memcg: avoid lock in updating file_mapped (Was fix race in file_mapped accouting...
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b
KH
63int do_swap_account __read_mostly;
64static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65#else
66#define do_swap_account (0)
67#endif
68
d2265e6f
KH
69/*
70 * Per memcg event counter is incremented at every pagein/pageout. This counter
71 * is used for trigger some periodic events. This is straightforward and better
72 * than using jiffies etc. to handle periodic memcg event.
73 *
74 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75 */
76#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 78
d52aa412
KH
79/*
80 * Statistics for memory cgroup.
81 */
82enum mem_cgroup_stat_index {
83 /*
84 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 */
86 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 87 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 88 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
89 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
90 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 91 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d2265e6f 92 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
32047e2a 93 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
94
95 MEM_CGROUP_STAT_NSTATS,
96};
97
98struct mem_cgroup_stat_cpu {
99 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
100};
101
6d12e2d8
KH
102/*
103 * per-zone information in memory controller.
104 */
6d12e2d8 105struct mem_cgroup_per_zone {
072c56c1
KH
106 /*
107 * spin_lock to protect the per cgroup LRU
108 */
b69408e8
CL
109 struct list_head lists[NR_LRU_LISTS];
110 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
111
112 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
113 struct rb_node tree_node; /* RB tree node */
114 unsigned long long usage_in_excess;/* Set to the value by which */
115 /* the soft limit is exceeded*/
116 bool on_tree;
4e416953
BS
117 struct mem_cgroup *mem; /* Back pointer, we cannot */
118 /* use container_of */
6d12e2d8
KH
119};
120/* Macro for accessing counter */
121#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
122
123struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125};
126
127struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129};
130
f64c3f54
BS
131/*
132 * Cgroups above their limits are maintained in a RB-Tree, independent of
133 * their hierarchy representation
134 */
135
136struct mem_cgroup_tree_per_zone {
137 struct rb_root rb_root;
138 spinlock_t lock;
139};
140
141struct mem_cgroup_tree_per_node {
142 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
143};
144
145struct mem_cgroup_tree {
146 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
147};
148
149static struct mem_cgroup_tree soft_limit_tree __read_mostly;
150
2e72b634
KS
151struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 u64 threshold;
154};
155
9490ff27 156/* For threshold */
2e72b634
KS
157struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below usage. */
5407a562 159 int current_threshold;
2e72b634
KS
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[0];
164};
2c488db2
KS
165
166struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175};
176
9490ff27
KH
177/* for OOM */
178struct mem_cgroup_eventfd_list {
179 struct list_head list;
180 struct eventfd_ctx *eventfd;
181};
2e72b634 182
2e72b634 183static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 184static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 185
8cdea7c0
BS
186/*
187 * The memory controller data structure. The memory controller controls both
188 * page cache and RSS per cgroup. We would eventually like to provide
189 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
190 * to help the administrator determine what knobs to tune.
191 *
192 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
193 * we hit the water mark. May be even add a low water mark, such that
194 * no reclaim occurs from a cgroup at it's low water mark, this is
195 * a feature that will be implemented much later in the future.
8cdea7c0
BS
196 */
197struct mem_cgroup {
198 struct cgroup_subsys_state css;
199 /*
200 * the counter to account for memory usage
201 */
202 struct res_counter res;
8c7c6e34
KH
203 /*
204 * the counter to account for mem+swap usage.
205 */
206 struct res_counter memsw;
78fb7466
PE
207 /*
208 * Per cgroup active and inactive list, similar to the
209 * per zone LRU lists.
78fb7466 210 */
6d12e2d8 211 struct mem_cgroup_lru_info info;
072c56c1 212
2733c06a
KM
213 /*
214 protect against reclaim related member.
215 */
216 spinlock_t reclaim_param_lock;
217
6d61ef40 218 /*
af901ca1 219 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 220 * reclaimed from.
6d61ef40 221 */
04046e1a 222 int last_scanned_child;
18f59ea7
BS
223 /*
224 * Should the accounting and control be hierarchical, per subtree?
225 */
226 bool use_hierarchy;
867578cb 227 atomic_t oom_lock;
8c7c6e34 228 atomic_t refcnt;
14797e23 229
a7885eb8 230 unsigned int swappiness;
3c11ecf4
KH
231 /* OOM-Killer disable */
232 int oom_kill_disable;
a7885eb8 233
22a668d7
KH
234 /* set when res.limit == memsw.limit */
235 bool memsw_is_minimum;
236
2e72b634
KS
237 /* protect arrays of thresholds */
238 struct mutex thresholds_lock;
239
240 /* thresholds for memory usage. RCU-protected */
2c488db2 241 struct mem_cgroup_thresholds thresholds;
907860ed 242
2e72b634 243 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 244 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 245
9490ff27
KH
246 /* For oom notifier event fd */
247 struct list_head oom_notify;
248
7dc74be0
DN
249 /*
250 * Should we move charges of a task when a task is moved into this
251 * mem_cgroup ? And what type of charges should we move ?
252 */
253 unsigned long move_charge_at_immigrate;
d52aa412 254 /*
c62b1a3b 255 * percpu counter.
d52aa412 256 */
c62b1a3b 257 struct mem_cgroup_stat_cpu *stat;
8cdea7c0
BS
258};
259
7dc74be0
DN
260/* Stuffs for move charges at task migration. */
261/*
262 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
263 * left-shifted bitmap of these types.
264 */
265enum move_type {
4ffef5fe 266 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 267 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
268 NR_MOVE_TYPE,
269};
270
4ffef5fe
DN
271/* "mc" and its members are protected by cgroup_mutex */
272static struct move_charge_struct {
2bd9bb20 273 spinlock_t lock; /* for from, to, moving_task */
4ffef5fe
DN
274 struct mem_cgroup *from;
275 struct mem_cgroup *to;
276 unsigned long precharge;
854ffa8d 277 unsigned long moved_charge;
483c30b5 278 unsigned long moved_swap;
8033b97c
DN
279 struct task_struct *moving_task; /* a task moving charges */
280 wait_queue_head_t waitq; /* a waitq for other context */
281} mc = {
2bd9bb20 282 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
283 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
284};
4ffef5fe 285
90254a65
DN
286static bool move_anon(void)
287{
288 return test_bit(MOVE_CHARGE_TYPE_ANON,
289 &mc.to->move_charge_at_immigrate);
290}
291
87946a72
DN
292static bool move_file(void)
293{
294 return test_bit(MOVE_CHARGE_TYPE_FILE,
295 &mc.to->move_charge_at_immigrate);
296}
297
4e416953
BS
298/*
299 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
300 * limit reclaim to prevent infinite loops, if they ever occur.
301 */
302#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
303#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
304
217bc319
KH
305enum charge_type {
306 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
307 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 308 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 309 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 310 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 311 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
312 NR_CHARGE_TYPE,
313};
314
52d4b9ac
KH
315/* only for here (for easy reading.) */
316#define PCGF_CACHE (1UL << PCG_CACHE)
317#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 318#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
319/* Not used, but added here for completeness */
320#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 321
8c7c6e34
KH
322/* for encoding cft->private value on file */
323#define _MEM (0)
324#define _MEMSWAP (1)
9490ff27 325#define _OOM_TYPE (2)
8c7c6e34
KH
326#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
327#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
328#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
329/* Used for OOM nofiier */
330#define OOM_CONTROL (0)
8c7c6e34 331
75822b44
BS
332/*
333 * Reclaim flags for mem_cgroup_hierarchical_reclaim
334 */
335#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
336#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
337#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
338#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
339#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
340#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 341
8c7c6e34
KH
342static void mem_cgroup_get(struct mem_cgroup *mem);
343static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 344static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 345static void drain_all_stock_async(void);
8c7c6e34 346
f64c3f54
BS
347static struct mem_cgroup_per_zone *
348mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
349{
350 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
351}
352
d324236b
WF
353struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
354{
355 return &mem->css;
356}
357
f64c3f54
BS
358static struct mem_cgroup_per_zone *
359page_cgroup_zoneinfo(struct page_cgroup *pc)
360{
361 struct mem_cgroup *mem = pc->mem_cgroup;
362 int nid = page_cgroup_nid(pc);
363 int zid = page_cgroup_zid(pc);
364
365 if (!mem)
366 return NULL;
367
368 return mem_cgroup_zoneinfo(mem, nid, zid);
369}
370
371static struct mem_cgroup_tree_per_zone *
372soft_limit_tree_node_zone(int nid, int zid)
373{
374 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
375}
376
377static struct mem_cgroup_tree_per_zone *
378soft_limit_tree_from_page(struct page *page)
379{
380 int nid = page_to_nid(page);
381 int zid = page_zonenum(page);
382
383 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
384}
385
386static void
4e416953 387__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 388 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
389 struct mem_cgroup_tree_per_zone *mctz,
390 unsigned long long new_usage_in_excess)
f64c3f54
BS
391{
392 struct rb_node **p = &mctz->rb_root.rb_node;
393 struct rb_node *parent = NULL;
394 struct mem_cgroup_per_zone *mz_node;
395
396 if (mz->on_tree)
397 return;
398
ef8745c1
KH
399 mz->usage_in_excess = new_usage_in_excess;
400 if (!mz->usage_in_excess)
401 return;
f64c3f54
BS
402 while (*p) {
403 parent = *p;
404 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
405 tree_node);
406 if (mz->usage_in_excess < mz_node->usage_in_excess)
407 p = &(*p)->rb_left;
408 /*
409 * We can't avoid mem cgroups that are over their soft
410 * limit by the same amount
411 */
412 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
413 p = &(*p)->rb_right;
414 }
415 rb_link_node(&mz->tree_node, parent, p);
416 rb_insert_color(&mz->tree_node, &mctz->rb_root);
417 mz->on_tree = true;
4e416953
BS
418}
419
420static void
421__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
422 struct mem_cgroup_per_zone *mz,
423 struct mem_cgroup_tree_per_zone *mctz)
424{
425 if (!mz->on_tree)
426 return;
427 rb_erase(&mz->tree_node, &mctz->rb_root);
428 mz->on_tree = false;
429}
430
f64c3f54
BS
431static void
432mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
433 struct mem_cgroup_per_zone *mz,
434 struct mem_cgroup_tree_per_zone *mctz)
435{
436 spin_lock(&mctz->lock);
4e416953 437 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
438 spin_unlock(&mctz->lock);
439}
440
f64c3f54
BS
441
442static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
443{
ef8745c1 444 unsigned long long excess;
f64c3f54
BS
445 struct mem_cgroup_per_zone *mz;
446 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
447 int nid = page_to_nid(page);
448 int zid = page_zonenum(page);
f64c3f54
BS
449 mctz = soft_limit_tree_from_page(page);
450
451 /*
4e649152
KH
452 * Necessary to update all ancestors when hierarchy is used.
453 * because their event counter is not touched.
f64c3f54 454 */
4e649152
KH
455 for (; mem; mem = parent_mem_cgroup(mem)) {
456 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 457 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
458 /*
459 * We have to update the tree if mz is on RB-tree or
460 * mem is over its softlimit.
461 */
ef8745c1 462 if (excess || mz->on_tree) {
4e649152
KH
463 spin_lock(&mctz->lock);
464 /* if on-tree, remove it */
465 if (mz->on_tree)
466 __mem_cgroup_remove_exceeded(mem, mz, mctz);
467 /*
ef8745c1
KH
468 * Insert again. mz->usage_in_excess will be updated.
469 * If excess is 0, no tree ops.
4e649152 470 */
ef8745c1 471 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
472 spin_unlock(&mctz->lock);
473 }
f64c3f54
BS
474 }
475}
476
477static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
478{
479 int node, zone;
480 struct mem_cgroup_per_zone *mz;
481 struct mem_cgroup_tree_per_zone *mctz;
482
483 for_each_node_state(node, N_POSSIBLE) {
484 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
485 mz = mem_cgroup_zoneinfo(mem, node, zone);
486 mctz = soft_limit_tree_node_zone(node, zone);
487 mem_cgroup_remove_exceeded(mem, mz, mctz);
488 }
489 }
490}
491
4e416953
BS
492static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
493{
494 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
495}
496
497static struct mem_cgroup_per_zone *
498__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
499{
500 struct rb_node *rightmost = NULL;
26251eaf 501 struct mem_cgroup_per_zone *mz;
4e416953
BS
502
503retry:
26251eaf 504 mz = NULL;
4e416953
BS
505 rightmost = rb_last(&mctz->rb_root);
506 if (!rightmost)
507 goto done; /* Nothing to reclaim from */
508
509 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
510 /*
511 * Remove the node now but someone else can add it back,
512 * we will to add it back at the end of reclaim to its correct
513 * position in the tree.
514 */
515 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
516 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
517 !css_tryget(&mz->mem->css))
518 goto retry;
519done:
520 return mz;
521}
522
523static struct mem_cgroup_per_zone *
524mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct mem_cgroup_per_zone *mz;
527
528 spin_lock(&mctz->lock);
529 mz = __mem_cgroup_largest_soft_limit_node(mctz);
530 spin_unlock(&mctz->lock);
531 return mz;
532}
533
c62b1a3b
KH
534static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
535 enum mem_cgroup_stat_index idx)
536{
537 int cpu;
538 s64 val = 0;
539
540 for_each_possible_cpu(cpu)
541 val += per_cpu(mem->stat->count[idx], cpu);
542 return val;
543}
544
545static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
546{
547 s64 ret;
548
549 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
550 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
551 return ret;
552}
553
0c3e73e8
BS
554static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
555 bool charge)
556{
557 int val = (charge) ? 1 : -1;
c62b1a3b 558 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
559}
560
c05555b5
KH
561static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
562 struct page_cgroup *pc,
563 bool charge)
d52aa412 564{
0c3e73e8 565 int val = (charge) ? 1 : -1;
d52aa412 566
c62b1a3b
KH
567 preempt_disable();
568
c05555b5 569 if (PageCgroupCache(pc))
c62b1a3b 570 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 571 else
c62b1a3b 572 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
573
574 if (charge)
c62b1a3b 575 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 576 else
c62b1a3b 577 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 578 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 579
c62b1a3b 580 preempt_enable();
6d12e2d8
KH
581}
582
14067bb3 583static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 584 enum lru_list idx)
6d12e2d8
KH
585{
586 int nid, zid;
587 struct mem_cgroup_per_zone *mz;
588 u64 total = 0;
589
590 for_each_online_node(nid)
591 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
592 mz = mem_cgroup_zoneinfo(mem, nid, zid);
593 total += MEM_CGROUP_ZSTAT(mz, idx);
594 }
595 return total;
d52aa412
KH
596}
597
d2265e6f
KH
598static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
599{
600 s64 val;
601
602 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
603
604 return !(val & ((1 << event_mask_shift) - 1));
605}
606
607/*
608 * Check events in order.
609 *
610 */
611static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
612{
613 /* threshold event is triggered in finer grain than soft limit */
614 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
615 mem_cgroup_threshold(mem);
616 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
617 mem_cgroup_update_tree(mem, page);
618 }
619}
620
d5b69e38 621static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
622{
623 return container_of(cgroup_subsys_state(cont,
624 mem_cgroup_subsys_id), struct mem_cgroup,
625 css);
626}
627
cf475ad2 628struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 629{
31a78f23
BS
630 /*
631 * mm_update_next_owner() may clear mm->owner to NULL
632 * if it races with swapoff, page migration, etc.
633 * So this can be called with p == NULL.
634 */
635 if (unlikely(!p))
636 return NULL;
637
78fb7466
PE
638 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
639 struct mem_cgroup, css);
640}
641
54595fe2
KH
642static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
643{
644 struct mem_cgroup *mem = NULL;
0b7f569e
KH
645
646 if (!mm)
647 return NULL;
54595fe2
KH
648 /*
649 * Because we have no locks, mm->owner's may be being moved to other
650 * cgroup. We use css_tryget() here even if this looks
651 * pessimistic (rather than adding locks here).
652 */
653 rcu_read_lock();
654 do {
655 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
656 if (unlikely(!mem))
657 break;
658 } while (!css_tryget(&mem->css));
659 rcu_read_unlock();
660 return mem;
661}
662
14067bb3
KH
663/*
664 * Call callback function against all cgroup under hierarchy tree.
665 */
666static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
667 int (*func)(struct mem_cgroup *, void *))
668{
669 int found, ret, nextid;
670 struct cgroup_subsys_state *css;
671 struct mem_cgroup *mem;
672
673 if (!root->use_hierarchy)
674 return (*func)(root, data);
675
676 nextid = 1;
677 do {
678 ret = 0;
679 mem = NULL;
680
681 rcu_read_lock();
682 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
683 &found);
684 if (css && css_tryget(css))
685 mem = container_of(css, struct mem_cgroup, css);
686 rcu_read_unlock();
687
688 if (mem) {
689 ret = (*func)(mem, data);
690 css_put(&mem->css);
691 }
692 nextid = found + 1;
693 } while (!ret && css);
694
695 return ret;
696}
697
4b3bde4c
BS
698static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
699{
700 return (mem == root_mem_cgroup);
701}
702
08e552c6
KH
703/*
704 * Following LRU functions are allowed to be used without PCG_LOCK.
705 * Operations are called by routine of global LRU independently from memcg.
706 * What we have to take care of here is validness of pc->mem_cgroup.
707 *
708 * Changes to pc->mem_cgroup happens when
709 * 1. charge
710 * 2. moving account
711 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
712 * It is added to LRU before charge.
713 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
714 * When moving account, the page is not on LRU. It's isolated.
715 */
4f98a2fe 716
08e552c6
KH
717void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
718{
719 struct page_cgroup *pc;
08e552c6 720 struct mem_cgroup_per_zone *mz;
6d12e2d8 721
f8d66542 722 if (mem_cgroup_disabled())
08e552c6
KH
723 return;
724 pc = lookup_page_cgroup(page);
725 /* can happen while we handle swapcache. */
4b3bde4c 726 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 727 return;
4b3bde4c 728 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
729 /*
730 * We don't check PCG_USED bit. It's cleared when the "page" is finally
731 * removed from global LRU.
732 */
08e552c6 733 mz = page_cgroup_zoneinfo(pc);
b69408e8 734 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
735 if (mem_cgroup_is_root(pc->mem_cgroup))
736 return;
737 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
738 list_del_init(&pc->lru);
739 return;
6d12e2d8
KH
740}
741
08e552c6 742void mem_cgroup_del_lru(struct page *page)
6d12e2d8 743{
08e552c6
KH
744 mem_cgroup_del_lru_list(page, page_lru(page));
745}
b69408e8 746
08e552c6
KH
747void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
748{
749 struct mem_cgroup_per_zone *mz;
750 struct page_cgroup *pc;
b69408e8 751
f8d66542 752 if (mem_cgroup_disabled())
08e552c6 753 return;
6d12e2d8 754
08e552c6 755 pc = lookup_page_cgroup(page);
bd112db8
DN
756 /*
757 * Used bit is set without atomic ops but after smp_wmb().
