memcg: mark stat field of mem_cgroup struct as __percpu
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
115#define THRESHOLDS_EVENTS_TARGET (128)
116#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 117#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
f64c3f54
BS
141 struct rb_node tree_node; /* RB tree node */
142 unsigned long long usage_in_excess;/* Set to the value by which */
143 /* the soft limit is exceeded*/
144 bool on_tree;
d79154bb 145 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 146 /* use container_of */
6d12e2d8 147};
6d12e2d8
KH
148
149struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151};
152
153struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155};
156
f64c3f54
BS
157/*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165};
166
167struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173};
174
175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
2e72b634
KS
177struct mem_cgroup_threshold {
178 struct eventfd_ctx *eventfd;
179 u64 threshold;
180};
181
9490ff27 182/* For threshold */
2e72b634
KS
183struct mem_cgroup_threshold_ary {
184 /* An array index points to threshold just below usage. */
5407a562 185 int current_threshold;
2e72b634
KS
186 /* Size of entries[] */
187 unsigned int size;
188 /* Array of thresholds */
189 struct mem_cgroup_threshold entries[0];
190};
2c488db2
KS
191
192struct mem_cgroup_thresholds {
193 /* Primary thresholds array */
194 struct mem_cgroup_threshold_ary *primary;
195 /*
196 * Spare threshold array.
197 * This is needed to make mem_cgroup_unregister_event() "never fail".
198 * It must be able to store at least primary->size - 1 entries.
199 */
200 struct mem_cgroup_threshold_ary *spare;
201};
202
9490ff27
KH
203/* for OOM */
204struct mem_cgroup_eventfd_list {
205 struct list_head list;
206 struct eventfd_ctx *eventfd;
207};
2e72b634 208
c0ff4b85
R
209static void mem_cgroup_threshold(struct mem_cgroup *memcg);
210static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 211
8cdea7c0
BS
212/*
213 * The memory controller data structure. The memory controller controls both
214 * page cache and RSS per cgroup. We would eventually like to provide
215 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
216 * to help the administrator determine what knobs to tune.
217 *
218 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
219 * we hit the water mark. May be even add a low water mark, such that
220 * no reclaim occurs from a cgroup at it's low water mark, this is
221 * a feature that will be implemented much later in the future.
8cdea7c0
BS
222 */
223struct mem_cgroup {
224 struct cgroup_subsys_state css;
225 /*
226 * the counter to account for memory usage
227 */
228 struct res_counter res;
59927fb9
HD
229
230 union {
231 /*
232 * the counter to account for mem+swap usage.
233 */
234 struct res_counter memsw;
235
236 /*
237 * rcu_freeing is used only when freeing struct mem_cgroup,
238 * so put it into a union to avoid wasting more memory.
239 * It must be disjoint from the css field. It could be
240 * in a union with the res field, but res plays a much
241 * larger part in mem_cgroup life than memsw, and might
242 * be of interest, even at time of free, when debugging.
243 * So share rcu_head with the less interesting memsw.
244 */
245 struct rcu_head rcu_freeing;
246 /*
247 * But when using vfree(), that cannot be done at
248 * interrupt time, so we must then queue the work.
249 */
250 struct work_struct work_freeing;
251 };
252
78fb7466
PE
253 /*
254 * Per cgroup active and inactive list, similar to the
255 * per zone LRU lists.
78fb7466 256 */
6d12e2d8 257 struct mem_cgroup_lru_info info;
889976db
YH
258 int last_scanned_node;
259#if MAX_NUMNODES > 1
260 nodemask_t scan_nodes;
453a9bf3
KH
261 atomic_t numainfo_events;
262 atomic_t numainfo_updating;
889976db 263#endif
18f59ea7
BS
264 /*
265 * Should the accounting and control be hierarchical, per subtree?
266 */
267 bool use_hierarchy;
79dfdacc
MH
268
269 bool oom_lock;
270 atomic_t under_oom;
271
8c7c6e34 272 atomic_t refcnt;
14797e23 273
1f4c025b 274 int swappiness;
3c11ecf4
KH
275 /* OOM-Killer disable */
276 int oom_kill_disable;
a7885eb8 277
22a668d7
KH
278 /* set when res.limit == memsw.limit */
279 bool memsw_is_minimum;
280
2e72b634
KS
281 /* protect arrays of thresholds */
282 struct mutex thresholds_lock;
283
284 /* thresholds for memory usage. RCU-protected */
2c488db2 285 struct mem_cgroup_thresholds thresholds;
907860ed 286
2e72b634 287 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 288 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 289
9490ff27
KH
290 /* For oom notifier event fd */
291 struct list_head oom_notify;
185efc0f 292
7dc74be0
DN
293 /*
294 * Should we move charges of a task when a task is moved into this
295 * mem_cgroup ? And what type of charges should we move ?
296 */
297 unsigned long move_charge_at_immigrate;
619d094b
KH
298 /*
299 * set > 0 if pages under this cgroup are moving to other cgroup.
300 */
301 atomic_t moving_account;
312734c0
KH
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
d52aa412 304 /*
c62b1a3b 305 * percpu counter.
d52aa412 306 */
3a7951b4 307 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
308 /*
309 * used when a cpu is offlined or other synchronizations
310 * See mem_cgroup_read_stat().
311 */
312 struct mem_cgroup_stat_cpu nocpu_base;
313 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
314
315#ifdef CONFIG_INET
316 struct tcp_memcontrol tcp_mem;
317#endif
8cdea7c0
BS
318};
319
7dc74be0
DN
320/* Stuffs for move charges at task migration. */
321/*
322 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
323 * left-shifted bitmap of these types.
324 */
325enum move_type {
4ffef5fe 326 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 327 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
328 NR_MOVE_TYPE,
329};
330
4ffef5fe
DN
331/* "mc" and its members are protected by cgroup_mutex */
332static struct move_charge_struct {
b1dd693e 333 spinlock_t lock; /* for from, to */
4ffef5fe
DN
334 struct mem_cgroup *from;
335 struct mem_cgroup *to;
336 unsigned long precharge;
854ffa8d 337 unsigned long moved_charge;
483c30b5 338 unsigned long moved_swap;
8033b97c
DN
339 struct task_struct *moving_task; /* a task moving charges */
340 wait_queue_head_t waitq; /* a waitq for other context */
341} mc = {
2bd9bb20 342 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
343 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344};
4ffef5fe 345
90254a65
DN
346static bool move_anon(void)
347{
348 return test_bit(MOVE_CHARGE_TYPE_ANON,
349 &mc.to->move_charge_at_immigrate);
350}
351
87946a72
DN
352static bool move_file(void)
353{
354 return test_bit(MOVE_CHARGE_TYPE_FILE,
355 &mc.to->move_charge_at_immigrate);
356}
357
4e416953
BS
358/*
359 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
360 * limit reclaim to prevent infinite loops, if they ever occur.
361 */
362#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
363#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
364
217bc319
KH
365enum charge_type {
366 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
367 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 368 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 369 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 370 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 371 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
372 NR_CHARGE_TYPE,
373};
374
8c7c6e34 375/* for encoding cft->private value on file */
65c64ce8
GC
376#define _MEM (0)
377#define _MEMSWAP (1)
378#define _OOM_TYPE (2)
8c7c6e34
KH
379#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
380#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
381#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
382/* Used for OOM nofiier */
383#define OOM_CONTROL (0)
8c7c6e34 384
75822b44
BS
385/*
386 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 */
388#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
389#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
390#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
391#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392
c0ff4b85
R
393static void mem_cgroup_get(struct mem_cgroup *memcg);
394static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
395
396/* Writing them here to avoid exposing memcg's inner layout */
397#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 398#include <net/sock.h>
d1a4c0b3 399#include <net/ip.h>
e1aab161
GC
400
401static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
402void sock_update_memcg(struct sock *sk)
403{
376be5ff 404 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
405 struct mem_cgroup *memcg;
406
407 BUG_ON(!sk->sk_prot->proto_cgroup);
408
f3f511e1
GC
409 /* Socket cloning can throw us here with sk_cgrp already
410 * filled. It won't however, necessarily happen from
411 * process context. So the test for root memcg given
412 * the current task's memcg won't help us in this case.
413 *
414 * Respecting the original socket's memcg is a better
415 * decision in this case.
416 */
417 if (sk->sk_cgrp) {
418 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
419 mem_cgroup_get(sk->sk_cgrp->memcg);
420 return;
421 }
422
e1aab161
GC
423 rcu_read_lock();
424 memcg = mem_cgroup_from_task(current);
425 if (!mem_cgroup_is_root(memcg)) {
426 mem_cgroup_get(memcg);
427 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 }
429 rcu_read_unlock();
430 }
431}
432EXPORT_SYMBOL(sock_update_memcg);
433
434void sock_release_memcg(struct sock *sk)
435{
376be5ff 436 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
437 struct mem_cgroup *memcg;
438 WARN_ON(!sk->sk_cgrp->memcg);
439 memcg = sk->sk_cgrp->memcg;
440 mem_cgroup_put(memcg);
441 }
442}
d1a4c0b3 443
319d3b9c 444#ifdef CONFIG_INET
d1a4c0b3
GC
445struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446{
447 if (!memcg || mem_cgroup_is_root(memcg))
448 return NULL;
449
450 return &memcg->tcp_mem.cg_proto;
451}
452EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
453#endif /* CONFIG_INET */
454#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455
c0ff4b85 456static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 457
f64c3f54 458static struct mem_cgroup_per_zone *
c0ff4b85 459mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 460{
c0ff4b85 461 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
462}
463
c0ff4b85 464struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 465{
c0ff4b85 466 return &memcg->css;
d324236b
WF
467}
468
f64c3f54 469static struct mem_cgroup_per_zone *
c0ff4b85 470page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 471{
97a6c37b
JW
472 int nid = page_to_nid(page);
473 int zid = page_zonenum(page);
f64c3f54 474
c0ff4b85 475 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
476}
477
478static struct mem_cgroup_tree_per_zone *
479soft_limit_tree_node_zone(int nid, int zid)
480{
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482}
483
484static struct mem_cgroup_tree_per_zone *
485soft_limit_tree_from_page(struct page *page)
486{
487 int nid = page_to_nid(page);
488 int zid = page_zonenum(page);
489
490 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491}
492
493static void
c0ff4b85 494__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 495 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
496 struct mem_cgroup_tree_per_zone *mctz,
497 unsigned long long new_usage_in_excess)
f64c3f54
BS
498{
499 struct rb_node **p = &mctz->rb_root.rb_node;
500 struct rb_node *parent = NULL;
501 struct mem_cgroup_per_zone *mz_node;
502
503 if (mz->on_tree)
504 return;
505
ef8745c1
KH
506 mz->usage_in_excess = new_usage_in_excess;
507 if (!mz->usage_in_excess)
508 return;
f64c3f54
BS
509 while (*p) {
510 parent = *p;
511 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
512 tree_node);
513 if (mz->usage_in_excess < mz_node->usage_in_excess)
514 p = &(*p)->rb_left;
515 /*
516 * We can't avoid mem cgroups that are over their soft
517 * limit by the same amount
518 */
519 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
520 p = &(*p)->rb_right;
521 }
522 rb_link_node(&mz->tree_node, parent, p);
523 rb_insert_color(&mz->tree_node, &mctz->rb_root);
524 mz->on_tree = true;
4e416953
BS
525}
526
527static void
c0ff4b85 528__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
f64c3f54 538static void
c0ff4b85 539mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
540 struct mem_cgroup_per_zone *mz,
541 struct mem_cgroup_tree_per_zone *mctz)
542{
543 spin_lock(&mctz->lock);
c0ff4b85 544 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
545 spin_unlock(&mctz->lock);
546}
547
f64c3f54 548
c0ff4b85 549static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 550{
ef8745c1 551 unsigned long long excess;
f64c3f54
BS
552 struct mem_cgroup_per_zone *mz;
553 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
554 int nid = page_to_nid(page);
555 int zid = page_zonenum(page);
f64c3f54
BS
556 mctz = soft_limit_tree_from_page(page);
557
558 /*
4e649152
KH
559 * Necessary to update all ancestors when hierarchy is used.
560 * because their event counter is not touched.
f64c3f54 561 */
c0ff4b85
R
562 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
563 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
564 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
565 /*
566 * We have to update the tree if mz is on RB-tree or
567 * mem is over its softlimit.
