memcg: replace MEM_CONT by MEM_RES_CTLR
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
6290df54 137 struct lruvec lruvec;
b69408e8 138 unsigned long count[NR_LRU_LISTS];
3e2f41f1 139
527a5ec9
JW
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
3e2f41f1 142 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
4e416953
BS
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
6d12e2d8
KH
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
f64c3f54
BS
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
2e72b634
KS
181struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184};
185
9490ff27 186/* For threshold */
2e72b634
KS
187struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
5407a562 189 int current_threshold;
2e72b634
KS
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194};
2c488db2
KS
195
196struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205};
206
9490ff27
KH
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211};
2e72b634 212
c0ff4b85
R
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 215
8cdea7c0
BS
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
8cdea7c0
BS
226 */
227struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
59927fb9
HD
233
234 union {
235 /*
236 * the counter to account for mem+swap usage.
237 */
238 struct res_counter memsw;
239
240 /*
241 * rcu_freeing is used only when freeing struct mem_cgroup,
242 * so put it into a union to avoid wasting more memory.
243 * It must be disjoint from the css field. It could be
244 * in a union with the res field, but res plays a much
245 * larger part in mem_cgroup life than memsw, and might
246 * be of interest, even at time of free, when debugging.
247 * So share rcu_head with the less interesting memsw.
248 */
249 struct rcu_head rcu_freeing;
250 /*
251 * But when using vfree(), that cannot be done at
252 * interrupt time, so we must then queue the work.
253 */
254 struct work_struct work_freeing;
255 };
256
78fb7466
PE
257 /*
258 * Per cgroup active and inactive list, similar to the
259 * per zone LRU lists.
78fb7466 260 */
6d12e2d8 261 struct mem_cgroup_lru_info info;
889976db
YH
262 int last_scanned_node;
263#if MAX_NUMNODES > 1
264 nodemask_t scan_nodes;
453a9bf3
KH
265 atomic_t numainfo_events;
266 atomic_t numainfo_updating;
889976db 267#endif
18f59ea7
BS
268 /*
269 * Should the accounting and control be hierarchical, per subtree?
270 */
271 bool use_hierarchy;
79dfdacc
MH
272
273 bool oom_lock;
274 atomic_t under_oom;
275
8c7c6e34 276 atomic_t refcnt;
14797e23 277
1f4c025b 278 int swappiness;
3c11ecf4
KH
279 /* OOM-Killer disable */
280 int oom_kill_disable;
a7885eb8 281
22a668d7
KH
282 /* set when res.limit == memsw.limit */
283 bool memsw_is_minimum;
284
2e72b634
KS
285 /* protect arrays of thresholds */
286 struct mutex thresholds_lock;
287
288 /* thresholds for memory usage. RCU-protected */
2c488db2 289 struct mem_cgroup_thresholds thresholds;
907860ed 290
2e72b634 291 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 292 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 293
9490ff27
KH
294 /* For oom notifier event fd */
295 struct list_head oom_notify;
185efc0f 296
7dc74be0
DN
297 /*
298 * Should we move charges of a task when a task is moved into this
299 * mem_cgroup ? And what type of charges should we move ?
300 */
301 unsigned long move_charge_at_immigrate;
d52aa412 302 /*
c62b1a3b 303 * percpu counter.
d52aa412 304 */
c62b1a3b 305 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
306 /*
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
309 */
310 struct mem_cgroup_stat_cpu nocpu_base;
311 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
312
313#ifdef CONFIG_INET
314 struct tcp_memcontrol tcp_mem;
315#endif
8cdea7c0
BS
316};
317
7dc74be0
DN
318/* Stuffs for move charges at task migration. */
319/*
320 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
321 * left-shifted bitmap of these types.
322 */
323enum move_type {
4ffef5fe 324 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 325 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
326 NR_MOVE_TYPE,
327};
328
4ffef5fe
DN
329/* "mc" and its members are protected by cgroup_mutex */
330static struct move_charge_struct {
b1dd693e 331 spinlock_t lock; /* for from, to */
4ffef5fe
DN
332 struct mem_cgroup *from;
333 struct mem_cgroup *to;
334 unsigned long precharge;
854ffa8d 335 unsigned long moved_charge;
483c30b5 336 unsigned long moved_swap;
8033b97c
DN
337 struct task_struct *moving_task; /* a task moving charges */
338 wait_queue_head_t waitq; /* a waitq for other context */
339} mc = {
2bd9bb20 340 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
341 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
342};
4ffef5fe 343
90254a65
DN
344static bool move_anon(void)
345{
346 return test_bit(MOVE_CHARGE_TYPE_ANON,
347 &mc.to->move_charge_at_immigrate);
348}
349
87946a72
DN
350static bool move_file(void)
351{
352 return test_bit(MOVE_CHARGE_TYPE_FILE,
353 &mc.to->move_charge_at_immigrate);
354}
355
4e416953
BS
356/*
357 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
358 * limit reclaim to prevent infinite loops, if they ever occur.
359 */
360#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
361#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
362
217bc319
KH
363enum charge_type {
364 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
365 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 366 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 367 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 368 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 369 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
370 NR_CHARGE_TYPE,
371};
372
8c7c6e34 373/* for encoding cft->private value on file */
65c64ce8
GC
374#define _MEM (0)
375#define _MEMSWAP (1)
376#define _OOM_TYPE (2)
8c7c6e34
KH
377#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
378#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
379#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
380/* Used for OOM nofiier */
381#define OOM_CONTROL (0)
8c7c6e34 382
75822b44
BS
383/*
384 * Reclaim flags for mem_cgroup_hierarchical_reclaim
385 */
386#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
387#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
388#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
389#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
390
c0ff4b85
R
391static void mem_cgroup_get(struct mem_cgroup *memcg);
392static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
393
394/* Writing them here to avoid exposing memcg's inner layout */
395#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 396#include <net/sock.h>
d1a4c0b3 397#include <net/ip.h>
e1aab161
GC
398
399static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
400void sock_update_memcg(struct sock *sk)
401{
376be5ff 402 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
403 struct mem_cgroup *memcg;
404
405 BUG_ON(!sk->sk_prot->proto_cgroup);
406
f3f511e1
GC
407 /* Socket cloning can throw us here with sk_cgrp already
408 * filled. It won't however, necessarily happen from
409 * process context. So the test for root memcg given
410 * the current task's memcg won't help us in this case.
411 *
412 * Respecting the original socket's memcg is a better
413 * decision in this case.
414 */
415 if (sk->sk_cgrp) {
416 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
417 mem_cgroup_get(sk->sk_cgrp->memcg);
418 return;
419 }
420
e1aab161
GC
421 rcu_read_lock();
422 memcg = mem_cgroup_from_task(current);
423 if (!mem_cgroup_is_root(memcg)) {
424 mem_cgroup_get(memcg);
425 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
426 }
427 rcu_read_unlock();
428 }
429}
430EXPORT_SYMBOL(sock_update_memcg);
431
432void sock_release_memcg(struct sock *sk)
433{
376be5ff 434 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
435 struct mem_cgroup *memcg;
436 WARN_ON(!sk->sk_cgrp->memcg);
437 memcg = sk->sk_cgrp->memcg;
438 mem_cgroup_put(memcg);
439 }
440}
d1a4c0b3 441
319d3b9c 442#ifdef CONFIG_INET
d1a4c0b3
GC
443struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
444{
445 if (!memcg || mem_cgroup_is_root(memcg))
446 return NULL;
447
448 return &memcg->tcp_mem.cg_proto;
449}
450EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
451#endif /* CONFIG_INET */
452#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
453
c0ff4b85 454static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 455
f64c3f54 456static struct mem_cgroup_per_zone *
c0ff4b85 457mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 458{
c0ff4b85 459 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
460}
461
c0ff4b85 462struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 463{
c0ff4b85 464 return &memcg->css;
d324236b
WF
465}
466
f64c3f54 467static struct mem_cgroup_per_zone *
c0ff4b85 468page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 469{
97a6c37b
JW
470 int nid = page_to_nid(page);
471 int zid = page_zonenum(page);
f64c3f54 472
c0ff4b85 473 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
474}
475
476static struct mem_cgroup_tree_per_zone *
477soft_limit_tree_node_zone(int nid, int zid)
478{
479 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
480}
481
482static struct mem_cgroup_tree_per_zone *
483soft_limit_tree_from_page(struct page *page)
484{
485 int nid = page_to_nid(page);
486 int zid = page_zonenum(page);
487
488 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
489}
490
491static void
c0ff4b85 492__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 493 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
494 struct mem_cgroup_tree_per_zone *mctz,
495 unsigned long long new_usage_in_excess)
f64c3f54
BS
496{
497 struct rb_node **p = &mctz->rb_root.rb_node;
498 struct rb_node *parent = NULL;
499 struct mem_cgroup_per_zone *mz_node;
500
501 if (mz->on_tree)
502 return;
503
ef8745c1
KH
504 mz->usage_in_excess = new_usage_in_excess;
505 if (!mz->usage_in_excess)
506 return;
f64c3f54
BS
507 while (*p) {
508 parent = *p;
509 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
510 tree_node);
511 if (mz->usage_in_excess < mz_node->usage_in_excess)
512 p = &(*p)->rb_left;
513 /*
514 * We can't avoid mem cgroups that are over their soft
515 * limit by the same amount
516 */
517 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
518 p = &(*p)->rb_right;
519 }
520 rb_link_node(&mz->tree_node, parent, p);
521 rb_insert_color(&mz->tree_node, &mctz->rb_root);
522 mz->on_tree = true;
4e416953
BS
523}
524
525static void
c0ff4b85 526__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
527 struct mem_cgroup_per_zone *mz,
528 struct mem_cgroup_tree_per_zone *mctz)
529{
530 if (!mz->on_tree)
531 return;
532 rb_erase(&mz->tree_node, &mctz->rb_root);
533 mz->on_tree = false;
534}
535
f64c3f54 536static void
c0ff4b85 537mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
538 struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
540{
541 spin_lock(&mctz->lock);
c0ff4b85 542 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
543 spin_unlock(&mctz->lock);
544}
545
f64c3f54 546
c0ff4b85 547static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 548{
ef8745c1 549 unsigned long long excess;
f64c3f54
BS
550 struct mem_cgroup_per_zone *mz;
551 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
552 int nid = page_to_nid(page);
553 int zid = page_zonenum(page);
f64c3f54
BS
554 mctz = soft_limit_tree_from_page(page);
555
556 /*
4e649152
KH
557 * Necessary to update all ancestors when hierarchy is used.
558 * because their event counter is not touched.
f64c3f54 559 */
c0ff4b85
R
560 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
561 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
562 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
563 /*
564 * We have to update the tree if mz is on RB-tree or
565 * mem is over its softlimit.
566 */
ef8745c1 567 if (excess || mz->on_tree) {
4e649152
KH
568 spin_lock(&mctz->lock);
569 /* if on-tree, remove it */
570 if (mz->on_tree)
c0ff4b85 571 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 572 /*
ef8745c1
KH
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
4e649152 575 */
c0ff4b85 576 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
577 spin_unlock(&mctz->lock);
578 }
f64c3f54
BS
579 }
580}
581
c0ff4b85 582static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
583{
584 int node, zone;
585 struct mem_cgroup_per_zone *mz;
586 struct mem_cgroup_tree_per_zone *mctz;
587
3ed28fa1 588 for_each_node(node) {
f64c3f54 589 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 590 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 591 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 592 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
593 }
594 }
595}
596
4e416953
BS
597static struct mem_cgroup_per_zone *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
599{
600 struct rb_node *rightmost = NULL;
26251eaf 601 struct mem_cgroup_per_zone *mz;
4e416953
BS
602
603retry:
26251eaf 604 mz = NULL;
4e416953
BS
605 rightmost = rb_last(&mctz->rb_root);
606 if (!rightmost)
607 goto done; /* Nothing to reclaim from */
608
609 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
610 /*
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
614 */
615 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
616 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
617 !css_tryget(&mz->mem->css))
618 goto retry;
619done:
620 return mz;
621}
622
623static struct mem_cgroup_per_zone *
624mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
625{
626 struct mem_cgroup_per_zone *mz;
627
628 spin_lock(&mctz->lock);
629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 spin_unlock(&mctz->lock);
631 return mz;
632}
633
711d3d2c
KH
634/*
635 * Implementation Note: reading percpu statistics for memcg.
636 *
637 * Both of vmstat[] and percpu_counter has threshold and do periodic
638 * synchronization to implement "quick" read. There are trade-off between
639 * reading cost and precision of value. Then, we may have a chance to implement
640 * a periodic synchronizion of counter in memcg's counter.
641 *
642 * But this _read() function is used for user interface now. The user accounts
643 * memory usage by memory cgroup and he _always_ requires exact value because
644 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
645 * have to visit all online cpus and make sum. So, for now, unnecessary
646 * synchronization is not implemented. (just implemented for cpu hotplug)
647 *
648 * If there are kernel internal actions which can make use of some not-exact
649 * value, and reading all cpu value can be performance bottleneck in some
650 * common workload, threashold and synchonization as vmstat[] should be
651 * implemented.
652 */
c0ff4b85 653static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 654 enum mem_cgroup_stat_index idx)
c62b1a3b 655{
7a159cc9 656 long val = 0;
c62b1a3b 657 int cpu;
c62b1a3b 658
711d3d2c
KH
659 get_online_cpus();
660 for_each_online_cpu(cpu)
c0ff4b85 661 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 662#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
663 spin_lock(&memcg->pcp_counter_lock);
664 val += memcg->nocpu_base.count[idx];
665 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
666#endif
667 put_online_cpus();
c62b1a3b
KH
668 return val;
669}
670
c0ff4b85 671static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
672 bool charge)
673{
674 int val = (charge) ? 1 : -1;
c0ff4b85 675 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
676}
677
c0ff4b85 678static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
679 enum mem_cgroup_events_index idx)
680{
681 unsigned long val = 0;
682 int cpu;
683
684 for_each_online_cpu(cpu)
c0ff4b85 685 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 686#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
687 spin_lock(&memcg->pcp_counter_lock);
688 val += memcg->nocpu_base.events[idx];
689 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
690#endif
691 return val;
692}
693
c0ff4b85 694static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 695 bool file, int nr_pages)
d52aa412 696{
c62b1a3b
KH
697 preempt_disable();
698
e401f176 699 if (file)
c0ff4b85
R
700 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
701 nr_pages);
d52aa412 702 else
c0ff4b85
R
703 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
704 nr_pages);
55e462b0 705
e401f176
KH
706 /* pagein of a big page is an event. So, ignore page size */
707 if (nr_pages > 0)
c0ff4b85 708 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 709 else {
c0ff4b85 710 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
711 nr_pages = -nr_pages; /* for event */
712 }
e401f176 713
c0ff4b85 714 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 715
c62b1a3b 716 preempt_enable();
6d12e2d8
KH
717}
718
bb2a0de9 719unsigned long
c0ff4b85 720mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 721 unsigned int lru_mask)
889976db
YH
722{
723 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
724 enum lru_list l;
725 unsigned long ret = 0;
726
c0ff4b85 727 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
728
729 for_each_lru(l) {
730 if (BIT(l) & lru_mask)
731 ret += MEM_CGROUP_ZSTAT(mz, l);
732 }
733 return ret;
734}
735
736static unsigned long
c0ff4b85 737mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
738 int nid, unsigned int lru_mask)
739{
889976db
YH
740 u64 total = 0;
741 int zid;
742
bb2a0de9 743 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
744 total += mem_cgroup_zone_nr_lru_pages(memcg,
745 nid, zid, lru_mask);
bb2a0de9 746
889976db
YH
747 return total;
748}
bb2a0de9 749
c0ff4b85 750static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 751 unsigned int lru_mask)
6d12e2d8 752{
889976db 753 int nid;
6d12e2d8
KH
754 u64 total = 0;
755
bb2a0de9 756 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 757 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 758 return total;
d52aa412
KH
759}
760
f53d7ce3
JW
761static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
7a159cc9
JW
763{
764 unsigned long val, next;
765
4799401f
SR
766 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
767 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 768 /* from time_after() in jiffies.h */
f53d7ce3
JW
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
7a159cc9 785 }
f53d7ce3 786 return false;
d2265e6f
KH
787}
788
789/*
790 * Check events in order.
791 *
792 */
c0ff4b85 793static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 794{
4799401f 795 preempt_disable();
d2265e6f 796 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
797 if (unlikely(mem_cgroup_event_ratelimit(memcg,
798 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
799 bool do_softlimit;
800 bool do_numainfo __maybe_unused;
f53d7ce3
JW
801
802 do_softlimit = mem_cgroup_event_ratelimit(memcg,
803 MEM_CGROUP_TARGET_SOFTLIMIT);
804#if MAX_NUMNODES > 1
805 do_numainfo = mem_cgroup_event_ratelimit(memcg,
806 MEM_CGROUP_TARGET_NUMAINFO);
807#endif
808 preempt_enable();
809
c0ff4b85 810 mem_cgroup_threshold(memcg);
f53d7ce3 811 if (unlikely(do_softlimit))
c0ff4b85 812 mem_cgroup_update_tree(memcg, page);
453a9bf3 813#if MAX_NUMNODES > 1
f53d7ce3 814 if (unlikely(do_numainfo))
c0ff4b85 815 atomic_inc(&memcg->numainfo_events);
453a9bf3 816#endif
f53d7ce3
JW
817 } else
818 preempt_enable();
d2265e6f
KH
819}
820
d1a4c0b3 821struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
822{
823 return container_of(cgroup_subsys_state(cont,
824 mem_cgroup_subsys_id), struct mem_cgroup,
825 css);
826}
827
cf475ad2 828struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 829{
31a78f23
BS
830 /*
831 * mm_update_next_owner() may clear mm->owner to NULL
832 * if it races with swapoff, page migration, etc.
833 * So this can be called with p == NULL.
834 */
835 if (unlikely(!p))
836 return NULL;
837
78fb7466
PE
838 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
839 struct mem_cgroup, css);
840}
841
a433658c 842struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 843{
c0ff4b85 844 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
845
846 if (!mm)
847 return NULL;
54595fe2
KH
848 /*
849 * Because we have no locks, mm->owner's may be being moved to other
850 * cgroup. We use css_tryget() here even if this looks
851 * pessimistic (rather than adding locks here).
852 */
853 rcu_read_lock();
854 do {
c0ff4b85
R
855 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
856 if (unlikely(!memcg))
54595fe2 857 break;
c0ff4b85 858 } while (!css_tryget(&memcg->css));
54595fe2 859 rcu_read_unlock();
c0ff4b85 860 return memcg;
54595fe2
KH
861}
862
5660048c
JW
863/**
864 * mem_cgroup_iter - iterate over memory cgroup hierarchy
865 * @root: hierarchy root
866 * @prev: previously returned memcg, NULL on first invocation
867 * @reclaim: cookie for shared reclaim walks, NULL for full walks
868 *
869 * Returns references to children of the hierarchy below @root, or
870 * @root itself, or %NULL after a full round-trip.
871 *
872 * Caller must pass the return value in @prev on subsequent
873 * invocations for reference counting, or use mem_cgroup_iter_break()
874 * to cancel a hierarchy walk before the round-trip is complete.
875 *
876 * Reclaimers can specify a zone and a priority level in @reclaim to
877 * divide up the memcgs in the hierarchy among all concurrent
878 * reclaimers operating on the same zone and priority.
879 */
880struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
881 struct mem_cgroup *prev,
882 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 883{
9f3a0d09
JW
884 struct mem_cgroup *memcg = NULL;
885 int id = 0;
711d3d2c 886
5660048c
JW
887 if (mem_cgroup_disabled())
888 return NULL;
889
9f3a0d09
JW
890 if (!root)
891 root = root_mem_cgroup;
7d74b06f 892
9f3a0d09
JW
893 if (prev && !reclaim)
894 id = css_id(&prev->css);
14067bb3 895
9f3a0d09
JW
896 if (prev && prev != root)
897 css_put(&prev->css);
14067bb3 898
9f3a0d09
JW
899 if (!root->use_hierarchy && root != root_mem_cgroup) {
900 if (prev)
901 return NULL;
902 return root;
903 }
14067bb3 904
9f3a0d09 905 while (!memcg) {
527a5ec9 906 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 907 struct cgroup_subsys_state *css;
711d3d2c 908
527a5ec9
JW
909 if (reclaim) {
910 int nid = zone_to_nid(reclaim->zone);
911 int zid = zone_idx(reclaim->zone);
912 struct mem_cgroup_per_zone *mz;
913
914 mz = mem_cgroup_zoneinfo(root, nid, zid);
915 iter = &mz->reclaim_iter[reclaim->priority];
916 if (prev && reclaim->generation != iter->generation)
917 return NULL;
918 id = iter->position;
919 }
7d74b06f 920
9f3a0d09
JW
921 rcu_read_lock();
922 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
923 if (css) {
924 if (css == &root->css || css_tryget(css))
925 memcg = container_of(css,
926 struct mem_cgroup, css);
927 } else
928 id = 0;
14067bb3 929 rcu_read_unlock();
14067bb3 930
527a5ec9
JW
931 if (reclaim) {
932 iter->position = id;
933 if (!css)
934 iter->generation++;
935 else if (!prev && memcg)
936 reclaim->generation = iter->generation;
937 }
9f3a0d09
JW
938
939 if (prev && !css)
940 return NULL;
941 }
942 return memcg;
14067bb3 943}
7d74b06f 944
5660048c
JW
945/**
946 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
947 * @root: hierarchy root
948 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
949 */
950void mem_cgroup_iter_break(struct mem_cgroup *root,
951 struct mem_cgroup *prev)
9f3a0d09
JW
952{
953 if (!root)
954 root = root_mem_cgroup;
955 if (prev && prev != root)
956 css_put(&prev->css);
957}
7d74b06f 958
9f3a0d09
JW
959/*
960 * Iteration constructs for visiting all cgroups (under a tree). If
961 * loops are exited prematurely (break), mem_cgroup_iter_break() must
962 * be used for reference counting.