758 * For making pc->mem_cgroup visible, insert smp_rmb() here.
759 */
08e552c6 760 smp_rmb();
4b3bde4c
BS
761 /* unused or root page is not rotated. */
762 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
763 return;
764 mz = page_cgroup_zoneinfo(pc);
765 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
766}
767
08e552c6 768void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 769{
08e552c6
KH
770 struct page_cgroup *pc;
771 struct mem_cgroup_per_zone *mz;
6d12e2d8 772
f8d66542 773 if (mem_cgroup_disabled())
08e552c6
KH
774 return;
775 pc = lookup_page_cgroup(page);
4b3bde4c 776 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
777 /*
778 * Used bit is set without atomic ops but after smp_wmb().
779 * For making pc->mem_cgroup visible, insert smp_rmb() here.
780 */
08e552c6
KH
781 smp_rmb();
782 if (!PageCgroupUsed(pc))
894bc310 783 return;
b69408e8 784
08e552c6 785 mz = page_cgroup_zoneinfo(pc);
b69408e8 786 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
787 SetPageCgroupAcctLRU(pc);
788 if (mem_cgroup_is_root(pc->mem_cgroup))
789 return;
08e552c6
KH
790 list_add(&pc->lru, &mz->lists[lru]);
791}
544122e5 792
08e552c6 793/*
544122e5
KH
794 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
795 * lru because the page may.be reused after it's fully uncharged (because of
796 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
797 * it again. This function is only used to charge SwapCache. It's done under
798 * lock_page and expected that zone->lru_lock is never held.
08e552c6 799 */
544122e5 800static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 801{
544122e5
KH
802 unsigned long flags;
803 struct zone *zone = page_zone(page);
804 struct page_cgroup *pc = lookup_page_cgroup(page);
805
806 spin_lock_irqsave(&zone->lru_lock, flags);
807 /*
808 * Forget old LRU when this page_cgroup is *not* used. This Used bit
809 * is guarded by lock_page() because the page is SwapCache.
810 */
811 if (!PageCgroupUsed(pc))
812 mem_cgroup_del_lru_list(page, page_lru(page));
813 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
814}
815
544122e5
KH
816static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
817{
818 unsigned long flags;
819 struct zone *zone = page_zone(page);
820 struct page_cgroup *pc = lookup_page_cgroup(page);
821
822 spin_lock_irqsave(&zone->lru_lock, flags);
823 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 824 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
825 mem_cgroup_add_lru_list(page, page_lru(page));
826 spin_unlock_irqrestore(&zone->lru_lock, flags);
827}
828
829
08e552c6
KH
830void mem_cgroup_move_lists(struct page *page,
831 enum lru_list from, enum lru_list to)
832{
f8d66542 833 if (mem_cgroup_disabled())
08e552c6
KH
834 return;
835 mem_cgroup_del_lru_list(page, from);
836 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
837}
838
4c4a2214
DR
839int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
840{
841 int ret;
0b7f569e 842 struct mem_cgroup *curr = NULL;
158e0a2d 843 struct task_struct *p;
4c4a2214 844
158e0a2d
KH
845 p = find_lock_task_mm(task);
846 if (!p)
847 return 0;
848 curr = try_get_mem_cgroup_from_mm(p->mm);
849 task_unlock(p);
0b7f569e
KH
850 if (!curr)
851 return 0;
d31f56db
DN
852 /*
853 * We should check use_hierarchy of "mem" not "curr". Because checking
854 * use_hierarchy of "curr" here make this function true if hierarchy is
855 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
856 * hierarchy(even if use_hierarchy is disabled in "mem").
857 */
858 if (mem->use_hierarchy)
0b7f569e
KH
859 ret = css_is_ancestor(&curr->css, &mem->css);
860 else
861 ret = (curr == mem);
862 css_put(&curr->css);
4c4a2214
DR
863 return ret;
864}
865
c772be93 866static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
867{
868 unsigned long active;
869 unsigned long inactive;
c772be93
KM
870 unsigned long gb;
871 unsigned long inactive_ratio;
14797e23 872
14067bb3
KH
873 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
874 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 875
c772be93
KM
876 gb = (inactive + active) >> (30 - PAGE_SHIFT);
877 if (gb)
878 inactive_ratio = int_sqrt(10 * gb);
879 else
880 inactive_ratio = 1;
881
882 if (present_pages) {
883 present_pages[0] = inactive;
884 present_pages[1] = active;
885 }
886
887 return inactive_ratio;
888}
889
890int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
891{
892 unsigned long active;
893 unsigned long inactive;
894 unsigned long present_pages[2];
895 unsigned long inactive_ratio;
896
897 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
898
899 inactive = present_pages[0];
900 active = present_pages[1];
901
902 if (inactive * inactive_ratio < active)
14797e23
KM
903 return 1;
904
905 return 0;
906}
907
56e49d21
RR
908int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
909{
910 unsigned long active;
911 unsigned long inactive;
912
913 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
914 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
915
916 return (active > inactive);
917}
918
a3d8e054
KM
919unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
920 struct zone *zone,
921 enum lru_list lru)
922{
13d7e3a2 923 int nid = zone_to_nid(zone);
a3d8e054
KM
924 int zid = zone_idx(zone);
925 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
926
927 return MEM_CGROUP_ZSTAT(mz, lru);
928}
929
3e2f41f1
KM
930struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
931 struct zone *zone)
932{
13d7e3a2 933 int nid = zone_to_nid(zone);
3e2f41f1
KM
934 int zid = zone_idx(zone);
935 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
936
937 return &mz->reclaim_stat;
938}
939
940struct zone_reclaim_stat *
941mem_cgroup_get_reclaim_stat_from_page(struct page *page)
942{
943 struct page_cgroup *pc;
944 struct mem_cgroup_per_zone *mz;
945
946 if (mem_cgroup_disabled())
947 return NULL;
948
949 pc = lookup_page_cgroup(page);
bd112db8
DN
950 /*
951 * Used bit is set without atomic ops but after smp_wmb().
952 * For making pc->mem_cgroup visible, insert smp_rmb() here.
953 */
954 smp_rmb();
955 if (!PageCgroupUsed(pc))
956 return NULL;
957
3e2f41f1
KM
958 mz = page_cgroup_zoneinfo(pc);
959 if (!mz)
960 return NULL;
961
962 return &mz->reclaim_stat;
963}
964
66e1707b
BS
965unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
966 struct list_head *dst,
967 unsigned long *scanned, int order,
968 int mode, struct zone *z,
969 struct mem_cgroup *mem_cont,
4f98a2fe 970 int active, int file)
66e1707b
BS
971{
972 unsigned long nr_taken = 0;
973 struct page *page;
974 unsigned long scan;
975 LIST_HEAD(pc_list);
976 struct list_head *src;
ff7283fa 977 struct page_cgroup *pc, *tmp;
13d7e3a2 978 int nid = zone_to_nid(z);
1ecaab2b
KH
979 int zid = zone_idx(z);
980 struct mem_cgroup_per_zone *mz;
b7c46d15 981 int lru = LRU_FILE * file + active;
2ffebca6 982 int ret;
66e1707b 983
cf475ad2 984 BUG_ON(!mem_cont);
1ecaab2b 985 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 986 src = &mz->lists[lru];
66e1707b 987
ff7283fa
KH
988 scan = 0;
989 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 990 if (scan >= nr_to_scan)
ff7283fa 991 break;
08e552c6
KH
992
993 page = pc->page;
52d4b9ac
KH
994 if (unlikely(!PageCgroupUsed(pc)))
995 continue;
436c6541 996 if (unlikely(!PageLRU(page)))
ff7283fa 997 continue;
ff7283fa 998
436c6541 999 scan++;
2ffebca6
KH
1000 ret = __isolate_lru_page(page, mode, file);
1001 switch (ret) {
1002 case 0:
66e1707b 1003 list_move(&page->lru, dst);
2ffebca6 1004 mem_cgroup_del_lru(page);
66e1707b 1005 nr_taken++;
2ffebca6
KH
1006 break;
1007 case -EBUSY:
1008 /* we don't affect global LRU but rotate in our LRU */
1009 mem_cgroup_rotate_lru_list(page, page_lru(page));
1010 break;
1011 default:
1012 break;
66e1707b
BS
1013 }
1014 }
1015
66e1707b 1016 *scanned = scan;
cc8e970c
KM
1017
1018 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1019 0, 0, 0, mode);
1020
66e1707b
BS
1021 return nr_taken;
1022}
1023
6d61ef40
BS
1024#define mem_cgroup_from_res_counter(counter, member) \
1025 container_of(counter, struct mem_cgroup, member)
1026
b85a96c0
DN
1027static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1028{
1029 if (do_swap_account) {
1030 if (res_counter_check_under_limit(&mem->res) &&
1031 res_counter_check_under_limit(&mem->memsw))
1032 return true;
1033 } else
1034 if (res_counter_check_under_limit(&mem->res))
1035 return true;
1036 return false;
1037}
1038
a7885eb8
KM
1039static unsigned int get_swappiness(struct mem_cgroup *memcg)
1040{
1041 struct cgroup *cgrp = memcg->css.cgroup;
1042 unsigned int swappiness;
1043
1044 /* root ? */
1045 if (cgrp->parent == NULL)
1046 return vm_swappiness;
1047
1048 spin_lock(&memcg->reclaim_param_lock);
1049 swappiness = memcg->swappiness;
1050 spin_unlock(&memcg->reclaim_param_lock);
1051
1052 return swappiness;
1053}
1054
32047e2a
KH
1055static void mem_cgroup_start_move(struct mem_cgroup *mem)
1056{
1057 int cpu;
1058 /* Because this is for moving account, reuse mc.lock */
1059 spin_lock(&mc.lock);
1060 for_each_possible_cpu(cpu)
1061 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1062 spin_unlock(&mc.lock);
1063
1064 synchronize_rcu();
1065}
1066
1067static void mem_cgroup_end_move(struct mem_cgroup *mem)
1068{
1069 int cpu;
1070
1071 if (!mem)
1072 return;
1073 spin_lock(&mc.lock);
1074 for_each_possible_cpu(cpu)
1075 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1076 spin_unlock(&mc.lock);
1077}
1078/*
1079 * 2 routines for checking "mem" is under move_account() or not.
1080 *
1081 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1082 * for avoiding race in accounting. If true,
1083 * pc->mem_cgroup may be overwritten.
1084 *
1085 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1086 * under hierarchy of moving cgroups. This is for
1087 * waiting at hith-memory prressure caused by "move".
1088 */
1089
1090static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1091{
1092 VM_BUG_ON(!rcu_read_lock_held());
1093 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1094}
4b534334
KH
1095
1096static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1097{
2bd9bb20
KH
1098 struct mem_cgroup *from;
1099 struct mem_cgroup *to;
4b534334 1100 bool ret = false;
2bd9bb20
KH
1101 /*
1102 * Unlike task_move routines, we access mc.to, mc.from not under
1103 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1104 */
1105 spin_lock(&mc.lock);
1106 from = mc.from;
1107 to = mc.to;
1108 if (!from)
1109 goto unlock;
1110 if (from == mem || to == mem
1111 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1112 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1113 ret = true;
1114unlock:
1115 spin_unlock(&mc.lock);
4b534334
KH
1116 return ret;
1117}
1118
1119static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1120{
1121 if (mc.moving_task && current != mc.moving_task) {
1122 if (mem_cgroup_under_move(mem)) {
1123 DEFINE_WAIT(wait);
1124 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1125 /* moving charge context might have finished. */
1126 if (mc.moving_task)
1127 schedule();
1128 finish_wait(&mc.waitq, &wait);
1129 return true;
1130 }
1131 }
1132 return false;
1133}
1134
81d39c20
KH
1135static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1136{
1137 int *val = data;
1138 (*val)++;
1139 return 0;
1140}
e222432b
BS
1141
1142/**
6a6135b6 1143 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1144 * @memcg: The memory cgroup that went over limit
1145 * @p: Task that is going to be killed
1146 *
1147 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1148 * enabled
1149 */
1150void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1151{
1152 struct cgroup *task_cgrp;
1153 struct cgroup *mem_cgrp;
1154 /*
1155 * Need a buffer in BSS, can't rely on allocations. The code relies
1156 * on the assumption that OOM is serialized for memory controller.
1157 * If this assumption is broken, revisit this code.
1158 */
1159 static char memcg_name[PATH_MAX];
1160 int ret;
1161
d31f56db 1162 if (!memcg || !p)
e222432b
BS
1163 return;
1164
1165
1166 rcu_read_lock();
1167
1168 mem_cgrp = memcg->css.cgroup;
1169 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1170
1171 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1172 if (ret < 0) {
1173 /*
1174 * Unfortunately, we are unable to convert to a useful name
1175 * But we'll still print out the usage information
1176 */
1177 rcu_read_unlock();
1178 goto done;
1179 }
1180 rcu_read_unlock();
1181
1182 printk(KERN_INFO "Task in %s killed", memcg_name);
1183
1184 rcu_read_lock();
1185 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1186 if (ret < 0) {
1187 rcu_read_unlock();
1188 goto done;
1189 }
1190 rcu_read_unlock();
1191
1192 /*
1193 * Continues from above, so we don't need an KERN_ level
1194 */
1195 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1196done:
1197
1198 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1199 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1200 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1201 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1202 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1203 "failcnt %llu\n",
1204 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1205 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1206 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1207}
1208
81d39c20
KH
1209/*
1210 * This function returns the number of memcg under hierarchy tree. Returns
1211 * 1(self count) if no children.
1212 */
1213static int mem_cgroup_count_children(struct mem_cgroup *mem)
1214{
1215 int num = 0;
1216 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1217 return num;
1218}
1219
a63d83f4
DR
1220/*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
1223u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224{
1225 u64 limit;
1226 u64 memsw;
1227
1228 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1229 total_swap_pages;
1230 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1231 /*
1232 * If memsw is finite and limits the amount of swap space available
1233 * to this memcg, return that limit.
1234 */
1235 return min(limit, memsw);
1236}
1237
6d61ef40 1238/*
04046e1a
KH
1239 * Visit the first child (need not be the first child as per the ordering
1240 * of the cgroup list, since we track last_scanned_child) of @mem and use
1241 * that to reclaim free pages from.
1242 */
1243static struct mem_cgroup *
1244mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1245{
1246 struct mem_cgroup *ret = NULL;
1247 struct cgroup_subsys_state *css;
1248 int nextid, found;
1249
1250 if (!root_mem->use_hierarchy) {
1251 css_get(&root_mem->css);
1252 ret = root_mem;
1253 }
1254
1255 while (!ret) {
1256 rcu_read_lock();
1257 nextid = root_mem->last_scanned_child + 1;
1258 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1259 &found);
1260 if (css && css_tryget(css))
1261 ret = container_of(css, struct mem_cgroup, css);
1262
1263 rcu_read_unlock();
1264 /* Updates scanning parameter */
1265 spin_lock(&root_mem->reclaim_param_lock);
1266 if (!css) {
1267 /* this means start scan from ID:1 */
1268 root_mem->last_scanned_child = 0;
1269 } else
1270 root_mem->last_scanned_child = found;
1271 spin_unlock(&root_mem->reclaim_param_lock);
1272 }
1273
1274 return ret;
1275}
1276
1277/*
1278 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1279 * we reclaimed from, so that we don't end up penalizing one child extensively
1280 * based on its position in the children list.
6d61ef40
BS
1281 *
1282 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1283 *
1284 * We give up and return to the caller when we visit root_mem twice.
1285 * (other groups can be removed while we're walking....)
81d39c20
KH
1286 *
1287 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1288 */
1289static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1290 struct zone *zone,
75822b44
BS
1291 gfp_t gfp_mask,
1292 unsigned long reclaim_options)
6d61ef40 1293{
04046e1a
KH
1294 struct mem_cgroup *victim;
1295 int ret, total = 0;
1296 int loop = 0;
75822b44
BS
1297 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1298 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1299 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1300 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1301
22a668d7
KH
1302 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1303 if (root_mem->memsw_is_minimum)
1304 noswap = true;
1305
4e416953 1306 while (1) {
04046e1a 1307 victim = mem_cgroup_select_victim(root_mem);
4e416953 1308 if (victim == root_mem) {
04046e1a 1309 loop++;
cdec2e42
KH
1310 if (loop >= 1)
1311 drain_all_stock_async();
4e416953
BS
1312 if (loop >= 2) {
1313 /*
1314 * If we have not been able to reclaim
1315 * anything, it might because there are
1316 * no reclaimable pages under this hierarchy
1317 */
1318 if (!check_soft || !total) {
1319 css_put(&victim->css);
1320 break;
1321 }
1322 /*
1323 * We want to do more targetted reclaim.
1324 * excess >> 2 is not to excessive so as to
1325 * reclaim too much, nor too less that we keep
1326 * coming back to reclaim from this cgroup
1327 */
1328 if (total >= (excess >> 2) ||
1329 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1330 css_put(&victim->css);
1331 break;
1332 }
1333 }
1334 }
c62b1a3b 1335 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1336 /* this cgroup's local usage == 0 */
1337 css_put(&victim->css);
6d61ef40
BS
1338 continue;
1339 }
04046e1a 1340 /* we use swappiness of local cgroup */
4e416953
BS
1341 if (check_soft)
1342 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1343 noswap, get_swappiness(victim), zone);
4e416953
BS
1344 else
1345 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1346 noswap, get_swappiness(victim));
04046e1a 1347 css_put(&victim->css);
81d39c20
KH
1348 /*
1349 * At shrinking usage, we can't check we should stop here or
1350 * reclaim more. It's depends on callers. last_scanned_child
1351 * will work enough for keeping fairness under tree.
1352 */
1353 if (shrink)
1354 return ret;
04046e1a 1355 total += ret;
4e416953
BS
1356 if (check_soft) {
1357 if (res_counter_check_under_soft_limit(&root_mem->res))
1358 return total;
1359 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1360 return 1 + total;
6d61ef40 1361 }
04046e1a 1362 return total;
6d61ef40
BS
1363}
1364
867578cb 1365static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
a636b327 1366{
867578cb
KH
1367 int *val = (int *)data;
1368 int x;
1369 /*
1370 * Logically, we can stop scanning immediately when we find
1371 * a memcg is already locked. But condidering unlock ops and
1372 * creation/removal of memcg, scan-all is simple operation.