568 */
ef8745c1 569 if (excess || mz->on_tree) {
4e649152
KH
570 spin_lock(&mctz->lock);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
c0ff4b85 573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 574 /*
ef8745c1
KH
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
4e649152 577 */
c0ff4b85 578 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
579 spin_unlock(&mctz->lock);
580 }
f64c3f54
BS
581 }
582}
583
c0ff4b85 584static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
585{
586 int node, zone;
587 struct mem_cgroup_per_zone *mz;
588 struct mem_cgroup_tree_per_zone *mctz;
589
3ed28fa1 590 for_each_node(node) {
f64c3f54 591 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 592 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 593 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 594 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
595 }
596 }
597}
598
4e416953
BS
599static struct mem_cgroup_per_zone *
600__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601{
602 struct rb_node *rightmost = NULL;
26251eaf 603 struct mem_cgroup_per_zone *mz;
4e416953
BS
604
605retry:
26251eaf 606 mz = NULL;
4e416953
BS
607 rightmost = rb_last(&mctz->rb_root);
608 if (!rightmost)
609 goto done; /* Nothing to reclaim from */
610
611 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 /*
613 * Remove the node now but someone else can add it back,
614 * we will to add it back at the end of reclaim to its correct
615 * position in the tree.
616 */
d79154bb
HD
617 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
618 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
619 !css_tryget(&mz->memcg->css))
4e416953
BS
620 goto retry;
621done:
622 return mz;
623}
624
625static struct mem_cgroup_per_zone *
626mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627{
628 struct mem_cgroup_per_zone *mz;
629
630 spin_lock(&mctz->lock);
631 mz = __mem_cgroup_largest_soft_limit_node(mctz);
632 spin_unlock(&mctz->lock);
633 return mz;
634}
635
711d3d2c
KH
636/*
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronizion of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threashold and synchonization as vmstat[] should be
653 * implemented.
654 */
c0ff4b85 655static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 656 enum mem_cgroup_stat_index idx)
c62b1a3b 657{
7a159cc9 658 long val = 0;
c62b1a3b 659 int cpu;
c62b1a3b 660
711d3d2c
KH
661 get_online_cpus();
662 for_each_online_cpu(cpu)
c0ff4b85 663 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 664#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
665 spin_lock(&memcg->pcp_counter_lock);
666 val += memcg->nocpu_base.count[idx];
667 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
668#endif
669 put_online_cpus();
c62b1a3b
KH
670 return val;
671}
672
c0ff4b85 673static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
674 bool charge)
675{
676 int val = (charge) ? 1 : -1;
c0ff4b85 677 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
678}
679
c0ff4b85 680static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
681 enum mem_cgroup_events_index idx)
682{
683 unsigned long val = 0;
684 int cpu;
685
686 for_each_online_cpu(cpu)
c0ff4b85 687 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 688#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
689 spin_lock(&memcg->pcp_counter_lock);
690 val += memcg->nocpu_base.events[idx];
691 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
692#endif
693 return val;
694}
695
c0ff4b85 696static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 697 bool anon, int nr_pages)
d52aa412 698{
c62b1a3b
KH
699 preempt_disable();
700
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (anon)
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
e401f176
KH
712 /* pagein of a big page is an event. So, ignore page size */
713 if (nr_pages > 0)
c0ff4b85 714 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 715 else {
c0ff4b85 716 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
717 nr_pages = -nr_pages; /* for event */
718 }
e401f176 719
c0ff4b85 720 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 721
c62b1a3b 722 preempt_enable();
6d12e2d8
KH
723}
724
bb2a0de9 725unsigned long
c0ff4b85 726mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 727 unsigned int lru_mask)
889976db
YH
728{
729 struct mem_cgroup_per_zone *mz;
f156ab93 730 enum lru_list lru;
bb2a0de9
KH
731 unsigned long ret = 0;
732
c0ff4b85 733 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 734
f156ab93
HD
735 for_each_lru(lru) {
736 if (BIT(lru) & lru_mask)
737 ret += mz->lru_size[lru];
bb2a0de9
KH
738 }
739 return ret;
740}
741
742static unsigned long
c0ff4b85 743mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
744 int nid, unsigned int lru_mask)
745{
889976db
YH
746 u64 total = 0;
747 int zid;
748
bb2a0de9 749 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
750 total += mem_cgroup_zone_nr_lru_pages(memcg,
751 nid, zid, lru_mask);
bb2a0de9 752
889976db
YH
753 return total;
754}
bb2a0de9 755
c0ff4b85 756static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 757 unsigned int lru_mask)
6d12e2d8 758{
889976db 759 int nid;
6d12e2d8
KH
760 u64 total = 0;
761
bb2a0de9 762 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 763 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 764 return total;
d52aa412
KH
765}
766
f53d7ce3
JW
767static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
768 enum mem_cgroup_events_target target)
7a159cc9
JW
769{
770 unsigned long val, next;
771
4799401f
SR
772 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
773 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 774 /* from time_after() in jiffies.h */
f53d7ce3
JW
775 if ((long)next - (long)val < 0) {
776 switch (target) {
777 case MEM_CGROUP_TARGET_THRESH:
778 next = val + THRESHOLDS_EVENTS_TARGET;
779 break;
780 case MEM_CGROUP_TARGET_SOFTLIMIT:
781 next = val + SOFTLIMIT_EVENTS_TARGET;
782 break;
783 case MEM_CGROUP_TARGET_NUMAINFO:
784 next = val + NUMAINFO_EVENTS_TARGET;
785 break;
786 default:
787 break;
788 }
789 __this_cpu_write(memcg->stat->targets[target], next);
790 return true;
7a159cc9 791 }
f53d7ce3 792 return false;
d2265e6f
KH
793}
794
795/*
796 * Check events in order.
797 *
798 */
c0ff4b85 799static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 800{
4799401f 801 preempt_disable();
d2265e6f 802 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
803 if (unlikely(mem_cgroup_event_ratelimit(memcg,
804 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
805 bool do_softlimit;
806 bool do_numainfo __maybe_unused;
f53d7ce3
JW
807
808 do_softlimit = mem_cgroup_event_ratelimit(memcg,
809 MEM_CGROUP_TARGET_SOFTLIMIT);
810#if MAX_NUMNODES > 1
811 do_numainfo = mem_cgroup_event_ratelimit(memcg,
812 MEM_CGROUP_TARGET_NUMAINFO);
813#endif
814 preempt_enable();
815
c0ff4b85 816 mem_cgroup_threshold(memcg);
f53d7ce3 817 if (unlikely(do_softlimit))
c0ff4b85 818 mem_cgroup_update_tree(memcg, page);
453a9bf3 819#if MAX_NUMNODES > 1
f53d7ce3 820 if (unlikely(do_numainfo))
c0ff4b85 821 atomic_inc(&memcg->numainfo_events);
453a9bf3 822#endif
f53d7ce3
JW
823 } else
824 preempt_enable();
d2265e6f
KH
825}
826
d1a4c0b3 827struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
828{
829 return container_of(cgroup_subsys_state(cont,
830 mem_cgroup_subsys_id), struct mem_cgroup,
831 css);
832}
833
cf475ad2 834struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 835{
31a78f23
BS
836 /*
837 * mm_update_next_owner() may clear mm->owner to NULL
838 * if it races with swapoff, page migration, etc.
839 * So this can be called with p == NULL.
840 */
841 if (unlikely(!p))
842 return NULL;
843
78fb7466
PE
844 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
845 struct mem_cgroup, css);
846}
847
a433658c 848struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 849{
c0ff4b85 850 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
851
852 if (!mm)
853 return NULL;
54595fe2
KH
854 /*
855 * Because we have no locks, mm->owner's may be being moved to other
856 * cgroup. We use css_tryget() here even if this looks
857 * pessimistic (rather than adding locks here).
858 */
859 rcu_read_lock();
860 do {
c0ff4b85
R
861 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
862 if (unlikely(!memcg))
54595fe2 863 break;
c0ff4b85 864 } while (!css_tryget(&memcg->css));
54595fe2 865 rcu_read_unlock();
c0ff4b85 866 return memcg;
54595fe2
KH
867}
868
5660048c
JW
869/**
870 * mem_cgroup_iter - iterate over memory cgroup hierarchy
871 * @root: hierarchy root
872 * @prev: previously returned memcg, NULL on first invocation
873 * @reclaim: cookie for shared reclaim walks, NULL for full walks
874 *
875 * Returns references to children of the hierarchy below @root, or
876 * @root itself, or %NULL after a full round-trip.
877 *
878 * Caller must pass the return value in @prev on subsequent
879 * invocations for reference counting, or use mem_cgroup_iter_break()
880 * to cancel a hierarchy walk before the round-trip is complete.
881 *
882 * Reclaimers can specify a zone and a priority level in @reclaim to
883 * divide up the memcgs in the hierarchy among all concurrent
884 * reclaimers operating on the same zone and priority.
885 */
886struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
887 struct mem_cgroup *prev,
888 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 889{
9f3a0d09
JW
890 struct mem_cgroup *memcg = NULL;
891 int id = 0;
711d3d2c 892
5660048c
JW
893 if (mem_cgroup_disabled())
894 return NULL;
895
9f3a0d09
JW
896 if (!root)
897 root = root_mem_cgroup;
7d74b06f 898
9f3a0d09
JW
899 if (prev && !reclaim)
900 id = css_id(&prev->css);
14067bb3 901
9f3a0d09
JW
902 if (prev && prev != root)
903 css_put(&prev->css);
14067bb3 904
9f3a0d09
JW
905 if (!root->use_hierarchy && root != root_mem_cgroup) {
906 if (prev)
907 return NULL;
908 return root;
909 }
14067bb3 910
9f3a0d09 911 while (!memcg) {
527a5ec9 912 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 913 struct cgroup_subsys_state *css;
711d3d2c 914
527a5ec9
JW
915 if (reclaim) {
916 int nid = zone_to_nid(reclaim->zone);
917 int zid = zone_idx(reclaim->zone);
918 struct mem_cgroup_per_zone *mz;
919
920 mz = mem_cgroup_zoneinfo(root, nid, zid);
921 iter = &mz->reclaim_iter[reclaim->priority];
922 if (prev && reclaim->generation != iter->generation)
923 return NULL;
924 id = iter->position;
925 }
7d74b06f 926
9f3a0d09
JW
927 rcu_read_lock();
928 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
929 if (css) {
930 if (css == &root->css || css_tryget(css))
931 memcg = container_of(css,
932 struct mem_cgroup, css);
933 } else
934 id = 0;
14067bb3 935 rcu_read_unlock();
14067bb3 936
527a5ec9
JW
937 if (reclaim) {
938 iter->position = id;
939 if (!css)
940 iter->generation++;
941 else if (!prev && memcg)
942 reclaim->generation = iter->generation;
943 }
9f3a0d09
JW
944
945 if (prev && !css)
946 return NULL;
947 }
948 return memcg;
14067bb3 949}
7d74b06f 950
5660048c
JW
951/**
952 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
953 * @root: hierarchy root
954 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
955 */
956void mem_cgroup_iter_break(struct mem_cgroup *root,
957 struct mem_cgroup *prev)
9f3a0d09
JW
958{
959 if (!root)
960 root = root_mem_cgroup;
961 if (prev && prev != root)
962 css_put(&prev->css);
963}
7d74b06f 964
9f3a0d09
JW
965/*
966 * Iteration constructs for visiting all cgroups (under a tree). If
967 * loops are exited prematurely (break), mem_cgroup_iter_break() must
968 * be used for reference counting.
969 */
970#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 971 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 972 iter != NULL; \
527a5ec9 973 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 974
9f3a0d09 975#define for_each_mem_cgroup(iter) \
527a5ec9 976 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 977 iter != NULL; \
527a5ec9 978 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 979
c0ff4b85 980static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 981{
c0ff4b85 982 return (memcg == root_mem_cgroup);
4b3bde4c
BS
983}
984
456f998e
YH
985void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
986{
c0ff4b85 987 struct mem_cgroup *memcg;
456f998e
YH
988
989 if (!mm)
990 return;
991
992 rcu_read_lock();
c0ff4b85
R
993 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
994 if (unlikely(!memcg))
456f998e
YH
995 goto out;
996
997 switch (idx) {
456f998e 998 case PGFAULT:
0e574a93
JW
999 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1000 break;
1001 case PGMAJFAULT:
1002 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1003 break;
1004 default:
1005 BUG();
1006 }
1007out:
1008 rcu_read_unlock();
1009}
1010EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1011
925b7673
JW
1012/**
1013 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1014 * @zone: zone of the wanted lruvec
1015 * @mem: memcg of the wanted lruvec
1016 *
1017 * Returns the lru list vector holding pages for the given @zone and
1018 * @mem. This can be the global zone lruvec, if the memory controller
1019 * is disabled.