963 */
964#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 965 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 966 iter != NULL; \
527a5ec9 967 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 968
9f3a0d09 969#define for_each_mem_cgroup(iter) \
527a5ec9 970 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 971 iter != NULL; \
527a5ec9 972 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 973
c0ff4b85 974static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 975{
c0ff4b85 976 return (memcg == root_mem_cgroup);
4b3bde4c
BS
977}
978
456f998e
YH
979void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
980{
c0ff4b85 981 struct mem_cgroup *memcg;
456f998e
YH
982
983 if (!mm)
984 return;
985
986 rcu_read_lock();
c0ff4b85
R
987 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
988 if (unlikely(!memcg))
456f998e
YH
989 goto out;
990
991 switch (idx) {
456f998e 992 case PGFAULT:
0e574a93
JW
993 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
994 break;
995 case PGMAJFAULT:
996 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
997 break;
998 default:
999 BUG();
1000 }
1001out:
1002 rcu_read_unlock();
1003}
1004EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1005
925b7673
JW
1006/**
1007 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1008 * @zone: zone of the wanted lruvec
1009 * @mem: memcg of the wanted lruvec
1010 *
1011 * Returns the lru list vector holding pages for the given @zone and
1012 * @mem. This can be the global zone lruvec, if the memory controller
1013 * is disabled.
1014 */
1015struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1016 struct mem_cgroup *memcg)
1017{
1018 struct mem_cgroup_per_zone *mz;
1019
1020 if (mem_cgroup_disabled())
1021 return &zone->lruvec;
1022
1023 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1024 return &mz->lruvec;
1025}
1026
08e552c6
KH
1027/*
1028 * Following LRU functions are allowed to be used without PCG_LOCK.
1029 * Operations are called by routine of global LRU independently from memcg.
1030 * What we have to take care of here is validness of pc->mem_cgroup.
1031 *
1032 * Changes to pc->mem_cgroup happens when
1033 * 1. charge
1034 * 2. moving account
1035 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1036 * It is added to LRU before charge.
1037 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1038 * When moving account, the page is not on LRU. It's isolated.
1039 */
4f98a2fe 1040
925b7673
JW
1041/**
1042 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1043 * @zone: zone of the page
1044 * @page: the page
1045 * @lru: current lru
1046 *
1047 * This function accounts for @page being added to @lru, and returns
1048 * the lruvec for the given @zone and the memcg @page is charged to.
1049 *
1050 * The callsite is then responsible for physically linking the page to
1051 * the returned lruvec->lists[@lru].
1052 */
1053struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1054 enum lru_list lru)
08e552c6 1055{
08e552c6 1056 struct mem_cgroup_per_zone *mz;
925b7673
JW
1057 struct mem_cgroup *memcg;
1058 struct page_cgroup *pc;
6d12e2d8 1059
f8d66542 1060 if (mem_cgroup_disabled())
925b7673
JW
1061 return &zone->lruvec;
1062
08e552c6 1063 pc = lookup_page_cgroup(page);
38c5d72f 1064 memcg = pc->mem_cgroup;
7512102c
HD
1065
1066 /*
1067 * Surreptitiously switch any uncharged page to root:
1068 * an uncharged page off lru does nothing to secure
1069 * its former mem_cgroup from sudden removal.
1070 *
1071 * Our caller holds lru_lock, and PageCgroupUsed is updated
1072 * under page_cgroup lock: between them, they make all uses
1073 * of pc->mem_cgroup safe.
1074 */
1075 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1076 pc->mem_cgroup = memcg = root_mem_cgroup;
1077
925b7673
JW
1078 mz = page_cgroup_zoneinfo(memcg, page);
1079 /* compound_order() is stabilized through lru_lock */
1080 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1081 return &mz->lruvec;
08e552c6 1082}
b69408e8 1083
925b7673
JW
1084/**
1085 * mem_cgroup_lru_del_list - account for removing an lru page
1086 * @page: the page
1087 * @lru: target lru
1088 *
1089 * This function accounts for @page being removed from @lru.
1090 *
1091 * The callsite is then responsible for physically unlinking
1092 * @page->lru.
3f58a829 1093 */
925b7673 1094void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1095{
1096 struct mem_cgroup_per_zone *mz;
925b7673 1097 struct mem_cgroup *memcg;
3f58a829 1098 struct page_cgroup *pc;
3f58a829
MK
1099
1100 if (mem_cgroup_disabled())
1101 return;
1102
1103 pc = lookup_page_cgroup(page);
38c5d72f
KH
1104 memcg = pc->mem_cgroup;
1105 VM_BUG_ON(!memcg);
925b7673
JW
1106 mz = page_cgroup_zoneinfo(memcg, page);
1107 /* huge page split is done under lru_lock. so, we have no races. */
12d27107 1108 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
925b7673 1109 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
3f58a829
MK
1110}
1111
925b7673 1112void mem_cgroup_lru_del(struct page *page)
08e552c6 1113{
925b7673 1114 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1115}
1116
925b7673
JW
1117/**
1118 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1119 * @zone: zone of the page
1120 * @page: the page
1121 * @from: current lru
1122 * @to: target lru
1123 *
1124 * This function accounts for @page being moved between the lrus @from
1125 * and @to, and returns the lruvec for the given @zone and the memcg
1126 * @page is charged to.
1127 *
1128 * The callsite is then responsible for physically relinking
1129 * @page->lru to the returned lruvec->lists[@to].
1130 */
1131struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1132 struct page *page,
1133 enum lru_list from,
1134 enum lru_list to)
66e1707b 1135{
925b7673
JW
1136 /* XXX: Optimize this, especially for @from == @to */
1137 mem_cgroup_lru_del_list(page, from);
1138 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1139}
544122e5 1140
3e92041d 1141/*
c0ff4b85 1142 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1143 * hierarchy subtree
1144 */
c0ff4b85
R
1145static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg)
3e92041d 1147{
c0ff4b85
R
1148 if (root_memcg != memcg) {
1149 return (root_memcg->use_hierarchy &&
1150 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1151 }
1152
1153 return true;
1154}
1155
c0ff4b85 1156int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1157{
1158 int ret;
0b7f569e 1159 struct mem_cgroup *curr = NULL;
158e0a2d 1160 struct task_struct *p;
4c4a2214 1161
158e0a2d 1162 p = find_lock_task_mm(task);
de077d22
DR
1163 if (p) {
1164 curr = try_get_mem_cgroup_from_mm(p->mm);
1165 task_unlock(p);
1166 } else {
1167 /*
1168 * All threads may have already detached their mm's, but the oom
1169 * killer still needs to detect if they have already been oom
1170 * killed to prevent needlessly killing additional tasks.
1171 */
1172 task_lock(task);
1173 curr = mem_cgroup_from_task(task);
1174 if (curr)
1175 css_get(&curr->css);
1176 task_unlock(task);
1177 }
0b7f569e
KH
1178 if (!curr)
1179 return 0;
d31f56db 1180 /*
c0ff4b85 1181 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1182 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1183 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1184 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1185 */
c0ff4b85 1186 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1187 css_put(&curr->css);
4c4a2214
DR
1188 return ret;
1189}
1190
9b272977 1191int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1192{
9b272977
JW
1193 unsigned long inactive_ratio;
1194 int nid = zone_to_nid(zone);
1195 int zid = zone_idx(zone);
14797e23 1196 unsigned long inactive;
9b272977 1197 unsigned long active;
c772be93 1198 unsigned long gb;
14797e23 1199
9b272977
JW
1200 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1201 BIT(LRU_INACTIVE_ANON));
1202 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1203 BIT(LRU_ACTIVE_ANON));
14797e23 1204
c772be93
KM
1205 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1206 if (gb)
1207 inactive_ratio = int_sqrt(10 * gb);
1208 else
1209 inactive_ratio = 1;
1210
9b272977 1211 return inactive * inactive_ratio < active;
14797e23
KM
1212}
1213
9b272977 1214int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1215{
1216 unsigned long active;
1217 unsigned long inactive;
9b272977
JW
1218 int zid = zone_idx(zone);
1219 int nid = zone_to_nid(zone);
56e49d21 1220
9b272977
JW
1221 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1222 BIT(LRU_INACTIVE_FILE));
1223 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1224 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1225
1226 return (active > inactive);
1227}
1228
3e2f41f1
KM
1229struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1230 struct zone *zone)
1231{
13d7e3a2 1232 int nid = zone_to_nid(zone);
3e2f41f1
KM
1233 int zid = zone_idx(zone);
1234 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1235
1236 return &mz->reclaim_stat;
1237}
1238
1239struct zone_reclaim_stat *
1240mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1241{
1242 struct page_cgroup *pc;
1243 struct mem_cgroup_per_zone *mz;
1244
1245 if (mem_cgroup_disabled())
1246 return NULL;
1247
1248 pc = lookup_page_cgroup(page);
bd112db8
DN
1249 if (!PageCgroupUsed(pc))
1250 return NULL;
713735b4
JW
1251 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1252 smp_rmb();
97a6c37b 1253 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1254 return &mz->reclaim_stat;
1255}
1256
6d61ef40
BS
1257#define mem_cgroup_from_res_counter(counter, member) \
1258 container_of(counter, struct mem_cgroup, member)
1259
19942822 1260/**
9d11ea9f
JW
1261 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1262 * @mem: the memory cgroup
19942822 1263 *
9d11ea9f 1264 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1265 * pages.
19942822 1266 */
c0ff4b85 1267static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1268{
9d11ea9f
JW
1269 unsigned long long margin;
1270
c0ff4b85 1271 margin = res_counter_margin(&memcg->res);
9d11ea9f 1272 if (do_swap_account)
c0ff4b85 1273 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1274 return margin >> PAGE_SHIFT;
19942822
JW
1275}
1276
1f4c025b 1277int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1278{
1279 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1280
1281 /* root ? */
1282 if (cgrp->parent == NULL)
1283 return vm_swappiness;
1284
bf1ff263 1285 return memcg->swappiness;
a7885eb8
KM
1286}
1287
c0ff4b85 1288static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1289{
1290 int cpu;
1489ebad
KH
1291
1292 get_online_cpus();
c0ff4b85 1293 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1294 for_each_online_cpu(cpu)
c0ff4b85
R
1295 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1296 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1297 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1298 put_online_cpus();
32047e2a
KH
1299
1300 synchronize_rcu();
1301}
1302
c0ff4b85 1303static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1304{
1305 int cpu;
1306
c0ff4b85 1307 if (!memcg)
32047e2a 1308 return;
1489ebad 1309 get_online_cpus();
c0ff4b85 1310 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1311 for_each_online_cpu(cpu)
c0ff4b85
R
1312 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1313 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1314 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1315 put_online_cpus();
32047e2a
KH
1316}
1317/*
1318 * 2 routines for checking "mem" is under move_account() or not.
1319 *
1320 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1321 * for avoiding race in accounting. If true,
1322 * pc->mem_cgroup may be overwritten.
1323 *
1324 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1325 * under hierarchy of moving cgroups. This is for
1326 * waiting at hith-memory prressure caused by "move".
1327 */
1328
c0ff4b85 1329static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1330{
1331 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1332 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1333}
4b534334 1334
c0ff4b85 1335static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1336{
2bd9bb20
KH
1337 struct mem_cgroup *from;
1338 struct mem_cgroup *to;
4b534334 1339 bool ret = false;
2bd9bb20
KH
1340 /*
1341 * Unlike task_move routines, we access mc.to, mc.from not under
1342 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1343 */
1344 spin_lock(&mc.lock);
1345 from = mc.from;
1346 to = mc.to;
1347 if (!from)
1348 goto unlock;
3e92041d 1349
c0ff4b85
R
1350 ret = mem_cgroup_same_or_subtree(memcg, from)
1351 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1352unlock:
1353 spin_unlock(&mc.lock);
4b534334
KH
1354 return ret;
1355}
1356
c0ff4b85 1357static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1358{
1359 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1360 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1361 DEFINE_WAIT(wait);
1362 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1363 /* moving charge context might have finished. */
1364 if (mc.moving_task)
1365 schedule();
1366 finish_wait(&mc.waitq, &wait);
1367 return true;
1368 }
1369 }
1370 return false;
1371}
1372
e222432b 1373/**
6a6135b6 1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1377 *
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1380 */
1381void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382{
1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp;
1385 /*
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1389 */
1390 static char memcg_name[PATH_MAX];
1391 int ret;
1392
d31f56db 1393 if (!memcg || !p)
e222432b
BS
1394 return;
1395
1396
1397 rcu_read_lock();
1398
1399 mem_cgrp = memcg->css.cgroup;
1400 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401
1402 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1403 if (ret < 0) {
1404 /*
1405 * Unfortunately, we are unable to convert to a useful name
1406 * But we'll still print out the usage information
1407 */
1408 rcu_read_unlock();
1409 goto done;
1410 }
1411 rcu_read_unlock();
1412
1413 printk(KERN_INFO "Task in %s killed", memcg_name);
1414
1415 rcu_read_lock();
1416 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1417 if (ret < 0) {
1418 rcu_read_unlock();
1419 goto done;
1420 }
1421 rcu_read_unlock();
1422
1423 /*
1424 * Continues from above, so we don't need an KERN_ level
1425 */
1426 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1427done:
1428
1429 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1430 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1433 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1434 "failcnt %llu\n",
1435 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1437 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1438}
1439
81d39c20
KH
1440/*
1441 * This function returns the number of memcg under hierarchy tree. Returns
1442 * 1(self count) if no children.
1443 */
c0ff4b85 1444static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1445{
1446 int num = 0;
7d74b06f
KH
1447 struct mem_cgroup *iter;
1448
c0ff4b85 1449 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1450 num++;
81d39c20
KH
1451 return num;
1452}
1453
a63d83f4
DR
1454/*
1455 * Return the memory (and swap, if configured) limit for a memcg.
1456 */
1457u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458{
1459 u64 limit;
1460 u64 memsw;
1461
f3e8eb70
JW
1462 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1463 limit += total_swap_pages << PAGE_SHIFT;
1464
a63d83f4
DR
1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466 /*
1467 * If memsw is finite and limits the amount of swap space available
1468 * to this memcg, return that limit.
1469 */
1470 return min(limit, memsw);
1471}
1472
5660048c
JW
1473static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1474 gfp_t gfp_mask,
1475 unsigned long flags)
1476{
1477 unsigned long total = 0;
1478 bool noswap = false;
1479 int loop;
1480
1481 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1482 noswap = true;
1483 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1484 noswap = true;
1485
1486 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1487 if (loop)
1488 drain_all_stock_async(memcg);
1489 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1490 /*
1491 * Allow limit shrinkers, which are triggered directly
1492 * by userspace, to catch signals and stop reclaim
1493 * after minimal progress, regardless of the margin.
1494 */
1495 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1496 break;
1497 if (mem_cgroup_margin(memcg))
1498 break;
1499 /*
1500 * If nothing was reclaimed after two attempts, there
1501 * may be no reclaimable pages in this hierarchy.
1502 */
1503 if (loop && !total)
1504 break;
1505 }
1506 return total;
1507}
1508
4d0c066d
KH
1509/**
1510 * test_mem_cgroup_node_reclaimable
1511 * @mem: the target memcg
1512 * @nid: the node ID to be checked.
1513 * @noswap : specify true here if the user wants flle only information.
1514 *
1515 * This function returns whether the specified memcg contains any
1516 * reclaimable pages on a node. Returns true if there are any reclaimable
1517 * pages in the node.
1518 */
c0ff4b85 1519static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1520 int nid, bool noswap)
1521{
c0ff4b85 1522 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1523 return true;
1524 if (noswap || !total_swap_pages)
1525 return false;
c0ff4b85 1526 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1527 return true;
1528 return false;
1529
1530}
889976db
YH
1531#if MAX_NUMNODES > 1
1532
1533/*
1534 * Always updating the nodemask is not very good - even if we have an empty
1535 * list or the wrong list here, we can start from some node and traverse all
1536 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1537 *
1538 */
c0ff4b85 1539static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1540{
1541 int nid;
453a9bf3
KH
1542 /*
1543 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1544 * pagein/pageout changes since the last update.
1545 */
c0ff4b85 1546 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1547 return;
c0ff4b85 1548 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1549 return;
1550
889976db 1551 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1552 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1553
1554 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1555
c0ff4b85
R
1556 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1557 node_clear(nid, memcg->scan_nodes);
889976db 1558 }
453a9bf3 1559
c0ff4b85
R
1560 atomic_set(&memcg->numainfo_events, 0);
1561 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1562}
1563
1564/*
1565 * Selecting a node where we start reclaim from. Because what we need is just
1566 * reducing usage counter, start from anywhere is O,K. Considering
1567 * memory reclaim from current node, there are pros. and cons.
1568 *
1569 * Freeing memory from current node means freeing memory from a node which
1570 * we'll use or we've used. So, it may make LRU bad. And if several threads
1571 * hit limits, it will see a contention on a node. But freeing from remote
1572 * node means more costs for memory reclaim because of memory latency.
1573 *
1574 * Now, we use round-robin. Better algorithm is welcomed.
1575 */
c0ff4b85 1576int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1577{
1578 int node;
1579
c0ff4b85
R
1580 mem_cgroup_may_update_nodemask(memcg);
1581 node = memcg->last_scanned_node;
889976db 1582
c0ff4b85 1583 node = next_node(node, memcg->scan_nodes);
889976db 1584 if (node == MAX_NUMNODES)
c0ff4b85 1585 node = first_node(memcg->scan_nodes);
889976db
YH
1586 /*
1587 * We call this when we hit limit, not when pages are added to LRU.
1588 * No LRU may hold pages because all pages are UNEVICTABLE or
1589 * memcg is too small and all pages are not on LRU. In that case,
1590 * we use curret node.
1591 */
1592 if (unlikely(node == MAX_NUMNODES))
1593 node = numa_node_id();
1594
c0ff4b85 1595 memcg->last_scanned_node = node;
889976db
YH
1596 return node;
1597}
1598
4d0c066d
KH
1599/*
1600 * Check all nodes whether it contains reclaimable pages or not.
1601 * For quick scan, we make use of scan_nodes. This will allow us to skip
1602 * unused nodes. But scan_nodes is lazily updated and may not cotain
1603 * enough new information. We need to do double check.
1604 */
c0ff4b85 1605bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1606{
1607 int nid;
1608
1609 /*
1610 * quick check...making use of scan_node.
1611 * We can skip unused nodes.
1612 */
c0ff4b85
R
1613 if (!nodes_empty(memcg->scan_nodes)) {
1614 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1615 nid < MAX_NUMNODES;
c0ff4b85 1616 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1617
c0ff4b85 1618 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1619 return true;
1620 }
1621 }
1622 /*
1623 * Check rest of nodes.
1624 */
1625 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1626 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1627 continue;
c0ff4b85 1628 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1629 return true;
1630 }
1631 return false;
1632}
1633
889976db 1634#else
c0ff4b85 1635int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1636{
1637 return 0;
1638}
4d0c066d 1639
c0ff4b85 1640bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1641{
c0ff4b85 1642 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1643}
889976db
YH
1644#endif
1645
5660048c
JW
1646static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1647 struct zone *zone,
1648 gfp_t gfp_mask,
1649 unsigned long *total_scanned)
6d61ef40 1650{
9f3a0d09 1651 struct mem_cgroup *victim = NULL;
5660048c 1652 int total = 0;
04046e1a 1653 int loop = 0;
9d11ea9f 1654 unsigned long excess;
185efc0f 1655 unsigned long nr_scanned;
527a5ec9
JW
1656 struct mem_cgroup_reclaim_cookie reclaim = {
1657 .zone = zone,
1658 .priority = 0,
1659 };
9d11ea9f 1660
c0ff4b85 1661 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1662
4e416953 1663 while (1) {
527a5ec9 1664 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1665 if (!victim) {
04046e1a 1666 loop++;
4e416953
BS
1667 if (loop >= 2) {
1668 /*
1669 * If we have not been able to reclaim
1670 * anything, it might because there are
1671 * no reclaimable pages under this hierarchy
1672 */
5660048c 1673 if (!total)
4e416953 1674 break;
4e416953 1675 /*
25985edc 1676 * We want to do more targeted reclaim.