1373 */
1374 x = atomic_inc_return(&mem->oom_lock);
1375 *val = max(x, *val);
1376 return 0;
1377}
1378/*
1379 * Check OOM-Killer is already running under our hierarchy.
1380 * If someone is running, return false.
1381 */
1382static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1383{
1384 int lock_count = 0;
a636b327 1385
867578cb
KH
1386 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1387
1388 if (lock_count == 1)
1389 return true;
1390 return false;
a636b327 1391}
0b7f569e 1392
867578cb 1393static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
0b7f569e 1394{
867578cb
KH
1395 /*
1396 * When a new child is created while the hierarchy is under oom,
1397 * mem_cgroup_oom_lock() may not be called. We have to use
1398 * atomic_add_unless() here.
1399 */
1400 atomic_add_unless(&mem->oom_lock, -1, 0);
0b7f569e
KH
1401 return 0;
1402}
1403
867578cb
KH
1404static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1405{
1406 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1407}
1408
1409static DEFINE_MUTEX(memcg_oom_mutex);
1410static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1411
dc98df5a
KH
1412struct oom_wait_info {
1413 struct mem_cgroup *mem;
1414 wait_queue_t wait;
1415};
1416
1417static int memcg_oom_wake_function(wait_queue_t *wait,
1418 unsigned mode, int sync, void *arg)
1419{
1420 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1421 struct oom_wait_info *oom_wait_info;
1422
1423 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1424
1425 if (oom_wait_info->mem == wake_mem)
1426 goto wakeup;
1427 /* if no hierarchy, no match */
1428 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1429 return 0;
1430 /*
1431 * Both of oom_wait_info->mem and wake_mem are stable under us.
1432 * Then we can use css_is_ancestor without taking care of RCU.
1433 */
1434 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1435 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1436 return 0;
1437
1438wakeup:
1439 return autoremove_wake_function(wait, mode, sync, arg);
1440}
1441
1442static void memcg_wakeup_oom(struct mem_cgroup *mem)
1443{
1444 /* for filtering, pass "mem" as argument. */
1445 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1446}
1447
3c11ecf4
KH
1448static void memcg_oom_recover(struct mem_cgroup *mem)
1449{
2bd9bb20 1450 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1451 memcg_wakeup_oom(mem);
1452}
1453
867578cb
KH
1454/*
1455 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1456 */
1457bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1458{
dc98df5a 1459 struct oom_wait_info owait;
3c11ecf4 1460 bool locked, need_to_kill;
867578cb 1461
dc98df5a
KH
1462 owait.mem = mem;
1463 owait.wait.flags = 0;
1464 owait.wait.func = memcg_oom_wake_function;
1465 owait.wait.private = current;
1466 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1467 need_to_kill = true;
867578cb
KH
1468 /* At first, try to OOM lock hierarchy under mem.*/
1469 mutex_lock(&memcg_oom_mutex);
1470 locked = mem_cgroup_oom_lock(mem);
1471 /*
1472 * Even if signal_pending(), we can't quit charge() loop without
1473 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1474 * under OOM is always welcomed, use TASK_KILLABLE here.
1475 */
3c11ecf4
KH
1476 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1477 if (!locked || mem->oom_kill_disable)
1478 need_to_kill = false;
1479 if (locked)
9490ff27 1480 mem_cgroup_oom_notify(mem);
867578cb
KH
1481 mutex_unlock(&memcg_oom_mutex);
1482
3c11ecf4
KH
1483 if (need_to_kill) {
1484 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1485 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1486 } else {
867578cb 1487 schedule();
dc98df5a 1488 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1489 }
1490 mutex_lock(&memcg_oom_mutex);
1491 mem_cgroup_oom_unlock(mem);
dc98df5a 1492 memcg_wakeup_oom(mem);
867578cb
KH
1493 mutex_unlock(&memcg_oom_mutex);
1494
1495 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1496 return false;
1497 /* Give chance to dying process */
1498 schedule_timeout(1);
1499 return true;
0b7f569e
KH
1500}
1501
d69b042f
BS
1502/*
1503 * Currently used to update mapped file statistics, but the routine can be
1504 * generalized to update other statistics as well.
32047e2a
KH
1505 *
1506 * Notes: Race condition
1507 *
1508 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1509 * it tends to be costly. But considering some conditions, we doesn't need
1510 * to do so _always_.
1511 *
1512 * Considering "charge", lock_page_cgroup() is not required because all
1513 * file-stat operations happen after a page is attached to radix-tree. There
1514 * are no race with "charge".
1515 *
1516 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1517 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1518 * if there are race with "uncharge". Statistics itself is properly handled
1519 * by flags.
1520 *
1521 * Considering "move", this is an only case we see a race. To make the race
1522 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1523 * possibility of race condition. If there is, we take a lock.
d69b042f 1524 */
d8046582 1525void mem_cgroup_update_file_mapped(struct page *page, int val)
d69b042f
BS
1526{
1527 struct mem_cgroup *mem;
32047e2a
KH
1528 struct page_cgroup *pc = lookup_page_cgroup(page);
1529 bool need_unlock = false;
d69b042f 1530
d69b042f
BS
1531 if (unlikely(!pc))
1532 return;
1533
32047e2a 1534 rcu_read_lock();
d69b042f 1535 mem = pc->mem_cgroup;
32047e2a
KH
1536 if (unlikely(!mem || !PageCgroupUsed(pc)))
1537 goto out;
1538 /* pc->mem_cgroup is unstable ? */
1539 if (unlikely(mem_cgroup_stealed(mem))) {
1540 /* take a lock against to access pc->mem_cgroup */
1541 lock_page_cgroup(pc);
1542 need_unlock = true;
1543 mem = pc->mem_cgroup;
1544 if (!mem || !PageCgroupUsed(pc))
1545 goto out;
1546 }
8725d541 1547 if (val > 0) {
32047e2a 1548 this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
8725d541
KH
1549 SetPageCgroupFileMapped(pc);
1550 } else {
32047e2a 1551 this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
0c270f8f
KH
1552 if (!page_mapped(page)) /* for race between dec->inc counter */
1553 ClearPageCgroupFileMapped(pc);
8725d541 1554 }
d69b042f 1555
32047e2a
KH
1556out:
1557 if (unlikely(need_unlock))
1558 unlock_page_cgroup(pc);
1559 rcu_read_unlock();
1560 return;
d69b042f 1561}
0b7f569e 1562
cdec2e42
KH
1563/*
1564 * size of first charge trial. "32" comes from vmscan.c's magic value.
1565 * TODO: maybe necessary to use big numbers in big irons.
1566 */
1567#define CHARGE_SIZE (32 * PAGE_SIZE)
1568struct memcg_stock_pcp {
1569 struct mem_cgroup *cached; /* this never be root cgroup */
1570 int charge;
1571 struct work_struct work;
1572};
1573static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1574static atomic_t memcg_drain_count;
1575
1576/*
1577 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1578 * from local stock and true is returned. If the stock is 0 or charges from a
1579 * cgroup which is not current target, returns false. This stock will be
1580 * refilled.
1581 */
1582static bool consume_stock(struct mem_cgroup *mem)
1583{
1584 struct memcg_stock_pcp *stock;
1585 bool ret = true;
1586
1587 stock = &get_cpu_var(memcg_stock);
1588 if (mem == stock->cached && stock->charge)
1589 stock->charge -= PAGE_SIZE;
1590 else /* need to call res_counter_charge */
1591 ret = false;
1592 put_cpu_var(memcg_stock);
1593 return ret;
1594}
1595
1596/*
1597 * Returns stocks cached in percpu to res_counter and reset cached information.
1598 */
1599static void drain_stock(struct memcg_stock_pcp *stock)
1600{
1601 struct mem_cgroup *old = stock->cached;
1602
1603 if (stock->charge) {
1604 res_counter_uncharge(&old->res, stock->charge);
1605 if (do_swap_account)
1606 res_counter_uncharge(&old->memsw, stock->charge);
1607 }
1608 stock->cached = NULL;
1609 stock->charge = 0;
1610}
1611
1612/*
1613 * This must be called under preempt disabled or must be called by
1614 * a thread which is pinned to local cpu.
1615 */
1616static void drain_local_stock(struct work_struct *dummy)
1617{
1618 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1619 drain_stock(stock);
1620}
1621
1622/*
1623 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1624 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1625 */
1626static void refill_stock(struct mem_cgroup *mem, int val)
1627{
1628 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1629
1630 if (stock->cached != mem) { /* reset if necessary */
1631 drain_stock(stock);
1632 stock->cached = mem;
1633 }
1634 stock->charge += val;
1635 put_cpu_var(memcg_stock);
1636}
1637
1638/*
1639 * Tries to drain stocked charges in other cpus. This function is asynchronous
1640 * and just put a work per cpu for draining localy on each cpu. Caller can
1641 * expects some charges will be back to res_counter later but cannot wait for
1642 * it.
1643 */
1644static void drain_all_stock_async(void)
1645{
1646 int cpu;
1647 /* This function is for scheduling "drain" in asynchronous way.
1648 * The result of "drain" is not directly handled by callers. Then,
1649 * if someone is calling drain, we don't have to call drain more.
1650 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1651 * there is a race. We just do loose check here.
1652 */
1653 if (atomic_read(&memcg_drain_count))
1654 return;
1655 /* Notify other cpus that system-wide "drain" is running */
1656 atomic_inc(&memcg_drain_count);
1657 get_online_cpus();
1658 for_each_online_cpu(cpu) {
1659 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1660 schedule_work_on(cpu, &stock->work);
1661 }
1662 put_online_cpus();
1663 atomic_dec(&memcg_drain_count);
1664 /* We don't wait for flush_work */
1665}
1666
1667/* This is a synchronous drain interface. */
1668static void drain_all_stock_sync(void)
1669{
1670 /* called when force_empty is called */
1671 atomic_inc(&memcg_drain_count);
1672 schedule_on_each_cpu(drain_local_stock);
1673 atomic_dec(&memcg_drain_count);
1674}
1675
1676static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1677 unsigned long action,
1678 void *hcpu)
1679{
1680 int cpu = (unsigned long)hcpu;
1681 struct memcg_stock_pcp *stock;
1682
1683 if (action != CPU_DEAD)
1684 return NOTIFY_OK;
1685 stock = &per_cpu(memcg_stock, cpu);
1686 drain_stock(stock);
1687 return NOTIFY_OK;
1688}
1689
4b534334
KH
1690
1691/* See __mem_cgroup_try_charge() for details */
1692enum {
1693 CHARGE_OK, /* success */
1694 CHARGE_RETRY, /* need to retry but retry is not bad */
1695 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1696 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1697 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1698};
1699
1700static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1701 int csize, bool oom_check)
1702{
1703 struct mem_cgroup *mem_over_limit;
1704 struct res_counter *fail_res;
1705 unsigned long flags = 0;
1706 int ret;
1707
1708 ret = res_counter_charge(&mem->res, csize, &fail_res);
1709
1710 if (likely(!ret)) {
1711 if (!do_swap_account)
1712 return CHARGE_OK;
1713 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1714 if (likely(!ret))
1715 return CHARGE_OK;
1716
1717 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1718 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1719 } else
1720 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1721
1722 if (csize > PAGE_SIZE) /* change csize and retry */
1723 return CHARGE_RETRY;
1724
1725 if (!(gfp_mask & __GFP_WAIT))
1726 return CHARGE_WOULDBLOCK;
1727
1728 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1729 gfp_mask, flags);
1730 /*
1731 * try_to_free_mem_cgroup_pages() might not give us a full
1732 * picture of reclaim. Some pages are reclaimed and might be
1733 * moved to swap cache or just unmapped from the cgroup.
1734 * Check the limit again to see if the reclaim reduced the
1735 * current usage of the cgroup before giving up
1736 */
1737 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1738 return CHARGE_RETRY;
1739
1740 /*
1741 * At task move, charge accounts can be doubly counted. So, it's
1742 * better to wait until the end of task_move if something is going on.
1743 */
1744 if (mem_cgroup_wait_acct_move(mem_over_limit))
1745 return CHARGE_RETRY;
1746
1747 /* If we don't need to call oom-killer at el, return immediately */
1748 if (!oom_check)
1749 return CHARGE_NOMEM;
1750 /* check OOM */
1751 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1752 return CHARGE_OOM_DIE;
1753
1754 return CHARGE_RETRY;
1755}
1756
f817ed48
KH
1757/*
1758 * Unlike exported interface, "oom" parameter is added. if oom==true,
1759 * oom-killer can be invoked.
8a9f3ccd 1760 */
f817ed48 1761static int __mem_cgroup_try_charge(struct mm_struct *mm,
4b534334 1762 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
8a9f3ccd 1763{
4b534334
KH
1764 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1765 struct mem_cgroup *mem = NULL;
1766 int ret;
cdec2e42 1767 int csize = CHARGE_SIZE;
a636b327 1768
867578cb
KH
1769 /*
1770 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1771 * in system level. So, allow to go ahead dying process in addition to
1772 * MEMDIE process.
1773 */
1774 if (unlikely(test_thread_flag(TIF_MEMDIE)
1775 || fatal_signal_pending(current)))
1776 goto bypass;
a636b327 1777
8a9f3ccd 1778 /*
3be91277
HD
1779 * We always charge the cgroup the mm_struct belongs to.
1780 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1781 * thread group leader migrates. It's possible that mm is not
1782 * set, if so charge the init_mm (happens for pagecache usage).
1783 */
f75ca962
KH
1784 if (!*memcg && !mm)
1785 goto bypass;
1786again:
1787 if (*memcg) { /* css should be a valid one */
4b534334 1788 mem = *memcg;
f75ca962
KH
1789 VM_BUG_ON(css_is_removed(&mem->css));
1790 if (mem_cgroup_is_root(mem))
1791 goto done;
1792 if (consume_stock(mem))
1793 goto done;
4b534334
KH
1794 css_get(&mem->css);
1795 } else {
f75ca962 1796 struct task_struct *p;
54595fe2 1797
f75ca962
KH
1798 rcu_read_lock();
1799 p = rcu_dereference(mm->owner);
1800 VM_BUG_ON(!p);
1801 /*
1802 * because we don't have task_lock(), "p" can exit while
1803 * we're here. In that case, "mem" can point to root
1804 * cgroup but never be NULL. (and task_struct itself is freed
1805 * by RCU, cgroup itself is RCU safe.) Then, we have small
1806 * risk here to get wrong cgroup. But such kind of mis-account
1807 * by race always happens because we don't have cgroup_mutex().
1808 * It's overkill and we allow that small race, here.
1809 */
1810 mem = mem_cgroup_from_task(p);
1811 VM_BUG_ON(!mem);
1812 if (mem_cgroup_is_root(mem)) {
1813 rcu_read_unlock();
1814 goto done;
1815 }
1816 if (consume_stock(mem)) {
1817 /*
1818 * It seems dagerous to access memcg without css_get().
1819 * But considering how consume_stok works, it's not
1820 * necessary. If consume_stock success, some charges
1821 * from this memcg are cached on this cpu. So, we
1822 * don't need to call css_get()/css_tryget() before
1823 * calling consume_stock().
1824 */
1825 rcu_read_unlock();
1826 goto done;
1827 }
1828 /* after here, we may be blocked. we need to get refcnt */
1829 if (!css_tryget(&mem->css)) {
1830 rcu_read_unlock();
1831 goto again;
1832 }
1833 rcu_read_unlock();
1834 }
8a9f3ccd 1835
4b534334
KH
1836 do {
1837 bool oom_check;
7a81b88c 1838
4b534334 1839 /* If killed, bypass charge */
f75ca962
KH
1840 if (fatal_signal_pending(current)) {
1841 css_put(&mem->css);
4b534334 1842 goto bypass;
f75ca962 1843 }
6d61ef40 1844
4b534334
KH
1845 oom_check = false;
1846 if (oom && !nr_oom_retries) {
1847 oom_check = true;
1848 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1849 }
66e1707b 1850
4b534334 1851 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1852
4b534334
KH
1853 switch (ret) {
1854 case CHARGE_OK:
1855 break;
1856 case CHARGE_RETRY: /* not in OOM situation but retry */
1857 csize = PAGE_SIZE;
f75ca962
KH
1858 css_put(&mem->css);
1859 mem = NULL;
1860 goto again;
4b534334 1861 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 1862 css_put(&mem->css);
4b534334
KH
1863 goto nomem;
1864 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
1865 if (!oom) {
1866 css_put(&mem->css);
867578cb 1867 goto nomem;
f75ca962 1868 }
4b534334
KH
1869 /* If oom, we never return -ENOMEM */
1870 nr_oom_retries--;
1871 break;
1872 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 1873 css_put(&mem->css);
867578cb 1874 goto bypass;
66e1707b 1875 }
4b534334
KH
1876 } while (ret != CHARGE_OK);
1877
cdec2e42
KH
1878 if (csize > PAGE_SIZE)
1879 refill_stock(mem, csize - PAGE_SIZE);
f75ca962 1880 css_put(&mem->css);
0c3e73e8 1881done:
f75ca962 1882 *memcg = mem;
7a81b88c
KH
1883 return 0;
1884nomem:
f75ca962 1885 *memcg = NULL;
7a81b88c 1886 return -ENOMEM;
867578cb
KH
1887bypass:
1888 *memcg = NULL;
1889 return 0;
7a81b88c 1890}
8a9f3ccd 1891
a3032a2c
DN
1892/*
1893 * Somemtimes we have to undo a charge we got by try_charge().
1894 * This function is for that and do uncharge, put css's refcnt.
1895 * gotten by try_charge().
1896 */
854ffa8d
DN
1897static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1898 unsigned long count)
a3032a2c
DN
1899{
1900 if (!mem_cgroup_is_root(mem)) {
854ffa8d 1901 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 1902 if (do_swap_account)
854ffa8d 1903 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 1904 }
854ffa8d
DN
1905}
1906
1907static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1908{
1909 __mem_cgroup_cancel_charge(mem, 1);
a3032a2c
DN
1910}
1911
a3b2d692
KH
1912/*
1913 * A helper function to get mem_cgroup from ID. must be called under
1914 * rcu_read_lock(). The caller must check css_is_removed() or some if
1915 * it's concern. (dropping refcnt from swap can be called against removed
1916 * memcg.)