1020 */
1021struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1022 struct mem_cgroup *memcg)
1023{
1024 struct mem_cgroup_per_zone *mz;
1025
1026 if (mem_cgroup_disabled())
1027 return &zone->lruvec;
1028
1029 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1030 return &mz->lruvec;
1031}
1032
08e552c6
KH
1033/*
1034 * Following LRU functions are allowed to be used without PCG_LOCK.
1035 * Operations are called by routine of global LRU independently from memcg.
1036 * What we have to take care of here is validness of pc->mem_cgroup.
1037 *
1038 * Changes to pc->mem_cgroup happens when
1039 * 1. charge
1040 * 2. moving account
1041 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1042 * It is added to LRU before charge.
1043 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1044 * When moving account, the page is not on LRU. It's isolated.
1045 */
4f98a2fe 1046
925b7673
JW
1047/**
1048 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1049 * @zone: zone of the page
1050 * @page: the page
1051 * @lru: current lru
1052 *
1053 * This function accounts for @page being added to @lru, and returns
1054 * the lruvec for the given @zone and the memcg @page is charged to.
1055 *
1056 * The callsite is then responsible for physically linking the page to
1057 * the returned lruvec->lists[@lru].
1058 */
1059struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1060 enum lru_list lru)
08e552c6 1061{
08e552c6 1062 struct mem_cgroup_per_zone *mz;
925b7673
JW
1063 struct mem_cgroup *memcg;
1064 struct page_cgroup *pc;
6d12e2d8 1065
f8d66542 1066 if (mem_cgroup_disabled())
925b7673
JW
1067 return &zone->lruvec;
1068
08e552c6 1069 pc = lookup_page_cgroup(page);
38c5d72f 1070 memcg = pc->mem_cgroup;
7512102c
HD
1071
1072 /*
1073 * Surreptitiously switch any uncharged page to root:
1074 * an uncharged page off lru does nothing to secure
1075 * its former mem_cgroup from sudden removal.
1076 *
1077 * Our caller holds lru_lock, and PageCgroupUsed is updated
1078 * under page_cgroup lock: between them, they make all uses
1079 * of pc->mem_cgroup safe.
1080 */
1081 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1082 pc->mem_cgroup = memcg = root_mem_cgroup;
1083
925b7673
JW
1084 mz = page_cgroup_zoneinfo(memcg, page);
1085 /* compound_order() is stabilized through lru_lock */
1eb49272 1086 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1087 return &mz->lruvec;
08e552c6 1088}
b69408e8 1089
925b7673
JW
1090/**
1091 * mem_cgroup_lru_del_list - account for removing an lru page
1092 * @page: the page
1093 * @lru: target lru
1094 *
1095 * This function accounts for @page being removed from @lru.
1096 *
1097 * The callsite is then responsible for physically unlinking
1098 * @page->lru.
3f58a829 1099 */
925b7673 1100void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1101{
1102 struct mem_cgroup_per_zone *mz;
925b7673 1103 struct mem_cgroup *memcg;
3f58a829 1104 struct page_cgroup *pc;
3f58a829
MK
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
1109 pc = lookup_page_cgroup(page);
38c5d72f
KH
1110 memcg = pc->mem_cgroup;
1111 VM_BUG_ON(!memcg);
925b7673
JW
1112 mz = page_cgroup_zoneinfo(memcg, page);
1113 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1114 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1115 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1116}
1117
925b7673
JW
1118/**
1119 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1120 * @zone: zone of the page
1121 * @page: the page
1122 * @from: current lru
1123 * @to: target lru
1124 *
1125 * This function accounts for @page being moved between the lrus @from
1126 * and @to, and returns the lruvec for the given @zone and the memcg
1127 * @page is charged to.
1128 *
1129 * The callsite is then responsible for physically relinking
1130 * @page->lru to the returned lruvec->lists[@to].
1131 */
1132struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1133 struct page *page,
1134 enum lru_list from,
1135 enum lru_list to)
66e1707b 1136{
925b7673
JW
1137 /* XXX: Optimize this, especially for @from == @to */
1138 mem_cgroup_lru_del_list(page, from);
1139 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1140}
544122e5 1141
3e92041d 1142/*
c0ff4b85 1143 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1144 * hierarchy subtree
1145 */
c3ac9a8a
JW
1146bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1147 struct mem_cgroup *memcg)
3e92041d 1148{
91c63734
JW
1149 if (root_memcg == memcg)
1150 return true;
1151 if (!root_memcg->use_hierarchy)
1152 return false;
c3ac9a8a
JW
1153 return css_is_ancestor(&memcg->css, &root_memcg->css);
1154}
1155
1156static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1157 struct mem_cgroup *memcg)
1158{
1159 bool ret;
1160
91c63734 1161 rcu_read_lock();
c3ac9a8a 1162 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1163 rcu_read_unlock();
1164 return ret;
3e92041d
MH
1165}
1166
c0ff4b85 1167int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1168{
1169 int ret;
0b7f569e 1170 struct mem_cgroup *curr = NULL;
158e0a2d 1171 struct task_struct *p;
4c4a2214 1172
158e0a2d 1173 p = find_lock_task_mm(task);
de077d22
DR
1174 if (p) {
1175 curr = try_get_mem_cgroup_from_mm(p->mm);
1176 task_unlock(p);
1177 } else {
1178 /*
1179 * All threads may have already detached their mm's, but the oom
1180 * killer still needs to detect if they have already been oom
1181 * killed to prevent needlessly killing additional tasks.
1182 */
1183 task_lock(task);
1184 curr = mem_cgroup_from_task(task);
1185 if (curr)
1186 css_get(&curr->css);
1187 task_unlock(task);
1188 }
0b7f569e
KH
1189 if (!curr)
1190 return 0;
d31f56db 1191 /*
c0ff4b85 1192 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1193 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1194 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1196 */
c0ff4b85 1197 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1198 css_put(&curr->css);
4c4a2214
DR
1199 return ret;
1200}
1201
9b272977 1202int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1203{
9b272977
JW
1204 unsigned long inactive_ratio;
1205 int nid = zone_to_nid(zone);
1206 int zid = zone_idx(zone);
14797e23 1207 unsigned long inactive;
9b272977 1208 unsigned long active;
c772be93 1209 unsigned long gb;
14797e23 1210
9b272977
JW
1211 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1212 BIT(LRU_INACTIVE_ANON));
1213 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1214 BIT(LRU_ACTIVE_ANON));
14797e23 1215
c772be93
KM
1216 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1217 if (gb)
1218 inactive_ratio = int_sqrt(10 * gb);
1219 else
1220 inactive_ratio = 1;
1221
9b272977 1222 return inactive * inactive_ratio < active;
14797e23
KM
1223}
1224
9b272977 1225int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1226{
1227 unsigned long active;
1228 unsigned long inactive;
9b272977
JW
1229 int zid = zone_idx(zone);
1230 int nid = zone_to_nid(zone);
56e49d21 1231
9b272977
JW
1232 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1233 BIT(LRU_INACTIVE_FILE));
1234 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1235 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1236
1237 return (active > inactive);
1238}
1239
3e2f41f1
KM
1240struct zone_reclaim_stat *
1241mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1242{
1243 struct page_cgroup *pc;
1244 struct mem_cgroup_per_zone *mz;
1245
1246 if (mem_cgroup_disabled())
1247 return NULL;
1248
1249 pc = lookup_page_cgroup(page);
bd112db8
DN
1250 if (!PageCgroupUsed(pc))
1251 return NULL;
713735b4
JW
1252 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1253 smp_rmb();
97a6c37b 1254 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
89abfab1 1255 return &mz->lruvec.reclaim_stat;
3e2f41f1
KM
1256}
1257
6d61ef40
BS
1258#define mem_cgroup_from_res_counter(counter, member) \
1259 container_of(counter, struct mem_cgroup, member)
1260
19942822 1261/**
9d11ea9f
JW
1262 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1263 * @mem: the memory cgroup
19942822 1264 *
9d11ea9f 1265 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1266 * pages.
19942822 1267 */
c0ff4b85 1268static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1269{
9d11ea9f
JW
1270 unsigned long long margin;
1271
c0ff4b85 1272 margin = res_counter_margin(&memcg->res);
9d11ea9f 1273 if (do_swap_account)
c0ff4b85 1274 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1275 return margin >> PAGE_SHIFT;
19942822
JW
1276}
1277
1f4c025b 1278int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1279{
1280 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1281
1282 /* root ? */
1283 if (cgrp->parent == NULL)
1284 return vm_swappiness;
1285
bf1ff263 1286 return memcg->swappiness;
a7885eb8
KM
1287}
1288
619d094b
KH
1289/*
1290 * memcg->moving_account is used for checking possibility that some thread is
1291 * calling move_account(). When a thread on CPU-A starts moving pages under
1292 * a memcg, other threads should check memcg->moving_account under
1293 * rcu_read_lock(), like this:
1294 *
1295 * CPU-A CPU-B
1296 * rcu_read_lock()
1297 * memcg->moving_account+1 if (memcg->mocing_account)
1298 * take heavy locks.
1299 * synchronize_rcu() update something.
1300 * rcu_read_unlock()
1301 * start move here.
1302 */
4331f7d3
KH
1303
1304/* for quick checking without looking up memcg */
1305atomic_t memcg_moving __read_mostly;
1306
c0ff4b85 1307static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1308{
4331f7d3 1309 atomic_inc(&memcg_moving);
619d094b 1310 atomic_inc(&memcg->moving_account);
32047e2a
KH
1311 synchronize_rcu();
1312}
1313
c0ff4b85 1314static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1315{
619d094b
KH
1316 /*
1317 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1318 * We check NULL in callee rather than caller.
1319 */
4331f7d3
KH
1320 if (memcg) {
1321 atomic_dec(&memcg_moving);
619d094b 1322 atomic_dec(&memcg->moving_account);
4331f7d3 1323 }
32047e2a 1324}
619d094b 1325
32047e2a
KH
1326/*
1327 * 2 routines for checking "mem" is under move_account() or not.
1328 *
13fd1dd9
AM
1329 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1330 * is used for avoiding races in accounting. If true,
32047e2a
KH
1331 * pc->mem_cgroup may be overwritten.
1332 *
1333 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1334 * under hierarchy of moving cgroups. This is for
1335 * waiting at hith-memory prressure caused by "move".
1336 */
1337
13fd1dd9 1338static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1339{
1340 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1341 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1342}
4b534334 1343
c0ff4b85 1344static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1345{
2bd9bb20
KH
1346 struct mem_cgroup *from;
1347 struct mem_cgroup *to;
4b534334 1348 bool ret = false;
2bd9bb20
KH
1349 /*
1350 * Unlike task_move routines, we access mc.to, mc.from not under
1351 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1352 */
1353 spin_lock(&mc.lock);
1354 from = mc.from;
1355 to = mc.to;
1356 if (!from)
1357 goto unlock;
3e92041d 1358
c0ff4b85
R
1359 ret = mem_cgroup_same_or_subtree(memcg, from)
1360 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1361unlock:
1362 spin_unlock(&mc.lock);
4b534334
KH
1363 return ret;
1364}
1365
c0ff4b85 1366static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1367{
1368 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1369 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1370 DEFINE_WAIT(wait);
1371 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1372 /* moving charge context might have finished. */
1373 if (mc.moving_task)
1374 schedule();
1375 finish_wait(&mc.waitq, &wait);
1376 return true;
1377 }
1378 }
1379 return false;
1380}
1381
312734c0
KH
1382/*
1383 * Take this lock when
1384 * - a code tries to modify page's memcg while it's USED.
1385 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1386 * see mem_cgroup_stolen(), too.
