 {
4467 .name = "memsw.failcnt",
4468 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4469 .trigger = mem_cgroup_reset,
4470 .read_u64 = mem_cgroup_read,
4471 },
4472};
4473
4474static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4475{
4476 if (!do_swap_account)
4477 return 0;
4478 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4479 ARRAY_SIZE(memsw_cgroup_files));
4480};
4481#else
4482static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4483{
4484 return 0;
4485}
4486#endif
4487
6d12e2d8
KH
4488static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4489{
4490 struct mem_cgroup_per_node *pn;
1ecaab2b 4491 struct mem_cgroup_per_zone *mz;
b69408e8 4492 enum lru_list l;
41e3355d 4493 int zone, tmp = node;
1ecaab2b
KH
4494 /*
4495 * This routine is called against possible nodes.
4496 * But it's BUG to call kmalloc() against offline node.
4497 *
4498 * TODO: this routine can waste much memory for nodes which will
4499 * never be onlined. It's better to use memory hotplug callback
4500 * function.
4501 */
41e3355d
KH
4502 if (!node_state(node, N_NORMAL_MEMORY))
4503 tmp = -1;
17295c88 4504 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4505 if (!pn)
4506 return 1;
1ecaab2b 4507
6d12e2d8 4508 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4509 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4510 mz = &pn->zoneinfo[zone];
b69408e8
CL
4511 for_each_lru(l)
4512 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4513 mz->usage_in_excess = 0;
4e416953
BS
4514 mz->on_tree = false;
4515 mz->mem = mem;
1ecaab2b 4516 }
6d12e2d8
KH
4517 return 0;
4518}
4519
1ecaab2b
KH
4520static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4521{
4522 kfree(mem->info.nodeinfo[node]);
4523}
4524
33327948
KH
4525static struct mem_cgroup *mem_cgroup_alloc(void)
4526{
4527 struct mem_cgroup *mem;
c62b1a3b 4528 int size = sizeof(struct mem_cgroup);
33327948 4529
c62b1a3b 4530 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4531 if (size < PAGE_SIZE)
17295c88 4532 mem = kzalloc(size, GFP_KERNEL);
33327948 4533 else
17295c88 4534 mem = vzalloc(size);
33327948 4535
e7bbcdf3
DC
4536 if (!mem)
4537 return NULL;
4538
c62b1a3b 4539 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4540 if (!mem->stat)
4541 goto out_free;
711d3d2c 4542 spin_lock_init(&mem->pcp_counter_lock);
33327948 4543 return mem;
d2e61b8d
DC
4544
4545out_free:
4546 if (size < PAGE_SIZE)
4547 kfree(mem);
4548 else
4549 vfree(mem);
4550 return NULL;
33327948
KH
4551}
4552
8c7c6e34
KH
4553/*
4554 * At destroying mem_cgroup, references from swap_cgroup can remain.
4555 * (scanning all at force_empty is too costly...)
4556 *
4557 * Instead of clearing all references at force_empty, we remember
4558 * the number of reference from swap_cgroup and free mem_cgroup when
4559 * it goes down to 0.
4560 *
8c7c6e34
KH
4561 * Removal of cgroup itself succeeds regardless of refs from swap.