1917 */
1918static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1919{
1920 struct cgroup_subsys_state *css;
1921
1922 /* ID 0 is unused ID */
1923 if (!id)
1924 return NULL;
1925 css = css_lookup(&mem_cgroup_subsys, id);
1926 if (!css)
1927 return NULL;
1928 return container_of(css, struct mem_cgroup, css);
1929}
1930
e42d9d5d 1931struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 1932{
e42d9d5d 1933 struct mem_cgroup *mem = NULL;
3c776e64 1934 struct page_cgroup *pc;
a3b2d692 1935 unsigned short id;
b5a84319
KH
1936 swp_entry_t ent;
1937
3c776e64
DN
1938 VM_BUG_ON(!PageLocked(page));
1939
3c776e64 1940 pc = lookup_page_cgroup(page);
c0bd3f63 1941 lock_page_cgroup(pc);
a3b2d692 1942 if (PageCgroupUsed(pc)) {
3c776e64 1943 mem = pc->mem_cgroup;
a3b2d692
KH
1944 if (mem && !css_tryget(&mem->css))
1945 mem = NULL;
e42d9d5d 1946 } else if (PageSwapCache(page)) {
3c776e64 1947 ent.val = page_private(page);
a3b2d692
KH
1948 id = lookup_swap_cgroup(ent);
1949 rcu_read_lock();
1950 mem = mem_cgroup_lookup(id);
1951 if (mem && !css_tryget(&mem->css))
1952 mem = NULL;
1953 rcu_read_unlock();
3c776e64 1954 }
c0bd3f63 1955 unlock_page_cgroup(pc);
b5a84319
KH
1956 return mem;
1957}
1958
7a81b88c 1959/*
a5e924f5 1960 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
1961 * USED state. If already USED, uncharge and return.
1962 */
1963
1964static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1965 struct page_cgroup *pc,
1966 enum charge_type ctype)
1967{
7a81b88c
KH
1968 /* try_charge() can return NULL to *memcg, taking care of it. */
1969 if (!mem)
1970 return;
52d4b9ac
KH
1971
1972 lock_page_cgroup(pc);
1973 if (unlikely(PageCgroupUsed(pc))) {
1974 unlock_page_cgroup(pc);
a3032a2c 1975 mem_cgroup_cancel_charge(mem);
7a81b88c 1976 return;
52d4b9ac 1977 }
4b3bde4c 1978
8a9f3ccd 1979 pc->mem_cgroup = mem;
261fb61a
KH
1980 /*
1981 * We access a page_cgroup asynchronously without lock_page_cgroup().
1982 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1983 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1984 * before USED bit, we need memory barrier here.
1985 * See mem_cgroup_add_lru_list(), etc.
1986 */
08e552c6 1987 smp_wmb();
4b3bde4c
BS
1988 switch (ctype) {
1989 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1990 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1991 SetPageCgroupCache(pc);
1992 SetPageCgroupUsed(pc);
1993 break;
1994 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1995 ClearPageCgroupCache(pc);
1996 SetPageCgroupUsed(pc);
1997 break;
1998 default:
1999 break;
2000 }
3be91277 2001
08e552c6 2002 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 2003
52d4b9ac 2004 unlock_page_cgroup(pc);
430e4863
KH
2005 /*
2006 * "charge_statistics" updated event counter. Then, check it.
2007 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2008 * if they exceeds softlimit.
2009 */
d2265e6f 2010 memcg_check_events(mem, pc->page);
7a81b88c 2011}
66e1707b 2012
f817ed48 2013/**
57f9fd7d 2014 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2015 * @pc: page_cgroup of the page.
2016 * @from: mem_cgroup which the page is moved from.
2017 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2018 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2019 *
2020 * The caller must confirm following.
08e552c6 2021 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2022 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2023 *
854ffa8d
DN
2024 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2025 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2026 * true, this function does "uncharge" from old cgroup, but it doesn't if
2027 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2028 */
2029
57f9fd7d 2030static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2031 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 2032{
f817ed48 2033 VM_BUG_ON(from == to);
08e552c6 2034 VM_BUG_ON(PageLRU(pc->page));
57f9fd7d
DN
2035 VM_BUG_ON(!PageCgroupLocked(pc));
2036 VM_BUG_ON(!PageCgroupUsed(pc));
2037 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2038
8725d541 2039 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2040 /* Update mapped_file data for mem_cgroup */
2041 preempt_disable();
2042 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2043 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2044 preempt_enable();
d69b042f 2045 }
854ffa8d
DN
2046 mem_cgroup_charge_statistics(from, pc, false);
2047 if (uncharge)
2048 /* This is not "cancel", but cancel_charge does all we need. */
2049 mem_cgroup_cancel_charge(from);
d69b042f 2050
854ffa8d 2051 /* caller should have done css_get */
08e552c6
KH
2052 pc->mem_cgroup = to;
2053 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
2054 /*
2055 * We charges against "to" which may not have any tasks. Then, "to"
2056 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2057 * this function is just force_empty() and move charge, so it's
2058 * garanteed that "to" is never removed. So, we don't check rmdir
2059 * status here.
88703267 2060 */
57f9fd7d
DN
2061}
2062
2063/*
2064 * check whether the @pc is valid for moving account and call
2065 * __mem_cgroup_move_account()
2066 */
2067static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2068 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
2069{
2070 int ret = -EINVAL;
2071 lock_page_cgroup(pc);
2072 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
854ffa8d 2073 __mem_cgroup_move_account(pc, from, to, uncharge);
57f9fd7d
DN
2074 ret = 0;
2075 }
2076 unlock_page_cgroup(pc);
d2265e6f
KH
2077 /*
2078 * check events
2079 */
2080 memcg_check_events(to, pc->page);
2081 memcg_check_events(from, pc->page);
f817ed48
KH
2082 return ret;
2083}
2084
2085/*
2086 * move charges to its parent.
2087 */
2088
2089static int mem_cgroup_move_parent(struct page_cgroup *pc,
2090 struct mem_cgroup *child,
2091 gfp_t gfp_mask)
2092{
08e552c6 2093 struct page *page = pc->page;
f817ed48
KH
2094 struct cgroup *cg = child->css.cgroup;
2095 struct cgroup *pcg = cg->parent;
2096 struct mem_cgroup *parent;
f817ed48
KH
2097 int ret;
2098
2099 /* Is ROOT ? */
2100 if (!pcg)
2101 return -EINVAL;
2102
57f9fd7d
DN
2103 ret = -EBUSY;
2104 if (!get_page_unless_zero(page))
2105 goto out;
2106 if (isolate_lru_page(page))
2107 goto put;
08e552c6 2108
f817ed48 2109 parent = mem_cgroup_from_cont(pcg);
430e4863 2110 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 2111 if (ret || !parent)
57f9fd7d 2112 goto put_back;
f817ed48 2113
854ffa8d
DN
2114 ret = mem_cgroup_move_account(pc, child, parent, true);
2115 if (ret)
2116 mem_cgroup_cancel_charge(parent);
57f9fd7d 2117put_back:
08e552c6 2118 putback_lru_page(page);
57f9fd7d 2119put:
40d58138 2120 put_page(page);
57f9fd7d 2121out:
f817ed48
KH
2122 return ret;
2123}
2124
7a81b88c
KH
2125/*
2126 * Charge the memory controller for page usage.
2127 * Return
2128 * 0 if the charge was successful
2129 * < 0 if the cgroup is over its limit
2130 */
2131static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2132 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2133{
73045c47 2134 struct mem_cgroup *mem = NULL;
7a81b88c
KH
2135 struct page_cgroup *pc;
2136 int ret;
2137
2138 pc = lookup_page_cgroup(page);
2139 /* can happen at boot */
2140 if (unlikely(!pc))
2141 return 0;
2142 prefetchw(pc);
2143
430e4863 2144 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 2145 if (ret || !mem)
7a81b88c
KH
2146 return ret;
2147
2148 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 2149 return 0;
8a9f3ccd
BS
2150}
2151
7a81b88c
KH
2152int mem_cgroup_newpage_charge(struct page *page,
2153 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2154{
f8d66542 2155 if (mem_cgroup_disabled())
cede86ac 2156 return 0;
52d4b9ac
KH
2157 if (PageCompound(page))
2158 return 0;
69029cd5
KH
2159 /*
2160 * If already mapped, we don't have to account.
2161 * If page cache, page->mapping has address_space.
2162 * But page->mapping may have out-of-use anon_vma pointer,
2163 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2164 * is NULL.
2165 */
2166 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2167 return 0;
2168 if (unlikely(!mm))
2169 mm = &init_mm;
217bc319 2170 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2171 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2172}
2173
83aae4c7
DN
2174static void
2175__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2176 enum charge_type ctype);
2177
e1a1cd59
BS
2178int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2179 gfp_t gfp_mask)
8697d331 2180{
b5a84319
KH
2181 int ret;
2182
f8d66542 2183 if (mem_cgroup_disabled())
cede86ac 2184 return 0;
52d4b9ac
KH
2185 if (PageCompound(page))
2186 return 0;
accf163e
KH
2187 /*
2188 * Corner case handling. This is called from add_to_page_cache()
2189 * in usual. But some FS (shmem) precharges this page before calling it
2190 * and call add_to_page_cache() with GFP_NOWAIT.
2191 *
2192 * For GFP_NOWAIT case, the page may be pre-charged before calling
2193 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2194 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2195 * And when the page is SwapCache, it should take swap information
2196 * into account. This is under lock_page() now.
accf163e
KH
2197 */
2198 if (!(gfp_mask & __GFP_WAIT)) {
2199 struct page_cgroup *pc;
2200
52d4b9ac
KH
2201 pc = lookup_page_cgroup(page);
2202 if (!pc)
2203 return 0;
2204 lock_page_cgroup(pc);
2205 if (PageCgroupUsed(pc)) {
2206 unlock_page_cgroup(pc);
accf163e
KH
2207 return 0;
2208 }
52d4b9ac 2209 unlock_page_cgroup(pc);
accf163e
KH
2210 }
2211
73045c47 2212 if (unlikely(!mm))
8697d331 2213 mm = &init_mm;
accf163e 2214
c05555b5
KH
2215 if (page_is_file_cache(page))
2216 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2217 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2218
83aae4c7
DN
2219 /* shmem */
2220 if (PageSwapCache(page)) {
73045c47
DN
2221 struct mem_cgroup *mem = NULL;
2222
83aae4c7
DN
2223 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2224 if (!ret)
2225 __mem_cgroup_commit_charge_swapin(page, mem,
2226 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2227 } else
2228 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2229 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2230
b5a84319 2231 return ret;
e8589cc1
KH
2232}
2233
54595fe2
KH
2234/*
2235 * While swap-in, try_charge -> commit or cancel, the page is locked.
2236 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2237 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2238 * "commit()" or removed by "cancel()"
2239 */
8c7c6e34
KH
2240int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2241 struct page *page,
2242 gfp_t mask, struct mem_cgroup **ptr)
2243{
2244 struct mem_cgroup *mem;
54595fe2 2245 int ret;
8c7c6e34 2246
f8d66542 2247 if (mem_cgroup_disabled())
8c7c6e34
KH
2248 return 0;
2249
2250 if (!do_swap_account)
2251 goto charge_cur_mm;
8c7c6e34
KH
2252 /*
2253 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2254 * the pte, and even removed page from swap cache: in those cases
2255 * do_swap_page()'s pte_same() test will fail; but there's also a
2256 * KSM case which does need to charge the page.
8c7c6e34
KH
2257 */
2258 if (!PageSwapCache(page))
407f9c8b 2259 goto charge_cur_mm;
e42d9d5d 2260 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2261 if (!mem)
2262 goto charge_cur_mm;
8c7c6e34 2263 *ptr = mem;
430e4863 2264 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
54595fe2
KH
2265 css_put(&mem->css);
2266 return ret;
8c7c6e34
KH
2267charge_cur_mm:
2268 if (unlikely(!mm))
2269 mm = &init_mm;
430e4863 2270 return __mem_cgroup_try_charge(mm, mask, ptr, true);
8c7c6e34
KH
2271}
2272
83aae4c7
DN
2273static void
2274__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2275 enum charge_type ctype)
7a81b88c
KH
2276{
2277 struct page_cgroup *pc;
2278
f8d66542 2279 if (mem_cgroup_disabled())
7a81b88c
KH
2280 return;
2281 if (!ptr)
2282 return;
88703267 2283 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2284 pc = lookup_page_cgroup(page);
544122e5 2285 mem_cgroup_lru_del_before_commit_swapcache(page);
83aae4c7 2286 __mem_cgroup_commit_charge(ptr, pc, ctype);
544122e5 2287 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2288 /*
2289 * Now swap is on-memory. This means this page may be
2290 * counted both as mem and swap....double count.
03f3c433
KH
2291 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2292 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2293 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2294 */
03f3c433 2295 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2296 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2297 unsigned short id;
8c7c6e34 2298 struct mem_cgroup *memcg;
a3b2d692
KH
2299
2300 id = swap_cgroup_record(ent, 0);
2301 rcu_read_lock();
2302 memcg = mem_cgroup_lookup(id);
8c7c6e34 2303 if (memcg) {
a3b2d692
KH
2304 /*
2305 * This recorded memcg can be obsolete one. So, avoid
2306 * calling css_tryget
2307 */
0c3e73e8 2308 if (!mem_cgroup_is_root(memcg))
4e649152 2309 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2310 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2311 mem_cgroup_put(memcg);
2312 }
a3b2d692 2313 rcu_read_unlock();
8c7c6e34 2314 }
88703267
KH
2315 /*
2316 * At swapin, we may charge account against cgroup which has no tasks.
2317 * So, rmdir()->pre_destroy() can be called while we do this charge.
2318 * In that case, we need to call pre_destroy() again. check it here.
2319 */
2320 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2321}
2322
83aae4c7
DN
2323void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2324{
2325 __mem_cgroup_commit_charge_swapin(page, ptr,
2326 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2327}
2328
7a81b88c
KH
2329void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2330{
f8d66542 2331 if (mem_cgroup_disabled())
7a81b88c
KH
2332 return;
2333 if (!mem)
2334 return;
a3032a2c 2335 mem_cgroup_cancel_charge(mem);
7a81b88c
KH
2336}
2337
569b846d
KH
2338static void
2339__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2340{
2341 struct memcg_batch_info *batch = NULL;
2342 bool uncharge_memsw = true;
2343 /* If swapout, usage of swap doesn't decrease */
2344 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2345 uncharge_memsw = false;
569b846d
KH
2346
2347 batch = &current->memcg_batch;
2348 /*
2349 * In usual, we do css_get() when we remember memcg pointer.
2350 * But in this case, we keep res->usage until end of a series of
2351 * uncharges. Then, it's ok to ignore memcg's refcnt.
2352 */
2353 if (!batch->memcg)
2354 batch->memcg = mem;
3c11ecf4
KH
2355 /*
2356 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2357 * In those cases, all pages freed continously can be expected to be in
2358 * the same cgroup and we have chance to coalesce uncharges.
2359 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2360 * because we want to do uncharge as soon as possible.
2361 */
2362
2363 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2364 goto direct_uncharge;
2365
569b846d
KH
2366 /*
2367 * In typical case, batch->memcg == mem. This means we can
2368 * merge a series of uncharges to an uncharge of res_counter.
2369 * If not, we uncharge res_counter ony by one.
2370 */
2371 if (batch->memcg != mem)
2372 goto direct_uncharge;
2373 /* remember freed charge and uncharge it later */
2374 batch->bytes += PAGE_SIZE;
2375 if (uncharge_memsw)
2376 batch->memsw_bytes += PAGE_SIZE;
2377 return;
2378direct_uncharge:
2379 res_counter_uncharge(&mem->res, PAGE_SIZE);
2380 if (uncharge_memsw)
2381 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
3c11ecf4
KH
2382 if (unlikely(batch->memcg != mem))
2383 memcg_oom_recover(mem);
569b846d
KH
2384 return;
2385}
7a81b88c 2386
8a9f3ccd 2387/*
69029cd5 2388 * uncharge if !page_mapped(page)
8a9f3ccd 2389 */
8c7c6e34 2390static struct mem_cgroup *
69029cd5 2391__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2392{
8289546e 2393 struct page_cgroup *pc;
8c7c6e34 2394 struct mem_cgroup *mem = NULL;
8a9f3ccd 2395
f8d66542 2396 if (mem_cgroup_disabled())
8c7c6e34 2397 return NULL;
4077960e 2398
d13d1443 2399 if (PageSwapCache(page))
8c7c6e34 2400 return NULL;
d13d1443 2401
8697d331 2402 /*
3c541e14 2403 * Check if our page_cgroup is valid
8697d331 2404 */
52d4b9ac
KH
2405 pc = lookup_page_cgroup(page);
2406 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2407 return NULL;
b9c565d5 2408
52d4b9ac 2409 lock_page_cgroup(pc);
d13d1443 2410
8c7c6e34
KH
2411 mem = pc->mem_cgroup;
2412
d13d1443
KH
2413 if (!PageCgroupUsed(pc))
2414 goto unlock_out;
2415
2416 switch (ctype) {
2417 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2418 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2419 /* See mem_cgroup_prepare_migration() */
2420 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2421 goto unlock_out;
2422 break;
2423 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2424 if (!PageAnon(page)) { /* Shared memory */
2425 if (page->mapping && !page_is_file_cache(page))
2426 goto unlock_out;
2427 } else if (page_mapped(page)) /* Anon */
2428 goto unlock_out;
2429 break;
2430 default:
2431 break;
52d4b9ac 2432 }
d13d1443 2433
08e552c6 2434 mem_cgroup_charge_statistics(mem, pc, false);
04046e1a 2435
52d4b9ac 2436 ClearPageCgroupUsed(pc);
544122e5
KH
2437 /*
2438 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2439 * freed from LRU. This is safe because uncharged page is expected not
2440 * to be reused (freed soon). Exception is SwapCache, it's handled by
2441 * special functions.
2442 */
b9c565d5 2443
52d4b9ac 2444 unlock_page_cgroup(pc);
f75ca962
KH
2445 /*
2446 * even after unlock, we have mem->res.usage here and this memcg
2447 * will never be freed.
2448 */
d2265e6f 2449 memcg_check_events(mem, page);
f75ca962
KH
2450 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2451 mem_cgroup_swap_statistics(mem, true);
2452 mem_cgroup_get(mem);
2453 }
2454 if (!mem_cgroup_is_root(mem))
2455 __do_uncharge(mem, ctype);
6d12e2d8 2456
8c7c6e34 2457 return mem;
d13d1443
KH
2458
2459unlock_out:
2460 unlock_page_cgroup(pc);
8c7c6e34 2461 return NULL;
3c541e14
BS
2462}
2463
69029cd5
KH
2464void mem_cgroup_uncharge_page(struct page *page)
2465{
52d4b9ac
KH
2466 /* early check. */
2467 if (page_mapped(page))
2468 return;
2469 if (page->mapping && !PageAnon(page))
2470 return;
69029cd5
KH
2471 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2472}
2473
2474void mem_cgroup_uncharge_cache_page(struct page *page)
2475{
2476 VM_BUG_ON(page_mapped(page));
b7abea96 2477 VM_BUG_ON(page->mapping);
69029cd5
KH
2478 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2479}
2480
569b846d
KH
2481/*
2482 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2483 * In that cases, pages are freed continuously and we can expect pages
2484 * are in the same memcg. All these calls itself limits the number of
2485 * pages freed at once, then uncharge_start/end() is called properly.