312734c0
KH
1387 */
1388static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1389 unsigned long *flags)
1390{
1391 spin_lock_irqsave(&memcg->move_lock, *flags);
1392}
1393
1394static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1396{
1397 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1398}
1399
e222432b 1400/**
6a6135b6 1401 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1402 * @memcg: The memory cgroup that went over limit
1403 * @p: Task that is going to be killed
1404 *
1405 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1406 * enabled
1407 */
1408void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1409{
1410 struct cgroup *task_cgrp;
1411 struct cgroup *mem_cgrp;
1412 /*
1413 * Need a buffer in BSS, can't rely on allocations. The code relies
1414 * on the assumption that OOM is serialized for memory controller.
1415 * If this assumption is broken, revisit this code.
1416 */
1417 static char memcg_name[PATH_MAX];
1418 int ret;
1419
d31f56db 1420 if (!memcg || !p)
e222432b
BS
1421 return;
1422
e222432b
BS
1423 rcu_read_lock();
1424
1425 mem_cgrp = memcg->css.cgroup;
1426 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1427
1428 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1429 if (ret < 0) {
1430 /*
1431 * Unfortunately, we are unable to convert to a useful name
1432 * But we'll still print out the usage information
1433 */
1434 rcu_read_unlock();
1435 goto done;
1436 }
1437 rcu_read_unlock();
1438
1439 printk(KERN_INFO "Task in %s killed", memcg_name);
1440
1441 rcu_read_lock();
1442 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1443 if (ret < 0) {
1444 rcu_read_unlock();
1445 goto done;
1446 }
1447 rcu_read_unlock();
1448
1449 /*
1450 * Continues from above, so we don't need an KERN_ level
1451 */
1452 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1453done:
1454
1455 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1456 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1457 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1458 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1459 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1460 "failcnt %llu\n",
1461 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1462 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1463 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1464}
1465
81d39c20
KH
1466/*
1467 * This function returns the number of memcg under hierarchy tree. Returns
1468 * 1(self count) if no children.
1469 */
c0ff4b85 1470static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1471{
1472 int num = 0;
7d74b06f
KH
1473 struct mem_cgroup *iter;
1474
c0ff4b85 1475 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1476 num++;
81d39c20
KH
1477 return num;
1478}
1479
a63d83f4
DR
1480/*
1481 * Return the memory (and swap, if configured) limit for a memcg.
1482 */
1483u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1484{
1485 u64 limit;
1486 u64 memsw;
1487
f3e8eb70
JW
1488 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1489 limit += total_swap_pages << PAGE_SHIFT;
1490
a63d83f4
DR
1491 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1492 /*
1493 * If memsw is finite and limits the amount of swap space available
1494 * to this memcg, return that limit.
1495 */
1496 return min(limit, memsw);
1497}
1498
5660048c
JW
1499static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1500 gfp_t gfp_mask,
1501 unsigned long flags)
1502{
1503 unsigned long total = 0;
1504 bool noswap = false;
1505 int loop;
1506
1507 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1508 noswap = true;
1509 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1510 noswap = true;
1511
1512 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1513 if (loop)
1514 drain_all_stock_async(memcg);
1515 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1516 /*
1517 * Allow limit shrinkers, which are triggered directly
1518 * by userspace, to catch signals and stop reclaim
1519 * after minimal progress, regardless of the margin.
1520 */
1521 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1522 break;
1523 if (mem_cgroup_margin(memcg))
1524 break;
1525 /*
1526 * If nothing was reclaimed after two attempts, there
1527 * may be no reclaimable pages in this hierarchy.
1528 */
1529 if (loop && !total)
1530 break;
1531 }
1532 return total;
1533}
1534
4d0c066d
KH
1535/**
1536 * test_mem_cgroup_node_reclaimable
1537 * @mem: the target memcg
1538 * @nid: the node ID to be checked.
1539 * @noswap : specify true here if the user wants flle only information.
1540 *
1541 * This function returns whether the specified memcg contains any
1542 * reclaimable pages on a node. Returns true if there are any reclaimable
1543 * pages in the node.
1544 */
c0ff4b85 1545static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1546 int nid, bool noswap)
1547{
c0ff4b85 1548 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1549 return true;
1550 if (noswap || !total_swap_pages)
1551 return false;
c0ff4b85 1552 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1553 return true;
1554 return false;
1555
1556}
889976db
YH
1557#if MAX_NUMNODES > 1
1558
1559/*
1560 * Always updating the nodemask is not very good - even if we have an empty
1561 * list or the wrong list here, we can start from some node and traverse all
1562 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1563 *
1564 */
c0ff4b85 1565static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1566{
1567 int nid;
453a9bf3
KH
1568 /*
1569 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1570 * pagein/pageout changes since the last update.
1571 */
c0ff4b85 1572 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1573 return;
c0ff4b85 1574 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1575 return;
1576
889976db 1577 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1578 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1579
1580 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1581
c0ff4b85
R
1582 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1583 node_clear(nid, memcg->scan_nodes);
889976db 1584 }
453a9bf3 1585
c0ff4b85
R
1586 atomic_set(&memcg->numainfo_events, 0);
1587 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1588}
1589
1590/*
1591 * Selecting a node where we start reclaim from. Because what we need is just
1592 * reducing usage counter, start from anywhere is O,K. Considering
1593 * memory reclaim from current node, there are pros. and cons.
1594 *
1595 * Freeing memory from current node means freeing memory from a node which
1596 * we'll use or we've used. So, it may make LRU bad. And if several threads
1597 * hit limits, it will see a contention on a node. But freeing from remote
1598 * node means more costs for memory reclaim because of memory latency.
1599 *
1600 * Now, we use round-robin. Better algorithm is welcomed.
1601 */
c0ff4b85 1602int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1603{
1604 int node;
1605
c0ff4b85
R
1606 mem_cgroup_may_update_nodemask(memcg);
1607 node = memcg->last_scanned_node;
889976db 1608
c0ff4b85 1609 node = next_node(node, memcg->scan_nodes);
889976db 1610 if (node == MAX_NUMNODES)
c0ff4b85 1611 node = first_node(memcg->scan_nodes);
889976db
YH
1612 /*
1613 * We call this when we hit limit, not when pages are added to LRU.
1614 * No LRU may hold pages because all pages are UNEVICTABLE or
1615 * memcg is too small and all pages are not on LRU. In that case,
1616 * we use curret node.
1617 */
1618 if (unlikely(node == MAX_NUMNODES))
1619 node = numa_node_id();
1620
c0ff4b85 1621 memcg->last_scanned_node = node;
889976db
YH
1622 return node;
1623}
1624
4d0c066d
KH
1625/*
1626 * Check all nodes whether it contains reclaimable pages or not.
1627 * For quick scan, we make use of scan_nodes. This will allow us to skip
1628 * unused nodes. But scan_nodes is lazily updated and may not cotain
1629 * enough new information. We need to do double check.
1630 */
6bbda35c 1631static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1632{
1633 int nid;
1634
1635 /*
1636 * quick check...making use of scan_node.
1637 * We can skip unused nodes.
1638 */
c0ff4b85
R
1639 if (!nodes_empty(memcg->scan_nodes)) {
1640 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1641 nid < MAX_NUMNODES;
c0ff4b85 1642 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1643
c0ff4b85 1644 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1645 return true;
1646 }
1647 }
1648 /*
1649 * Check rest of nodes.
1650 */
1651 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1652 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1653 continue;
c0ff4b85 1654 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1655 return true;
1656 }
1657 return false;
1658}
1659
889976db 1660#else
c0ff4b85 1661int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1662{
1663 return 0;
1664}
4d0c066d 1665
6bbda35c 1666static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1667{
c0ff4b85 1668 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1669}
889976db
YH
1670#endif
1671
5660048c
JW
1672static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1673 struct zone *zone,
1674 gfp_t gfp_mask,
1675 unsigned long *total_scanned)
6d61ef40 1676{
9f3a0d09 1677 struct mem_cgroup *victim = NULL;
5660048c 1678 int total = 0;
04046e1a 1679 int loop = 0;
9d11ea9f 1680 unsigned long excess;
185efc0f 1681 unsigned long nr_scanned;
527a5ec9
JW
1682 struct mem_cgroup_reclaim_cookie reclaim = {
1683 .zone = zone,
1684 .priority = 0,
1685 };
9d11ea9f 1686
c0ff4b85 1687 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1688
4e416953 1689 while (1) {
527a5ec9 1690 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1691 if (!victim) {
04046e1a 1692 loop++;
4e416953
BS
1693 if (loop >= 2) {
1694 /*
1695 * If we have not been able to reclaim
1696 * anything, it might because there are
1697 * no reclaimable pages under this hierarchy
1698 */
5660048c 1699 if (!total)
4e416953 1700 break;
4e416953 1701 /*
25985edc 1702 * We want to do more targeted reclaim.
4e416953
BS
1703 * excess >> 2 is not to excessive so as to
1704 * reclaim too much, nor too less that we keep
1705 * coming back to reclaim from this cgroup
1706 */
1707 if (total >= (excess >> 2) ||
9f3a0d09 1708 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1709 break;
4e416953 1710 }
9f3a0d09 1711 continue;
4e416953 1712 }
5660048c 1713 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1714 continue;
5660048c
JW
1715 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1716 zone, &nr_scanned);
1717 *total_scanned += nr_scanned;
1718 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1719 break;
6d61ef40 1720 }
9f3a0d09 1721 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1722 return total;
6d61ef40
BS
1723}
1724
867578cb
KH
1725/*
1726 * Check OOM-Killer is already running under our hierarchy.
1727 * If someone is running, return false.
1af8efe9 1728 * Has to be called with memcg_oom_lock
867578cb 1729 */
c0ff4b85 1730static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1731{
79dfdacc 1732 struct mem_cgroup *iter, *failed = NULL;
a636b327 1733
9f3a0d09 1734 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1735 if (iter->oom_lock) {
79dfdacc
MH
1736 /*
1737 * this subtree of our hierarchy is already locked
1738 * so we cannot give a lock.
1739 */
79dfdacc 1740 failed = iter;
9f3a0d09
JW
1741 mem_cgroup_iter_break(memcg, iter);
1742 break;
23751be0
JW
1743 } else
1744 iter->oom_lock = true;
7d74b06f 1745 }
867578cb 1746
79dfdacc 1747 if (!failed)
23751be0 1748 return true;
79dfdacc
MH
1749
1750 /*
1751 * OK, we failed to lock the whole subtree so we have to clean up
1752 * what we set up to the failing subtree
1753 */
9f3a0d09 1754 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1755 if (iter == failed) {
9f3a0d09
JW
1756 mem_cgroup_iter_break(memcg, iter);
1757 break;
79dfdacc
MH
1758 }
1759 iter->oom_lock = false;
1760 }
23751be0 1761 return false;
a636b327 1762}
0b7f569e 1763
79dfdacc 1764/*
1af8efe9 1765 * Has to be called with memcg_oom_lock
79dfdacc 1766 */
c0ff4b85 1767static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1768{
7d74b06f
KH
1769 struct mem_cgroup *iter;
1770
c0ff4b85 1771 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1772 iter->oom_lock = false;
1773 return 0;
1774}
1775
c0ff4b85 1776static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1777{
1778 struct mem_cgroup *iter;
1779
c0ff4b85 1780 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1781 atomic_inc(&iter->under_oom);
1782}
1783
c0ff4b85 1784static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1785{
1786 struct mem_cgroup *iter;
1787
867578cb
KH
1788 /*
1789 * When a new child is created while the hierarchy is under oom,
1790 * mem_cgroup_oom_lock() may not be called. We have to use
1791 * atomic_add_unless() here.
1792 */
c0ff4b85 1793 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1794 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1795}
1796
1af8efe9 1797static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1798static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1799
dc98df5a 1800struct oom_wait_info {
d79154bb 1801 struct mem_cgroup *memcg;
dc98df5a
KH
1802 wait_queue_t wait;
1803};
1804
1805static int memcg_oom_wake_function(wait_queue_t *wait,
1806 unsigned mode, int sync, void *arg)
1807{
d79154bb
HD
1808 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1809 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1810 struct oom_wait_info *oom_wait_info;
1811
1812 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1813 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1814
dc98df5a 1815 /*
d79154bb 1816 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1817 * Then we can use css_is_ancestor without taking care of RCU.