4e416953
BS
1677 * excess >> 2 is not to excessive so as to
1678 * reclaim too much, nor too less that we keep
1679 * coming back to reclaim from this cgroup
1680 */
1681 if (total >= (excess >> 2) ||
9f3a0d09 1682 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1683 break;
4e416953 1684 }
9f3a0d09 1685 continue;
4e416953 1686 }
5660048c 1687 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1688 continue;
5660048c
JW
1689 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1690 zone, &nr_scanned);
1691 *total_scanned += nr_scanned;
1692 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1693 break;
6d61ef40 1694 }
9f3a0d09 1695 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1696 return total;
6d61ef40
BS
1697}
1698
867578cb
KH
1699/*
1700 * Check OOM-Killer is already running under our hierarchy.
1701 * If someone is running, return false.
1af8efe9 1702 * Has to be called with memcg_oom_lock
867578cb 1703 */
c0ff4b85 1704static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1705{
79dfdacc 1706 struct mem_cgroup *iter, *failed = NULL;
a636b327 1707
9f3a0d09 1708 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1709 if (iter->oom_lock) {
79dfdacc
MH
1710 /*
1711 * this subtree of our hierarchy is already locked
1712 * so we cannot give a lock.
1713 */
79dfdacc 1714 failed = iter;
9f3a0d09
JW
1715 mem_cgroup_iter_break(memcg, iter);
1716 break;
23751be0
JW
1717 } else
1718 iter->oom_lock = true;
7d74b06f 1719 }
867578cb 1720
79dfdacc 1721 if (!failed)
23751be0 1722 return true;
79dfdacc
MH
1723
1724 /*
1725 * OK, we failed to lock the whole subtree so we have to clean up
1726 * what we set up to the failing subtree
1727 */
9f3a0d09 1728 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1729 if (iter == failed) {
9f3a0d09
JW
1730 mem_cgroup_iter_break(memcg, iter);
1731 break;
79dfdacc
MH
1732 }
1733 iter->oom_lock = false;
1734 }
23751be0 1735 return false;
a636b327 1736}
0b7f569e 1737
79dfdacc 1738/*
1af8efe9 1739 * Has to be called with memcg_oom_lock
79dfdacc 1740 */
c0ff4b85 1741static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1742{
7d74b06f
KH
1743 struct mem_cgroup *iter;
1744
c0ff4b85 1745 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1746 iter->oom_lock = false;
1747 return 0;
1748}
1749
c0ff4b85 1750static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1751{
1752 struct mem_cgroup *iter;
1753
c0ff4b85 1754 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1755 atomic_inc(&iter->under_oom);
1756}
1757
c0ff4b85 1758static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1759{
1760 struct mem_cgroup *iter;
1761
867578cb
KH
1762 /*
1763 * When a new child is created while the hierarchy is under oom,
1764 * mem_cgroup_oom_lock() may not be called. We have to use
1765 * atomic_add_unless() here.
1766 */
c0ff4b85 1767 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1768 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1769}
1770
1af8efe9 1771static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1772static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1773
dc98df5a
KH
1774struct oom_wait_info {
1775 struct mem_cgroup *mem;
1776 wait_queue_t wait;
1777};
1778
1779static int memcg_oom_wake_function(wait_queue_t *wait,
1780 unsigned mode, int sync, void *arg)
1781{
c0ff4b85
R
1782 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1783 *oom_wait_memcg;
dc98df5a
KH
1784 struct oom_wait_info *oom_wait_info;
1785
1786 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1787 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1788
dc98df5a
KH
1789 /*
1790 * Both of oom_wait_info->mem and wake_mem are stable under us.
1791 * Then we can use css_is_ancestor without taking care of RCU.
1792 */
c0ff4b85
R
1793 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1794 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1795 return 0;
dc98df5a
KH
1796 return autoremove_wake_function(wait, mode, sync, arg);
1797}
1798
c0ff4b85 1799static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1800{
c0ff4b85
R
1801 /* for filtering, pass "memcg" as argument. */
1802 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1803}
1804
c0ff4b85 1805static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1806{
c0ff4b85
R
1807 if (memcg && atomic_read(&memcg->under_oom))
1808 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1809}
1810
867578cb
KH
1811/*
1812 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1813 */
e845e199 1814bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1815{
dc98df5a 1816 struct oom_wait_info owait;
3c11ecf4 1817 bool locked, need_to_kill;
867578cb 1818
c0ff4b85 1819 owait.mem = memcg;
dc98df5a
KH
1820 owait.wait.flags = 0;
1821 owait.wait.func = memcg_oom_wake_function;
1822 owait.wait.private = current;
1823 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1824 need_to_kill = true;
c0ff4b85 1825 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1826
c0ff4b85 1827 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1828 spin_lock(&memcg_oom_lock);
c0ff4b85 1829 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1830 /*
1831 * Even if signal_pending(), we can't quit charge() loop without
1832 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1833 * under OOM is always welcomed, use TASK_KILLABLE here.
1834 */
3c11ecf4 1835 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1836 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1837 need_to_kill = false;
1838 if (locked)
c0ff4b85 1839 mem_cgroup_oom_notify(memcg);
1af8efe9 1840 spin_unlock(&memcg_oom_lock);
867578cb 1841
3c11ecf4
KH
1842 if (need_to_kill) {
1843 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1844 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1845 } else {
867578cb 1846 schedule();
dc98df5a 1847 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1848 }
1af8efe9 1849 spin_lock(&memcg_oom_lock);
79dfdacc 1850 if (locked)
c0ff4b85
R
1851 mem_cgroup_oom_unlock(memcg);
1852 memcg_wakeup_oom(memcg);
1af8efe9 1853 spin_unlock(&memcg_oom_lock);
867578cb 1854
c0ff4b85 1855 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1856
867578cb
KH
1857 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1858 return false;
1859 /* Give chance to dying process */
715a5ee8 1860 schedule_timeout_uninterruptible(1);
867578cb 1861 return true;
0b7f569e
KH
1862}
1863
d69b042f
BS
1864/*
1865 * Currently used to update mapped file statistics, but the routine can be
1866 * generalized to update other statistics as well.
32047e2a
KH
1867 *
1868 * Notes: Race condition
1869 *
1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1871 * it tends to be costly. But considering some conditions, we doesn't need
1872 * to do so _always_.
1873 *
1874 * Considering "charge", lock_page_cgroup() is not required because all
1875 * file-stat operations happen after a page is attached to radix-tree. There
1876 * are no race with "charge".
1877 *
1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1880 * if there are race with "uncharge". Statistics itself is properly handled
1881 * by flags.
1882 *
1883 * Considering "move", this is an only case we see a race. To make the race
1884 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1885 * possibility of race condition. If there is, we take a lock.
d69b042f 1886 */
26174efd 1887
2a7106f2
GT
1888void mem_cgroup_update_page_stat(struct page *page,
1889 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1890{
c0ff4b85 1891 struct mem_cgroup *memcg;
32047e2a
KH
1892 struct page_cgroup *pc = lookup_page_cgroup(page);
1893 bool need_unlock = false;
dbd4ea78 1894 unsigned long uninitialized_var(flags);
d69b042f 1895
cfa44946 1896 if (mem_cgroup_disabled())
d69b042f
BS
1897 return;
1898
32047e2a 1899 rcu_read_lock();
c0ff4b85
R
1900 memcg = pc->mem_cgroup;
1901 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1902 goto out;
1903 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1904 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1905 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1906 move_lock_page_cgroup(pc, &flags);
32047e2a 1907 need_unlock = true;
c0ff4b85
R
1908 memcg = pc->mem_cgroup;
1909 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
1910 goto out;
1911 }
26174efd 1912
26174efd 1913 switch (idx) {
2a7106f2 1914 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1915 if (val > 0)
1916 SetPageCgroupFileMapped(pc);
1917 else if (!page_mapped(page))
0c270f8f 1918 ClearPageCgroupFileMapped(pc);
2a7106f2 1919 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1920 break;
1921 default:
1922 BUG();
8725d541 1923 }
d69b042f 1924
c0ff4b85 1925 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 1926
32047e2a
KH
1927out:
1928 if (unlikely(need_unlock))
dbd4ea78 1929 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1930 rcu_read_unlock();
1931 return;
d69b042f 1932}
2a7106f2 1933EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1934
cdec2e42
KH
1935/*
1936 * size of first charge trial. "32" comes from vmscan.c's magic value.
1937 * TODO: maybe necessary to use big numbers in big irons.
1938 */
7ec99d62 1939#define CHARGE_BATCH 32U
cdec2e42
KH
1940struct memcg_stock_pcp {
1941 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1942 unsigned int nr_pages;
cdec2e42 1943 struct work_struct work;
26fe6168
KH
1944 unsigned long flags;
1945#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1946};
1947static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1948static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1949
1950/*
11c9ea4e 1951 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1952 * from local stock and true is returned. If the stock is 0 or charges from a
1953 * cgroup which is not current target, returns false. This stock will be
1954 * refilled.
1955 */
c0ff4b85 1956static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1957{
1958 struct memcg_stock_pcp *stock;
1959 bool ret = true;
1960
1961 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1962 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1963 stock->nr_pages--;
cdec2e42
KH
1964 else /* need to call res_counter_charge */
1965 ret = false;
1966 put_cpu_var(memcg_stock);
1967 return ret;
1968}
1969
1970/*
1971 * Returns stocks cached in percpu to res_counter and reset cached information.
1972 */
1973static void drain_stock(struct memcg_stock_pcp *stock)
1974{
1975 struct mem_cgroup *old = stock->cached;
1976
11c9ea4e
JW
1977 if (stock->nr_pages) {
1978 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1979
1980 res_counter_uncharge(&old->res, bytes);
cdec2e42 1981 if (do_swap_account)
11c9ea4e
JW
1982 res_counter_uncharge(&old->memsw, bytes);
1983 stock->nr_pages = 0;
cdec2e42
KH
1984 }
1985 stock->cached = NULL;
cdec2e42
KH
1986}
1987
1988/*
1989 * This must be called under preempt disabled or must be called by
1990 * a thread which is pinned to local cpu.
1991 */
1992static void drain_local_stock(struct work_struct *dummy)
1993{
1994 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1995 drain_stock(stock);
26fe6168 1996 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1997}
1998
1999/*
2000 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2001 * This will be consumed by consume_stock() function, later.
cdec2e42 2002 */
c0ff4b85 2003static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2004{
2005 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2006
c0ff4b85 2007 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2008 drain_stock(stock);
c0ff4b85 2009 stock->cached = memcg;
cdec2e42 2010 }
11c9ea4e 2011 stock->nr_pages += nr_pages;
cdec2e42
KH
2012 put_cpu_var(memcg_stock);
2013}
2014
2015/*
c0ff4b85 2016 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2017 * of the hierarchy under it. sync flag says whether we should block
2018 * until the work is done.
cdec2e42 2019 */
c0ff4b85 2020static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2021{
26fe6168 2022 int cpu, curcpu;
d38144b7 2023
cdec2e42 2024 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2025 get_online_cpus();
5af12d0e 2026 curcpu = get_cpu();
cdec2e42
KH
2027 for_each_online_cpu(cpu) {
2028 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2029 struct mem_cgroup *memcg;
26fe6168 2030
c0ff4b85
R
2031 memcg = stock->cached;
2032 if (!memcg || !stock->nr_pages)
26fe6168 2033 continue;
c0ff4b85 2034 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2035 continue;
d1a05b69
MH
2036 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2037 if (cpu == curcpu)
2038 drain_local_stock(&stock->work);
2039 else
2040 schedule_work_on(cpu, &stock->work);
2041 }
cdec2e42 2042 }
5af12d0e 2043 put_cpu();
d38144b7
MH
2044
2045 if (!sync)
2046 goto out;
2047
2048 for_each_online_cpu(cpu) {
2049 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2050 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2051 flush_work(&stock->work);
2052 }
2053out:
cdec2e42 2054 put_online_cpus();
d38144b7
MH
2055}
2056
2057/*
2058 * Tries to drain stocked charges in other cpus. This function is asynchronous
2059 * and just put a work per cpu for draining localy on each cpu. Caller can
2060 * expects some charges will be back to res_counter later but cannot wait for
2061 * it.
2062 */
c0ff4b85 2063static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2064{
9f50fad6
MH
2065 /*
2066 * If someone calls draining, avoid adding more kworker runs.
2067 */
2068 if (!mutex_trylock(&percpu_charge_mutex))
2069 return;
c0ff4b85 2070 drain_all_stock(root_memcg, false);
9f50fad6 2071 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2072}
2073
2074/* This is a synchronous drain interface. */
c0ff4b85 2075static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2076{
2077 /* called when force_empty is called */
9f50fad6 2078 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2079 drain_all_stock(root_memcg, true);
9f50fad6 2080 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2081}
2082
711d3d2c
KH
2083/*
2084 * This function drains percpu counter value from DEAD cpu and
2085 * move it to local cpu. Note that this function can be preempted.
2086 */
c0ff4b85 2087static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2088{
2089 int i;
2090
c0ff4b85 2091 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2092 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2093 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2094
c0ff4b85
R
2095 per_cpu(memcg->stat->count[i], cpu) = 0;
2096 memcg->nocpu_base.count[i] += x;
711d3d2c 2097 }
e9f8974f 2098 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2099 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2100
c0ff4b85
R
2101 per_cpu(memcg->stat->events[i], cpu) = 0;
2102 memcg->nocpu_base.events[i] += x;
e9f8974f 2103 }
1489ebad 2104 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2105 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2106 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2107}
2108
c0ff4b85 2109static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2110{
2111 int idx = MEM_CGROUP_ON_MOVE;
2112
c0ff4b85
R
2113 spin_lock(&memcg->pcp_counter_lock);
2114 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2115 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2116}
2117
2118static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2119 unsigned long action,
2120 void *hcpu)
2121{
2122 int cpu = (unsigned long)hcpu;
2123 struct memcg_stock_pcp *stock;
711d3d2c 2124 struct mem_cgroup *iter;
cdec2e42 2125
1489ebad 2126 if ((action == CPU_ONLINE)) {
9f3a0d09 2127 for_each_mem_cgroup(iter)
1489ebad
KH
2128 synchronize_mem_cgroup_on_move(iter, cpu);
2129 return NOTIFY_OK;
2130 }
2131
711d3d2c 2132 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2133 return NOTIFY_OK;
711d3d2c 2134
9f3a0d09 2135 for_each_mem_cgroup(iter)
711d3d2c
KH
2136 mem_cgroup_drain_pcp_counter(iter, cpu);
2137
cdec2e42
KH
2138 stock = &per_cpu(memcg_stock, cpu);
2139 drain_stock(stock);
2140 return NOTIFY_OK;
2141}
2142
4b534334
KH
2143
2144/* See __mem_cgroup_try_charge() for details */
2145enum {
2146 CHARGE_OK, /* success */
2147 CHARGE_RETRY, /* need to retry but retry is not bad */
2148 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2149 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2150 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2151};
2152
c0ff4b85 2153static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2154 unsigned int nr_pages, bool oom_check)
4b534334 2155{
7ec99d62 2156 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2157 struct mem_cgroup *mem_over_limit;
2158 struct res_counter *fail_res;
2159 unsigned long flags = 0;
2160 int ret;
2161
c0ff4b85 2162 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2163
2164 if (likely(!ret)) {
2165 if (!do_swap_account)
2166 return CHARGE_OK;
c0ff4b85 2167 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2168 if (likely(!ret))
2169 return CHARGE_OK;
2170
c0ff4b85 2171 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2172 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2173 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2174 } else
2175 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2176 /*
7ec99d62
JW
2177 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2178 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2179 *
2180 * Never reclaim on behalf of optional batching, retry with a
2181 * single page instead.
2182 */
7ec99d62 2183 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2184 return CHARGE_RETRY;
2185
2186 if (!(gfp_mask & __GFP_WAIT))
2187 return CHARGE_WOULDBLOCK;
2188
5660048c 2189 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2190 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2191 return CHARGE_RETRY;
4b534334 2192 /*
19942822
JW
2193 * Even though the limit is exceeded at this point, reclaim
2194 * may have been able to free some pages. Retry the charge
2195 * before killing the task.
2196 *
2197 * Only for regular pages, though: huge pages are rather
2198 * unlikely to succeed so close to the limit, and we fall back
2199 * to regular pages anyway in case of failure.
4b534334 2200 */
7ec99d62 2201 if (nr_pages == 1 && ret)
4b534334
KH
2202 return CHARGE_RETRY;
2203
2204 /*
2205 * At task move, charge accounts can be doubly counted. So, it's
2206 * better to wait until the end of task_move if something is going on.
2207 */
2208 if (mem_cgroup_wait_acct_move(mem_over_limit))
2209 return CHARGE_RETRY;
2210
2211 /* If we don't need to call oom-killer at el, return immediately */
2212 if (!oom_check)
2213 return CHARGE_NOMEM;
2214 /* check OOM */
e845e199 2215 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2216 return CHARGE_OOM_DIE;
2217
2218 return CHARGE_RETRY;
2219}
2220
f817ed48 2221/*
38c5d72f
KH
2222 * __mem_cgroup_try_charge() does
2223 * 1. detect memcg to be charged against from passed *mm and *ptr,
2224 * 2. update res_counter
2225 * 3. call memory reclaim if necessary.
2226 *
2227 * In some special case, if the task is fatal, fatal_signal_pending() or
2228 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2229 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2230 * as possible without any hazards. 2: all pages should have a valid
2231 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2232 * pointer, that is treated as a charge to root_mem_cgroup.
2233 *
2234 * So __mem_cgroup_try_charge() will return
2235 * 0 ... on success, filling *ptr with a valid memcg pointer.
2236 * -ENOMEM ... charge failure because of resource limits.
2237 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2238 *
2239 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2240 * the oom-killer can be invoked.
8a9f3ccd 2241 */
f817ed48 2242static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2243 gfp_t gfp_mask,
7ec99d62 2244 unsigned int nr_pages,
c0ff4b85 2245 struct mem_cgroup **ptr,
7ec99d62 2246 bool oom)
8a9f3ccd 2247{
7ec99d62 2248 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2249 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2250 struct mem_cgroup *memcg = NULL;
4b534334 2251 int ret;
a636b327 2252
867578cb
KH
2253 /*
2254 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2255 * in system level. So, allow to go ahead dying process in addition to
2256 * MEMDIE process.
2257 */
2258 if (unlikely(test_thread_flag(TIF_MEMDIE)
2259 || fatal_signal_pending(current)))
2260 goto bypass;
a636b327 2261
8a9f3ccd 2262 /*
3be91277
HD
2263 * We always charge the cgroup the mm_struct belongs to.
2264 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2265 * thread group leader migrates. It's possible that mm is not
2266 * set, if so charge the init_mm (happens for pagecache usage).
2267 */
c0ff4b85 2268 if (!*ptr && !mm)
38c5d72f 2269 *ptr = root_mem_cgroup;
f75ca962 2270again:
c0ff4b85
R
2271 if (*ptr) { /* css should be a valid one */
2272 memcg = *ptr;
2273 VM_BUG_ON(css_is_removed(&memcg->css));
2274 if (mem_cgroup_is_root(memcg))
f75ca962 2275 goto done;
c0ff4b85 2276 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2277 goto done;
c0ff4b85 2278 css_get(&memcg->css);
4b534334 2279 } else {
f75ca962 2280 struct task_struct *p;
54595fe2 2281
f75ca962
KH
2282 rcu_read_lock();
2283 p = rcu_dereference(mm->owner);
f75ca962 2284 /*
ebb76ce1 2285 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2286 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2287 * race with swapoff. Then, we have small risk of mis-accouning.
2288 * But such kind of mis-account by race always happens because
2289 * we don't have cgroup_mutex(). It's overkill and we allo that
2290 * small race, here.
2291 * (*) swapoff at el will charge against mm-struct not against
2292 * task-struct. So, mm->owner can be NULL.
f75ca962 2293 */
c0ff4b85 2294 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2295 if (!memcg)
2296 memcg = root_mem_cgroup;
2297 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2298 rcu_read_unlock();
2299 goto done;
2300 }
c0ff4b85 2301 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2302 /*
2303 * It seems dagerous to access memcg without css_get().
2304 * But considering how consume_stok works, it's not
2305 * necessary. If consume_stock success, some charges
2306 * from this memcg are cached on this cpu. So, we
2307 * don't need to call css_get()/css_tryget() before
2308 * calling consume_stock().