2486 * This may be called prural(2) times in a context,
2487 */
2488
2489void mem_cgroup_uncharge_start(void)
2490{
2491 current->memcg_batch.do_batch++;
2492 /* We can do nest. */
2493 if (current->memcg_batch.do_batch == 1) {
2494 current->memcg_batch.memcg = NULL;
2495 current->memcg_batch.bytes = 0;
2496 current->memcg_batch.memsw_bytes = 0;
2497 }
2498}
2499
2500void mem_cgroup_uncharge_end(void)
2501{
2502 struct memcg_batch_info *batch = &current->memcg_batch;
2503
2504 if (!batch->do_batch)
2505 return;
2506
2507 batch->do_batch--;
2508 if (batch->do_batch) /* If stacked, do nothing. */
2509 return;
2510
2511 if (!batch->memcg)
2512 return;
2513 /*
2514 * This "batch->memcg" is valid without any css_get/put etc...
2515 * bacause we hide charges behind us.
2516 */
2517 if (batch->bytes)
2518 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2519 if (batch->memsw_bytes)
2520 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2521 memcg_oom_recover(batch->memcg);
569b846d
KH
2522 /* forget this pointer (for sanity check) */
2523 batch->memcg = NULL;
2524}
2525
e767e056 2526#ifdef CONFIG_SWAP
8c7c6e34 2527/*
e767e056 2528 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2529 * memcg information is recorded to swap_cgroup of "ent"
2530 */
8a9478ca
KH
2531void
2532mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2533{
2534 struct mem_cgroup *memcg;
8a9478ca
KH
2535 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2536
2537 if (!swapout) /* this was a swap cache but the swap is unused ! */
2538 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2539
2540 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2541
f75ca962
KH
2542 /*
2543 * record memcg information, if swapout && memcg != NULL,
2544 * mem_cgroup_get() was called in uncharge().
2545 */
2546 if (do_swap_account && swapout && memcg)
a3b2d692 2547 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2548}
e767e056 2549#endif
8c7c6e34
KH
2550
2551#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2552/*
2553 * called from swap_entry_free(). remove record in swap_cgroup and
2554 * uncharge "memsw" account.
2555 */
2556void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2557{
8c7c6e34 2558 struct mem_cgroup *memcg;
a3b2d692 2559 unsigned short id;
8c7c6e34
KH
2560
2561 if (!do_swap_account)
2562 return;
2563
a3b2d692
KH
2564 id = swap_cgroup_record(ent, 0);
2565 rcu_read_lock();
2566 memcg = mem_cgroup_lookup(id);
8c7c6e34 2567 if (memcg) {
a3b2d692
KH
2568 /*
2569 * We uncharge this because swap is freed.
2570 * This memcg can be obsolete one. We avoid calling css_tryget
2571 */
0c3e73e8 2572 if (!mem_cgroup_is_root(memcg))
4e649152 2573 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2574 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2575 mem_cgroup_put(memcg);
2576 }
a3b2d692 2577 rcu_read_unlock();
d13d1443 2578}
02491447
DN
2579
2580/**
2581 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2582 * @entry: swap entry to be moved
2583 * @from: mem_cgroup which the entry is moved from
2584 * @to: mem_cgroup which the entry is moved to
483c30b5 2585 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2586 *
2587 * It succeeds only when the swap_cgroup's record for this entry is the same
2588 * as the mem_cgroup's id of @from.
2589 *
2590 * Returns 0 on success, -EINVAL on failure.
2591 *
2592 * The caller must have charged to @to, IOW, called res_counter_charge() about
2593 * both res and memsw, and called css_get().
2594 */
2595static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2596 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2597{
2598 unsigned short old_id, new_id;
2599
2600 old_id = css_id(&from->css);
2601 new_id = css_id(&to->css);
2602
2603 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2604 mem_cgroup_swap_statistics(from, false);
483c30b5 2605 mem_cgroup_swap_statistics(to, true);
02491447 2606 /*
483c30b5
DN
2607 * This function is only called from task migration context now.
2608 * It postpones res_counter and refcount handling till the end
2609 * of task migration(mem_cgroup_clear_mc()) for performance
2610 * improvement. But we cannot postpone mem_cgroup_get(to)
2611 * because if the process that has been moved to @to does
2612 * swap-in, the refcount of @to might be decreased to 0.
02491447 2613 */
02491447 2614 mem_cgroup_get(to);
483c30b5
DN
2615 if (need_fixup) {
2616 if (!mem_cgroup_is_root(from))
2617 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2618 mem_cgroup_put(from);
2619 /*
2620 * we charged both to->res and to->memsw, so we should
2621 * uncharge to->res.
2622 */
2623 if (!mem_cgroup_is_root(to))
2624 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2625 }
02491447
DN
2626 return 0;
2627 }
2628 return -EINVAL;
2629}
2630#else
2631static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2632 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2633{
2634 return -EINVAL;
2635}
8c7c6e34 2636#endif
d13d1443 2637
ae41be37 2638/*
01b1ae63
KH
2639 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2640 * page belongs to.
ae41be37 2641 */
ac39cf8c 2642int mem_cgroup_prepare_migration(struct page *page,
2643 struct page *newpage, struct mem_cgroup **ptr)
ae41be37
KH
2644{
2645 struct page_cgroup *pc;
e8589cc1 2646 struct mem_cgroup *mem = NULL;
ac39cf8c 2647 enum charge_type ctype;
e8589cc1 2648 int ret = 0;
8869b8f6 2649
f8d66542 2650 if (mem_cgroup_disabled())
4077960e
BS
2651 return 0;
2652
52d4b9ac
KH
2653 pc = lookup_page_cgroup(page);
2654 lock_page_cgroup(pc);
2655 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2656 mem = pc->mem_cgroup;
2657 css_get(&mem->css);
ac39cf8c 2658 /*
2659 * At migrating an anonymous page, its mapcount goes down
2660 * to 0 and uncharge() will be called. But, even if it's fully
2661 * unmapped, migration may fail and this page has to be
2662 * charged again. We set MIGRATION flag here and delay uncharge
2663 * until end_migration() is called
2664 *
2665 * Corner Case Thinking
2666 * A)
2667 * When the old page was mapped as Anon and it's unmap-and-freed
2668 * while migration was ongoing.
2669 * If unmap finds the old page, uncharge() of it will be delayed
2670 * until end_migration(). If unmap finds a new page, it's
2671 * uncharged when it make mapcount to be 1->0. If unmap code
2672 * finds swap_migration_entry, the new page will not be mapped
2673 * and end_migration() will find it(mapcount==0).
2674 *
2675 * B)
2676 * When the old page was mapped but migraion fails, the kernel
2677 * remaps it. A charge for it is kept by MIGRATION flag even
2678 * if mapcount goes down to 0. We can do remap successfully
2679 * without charging it again.
2680 *
2681 * C)
2682 * The "old" page is under lock_page() until the end of
2683 * migration, so, the old page itself will not be swapped-out.
2684 * If the new page is swapped out before end_migraton, our
2685 * hook to usual swap-out path will catch the event.
2686 */
2687 if (PageAnon(page))
2688 SetPageCgroupMigration(pc);
e8589cc1 2689 }
52d4b9ac 2690 unlock_page_cgroup(pc);
ac39cf8c 2691 /*
2692 * If the page is not charged at this point,
2693 * we return here.
2694 */
2695 if (!mem)
2696 return 0;
01b1ae63 2697
93d5c9be 2698 *ptr = mem;
ac39cf8c 2699 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2700 css_put(&mem->css);/* drop extra refcnt */
2701 if (ret || *ptr == NULL) {
2702 if (PageAnon(page)) {
2703 lock_page_cgroup(pc);
2704 ClearPageCgroupMigration(pc);
2705 unlock_page_cgroup(pc);
2706 /*
2707 * The old page may be fully unmapped while we kept it.
2708 */
2709 mem_cgroup_uncharge_page(page);
2710 }
2711 return -ENOMEM;
e8589cc1 2712 }
ac39cf8c 2713 /*
2714 * We charge new page before it's used/mapped. So, even if unlock_page()
2715 * is called before end_migration, we can catch all events on this new
2716 * page. In the case new page is migrated but not remapped, new page's
2717 * mapcount will be finally 0 and we call uncharge in end_migration().
2718 */
2719 pc = lookup_page_cgroup(newpage);
2720 if (PageAnon(page))
2721 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2722 else if (page_is_file_cache(page))
2723 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2724 else
2725 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2726 __mem_cgroup_commit_charge(mem, pc, ctype);
e8589cc1 2727 return ret;
ae41be37 2728}
8869b8f6 2729
69029cd5 2730/* remove redundant charge if migration failed*/
01b1ae63 2731void mem_cgroup_end_migration(struct mem_cgroup *mem,
ac39cf8c 2732 struct page *oldpage, struct page *newpage)
ae41be37 2733{
ac39cf8c 2734 struct page *used, *unused;
01b1ae63 2735 struct page_cgroup *pc;
01b1ae63
KH
2736
2737 if (!mem)
2738 return;
ac39cf8c 2739 /* blocks rmdir() */
88703267 2740 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2741 /* at migration success, oldpage->mapping is NULL. */
2742 if (oldpage->mapping) {
ac39cf8c 2743 used = oldpage;
2744 unused = newpage;
01b1ae63 2745 } else {
ac39cf8c 2746 used = newpage;
01b1ae63
KH
2747 unused = oldpage;
2748 }
69029cd5 2749 /*
ac39cf8c 2750 * We disallowed uncharge of pages under migration because mapcount
2751 * of the page goes down to zero, temporarly.
2752 * Clear the flag and check the page should be charged.
01b1ae63 2753 */
ac39cf8c 2754 pc = lookup_page_cgroup(oldpage);
2755 lock_page_cgroup(pc);
2756 ClearPageCgroupMigration(pc);
2757 unlock_page_cgroup(pc);
01b1ae63 2758
ac39cf8c 2759 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2760
01b1ae63 2761 /*
ac39cf8c 2762 * If a page is a file cache, radix-tree replacement is very atomic
2763 * and we can skip this check. When it was an Anon page, its mapcount
2764 * goes down to 0. But because we added MIGRATION flage, it's not
2765 * uncharged yet. There are several case but page->mapcount check
2766 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2767 * check. (see prepare_charge() also)
69029cd5 2768 */
ac39cf8c 2769 if (PageAnon(used))
2770 mem_cgroup_uncharge_page(used);
88703267 2771 /*
ac39cf8c 2772 * At migration, we may charge account against cgroup which has no
2773 * tasks.
88703267
KH
2774 * So, rmdir()->pre_destroy() can be called while we do this charge.
2775 * In that case, we need to call pre_destroy() again. check it here.
2776 */
2777 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2778}
78fb7466 2779
c9b0ed51 2780/*
ae3abae6
DN
2781 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2782 * Calling hierarchical_reclaim is not enough because we should update
2783 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2784 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2785 * not from the memcg which this page would be charged to.
2786 * try_charge_swapin does all of these works properly.
c9b0ed51 2787 */
ae3abae6 2788int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2789 struct mm_struct *mm,
2790 gfp_t gfp_mask)
c9b0ed51 2791{
b5a84319 2792 struct mem_cgroup *mem = NULL;
ae3abae6 2793 int ret;
c9b0ed51 2794
f8d66542 2795 if (mem_cgroup_disabled())
cede86ac 2796 return 0;
c9b0ed51 2797
ae3abae6
DN
2798 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2799 if (!ret)
2800 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2801
ae3abae6 2802 return ret;
c9b0ed51
KH
2803}
2804
8c7c6e34
KH
2805static DEFINE_MUTEX(set_limit_mutex);
2806
d38d2a75 2807static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2808 unsigned long long val)
628f4235 2809{
81d39c20 2810 int retry_count;
3c11ecf4 2811 u64 memswlimit, memlimit;
628f4235 2812 int ret = 0;
81d39c20
KH
2813 int children = mem_cgroup_count_children(memcg);
2814 u64 curusage, oldusage;
3c11ecf4 2815 int enlarge;
81d39c20
KH
2816
2817 /*
2818 * For keeping hierarchical_reclaim simple, how long we should retry
2819 * is depends on callers. We set our retry-count to be function
2820 * of # of children which we should visit in this loop.
2821 */
2822 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2823
2824 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2825
3c11ecf4 2826 enlarge = 0;
8c7c6e34 2827 while (retry_count) {
628f4235
KH
2828 if (signal_pending(current)) {
2829 ret = -EINTR;
2830 break;
2831 }
8c7c6e34
KH
2832 /*
2833 * Rather than hide all in some function, I do this in
2834 * open coded manner. You see what this really does.
2835 * We have to guarantee mem->res.limit < mem->memsw.limit.
2836 */
2837 mutex_lock(&set_limit_mutex);
2838 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2839 if (memswlimit < val) {
2840 ret = -EINVAL;
2841 mutex_unlock(&set_limit_mutex);
628f4235
KH
2842 break;
2843 }
3c11ecf4
KH
2844
2845 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2846 if (memlimit < val)
2847 enlarge = 1;
2848
8c7c6e34 2849 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
2850 if (!ret) {
2851 if (memswlimit == val)
2852 memcg->memsw_is_minimum = true;
2853 else
2854 memcg->memsw_is_minimum = false;
2855 }
8c7c6e34
KH
2856 mutex_unlock(&set_limit_mutex);
2857
2858 if (!ret)
2859 break;
2860
aa20d489 2861 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 2862 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
2863 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2864 /* Usage is reduced ? */
2865 if (curusage >= oldusage)
2866 retry_count--;
2867 else
2868 oldusage = curusage;
8c7c6e34 2869 }
3c11ecf4
KH
2870 if (!ret && enlarge)
2871 memcg_oom_recover(memcg);
14797e23 2872
8c7c6e34
KH
2873 return ret;
2874}
2875
338c8431
LZ
2876static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2877 unsigned long long val)
8c7c6e34 2878{
81d39c20 2879 int retry_count;
3c11ecf4 2880 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
2881 int children = mem_cgroup_count_children(memcg);
2882 int ret = -EBUSY;
3c11ecf4 2883 int enlarge = 0;
8c7c6e34 2884
81d39c20
KH
2885 /* see mem_cgroup_resize_res_limit */
2886 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2887 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
2888 while (retry_count) {
2889 if (signal_pending(current)) {
2890 ret = -EINTR;
2891 break;
2892 }
2893 /*
2894 * Rather than hide all in some function, I do this in
2895 * open coded manner. You see what this really does.
2896 * We have to guarantee mem->res.limit < mem->memsw.limit.
2897 */
2898 mutex_lock(&set_limit_mutex);
2899 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2900 if (memlimit > val) {
2901 ret = -EINVAL;
2902 mutex_unlock(&set_limit_mutex);
2903 break;
2904 }
3c11ecf4
KH
2905 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2906 if (memswlimit < val)
2907 enlarge = 1;
8c7c6e34 2908 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
2909 if (!ret) {
2910 if (memlimit == val)
2911 memcg->memsw_is_minimum = true;
2912 else
2913 memcg->memsw_is_minimum = false;
2914 }
8c7c6e34
KH
2915 mutex_unlock(&set_limit_mutex);
2916
2917 if (!ret)
2918 break;
2919
4e416953 2920 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
2921 MEM_CGROUP_RECLAIM_NOSWAP |
2922 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 2923 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 2924 /* Usage is reduced ? */
8c7c6e34 2925 if (curusage >= oldusage)
628f4235 2926 retry_count--;
81d39c20
KH
2927 else
2928 oldusage = curusage;
628f4235 2929 }
3c11ecf4
KH
2930 if (!ret && enlarge)
2931 memcg_oom_recover(memcg);
628f4235
KH
2932 return ret;
2933}
2934
4e416953 2935unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 2936 gfp_t gfp_mask)
4e416953
BS
2937{
2938 unsigned long nr_reclaimed = 0;
2939 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2940 unsigned long reclaimed;
2941 int loop = 0;
2942 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 2943 unsigned long long excess;
4e416953
BS
2944
2945 if (order > 0)
2946 return 0;
2947
00918b6a 2948 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
2949 /*
2950 * This loop can run a while, specially if mem_cgroup's continuously
2951 * keep exceeding their soft limit and putting the system under
2952 * pressure
2953 */
2954 do {
2955 if (next_mz)
2956 mz = next_mz;
2957 else
2958 mz = mem_cgroup_largest_soft_limit_node(mctz);
2959 if (!mz)
2960 break;
2961
2962 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2963 gfp_mask,
2964 MEM_CGROUP_RECLAIM_SOFT);
2965 nr_reclaimed += reclaimed;
2966 spin_lock(&mctz->lock);
2967
2968 /*
2969 * If we failed to reclaim anything from this memory cgroup
2970 * it is time to move on to the next cgroup
2971 */
2972 next_mz = NULL;
2973 if (!reclaimed) {
2974 do {
2975 /*
2976 * Loop until we find yet another one.
2977 *
2978 * By the time we get the soft_limit lock
2979 * again, someone might have aded the
2980 * group back on the RB tree. Iterate to
2981 * make sure we get a different mem.
2982 * mem_cgroup_largest_soft_limit_node returns
2983 * NULL if no other cgroup is present on
2984 * the tree
2985 */
2986 next_mz =
2987 __mem_cgroup_largest_soft_limit_node(mctz);
2988 if (next_mz == mz) {
2989 css_put(&next_mz->mem->css);
2990 next_mz = NULL;
2991 } else /* next_mz == NULL or other memcg */
2992 break;
2993 } while (1);
2994 }
4e416953 2995 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 2996 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
2997 /*
2998 * One school of thought says that we should not add
2999 * back the node to the tree if reclaim returns 0.
3000 * But our reclaim could return 0, simply because due
3001 * to priority we are exposing a smaller subset of
3002 * memory to reclaim from. Consider this as a longer
3003 * term TODO.
3004 */
ef8745c1
KH
3005 /* If excess == 0, no tree ops */
3006 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3007 spin_unlock(&mctz->lock);
3008 css_put(&mz->mem->css);
3009 loop++;
3010 /*
3011 * Could not reclaim anything and there are no more
3012 * mem cgroups to try or we seem to be looping without
3013 * reclaiming anything.