1818 */
c0ff4b85
R
1819 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1820 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1821 return 0;
dc98df5a
KH
1822 return autoremove_wake_function(wait, mode, sync, arg);
1823}
1824
c0ff4b85 1825static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1826{
c0ff4b85
R
1827 /* for filtering, pass "memcg" as argument. */
1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1829}
1830
c0ff4b85 1831static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1832{
c0ff4b85
R
1833 if (memcg && atomic_read(&memcg->under_oom))
1834 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1835}
1836
867578cb
KH
1837/*
1838 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1839 */
6bbda35c
KS
1840static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1841 int order)
0b7f569e 1842{
dc98df5a 1843 struct oom_wait_info owait;
3c11ecf4 1844 bool locked, need_to_kill;
867578cb 1845
d79154bb 1846 owait.memcg = memcg;
dc98df5a
KH
1847 owait.wait.flags = 0;
1848 owait.wait.func = memcg_oom_wake_function;
1849 owait.wait.private = current;
1850 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1851 need_to_kill = true;
c0ff4b85 1852 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1853
c0ff4b85 1854 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1855 spin_lock(&memcg_oom_lock);
c0ff4b85 1856 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1857 /*
1858 * Even if signal_pending(), we can't quit charge() loop without
1859 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1860 * under OOM is always welcomed, use TASK_KILLABLE here.
1861 */
3c11ecf4 1862 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1863 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1864 need_to_kill = false;
1865 if (locked)
c0ff4b85 1866 mem_cgroup_oom_notify(memcg);
1af8efe9 1867 spin_unlock(&memcg_oom_lock);
867578cb 1868
3c11ecf4
KH
1869 if (need_to_kill) {
1870 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1871 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1872 } else {
867578cb 1873 schedule();
dc98df5a 1874 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1875 }
1af8efe9 1876 spin_lock(&memcg_oom_lock);
79dfdacc 1877 if (locked)
c0ff4b85
R
1878 mem_cgroup_oom_unlock(memcg);
1879 memcg_wakeup_oom(memcg);
1af8efe9 1880 spin_unlock(&memcg_oom_lock);
867578cb 1881
c0ff4b85 1882 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1883
867578cb
KH
1884 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1885 return false;
1886 /* Give chance to dying process */
715a5ee8 1887 schedule_timeout_uninterruptible(1);
867578cb 1888 return true;
0b7f569e
KH
1889}
1890
d69b042f
BS
1891/*
1892 * Currently used to update mapped file statistics, but the routine can be
1893 * generalized to update other statistics as well.
32047e2a
KH
1894 *
1895 * Notes: Race condition
1896 *
1897 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1898 * it tends to be costly. But considering some conditions, we doesn't need
1899 * to do so _always_.
1900 *
1901 * Considering "charge", lock_page_cgroup() is not required because all
1902 * file-stat operations happen after a page is attached to radix-tree. There
1903 * are no race with "charge".
1904 *
1905 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1906 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1907 * if there are race with "uncharge". Statistics itself is properly handled
1908 * by flags.
1909 *
1910 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1911 * small, we check mm->moving_account and detect there are possibility of race
1912 * If there is, we take a lock.
d69b042f 1913 */
26174efd 1914
89c06bd5
KH
1915void __mem_cgroup_begin_update_page_stat(struct page *page,
1916 bool *locked, unsigned long *flags)
1917{
1918 struct mem_cgroup *memcg;
1919 struct page_cgroup *pc;
1920
1921 pc = lookup_page_cgroup(page);
1922again:
1923 memcg = pc->mem_cgroup;
1924 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1925 return;
1926 /*
1927 * If this memory cgroup is not under account moving, we don't
1928 * need to take move_lock_page_cgroup(). Because we already hold
1929 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1930 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1931 */
13fd1dd9 1932 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1933 return;
1934
1935 move_lock_mem_cgroup(memcg, flags);
1936 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1937 move_unlock_mem_cgroup(memcg, flags);
1938 goto again;
1939 }
1940 *locked = true;
1941}
1942
1943void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1944{
1945 struct page_cgroup *pc = lookup_page_cgroup(page);
1946
1947 /*
1948 * It's guaranteed that pc->mem_cgroup never changes while
1949 * lock is held because a routine modifies pc->mem_cgroup
1950 * should take move_lock_page_cgroup().
1951 */
1952 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1953}
1954
2a7106f2
GT
1955void mem_cgroup_update_page_stat(struct page *page,
1956 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1957{
c0ff4b85 1958 struct mem_cgroup *memcg;
32047e2a 1959 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1960 unsigned long uninitialized_var(flags);
d69b042f 1961
cfa44946 1962 if (mem_cgroup_disabled())
d69b042f 1963 return;
89c06bd5 1964
c0ff4b85
R
1965 memcg = pc->mem_cgroup;
1966 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1967 return;
26174efd 1968
26174efd 1969 switch (idx) {
2a7106f2 1970 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1971 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1972 break;
1973 default:
1974 BUG();
8725d541 1975 }
d69b042f 1976
c0ff4b85 1977 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1978}
26174efd 1979
cdec2e42
KH
1980/*
1981 * size of first charge trial. "32" comes from vmscan.c's magic value.
1982 * TODO: maybe necessary to use big numbers in big irons.
1983 */
7ec99d62 1984#define CHARGE_BATCH 32U
cdec2e42
KH
1985struct memcg_stock_pcp {
1986 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1987 unsigned int nr_pages;
cdec2e42 1988 struct work_struct work;
26fe6168
KH
1989 unsigned long flags;
1990#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1991};
1992static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1993static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1994
1995/*
11c9ea4e 1996 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1997 * from local stock and true is returned. If the stock is 0 or charges from a
1998 * cgroup which is not current target, returns false. This stock will be
1999 * refilled.
2000 */
c0ff4b85 2001static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2002{
2003 struct memcg_stock_pcp *stock;
2004 bool ret = true;
2005
2006 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2007 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2008 stock->nr_pages--;
cdec2e42
KH
2009 else /* need to call res_counter_charge */
2010 ret = false;
2011 put_cpu_var(memcg_stock);
2012 return ret;
2013}
2014
2015/*
2016 * Returns stocks cached in percpu to res_counter and reset cached information.
2017 */
2018static void drain_stock(struct memcg_stock_pcp *stock)
2019{
2020 struct mem_cgroup *old = stock->cached;
2021
11c9ea4e
JW
2022 if (stock->nr_pages) {
2023 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2024
2025 res_counter_uncharge(&old->res, bytes);
cdec2e42 2026 if (do_swap_account)
11c9ea4e
JW
2027 res_counter_uncharge(&old->memsw, bytes);
2028 stock->nr_pages = 0;
cdec2e42
KH
2029 }
2030 stock->cached = NULL;
cdec2e42
KH
2031}
2032
2033/*
2034 * This must be called under preempt disabled or must be called by
2035 * a thread which is pinned to local cpu.
2036 */
2037static void drain_local_stock(struct work_struct *dummy)
2038{
2039 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2040 drain_stock(stock);
26fe6168 2041 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2042}
2043
2044/*
2045 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2046 * This will be consumed by consume_stock() function, later.
cdec2e42 2047 */
c0ff4b85 2048static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2049{
2050 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2051
c0ff4b85 2052 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2053 drain_stock(stock);
c0ff4b85 2054 stock->cached = memcg;
cdec2e42 2055 }
11c9ea4e 2056 stock->nr_pages += nr_pages;
cdec2e42
KH
2057 put_cpu_var(memcg_stock);
2058}
2059
2060/*
c0ff4b85 2061 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2062 * of the hierarchy under it. sync flag says whether we should block
2063 * until the work is done.
cdec2e42 2064 */
c0ff4b85 2065static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2066{
26fe6168 2067 int cpu, curcpu;
d38144b7 2068
cdec2e42 2069 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2070 get_online_cpus();
5af12d0e 2071 curcpu = get_cpu();
cdec2e42
KH
2072 for_each_online_cpu(cpu) {
2073 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2074 struct mem_cgroup *memcg;
26fe6168 2075
c0ff4b85
R
2076 memcg = stock->cached;
2077 if (!memcg || !stock->nr_pages)
26fe6168 2078 continue;
c0ff4b85 2079 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2080 continue;
d1a05b69
MH
2081 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2082 if (cpu == curcpu)
2083 drain_local_stock(&stock->work);
2084 else
2085 schedule_work_on(cpu, &stock->work);
2086 }
cdec2e42 2087 }
5af12d0e 2088 put_cpu();
d38144b7
MH
2089
2090 if (!sync)
2091 goto out;
2092
2093 for_each_online_cpu(cpu) {
2094 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2095 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2096 flush_work(&stock->work);
2097 }
2098out:
cdec2e42 2099 put_online_cpus();
d38144b7
MH
2100}
2101
2102/*
2103 * Tries to drain stocked charges in other cpus. This function is asynchronous
2104 * and just put a work per cpu for draining localy on each cpu. Caller can
2105 * expects some charges will be back to res_counter later but cannot wait for
2106 * it.
2107 */
c0ff4b85 2108static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2109{
9f50fad6
MH
2110 /*
2111 * If someone calls draining, avoid adding more kworker runs.
2112 */
2113 if (!mutex_trylock(&percpu_charge_mutex))
2114 return;
c0ff4b85 2115 drain_all_stock(root_memcg, false);
9f50fad6 2116 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2117}
2118
2119/* This is a synchronous drain interface. */
c0ff4b85 2120static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2121{
2122 /* called when force_empty is called */
9f50fad6 2123 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2124 drain_all_stock(root_memcg, true);
9f50fad6 2125 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2126}
2127
711d3d2c
KH
2128/*
2129 * This function drains percpu counter value from DEAD cpu and
2130 * move it to local cpu. Note that this function can be preempted.
2131 */
c0ff4b85 2132static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2133{
2134 int i;
2135
c0ff4b85 2136 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2137 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2138 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2139
c0ff4b85
R
2140 per_cpu(memcg->stat->count[i], cpu) = 0;
2141 memcg->nocpu_base.count[i] += x;
711d3d2c 2142 }
e9f8974f 2143 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2144 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2145
c0ff4b85
R
2146 per_cpu(memcg->stat->events[i], cpu) = 0;
2147 memcg->nocpu_base.events[i] += x;
e9f8974f 2148 }
c0ff4b85 2149 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2150}
2151
2152static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2153 unsigned long action,
2154 void *hcpu)
2155{
2156 int cpu = (unsigned long)hcpu;
2157 struct memcg_stock_pcp *stock;
711d3d2c 2158 struct mem_cgroup *iter;
cdec2e42 2159
619d094b 2160 if (action == CPU_ONLINE)
1489ebad 2161 return NOTIFY_OK;
1489ebad 2162
d833049b 2163 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2164 return NOTIFY_OK;
711d3d2c 2165
9f3a0d09 2166 for_each_mem_cgroup(iter)
711d3d2c
KH
2167 mem_cgroup_drain_pcp_counter(iter, cpu);
2168
cdec2e42
KH
2169 stock = &per_cpu(memcg_stock, cpu);
2170 drain_stock(stock);
2171 return NOTIFY_OK;
2172}
2173
4b534334
KH
2174
2175/* See __mem_cgroup_try_charge() for details */
2176enum {
2177 CHARGE_OK, /* success */
2178 CHARGE_RETRY, /* need to retry but retry is not bad */
2179 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2180 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2181 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2182};
2183
c0ff4b85 2184static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2185 unsigned int nr_pages, bool oom_check)
4b534334 2186{
7ec99d62 2187 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2188 struct mem_cgroup *mem_over_limit;
2189 struct res_counter *fail_res;
2190 unsigned long flags = 0;
2191 int ret;
2192
c0ff4b85 2193 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2194
2195 if (likely(!ret)) {
2196 if (!do_swap_account)
2197 return CHARGE_OK;
c0ff4b85 2198 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2199 if (likely(!ret))
2200 return CHARGE_OK;
2201
c0ff4b85 2202 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2203 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2204 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2205 } else
2206 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2207 /*
7ec99d62
JW
2208 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2209 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2210 *
2211 * Never reclaim on behalf of optional batching, retry with a
2212 * single page instead.
2213 */
7ec99d62 2214 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2215 return CHARGE_RETRY;
2216
2217 if (!(gfp_mask & __GFP_WAIT))
2218 return CHARGE_WOULDBLOCK;
2219
5660048c 2220 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2221 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2222 return CHARGE_RETRY;
4b534334 2223 /*
19942822
JW
2224 * Even though the limit is exceeded at this point, reclaim
2225 * may have been able to free some pages. Retry the charge
2226 * before killing the task.