4562 */
4563
a7ba0eef 4564static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4565{
08e552c6
KH
4566 int node;
4567
f64c3f54 4568 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4569 free_css_id(&mem_cgroup_subsys, &mem->css);
4570
08e552c6
KH
4571 for_each_node_state(node, N_POSSIBLE)
4572 free_mem_cgroup_per_zone_info(mem, node);
4573
c62b1a3b
KH
4574 free_percpu(mem->stat);
4575 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4576 kfree(mem);
4577 else
4578 vfree(mem);
4579}
4580
8c7c6e34
KH
4581static void mem_cgroup_get(struct mem_cgroup *mem)
4582{
4583 atomic_inc(&mem->refcnt);
4584}
4585
483c30b5 4586static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4587{
483c30b5 4588 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4589 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4590 __mem_cgroup_free(mem);
7bcc1bb1
DN
4591 if (parent)
4592 mem_cgroup_put(parent);
4593 }
8c7c6e34
KH
4594}
4595
483c30b5
DN
4596static void mem_cgroup_put(struct mem_cgroup *mem)
4597{
4598 __mem_cgroup_put(mem, 1);
4599}
4600
7bcc1bb1
DN
4601/*
4602 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4603 */
4604static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4605{
4606 if (!mem->res.parent)
4607 return NULL;
4608 return mem_cgroup_from_res_counter(mem->res.parent, res);
4609}
33327948 4610
c077719b
KH
4611#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4612static void __init enable_swap_cgroup(void)
4613{
f8d66542 4614 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4615 do_swap_account = 1;
4616}
4617#else
4618static void __init enable_swap_cgroup(void)
4619{
4620}
4621#endif
4622
f64c3f54
BS
4623static int mem_cgroup_soft_limit_tree_init(void)
4624{
4625 struct mem_cgroup_tree_per_node *rtpn;
4626 struct mem_cgroup_tree_per_zone *rtpz;
4627 int tmp, node, zone;
4628
4629 for_each_node_state(node, N_POSSIBLE) {
4630 tmp = node;
4631 if (!node_state(node, N_NORMAL_MEMORY))
4632 tmp = -1;
4633 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4634 if (!rtpn)
4635 return 1;
4636
4637 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4638
4639 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4640 rtpz = &rtpn->rb_tree_per_zone[zone];
4641 rtpz->rb_root = RB_ROOT;
4642 spin_lock_init(&rtpz->lock);
4643 }
4644 }
4645 return 0;
4646}
4647
0eb253e2 4648static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4649mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4650{
28dbc4b6 4651 struct mem_cgroup *mem, *parent;
04046e1a 4652 long error = -ENOMEM;
6d12e2d8 4653 int node;
8cdea7c0 4654
c8dad2bb
JB
4655 mem = mem_cgroup_alloc();
4656 if (!mem)
04046e1a 4657 return ERR_PTR(error);
78fb7466 4658
6d12e2d8
KH
4659 for_each_node_state(node, N_POSSIBLE)
4660 if (alloc_mem_cgroup_per_zone_info(mem, node))
4661 goto free_out;
f64c3f54 4662
c077719b 4663 /* root ? */
28dbc4b6 4664 if (cont->parent == NULL) {
cdec2e42 4665 int cpu;
c077719b 4666 enable_swap_cgroup();
28dbc4b6 4667 parent = NULL;
4b3bde4c 4668 root_mem_cgroup = mem;
f64c3f54
BS
4669 if (mem_cgroup_soft_limit_tree_init())
4670 goto free_out;
cdec2e42
KH
4671 for_each_possible_cpu(cpu) {
4672 struct memcg_stock_pcp *stock =
4673 &per_cpu(memcg_stock, cpu);
4674 INIT_WORK(&stock->work, drain_local_stock);
4675 }
711d3d2c 4676 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4677 } else {
28dbc4b6 4678 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4679 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4680 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4681 }
28dbc4b6 4682
18f59ea7
BS
4683 if (parent && parent->use_hierarchy) {
4684 res_counter_init(&mem->res, &parent->res);
4685 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4686 /*
4687 * We increment refcnt of the parent to ensure that we can
4688 * safely access it on res_counter_charge/uncharge.
4689 * This refcnt will be decremented when freeing this
4690 * mem_cgroup(see mem_cgroup_put).