3014 */
3015 if (!nr_reclaimed &&
3016 (next_mz == NULL ||
3017 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3018 break;
3019 } while (!nr_reclaimed);
3020 if (next_mz)
3021 css_put(&next_mz->mem->css);
3022 return nr_reclaimed;
3023}
3024
cc847582
KH
3025/*
3026 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3027 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3028 */
f817ed48 3029static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3030 int node, int zid, enum lru_list lru)
cc847582 3031{
08e552c6
KH
3032 struct zone *zone;
3033 struct mem_cgroup_per_zone *mz;
f817ed48 3034 struct page_cgroup *pc, *busy;
08e552c6 3035 unsigned long flags, loop;
072c56c1 3036 struct list_head *list;
f817ed48 3037 int ret = 0;
072c56c1 3038
08e552c6
KH
3039 zone = &NODE_DATA(node)->node_zones[zid];
3040 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3041 list = &mz->lists[lru];
cc847582 3042
f817ed48
KH
3043 loop = MEM_CGROUP_ZSTAT(mz, lru);
3044 /* give some margin against EBUSY etc...*/
3045 loop += 256;
3046 busy = NULL;
3047 while (loop--) {
3048 ret = 0;
08e552c6 3049 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3050 if (list_empty(list)) {
08e552c6 3051 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3052 break;
f817ed48
KH
3053 }
3054 pc = list_entry(list->prev, struct page_cgroup, lru);
3055 if (busy == pc) {
3056 list_move(&pc->lru, list);
648bcc77 3057 busy = NULL;
08e552c6 3058 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3059 continue;
3060 }
08e552c6 3061 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3062
2c26fdd7 3063 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3064 if (ret == -ENOMEM)
52d4b9ac 3065 break;
f817ed48
KH
3066
3067 if (ret == -EBUSY || ret == -EINVAL) {
3068 /* found lock contention or "pc" is obsolete. */
3069 busy = pc;
3070 cond_resched();
3071 } else
3072 busy = NULL;
cc847582 3073 }
08e552c6 3074
f817ed48
KH
3075 if (!ret && !list_empty(list))
3076 return -EBUSY;
3077 return ret;
cc847582
KH
3078}
3079
3080/*
3081 * make mem_cgroup's charge to be 0 if there is no task.
3082 * This enables deleting this mem_cgroup.
3083 */
c1e862c1 3084static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3085{
f817ed48
KH
3086 int ret;
3087 int node, zid, shrink;
3088 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3089 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3090
cc847582 3091 css_get(&mem->css);
f817ed48
KH
3092
3093 shrink = 0;
c1e862c1
KH
3094 /* should free all ? */
3095 if (free_all)
3096 goto try_to_free;
f817ed48 3097move_account:
fce66477 3098 do {
f817ed48 3099 ret = -EBUSY;
c1e862c1
KH
3100 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3101 goto out;
3102 ret = -EINTR;
3103 if (signal_pending(current))
cc847582 3104 goto out;
52d4b9ac
KH
3105 /* This is for making all *used* pages to be on LRU. */
3106 lru_add_drain_all();
cdec2e42 3107 drain_all_stock_sync();
f817ed48 3108 ret = 0;
32047e2a 3109 mem_cgroup_start_move(mem);
299b4eaa 3110 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3111 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3112 enum lru_list l;
f817ed48
KH
3113 for_each_lru(l) {
3114 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3115 node, zid, l);
f817ed48
KH
3116 if (ret)
3117 break;
3118 }
1ecaab2b 3119 }
f817ed48
KH
3120 if (ret)
3121 break;
3122 }
32047e2a 3123 mem_cgroup_end_move(mem);
3c11ecf4 3124 memcg_oom_recover(mem);
f817ed48
KH
3125 /* it seems parent cgroup doesn't have enough mem */
3126 if (ret == -ENOMEM)
3127 goto try_to_free;
52d4b9ac 3128 cond_resched();
fce66477
DN
3129 /* "ret" should also be checked to ensure all lists are empty. */
3130 } while (mem->res.usage > 0 || ret);
cc847582
KH
3131out:
3132 css_put(&mem->css);
3133 return ret;
f817ed48
KH
3134
3135try_to_free:
c1e862c1
KH
3136 /* returns EBUSY if there is a task or if we come here twice. */
3137 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3138 ret = -EBUSY;
3139 goto out;
3140 }
c1e862c1
KH
3141 /* we call try-to-free pages for make this cgroup empty */
3142 lru_add_drain_all();
f817ed48
KH
3143 /* try to free all pages in this cgroup */
3144 shrink = 1;
3145 while (nr_retries && mem->res.usage > 0) {
3146 int progress;
c1e862c1
KH
3147
3148 if (signal_pending(current)) {
3149 ret = -EINTR;
3150 goto out;
3151 }
a7885eb8
KM
3152 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3153 false, get_swappiness(mem));
c1e862c1 3154 if (!progress) {
f817ed48 3155 nr_retries--;
c1e862c1 3156 /* maybe some writeback is necessary */
8aa7e847 3157 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3158 }
f817ed48
KH
3159
3160 }
08e552c6 3161 lru_add_drain();
f817ed48 3162 /* try move_account...there may be some *locked* pages. */
fce66477 3163 goto move_account;
cc847582
KH
3164}
3165
c1e862c1
KH
3166int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3167{
3168 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3169}
3170
3171
18f59ea7
BS
3172static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3173{
3174 return mem_cgroup_from_cont(cont)->use_hierarchy;
3175}
3176
3177static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3178 u64 val)
3179{
3180 int retval = 0;
3181 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3182 struct cgroup *parent = cont->parent;
3183 struct mem_cgroup *parent_mem = NULL;
3184
3185 if (parent)
3186 parent_mem = mem_cgroup_from_cont(parent);
3187
3188 cgroup_lock();
3189 /*
af901ca1 3190 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3191 * in the child subtrees. If it is unset, then the change can
3192 * occur, provided the current cgroup has no children.
3193 *
3194 * For the root cgroup, parent_mem is NULL, we allow value to be
3195 * set if there are no children.
3196 */
3197 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3198 (val == 1 || val == 0)) {
3199 if (list_empty(&cont->children))
3200 mem->use_hierarchy = val;
3201 else
3202 retval = -EBUSY;
3203 } else
3204 retval = -EINVAL;
3205 cgroup_unlock();
3206
3207 return retval;
3208}
3209
0c3e73e8
BS
3210struct mem_cgroup_idx_data {
3211 s64 val;
3212 enum mem_cgroup_stat_index idx;
3213};
3214
3215static int
3216mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3217{
3218 struct mem_cgroup_idx_data *d = data;
c62b1a3b 3219 d->val += mem_cgroup_read_stat(mem, d->idx);
0c3e73e8
BS
3220 return 0;
3221}
3222
3223static void
3224mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3225 enum mem_cgroup_stat_index idx, s64 *val)
3226{
3227 struct mem_cgroup_idx_data d;
3228 d.idx = idx;
3229 d.val = 0;
3230 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3231 *val = d.val;
3232}
3233
104f3928
KS
3234static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3235{
3236 u64 idx_val, val;
3237
3238 if (!mem_cgroup_is_root(mem)) {
3239 if (!swap)
3240 return res_counter_read_u64(&mem->res, RES_USAGE);
3241 else
3242 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3243 }
3244
3245 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3246 val = idx_val;
3247 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3248 val += idx_val;
3249
3250 if (swap) {
3251 mem_cgroup_get_recursive_idx_stat(mem,
3252 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3253 val += idx_val;
3254 }
3255
3256 return val << PAGE_SHIFT;
3257}
3258
2c3daa72 3259static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3260{
8c7c6e34 3261 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3262 u64 val;
8c7c6e34
KH
3263 int type, name;
3264
3265 type = MEMFILE_TYPE(cft->private);
3266 name = MEMFILE_ATTR(cft->private);
3267 switch (type) {
3268 case _MEM:
104f3928
KS
3269 if (name == RES_USAGE)
3270 val = mem_cgroup_usage(mem, false);
3271 else
0c3e73e8 3272 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3273 break;
3274 case _MEMSWAP:
104f3928
KS
3275 if (name == RES_USAGE)
3276 val = mem_cgroup_usage(mem, true);
3277 else
0c3e73e8 3278 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3279 break;
3280 default:
3281 BUG();
3282 break;
3283 }
3284 return val;
8cdea7c0 3285}
628f4235
KH
3286/*
3287 * The user of this function is...
3288 * RES_LIMIT.
3289 */
856c13aa
PM
3290static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3291 const char *buffer)
8cdea7c0 3292{
628f4235 3293 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3294 int type, name;
628f4235
KH
3295 unsigned long long val;
3296 int ret;
3297
8c7c6e34
KH
3298 type = MEMFILE_TYPE(cft->private);
3299 name = MEMFILE_ATTR(cft->private);
3300 switch (name) {
628f4235 3301 case RES_LIMIT:
4b3bde4c
BS
3302 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3303 ret = -EINVAL;
3304 break;
3305 }
628f4235
KH
3306 /* This function does all necessary parse...reuse it */
3307 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3308 if (ret)
3309 break;
3310 if (type == _MEM)
628f4235 3311 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3312 else
3313 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3314 break;
296c81d8
BS
3315 case RES_SOFT_LIMIT:
3316 ret = res_counter_memparse_write_strategy(buffer, &val);
3317 if (ret)
3318 break;
3319 /*
3320 * For memsw, soft limits are hard to implement in terms
3321 * of semantics, for now, we support soft limits for
3322 * control without swap
3323 */
3324 if (type == _MEM)
3325 ret = res_counter_set_soft_limit(&memcg->res, val);
3326 else
3327 ret = -EINVAL;
3328 break;
628f4235
KH
3329 default:
3330 ret = -EINVAL; /* should be BUG() ? */
3331 break;
3332 }
3333 return ret;
8cdea7c0
BS
3334}
3335
fee7b548
KH
3336static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3337 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3338{
3339 struct cgroup *cgroup;
3340 unsigned long long min_limit, min_memsw_limit, tmp;
3341
3342 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3343 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3344 cgroup = memcg->css.cgroup;
3345 if (!memcg->use_hierarchy)
3346 goto out;
3347
3348 while (cgroup->parent) {
3349 cgroup = cgroup->parent;
3350 memcg = mem_cgroup_from_cont(cgroup);
3351 if (!memcg->use_hierarchy)
3352 break;
3353 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3354 min_limit = min(min_limit, tmp);
3355 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3356 min_memsw_limit = min(min_memsw_limit, tmp);
3357 }
3358out:
3359 *mem_limit = min_limit;
3360 *memsw_limit = min_memsw_limit;
3361 return;
3362}
3363
29f2a4da 3364static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3365{
3366 struct mem_cgroup *mem;
8c7c6e34 3367 int type, name;
c84872e1
PE
3368
3369 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3370 type = MEMFILE_TYPE(event);
3371 name = MEMFILE_ATTR(event);
3372 switch (name) {
29f2a4da 3373 case RES_MAX_USAGE:
8c7c6e34
KH
3374 if (type == _MEM)
3375 res_counter_reset_max(&mem->res);
3376 else
3377 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3378 break;
3379 case RES_FAILCNT:
8c7c6e34
KH
3380 if (type == _MEM)
3381 res_counter_reset_failcnt(&mem->res);
3382 else
3383 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3384 break;
3385 }
f64c3f54 3386
85cc59db 3387 return 0;
c84872e1
PE
3388}
3389
7dc74be0
DN
3390static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3391 struct cftype *cft)
3392{
3393 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3394}
3395
02491447 3396#ifdef CONFIG_MMU
7dc74be0
DN
3397static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3398 struct cftype *cft, u64 val)
3399{
3400 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3401
3402 if (val >= (1 << NR_MOVE_TYPE))
3403 return -EINVAL;
3404 /*
3405 * We check this value several times in both in can_attach() and
3406 * attach(), so we need cgroup lock to prevent this value from being
3407 * inconsistent.
3408 */
3409 cgroup_lock();
3410 mem->move_charge_at_immigrate = val;
3411 cgroup_unlock();
3412
3413 return 0;
3414}
02491447
DN
3415#else
3416static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3417 struct cftype *cft, u64 val)
3418{
3419 return -ENOSYS;
3420}
3421#endif
7dc74be0 3422
14067bb3
KH
3423
3424/* For read statistics */
3425enum {
3426 MCS_CACHE,
3427 MCS_RSS,
d8046582 3428 MCS_FILE_MAPPED,
14067bb3
KH
3429 MCS_PGPGIN,
3430 MCS_PGPGOUT,
1dd3a273 3431 MCS_SWAP,
14067bb3
KH
3432 MCS_INACTIVE_ANON,
3433 MCS_ACTIVE_ANON,
3434 MCS_INACTIVE_FILE,
3435 MCS_ACTIVE_FILE,
3436 MCS_UNEVICTABLE,
3437 NR_MCS_STAT,
3438};
3439
3440struct mcs_total_stat {
3441 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3442};
3443
14067bb3
KH
3444struct {
3445 char *local_name;
3446 char *total_name;
3447} memcg_stat_strings[NR_MCS_STAT] = {
3448 {"cache", "total_cache"},
3449 {"rss", "total_rss"},
d69b042f 3450 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3451 {"pgpgin", "total_pgpgin"},
3452 {"pgpgout", "total_pgpgout"},
1dd3a273 3453 {"swap", "total_swap"},
14067bb3
KH
3454 {"inactive_anon", "total_inactive_anon"},
3455 {"active_anon", "total_active_anon"},
3456 {"inactive_file", "total_inactive_file"},
3457 {"active_file", "total_active_file"},
3458 {"unevictable", "total_unevictable"}
3459};
3460
3461
3462static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3463{
3464 struct mcs_total_stat *s = data;
3465 s64 val;
3466
3467 /* per cpu stat */
c62b1a3b 3468 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3469 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3470 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3471 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3472 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3473 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3474 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3475 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3476 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3477 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3478 if (do_swap_account) {
c62b1a3b 3479 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3480 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3481 }
14067bb3
KH
3482
3483 /* per zone stat */
3484 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3485 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3486 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3487 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3488 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3489 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3490 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3491 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3492 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3493 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3494 return 0;
3495}
3496
3497static void
3498mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3499{
3500 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3501}
3502
c64745cf
PM
3503static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3504 struct cgroup_map_cb *cb)
d2ceb9b7 3505{
d2ceb9b7 3506 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3507 struct mcs_total_stat mystat;
d2ceb9b7
KH
3508 int i;
3509
14067bb3
KH
3510 memset(&mystat, 0, sizeof(mystat));
3511 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3512
1dd3a273
DN
3513 for (i = 0; i < NR_MCS_STAT; i++) {
3514 if (i == MCS_SWAP && !do_swap_account)
3515 continue;
14067bb3 3516 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3517 }
7b854121 3518
14067bb3 3519 /* Hierarchical information */
fee7b548
KH
3520 {
3521 unsigned long long limit, memsw_limit;
3522 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3523 cb->fill(cb, "hierarchical_memory_limit", limit);
3524 if (do_swap_account)
3525 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3526 }
7f016ee8 3527
14067bb3
KH
3528 memset(&mystat, 0, sizeof(mystat));
3529 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3530 for (i = 0; i < NR_MCS_STAT; i++) {
3531 if (i == MCS_SWAP && !do_swap_account)
3532 continue;
14067bb3 3533 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3534 }
14067bb3 3535
7f016ee8 3536#ifdef CONFIG_DEBUG_VM
c772be93 3537 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3538
3539 {
3540 int nid, zid;
3541 struct mem_cgroup_per_zone *mz;
3542 unsigned long recent_rotated[2] = {0, 0};
3543 unsigned long recent_scanned[2] = {0, 0};
3544
3545 for_each_online_node(nid)
3546 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3547 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3548
3549 recent_rotated[0] +=
3550 mz->reclaim_stat.recent_rotated[0];
3551 recent_rotated[1] +=
3552 mz->reclaim_stat.recent_rotated[1];
3553 recent_scanned[0] +=
3554 mz->reclaim_stat.recent_scanned[0];
3555 recent_scanned[1] +=
3556 mz->reclaim_stat.recent_scanned[1];
3557 }
3558 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3559 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3560 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3561 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3562 }
3563#endif
3564
d2ceb9b7
KH
3565 return 0;
3566}
3567
a7885eb8
KM
3568static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3569{
3570 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3571
3572 return get_swappiness(memcg);
3573}
3574
3575static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3576 u64 val)
3577{
3578 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3579 struct mem_cgroup *parent;
068b38c1 3580
a7885eb8
KM
3581 if (val > 100)
3582 return -EINVAL;
3583
3584 if (cgrp->parent == NULL)
3585 return -EINVAL;
3586
3587 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3588
3589 cgroup_lock();
3590
a7885eb8
KM
3591 /* If under hierarchy, only empty-root can set this value */
3592 if ((parent->use_hierarchy) ||
068b38c1
LZ
3593 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3594 cgroup_unlock();
a7885eb8 3595 return -EINVAL;
068b38c1 3596 }
a7885eb8
KM
3597
3598 spin_lock(&memcg->reclaim_param_lock);
3599 memcg->swappiness = val;
3600 spin_unlock(&memcg->reclaim_param_lock);
3601
068b38c1
LZ
3602 cgroup_unlock();
3603
a7885eb8
KM
3604 return 0;
3605}
3606
2e72b634
KS
3607static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3608{
3609 struct mem_cgroup_threshold_ary *t;
3610 u64 usage;
3611 int i;
3612
3613 rcu_read_lock();
3614 if (!swap)
2c488db2 3615 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3616 else
2c488db2 3617 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3618
3619 if (!t)
3620 goto unlock;
3621
3622 usage = mem_cgroup_usage(memcg, swap);
3623
3624 /*
3625 * current_threshold points to threshold just below usage.
3626 * If it's not true, a threshold was crossed after last
3627 * call of __mem_cgroup_threshold().
3628 */
5407a562 3629 i = t->current_threshold;
2e72b634
KS
3630
3631 /*
3632 * Iterate backward over array of thresholds starting from
3633 * current_threshold and check if a threshold is crossed.
3634 * If none of thresholds below usage is crossed, we read
3635 * only one element of the array here.
3636 */
3637 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3638 eventfd_signal(t->entries[i].eventfd, 1);
3639
3640 /* i = current_threshold + 1 */
3641 i++;
3642
3643 /*
3644 * Iterate forward over array of thresholds starting from
3645 * current_threshold+1 and check if a threshold is crossed.
3646 * If none of thresholds above usage is crossed, we read
3647 * only one element of the array here.