2309 */
2310 rcu_read_unlock();
2311 goto done;
2312 }
2313 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2314 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2315 rcu_read_unlock();
2316 goto again;
2317 }
2318 rcu_read_unlock();
2319 }
8a9f3ccd 2320
4b534334
KH
2321 do {
2322 bool oom_check;
7a81b88c 2323
4b534334 2324 /* If killed, bypass charge */
f75ca962 2325 if (fatal_signal_pending(current)) {
c0ff4b85 2326 css_put(&memcg->css);
4b534334 2327 goto bypass;
f75ca962 2328 }
6d61ef40 2329
4b534334
KH
2330 oom_check = false;
2331 if (oom && !nr_oom_retries) {
2332 oom_check = true;
2333 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2334 }
66e1707b 2335
c0ff4b85 2336 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2337 switch (ret) {
2338 case CHARGE_OK:
2339 break;
2340 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2341 batch = nr_pages;
c0ff4b85
R
2342 css_put(&memcg->css);
2343 memcg = NULL;
f75ca962 2344 goto again;
4b534334 2345 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2346 css_put(&memcg->css);
4b534334
KH
2347 goto nomem;
2348 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2349 if (!oom) {
c0ff4b85 2350 css_put(&memcg->css);
867578cb 2351 goto nomem;
f75ca962 2352 }
4b534334
KH
2353 /* If oom, we never return -ENOMEM */
2354 nr_oom_retries--;
2355 break;
2356 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2357 css_put(&memcg->css);
867578cb 2358 goto bypass;
66e1707b 2359 }
4b534334
KH
2360 } while (ret != CHARGE_OK);
2361
7ec99d62 2362 if (batch > nr_pages)
c0ff4b85
R
2363 refill_stock(memcg, batch - nr_pages);
2364 css_put(&memcg->css);
0c3e73e8 2365done:
c0ff4b85 2366 *ptr = memcg;
7a81b88c
KH
2367 return 0;
2368nomem:
c0ff4b85 2369 *ptr = NULL;
7a81b88c 2370 return -ENOMEM;
867578cb 2371bypass:
38c5d72f
KH
2372 *ptr = root_mem_cgroup;
2373 return -EINTR;
7a81b88c 2374}
8a9f3ccd 2375
a3032a2c
DN
2376/*
2377 * Somemtimes we have to undo a charge we got by try_charge().
2378 * This function is for that and do uncharge, put css's refcnt.
2379 * gotten by try_charge().
2380 */
c0ff4b85 2381static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2382 unsigned int nr_pages)
a3032a2c 2383{
c0ff4b85 2384 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2385 unsigned long bytes = nr_pages * PAGE_SIZE;
2386
c0ff4b85 2387 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2388 if (do_swap_account)
c0ff4b85 2389 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2390 }
854ffa8d
DN
2391}
2392
a3b2d692
KH
2393/*
2394 * A helper function to get mem_cgroup from ID. must be called under
2395 * rcu_read_lock(). The caller must check css_is_removed() or some if
2396 * it's concern. (dropping refcnt from swap can be called against removed
2397 * memcg.)
2398 */
2399static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2400{
2401 struct cgroup_subsys_state *css;
2402
2403 /* ID 0 is unused ID */
2404 if (!id)
2405 return NULL;
2406 css = css_lookup(&mem_cgroup_subsys, id);
2407 if (!css)
2408 return NULL;
2409 return container_of(css, struct mem_cgroup, css);
2410}
2411
e42d9d5d 2412struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2413{
c0ff4b85 2414 struct mem_cgroup *memcg = NULL;
3c776e64 2415 struct page_cgroup *pc;
a3b2d692 2416 unsigned short id;
b5a84319
KH
2417 swp_entry_t ent;
2418
3c776e64
DN
2419 VM_BUG_ON(!PageLocked(page));
2420
3c776e64 2421 pc = lookup_page_cgroup(page);
c0bd3f63 2422 lock_page_cgroup(pc);
a3b2d692 2423 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2424 memcg = pc->mem_cgroup;
2425 if (memcg && !css_tryget(&memcg->css))
2426 memcg = NULL;
e42d9d5d 2427 } else if (PageSwapCache(page)) {
3c776e64 2428 ent.val = page_private(page);
9fb4b7cc 2429 id = lookup_swap_cgroup_id(ent);
a3b2d692 2430 rcu_read_lock();
c0ff4b85
R
2431 memcg = mem_cgroup_lookup(id);
2432 if (memcg && !css_tryget(&memcg->css))
2433 memcg = NULL;
a3b2d692 2434 rcu_read_unlock();
3c776e64 2435 }
c0bd3f63 2436 unlock_page_cgroup(pc);
c0ff4b85 2437 return memcg;
b5a84319
KH
2438}
2439
c0ff4b85 2440static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2441 struct page *page,
7ec99d62 2442 unsigned int nr_pages,
ca3e0214 2443 struct page_cgroup *pc,
9ce70c02
HD
2444 enum charge_type ctype,
2445 bool lrucare)
7a81b88c 2446{
9ce70c02
HD
2447 struct zone *uninitialized_var(zone);
2448 bool was_on_lru = false;
2449
ca3e0214
KH
2450 lock_page_cgroup(pc);
2451 if (unlikely(PageCgroupUsed(pc))) {
2452 unlock_page_cgroup(pc);
c0ff4b85 2453 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2454 return;
2455 }
2456 /*
2457 * we don't need page_cgroup_lock about tail pages, becase they are not
2458 * accessed by any other context at this point.
2459 */
9ce70c02
HD
2460
2461 /*
2462 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2463 * may already be on some other mem_cgroup's LRU. Take care of it.
2464 */
2465 if (lrucare) {
2466 zone = page_zone(page);
2467 spin_lock_irq(&zone->lru_lock);
2468 if (PageLRU(page)) {
2469 ClearPageLRU(page);
2470 del_page_from_lru_list(zone, page, page_lru(page));
2471 was_on_lru = true;
2472 }
2473 }
2474
c0ff4b85 2475 pc->mem_cgroup = memcg;
261fb61a
KH
2476 /*
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2482 */
08e552c6 2483 smp_wmb();
4b3bde4c
BS
2484 switch (ctype) {
2485 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487 SetPageCgroupCache(pc);
2488 SetPageCgroupUsed(pc);
2489 break;
2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491 ClearPageCgroupCache(pc);
2492 SetPageCgroupUsed(pc);
2493 break;
2494 default:
2495 break;
2496 }
3be91277 2497
9ce70c02
HD
2498 if (lrucare) {
2499 if (was_on_lru) {
2500 VM_BUG_ON(PageLRU(page));
2501 SetPageLRU(page);
2502 add_page_to_lru_list(zone, page, page_lru(page));
2503 }
2504 spin_unlock_irq(&zone->lru_lock);
2505 }
2506
c0ff4b85 2507 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2508 unlock_page_cgroup(pc);
9ce70c02 2509
430e4863
KH
2510 /*
2511 * "charge_statistics" updated event counter. Then, check it.
2512 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2513 * if they exceeds softlimit.
2514 */
c0ff4b85 2515 memcg_check_events(memcg, page);
7a81b88c 2516}
66e1707b 2517
ca3e0214
KH
2518#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2519
2520#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
38c5d72f 2521 (1 << PCG_MIGRATION))
ca3e0214
KH
2522/*
2523 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2524 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2525 * charge/uncharge will be never happen and move_account() is done under
2526 * compound_lock(), so we don't have to take care of races.
ca3e0214 2527 */
e94c8a9c 2528void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2529{
2530 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2531 struct page_cgroup *pc;
2532 int i;
ca3e0214 2533
3d37c4a9
KH
2534 if (mem_cgroup_disabled())
2535 return;
e94c8a9c
KH
2536 for (i = 1; i < HPAGE_PMD_NR; i++) {
2537 pc = head_pc + i;
2538 pc->mem_cgroup = head_pc->mem_cgroup;
2539 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2540 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2541 }
ca3e0214 2542}
12d27107 2543#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2544
f817ed48 2545/**
de3638d9 2546 * mem_cgroup_move_account - move account of the page
5564e88b 2547 * @page: the page
7ec99d62 2548 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2549 * @pc: page_cgroup of the page.
2550 * @from: mem_cgroup which the page is moved from.
2551 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2552 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2553 *
2554 * The caller must confirm following.
08e552c6 2555 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2556 * - compound_lock is held when nr_pages > 1
f817ed48 2557 *
854ffa8d 2558 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2559 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2560 * true, this function does "uncharge" from old cgroup, but it doesn't if
2561 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2562 */
7ec99d62
JW
2563static int mem_cgroup_move_account(struct page *page,
2564 unsigned int nr_pages,
2565 struct page_cgroup *pc,
2566 struct mem_cgroup *from,
2567 struct mem_cgroup *to,
2568 bool uncharge)
f817ed48 2569{
de3638d9
JW
2570 unsigned long flags;
2571 int ret;
987eba66 2572
f817ed48 2573 VM_BUG_ON(from == to);
5564e88b 2574 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2575 /*
2576 * The page is isolated from LRU. So, collapse function
2577 * will not handle this page. But page splitting can happen.
2578 * Do this check under compound_page_lock(). The caller should
2579 * hold it.
2580 */
2581 ret = -EBUSY;
7ec99d62 2582 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2583 goto out;
2584
2585 lock_page_cgroup(pc);
2586
2587 ret = -EINVAL;
2588 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2589 goto unlock;
2590
2591 move_lock_page_cgroup(pc, &flags);
f817ed48 2592
8725d541 2593 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2594 /* Update mapped_file data for mem_cgroup */
2595 preempt_disable();
2596 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2597 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2598 preempt_enable();
d69b042f 2599 }
987eba66 2600 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2601 if (uncharge)
2602 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2603 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2604
854ffa8d 2605 /* caller should have done css_get */
08e552c6 2606 pc->mem_cgroup = to;
987eba66 2607 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2608 /*
2609 * We charges against "to" which may not have any tasks. Then, "to"
2610 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2611 * this function is just force_empty() and move charge, so it's
25985edc 2612 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2613 * status here.
88703267 2614 */
de3638d9
JW
2615 move_unlock_page_cgroup(pc, &flags);
2616 ret = 0;
2617unlock:
57f9fd7d 2618 unlock_page_cgroup(pc);
d2265e6f
KH
2619 /*
2620 * check events
2621 */
5564e88b
JW
2622 memcg_check_events(to, page);
2623 memcg_check_events(from, page);
de3638d9 2624out:
f817ed48
KH
2625 return ret;
2626}
2627
2628/*
2629 * move charges to its parent.
2630 */
2631
5564e88b
JW
2632static int mem_cgroup_move_parent(struct page *page,
2633 struct page_cgroup *pc,
f817ed48
KH
2634 struct mem_cgroup *child,
2635 gfp_t gfp_mask)
2636{
2637 struct cgroup *cg = child->css.cgroup;
2638 struct cgroup *pcg = cg->parent;
2639 struct mem_cgroup *parent;
7ec99d62 2640 unsigned int nr_pages;
4be4489f 2641 unsigned long uninitialized_var(flags);
f817ed48
KH
2642 int ret;
2643
2644 /* Is ROOT ? */
2645 if (!pcg)
2646 return -EINVAL;
2647
57f9fd7d
DN
2648 ret = -EBUSY;
2649 if (!get_page_unless_zero(page))
2650 goto out;
2651 if (isolate_lru_page(page))
2652 goto put;
52dbb905 2653
7ec99d62 2654 nr_pages = hpage_nr_pages(page);
08e552c6 2655
f817ed48 2656 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2657 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2658 if (ret)
57f9fd7d 2659 goto put_back;
f817ed48 2660
7ec99d62 2661 if (nr_pages > 1)
987eba66
KH
2662 flags = compound_lock_irqsave(page);
2663
7ec99d62 2664 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2665 if (ret)
7ec99d62 2666 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2667
7ec99d62 2668 if (nr_pages > 1)
987eba66 2669 compound_unlock_irqrestore(page, flags);
8dba474f 2670put_back:
08e552c6 2671 putback_lru_page(page);
57f9fd7d 2672put:
40d58138 2673 put_page(page);
57f9fd7d 2674out:
f817ed48
KH
2675 return ret;
2676}
2677
7a81b88c
KH
2678/*
2679 * Charge the memory controller for page usage.
2680 * Return
2681 * 0 if the charge was successful
2682 * < 0 if the cgroup is over its limit
2683 */
2684static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2685 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2686{
c0ff4b85 2687 struct mem_cgroup *memcg = NULL;
7ec99d62 2688 unsigned int nr_pages = 1;
7a81b88c 2689 struct page_cgroup *pc;
8493ae43 2690 bool oom = true;
7a81b88c 2691 int ret;
ec168510 2692
37c2ac78 2693 if (PageTransHuge(page)) {
7ec99d62 2694 nr_pages <<= compound_order(page);
37c2ac78 2695 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2696 /*
2697 * Never OOM-kill a process for a huge page. The
2698 * fault handler will fall back to regular pages.
2699 */
2700 oom = false;
37c2ac78 2701 }
7a81b88c
KH
2702
2703 pc = lookup_page_cgroup(page);
c0ff4b85 2704 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2705 if (ret == -ENOMEM)
7a81b88c 2706 return ret;
9ce70c02 2707 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
8a9f3ccd 2708 return 0;
8a9f3ccd
BS
2709}
2710
7a81b88c
KH
2711int mem_cgroup_newpage_charge(struct page *page,
2712 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2713{
f8d66542 2714 if (mem_cgroup_disabled())
cede86ac 2715 return 0;
7a0524cf
JW
2716 VM_BUG_ON(page_mapped(page));
2717 VM_BUG_ON(page->mapping && !PageAnon(page));
2718 VM_BUG_ON(!mm);
217bc319 2719 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2720 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2721}
2722
83aae4c7
DN
2723static void
2724__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2725 enum charge_type ctype);
2726
e1a1cd59
BS
2727int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2728 gfp_t gfp_mask)
8697d331 2729{
c0ff4b85 2730 struct mem_cgroup *memcg = NULL;
dc67d504 2731 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2732 int ret;
2733
f8d66542 2734 if (mem_cgroup_disabled())
cede86ac 2735 return 0;
52d4b9ac
KH
2736 if (PageCompound(page))
2737 return 0;
accf163e 2738
73045c47 2739 if (unlikely(!mm))
8697d331 2740 mm = &init_mm;
dc67d504
KH
2741 if (!page_is_file_cache(page))
2742 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2743
38c5d72f 2744 if (!PageSwapCache(page))
dc67d504 2745 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2746 else { /* page is swapcache/shmem */
c0ff4b85 2747 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2748 if (!ret)
dc67d504
KH
2749 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2750 }
b5a84319 2751 return ret;
e8589cc1
KH
2752}
2753
54595fe2
KH
2754/*
2755 * While swap-in, try_charge -> commit or cancel, the page is locked.
2756 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2757 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2758 * "commit()" or removed by "cancel()"
2759 */
8c7c6e34
KH
2760int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2761 struct page *page,
72835c86 2762 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2763{
c0ff4b85 2764 struct mem_cgroup *memcg;
54595fe2 2765 int ret;
8c7c6e34 2766
72835c86 2767 *memcgp = NULL;
56039efa 2768
f8d66542 2769 if (mem_cgroup_disabled())
8c7c6e34
KH
2770 return 0;
2771
2772 if (!do_swap_account)
2773 goto charge_cur_mm;
8c7c6e34
KH
2774 /*
2775 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2776 * the pte, and even removed page from swap cache: in those cases
2777 * do_swap_page()'s pte_same() test will fail; but there's also a
2778 * KSM case which does need to charge the page.
8c7c6e34
KH
2779 */
2780 if (!PageSwapCache(page))
407f9c8b 2781 goto charge_cur_mm;
c0ff4b85
R
2782 memcg = try_get_mem_cgroup_from_page(page);
2783 if (!memcg)
54595fe2 2784 goto charge_cur_mm;
72835c86
JW
2785 *memcgp = memcg;
2786 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2787 css_put(&memcg->css);
38c5d72f
KH
2788 if (ret == -EINTR)
2789 ret = 0;
54595fe2 2790 return ret;
8c7c6e34
KH
2791charge_cur_mm:
2792 if (unlikely(!mm))
2793 mm = &init_mm;
38c5d72f
KH
2794 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2795 if (ret == -EINTR)
2796 ret = 0;
2797 return ret;
8c7c6e34
KH
2798}
2799
83aae4c7 2800static void
72835c86 2801__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2802 enum charge_type ctype)
7a81b88c 2803{
9ce70c02
HD
2804 struct page_cgroup *pc;
2805
f8d66542 2806 if (mem_cgroup_disabled())
7a81b88c 2807 return;
72835c86 2808 if (!memcg)
7a81b88c 2809 return;
72835c86 2810 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2811
9ce70c02
HD
2812 pc = lookup_page_cgroup(page);
2813 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
8c7c6e34
KH
2814 /*
2815 * Now swap is on-memory. This means this page may be
2816 * counted both as mem and swap....double count.
03f3c433
KH
2817 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2818 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2819 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2820 */
03f3c433 2821 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2822 swp_entry_t ent = {.val = page_private(page)};
72835c86 2823 struct mem_cgroup *swap_memcg;
a3b2d692 2824 unsigned short id;
a3b2d692
KH
2825
2826 id = swap_cgroup_record(ent, 0);
2827 rcu_read_lock();
72835c86
JW
2828 swap_memcg = mem_cgroup_lookup(id);
2829 if (swap_memcg) {
a3b2d692
KH
2830 /*
2831 * This recorded memcg can be obsolete one. So, avoid
2832 * calling css_tryget
2833 */
72835c86
JW
2834 if (!mem_cgroup_is_root(swap_memcg))
2835 res_counter_uncharge(&swap_memcg->memsw,
2836 PAGE_SIZE);
2837 mem_cgroup_swap_statistics(swap_memcg, false);
2838 mem_cgroup_put(swap_memcg);
8c7c6e34 2839 }
a3b2d692 2840 rcu_read_unlock();
8c7c6e34 2841 }
88703267
KH
2842 /*
2843 * At swapin, we may charge account against cgroup which has no tasks.
2844 * So, rmdir()->pre_destroy() can be called while we do this charge.
2845 * In that case, we need to call pre_destroy() again. check it here.
2846 */
72835c86 2847 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2848}
2849
72835c86
JW
2850void mem_cgroup_commit_charge_swapin(struct page *page,
2851 struct mem_cgroup *memcg)
83aae4c7 2852{
72835c86
JW
2853 __mem_cgroup_commit_charge_swapin(page, memcg,
2854 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2855}
2856
c0ff4b85 2857void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2858{
f8d66542 2859 if (mem_cgroup_disabled())
7a81b88c 2860 return;
c0ff4b85 2861 if (!memcg)
7a81b88c 2862 return;
c0ff4b85 2863 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2864}
2865
c0ff4b85 2866static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2867 unsigned int nr_pages,
2868 const enum charge_type ctype)
569b846d
KH
2869{
2870 struct memcg_batch_info *batch = NULL;
2871 bool uncharge_memsw = true;
7ec99d62 2872
569b846d
KH
2873 /* If swapout, usage of swap doesn't decrease */
2874 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2875 uncharge_memsw = false;
569b846d
KH
2876
2877 batch = &current->memcg_batch;
2878 /*
2879 * In usual, we do css_get() when we remember memcg pointer.
2880 * But in this case, we keep res->usage until end of a series of
2881 * uncharges. Then, it's ok to ignore memcg's refcnt.
2882 */
2883 if (!batch->memcg)
c0ff4b85 2884 batch->memcg = memcg;
3c11ecf4
KH
2885 /*
2886 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2887 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2888 * the same cgroup and we have chance to coalesce uncharges.
2889 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2890 * because we want to do uncharge as soon as possible.
2891 */
2892
2893 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2894 goto direct_uncharge;
2895
7ec99d62 2896 if (nr_pages > 1)
ec168510
AA
2897 goto direct_uncharge;
2898
569b846d
KH
2899 /*
2900 * In typical case, batch->memcg == mem. This means we can
2901 * merge a series of uncharges to an uncharge of res_counter.
2902 * If not, we uncharge res_counter ony by one.
2903 */
c0ff4b85 2904 if (batch->memcg != memcg)
569b846d
KH
2905 goto direct_uncharge;
2906 /* remember freed charge and uncharge it later */
7ffd4ca7 2907 batch->nr_pages++;
569b846d 2908 if (uncharge_memsw)
7ffd4ca7 2909 batch->memsw_nr_pages++;
569b846d
KH
2910 return;
2911direct_uncharge:
c0ff4b85 2912 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2913 if (uncharge_memsw)
c0ff4b85
R
2914 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2915 if (unlikely(batch->memcg != memcg))
2916 memcg_oom_recover(memcg);
569b846d
KH
2917 return;
2918}
7a81b88c 2919
8a9f3ccd 2920/*
69029cd5 2921 * uncharge if !page_mapped(page)
8a9f3ccd 2922 */
8c7c6e34 2923static struct mem_cgroup *
69029cd5 2924__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2925{
c0ff4b85 2926 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2927 unsigned int nr_pages = 1;
2928 struct page_cgroup *pc;
8a9f3ccd 2929
f8d66542 2930 if (mem_cgroup_disabled())
8c7c6e34 2931 return NULL;
4077960e 2932
d13d1443 2933 if (PageSwapCache(page))
8c7c6e34 2934 return NULL;
d13d1443 2935
37c2ac78 2936 if (PageTransHuge(page)) {
7ec99d62 2937 nr_pages <<= compound_order(page);
37c2ac78
AA
2938 VM_BUG_ON(!PageTransHuge(page));
2939 }
8697d331 2940 /*
3c541e14 2941 * Check if our page_cgroup is valid
8697d331 2942 */
52d4b9ac 2943 pc = lookup_page_cgroup(page);
cfa44946 2944 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2945 return NULL;
b9c565d5 2946
52d4b9ac 2947 lock_page_cgroup(pc);
d13d1443 2948
c0ff4b85 2949 memcg = pc->mem_cgroup;
8c7c6e34 2950
d13d1443
KH
2951 if (!PageCgroupUsed(pc))
2952 goto unlock_out;
2953
2954 switch (ctype) {
2955 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2956 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2957 /* See mem_cgroup_prepare_migration() */
2958 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2959 goto unlock_out;
2960 break;
2961 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2962 if (!PageAnon(page)) { /* Shared memory */
2963 if (page->mapping && !page_is_file_cache(page))
2964 goto unlock_out;
2965 } else if (page_mapped(page)) /* Anon */
2966 goto unlock_out;
2967 break;
2968 default:
2969 break;
52d4b9ac 2970 }
d13d1443 2971
c0ff4b85 2972 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 2973
52d4b9ac 2974 ClearPageCgroupUsed(pc);
544122e5
KH
2975 /*
2976 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2977 * freed from LRU. This is safe because uncharged page is expected not
2978 * to be reused (freed soon). Exception is SwapCache, it's handled by
2979 * special functions.