4691 */
4692 mem_cgroup_get(parent);
18f59ea7
BS
4693 } else {
4694 res_counter_init(&mem->res, NULL);
4695 res_counter_init(&mem->memsw, NULL);
4696 }
04046e1a 4697 mem->last_scanned_child = 0;
889976db 4698 mem->last_scanned_node = MAX_NUMNODES;
9490ff27 4699 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4700
a7885eb8
KM
4701 if (parent)
4702 mem->swappiness = get_swappiness(parent);
a7ba0eef 4703 atomic_set(&mem->refcnt, 1);
7dc74be0 4704 mem->move_charge_at_immigrate = 0;
2e72b634 4705 mutex_init(&mem->thresholds_lock);
8cdea7c0 4706 return &mem->css;
6d12e2d8 4707free_out:
a7ba0eef 4708 __mem_cgroup_free(mem);
4b3bde4c 4709 root_mem_cgroup = NULL;
04046e1a 4710 return ERR_PTR(error);
8cdea7c0
BS
4711}
4712
ec64f515 4713static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4714 struct cgroup *cont)
4715{
4716 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4717
4718 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4719}
4720
8cdea7c0
BS
4721static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4722 struct cgroup *cont)
4723{
c268e994 4724 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4725
c268e994 4726 mem_cgroup_put(mem);
8cdea7c0
BS
4727}
4728
4729static int mem_cgroup_populate(struct cgroup_subsys *ss,
4730 struct cgroup *cont)
4731{
8c7c6e34
KH
4732 int ret;
4733
4734 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4735 ARRAY_SIZE(mem_cgroup_files));
4736
4737 if (!ret)
4738 ret = register_memsw_files(cont, ss);
4739 return ret;
8cdea7c0
BS
4740}
4741
02491447 4742#ifdef CONFIG_MMU
7dc74be0 4743/* Handlers for move charge at task migration. */
854ffa8d
DN
4744#define PRECHARGE_COUNT_AT_ONCE 256
4745static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4746{
854ffa8d
DN
4747 int ret = 0;
4748 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4749 struct mem_cgroup *mem = mc.to;
4750
854ffa8d
DN
4751 if (mem_cgroup_is_root(mem)) {
4752 mc.precharge += count;
4753 /* we don't need css_get for root */
4754 return ret;
4755 }
4756 /* try to charge at once */
4757 if (count > 1) {
4758 struct res_counter *dummy;
4759 /*
4760 * "mem" cannot be under rmdir() because we've already checked
4761 * by cgroup_lock_live_cgroup() that it is not removed and we
4762 * are still under the same cgroup_mutex. So we can postpone
4763 * css_get().
4764 */
4765 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4766 goto one_by_one;
4767 if (do_swap_account && res_counter_charge(&mem->memsw,
4768 PAGE_SIZE * count, &dummy)) {
4769 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4770 goto one_by_one;
4771 }
4772 mc.precharge += count;
854ffa8d
DN
4773 return ret;
4774 }
4775one_by_one:
4776 /* fall back to one by one charge */
4777 while (count--) {
4778 if (signal_pending(current)) {
4779 ret = -EINTR;
4780 break;
4781 }
4782 if (!batch_count--) {
4783 batch_count = PRECHARGE_COUNT_AT_ONCE;
4784 cond_resched();
4785 }
7ec99d62 4786 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
4787 if (ret || !mem)
4788 /* mem_cgroup_clear_mc() will do uncharge later */
4789 return -ENOMEM;
4790 mc.precharge++;
4791 }
4ffef5fe
DN
4792 return ret;
4793}
4794
4795/**
4796 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4797 * @vma: the vma the pte to be checked belongs
4798 * @addr: the address corresponding to the pte to be checked
4799 * @ptent: the pte to be checked
02491447 4800 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4801 *
4802 * Returns
4803 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4804 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4805 * move charge. if @target is not NULL, the page is stored in target->page
4806 * with extra refcnt got(Callers should handle it).
02491447
DN
4807 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4808 * target for charge migration. if @target is not NULL, the entry is stored
4809 * in target->ent.
4ffef5fe
DN
4810 *
4811 * Called with pte lock held.