3648 */
3649 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3650 eventfd_signal(t->entries[i].eventfd, 1);
3651
3652 /* Update current_threshold */
5407a562 3653 t->current_threshold = i - 1;
2e72b634
KS
3654unlock:
3655 rcu_read_unlock();
3656}
3657
3658static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3659{
ad4ca5f4
KS
3660 while (memcg) {
3661 __mem_cgroup_threshold(memcg, false);
3662 if (do_swap_account)
3663 __mem_cgroup_threshold(memcg, true);
3664
3665 memcg = parent_mem_cgroup(memcg);
3666 }
2e72b634
KS
3667}
3668
3669static int compare_thresholds(const void *a, const void *b)
3670{
3671 const struct mem_cgroup_threshold *_a = a;
3672 const struct mem_cgroup_threshold *_b = b;
3673
3674 return _a->threshold - _b->threshold;
3675}
3676
9490ff27
KH
3677static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3678{
3679 struct mem_cgroup_eventfd_list *ev;
3680
3681 list_for_each_entry(ev, &mem->oom_notify, list)
3682 eventfd_signal(ev->eventfd, 1);
3683 return 0;
3684}
3685
3686static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3687{
3688 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3689}
3690
3691static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3692 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3693{
3694 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3695 struct mem_cgroup_thresholds *thresholds;
3696 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3697 int type = MEMFILE_TYPE(cft->private);
3698 u64 threshold, usage;
2c488db2 3699 int i, size, ret;
2e72b634
KS
3700
3701 ret = res_counter_memparse_write_strategy(args, &threshold);
3702 if (ret)
3703 return ret;
3704
3705 mutex_lock(&memcg->thresholds_lock);
2c488db2 3706
2e72b634 3707 if (type == _MEM)
2c488db2 3708 thresholds = &memcg->thresholds;
2e72b634 3709 else if (type == _MEMSWAP)
2c488db2 3710 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3711 else
3712 BUG();
3713
3714 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3715
3716 /* Check if a threshold crossed before adding a new one */
2c488db2 3717 if (thresholds->primary)
2e72b634
KS
3718 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3719
2c488db2 3720 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3721
3722 /* Allocate memory for new array of thresholds */
2c488db2 3723 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3724 GFP_KERNEL);
2c488db2 3725 if (!new) {
2e72b634
KS
3726 ret = -ENOMEM;
3727 goto unlock;
3728 }
2c488db2 3729 new->size = size;
2e72b634
KS
3730
3731 /* Copy thresholds (if any) to new array */
2c488db2
KS
3732 if (thresholds->primary) {
3733 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3734 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3735 }
3736
2e72b634 3737 /* Add new threshold */
2c488db2
KS
3738 new->entries[size - 1].eventfd = eventfd;
3739 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3740
3741 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3742 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3743 compare_thresholds, NULL);
3744
3745 /* Find current threshold */
2c488db2 3746 new->current_threshold = -1;
2e72b634 3747 for (i = 0; i < size; i++) {
2c488db2 3748 if (new->entries[i].threshold < usage) {
2e72b634 3749 /*
2c488db2
KS
3750 * new->current_threshold will not be used until
3751 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3752 * it here.
3753 */
2c488db2 3754 ++new->current_threshold;
2e72b634
KS
3755 }
3756 }
3757
2c488db2
KS
3758 /* Free old spare buffer and save old primary buffer as spare */
3759 kfree(thresholds->spare);
3760 thresholds->spare = thresholds->primary;
3761
3762 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3763
907860ed 3764 /* To be sure that nobody uses thresholds */
2e72b634
KS
3765 synchronize_rcu();
3766
2e72b634
KS
3767unlock:
3768 mutex_unlock(&memcg->thresholds_lock);
3769
3770 return ret;
3771}
3772
907860ed 3773static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 3774 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3775{
3776 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3777 struct mem_cgroup_thresholds *thresholds;
3778 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3779 int type = MEMFILE_TYPE(cft->private);
3780 u64 usage;
2c488db2 3781 int i, j, size;
2e72b634
KS
3782
3783 mutex_lock(&memcg->thresholds_lock);
3784 if (type == _MEM)
2c488db2 3785 thresholds = &memcg->thresholds;
2e72b634 3786 else if (type == _MEMSWAP)
2c488db2 3787 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3788 else
3789 BUG();
3790
3791 /*
3792 * Something went wrong if we trying to unregister a threshold
3793 * if we don't have thresholds
3794 */
3795 BUG_ON(!thresholds);
3796
3797 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3798
3799 /* Check if a threshold crossed before removing */
3800 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3801
3802 /* Calculate new number of threshold */
2c488db2
KS
3803 size = 0;
3804 for (i = 0; i < thresholds->primary->size; i++) {
3805 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3806 size++;
3807 }
3808
2c488db2 3809 new = thresholds->spare;
907860ed 3810
2e72b634
KS
3811 /* Set thresholds array to NULL if we don't have thresholds */
3812 if (!size) {
2c488db2
KS
3813 kfree(new);
3814 new = NULL;
907860ed 3815 goto swap_buffers;
2e72b634
KS
3816 }
3817
2c488db2 3818 new->size = size;
2e72b634
KS
3819
3820 /* Copy thresholds and find current threshold */
2c488db2
KS
3821 new->current_threshold = -1;
3822 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3823 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3824 continue;
3825
2c488db2
KS
3826 new->entries[j] = thresholds->primary->entries[i];
3827 if (new->entries[j].threshold < usage) {
2e72b634 3828 /*
2c488db2 3829 * new->current_threshold will not be used
2e72b634
KS
3830 * until rcu_assign_pointer(), so it's safe to increment
3831 * it here.
3832 */
2c488db2 3833 ++new->current_threshold;
2e72b634
KS
3834 }
3835 j++;
3836 }
3837
907860ed 3838swap_buffers:
2c488db2
KS
3839 /* Swap primary and spare array */
3840 thresholds->spare = thresholds->primary;
3841 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3842
907860ed 3843 /* To be sure that nobody uses thresholds */
2e72b634
KS
3844 synchronize_rcu();
3845
2e72b634 3846 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3847}
c1e862c1 3848
9490ff27
KH
3849static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3850 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3851{
3852 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3853 struct mem_cgroup_eventfd_list *event;
3854 int type = MEMFILE_TYPE(cft->private);
3855
3856 BUG_ON(type != _OOM_TYPE);
3857 event = kmalloc(sizeof(*event), GFP_KERNEL);
3858 if (!event)
3859 return -ENOMEM;
3860
3861 mutex_lock(&memcg_oom_mutex);
3862
3863 event->eventfd = eventfd;
3864 list_add(&event->list, &memcg->oom_notify);
3865
3866 /* already in OOM ? */
3867 if (atomic_read(&memcg->oom_lock))
3868 eventfd_signal(eventfd, 1);
3869 mutex_unlock(&memcg_oom_mutex);
3870
3871 return 0;
3872}
3873
907860ed 3874static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
3875 struct cftype *cft, struct eventfd_ctx *eventfd)
3876{
3877 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3878 struct mem_cgroup_eventfd_list *ev, *tmp;
3879 int type = MEMFILE_TYPE(cft->private);
3880
3881 BUG_ON(type != _OOM_TYPE);
3882
3883 mutex_lock(&memcg_oom_mutex);
3884
3885 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3886 if (ev->eventfd == eventfd) {
3887 list_del(&ev->list);
3888 kfree(ev);
3889 }
3890 }
3891
3892 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
3893}
3894
3c11ecf4
KH
3895static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3896 struct cftype *cft, struct cgroup_map_cb *cb)
3897{
3898 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3899
3900 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3901
3902 if (atomic_read(&mem->oom_lock))
3903 cb->fill(cb, "under_oom", 1);
3904 else
3905 cb->fill(cb, "under_oom", 0);
3906 return 0;
3907}
3908
3c11ecf4
KH
3909static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3910 struct cftype *cft, u64 val)
3911{
3912 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3913 struct mem_cgroup *parent;
3914
3915 /* cannot set to root cgroup and only 0 and 1 are allowed */
3916 if (!cgrp->parent || !((val == 0) || (val == 1)))
3917 return -EINVAL;
3918
3919 parent = mem_cgroup_from_cont(cgrp->parent);
3920
3921 cgroup_lock();
3922 /* oom-kill-disable is a flag for subhierarchy. */
3923 if ((parent->use_hierarchy) ||
3924 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3925 cgroup_unlock();
3926 return -EINVAL;
3927 }
3928 mem->oom_kill_disable = val;
4d845ebf
KH
3929 if (!val)
3930 memcg_oom_recover(mem);
3c11ecf4
KH
3931 cgroup_unlock();
3932 return 0;
3933}
3934
8cdea7c0
BS
3935static struct cftype mem_cgroup_files[] = {
3936 {
0eea1030 3937 .name = "usage_in_bytes",
8c7c6e34 3938 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 3939 .read_u64 = mem_cgroup_read,
9490ff27
KH
3940 .register_event = mem_cgroup_usage_register_event,
3941 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 3942 },
c84872e1
PE
3943 {
3944 .name = "max_usage_in_bytes",
8c7c6e34 3945 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 3946 .trigger = mem_cgroup_reset,
c84872e1
PE
3947 .read_u64 = mem_cgroup_read,
3948 },
8cdea7c0 3949 {
0eea1030 3950 .name = "limit_in_bytes",
8c7c6e34 3951 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 3952 .write_string = mem_cgroup_write,
2c3daa72 3953 .read_u64 = mem_cgroup_read,
8cdea7c0 3954 },
296c81d8
BS
3955 {
3956 .name = "soft_limit_in_bytes",
3957 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3958 .write_string = mem_cgroup_write,
3959 .read_u64 = mem_cgroup_read,
3960 },
8cdea7c0
BS
3961 {
3962 .name = "failcnt",
8c7c6e34 3963 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 3964 .trigger = mem_cgroup_reset,
2c3daa72 3965 .read_u64 = mem_cgroup_read,
8cdea7c0 3966 },
d2ceb9b7
KH
3967 {
3968 .name = "stat",
c64745cf 3969 .read_map = mem_control_stat_show,
d2ceb9b7 3970 },
c1e862c1
KH
3971 {
3972 .name = "force_empty",
3973 .trigger = mem_cgroup_force_empty_write,
3974 },
18f59ea7
BS
3975 {
3976 .name = "use_hierarchy",
3977 .write_u64 = mem_cgroup_hierarchy_write,
3978 .read_u64 = mem_cgroup_hierarchy_read,
3979 },
a7885eb8
KM
3980 {
3981 .name = "swappiness",
3982 .read_u64 = mem_cgroup_swappiness_read,
3983 .write_u64 = mem_cgroup_swappiness_write,
3984 },
7dc74be0
DN
3985 {
3986 .name = "move_charge_at_immigrate",
3987 .read_u64 = mem_cgroup_move_charge_read,
3988 .write_u64 = mem_cgroup_move_charge_write,
3989 },
9490ff27
KH
3990 {
3991 .name = "oom_control",
3c11ecf4
KH
3992 .read_map = mem_cgroup_oom_control_read,
3993 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3994 .register_event = mem_cgroup_oom_register_event,
3995 .unregister_event = mem_cgroup_oom_unregister_event,
3996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3997 },
8cdea7c0
BS
3998};
3999
8c7c6e34
KH
4000#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4001static struct cftype memsw_cgroup_files[] = {
4002 {
4003 .name = "memsw.usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4005 .read_u64 = mem_cgroup_read,
9490ff27
KH
4006 .register_event = mem_cgroup_usage_register_event,
4007 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4008 },
4009 {
4010 .name = "memsw.max_usage_in_bytes",
4011 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4012 .trigger = mem_cgroup_reset,
4013 .read_u64 = mem_cgroup_read,
4014 },
4015 {
4016 .name = "memsw.limit_in_bytes",
4017 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4018 .write_string = mem_cgroup_write,
4019 .read_u64 = mem_cgroup_read,
4020 },
4021 {
4022 .name = "memsw.failcnt",
4023 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4024 .trigger = mem_cgroup_reset,
4025 .read_u64 = mem_cgroup_read,
4026 },
4027};
4028
4029static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4030{
4031 if (!do_swap_account)
4032 return 0;
4033 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4034 ARRAY_SIZE(memsw_cgroup_files));
4035};
4036#else
4037static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4038{
4039 return 0;
4040}
4041#endif
4042
6d12e2d8
KH
4043static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4044{
4045 struct mem_cgroup_per_node *pn;
1ecaab2b 4046 struct mem_cgroup_per_zone *mz;
b69408e8 4047 enum lru_list l;
41e3355d 4048 int zone, tmp = node;
1ecaab2b
KH
4049 /*
4050 * This routine is called against possible nodes.
4051 * But it's BUG to call kmalloc() against offline node.
4052 *
4053 * TODO: this routine can waste much memory for nodes which will
4054 * never be onlined. It's better to use memory hotplug callback
4055 * function.
4056 */
41e3355d
KH
4057 if (!node_state(node, N_NORMAL_MEMORY))
4058 tmp = -1;
4059 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4060 if (!pn)
4061 return 1;
1ecaab2b 4062
6d12e2d8
KH
4063 mem->info.nodeinfo[node] = pn;
4064 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
4065
4066 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4067 mz = &pn->zoneinfo[zone];
b69408e8
CL
4068 for_each_lru(l)
4069 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4070 mz->usage_in_excess = 0;
4e416953
BS
4071 mz->on_tree = false;
4072 mz->mem = mem;
1ecaab2b 4073 }
6d12e2d8
KH
4074 return 0;
4075}
4076
1ecaab2b
KH
4077static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4078{
4079 kfree(mem->info.nodeinfo[node]);
4080}
4081
33327948
KH
4082static struct mem_cgroup *mem_cgroup_alloc(void)
4083{
4084 struct mem_cgroup *mem;
c62b1a3b 4085 int size = sizeof(struct mem_cgroup);
33327948 4086
c62b1a3b 4087 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
4088 if (size < PAGE_SIZE)
4089 mem = kmalloc(size, GFP_KERNEL);
33327948 4090 else
c8dad2bb 4091 mem = vmalloc(size);
33327948 4092
e7bbcdf3
DC
4093 if (!mem)
4094 return NULL;
4095
4096 memset(mem, 0, size);
c62b1a3b
KH
4097 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!mem->stat) {
4099 if (size < PAGE_SIZE)
4100 kfree(mem);
4101 else
4102 vfree(mem);
4103 mem = NULL;
4104 }
33327948
KH
4105 return mem;
4106}
4107
8c7c6e34
KH
4108/*
4109 * At destroying mem_cgroup, references from swap_cgroup can remain.
4110 * (scanning all at force_empty is too costly...)
4111 *
4112 * Instead of clearing all references at force_empty, we remember
4113 * the number of reference from swap_cgroup and free mem_cgroup when
4114 * it goes down to 0.
4115 *
8c7c6e34
KH
4116 * Removal of cgroup itself succeeds regardless of refs from swap.
4117 */
4118
a7ba0eef 4119static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4120{
08e552c6
KH
4121 int node;
4122
f64c3f54 4123 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4124 free_css_id(&mem_cgroup_subsys, &mem->css);
4125
08e552c6
KH
4126 for_each_node_state(node, N_POSSIBLE)
4127 free_mem_cgroup_per_zone_info(mem, node);
4128
c62b1a3b
KH
4129 free_percpu(mem->stat);
4130 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4131 kfree(mem);
4132 else
4133 vfree(mem);
4134}
4135
8c7c6e34
KH
4136static void mem_cgroup_get(struct mem_cgroup *mem)
4137{
4138 atomic_inc(&mem->refcnt);
4139}
4140
483c30b5 4141static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4142{
483c30b5 4143 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4144 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4145 __mem_cgroup_free(mem);
7bcc1bb1
DN
4146 if (parent)
4147 mem_cgroup_put(parent);
4148 }
8c7c6e34
KH
4149}
4150
483c30b5
DN
4151static void mem_cgroup_put(struct mem_cgroup *mem)
4152{
4153 __mem_cgroup_put(mem, 1);
4154}
4155
7bcc1bb1
DN
4156/*
4157 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4158 */
4159static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4160{
4161 if (!mem->res.parent)
4162 return NULL;
4163 return mem_cgroup_from_res_counter(mem->res.parent, res);
4164}
33327948 4165
c077719b
KH
4166#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4167static void __init enable_swap_cgroup(void)
4168{
f8d66542 4169 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4170 do_swap_account = 1;
4171}
4172#else
4173static void __init enable_swap_cgroup(void)
4174{
4175}
4176#endif
4177
f64c3f54
BS
4178static int mem_cgroup_soft_limit_tree_init(void)
4179{
4180 struct mem_cgroup_tree_per_node *rtpn;
4181 struct mem_cgroup_tree_per_zone *rtpz;
4182 int tmp, node, zone;
4183
4184 for_each_node_state(node, N_POSSIBLE) {
4185 tmp = node;
4186 if (!node_state(node, N_NORMAL_MEMORY))
4187 tmp = -1;
4188 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4189 if (!rtpn)
4190 return 1;
4191
4192 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4193
4194 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4195 rtpz = &rtpn->rb_tree_per_zone[zone];
4196 rtpz->rb_root = RB_ROOT;
4197 spin_lock_init(&rtpz->lock);
4198 }
4199 }
4200 return 0;
4201}
4202
0eb253e2 4203static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4204mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4205{
28dbc4b6 4206 struct mem_cgroup *mem, *parent;
04046e1a 4207 long error = -ENOMEM;
6d12e2d8 4208 int node;
8cdea7c0 4209
c8dad2bb
JB
4210 mem = mem_cgroup_alloc();
4211 if (!mem)
04046e1a 4212 return ERR_PTR(error);
78fb7466 4213
6d12e2d8
KH
4214 for_each_node_state(node, N_POSSIBLE)
4215 if (alloc_mem_cgroup_per_zone_info(mem, node))
4216 goto free_out;
f64c3f54 4217
c077719b 4218 /* root ? */
28dbc4b6 4219 if (cont->parent == NULL) {
cdec2e42 4220 int cpu;
c077719b 4221 enable_swap_cgroup();
28dbc4b6 4222 parent = NULL;
4b3bde4c 4223 root_mem_cgroup = mem;
f64c3f54
BS
4224 if (mem_cgroup_soft_limit_tree_init())
4225 goto free_out;
cdec2e42
KH
4226 for_each_possible_cpu(cpu) {
4227 struct memcg_stock_pcp *stock =
4228 &per_cpu(memcg_stock, cpu);
4229 INIT_WORK(&stock->work, drain_local_stock);
4230 }
4231 hotcpu_notifier(memcg_stock_cpu_callback, 0);
18f59ea7 4232 } else {
28dbc4b6 4233 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4234 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4235 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4236 }
28dbc4b6 4237
18f59ea7
BS
4238 if (parent && parent->use_hierarchy) {
4239 res_counter_init(&mem->res, &parent->res);
4240 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4241 /*
4242 * We increment refcnt of the parent to ensure that we can
4243 * safely access it on res_counter_charge/uncharge.