2980 */
b9c565d5 2981
52d4b9ac 2982 unlock_page_cgroup(pc);
f75ca962 2983 /*
c0ff4b85 2984 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2985 * will never be freed.
2986 */
c0ff4b85 2987 memcg_check_events(memcg, page);
f75ca962 2988 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2989 mem_cgroup_swap_statistics(memcg, true);
2990 mem_cgroup_get(memcg);
f75ca962 2991 }
c0ff4b85
R
2992 if (!mem_cgroup_is_root(memcg))
2993 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2994
c0ff4b85 2995 return memcg;
d13d1443
KH
2996
2997unlock_out:
2998 unlock_page_cgroup(pc);
8c7c6e34 2999 return NULL;
3c541e14
BS
3000}
3001
69029cd5
KH
3002void mem_cgroup_uncharge_page(struct page *page)
3003{
52d4b9ac
KH
3004 /* early check. */
3005 if (page_mapped(page))
3006 return;
40f23a21 3007 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3008 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3009}
3010
3011void mem_cgroup_uncharge_cache_page(struct page *page)
3012{
3013 VM_BUG_ON(page_mapped(page));
b7abea96 3014 VM_BUG_ON(page->mapping);
69029cd5
KH
3015 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3016}
3017
569b846d
KH
3018/*
3019 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3020 * In that cases, pages are freed continuously and we can expect pages
3021 * are in the same memcg. All these calls itself limits the number of
3022 * pages freed at once, then uncharge_start/end() is called properly.
3023 * This may be called prural(2) times in a context,
3024 */
3025
3026void mem_cgroup_uncharge_start(void)
3027{
3028 current->memcg_batch.do_batch++;
3029 /* We can do nest. */
3030 if (current->memcg_batch.do_batch == 1) {
3031 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3032 current->memcg_batch.nr_pages = 0;
3033 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3034 }
3035}
3036
3037void mem_cgroup_uncharge_end(void)
3038{
3039 struct memcg_batch_info *batch = &current->memcg_batch;
3040
3041 if (!batch->do_batch)
3042 return;
3043
3044 batch->do_batch--;
3045 if (batch->do_batch) /* If stacked, do nothing. */
3046 return;
3047
3048 if (!batch->memcg)
3049 return;
3050 /*
3051 * This "batch->memcg" is valid without any css_get/put etc...
3052 * bacause we hide charges behind us.
3053 */
7ffd4ca7
JW
3054 if (batch->nr_pages)
3055 res_counter_uncharge(&batch->memcg->res,
3056 batch->nr_pages * PAGE_SIZE);
3057 if (batch->memsw_nr_pages)
3058 res_counter_uncharge(&batch->memcg->memsw,
3059 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3060 memcg_oom_recover(batch->memcg);
569b846d
KH
3061 /* forget this pointer (for sanity check) */
3062 batch->memcg = NULL;
3063}
3064
e767e056 3065#ifdef CONFIG_SWAP
8c7c6e34 3066/*
e767e056 3067 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3068 * memcg information is recorded to swap_cgroup of "ent"
3069 */
8a9478ca
KH
3070void
3071mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3072{
3073 struct mem_cgroup *memcg;
8a9478ca
KH
3074 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3075
3076 if (!swapout) /* this was a swap cache but the swap is unused ! */
3077 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3078
3079 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3080
f75ca962
KH
3081 /*
3082 * record memcg information, if swapout && memcg != NULL,
3083 * mem_cgroup_get() was called in uncharge().
3084 */
3085 if (do_swap_account && swapout && memcg)
a3b2d692 3086 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3087}
e767e056 3088#endif
8c7c6e34
KH
3089
3090#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3091/*
3092 * called from swap_entry_free(). remove record in swap_cgroup and
3093 * uncharge "memsw" account.
3094 */
3095void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3096{
8c7c6e34 3097 struct mem_cgroup *memcg;
a3b2d692 3098 unsigned short id;
8c7c6e34
KH
3099
3100 if (!do_swap_account)
3101 return;
3102
a3b2d692
KH
3103 id = swap_cgroup_record(ent, 0);
3104 rcu_read_lock();
3105 memcg = mem_cgroup_lookup(id);
8c7c6e34 3106 if (memcg) {
a3b2d692
KH
3107 /*
3108 * We uncharge this because swap is freed.
3109 * This memcg can be obsolete one. We avoid calling css_tryget
3110 */
0c3e73e8 3111 if (!mem_cgroup_is_root(memcg))
4e649152 3112 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3113 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3114 mem_cgroup_put(memcg);
3115 }
a3b2d692 3116 rcu_read_unlock();
d13d1443 3117}
02491447
DN
3118
3119/**
3120 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3121 * @entry: swap entry to be moved
3122 * @from: mem_cgroup which the entry is moved from
3123 * @to: mem_cgroup which the entry is moved to
483c30b5 3124 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3125 *
3126 * It succeeds only when the swap_cgroup's record for this entry is the same
3127 * as the mem_cgroup's id of @from.
3128 *
3129 * Returns 0 on success, -EINVAL on failure.
3130 *
3131 * The caller must have charged to @to, IOW, called res_counter_charge() about
3132 * both res and memsw, and called css_get().
3133 */
3134static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3135 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3136{
3137 unsigned short old_id, new_id;
3138
3139 old_id = css_id(&from->css);
3140 new_id = css_id(&to->css);
3141
3142 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3143 mem_cgroup_swap_statistics(from, false);
483c30b5 3144 mem_cgroup_swap_statistics(to, true);
02491447 3145 /*
483c30b5
DN
3146 * This function is only called from task migration context now.
3147 * It postpones res_counter and refcount handling till the end
3148 * of task migration(mem_cgroup_clear_mc()) for performance
3149 * improvement. But we cannot postpone mem_cgroup_get(to)
3150 * because if the process that has been moved to @to does
3151 * swap-in, the refcount of @to might be decreased to 0.
02491447 3152 */
02491447 3153 mem_cgroup_get(to);
483c30b5
DN
3154 if (need_fixup) {
3155 if (!mem_cgroup_is_root(from))
3156 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3157 mem_cgroup_put(from);
3158 /*
3159 * we charged both to->res and to->memsw, so we should
3160 * uncharge to->res.
3161 */
3162 if (!mem_cgroup_is_root(to))
3163 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3164 }
02491447
DN
3165 return 0;
3166 }
3167 return -EINVAL;
3168}
3169#else
3170static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3171 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3172{
3173 return -EINVAL;
3174}
8c7c6e34 3175#endif
d13d1443 3176
ae41be37 3177/*
01b1ae63
KH
3178 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3179 * page belongs to.
ae41be37 3180 */
ac39cf8c 3181int mem_cgroup_prepare_migration(struct page *page,
72835c86 3182 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3183{
c0ff4b85 3184 struct mem_cgroup *memcg = NULL;
7ec99d62 3185 struct page_cgroup *pc;
ac39cf8c 3186 enum charge_type ctype;
e8589cc1 3187 int ret = 0;
8869b8f6 3188
72835c86 3189 *memcgp = NULL;
56039efa 3190
ec168510 3191 VM_BUG_ON(PageTransHuge(page));
f8d66542 3192 if (mem_cgroup_disabled())
4077960e
BS
3193 return 0;
3194
52d4b9ac
KH
3195 pc = lookup_page_cgroup(page);
3196 lock_page_cgroup(pc);
3197 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3198 memcg = pc->mem_cgroup;
3199 css_get(&memcg->css);
ac39cf8c 3200 /*
3201 * At migrating an anonymous page, its mapcount goes down
3202 * to 0 and uncharge() will be called. But, even if it's fully
3203 * unmapped, migration may fail and this page has to be
3204 * charged again. We set MIGRATION flag here and delay uncharge
3205 * until end_migration() is called
3206 *
3207 * Corner Case Thinking
3208 * A)
3209 * When the old page was mapped as Anon and it's unmap-and-freed
3210 * while migration was ongoing.
3211 * If unmap finds the old page, uncharge() of it will be delayed
3212 * until end_migration(). If unmap finds a new page, it's
3213 * uncharged when it make mapcount to be 1->0. If unmap code
3214 * finds swap_migration_entry, the new page will not be mapped
3215 * and end_migration() will find it(mapcount==0).
3216 *
3217 * B)
3218 * When the old page was mapped but migraion fails, the kernel
3219 * remaps it. A charge for it is kept by MIGRATION flag even
3220 * if mapcount goes down to 0. We can do remap successfully
3221 * without charging it again.
3222 *
3223 * C)
3224 * The "old" page is under lock_page() until the end of
3225 * migration, so, the old page itself will not be swapped-out.
3226 * If the new page is swapped out before end_migraton, our
3227 * hook to usual swap-out path will catch the event.
3228 */
3229 if (PageAnon(page))
3230 SetPageCgroupMigration(pc);
e8589cc1 3231 }
52d4b9ac 3232 unlock_page_cgroup(pc);
ac39cf8c 3233 /*
3234 * If the page is not charged at this point,
3235 * we return here.
3236 */
c0ff4b85 3237 if (!memcg)
ac39cf8c 3238 return 0;
01b1ae63 3239
72835c86
JW
3240 *memcgp = memcg;
3241 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3242 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3243 if (ret) {
ac39cf8c 3244 if (PageAnon(page)) {
3245 lock_page_cgroup(pc);
3246 ClearPageCgroupMigration(pc);
3247 unlock_page_cgroup(pc);
3248 /*
3249 * The old page may be fully unmapped while we kept it.
3250 */
3251 mem_cgroup_uncharge_page(page);
3252 }
38c5d72f 3253 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3254 return -ENOMEM;
e8589cc1 3255 }
ac39cf8c 3256 /*
3257 * We charge new page before it's used/mapped. So, even if unlock_page()
3258 * is called before end_migration, we can catch all events on this new
3259 * page. In the case new page is migrated but not remapped, new page's
3260 * mapcount will be finally 0 and we call uncharge in end_migration().
3261 */
3262 pc = lookup_page_cgroup(newpage);
3263 if (PageAnon(page))
3264 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3265 else if (page_is_file_cache(page))
3266 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3267 else
3268 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
9ce70c02 3269 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
e8589cc1 3270 return ret;
ae41be37 3271}
8869b8f6 3272
69029cd5 3273/* remove redundant charge if migration failed*/
c0ff4b85 3274void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3275 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3276{
ac39cf8c 3277 struct page *used, *unused;
01b1ae63 3278 struct page_cgroup *pc;
01b1ae63 3279
c0ff4b85 3280 if (!memcg)
01b1ae63 3281 return;
ac39cf8c 3282 /* blocks rmdir() */
c0ff4b85 3283 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3284 if (!migration_ok) {
ac39cf8c 3285 used = oldpage;
3286 unused = newpage;
01b1ae63 3287 } else {
ac39cf8c 3288 used = newpage;
01b1ae63
KH
3289 unused = oldpage;
3290 }
69029cd5 3291 /*
ac39cf8c 3292 * We disallowed uncharge of pages under migration because mapcount
3293 * of the page goes down to zero, temporarly.
3294 * Clear the flag and check the page should be charged.
01b1ae63 3295 */
ac39cf8c 3296 pc = lookup_page_cgroup(oldpage);
3297 lock_page_cgroup(pc);
3298 ClearPageCgroupMigration(pc);
3299 unlock_page_cgroup(pc);
01b1ae63 3300
ac39cf8c 3301 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3302
01b1ae63 3303 /*
ac39cf8c 3304 * If a page is a file cache, radix-tree replacement is very atomic
3305 * and we can skip this check. When it was an Anon page, its mapcount
3306 * goes down to 0. But because we added MIGRATION flage, it's not
3307 * uncharged yet. There are several case but page->mapcount check
3308 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3309 * check. (see prepare_charge() also)
69029cd5 3310 */
ac39cf8c 3311 if (PageAnon(used))
3312 mem_cgroup_uncharge_page(used);
88703267 3313 /*
ac39cf8c 3314 * At migration, we may charge account against cgroup which has no
3315 * tasks.
88703267
KH
3316 * So, rmdir()->pre_destroy() can be called while we do this charge.
3317 * In that case, we need to call pre_destroy() again. check it here.
3318 */
c0ff4b85 3319 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3320}
78fb7466 3321
ab936cbc
KH
3322/*
3323 * At replace page cache, newpage is not under any memcg but it's on
3324 * LRU. So, this function doesn't touch res_counter but handles LRU
3325 * in correct way. Both pages are locked so we cannot race with uncharge.
3326 */
3327void mem_cgroup_replace_page_cache(struct page *oldpage,
3328 struct page *newpage)
3329{
3330 struct mem_cgroup *memcg;
3331 struct page_cgroup *pc;
ab936cbc 3332 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3333
3334 if (mem_cgroup_disabled())
3335 return;
3336
3337 pc = lookup_page_cgroup(oldpage);
3338 /* fix accounting on old pages */
3339 lock_page_cgroup(pc);
3340 memcg = pc->mem_cgroup;
3341 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3342 ClearPageCgroupUsed(pc);
3343 unlock_page_cgroup(pc);
3344
3345 if (PageSwapBacked(oldpage))
3346 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3347
ab936cbc
KH
3348 /*
3349 * Even if newpage->mapping was NULL before starting replacement,
3350 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3351 * LRU while we overwrite pc->mem_cgroup.
3352 */
9ce70c02 3353 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
ab936cbc
KH
3354}
3355
f212ad7c
DN
3356#ifdef CONFIG_DEBUG_VM
3357static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3358{
3359 struct page_cgroup *pc;
3360
3361 pc = lookup_page_cgroup(page);
cfa44946
JW
3362 /*
3363 * Can be NULL while feeding pages into the page allocator for
3364 * the first time, i.e. during boot or memory hotplug;
3365 * or when mem_cgroup_disabled().
3366 */
f212ad7c
DN
3367 if (likely(pc) && PageCgroupUsed(pc))
3368 return pc;
3369 return NULL;
3370}
3371
3372bool mem_cgroup_bad_page_check(struct page *page)
3373{
3374 if (mem_cgroup_disabled())
3375 return false;
3376
3377 return lookup_page_cgroup_used(page) != NULL;
3378}
3379
3380void mem_cgroup_print_bad_page(struct page *page)
3381{
3382 struct page_cgroup *pc;
3383
3384 pc = lookup_page_cgroup_used(page);
3385 if (pc) {
90b3feae 3386 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3387 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3388 }
3389}
3390#endif
3391
8c7c6e34
KH
3392static DEFINE_MUTEX(set_limit_mutex);
3393
d38d2a75 3394static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3395 unsigned long long val)
628f4235 3396{
81d39c20 3397 int retry_count;
3c11ecf4 3398 u64 memswlimit, memlimit;
628f4235 3399 int ret = 0;
81d39c20
KH
3400 int children = mem_cgroup_count_children(memcg);
3401 u64 curusage, oldusage;
3c11ecf4 3402 int enlarge;
81d39c20
KH
3403
3404 /*
3405 * For keeping hierarchical_reclaim simple, how long we should retry
3406 * is depends on callers. We set our retry-count to be function
3407 * of # of children which we should visit in this loop.
3408 */
3409 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3410
3411 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3412
3c11ecf4 3413 enlarge = 0;
8c7c6e34 3414 while (retry_count) {
628f4235
KH
3415 if (signal_pending(current)) {
3416 ret = -EINTR;
3417 break;
3418 }
8c7c6e34
KH
3419 /*
3420 * Rather than hide all in some function, I do this in
3421 * open coded manner. You see what this really does.
c0ff4b85 3422 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3423 */
3424 mutex_lock(&set_limit_mutex);
3425 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3426 if (memswlimit < val) {
3427 ret = -EINVAL;
3428 mutex_unlock(&set_limit_mutex);
628f4235
KH
3429 break;
3430 }
3c11ecf4
KH
3431
3432 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3433 if (memlimit < val)
3434 enlarge = 1;
3435
8c7c6e34 3436 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3437 if (!ret) {
3438 if (memswlimit == val)
3439 memcg->memsw_is_minimum = true;
3440 else
3441 memcg->memsw_is_minimum = false;
3442 }
8c7c6e34
KH
3443 mutex_unlock(&set_limit_mutex);
3444
3445 if (!ret)
3446 break;
3447
5660048c
JW
3448 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3449 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3450 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3451 /* Usage is reduced ? */
3452 if (curusage >= oldusage)
3453 retry_count--;
3454 else
3455 oldusage = curusage;
8c7c6e34 3456 }
3c11ecf4
KH
3457 if (!ret && enlarge)
3458 memcg_oom_recover(memcg);
14797e23 3459
8c7c6e34
KH
3460 return ret;
3461}
3462
338c8431
LZ
3463static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3464 unsigned long long val)
8c7c6e34 3465{
81d39c20 3466 int retry_count;
3c11ecf4 3467 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3468 int children = mem_cgroup_count_children(memcg);
3469 int ret = -EBUSY;
3c11ecf4 3470 int enlarge = 0;
8c7c6e34 3471
81d39c20
KH
3472 /* see mem_cgroup_resize_res_limit */
3473 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3474 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3475 while (retry_count) {
3476 if (signal_pending(current)) {
3477 ret = -EINTR;
3478 break;
3479 }
3480 /*
3481 * Rather than hide all in some function, I do this in
3482 * open coded manner. You see what this really does.
c0ff4b85 3483 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3484 */
3485 mutex_lock(&set_limit_mutex);
3486 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3487 if (memlimit > val) {
3488 ret = -EINVAL;
3489 mutex_unlock(&set_limit_mutex);
3490 break;
3491 }
3c11ecf4
KH
3492 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3493 if (memswlimit < val)
3494 enlarge = 1;
8c7c6e34 3495 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3496 if (!ret) {
3497 if (memlimit == val)
3498 memcg->memsw_is_minimum = true;
3499 else
3500 memcg->memsw_is_minimum = false;
3501 }
8c7c6e34
KH
3502 mutex_unlock(&set_limit_mutex);
3503
3504 if (!ret)
3505 break;
3506
5660048c
JW
3507 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3508 MEM_CGROUP_RECLAIM_NOSWAP |
3509 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3510 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3511 /* Usage is reduced ? */
8c7c6e34 3512 if (curusage >= oldusage)
628f4235 3513 retry_count--;
81d39c20
KH
3514 else
3515 oldusage = curusage;
628f4235 3516 }
3c11ecf4
KH
3517 if (!ret && enlarge)
3518 memcg_oom_recover(memcg);
628f4235
KH
3519 return ret;
3520}
3521
4e416953 3522unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3523 gfp_t gfp_mask,
3524 unsigned long *total_scanned)
4e416953
BS
3525{
3526 unsigned long nr_reclaimed = 0;
3527 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3528 unsigned long reclaimed;
3529 int loop = 0;
3530 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3531 unsigned long long excess;
0ae5e89c 3532 unsigned long nr_scanned;
4e416953
BS
3533
3534 if (order > 0)
3535 return 0;
3536
00918b6a 3537 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3538 /*
3539 * This loop can run a while, specially if mem_cgroup's continuously
3540 * keep exceeding their soft limit and putting the system under
3541 * pressure
3542 */
3543 do {
3544 if (next_mz)
3545 mz = next_mz;
3546 else
3547 mz = mem_cgroup_largest_soft_limit_node(mctz);
3548 if (!mz)
3549 break;
3550
0ae5e89c 3551 nr_scanned = 0;
5660048c
JW
3552 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3553 gfp_mask, &nr_scanned);
4e416953 3554 nr_reclaimed += reclaimed;
0ae5e89c 3555 *total_scanned += nr_scanned;
4e416953
BS
3556 spin_lock(&mctz->lock);
3557
3558 /*
3559 * If we failed to reclaim anything from this memory cgroup
3560 * it is time to move on to the next cgroup
3561 */
3562 next_mz = NULL;
3563 if (!reclaimed) {
3564 do {
3565 /*
3566 * Loop until we find yet another one.