4812 */
4ffef5fe
DN
4813union mc_target {
4814 struct page *page;
02491447 4815 swp_entry_t ent;
4ffef5fe
DN
4816};
4817
4ffef5fe
DN
4818enum mc_target_type {
4819 MC_TARGET_NONE, /* not used */
4820 MC_TARGET_PAGE,
02491447 4821 MC_TARGET_SWAP,
4ffef5fe
DN
4822};
4823
90254a65
DN
4824static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4825 unsigned long addr, pte_t ptent)
4ffef5fe 4826{
90254a65 4827 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4828
90254a65
DN
4829 if (!page || !page_mapped(page))
4830 return NULL;
4831 if (PageAnon(page)) {
4832 /* we don't move shared anon */
4833 if (!move_anon() || page_mapcount(page) > 2)
4834 return NULL;
87946a72
DN
4835 } else if (!move_file())
4836 /* we ignore mapcount for file pages */
90254a65
DN
4837 return NULL;
4838 if (!get_page_unless_zero(page))
4839 return NULL;
4840
4841 return page;
4842}
4843
4844static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4845 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4846{
4847 int usage_count;
4848 struct page *page = NULL;
4849 swp_entry_t ent = pte_to_swp_entry(ptent);
4850
4851 if (!move_anon() || non_swap_entry(ent))
4852 return NULL;
4853 usage_count = mem_cgroup_count_swap_user(ent, &page);
4854 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4855 if (page)
4856 put_page(page);
90254a65 4857 return NULL;
02491447 4858 }
90254a65
DN
4859 if (do_swap_account)
4860 entry->val = ent.val;
4861
4862 return page;
4863}
4864
87946a72
DN
4865static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4866 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4867{
4868 struct page *page = NULL;
4869 struct inode *inode;
4870 struct address_space *mapping;
4871 pgoff_t pgoff;
4872
4873 if (!vma->vm_file) /* anonymous vma */
4874 return NULL;
4875 if (!move_file())
4876 return NULL;
4877
4878 inode = vma->vm_file->f_path.dentry->d_inode;
4879 mapping = vma->vm_file->f_mapping;
4880 if (pte_none(ptent))
4881 pgoff = linear_page_index(vma, addr);
4882 else /* pte_file(ptent) is true */
4883 pgoff = pte_to_pgoff(ptent);
4884
4885 /* page is moved even if it's not RSS of this task(page-faulted). */
4886 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4887 page = find_get_page(mapping, pgoff);
4888 } else { /* shmem/tmpfs file. we should take account of swap too. */
4889 swp_entry_t ent;
4890 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4891 if (do_swap_account)
4892 entry->val = ent.val;
4893 }
4894
4895 return page;
4896}
4897
90254a65
DN
4898static int is_target_pte_for_mc(struct vm_area_struct *vma,
4899 unsigned long addr, pte_t ptent, union mc_target *target)
4900{
4901 struct page *page = NULL;
4902 struct page_cgroup *pc;
4903 int ret = 0;
4904 swp_entry_t ent = { .val = 0 };
4905
4906 if (pte_present(ptent))
4907 page = mc_handle_present_pte(vma, addr, ptent);
4908 else if (is_swap_pte(ptent))
4909 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4910 else if (pte_none(ptent) || pte_file(ptent))
4911 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4912
4913 if (!page && !ent.val)
4914 return 0;
02491447
DN
4915 if (page) {
4916 pc = lookup_page_cgroup(page);
4917 /*
4918 * Do only loose check w/o page_cgroup lock.
4919 * mem_cgroup_move_account() checks the pc is valid or not under
4920 * the lock.