4244 * This refcnt will be decremented when freeing this
4245 * mem_cgroup(see mem_cgroup_put).
4246 */
4247 mem_cgroup_get(parent);
18f59ea7
BS
4248 } else {
4249 res_counter_init(&mem->res, NULL);
4250 res_counter_init(&mem->memsw, NULL);
4251 }
04046e1a 4252 mem->last_scanned_child = 0;
2733c06a 4253 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4254 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4255
a7885eb8
KM
4256 if (parent)
4257 mem->swappiness = get_swappiness(parent);
a7ba0eef 4258 atomic_set(&mem->refcnt, 1);
7dc74be0 4259 mem->move_charge_at_immigrate = 0;
2e72b634 4260 mutex_init(&mem->thresholds_lock);
8cdea7c0 4261 return &mem->css;
6d12e2d8 4262free_out:
a7ba0eef 4263 __mem_cgroup_free(mem);
4b3bde4c 4264 root_mem_cgroup = NULL;
04046e1a 4265 return ERR_PTR(error);
8cdea7c0
BS
4266}
4267
ec64f515 4268static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4269 struct cgroup *cont)
4270{
4271 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4272
4273 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4274}
4275
8cdea7c0
BS
4276static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4277 struct cgroup *cont)
4278{
c268e994 4279 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4280
c268e994 4281 mem_cgroup_put(mem);
8cdea7c0
BS
4282}
4283
4284static int mem_cgroup_populate(struct cgroup_subsys *ss,
4285 struct cgroup *cont)
4286{
8c7c6e34
KH
4287 int ret;
4288
4289 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4290 ARRAY_SIZE(mem_cgroup_files));
4291
4292 if (!ret)
4293 ret = register_memsw_files(cont, ss);
4294 return ret;
8cdea7c0
BS
4295}
4296
02491447 4297#ifdef CONFIG_MMU
7dc74be0 4298/* Handlers for move charge at task migration. */
854ffa8d
DN
4299#define PRECHARGE_COUNT_AT_ONCE 256
4300static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4301{
854ffa8d
DN
4302 int ret = 0;
4303 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4304 struct mem_cgroup *mem = mc.to;
4305
854ffa8d
DN
4306 if (mem_cgroup_is_root(mem)) {
4307 mc.precharge += count;
4308 /* we don't need css_get for root */
4309 return ret;
4310 }
4311 /* try to charge at once */
4312 if (count > 1) {
4313 struct res_counter *dummy;
4314 /*
4315 * "mem" cannot be under rmdir() because we've already checked
4316 * by cgroup_lock_live_cgroup() that it is not removed and we
4317 * are still under the same cgroup_mutex. So we can postpone
4318 * css_get().
4319 */
4320 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4321 goto one_by_one;
4322 if (do_swap_account && res_counter_charge(&mem->memsw,
4323 PAGE_SIZE * count, &dummy)) {
4324 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4325 goto one_by_one;
4326 }
4327 mc.precharge += count;
854ffa8d
DN
4328 return ret;
4329 }
4330one_by_one:
4331 /* fall back to one by one charge */
4332 while (count--) {
4333 if (signal_pending(current)) {
4334 ret = -EINTR;
4335 break;
4336 }
4337 if (!batch_count--) {
4338 batch_count = PRECHARGE_COUNT_AT_ONCE;
4339 cond_resched();
4340 }
430e4863 4341 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
854ffa8d
DN
4342 if (ret || !mem)
4343 /* mem_cgroup_clear_mc() will do uncharge later */
4344 return -ENOMEM;
4345 mc.precharge++;
4346 }
4ffef5fe
DN
4347 return ret;
4348}
4349
4350/**
4351 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4352 * @vma: the vma the pte to be checked belongs
4353 * @addr: the address corresponding to the pte to be checked
4354 * @ptent: the pte to be checked
02491447 4355 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4356 *
4357 * Returns
4358 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4359 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4360 * move charge. if @target is not NULL, the page is stored in target->page
4361 * with extra refcnt got(Callers should handle it).
02491447
DN
4362 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4363 * target for charge migration. if @target is not NULL, the entry is stored
4364 * in target->ent.
4ffef5fe
DN
4365 *
4366 * Called with pte lock held.
4367 */
4ffef5fe
DN
4368union mc_target {
4369 struct page *page;
02491447 4370 swp_entry_t ent;
4ffef5fe
DN
4371};
4372
4ffef5fe
DN
4373enum mc_target_type {
4374 MC_TARGET_NONE, /* not used */
4375 MC_TARGET_PAGE,
02491447 4376 MC_TARGET_SWAP,
4ffef5fe
DN
4377};
4378
90254a65
DN
4379static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4380 unsigned long addr, pte_t ptent)
4ffef5fe 4381{
90254a65 4382 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4383
90254a65
DN
4384 if (!page || !page_mapped(page))
4385 return NULL;
4386 if (PageAnon(page)) {
4387 /* we don't move shared anon */
4388 if (!move_anon() || page_mapcount(page) > 2)
4389 return NULL;
87946a72
DN
4390 } else if (!move_file())
4391 /* we ignore mapcount for file pages */
90254a65
DN
4392 return NULL;
4393 if (!get_page_unless_zero(page))
4394 return NULL;
4395
4396 return page;
4397}
4398
4399static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4400 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4401{
4402 int usage_count;
4403 struct page *page = NULL;
4404 swp_entry_t ent = pte_to_swp_entry(ptent);
4405
4406 if (!move_anon() || non_swap_entry(ent))
4407 return NULL;
4408 usage_count = mem_cgroup_count_swap_user(ent, &page);
4409 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4410 if (page)
4411 put_page(page);
90254a65 4412 return NULL;
02491447 4413 }
90254a65
DN
4414 if (do_swap_account)
4415 entry->val = ent.val;
4416
4417 return page;
4418}
4419
87946a72
DN
4420static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4421 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4422{
4423 struct page *page = NULL;
4424 struct inode *inode;
4425 struct address_space *mapping;
4426 pgoff_t pgoff;
4427
4428 if (!vma->vm_file) /* anonymous vma */
4429 return NULL;
4430 if (!move_file())
4431 return NULL;
4432
4433 inode = vma->vm_file->f_path.dentry->d_inode;
4434 mapping = vma->vm_file->f_mapping;
4435 if (pte_none(ptent))
4436 pgoff = linear_page_index(vma, addr);
4437 else /* pte_file(ptent) is true */
4438 pgoff = pte_to_pgoff(ptent);
4439
4440 /* page is moved even if it's not RSS of this task(page-faulted). */
4441 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4442 page = find_get_page(mapping, pgoff);
4443 } else { /* shmem/tmpfs file. we should take account of swap too. */
4444 swp_entry_t ent;
4445 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4446 if (do_swap_account)
4447 entry->val = ent.val;
4448 }
4449
4450 return page;
4451}
4452
90254a65
DN
4453static int is_target_pte_for_mc(struct vm_area_struct *vma,
4454 unsigned long addr, pte_t ptent, union mc_target *target)
4455{
4456 struct page *page = NULL;
4457 struct page_cgroup *pc;
4458 int ret = 0;
4459 swp_entry_t ent = { .val = 0 };
4460
4461 if (pte_present(ptent))
4462 page = mc_handle_present_pte(vma, addr, ptent);
4463 else if (is_swap_pte(ptent))
4464 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4465 else if (pte_none(ptent) || pte_file(ptent))
4466 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4467
4468 if (!page && !ent.val)
4469 return 0;
02491447
DN
4470 if (page) {
4471 pc = lookup_page_cgroup(page);
4472 /*
4473 * Do only loose check w/o page_cgroup lock.
4474 * mem_cgroup_move_account() checks the pc is valid or not under
4475 * the lock.
4476 */
4477 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4478 ret = MC_TARGET_PAGE;
4479 if (target)
4480 target->page = page;
4481 }
4482 if (!ret || !target)
4483 put_page(page);
4484 }
90254a65
DN
4485 /* There is a swap entry and a page doesn't exist or isn't charged */
4486 if (ent.val && !ret &&
7f0f1546
KH
4487 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4488 ret = MC_TARGET_SWAP;
4489 if (target)
4490 target->ent = ent;
4ffef5fe 4491 }
4ffef5fe
DN
4492 return ret;
4493}
4494
4495static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4496 unsigned long addr, unsigned long end,
4497 struct mm_walk *walk)
4498{
4499 struct vm_area_struct *vma = walk->private;
4500 pte_t *pte;
4501 spinlock_t *ptl;
4502
4503 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4504 for (; addr != end; pte++, addr += PAGE_SIZE)
4505 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4506 mc.precharge++; /* increment precharge temporarily */
4507 pte_unmap_unlock(pte - 1, ptl);
4508 cond_resched();
4509
7dc74be0
DN
4510 return 0;
4511}
4512
4ffef5fe
DN
4513static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4514{
4515 unsigned long precharge;
4516 struct vm_area_struct *vma;
4517
4518 down_read(&mm->mmap_sem);
4519 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4520 struct mm_walk mem_cgroup_count_precharge_walk = {
4521 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4522 .mm = mm,
4523 .private = vma,
4524 };
4525 if (is_vm_hugetlb_page(vma))
4526 continue;
4ffef5fe
DN
4527 walk_page_range(vma->vm_start, vma->vm_end,
4528 &mem_cgroup_count_precharge_walk);
4529 }
4530 up_read(&mm->mmap_sem);
4531
4532 precharge = mc.precharge;
4533 mc.precharge = 0;
4534
4535 return precharge;
4536}
4537
4ffef5fe
DN
4538static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4539{
854ffa8d 4540 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4541}
4542
4543static void mem_cgroup_clear_mc(void)
4544{
2bd9bb20
KH
4545 struct mem_cgroup *from = mc.from;
4546 struct mem_cgroup *to = mc.to;
4547
4ffef5fe 4548 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4549 if (mc.precharge) {
4550 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4551 mc.precharge = 0;
4552 }
4553 /*
4554 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4555 * we must uncharge here.
4556 */
4557 if (mc.moved_charge) {
4558 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4559 mc.moved_charge = 0;
4ffef5fe 4560 }
483c30b5
DN
4561 /* we must fixup refcnts and charges */
4562 if (mc.moved_swap) {
483c30b5
DN
4563 /* uncharge swap account from the old cgroup */
4564 if (!mem_cgroup_is_root(mc.from))
4565 res_counter_uncharge(&mc.from->memsw,
4566 PAGE_SIZE * mc.moved_swap);
4567 __mem_cgroup_put(mc.from, mc.moved_swap);
4568
4569 if (!mem_cgroup_is_root(mc.to)) {
4570 /*
4571 * we charged both to->res and to->memsw, so we should
4572 * uncharge to->res.
4573 */
4574 res_counter_uncharge(&mc.to->res,
4575 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4576 }
4577 /* we've already done mem_cgroup_get(mc.to) */
4578
4579 mc.moved_swap = 0;
4580 }
2bd9bb20 4581 spin_lock(&mc.lock);
4ffef5fe
DN
4582 mc.from = NULL;
4583 mc.to = NULL;
8033b97c 4584 mc.moving_task = NULL;
2bd9bb20 4585 spin_unlock(&mc.lock);
32047e2a 4586 mem_cgroup_end_move(from);
2bd9bb20
KH
4587 memcg_oom_recover(from);
4588 memcg_oom_recover(to);
8033b97c 4589 wake_up_all(&mc.waitq);
4ffef5fe
DN
4590}
4591
7dc74be0
DN
4592static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4593 struct cgroup *cgroup,
4594 struct task_struct *p,
4595 bool threadgroup)
4596{
4597 int ret = 0;
4598 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4599
4600 if (mem->move_charge_at_immigrate) {
4601 struct mm_struct *mm;
4602 struct mem_cgroup *from = mem_cgroup_from_task(p);
4603
4604 VM_BUG_ON(from == mem);
4605
4606 mm = get_task_mm(p);
4607 if (!mm)
4608 return 0;
7dc74be0 4609 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4610 if (mm->owner == p) {
4611 VM_BUG_ON(mc.from);
4612 VM_BUG_ON(mc.to);
4613 VM_BUG_ON(mc.precharge);
854ffa8d 4614 VM_BUG_ON(mc.moved_charge);
483c30b5 4615 VM_BUG_ON(mc.moved_swap);
8033b97c 4616 VM_BUG_ON(mc.moving_task);
32047e2a 4617 mem_cgroup_start_move(from);
2bd9bb20 4618 spin_lock(&mc.lock);
4ffef5fe
DN
4619 mc.from = from;
4620 mc.to = mem;
4621 mc.precharge = 0;
854ffa8d 4622 mc.moved_charge = 0;
483c30b5 4623 mc.moved_swap = 0;
8033b97c 4624 mc.moving_task = current;
2bd9bb20 4625 spin_unlock(&mc.lock);
4ffef5fe
DN
4626
4627 ret = mem_cgroup_precharge_mc(mm);
4628 if (ret)
4629 mem_cgroup_clear_mc();
4630 }
7dc74be0
DN
4631 mmput(mm);
4632 }
4633 return ret;
4634}
4635
4636static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4637 struct cgroup *cgroup,
4638 struct task_struct *p,
4639 bool threadgroup)
4640{
4ffef5fe 4641 mem_cgroup_clear_mc();
7dc74be0
DN
4642}
4643
4ffef5fe
DN
4644static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4645 unsigned long addr, unsigned long end,
4646 struct mm_walk *walk)
7dc74be0 4647{
4ffef5fe
DN
4648 int ret = 0;
4649 struct vm_area_struct *vma = walk->private;
4650 pte_t *pte;
4651 spinlock_t *ptl;
4652
4653retry:
4654 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4655 for (; addr != end; addr += PAGE_SIZE) {
4656 pte_t ptent = *(pte++);
4657 union mc_target target;
4658 int type;
4659 struct page *page;
4660 struct page_cgroup *pc;
02491447 4661 swp_entry_t ent;
4ffef5fe
DN
4662
4663 if (!mc.precharge)
4664 break;
4665
4666 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4667 switch (type) {
4668 case MC_TARGET_PAGE:
4669 page = target.page;
4670 if (isolate_lru_page(page))
4671 goto put;
4672 pc = lookup_page_cgroup(page);
854ffa8d
DN
4673 if (!mem_cgroup_move_account(pc,
4674 mc.from, mc.to, false)) {
4ffef5fe 4675 mc.precharge--;
854ffa8d
DN
4676 /* we uncharge from mc.from later. */
4677 mc.moved_charge++;
4ffef5fe
DN
4678 }
4679 putback_lru_page(page);
4680put: /* is_target_pte_for_mc() gets the page */
4681 put_page(page);
4682 break;
02491447
DN
4683 case MC_TARGET_SWAP:
4684 ent = target.ent;
483c30b5
DN
4685 if (!mem_cgroup_move_swap_account(ent,
4686 mc.from, mc.to, false)) {
02491447 4687 mc.precharge--;
483c30b5
DN
4688 /* we fixup refcnts and charges later. */
4689 mc.moved_swap++;
4690 }
02491447 4691 break;
4ffef5fe
DN
4692 default:
4693 break;
4694 }
4695 }
4696 pte_unmap_unlock(pte - 1, ptl);
4697 cond_resched();
4698
4699 if (addr != end) {
4700 /*
4701 * We have consumed all precharges we got in can_attach().
4702 * We try charge one by one, but don't do any additional
4703 * charges to mc.to if we have failed in charge once in attach()
4704 * phase.
4705 */
854ffa8d 4706 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4707 if (!ret)
4708 goto retry;
4709 }
4710
4711 return ret;
4712}
4713
4714static void mem_cgroup_move_charge(struct mm_struct *mm)
4715{
4716 struct vm_area_struct *vma;
4717
4718 lru_add_drain_all();
4719 down_read(&mm->mmap_sem);
4720 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4721 int ret;
4722 struct mm_walk mem_cgroup_move_charge_walk = {
4723 .pmd_entry = mem_cgroup_move_charge_pte_range,
4724 .mm = mm,
4725 .private = vma,
4726 };
4727 if (is_vm_hugetlb_page(vma))
4728 continue;
4ffef5fe
DN
4729 ret = walk_page_range(vma->vm_start, vma->vm_end,
4730 &mem_cgroup_move_charge_walk);
4731 if (ret)
4732 /*
4733 * means we have consumed all precharges and failed in
4734 * doing additional charge. Just abandon here.
4735 */
4736 break;
4737 }
4738 up_read(&mm->mmap_sem);
7dc74be0
DN
4739}
4740
67e465a7
BS
4741static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4742 struct cgroup *cont,
4743 struct cgroup *old_cont,
be367d09
BB
4744 struct task_struct *p,
4745 bool threadgroup)
67e465a7 4746{
4ffef5fe
DN
4747 struct mm_struct *mm;
4748
4749 if (!mc.to)
4750 /* no need to move charge */
4751 return;
4752
4753 mm = get_task_mm(p);
4754 if (mm) {
4755 mem_cgroup_move_charge(mm);
4756 mmput(mm);
4757 }
4758 mem_cgroup_clear_mc();
67e465a7 4759}
5cfb80a7
DN
4760#else /* !CONFIG_MMU */
4761static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4762 struct cgroup *cgroup,
4763 struct task_struct *p,
4764 bool threadgroup)
4765{
4766 return 0;
4767}
4768static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4769 struct cgroup *cgroup,
4770 struct task_struct *p,
4771 bool threadgroup)
4772{
4773}
4774static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4775 struct cgroup *cont,
4776 struct cgroup *old_cont,
4777 struct task_struct *p,
4778 bool threadgroup)
4779{
4780}
4781#endif
67e465a7 4782
8cdea7c0
BS
4783struct cgroup_subsys mem_cgroup_subsys = {
4784 .name = "memory",
4785 .subsys_id = mem_cgroup_subsys_id,
4786 .create = mem_cgroup_create,
df878fb0 4787 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4788 .destroy = mem_cgroup_destroy,
4789 .populate = mem_cgroup_populate,
7dc74be0
DN
4790 .can_attach = mem_cgroup_can_attach,
4791 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4792 .attach = mem_cgroup_move_task,
6d12e2d8 4793 .early_init = 0,
04046e1a 4794 .use_id = 1,
8cdea7c0 4795};
c077719b
KH
4796
4797#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4798
4799static int __init disable_swap_account(char *s)
4800{
4801 really_do_swap_account = 0;
4802 return 1;
4803}
4804__setup("noswapaccount", disable_swap_account);
4805#endif
This page took 0.505164 seconds and 5 git commands to generate.