2227 *
2228 * Only for regular pages, though: huge pages are rather
2229 * unlikely to succeed so close to the limit, and we fall back
2230 * to regular pages anyway in case of failure.
4b534334 2231 */
7ec99d62 2232 if (nr_pages == 1 && ret)
4b534334
KH
2233 return CHARGE_RETRY;
2234
2235 /*
2236 * At task move, charge accounts can be doubly counted. So, it's
2237 * better to wait until the end of task_move if something is going on.
2238 */
2239 if (mem_cgroup_wait_acct_move(mem_over_limit))
2240 return CHARGE_RETRY;
2241
2242 /* If we don't need to call oom-killer at el, return immediately */
2243 if (!oom_check)
2244 return CHARGE_NOMEM;
2245 /* check OOM */
e845e199 2246 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2247 return CHARGE_OOM_DIE;
2248
2249 return CHARGE_RETRY;
2250}
2251
f817ed48 2252/*
38c5d72f
KH
2253 * __mem_cgroup_try_charge() does
2254 * 1. detect memcg to be charged against from passed *mm and *ptr,
2255 * 2. update res_counter
2256 * 3. call memory reclaim if necessary.
2257 *
2258 * In some special case, if the task is fatal, fatal_signal_pending() or
2259 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2260 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2261 * as possible without any hazards. 2: all pages should have a valid
2262 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2263 * pointer, that is treated as a charge to root_mem_cgroup.
2264 *
2265 * So __mem_cgroup_try_charge() will return
2266 * 0 ... on success, filling *ptr with a valid memcg pointer.
2267 * -ENOMEM ... charge failure because of resource limits.
2268 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2269 *
2270 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2271 * the oom-killer can be invoked.
8a9f3ccd 2272 */
f817ed48 2273static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2274 gfp_t gfp_mask,
7ec99d62 2275 unsigned int nr_pages,
c0ff4b85 2276 struct mem_cgroup **ptr,
7ec99d62 2277 bool oom)
8a9f3ccd 2278{
7ec99d62 2279 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2280 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2281 struct mem_cgroup *memcg = NULL;
4b534334 2282 int ret;
a636b327 2283
867578cb
KH
2284 /*
2285 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2286 * in system level. So, allow to go ahead dying process in addition to
2287 * MEMDIE process.
2288 */
2289 if (unlikely(test_thread_flag(TIF_MEMDIE)
2290 || fatal_signal_pending(current)))
2291 goto bypass;
a636b327 2292
8a9f3ccd 2293 /*
3be91277
HD
2294 * We always charge the cgroup the mm_struct belongs to.
2295 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2296 * thread group leader migrates. It's possible that mm is not
2297 * set, if so charge the init_mm (happens for pagecache usage).
2298 */
c0ff4b85 2299 if (!*ptr && !mm)
38c5d72f 2300 *ptr = root_mem_cgroup;
f75ca962 2301again:
c0ff4b85
R
2302 if (*ptr) { /* css should be a valid one */
2303 memcg = *ptr;
2304 VM_BUG_ON(css_is_removed(&memcg->css));
2305 if (mem_cgroup_is_root(memcg))
f75ca962 2306 goto done;
c0ff4b85 2307 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2308 goto done;
c0ff4b85 2309 css_get(&memcg->css);
4b534334 2310 } else {
f75ca962 2311 struct task_struct *p;
54595fe2 2312
f75ca962
KH
2313 rcu_read_lock();
2314 p = rcu_dereference(mm->owner);
f75ca962 2315 /*
ebb76ce1 2316 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2317 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2318 * race with swapoff. Then, we have small risk of mis-accouning.
2319 * But such kind of mis-account by race always happens because
2320 * we don't have cgroup_mutex(). It's overkill and we allo that
2321 * small race, here.
2322 * (*) swapoff at el will charge against mm-struct not against
2323 * task-struct. So, mm->owner can be NULL.
f75ca962 2324 */
c0ff4b85 2325 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2326 if (!memcg)
2327 memcg = root_mem_cgroup;
2328 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2329 rcu_read_unlock();
2330 goto done;
2331 }
c0ff4b85 2332 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2333 /*
2334 * It seems dagerous to access memcg without css_get().
2335 * But considering how consume_stok works, it's not
2336 * necessary. If consume_stock success, some charges
2337 * from this memcg are cached on this cpu. So, we
2338 * don't need to call css_get()/css_tryget() before
2339 * calling consume_stock().
2340 */
2341 rcu_read_unlock();
2342 goto done;
2343 }
2344 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2345 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2346 rcu_read_unlock();
2347 goto again;
2348 }
2349 rcu_read_unlock();
2350 }
8a9f3ccd 2351
4b534334
KH
2352 do {
2353 bool oom_check;
7a81b88c 2354
4b534334 2355 /* If killed, bypass charge */
f75ca962 2356 if (fatal_signal_pending(current)) {
c0ff4b85 2357 css_put(&memcg->css);
4b534334 2358 goto bypass;
f75ca962 2359 }
6d61ef40 2360
4b534334
KH
2361 oom_check = false;
2362 if (oom && !nr_oom_retries) {
2363 oom_check = true;
2364 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2365 }
66e1707b 2366
c0ff4b85 2367 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2368 switch (ret) {
2369 case CHARGE_OK:
2370 break;
2371 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2372 batch = nr_pages;
c0ff4b85
R
2373 css_put(&memcg->css);
2374 memcg = NULL;
f75ca962 2375 goto again;
4b534334 2376 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2377 css_put(&memcg->css);
4b534334
KH
2378 goto nomem;
2379 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2380 if (!oom) {
c0ff4b85 2381 css_put(&memcg->css);
867578cb 2382 goto nomem;
f75ca962 2383 }
4b534334
KH
2384 /* If oom, we never return -ENOMEM */
2385 nr_oom_retries--;
2386 break;
2387 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2388 css_put(&memcg->css);
867578cb 2389 goto bypass;
66e1707b 2390 }
4b534334
KH
2391 } while (ret != CHARGE_OK);
2392
7ec99d62 2393 if (batch > nr_pages)
c0ff4b85
R
2394 refill_stock(memcg, batch - nr_pages);
2395 css_put(&memcg->css);
0c3e73e8 2396done:
c0ff4b85 2397 *ptr = memcg;
7a81b88c
KH
2398 return 0;
2399nomem:
c0ff4b85 2400 *ptr = NULL;
7a81b88c 2401 return -ENOMEM;
867578cb 2402bypass:
38c5d72f
KH
2403 *ptr = root_mem_cgroup;
2404 return -EINTR;
7a81b88c 2405}
8a9f3ccd 2406
a3032a2c
DN
2407/*
2408 * Somemtimes we have to undo a charge we got by try_charge().
2409 * This function is for that and do uncharge, put css's refcnt.
2410 * gotten by try_charge().
2411 */
c0ff4b85 2412static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2413 unsigned int nr_pages)
a3032a2c 2414{
c0ff4b85 2415 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2416 unsigned long bytes = nr_pages * PAGE_SIZE;
2417
c0ff4b85 2418 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2419 if (do_swap_account)
c0ff4b85 2420 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2421 }
854ffa8d
DN
2422}
2423
a3b2d692
KH
2424/*
2425 * A helper function to get mem_cgroup from ID. must be called under
2426 * rcu_read_lock(). The caller must check css_is_removed() or some if
2427 * it's concern. (dropping refcnt from swap can be called against removed
2428 * memcg.)
2429 */
2430static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2431{
2432 struct cgroup_subsys_state *css;
2433
2434 /* ID 0 is unused ID */
2435 if (!id)
2436 return NULL;
2437 css = css_lookup(&mem_cgroup_subsys, id);
2438 if (!css)
2439 return NULL;
2440 return container_of(css, struct mem_cgroup, css);
2441}
2442
e42d9d5d 2443struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2444{
c0ff4b85 2445 struct mem_cgroup *memcg = NULL;
3c776e64 2446 struct page_cgroup *pc;
a3b2d692 2447 unsigned short id;
b5a84319
KH
2448 swp_entry_t ent;
2449
3c776e64
DN
2450 VM_BUG_ON(!PageLocked(page));
2451
3c776e64 2452 pc = lookup_page_cgroup(page);
c0bd3f63 2453 lock_page_cgroup(pc);
a3b2d692 2454 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2455 memcg = pc->mem_cgroup;
2456 if (memcg && !css_tryget(&memcg->css))
2457 memcg = NULL;
e42d9d5d 2458 } else if (PageSwapCache(page)) {
3c776e64 2459 ent.val = page_private(page);
9fb4b7cc 2460 id = lookup_swap_cgroup_id(ent);
a3b2d692 2461 rcu_read_lock();
c0ff4b85
R
2462 memcg = mem_cgroup_lookup(id);
2463 if (memcg && !css_tryget(&memcg->css))
2464 memcg = NULL;
a3b2d692 2465 rcu_read_unlock();
3c776e64 2466 }
c0bd3f63 2467 unlock_page_cgroup(pc);
c0ff4b85 2468 return memcg;
b5a84319
KH
2469}
2470
c0ff4b85 2471static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2472 struct page *page,
7ec99d62 2473 unsigned int nr_pages,
9ce70c02
HD
2474 enum charge_type ctype,
2475 bool lrucare)
7a81b88c 2476{
ce587e65 2477 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02
HD
2478 struct zone *uninitialized_var(zone);
2479 bool was_on_lru = false;
b2402857 2480 bool anon;
9ce70c02 2481
ca3e0214
KH
2482 lock_page_cgroup(pc);
2483 if (unlikely(PageCgroupUsed(pc))) {
2484 unlock_page_cgroup(pc);
c0ff4b85 2485 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2486 return;
2487 }
2488 /*
2489 * we don't need page_cgroup_lock about tail pages, becase they are not
2490 * accessed by any other context at this point.
2491 */
9ce70c02
HD
2492
2493 /*
2494 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2495 * may already be on some other mem_cgroup's LRU. Take care of it.
2496 */
2497 if (lrucare) {
2498 zone = page_zone(page);
2499 spin_lock_irq(&zone->lru_lock);
2500 if (PageLRU(page)) {
2501 ClearPageLRU(page);
2502 del_page_from_lru_list(zone, page, page_lru(page));
2503 was_on_lru = true;
2504 }
2505 }
2506
c0ff4b85 2507 pc->mem_cgroup = memcg;
261fb61a
KH
2508 /*
2509 * We access a page_cgroup asynchronously without lock_page_cgroup().
2510 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2511 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2512 * before USED bit, we need memory barrier here.
2513 * See mem_cgroup_add_lru_list(), etc.
2514 */
08e552c6 2515 smp_wmb();
b2402857 2516 SetPageCgroupUsed(pc);
3be91277 2517
9ce70c02
HD
2518 if (lrucare) {
2519 if (was_on_lru) {
2520 VM_BUG_ON(PageLRU(page));
2521 SetPageLRU(page);
2522 add_page_to_lru_list(zone, page, page_lru(page));
2523 }
2524 spin_unlock_irq(&zone->lru_lock);
2525 }
2526
b2402857
KH
2527 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2528 anon = true;
2529 else
2530 anon = false;
2531
2532 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2533 unlock_page_cgroup(pc);
9ce70c02 2534
430e4863
KH
2535 /*
2536 * "charge_statistics" updated event counter. Then, check it.
2537 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2538 * if they exceeds softlimit.
2539 */
c0ff4b85 2540 memcg_check_events(memcg, page);
7a81b88c 2541}
66e1707b 2542
ca3e0214
KH
2543#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2544
312734c0 2545#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
ca3e0214
KH
2546/*
2547 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2548 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2549 * charge/uncharge will be never happen and move_account() is done under
2550 * compound_lock(), so we don't have to take care of races.
ca3e0214 2551 */
e94c8a9c 2552void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2553{
2554 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2555 struct page_cgroup *pc;
2556 int i;
ca3e0214 2557
3d37c4a9
KH
2558 if (mem_cgroup_disabled())
2559 return;
e94c8a9c
KH
2560 for (i = 1; i < HPAGE_PMD_NR; i++) {
2561 pc = head_pc + i;
2562 pc->mem_cgroup = head_pc->mem_cgroup;
2563 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2564 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2565 }
ca3e0214 2566}
12d27107 2567#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2568
f817ed48 2569/**
de3638d9 2570 * mem_cgroup_move_account - move account of the page
5564e88b 2571 * @page: the page
7ec99d62 2572 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2573 * @pc: page_cgroup of the page.