4921 */
4922 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4923 ret = MC_TARGET_PAGE;
4924 if (target)
4925 target->page = page;
4926 }
4927 if (!ret || !target)
4928 put_page(page);
4929 }
90254a65
DN
4930 /* There is a swap entry and a page doesn't exist or isn't charged */
4931 if (ent.val && !ret &&
7f0f1546
KH
4932 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4933 ret = MC_TARGET_SWAP;
4934 if (target)
4935 target->ent = ent;
4ffef5fe 4936 }
4ffef5fe
DN
4937 return ret;
4938}
4939
4940static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4941 unsigned long addr, unsigned long end,
4942 struct mm_walk *walk)
4943{
4944 struct vm_area_struct *vma = walk->private;
4945 pte_t *pte;
4946 spinlock_t *ptl;
4947
03319327
DH
4948 split_huge_page_pmd(walk->mm, pmd);
4949
4ffef5fe
DN
4950 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4951 for (; addr != end; pte++, addr += PAGE_SIZE)
4952 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4953 mc.precharge++; /* increment precharge temporarily */
4954 pte_unmap_unlock(pte - 1, ptl);
4955 cond_resched();
4956
7dc74be0
DN
4957 return 0;
4958}
4959
4ffef5fe
DN
4960static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4961{
4962 unsigned long precharge;
4963 struct vm_area_struct *vma;
4964
dfe076b0 4965 down_read(&mm->mmap_sem);
4ffef5fe
DN
4966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4967 struct mm_walk mem_cgroup_count_precharge_walk = {
4968 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4969 .mm = mm,
4970 .private = vma,
4971 };
4972 if (is_vm_hugetlb_page(vma))
4973 continue;
4ffef5fe
DN
4974 walk_page_range(vma->vm_start, vma->vm_end,
4975 &mem_cgroup_count_precharge_walk);
4976 }
dfe076b0 4977 up_read(&mm->mmap_sem);
4ffef5fe
DN
4978
4979 precharge = mc.precharge;
4980 mc.precharge = 0;
4981
4982 return precharge;
4983}
4984
4ffef5fe
DN
4985static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4986{
dfe076b0
DN
4987 unsigned long precharge = mem_cgroup_count_precharge(mm);
4988
4989 VM_BUG_ON(mc.moving_task);
4990 mc.moving_task = current;
4991 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4992}
4993
dfe076b0
DN
4994/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4995static void __mem_cgroup_clear_mc(void)
4ffef5fe 4996{
2bd9bb20
KH
4997 struct mem_cgroup *from = mc.from;
4998 struct mem_cgroup *to = mc.to;
4999
4ffef5fe 5000 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5001 if (mc.precharge) {
5002 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5003 mc.precharge = 0;
5004 }
5005 /*
5006 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5007 * we must uncharge here.
5008 */
5009 if (mc.moved_charge) {
5010 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5011 mc.moved_charge = 0;
4ffef5fe 5012 }
483c30b5
DN
5013 /* we must fixup refcnts and charges */
5014 if (mc.moved_swap) {
483c30b5
DN
5015 /* uncharge swap account from the old cgroup */
5016 if (!mem_cgroup_is_root(mc.from))
5017 res_counter_uncharge(&mc.from->memsw,
5018 PAGE_SIZE * mc.moved_swap);
5019 __mem_cgroup_put(mc.from, mc.moved_swap);
5020
5021 if (!mem_cgroup_is_root(mc.to)) {
5022 /*
5023 * we charged both to->res and to->memsw, so we should
5024 * uncharge to->res.
5025 */
5026 res_counter_uncharge(&mc.to->res,
5027 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5028 }
5029 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5030 mc.moved_swap = 0;
5031 }
dfe076b0
DN
5032 memcg_oom_recover(from);
5033 memcg_oom_recover(to);
5034 wake_up_all(&mc.waitq);
5035}
5036
5037static void mem_cgroup_clear_mc(void)
5038{
5039 struct mem_cgroup *from = mc.from;
5040
5041 /*
5042 * we must clear moving_task before waking up waiters at the end of
5043 * task migration.