3567 *
3568 * By the time we get the soft_limit lock
3569 * again, someone might have aded the
3570 * group back on the RB tree. Iterate to
3571 * make sure we get a different mem.
3572 * mem_cgroup_largest_soft_limit_node returns
3573 * NULL if no other cgroup is present on
3574 * the tree
3575 */
3576 next_mz =
3577 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3578 if (next_mz == mz)
4e416953 3579 css_put(&next_mz->mem->css);
39cc98f1 3580 else /* next_mz == NULL or other memcg */
4e416953
BS
3581 break;
3582 } while (1);
3583 }
4e416953 3584 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3585 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3586 /*
3587 * One school of thought says that we should not add
3588 * back the node to the tree if reclaim returns 0.
3589 * But our reclaim could return 0, simply because due
3590 * to priority we are exposing a smaller subset of
3591 * memory to reclaim from. Consider this as a longer
3592 * term TODO.
3593 */
ef8745c1
KH
3594 /* If excess == 0, no tree ops */
3595 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3596 spin_unlock(&mctz->lock);
3597 css_put(&mz->mem->css);
3598 loop++;
3599 /*
3600 * Could not reclaim anything and there are no more
3601 * mem cgroups to try or we seem to be looping without
3602 * reclaiming anything.
3603 */
3604 if (!nr_reclaimed &&
3605 (next_mz == NULL ||
3606 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3607 break;
3608 } while (!nr_reclaimed);
3609 if (next_mz)
3610 css_put(&next_mz->mem->css);
3611 return nr_reclaimed;
3612}
3613
cc847582
KH
3614/*
3615 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3616 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3617 */
c0ff4b85 3618static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3619 int node, int zid, enum lru_list lru)
cc847582 3620{
08e552c6 3621 struct mem_cgroup_per_zone *mz;
08e552c6 3622 unsigned long flags, loop;
072c56c1 3623 struct list_head *list;
925b7673
JW
3624 struct page *busy;
3625 struct zone *zone;
f817ed48 3626 int ret = 0;
072c56c1 3627
08e552c6 3628 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3629 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3630 list = &mz->lruvec.lists[lru];
cc847582 3631
f817ed48
KH
3632 loop = MEM_CGROUP_ZSTAT(mz, lru);
3633 /* give some margin against EBUSY etc...*/
3634 loop += 256;
3635 busy = NULL;
3636 while (loop--) {
925b7673 3637 struct page_cgroup *pc;
5564e88b
JW
3638 struct page *page;
3639
f817ed48 3640 ret = 0;
08e552c6 3641 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3642 if (list_empty(list)) {
08e552c6 3643 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3644 break;
f817ed48 3645 }
925b7673
JW
3646 page = list_entry(list->prev, struct page, lru);
3647 if (busy == page) {
3648 list_move(&page->lru, list);
648bcc77 3649 busy = NULL;
08e552c6 3650 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3651 continue;
3652 }
08e552c6 3653 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3654
925b7673 3655 pc = lookup_page_cgroup(page);
5564e88b 3656
c0ff4b85 3657 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3658 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3659 break;
f817ed48
KH
3660
3661 if (ret == -EBUSY || ret == -EINVAL) {
3662 /* found lock contention or "pc" is obsolete. */
925b7673 3663 busy = page;
f817ed48
KH
3664 cond_resched();
3665 } else
3666 busy = NULL;
cc847582 3667 }
08e552c6 3668
f817ed48
KH
3669 if (!ret && !list_empty(list))
3670 return -EBUSY;
3671 return ret;
cc847582
KH
3672}
3673
3674/*
3675 * make mem_cgroup's charge to be 0 if there is no task.
3676 * This enables deleting this mem_cgroup.
3677 */
c0ff4b85 3678static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3679{
f817ed48
KH
3680 int ret;
3681 int node, zid, shrink;
3682 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3683 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3684
c0ff4b85 3685 css_get(&memcg->css);
f817ed48
KH
3686
3687 shrink = 0;
c1e862c1
KH
3688 /* should free all ? */
3689 if (free_all)
3690 goto try_to_free;
f817ed48 3691move_account:
fce66477 3692 do {
f817ed48 3693 ret = -EBUSY;
c1e862c1
KH
3694 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3695 goto out;
3696 ret = -EINTR;
3697 if (signal_pending(current))
cc847582 3698 goto out;
52d4b9ac
KH
3699 /* This is for making all *used* pages to be on LRU. */
3700 lru_add_drain_all();
c0ff4b85 3701 drain_all_stock_sync(memcg);
f817ed48 3702 ret = 0;
c0ff4b85 3703 mem_cgroup_start_move(memcg);
299b4eaa 3704 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3705 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3706 enum lru_list l;
f817ed48 3707 for_each_lru(l) {
c0ff4b85 3708 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3709 node, zid, l);
f817ed48
KH
3710 if (ret)
3711 break;
3712 }
1ecaab2b 3713 }
f817ed48
KH
3714 if (ret)
3715 break;
3716 }
c0ff4b85
R
3717 mem_cgroup_end_move(memcg);
3718 memcg_oom_recover(memcg);
f817ed48
KH
3719 /* it seems parent cgroup doesn't have enough mem */
3720 if (ret == -ENOMEM)
3721 goto try_to_free;
52d4b9ac 3722 cond_resched();
fce66477 3723 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3724 } while (memcg->res.usage > 0 || ret);
cc847582 3725out:
c0ff4b85 3726 css_put(&memcg->css);
cc847582 3727 return ret;
f817ed48
KH
3728
3729try_to_free:
c1e862c1
KH
3730 /* returns EBUSY if there is a task or if we come here twice. */
3731 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3732 ret = -EBUSY;
3733 goto out;
3734 }
c1e862c1
KH
3735 /* we call try-to-free pages for make this cgroup empty */
3736 lru_add_drain_all();
f817ed48
KH
3737 /* try to free all pages in this cgroup */
3738 shrink = 1;
c0ff4b85 3739 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3740 int progress;
c1e862c1
KH
3741
3742 if (signal_pending(current)) {
3743 ret = -EINTR;
3744 goto out;
3745 }
c0ff4b85 3746 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3747 false);
c1e862c1 3748 if (!progress) {
f817ed48 3749 nr_retries--;
c1e862c1 3750 /* maybe some writeback is necessary */
8aa7e847 3751 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3752 }
f817ed48
KH
3753
3754 }
08e552c6 3755 lru_add_drain();
f817ed48 3756 /* try move_account...there may be some *locked* pages. */
fce66477 3757 goto move_account;
cc847582
KH
3758}
3759
c1e862c1
KH
3760int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3761{
3762 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3763}
3764
3765
18f59ea7
BS
3766static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3767{
3768 return mem_cgroup_from_cont(cont)->use_hierarchy;
3769}
3770
3771static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3772 u64 val)
3773{
3774 int retval = 0;
c0ff4b85 3775 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3776 struct cgroup *parent = cont->parent;
c0ff4b85 3777 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3778
3779 if (parent)
c0ff4b85 3780 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3781
3782 cgroup_lock();
3783 /*
af901ca1 3784 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3785 * in the child subtrees. If it is unset, then the change can
3786 * occur, provided the current cgroup has no children.
3787 *
3788 * For the root cgroup, parent_mem is NULL, we allow value to be
3789 * set if there are no children.
3790 */
c0ff4b85 3791 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3792 (val == 1 || val == 0)) {
3793 if (list_empty(&cont->children))
c0ff4b85 3794 memcg->use_hierarchy = val;
18f59ea7
BS
3795 else
3796 retval = -EBUSY;
3797 } else
3798 retval = -EINVAL;
3799 cgroup_unlock();
3800
3801 return retval;
3802}
3803
0c3e73e8 3804
c0ff4b85 3805static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3806 enum mem_cgroup_stat_index idx)
0c3e73e8 3807{
7d74b06f 3808 struct mem_cgroup *iter;
7a159cc9 3809 long val = 0;
0c3e73e8 3810
7a159cc9 3811 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3812 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3813 val += mem_cgroup_read_stat(iter, idx);
3814
3815 if (val < 0) /* race ? */
3816 val = 0;
3817 return val;
0c3e73e8
BS
3818}
3819
c0ff4b85 3820static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3821{
7d74b06f 3822 u64 val;
104f3928 3823
c0ff4b85 3824 if (!mem_cgroup_is_root(memcg)) {
104f3928 3825 if (!swap)
65c64ce8 3826 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3827 else
65c64ce8 3828 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3829 }
3830
c0ff4b85
R
3831 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3832 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3833
7d74b06f 3834 if (swap)
c0ff4b85 3835 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3836
3837 return val << PAGE_SHIFT;
3838}
3839
2c3daa72 3840static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3841{
c0ff4b85 3842 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3843 u64 val;
8c7c6e34
KH
3844 int type, name;
3845
3846 type = MEMFILE_TYPE(cft->private);
3847 name = MEMFILE_ATTR(cft->private);
3848 switch (type) {
3849 case _MEM:
104f3928 3850 if (name == RES_USAGE)
c0ff4b85 3851 val = mem_cgroup_usage(memcg, false);
104f3928 3852 else
c0ff4b85 3853 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3854 break;
3855 case _MEMSWAP:
104f3928 3856 if (name == RES_USAGE)
c0ff4b85 3857 val = mem_cgroup_usage(memcg, true);
104f3928 3858 else
c0ff4b85 3859 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3860 break;
3861 default:
3862 BUG();
3863 break;
3864 }
3865 return val;
8cdea7c0 3866}
628f4235
KH
3867/*
3868 * The user of this function is...
3869 * RES_LIMIT.
3870 */
856c13aa
PM
3871static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3872 const char *buffer)
8cdea7c0 3873{
628f4235 3874 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3875 int type, name;
628f4235
KH
3876 unsigned long long val;
3877 int ret;
3878
8c7c6e34
KH
3879 type = MEMFILE_TYPE(cft->private);
3880 name = MEMFILE_ATTR(cft->private);
3881 switch (name) {
628f4235 3882 case RES_LIMIT:
4b3bde4c
BS
3883 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3884 ret = -EINVAL;
3885 break;
3886 }
628f4235
KH
3887 /* This function does all necessary parse...reuse it */
3888 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3889 if (ret)
3890 break;
3891 if (type == _MEM)
628f4235 3892 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3893 else
3894 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3895 break;
296c81d8
BS
3896 case RES_SOFT_LIMIT:
3897 ret = res_counter_memparse_write_strategy(buffer, &val);
3898 if (ret)
3899 break;
3900 /*
3901 * For memsw, soft limits are hard to implement in terms
3902 * of semantics, for now, we support soft limits for
3903 * control without swap
3904 */
3905 if (type == _MEM)
3906 ret = res_counter_set_soft_limit(&memcg->res, val);
3907 else
3908 ret = -EINVAL;
3909 break;
628f4235
KH
3910 default:
3911 ret = -EINVAL; /* should be BUG() ? */
3912 break;
3913 }
3914 return ret;
8cdea7c0
BS
3915}
3916
fee7b548
KH
3917static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3918 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3919{
3920 struct cgroup *cgroup;
3921 unsigned long long min_limit, min_memsw_limit, tmp;
3922
3923 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3924 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3925 cgroup = memcg->css.cgroup;
3926 if (!memcg->use_hierarchy)
3927 goto out;
3928
3929 while (cgroup->parent) {
3930 cgroup = cgroup->parent;
3931 memcg = mem_cgroup_from_cont(cgroup);
3932 if (!memcg->use_hierarchy)
3933 break;
3934 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3935 min_limit = min(min_limit, tmp);
3936 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3937 min_memsw_limit = min(min_memsw_limit, tmp);
3938 }
3939out:
3940 *mem_limit = min_limit;
3941 *memsw_limit = min_memsw_limit;
3942 return;
3943}
3944
29f2a4da 3945static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3946{
c0ff4b85 3947 struct mem_cgroup *memcg;
8c7c6e34 3948 int type, name;
c84872e1 3949
c0ff4b85 3950 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3951 type = MEMFILE_TYPE(event);
3952 name = MEMFILE_ATTR(event);
3953 switch (name) {
29f2a4da 3954 case RES_MAX_USAGE:
8c7c6e34 3955 if (type == _MEM)
c0ff4b85 3956 res_counter_reset_max(&memcg->res);
8c7c6e34 3957 else
c0ff4b85 3958 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3959 break;
3960 case RES_FAILCNT:
8c7c6e34 3961 if (type == _MEM)
c0ff4b85 3962 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3963 else
c0ff4b85 3964 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3965 break;
3966 }
f64c3f54 3967
85cc59db 3968 return 0;
c84872e1
PE
3969}
3970
7dc74be0
DN
3971static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3972 struct cftype *cft)
3973{
3974 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3975}
3976
02491447 3977#ifdef CONFIG_MMU
7dc74be0
DN
3978static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3979 struct cftype *cft, u64 val)
3980{
c0ff4b85 3981 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
3982
3983 if (val >= (1 << NR_MOVE_TYPE))
3984 return -EINVAL;
3985 /*
3986 * We check this value several times in both in can_attach() and
3987 * attach(), so we need cgroup lock to prevent this value from being
3988 * inconsistent.
3989 */
3990 cgroup_lock();
c0ff4b85 3991 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3992 cgroup_unlock();
3993
3994 return 0;
3995}
02491447
DN
3996#else
3997static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3998 struct cftype *cft, u64 val)
3999{
4000 return -ENOSYS;
4001}
4002#endif
7dc74be0 4003
14067bb3
KH
4004
4005/* For read statistics */
4006enum {
4007 MCS_CACHE,
4008 MCS_RSS,
d8046582 4009 MCS_FILE_MAPPED,
14067bb3
KH
4010 MCS_PGPGIN,
4011 MCS_PGPGOUT,
1dd3a273 4012 MCS_SWAP,
456f998e
YH
4013 MCS_PGFAULT,
4014 MCS_PGMAJFAULT,
14067bb3
KH
4015 MCS_INACTIVE_ANON,
4016 MCS_ACTIVE_ANON,
4017 MCS_INACTIVE_FILE,
4018 MCS_ACTIVE_FILE,
4019 MCS_UNEVICTABLE,
4020 NR_MCS_STAT,
4021};
4022
4023struct mcs_total_stat {
4024 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4025};
4026
14067bb3
KH
4027struct {
4028 char *local_name;
4029 char *total_name;
4030} memcg_stat_strings[NR_MCS_STAT] = {
4031 {"cache", "total_cache"},
4032 {"rss", "total_rss"},
d69b042f 4033 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4034 {"pgpgin", "total_pgpgin"},
4035 {"pgpgout", "total_pgpgout"},
1dd3a273 4036 {"swap", "total_swap"},
456f998e
YH
4037 {"pgfault", "total_pgfault"},
4038 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4039 {"inactive_anon", "total_inactive_anon"},
4040 {"active_anon", "total_active_anon"},
4041 {"inactive_file", "total_inactive_file"},
4042 {"active_file", "total_active_file"},
4043 {"unevictable", "total_unevictable"}
4044};
4045
4046
7d74b06f 4047static void
c0ff4b85 4048mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4049{
14067bb3
KH
4050 s64 val;
4051
4052 /* per cpu stat */
c0ff4b85 4053 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4054 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4055 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4056 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4057 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4058 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4059 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4060 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4061 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4062 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4063 if (do_swap_account) {
c0ff4b85 4064 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4065 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4066 }
c0ff4b85 4067 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4068 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4069 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4070 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4071
4072 /* per zone stat */
c0ff4b85 4073 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4074 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4075 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4076 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4077 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4078 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4079 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4080 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4081 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4082 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4083}
4084
4085static void
c0ff4b85 4086mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4087{
7d74b06f
KH
4088 struct mem_cgroup *iter;
4089
c0ff4b85 4090 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4091 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4092}
4093
406eb0c9
YH
4094#ifdef CONFIG_NUMA
4095static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4096{
4097 int nid;
4098 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4099 unsigned long node_nr;
4100 struct cgroup *cont = m->private;
4101 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4102
bb2a0de9 4103 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4104 seq_printf(m, "total=%lu", total_nr);
4105 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4106 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4107 seq_printf(m, " N%d=%lu", nid, node_nr);
4108 }
4109 seq_putc(m, '\n');
4110
bb2a0de9 4111 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4112 seq_printf(m, "file=%lu", file_nr);
4113 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4114 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4115 LRU_ALL_FILE);
406eb0c9
YH
4116 seq_printf(m, " N%d=%lu", nid, node_nr);
4117 }
4118 seq_putc(m, '\n');
4119
bb2a0de9 4120 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4121 seq_printf(m, "anon=%lu", anon_nr);
4122 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4123 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4124 LRU_ALL_ANON);
406eb0c9
YH
4125 seq_printf(m, " N%d=%lu", nid, node_nr);
4126 }
4127 seq_putc(m, '\n');
4128
bb2a0de9 4129 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4130 seq_printf(m, "unevictable=%lu", unevictable_nr);
4131 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4132 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4133 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4134 seq_printf(m, " N%d=%lu", nid, node_nr);
4135 }
4136 seq_putc(m, '\n');
4137 return 0;
4138}
4139#endif /* CONFIG_NUMA */
4140
c64745cf
PM
4141static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4142 struct cgroup_map_cb *cb)
d2ceb9b7 4143{
d2ceb9b7 4144 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4145 struct mcs_total_stat mystat;
d2ceb9b7
KH
4146 int i;
4147
14067bb3
KH
4148 memset(&mystat, 0, sizeof(mystat));
4149 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4150
406eb0c9 4151
1dd3a273
DN
4152 for (i = 0; i < NR_MCS_STAT; i++) {
4153 if (i == MCS_SWAP && !do_swap_account)
4154 continue;
14067bb3 4155 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4156 }
7b854121 4157
14067bb3 4158 /* Hierarchical information */
fee7b548
KH
4159 {
4160 unsigned long long limit, memsw_limit;
4161 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4162 cb->fill(cb, "hierarchical_memory_limit", limit);
4163 if (do_swap_account)
4164 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4165 }
7f016ee8 4166
14067bb3
KH
4167 memset(&mystat, 0, sizeof(mystat));
4168 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4169 for (i = 0; i < NR_MCS_STAT; i++) {
4170 if (i == MCS_SWAP && !do_swap_account)
4171 continue;
14067bb3 4172 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4173 }
14067bb3 4174
7f016ee8 4175#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4176 {
4177 int nid, zid;
4178 struct mem_cgroup_per_zone *mz;
4179 unsigned long recent_rotated[2] = {0, 0};
4180 unsigned long recent_scanned[2] = {0, 0};
4181
4182 for_each_online_node(nid)
4183 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4184 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4185
4186 recent_rotated[0] +=
4187 mz->reclaim_stat.recent_rotated[0];
4188 recent_rotated[1] +=
4189 mz->reclaim_stat.recent_rotated[1];
4190 recent_scanned[0] +=
4191 mz->reclaim_stat.recent_scanned[0];
4192 recent_scanned[1] +=
4193 mz->reclaim_stat.recent_scanned[1];
4194 }
4195 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4196 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4197 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4198 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4199 }
4200#endif
4201
d2ceb9b7
KH
4202 return 0;
4203}
4204
a7885eb8
KM
4205static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4206{
4207 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4208
1f4c025b 4209 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4210}
4211
4212static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4213 u64 val)
4214{
4215 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4216 struct mem_cgroup *parent;
068b38c1 4217
a7885eb8
KM
4218 if (val > 100)
4219 return -EINVAL;
4220
4221 if (cgrp->parent == NULL)
4222 return -EINVAL;
4223
4224 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4225
4226 cgroup_lock();
4227
a7885eb8
KM
4228 /* If under hierarchy, only empty-root can set this value */
4229 if ((parent->use_hierarchy) ||
068b38c1
LZ
4230 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4231 cgroup_unlock();
a7885eb8 4232 return -EINVAL;
068b38c1 4233 }
a7885eb8 4234
a7885eb8 4235 memcg->swappiness = val;
a7885eb8 4236
068b38c1
LZ
4237 cgroup_unlock();
4238
a7885eb8
KM
4239 return 0;
4240}
4241
2e72b634
KS
4242static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4243{
4244 struct mem_cgroup_threshold_ary *t;
4245 u64 usage;
4246 int i;
4247
4248 rcu_read_lock();
4249 if (!swap)
2c488db2 4250 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4251 else
2c488db2 4252 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4253
4254 if (!t)
4255 goto unlock;
4256
4257 usage = mem_cgroup_usage(memcg, swap);
4258
4259 /*
4260 * current_threshold points to threshold just below usage.
4261 * If it's not true, a threshold was crossed after last
4262 * call of __mem_cgroup_threshold().
4263 */
5407a562 4264 i = t->current_threshold;
2e72b634
KS
4265
4266 /*
4267 * Iterate backward over array of thresholds starting from
4268 * current_threshold and check if a threshold is crossed.
4269 * If none of thresholds below usage is crossed, we read
4270 * only one element of the array here.
4271 */
4272 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4273 eventfd_signal(t->entries[i].eventfd, 1);
4274
4275 /* i = current_threshold + 1 */
4276 i++;
4277
4278 /*
4279 * Iterate forward over array of thresholds starting from
4280 * current_threshold+1 and check if a threshold is crossed.