2574 * @from: mem_cgroup which the page is moved from.
2575 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2576 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2577 *
2578 * The caller must confirm following.
08e552c6 2579 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2580 * - compound_lock is held when nr_pages > 1
f817ed48 2581 *
854ffa8d 2582 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2583 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2584 * true, this function does "uncharge" from old cgroup, but it doesn't if
2585 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2586 */
7ec99d62
JW
2587static int mem_cgroup_move_account(struct page *page,
2588 unsigned int nr_pages,
2589 struct page_cgroup *pc,
2590 struct mem_cgroup *from,
2591 struct mem_cgroup *to,
2592 bool uncharge)
f817ed48 2593{
de3638d9
JW
2594 unsigned long flags;
2595 int ret;
b2402857 2596 bool anon = PageAnon(page);
987eba66 2597
f817ed48 2598 VM_BUG_ON(from == to);
5564e88b 2599 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2600 /*
2601 * The page is isolated from LRU. So, collapse function
2602 * will not handle this page. But page splitting can happen.
2603 * Do this check under compound_page_lock(). The caller should
2604 * hold it.
2605 */
2606 ret = -EBUSY;
7ec99d62 2607 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2608 goto out;
2609
2610 lock_page_cgroup(pc);
2611
2612 ret = -EINVAL;
2613 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2614 goto unlock;
2615
312734c0 2616 move_lock_mem_cgroup(from, &flags);
f817ed48 2617
2ff76f11 2618 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2619 /* Update mapped_file data for mem_cgroup */
2620 preempt_disable();
2621 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2622 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2623 preempt_enable();
d69b042f 2624 }
b2402857 2625 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2626 if (uncharge)
2627 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2628 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2629
854ffa8d 2630 /* caller should have done css_get */
08e552c6 2631 pc->mem_cgroup = to;
b2402857 2632 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2633 /*
2634 * We charges against "to" which may not have any tasks. Then, "to"
2635 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2636 * this function is just force_empty() and move charge, so it's
25985edc 2637 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2638 * status here.
88703267 2639 */
312734c0 2640 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2641 ret = 0;
2642unlock:
57f9fd7d 2643 unlock_page_cgroup(pc);
d2265e6f
KH
2644 /*
2645 * check events
2646 */
5564e88b
JW
2647 memcg_check_events(to, page);
2648 memcg_check_events(from, page);
de3638d9 2649out:
f817ed48
KH
2650 return ret;
2651}
2652
2653/*
2654 * move charges to its parent.
2655 */
2656
5564e88b
JW
2657static int mem_cgroup_move_parent(struct page *page,
2658 struct page_cgroup *pc,
f817ed48
KH
2659 struct mem_cgroup *child,
2660 gfp_t gfp_mask)
2661{
2662 struct cgroup *cg = child->css.cgroup;
2663 struct cgroup *pcg = cg->parent;
2664 struct mem_cgroup *parent;
7ec99d62 2665 unsigned int nr_pages;
4be4489f 2666 unsigned long uninitialized_var(flags);
f817ed48
KH
2667 int ret;
2668
2669 /* Is ROOT ? */
2670 if (!pcg)
2671 return -EINVAL;
2672
57f9fd7d
DN
2673 ret = -EBUSY;
2674 if (!get_page_unless_zero(page))
2675 goto out;
2676 if (isolate_lru_page(page))
2677 goto put;
52dbb905 2678
7ec99d62 2679 nr_pages = hpage_nr_pages(page);
08e552c6 2680
f817ed48 2681 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2682 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2683 if (ret)
57f9fd7d 2684 goto put_back;
f817ed48 2685
7ec99d62 2686 if (nr_pages > 1)
987eba66
KH
2687 flags = compound_lock_irqsave(page);
2688
7ec99d62 2689 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2690 if (ret)
7ec99d62 2691 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2692
7ec99d62 2693 if (nr_pages > 1)
987eba66 2694 compound_unlock_irqrestore(page, flags);
8dba474f 2695put_back:
08e552c6 2696 putback_lru_page(page);
57f9fd7d 2697put:
40d58138 2698 put_page(page);
57f9fd7d 2699out:
f817ed48
KH
2700 return ret;
2701}
2702
7a81b88c
KH
2703/*
2704 * Charge the memory controller for page usage.
2705 * Return
2706 * 0 if the charge was successful
2707 * < 0 if the cgroup is over its limit
2708 */
2709static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2710 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2711{
c0ff4b85 2712 struct mem_cgroup *memcg = NULL;
7ec99d62 2713 unsigned int nr_pages = 1;
8493ae43 2714 bool oom = true;
7a81b88c 2715 int ret;
ec168510 2716
37c2ac78 2717 if (PageTransHuge(page)) {
7ec99d62 2718 nr_pages <<= compound_order(page);
37c2ac78 2719 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2720 /*
2721 * Never OOM-kill a process for a huge page. The
2722 * fault handler will fall back to regular pages.
2723 */
2724 oom = false;
37c2ac78 2725 }
7a81b88c 2726
c0ff4b85 2727 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2728 if (ret == -ENOMEM)
7a81b88c 2729 return ret;
ce587e65 2730 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2731 return 0;
8a9f3ccd
BS
2732}
2733
7a81b88c
KH
2734int mem_cgroup_newpage_charge(struct page *page,
2735 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2736{
f8d66542 2737 if (mem_cgroup_disabled())
cede86ac 2738 return 0;
7a0524cf
JW
2739 VM_BUG_ON(page_mapped(page));
2740 VM_BUG_ON(page->mapping && !PageAnon(page));
2741 VM_BUG_ON(!mm);
217bc319 2742 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2743 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2744}
2745
83aae4c7
DN
2746static void
2747__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2748 enum charge_type ctype);
2749
e1a1cd59
BS
2750int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2751 gfp_t gfp_mask)
8697d331 2752{
c0ff4b85 2753 struct mem_cgroup *memcg = NULL;
dc67d504 2754 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2755 int ret;
2756
f8d66542 2757 if (mem_cgroup_disabled())
cede86ac 2758 return 0;
52d4b9ac
KH
2759 if (PageCompound(page))
2760 return 0;
accf163e 2761
73045c47 2762 if (unlikely(!mm))
8697d331 2763 mm = &init_mm;
dc67d504
KH
2764 if (!page_is_file_cache(page))
2765 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2766
38c5d72f 2767 if (!PageSwapCache(page))
dc67d504 2768 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2769 else { /* page is swapcache/shmem */
c0ff4b85 2770 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2771 if (!ret)
dc67d504
KH
2772 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2773 }
b5a84319 2774 return ret;
e8589cc1
KH
2775}
2776
54595fe2
KH
2777/*
2778 * While swap-in, try_charge -> commit or cancel, the page is locked.
2779 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2780 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2781 * "commit()" or removed by "cancel()"
2782 */
8c7c6e34
KH
2783int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2784 struct page *page,
72835c86 2785 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2786{
c0ff4b85 2787 struct mem_cgroup *memcg;
54595fe2 2788 int ret;
8c7c6e34 2789
72835c86 2790 *memcgp = NULL;
56039efa 2791
f8d66542 2792 if (mem_cgroup_disabled())
8c7c6e34
KH
2793 return 0;
2794
2795 if (!do_swap_account)
2796 goto charge_cur_mm;
8c7c6e34
KH
2797 /*
2798 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2799 * the pte, and even removed page from swap cache: in those cases
2800 * do_swap_page()'s pte_same() test will fail; but there's also a
2801 * KSM case which does need to charge the page.
8c7c6e34
KH
2802 */
2803 if (!PageSwapCache(page))
407f9c8b 2804 goto charge_cur_mm;
c0ff4b85
R
2805 memcg = try_get_mem_cgroup_from_page(page);
2806 if (!memcg)
54595fe2 2807 goto charge_cur_mm;
72835c86
JW
2808 *memcgp = memcg;
2809 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2810 css_put(&memcg->css);
38c5d72f
KH
2811 if (ret == -EINTR)
2812 ret = 0;
54595fe2 2813 return ret;
8c7c6e34
KH
2814charge_cur_mm:
2815 if (unlikely(!mm))
2816 mm = &init_mm;
38c5d72f
KH
2817 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2818 if (ret == -EINTR)
2819 ret = 0;
2820 return ret;
8c7c6e34
KH
2821}
2822
83aae4c7 2823static void
72835c86 2824__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2825 enum charge_type ctype)
7a81b88c 2826{
f8d66542 2827 if (mem_cgroup_disabled())
7a81b88c 2828 return;
72835c86 2829 if (!memcg)
7a81b88c 2830 return;
72835c86 2831 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2832
ce587e65 2833 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2834 /*
2835 * Now swap is on-memory. This means this page may be
2836 * counted both as mem and swap....double count.
03f3c433
KH
2837 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2838 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2839 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2840 */
03f3c433 2841 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2842 swp_entry_t ent = {.val = page_private(page)};
86493009 2843 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2844 }
88703267
KH
2845 /*
2846 * At swapin, we may charge account against cgroup which has no tasks.
2847 * So, rmdir()->pre_destroy() can be called while we do this charge.
2848 * In that case, we need to call pre_destroy() again. check it here.
2849 */
72835c86 2850 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2851}
2852
72835c86
JW
2853void mem_cgroup_commit_charge_swapin(struct page *page,
2854 struct mem_cgroup *memcg)
83aae4c7 2855{
72835c86
JW
2856 __mem_cgroup_commit_charge_swapin(page, memcg,
2857 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2858}
2859
c0ff4b85 2860void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2861{
f8d66542 2862 if (mem_cgroup_disabled())
7a81b88c 2863 return;
c0ff4b85 2864 if (!memcg)
7a81b88c 2865 return;
c0ff4b85 2866 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2867}
2868
c0ff4b85 2869static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2870 unsigned int nr_pages,
2871 const enum charge_type ctype)
569b846d
KH
2872{
2873 struct memcg_batch_info *batch = NULL;
2874 bool uncharge_memsw = true;
7ec99d62 2875
569b846d
KH
2876 /* If swapout, usage of swap doesn't decrease */
2877 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2878 uncharge_memsw = false;
569b846d
KH
2879
2880 batch = &current->memcg_batch;
2881 /*
2882 * In usual, we do css_get() when we remember memcg pointer.
2883 * But in this case, we keep res->usage until end of a series of
2884 * uncharges. Then, it's ok to ignore memcg's refcnt.
2885 */
2886 if (!batch->memcg)
c0ff4b85 2887 batch->memcg = memcg;
3c11ecf4
KH
2888 /*
2889 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2890 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2891 * the same cgroup and we have chance to coalesce uncharges.
2892 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2893 * because we want to do uncharge as soon as possible.
2894 */
2895
2896 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2897 goto direct_uncharge;
2898
7ec99d62 2899 if (nr_pages > 1)
ec168510
AA
2900 goto direct_uncharge;
2901
569b846d
KH
2902 /*
2903 * In typical case, batch->memcg == mem. This means we can
2904 * merge a series of uncharges to an uncharge of res_counter.
2905 * If not, we uncharge res_counter ony by one.
2906 */
c0ff4b85 2907 if (batch->memcg != memcg)
569b846d
KH
2908 goto direct_uncharge;
2909 /* remember freed charge and uncharge it later */
7ffd4ca7 2910 batch->nr_pages++;
569b846d 2911 if (uncharge_memsw)
7ffd4ca7 2912 batch->memsw_nr_pages++;
569b846d
KH
2913 return;
2914direct_uncharge:
c0ff4b85 2915 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2916 if (uncharge_memsw)
c0ff4b85
R
2917 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2918 if (unlikely(batch->memcg != memcg))
2919 memcg_oom_recover(memcg);
569b846d 2920}
7a81b88c 2921
8a9f3ccd 2922/*
69029cd5 2923 * uncharge if !page_mapped(page)
8a9f3ccd 2924 */
8c7c6e34 2925static struct mem_cgroup *
69029cd5 2926__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2927{
c0ff4b85 2928 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2929 unsigned int nr_pages = 1;
2930 struct page_cgroup *pc;
b2402857 2931 bool anon;
8a9f3ccd 2932
f8d66542 2933 if (mem_cgroup_disabled())
8c7c6e34 2934 return NULL;
4077960e 2935
d13d1443 2936 if (PageSwapCache(page))
8c7c6e34 2937 return NULL;
d13d1443 2938
37c2ac78 2939 if (PageTransHuge(page)) {
7ec99d62 2940 nr_pages <<= compound_order(page);
37c2ac78
AA
2941 VM_BUG_ON(!PageTransHuge(page));
2942 }
8697d331 2943 /*
3c541e14 2944 * Check if our page_cgroup is valid
8697d331 2945 */
52d4b9ac 2946 pc = lookup_page_cgroup(page);
cfa44946 2947 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2948 return NULL;
b9c565d5 2949
52d4b9ac 2950 lock_page_cgroup(pc);
d13d1443 2951
c0ff4b85 2952 memcg = pc->mem_cgroup;
8c7c6e34 2953
d13d1443
KH
2954 if (!PageCgroupUsed(pc))
2955 goto unlock_out;
2956
b2402857
KH
2957 anon = PageAnon(page);
2958
d13d1443
KH
2959 switch (ctype) {
2960 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2961 /*
2962 * Generally PageAnon tells if it's the anon statistics to be
2963 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2964 * used before page reached the stage of being marked PageAnon.