5044 */
5045 mc.moving_task = NULL;
5046 __mem_cgroup_clear_mc();
2bd9bb20 5047 spin_lock(&mc.lock);
4ffef5fe
DN
5048 mc.from = NULL;
5049 mc.to = NULL;
2bd9bb20 5050 spin_unlock(&mc.lock);
32047e2a 5051 mem_cgroup_end_move(from);
4ffef5fe
DN
5052}
5053
7dc74be0
DN
5054static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5055 struct cgroup *cgroup,
f780bdb7 5056 struct task_struct *p)
7dc74be0
DN
5057{
5058 int ret = 0;
5059 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5060
5061 if (mem->move_charge_at_immigrate) {
5062 struct mm_struct *mm;
5063 struct mem_cgroup *from = mem_cgroup_from_task(p);
5064
5065 VM_BUG_ON(from == mem);
5066
5067 mm = get_task_mm(p);
5068 if (!mm)
5069 return 0;
7dc74be0 5070 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5071 if (mm->owner == p) {
5072 VM_BUG_ON(mc.from);
5073 VM_BUG_ON(mc.to);
5074 VM_BUG_ON(mc.precharge);
854ffa8d 5075 VM_BUG_ON(mc.moved_charge);
483c30b5 5076 VM_BUG_ON(mc.moved_swap);
32047e2a 5077 mem_cgroup_start_move(from);
2bd9bb20 5078 spin_lock(&mc.lock);
4ffef5fe
DN
5079 mc.from = from;
5080 mc.to = mem;
2bd9bb20 5081 spin_unlock(&mc.lock);
dfe076b0 5082 /* We set mc.moving_task later */
4ffef5fe
DN
5083
5084 ret = mem_cgroup_precharge_mc(mm);
5085 if (ret)
5086 mem_cgroup_clear_mc();
dfe076b0
DN
5087 }
5088 mmput(mm);
7dc74be0
DN
5089 }
5090 return ret;
5091}
5092
5093static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5094 struct cgroup *cgroup,
f780bdb7 5095 struct task_struct *p)
7dc74be0 5096{
4ffef5fe 5097 mem_cgroup_clear_mc();
7dc74be0
DN
5098}
5099
4ffef5fe
DN
5100static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5101 unsigned long addr, unsigned long end,
5102 struct mm_walk *walk)
7dc74be0 5103{
4ffef5fe
DN
5104 int ret = 0;
5105 struct vm_area_struct *vma = walk->private;
5106 pte_t *pte;
5107 spinlock_t *ptl;
5108
03319327 5109 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5110retry:
5111 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5112 for (; addr != end; addr += PAGE_SIZE) {
5113 pte_t ptent = *(pte++);
5114 union mc_target target;
5115 int type;
5116 struct page *page;
5117 struct page_cgroup *pc;
02491447 5118 swp_entry_t ent;
4ffef5fe
DN
5119
5120 if (!mc.precharge)
5121 break;
5122
5123 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5124 switch (type) {
5125 case MC_TARGET_PAGE:
5126 page = target.page;
5127 if (isolate_lru_page(page))
5128 goto put;
5129 pc = lookup_page_cgroup(page);
7ec99d62
JW
5130 if (!mem_cgroup_move_account(page, 1, pc,
5131 mc.from, mc.to, false)) {
4ffef5fe 5132 mc.precharge--;
854ffa8d
DN
5133 /* we uncharge from mc.from later. */
5134 mc.moved_charge++;
4ffef5fe
DN
5135 }
5136 putback_lru_page(page);
5137put: /* is_target_pte_for_mc() gets the page */
5138 put_page(page);
5139 break;
02491447
DN
5140 case MC_TARGET_SWAP:
5141 ent = target.ent;
483c30b5
DN
5142 if (!mem_cgroup_move_swap_account(ent,
5143 mc.from, mc.to, false)) {
02491447 5144 mc.precharge--;
483c30b5
DN
5145 /* we fixup refcnts and charges later. */
5146 mc.moved_swap++;
5147 }
02491447 5148 break;
4ffef5fe
DN
5149 default:
5150 break;
5151 }
5152 }
5153 pte_unmap_unlock(pte - 1, ptl);
5154 cond_resched();
5155
5156 if (addr != end) {
5157 /*
5158 * We have consumed all precharges we got in can_attach().
5159 * We try charge one by one, but don't do any additional
5160 * charges to mc.to if we have failed in charge once in attach()
5161 * phase.