4281 * If none of thresholds above usage is crossed, we read
4282 * only one element of the array here.
4283 */
4284 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4285 eventfd_signal(t->entries[i].eventfd, 1);
4286
4287 /* Update current_threshold */
5407a562 4288 t->current_threshold = i - 1;
2e72b634
KS
4289unlock:
4290 rcu_read_unlock();
4291}
4292
4293static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4294{
ad4ca5f4
KS
4295 while (memcg) {
4296 __mem_cgroup_threshold(memcg, false);
4297 if (do_swap_account)
4298 __mem_cgroup_threshold(memcg, true);
4299
4300 memcg = parent_mem_cgroup(memcg);
4301 }
2e72b634
KS
4302}
4303
4304static int compare_thresholds(const void *a, const void *b)
4305{
4306 const struct mem_cgroup_threshold *_a = a;
4307 const struct mem_cgroup_threshold *_b = b;
4308
4309 return _a->threshold - _b->threshold;
4310}
4311
c0ff4b85 4312static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4313{
4314 struct mem_cgroup_eventfd_list *ev;
4315
c0ff4b85 4316 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4317 eventfd_signal(ev->eventfd, 1);
4318 return 0;
4319}
4320
c0ff4b85 4321static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4322{
7d74b06f
KH
4323 struct mem_cgroup *iter;
4324
c0ff4b85 4325 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4326 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4327}
4328
4329static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4330 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4331{
4332 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4333 struct mem_cgroup_thresholds *thresholds;
4334 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4335 int type = MEMFILE_TYPE(cft->private);
4336 u64 threshold, usage;
2c488db2 4337 int i, size, ret;
2e72b634
KS
4338
4339 ret = res_counter_memparse_write_strategy(args, &threshold);
4340 if (ret)
4341 return ret;
4342
4343 mutex_lock(&memcg->thresholds_lock);
2c488db2 4344
2e72b634 4345 if (type == _MEM)
2c488db2 4346 thresholds = &memcg->thresholds;
2e72b634 4347 else if (type == _MEMSWAP)
2c488db2 4348 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4349 else
4350 BUG();
4351
4352 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4353
4354 /* Check if a threshold crossed before adding a new one */
2c488db2 4355 if (thresholds->primary)
2e72b634
KS
4356 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4357
2c488db2 4358 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4359
4360 /* Allocate memory for new array of thresholds */
2c488db2 4361 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4362 GFP_KERNEL);
2c488db2 4363 if (!new) {
2e72b634
KS
4364 ret = -ENOMEM;
4365 goto unlock;
4366 }
2c488db2 4367 new->size = size;
2e72b634
KS
4368
4369 /* Copy thresholds (if any) to new array */
2c488db2
KS
4370 if (thresholds->primary) {
4371 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4372 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4373 }
4374
2e72b634 4375 /* Add new threshold */
2c488db2
KS
4376 new->entries[size - 1].eventfd = eventfd;
4377 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4378
4379 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4380 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4381 compare_thresholds, NULL);
4382
4383 /* Find current threshold */
2c488db2 4384 new->current_threshold = -1;
2e72b634 4385 for (i = 0; i < size; i++) {
2c488db2 4386 if (new->entries[i].threshold < usage) {
2e72b634 4387 /*
2c488db2
KS
4388 * new->current_threshold will not be used until
4389 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4390 * it here.
4391 */
2c488db2 4392 ++new->current_threshold;
2e72b634
KS
4393 }
4394 }
4395
2c488db2
KS
4396 /* Free old spare buffer and save old primary buffer as spare */
4397 kfree(thresholds->spare);
4398 thresholds->spare = thresholds->primary;
4399
4400 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4401
907860ed 4402 /* To be sure that nobody uses thresholds */
2e72b634
KS
4403 synchronize_rcu();
4404
2e72b634
KS
4405unlock:
4406 mutex_unlock(&memcg->thresholds_lock);
4407
4408 return ret;
4409}
4410
907860ed 4411static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4412 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4413{
4414 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4415 struct mem_cgroup_thresholds *thresholds;
4416 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4417 int type = MEMFILE_TYPE(cft->private);
4418 u64 usage;
2c488db2 4419 int i, j, size;
2e72b634
KS
4420
4421 mutex_lock(&memcg->thresholds_lock);
4422 if (type == _MEM)
2c488db2 4423 thresholds = &memcg->thresholds;
2e72b634 4424 else if (type == _MEMSWAP)
2c488db2 4425 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4426 else
4427 BUG();
4428
4429 /*
4430 * Something went wrong if we trying to unregister a threshold
4431 * if we don't have thresholds
4432 */
4433 BUG_ON(!thresholds);
4434
371528ca
AV
4435 if (!thresholds->primary)
4436 goto unlock;
4437
2e72b634
KS
4438 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4439
4440 /* Check if a threshold crossed before removing */
4441 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4442
4443 /* Calculate new number of threshold */
2c488db2
KS
4444 size = 0;
4445 for (i = 0; i < thresholds->primary->size; i++) {
4446 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4447 size++;
4448 }
4449
2c488db2 4450 new = thresholds->spare;
907860ed 4451
2e72b634
KS
4452 /* Set thresholds array to NULL if we don't have thresholds */
4453 if (!size) {
2c488db2
KS
4454 kfree(new);
4455 new = NULL;
907860ed 4456 goto swap_buffers;
2e72b634
KS
4457 }
4458
2c488db2 4459 new->size = size;
2e72b634
KS
4460
4461 /* Copy thresholds and find current threshold */
2c488db2
KS
4462 new->current_threshold = -1;
4463 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4464 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4465 continue;
4466
2c488db2
KS
4467 new->entries[j] = thresholds->primary->entries[i];
4468 if (new->entries[j].threshold < usage) {
2e72b634 4469 /*
2c488db2 4470 * new->current_threshold will not be used
2e72b634
KS
4471 * until rcu_assign_pointer(), so it's safe to increment
4472 * it here.
4473 */
2c488db2 4474 ++new->current_threshold;
2e72b634
KS
4475 }
4476 j++;
4477 }
4478
907860ed 4479swap_buffers:
2c488db2
KS
4480 /* Swap primary and spare array */
4481 thresholds->spare = thresholds->primary;
4482 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4483
907860ed 4484 /* To be sure that nobody uses thresholds */
2e72b634 4485 synchronize_rcu();
371528ca 4486unlock:
2e72b634 4487 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4488}
c1e862c1 4489
9490ff27
KH
4490static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4491 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4492{
4493 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4494 struct mem_cgroup_eventfd_list *event;
4495 int type = MEMFILE_TYPE(cft->private);
4496
4497 BUG_ON(type != _OOM_TYPE);
4498 event = kmalloc(sizeof(*event), GFP_KERNEL);
4499 if (!event)
4500 return -ENOMEM;
4501
1af8efe9 4502 spin_lock(&memcg_oom_lock);
9490ff27
KH
4503
4504 event->eventfd = eventfd;
4505 list_add(&event->list, &memcg->oom_notify);
4506
4507 /* already in OOM ? */
79dfdacc 4508 if (atomic_read(&memcg->under_oom))
9490ff27 4509 eventfd_signal(eventfd, 1);
1af8efe9 4510 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4511
4512 return 0;
4513}
4514
907860ed 4515static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4516 struct cftype *cft, struct eventfd_ctx *eventfd)
4517{
c0ff4b85 4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4519 struct mem_cgroup_eventfd_list *ev, *tmp;
4520 int type = MEMFILE_TYPE(cft->private);
4521
4522 BUG_ON(type != _OOM_TYPE);
4523
1af8efe9 4524 spin_lock(&memcg_oom_lock);
9490ff27 4525
c0ff4b85 4526 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4527 if (ev->eventfd == eventfd) {
4528 list_del(&ev->list);
4529 kfree(ev);
4530 }
4531 }
4532
1af8efe9 4533 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4534}
4535
3c11ecf4
KH
4536static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4537 struct cftype *cft, struct cgroup_map_cb *cb)
4538{
c0ff4b85 4539 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4540
c0ff4b85 4541 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4542
c0ff4b85 4543 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4544 cb->fill(cb, "under_oom", 1);
4545 else
4546 cb->fill(cb, "under_oom", 0);
4547 return 0;
4548}
4549
3c11ecf4
KH
4550static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4551 struct cftype *cft, u64 val)
4552{
c0ff4b85 4553 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4554 struct mem_cgroup *parent;
4555
4556 /* cannot set to root cgroup and only 0 and 1 are allowed */
4557 if (!cgrp->parent || !((val == 0) || (val == 1)))
4558 return -EINVAL;
4559
4560 parent = mem_cgroup_from_cont(cgrp->parent);
4561
4562 cgroup_lock();
4563 /* oom-kill-disable is a flag for subhierarchy. */
4564 if ((parent->use_hierarchy) ||
c0ff4b85 4565 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4566 cgroup_unlock();
4567 return -EINVAL;
4568 }
c0ff4b85 4569 memcg->oom_kill_disable = val;
4d845ebf 4570 if (!val)
c0ff4b85 4571 memcg_oom_recover(memcg);
3c11ecf4
KH
4572 cgroup_unlock();
4573 return 0;
4574}
4575
406eb0c9
YH
4576#ifdef CONFIG_NUMA
4577static const struct file_operations mem_control_numa_stat_file_operations = {
4578 .read = seq_read,
4579 .llseek = seq_lseek,
4580 .release = single_release,
4581};
4582
4583static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4584{
4585 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4586
4587 file->f_op = &mem_control_numa_stat_file_operations;
4588 return single_open(file, mem_control_numa_stat_show, cont);
4589}
4590#endif /* CONFIG_NUMA */
4591
e5671dfa 4592#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4593static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4594{
d1a4c0b3
GC
4595 /*
4596 * Part of this would be better living in a separate allocation
4597 * function, leaving us with just the cgroup tree population work.
4598 * We, however, depend on state such as network's proto_list that
4599 * is only initialized after cgroup creation. I found the less
4600 * cumbersome way to deal with it to defer it all to populate time
4601 */
65c64ce8 4602 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4603};
4604
761b3ef5 4605static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3 4606{
761b3ef5 4607 mem_cgroup_sockets_destroy(cont);
d1a4c0b3 4608}
e5671dfa
GC
4609#else
4610static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4611{
4612 return 0;
4613}
d1a4c0b3 4614
761b3ef5 4615static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3
GC
4616{
4617}
e5671dfa
GC
4618#endif
4619
8cdea7c0
BS
4620static struct cftype mem_cgroup_files[] = {
4621 {
0eea1030 4622 .name = "usage_in_bytes",
8c7c6e34 4623 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4624 .read_u64 = mem_cgroup_read,
9490ff27
KH
4625 .register_event = mem_cgroup_usage_register_event,
4626 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4627 },
c84872e1
PE
4628 {
4629 .name = "max_usage_in_bytes",
8c7c6e34 4630 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4631 .trigger = mem_cgroup_reset,
c84872e1
PE
4632 .read_u64 = mem_cgroup_read,
4633 },
8cdea7c0 4634 {
0eea1030 4635 .name = "limit_in_bytes",
8c7c6e34 4636 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4637 .write_string = mem_cgroup_write,
2c3daa72 4638 .read_u64 = mem_cgroup_read,
8cdea7c0 4639 },
296c81d8
BS
4640 {
4641 .name = "soft_limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4643 .write_string = mem_cgroup_write,
4644 .read_u64 = mem_cgroup_read,
4645 },
8cdea7c0
BS
4646 {
4647 .name = "failcnt",
8c7c6e34 4648 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4649 .trigger = mem_cgroup_reset,
2c3daa72 4650 .read_u64 = mem_cgroup_read,
8cdea7c0 4651 },
d2ceb9b7
KH
4652 {
4653 .name = "stat",
c64745cf 4654 .read_map = mem_control_stat_show,
d2ceb9b7 4655 },
c1e862c1
KH
4656 {
4657 .name = "force_empty",
4658 .trigger = mem_cgroup_force_empty_write,
4659 },
18f59ea7
BS
4660 {
4661 .name = "use_hierarchy",
4662 .write_u64 = mem_cgroup_hierarchy_write,
4663 .read_u64 = mem_cgroup_hierarchy_read,
4664 },
a7885eb8
KM
4665 {
4666 .name = "swappiness",
4667 .read_u64 = mem_cgroup_swappiness_read,
4668 .write_u64 = mem_cgroup_swappiness_write,
4669 },
7dc74be0
DN
4670 {
4671 .name = "move_charge_at_immigrate",
4672 .read_u64 = mem_cgroup_move_charge_read,
4673 .write_u64 = mem_cgroup_move_charge_write,
4674 },
9490ff27
KH
4675 {
4676 .name = "oom_control",
3c11ecf4
KH
4677 .read_map = mem_cgroup_oom_control_read,
4678 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4679 .register_event = mem_cgroup_oom_register_event,
4680 .unregister_event = mem_cgroup_oom_unregister_event,
4681 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4682 },
406eb0c9
YH
4683#ifdef CONFIG_NUMA
4684 {
4685 .name = "numa_stat",
4686 .open = mem_control_numa_stat_open,
89577127 4687 .mode = S_IRUGO,
406eb0c9
YH
4688 },
4689#endif
8cdea7c0
BS
4690};
4691
8c7c6e34
KH
4692#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4693static struct cftype memsw_cgroup_files[] = {
4694 {
4695 .name = "memsw.usage_in_bytes",
4696 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4697 .read_u64 = mem_cgroup_read,
9490ff27
KH
4698 .register_event = mem_cgroup_usage_register_event,
4699 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4700 },
4701 {
4702 .name = "memsw.max_usage_in_bytes",
4703 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4704 .trigger = mem_cgroup_reset,
4705 .read_u64 = mem_cgroup_read,
4706 },
4707 {
4708 .name = "memsw.limit_in_bytes",
4709 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4710 .write_string = mem_cgroup_write,
4711 .read_u64 = mem_cgroup_read,
4712 },
4713 {
4714 .name = "memsw.failcnt",
4715 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4716 .trigger = mem_cgroup_reset,
4717 .read_u64 = mem_cgroup_read,
4718 },
4719};
4720
4721static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4722{
4723 if (!do_swap_account)
4724 return 0;
4725 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4726 ARRAY_SIZE(memsw_cgroup_files));
4727};
4728#else
4729static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4730{
4731 return 0;
4732}
4733#endif
4734
c0ff4b85 4735static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4736{
4737 struct mem_cgroup_per_node *pn;
1ecaab2b 4738 struct mem_cgroup_per_zone *mz;
b69408e8 4739 enum lru_list l;
41e3355d 4740 int zone, tmp = node;
1ecaab2b
KH
4741 /*
4742 * This routine is called against possible nodes.
4743 * But it's BUG to call kmalloc() against offline node.
4744 *
4745 * TODO: this routine can waste much memory for nodes which will
4746 * never be onlined. It's better to use memory hotplug callback
4747 * function.
4748 */
41e3355d
KH
4749 if (!node_state(node, N_NORMAL_MEMORY))
4750 tmp = -1;
17295c88 4751 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4752 if (!pn)
4753 return 1;
1ecaab2b 4754
1ecaab2b
KH
4755 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4756 mz = &pn->zoneinfo[zone];
b69408e8 4757 for_each_lru(l)
6290df54 4758 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
f64c3f54 4759 mz->usage_in_excess = 0;
4e416953 4760 mz->on_tree = false;
c0ff4b85 4761 mz->mem = memcg;
1ecaab2b 4762 }
0a619e58 4763 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4764 return 0;
4765}
4766
c0ff4b85 4767static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4768{
c0ff4b85 4769 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4770}
4771
33327948
KH
4772static struct mem_cgroup *mem_cgroup_alloc(void)
4773{
4774 struct mem_cgroup *mem;
c62b1a3b 4775 int size = sizeof(struct mem_cgroup);
33327948 4776
c62b1a3b 4777 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4778 if (size < PAGE_SIZE)
17295c88 4779 mem = kzalloc(size, GFP_KERNEL);
33327948 4780 else
17295c88 4781 mem = vzalloc(size);
33327948 4782
e7bbcdf3
DC
4783 if (!mem)
4784 return NULL;
4785
c62b1a3b 4786 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4787 if (!mem->stat)
4788 goto out_free;
711d3d2c 4789 spin_lock_init(&mem->pcp_counter_lock);
33327948 4790 return mem;
d2e61b8d
DC
4791
4792out_free:
4793 if (size < PAGE_SIZE)
4794 kfree(mem);
4795 else
4796 vfree(mem);
4797 return NULL;
33327948
KH
4798}
4799
59927fb9
HD
4800/*
4801 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4802 * but in process context. The work_freeing structure is overlaid
4803 * on the rcu_freeing structure, which itself is overlaid on memsw.
4804 */
4805static void vfree_work(struct work_struct *work)
4806{
4807 struct mem_cgroup *memcg;
4808
4809 memcg = container_of(work, struct mem_cgroup, work_freeing);
4810 vfree(memcg);
4811}
4812static void vfree_rcu(struct rcu_head *rcu_head)
4813{
4814 struct mem_cgroup *memcg;
4815
4816 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4817 INIT_WORK(&memcg->work_freeing, vfree_work);
4818 schedule_work(&memcg->work_freeing);
4819}
4820
8c7c6e34
KH
4821/*
4822 * At destroying mem_cgroup, references from swap_cgroup can remain.
4823 * (scanning all at force_empty is too costly...)
4824 *
4825 * Instead of clearing all references at force_empty, we remember
4826 * the number of reference from swap_cgroup and free mem_cgroup when
4827 * it goes down to 0.
4828 *
8c7c6e34
KH
4829 * Removal of cgroup itself succeeds regardless of refs from swap.
4830 */
4831
c0ff4b85 4832static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4833{
08e552c6
KH
4834 int node;
4835
c0ff4b85
R
4836 mem_cgroup_remove_from_trees(memcg);
4837 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4838
3ed28fa1 4839 for_each_node(node)
c0ff4b85 4840 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4841
c0ff4b85 4842 free_percpu(memcg->stat);
c62b1a3b 4843 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4844 kfree_rcu(memcg, rcu_freeing);
33327948 4845 else
59927fb9 4846 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4847}
4848
c0ff4b85 4849static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4850{
c0ff4b85 4851 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4852}
4853
c0ff4b85 4854static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4855{
c0ff4b85
R
4856 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4857 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4858 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4859 if (parent)
4860 mem_cgroup_put(parent);
4861 }
8c7c6e34
KH
4862}
4863
c0ff4b85 4864static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4865{
c0ff4b85 4866 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4867}
4868
7bcc1bb1
DN
4869/*
4870 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4871 */
e1aab161 4872struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4873{
c0ff4b85 4874 if (!memcg->res.parent)
7bcc1bb1 4875 return NULL;
c0ff4b85 4876 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4877}
e1aab161 4878EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4879
c077719b
KH
4880#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4881static void __init enable_swap_cgroup(void)
4882{
f8d66542 4883 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4884 do_swap_account = 1;
4885}
4886#else
4887static void __init enable_swap_cgroup(void)
4888{
4889}
4890#endif
4891
f64c3f54
BS
4892static int mem_cgroup_soft_limit_tree_init(void)
4893{
4894 struct mem_cgroup_tree_per_node *rtpn;
4895 struct mem_cgroup_tree_per_zone *rtpz;
4896 int tmp, node, zone;
4897
3ed28fa1 4898 for_each_node(node) {
f64c3f54
BS
4899 tmp = node;
4900 if (!node_state(node, N_NORMAL_MEMORY))
4901 tmp = -1;
4902 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4903 if (!rtpn)
c3cecc68 4904 goto err_cleanup;
f64c3f54
BS
4905
4906 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4907
4908 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4909 rtpz = &rtpn->rb_tree_per_zone[zone];
4910 rtpz->rb_root = RB_ROOT;
4911 spin_lock_init(&rtpz->lock);
4912 }
4913 }
4914 return 0;
c3cecc68
MH
4915
4916err_cleanup:
3ed28fa1 4917 for_each_node(node) {
c3cecc68
MH
4918 if (!soft_limit_tree.rb_tree_per_node[node])
4919 break;
4920 kfree(soft_limit_tree.rb_tree_per_node[node]);
4921 soft_limit_tree.rb_tree_per_node[node] = NULL;
4922 }
4923 return 1;
4924
f64c3f54
BS
4925}
4926
0eb253e2 4927static struct cgroup_subsys_state * __ref
761b3ef5 4928mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4929{
c0ff4b85 4930 struct mem_cgroup *memcg, *parent;
04046e1a 4931 long error = -ENOMEM;
6d12e2d8 4932 int node;
8cdea7c0 4933
c0ff4b85
R
4934 memcg = mem_cgroup_alloc();
4935 if (!memcg)
04046e1a 4936 return ERR_PTR(error);
78fb7466 4937
3ed28fa1 4938 for_each_node(node)
c0ff4b85 4939 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4940 goto free_out;
f64c3f54 4941
c077719b 4942 /* root ? */
28dbc4b6 4943 if (cont->parent == NULL) {
cdec2e42 4944 int cpu;
c077719b 4945 enable_swap_cgroup();
28dbc4b6 4946 parent = NULL;
f64c3f54
BS
4947 if (mem_cgroup_soft_limit_tree_init())
4948 goto free_out;
a41c58a6 4949 root_mem_cgroup = memcg;
cdec2e42
KH
4950 for_each_possible_cpu(cpu) {
4951 struct memcg_stock_pcp *stock =
4952 &per_cpu(memcg_stock, cpu);
4953 INIT_WORK(&stock->work, drain_local_stock);
4954 }
711d3d2c 4955 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4956 } else {
28dbc4b6 4957 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4958 memcg->use_hierarchy = parent->use_hierarchy;
4959 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4960 }
28dbc4b6 4961
18f59ea7 4962 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4963 res_counter_init(&memcg->res, &parent->res);
4964 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4965 /*
4966 * We increment refcnt of the parent to ensure that we can
4967 * safely access it on res_counter_charge/uncharge.