5162 */
854ffa8d 5163 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5164 if (!ret)
5165 goto retry;
5166 }
5167
5168 return ret;
5169}
5170
5171static void mem_cgroup_move_charge(struct mm_struct *mm)
5172{
5173 struct vm_area_struct *vma;
5174
5175 lru_add_drain_all();
dfe076b0
DN
5176retry:
5177 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5178 /*
5179 * Someone who are holding the mmap_sem might be waiting in
5180 * waitq. So we cancel all extra charges, wake up all waiters,
5181 * and retry. Because we cancel precharges, we might not be able
5182 * to move enough charges, but moving charge is a best-effort
5183 * feature anyway, so it wouldn't be a big problem.
5184 */
5185 __mem_cgroup_clear_mc();
5186 cond_resched();
5187 goto retry;
5188 }
4ffef5fe
DN
5189 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5190 int ret;
5191 struct mm_walk mem_cgroup_move_charge_walk = {
5192 .pmd_entry = mem_cgroup_move_charge_pte_range,
5193 .mm = mm,
5194 .private = vma,
5195 };
5196 if (is_vm_hugetlb_page(vma))
5197 continue;
4ffef5fe
DN
5198 ret = walk_page_range(vma->vm_start, vma->vm_end,
5199 &mem_cgroup_move_charge_walk);
5200 if (ret)
5201 /*
5202 * means we have consumed all precharges and failed in
5203 * doing additional charge. Just abandon here.
5204 */
5205 break;
5206 }
dfe076b0 5207 up_read(&mm->mmap_sem);
7dc74be0
DN
5208}
5209
67e465a7
BS
5210static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5211 struct cgroup *cont,
5212 struct cgroup *old_cont,
f780bdb7 5213 struct task_struct *p)
67e465a7 5214{
dfe076b0
DN
5215 struct mm_struct *mm;
5216
5217 if (!mc.to)
4ffef5fe
DN
5218 /* no need to move charge */
5219 return;
5220
dfe076b0
DN
5221 mm = get_task_mm(p);
5222 if (mm) {
5223 mem_cgroup_move_charge(mm);
5224 mmput(mm);
5225 }
4ffef5fe 5226 mem_cgroup_clear_mc();
67e465a7 5227}
5cfb80a7
DN
5228#else /* !CONFIG_MMU */
5229static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5230 struct cgroup *cgroup,
f780bdb7 5231 struct task_struct *p)
5cfb80a7
DN
5232{
5233 return 0;
5234}
5235static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5236 struct cgroup *cgroup,
f780bdb7 5237 struct task_struct *p)
5cfb80a7
DN
5238{
5239}
5240static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5241 struct cgroup *cont,
5242 struct cgroup *old_cont,
f780bdb7 5243 struct task_struct *p)
5cfb80a7
DN
5244{
5245}
5246#endif
67e465a7 5247
8cdea7c0
BS
5248struct cgroup_subsys mem_cgroup_subsys = {
5249 .name = "memory",
5250 .subsys_id = mem_cgroup_subsys_id,
5251 .create = mem_cgroup_create,
df878fb0 5252 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5253 .destroy = mem_cgroup_destroy,
5254 .populate = mem_cgroup_populate,
7dc74be0
DN
5255 .can_attach = mem_cgroup_can_attach,
5256 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5257 .attach = mem_cgroup_move_task,
6d12e2d8 5258 .early_init = 0,
04046e1a 5259 .use_id = 1,
8cdea7c0 5260};
c077719b
KH
5261
5262#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5263static int __init enable_swap_account(char *s)
5264{
5265 /* consider enabled if no parameter or 1 is given */
a2c8990a 5266 if (!strcmp(s, "1"))
a42c390c 5267 really_do_swap_account = 1;
a2c8990a 5268 else if (!strcmp(s, "0"))
a42c390c
MH
5269 really_do_swap_account = 0;
5270 return 1;
5271}
a2c8990a 5272__setup("swapaccount=", enable_swap_account);
c077719b 5273
c077719b 5274#endif
This page took 0.877816 seconds and 5 git commands to generate.