4968 * This refcnt will be decremented when freeing this
4969 * mem_cgroup(see mem_cgroup_put).
4970 */
4971 mem_cgroup_get(parent);
18f59ea7 4972 } else {
c0ff4b85
R
4973 res_counter_init(&memcg->res, NULL);
4974 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4975 }
c0ff4b85
R
4976 memcg->last_scanned_node = MAX_NUMNODES;
4977 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4978
a7885eb8 4979 if (parent)
c0ff4b85
R
4980 memcg->swappiness = mem_cgroup_swappiness(parent);
4981 atomic_set(&memcg->refcnt, 1);
4982 memcg->move_charge_at_immigrate = 0;
4983 mutex_init(&memcg->thresholds_lock);
4984 return &memcg->css;
6d12e2d8 4985free_out:
c0ff4b85 4986 __mem_cgroup_free(memcg);
04046e1a 4987 return ERR_PTR(error);
8cdea7c0
BS
4988}
4989
761b3ef5 4990static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4991{
c0ff4b85 4992 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4993
c0ff4b85 4994 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4995}
4996
761b3ef5 4997static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 4998{
c0ff4b85 4999 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5000
761b3ef5 5001 kmem_cgroup_destroy(cont);
d1a4c0b3 5002
c0ff4b85 5003 mem_cgroup_put(memcg);
8cdea7c0
BS
5004}
5005
5006static int mem_cgroup_populate(struct cgroup_subsys *ss,
5007 struct cgroup *cont)
5008{
8c7c6e34
KH
5009 int ret;
5010
5011 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5012 ARRAY_SIZE(mem_cgroup_files));
5013
5014 if (!ret)
5015 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5016
5017 if (!ret)
5018 ret = register_kmem_files(cont, ss);
5019
8c7c6e34 5020 return ret;
8cdea7c0
BS
5021}
5022
02491447 5023#ifdef CONFIG_MMU
7dc74be0 5024/* Handlers for move charge at task migration. */
854ffa8d
DN
5025#define PRECHARGE_COUNT_AT_ONCE 256
5026static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5027{
854ffa8d
DN
5028 int ret = 0;
5029 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5030 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5031
c0ff4b85 5032 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5033 mc.precharge += count;
5034 /* we don't need css_get for root */
5035 return ret;
5036 }
5037 /* try to charge at once */
5038 if (count > 1) {
5039 struct res_counter *dummy;
5040 /*
c0ff4b85 5041 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5042 * by cgroup_lock_live_cgroup() that it is not removed and we
5043 * are still under the same cgroup_mutex. So we can postpone
5044 * css_get().
5045 */
c0ff4b85 5046 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5047 goto one_by_one;
c0ff4b85 5048 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5049 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5050 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5051 goto one_by_one;
5052 }
5053 mc.precharge += count;
854ffa8d
DN
5054 return ret;
5055 }
5056one_by_one:
5057 /* fall back to one by one charge */
5058 while (count--) {
5059 if (signal_pending(current)) {
5060 ret = -EINTR;
5061 break;
5062 }
5063 if (!batch_count--) {
5064 batch_count = PRECHARGE_COUNT_AT_ONCE;
5065 cond_resched();
5066 }
c0ff4b85
R
5067 ret = __mem_cgroup_try_charge(NULL,
5068 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5069 if (ret)
854ffa8d 5070 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5071 return ret;
854ffa8d
DN
5072 mc.precharge++;
5073 }
4ffef5fe
DN
5074 return ret;
5075}
5076
5077/**
5078 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5079 * @vma: the vma the pte to be checked belongs
5080 * @addr: the address corresponding to the pte to be checked
5081 * @ptent: the pte to be checked
02491447 5082 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5083 *
5084 * Returns
5085 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5086 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5087 * move charge. if @target is not NULL, the page is stored in target->page
5088 * with extra refcnt got(Callers should handle it).
02491447
DN
5089 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5090 * target for charge migration. if @target is not NULL, the entry is stored
5091 * in target->ent.
4ffef5fe
DN
5092 *
5093 * Called with pte lock held.
5094 */
4ffef5fe
DN
5095union mc_target {
5096 struct page *page;
02491447 5097 swp_entry_t ent;
4ffef5fe
DN
5098};
5099
4ffef5fe
DN
5100enum mc_target_type {
5101 MC_TARGET_NONE, /* not used */
5102 MC_TARGET_PAGE,
02491447 5103 MC_TARGET_SWAP,
4ffef5fe
DN
5104};
5105
90254a65
DN
5106static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5107 unsigned long addr, pte_t ptent)
4ffef5fe 5108{
90254a65 5109 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5110
90254a65
DN
5111 if (!page || !page_mapped(page))
5112 return NULL;
5113 if (PageAnon(page)) {
5114 /* we don't move shared anon */
be22aece 5115 if (!move_anon() || page_mapcount(page) > 2)
90254a65 5116 return NULL;
87946a72
DN
5117 } else if (!move_file())
5118 /* we ignore mapcount for file pages */
90254a65
DN
5119 return NULL;
5120 if (!get_page_unless_zero(page))
5121 return NULL;
5122
5123 return page;
5124}
5125
5126static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5127 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5128{
5129 int usage_count;
5130 struct page *page = NULL;
5131 swp_entry_t ent = pte_to_swp_entry(ptent);
5132
5133 if (!move_anon() || non_swap_entry(ent))
5134 return NULL;
5135 usage_count = mem_cgroup_count_swap_user(ent, &page);
5136 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5137 if (page)
5138 put_page(page);
90254a65 5139 return NULL;
02491447 5140 }
90254a65
DN
5141 if (do_swap_account)
5142 entry->val = ent.val;
5143
5144 return page;
5145}
5146
87946a72
DN
5147static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5148 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5149{
5150 struct page *page = NULL;
5151 struct inode *inode;
5152 struct address_space *mapping;
5153 pgoff_t pgoff;
5154
5155 if (!vma->vm_file) /* anonymous vma */
5156 return NULL;
5157 if (!move_file())
5158 return NULL;
5159
5160 inode = vma->vm_file->f_path.dentry->d_inode;
5161 mapping = vma->vm_file->f_mapping;
5162 if (pte_none(ptent))
5163 pgoff = linear_page_index(vma, addr);
5164 else /* pte_file(ptent) is true */
5165 pgoff = pte_to_pgoff(ptent);
5166
5167 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5168 page = find_get_page(mapping, pgoff);
5169
5170#ifdef CONFIG_SWAP
5171 /* shmem/tmpfs may report page out on swap: account for that too. */
5172 if (radix_tree_exceptional_entry(page)) {
5173 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5174 if (do_swap_account)
aa3b1895
HD
5175 *entry = swap;
5176 page = find_get_page(&swapper_space, swap.val);
87946a72 5177 }
aa3b1895 5178#endif
87946a72
DN
5179 return page;
5180}
5181
90254a65
DN
5182static int is_target_pte_for_mc(struct vm_area_struct *vma,
5183 unsigned long addr, pte_t ptent, union mc_target *target)
5184{
5185 struct page *page = NULL;
5186 struct page_cgroup *pc;
5187 int ret = 0;
5188 swp_entry_t ent = { .val = 0 };
5189
5190 if (pte_present(ptent))
5191 page = mc_handle_present_pte(vma, addr, ptent);
5192 else if (is_swap_pte(ptent))
5193 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5194 else if (pte_none(ptent) || pte_file(ptent))
5195 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5196
5197 if (!page && !ent.val)
5198 return 0;
02491447
DN
5199 if (page) {
5200 pc = lookup_page_cgroup(page);
5201 /*
5202 * Do only loose check w/o page_cgroup lock.
5203 * mem_cgroup_move_account() checks the pc is valid or not under
5204 * the lock.
5205 */
5206 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5207 ret = MC_TARGET_PAGE;
5208 if (target)
5209 target->page = page;
5210 }
5211 if (!ret || !target)
5212 put_page(page);
5213 }
90254a65
DN
5214 /* There is a swap entry and a page doesn't exist or isn't charged */
5215 if (ent.val && !ret &&
9fb4b7cc 5216 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5217 ret = MC_TARGET_SWAP;
5218 if (target)
5219 target->ent = ent;
4ffef5fe 5220 }
4ffef5fe
DN
5221 return ret;
5222}
5223
5224static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5225 unsigned long addr, unsigned long end,
5226 struct mm_walk *walk)
5227{
5228 struct vm_area_struct *vma = walk->private;
5229 pte_t *pte;
5230 spinlock_t *ptl;
5231
03319327 5232 split_huge_page_pmd(walk->mm, pmd);
1a5a9906
AA
5233 if (pmd_trans_unstable(pmd))
5234 return 0;
03319327 5235
4ffef5fe
DN
5236 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5237 for (; addr != end; pte++, addr += PAGE_SIZE)
5238 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5239 mc.precharge++; /* increment precharge temporarily */
5240 pte_unmap_unlock(pte - 1, ptl);
5241 cond_resched();
5242
7dc74be0
DN
5243 return 0;
5244}
5245
4ffef5fe
DN
5246static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5247{
5248 unsigned long precharge;
5249 struct vm_area_struct *vma;
5250
dfe076b0 5251 down_read(&mm->mmap_sem);
4ffef5fe
DN
5252 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5253 struct mm_walk mem_cgroup_count_precharge_walk = {
5254 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5255 .mm = mm,
5256 .private = vma,
5257 };
5258 if (is_vm_hugetlb_page(vma))
5259 continue;
4ffef5fe
DN
5260 walk_page_range(vma->vm_start, vma->vm_end,
5261 &mem_cgroup_count_precharge_walk);
5262 }
dfe076b0 5263 up_read(&mm->mmap_sem);
4ffef5fe
DN
5264
5265 precharge = mc.precharge;
5266 mc.precharge = 0;
5267
5268 return precharge;
5269}
5270
4ffef5fe
DN
5271static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5272{
dfe076b0
DN
5273 unsigned long precharge = mem_cgroup_count_precharge(mm);
5274
5275 VM_BUG_ON(mc.moving_task);
5276 mc.moving_task = current;
5277 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5278}
5279
dfe076b0
DN
5280/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5281static void __mem_cgroup_clear_mc(void)
4ffef5fe 5282{
2bd9bb20
KH
5283 struct mem_cgroup *from = mc.from;
5284 struct mem_cgroup *to = mc.to;
5285
4ffef5fe 5286 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5287 if (mc.precharge) {
5288 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5289 mc.precharge = 0;
5290 }
5291 /*
5292 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5293 * we must uncharge here.
5294 */
5295 if (mc.moved_charge) {
5296 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5297 mc.moved_charge = 0;
4ffef5fe 5298 }
483c30b5
DN
5299 /* we must fixup refcnts and charges */
5300 if (mc.moved_swap) {
483c30b5
DN
5301 /* uncharge swap account from the old cgroup */
5302 if (!mem_cgroup_is_root(mc.from))
5303 res_counter_uncharge(&mc.from->memsw,
5304 PAGE_SIZE * mc.moved_swap);
5305 __mem_cgroup_put(mc.from, mc.moved_swap);
5306
5307 if (!mem_cgroup_is_root(mc.to)) {
5308 /*
5309 * we charged both to->res and to->memsw, so we should
5310 * uncharge to->res.
5311 */
5312 res_counter_uncharge(&mc.to->res,
5313 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5314 }
5315 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5316 mc.moved_swap = 0;
5317 }
dfe076b0
DN
5318 memcg_oom_recover(from);
5319 memcg_oom_recover(to);
5320 wake_up_all(&mc.waitq);
5321}
5322
5323static void mem_cgroup_clear_mc(void)
5324{
5325 struct mem_cgroup *from = mc.from;
5326
5327 /*
5328 * we must clear moving_task before waking up waiters at the end of
5329 * task migration.
5330 */
5331 mc.moving_task = NULL;
5332 __mem_cgroup_clear_mc();
2bd9bb20 5333 spin_lock(&mc.lock);
4ffef5fe
DN
5334 mc.from = NULL;
5335 mc.to = NULL;
2bd9bb20 5336 spin_unlock(&mc.lock);
32047e2a 5337 mem_cgroup_end_move(from);
4ffef5fe
DN
5338}
5339
761b3ef5
LZ
5340static int mem_cgroup_can_attach(struct cgroup *cgroup,
5341 struct cgroup_taskset *tset)
7dc74be0 5342{
2f7ee569 5343 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5344 int ret = 0;
c0ff4b85 5345 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5346
c0ff4b85 5347 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5348 struct mm_struct *mm;
5349 struct mem_cgroup *from = mem_cgroup_from_task(p);
5350
c0ff4b85 5351 VM_BUG_ON(from == memcg);
7dc74be0
DN
5352
5353 mm = get_task_mm(p);
5354 if (!mm)
5355 return 0;
7dc74be0 5356 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5357 if (mm->owner == p) {
5358 VM_BUG_ON(mc.from);
5359 VM_BUG_ON(mc.to);
5360 VM_BUG_ON(mc.precharge);
854ffa8d 5361 VM_BUG_ON(mc.moved_charge);
483c30b5 5362 VM_BUG_ON(mc.moved_swap);
32047e2a 5363 mem_cgroup_start_move(from);
2bd9bb20 5364 spin_lock(&mc.lock);
4ffef5fe 5365 mc.from = from;
c0ff4b85 5366 mc.to = memcg;
2bd9bb20 5367 spin_unlock(&mc.lock);
dfe076b0 5368 /* We set mc.moving_task later */
4ffef5fe
DN
5369
5370 ret = mem_cgroup_precharge_mc(mm);
5371 if (ret)
5372 mem_cgroup_clear_mc();
dfe076b0
DN
5373 }
5374 mmput(mm);
7dc74be0
DN
5375 }
5376 return ret;
5377}
5378
761b3ef5
LZ
5379static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5380 struct cgroup_taskset *tset)
7dc74be0 5381{
4ffef5fe 5382 mem_cgroup_clear_mc();
7dc74be0
DN
5383}
5384
4ffef5fe
DN
5385static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5386 unsigned long addr, unsigned long end,
5387 struct mm_walk *walk)
7dc74be0 5388{
4ffef5fe
DN
5389 int ret = 0;
5390 struct vm_area_struct *vma = walk->private;
5391 pte_t *pte;
5392 spinlock_t *ptl;
5393
03319327 5394 split_huge_page_pmd(walk->mm, pmd);
1a5a9906
AA
5395 if (pmd_trans_unstable(pmd))
5396 return 0;
4ffef5fe
DN
5397retry:
5398 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5399 for (; addr != end; addr += PAGE_SIZE) {
5400 pte_t ptent = *(pte++);
5401 union mc_target target;
5402 int type;
5403 struct page *page;
5404 struct page_cgroup *pc;
02491447 5405 swp_entry_t ent;
4ffef5fe
DN
5406
5407 if (!mc.precharge)
5408 break;
5409
5410 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5411 switch (type) {
5412 case MC_TARGET_PAGE:
5413 page = target.page;
5414 if (isolate_lru_page(page))
5415 goto put;
5416 pc = lookup_page_cgroup(page);
7ec99d62
JW
5417 if (!mem_cgroup_move_account(page, 1, pc,
5418 mc.from, mc.to, false)) {
4ffef5fe 5419 mc.precharge--;
854ffa8d
DN
5420 /* we uncharge from mc.from later. */
5421 mc.moved_charge++;
4ffef5fe
DN
5422 }
5423 putback_lru_page(page);
5424put: /* is_target_pte_for_mc() gets the page */
5425 put_page(page);
5426 break;
02491447
DN
5427 case MC_TARGET_SWAP:
5428 ent = target.ent;
483c30b5
DN
5429 if (!mem_cgroup_move_swap_account(ent,
5430 mc.from, mc.to, false)) {
02491447 5431 mc.precharge--;
483c30b5
DN
5432 /* we fixup refcnts and charges later. */
5433 mc.moved_swap++;
5434 }
02491447 5435 break;
4ffef5fe
DN
5436 default:
5437 break;
5438 }
5439 }
5440 pte_unmap_unlock(pte - 1, ptl);
5441 cond_resched();
5442
5443 if (addr != end) {
5444 /*
5445 * We have consumed all precharges we got in can_attach().
5446 * We try charge one by one, but don't do any additional
5447 * charges to mc.to if we have failed in charge once in attach()
5448 * phase.
5449 */
854ffa8d 5450 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5451 if (!ret)
5452 goto retry;
5453 }
5454
5455 return ret;
5456}
5457
5458static void mem_cgroup_move_charge(struct mm_struct *mm)
5459{
5460 struct vm_area_struct *vma;
5461
5462 lru_add_drain_all();
dfe076b0
DN
5463retry:
5464 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5465 /*
5466 * Someone who are holding the mmap_sem might be waiting in
5467 * waitq. So we cancel all extra charges, wake up all waiters,
5468 * and retry. Because we cancel precharges, we might not be able
5469 * to move enough charges, but moving charge is a best-effort
5470 * feature anyway, so it wouldn't be a big problem.
5471 */
5472 __mem_cgroup_clear_mc();
5473 cond_resched();
5474 goto retry;
5475 }
4ffef5fe
DN
5476 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5477 int ret;
5478 struct mm_walk mem_cgroup_move_charge_walk = {
5479 .pmd_entry = mem_cgroup_move_charge_pte_range,
5480 .mm = mm,
5481 .private = vma,
5482 };
5483 if (is_vm_hugetlb_page(vma))
5484 continue;
4ffef5fe
DN
5485 ret = walk_page_range(vma->vm_start, vma->vm_end,
5486 &mem_cgroup_move_charge_walk);
5487 if (ret)
5488 /*
5489 * means we have consumed all precharges and failed in
5490 * doing additional charge. Just abandon here.
5491 */
5492 break;
5493 }
dfe076b0 5494 up_read(&mm->mmap_sem);
7dc74be0
DN
5495}
5496
761b3ef5
LZ
5497static void mem_cgroup_move_task(struct cgroup *cont,
5498 struct cgroup_taskset *tset)
67e465a7 5499{
2f7ee569 5500 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5501 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5502
dfe076b0 5503 if (mm) {
a433658c
KM
5504 if (mc.to)
5505 mem_cgroup_move_charge(mm);
5506 put_swap_token(mm);
dfe076b0
DN
5507 mmput(mm);
5508 }
a433658c
KM
5509 if (mc.to)
5510 mem_cgroup_clear_mc();
67e465a7 5511}
5cfb80a7 5512#else /* !CONFIG_MMU */
761b3ef5
LZ
5513static int mem_cgroup_can_attach(struct cgroup *cgroup,
5514 struct cgroup_taskset *tset)
5cfb80a7
DN
5515{
5516 return 0;
5517}
761b3ef5
LZ
5518static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5519 struct cgroup_taskset *tset)
5cfb80a7
DN
5520{
5521}
761b3ef5
LZ
5522static void mem_cgroup_move_task(struct cgroup *cont,
5523 struct cgroup_taskset *tset)
5cfb80a7
DN
5524{
5525}
5526#endif
67e465a7 5527
8cdea7c0
BS
5528struct cgroup_subsys mem_cgroup_subsys = {
5529 .name = "memory",
5530 .subsys_id = mem_cgroup_subsys_id,
5531 .create = mem_cgroup_create,
df878fb0 5532 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5533 .destroy = mem_cgroup_destroy,
5534 .populate = mem_cgroup_populate,
7dc74be0
DN
5535 .can_attach = mem_cgroup_can_attach,
5536 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5537 .attach = mem_cgroup_move_task,
6d12e2d8 5538 .early_init = 0,
04046e1a 5539 .use_id = 1,
8cdea7c0 5540};
c077719b
KH
5541
5542#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5543static int __init enable_swap_account(char *s)
5544{
5545 /* consider enabled if no parameter or 1 is given */
a2c8990a 5546 if (!strcmp(s, "1"))
a42c390c 5547 really_do_swap_account = 1;
a2c8990a 5548 else if (!strcmp(s, "0"))
a42c390c
MH
5549 really_do_swap_account = 0;
5550 return 1;
5551}
a2c8990a 5552__setup("swapaccount=", enable_swap_account);
c077719b 5553
c077719b 5554#endif
This page took 0.815266 seconds and 5 git commands to generate.