2965 */
b2402857
KH
2966 anon = true;
2967 /* fallthrough */
8a9478ca 2968 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2969 /* See mem_cgroup_prepare_migration() */
2970 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2971 goto unlock_out;
2972 break;
2973 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2974 if (!PageAnon(page)) { /* Shared memory */
2975 if (page->mapping && !page_is_file_cache(page))
2976 goto unlock_out;
2977 } else if (page_mapped(page)) /* Anon */
2978 goto unlock_out;
2979 break;
2980 default:
2981 break;
52d4b9ac 2982 }
d13d1443 2983
b2402857 2984 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 2985
52d4b9ac 2986 ClearPageCgroupUsed(pc);
544122e5
KH
2987 /*
2988 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2989 * freed from LRU. This is safe because uncharged page is expected not
2990 * to be reused (freed soon). Exception is SwapCache, it's handled by
2991 * special functions.
2992 */
b9c565d5 2993
52d4b9ac 2994 unlock_page_cgroup(pc);
f75ca962 2995 /*
c0ff4b85 2996 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2997 * will never be freed.
2998 */
c0ff4b85 2999 memcg_check_events(memcg, page);
f75ca962 3000 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3001 mem_cgroup_swap_statistics(memcg, true);
3002 mem_cgroup_get(memcg);
f75ca962 3003 }
c0ff4b85
R
3004 if (!mem_cgroup_is_root(memcg))
3005 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3006
c0ff4b85 3007 return memcg;
d13d1443
KH
3008
3009unlock_out:
3010 unlock_page_cgroup(pc);
8c7c6e34 3011 return NULL;
3c541e14
BS
3012}
3013
69029cd5
KH
3014void mem_cgroup_uncharge_page(struct page *page)
3015{
52d4b9ac
KH
3016 /* early check. */
3017 if (page_mapped(page))
3018 return;
40f23a21 3019 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3020 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3021}
3022
3023void mem_cgroup_uncharge_cache_page(struct page *page)
3024{
3025 VM_BUG_ON(page_mapped(page));
b7abea96 3026 VM_BUG_ON(page->mapping);
69029cd5
KH
3027 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3028}
3029
569b846d
KH
3030/*
3031 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3032 * In that cases, pages are freed continuously and we can expect pages
3033 * are in the same memcg. All these calls itself limits the number of
3034 * pages freed at once, then uncharge_start/end() is called properly.
3035 * This may be called prural(2) times in a context,
3036 */
3037
3038void mem_cgroup_uncharge_start(void)
3039{
3040 current->memcg_batch.do_batch++;
3041 /* We can do nest. */
3042 if (current->memcg_batch.do_batch == 1) {
3043 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3044 current->memcg_batch.nr_pages = 0;
3045 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3046 }
3047}
3048
3049void mem_cgroup_uncharge_end(void)
3050{
3051 struct memcg_batch_info *batch = &current->memcg_batch;
3052
3053 if (!batch->do_batch)
3054 return;
3055
3056 batch->do_batch--;
3057 if (batch->do_batch) /* If stacked, do nothing. */
3058 return;
3059
3060 if (!batch->memcg)
3061 return;
3062 /*
3063 * This "batch->memcg" is valid without any css_get/put etc...
3064 * bacause we hide charges behind us.
3065 */
7ffd4ca7
JW
3066 if (batch->nr_pages)
3067 res_counter_uncharge(&batch->memcg->res,
3068 batch->nr_pages * PAGE_SIZE);
3069 if (batch->memsw_nr_pages)
3070 res_counter_uncharge(&batch->memcg->memsw,
3071 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3072 memcg_oom_recover(batch->memcg);
569b846d
KH
3073 /* forget this pointer (for sanity check) */
3074 batch->memcg = NULL;
3075}
3076
e767e056 3077#ifdef CONFIG_SWAP
8c7c6e34 3078/*
e767e056 3079 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3080 * memcg information is recorded to swap_cgroup of "ent"
3081 */
8a9478ca
KH
3082void
3083mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3084{
3085 struct mem_cgroup *memcg;
8a9478ca
KH
3086 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3087
3088 if (!swapout) /* this was a swap cache but the swap is unused ! */
3089 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3090
3091 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3092
f75ca962
KH
3093 /*
3094 * record memcg information, if swapout && memcg != NULL,
3095 * mem_cgroup_get() was called in uncharge().
3096 */
3097 if (do_swap_account && swapout && memcg)
a3b2d692 3098 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3099}
e767e056 3100#endif
8c7c6e34
KH
3101
3102#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3103/*
3104 * called from swap_entry_free(). remove record in swap_cgroup and
3105 * uncharge "memsw" account.
3106 */
3107void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3108{
8c7c6e34 3109 struct mem_cgroup *memcg;
a3b2d692 3110 unsigned short id;
8c7c6e34
KH
3111
3112 if (!do_swap_account)
3113 return;
3114
a3b2d692
KH
3115 id = swap_cgroup_record(ent, 0);
3116 rcu_read_lock();
3117 memcg = mem_cgroup_lookup(id);
8c7c6e34 3118 if (memcg) {
a3b2d692
KH
3119 /*
3120 * We uncharge this because swap is freed.
3121 * This memcg can be obsolete one. We avoid calling css_tryget
3122 */
0c3e73e8 3123 if (!mem_cgroup_is_root(memcg))
4e649152 3124 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3125 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3126 mem_cgroup_put(memcg);
3127 }
a3b2d692 3128 rcu_read_unlock();
d13d1443 3129}
02491447
DN
3130
3131/**
3132 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3133 * @entry: swap entry to be moved
3134 * @from: mem_cgroup which the entry is moved from
3135 * @to: mem_cgroup which the entry is moved to
3136 *
3137 * It succeeds only when the swap_cgroup's record for this entry is the same
3138 * as the mem_cgroup's id of @from.
3139 *
3140 * Returns 0 on success, -EINVAL on failure.
3141 *
3142 * The caller must have charged to @to, IOW, called res_counter_charge() about
3143 * both res and memsw, and called css_get().
3144 */
3145static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3146 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3147{
3148 unsigned short old_id, new_id;
3149
3150 old_id = css_id(&from->css);
3151 new_id = css_id(&to->css);
3152
3153 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3154 mem_cgroup_swap_statistics(from, false);
483c30b5 3155 mem_cgroup_swap_statistics(to, true);
02491447 3156 /*
483c30b5
DN
3157 * This function is only called from task migration context now.
3158 * It postpones res_counter and refcount handling till the end
3159 * of task migration(mem_cgroup_clear_mc()) for performance
3160 * improvement. But we cannot postpone mem_cgroup_get(to)
3161 * because if the process that has been moved to @to does
3162 * swap-in, the refcount of @to might be decreased to 0.
02491447 3163 */
02491447 3164 mem_cgroup_get(to);
02491447
DN
3165 return 0;
3166 }
3167 return -EINVAL;
3168}
3169#else
3170static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3171 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3172{
3173 return -EINVAL;
3174}
8c7c6e34 3175#endif
d13d1443 3176
ae41be37 3177/*
01b1ae63
KH
3178 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3179 * page belongs to.
ae41be37 3180 */
ac39cf8c 3181int mem_cgroup_prepare_migration(struct page *page,
72835c86 3182 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3183{
c0ff4b85 3184 struct mem_cgroup *memcg = NULL;
7ec99d62 3185 struct page_cgroup *pc;
ac39cf8c 3186 enum charge_type ctype;
e8589cc1 3187 int ret = 0;
8869b8f6 3188
72835c86 3189 *memcgp = NULL;
56039efa 3190
ec168510 3191 VM_BUG_ON(PageTransHuge(page));
f8d66542 3192 if (mem_cgroup_disabled())
4077960e
BS
3193 return 0;
3194
52d4b9ac
KH
3195 pc = lookup_page_cgroup(page);
3196 lock_page_cgroup(pc);
3197 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3198 memcg = pc->mem_cgroup;
3199 css_get(&memcg->css);
ac39cf8c 3200 /*
3201 * At migrating an anonymous page, its mapcount goes down
3202 * to 0 and uncharge() will be called. But, even if it's fully
3203 * unmapped, migration may fail and this page has to be
3204 * charged again. We set MIGRATION flag here and delay uncharge
3205 * until end_migration() is called
3206 *
3207 * Corner Case Thinking
3208 * A)
3209 * When the old page was mapped as Anon and it's unmap-and-freed
3210 * while migration was ongoing.
3211 * If unmap finds the old page, uncharge() of it will be delayed
3212 * until end_migration(). If unmap finds a new page, it's
3213 * uncharged when it make mapcount to be 1->0. If unmap code
3214 * finds swap_migration_entry, the new page will not be mapped
3215 * and end_migration() will find it(mapcount==0).
3216 *
3217 * B)
3218 * When the old page was mapped but migraion fails, the kernel
3219 * remaps it. A charge for it is kept by MIGRATION flag even
3220 * if mapcount goes down to 0. We can do remap successfully
3221 * without charging it again.
3222 *
3223 * C)
3224 * The "old" page is under lock_page() until the end of
3225 * migration, so, the old page itself will not be swapped-out.
3226 * If the new page is swapped out before end_migraton, our
3227 * hook to usual swap-out path will catch the event.
3228 */
3229 if (PageAnon(page))
3230 SetPageCgroupMigration(pc);
e8589cc1 3231 }
52d4b9ac 3232 unlock_page_cgroup(pc);
ac39cf8c 3233 /*
3234 * If the page is not charged at this point,
3235 * we return here.
3236 */
c0ff4b85 3237 if (!memcg)
ac39cf8c 3238 return 0;
01b1ae63 3239
72835c86
JW
3240 *memcgp = memcg;
3241 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3242 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3243 if (ret) {
ac39cf8c 3244 if (PageAnon(page)) {
3245 lock_page_cgroup(pc);
3246 ClearPageCgroupMigration(pc);
3247 unlock_page_cgroup(pc);
3248 /*
3249 * The old page may be fully unmapped while we kept it.
3250 */
3251 mem_cgroup_uncharge_page(page);
3252 }
38c5d72f 3253 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3254 return -ENOMEM;
e8589cc1 3255 }
ac39cf8c 3256 /*
3257 * We charge new page before it's used/mapped. So, even if unlock_page()
3258 * is called before end_migration, we can catch all events on this new
3259 * page. In the case new page is migrated but not remapped, new page's
3260 * mapcount will be finally 0 and we call uncharge in end_migration().
3261 */
ac39cf8c 3262 if (PageAnon(page))
3263 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3264 else if (page_is_file_cache(page))
3265 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3266 else
3267 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3268 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3269 return ret;
ae41be37 3270}
8869b8f6 3271
69029cd5 3272/* remove redundant charge if migration failed*/
c0ff4b85 3273void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3274 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3275{
ac39cf8c 3276 struct page *used, *unused;
01b1ae63 3277 struct page_cgroup *pc;
b2402857 3278 bool anon;
01b1ae63 3279
c0ff4b85 3280 if (!memcg)
01b1ae63 3281 return;
ac39cf8c 3282 /* blocks rmdir() */
c0ff4b85 3283 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3284 if (!migration_ok) {
ac39cf8c 3285 used = oldpage;
3286 unused = newpage;
01b1ae63 3287 } else {
ac39cf8c 3288 used = newpage;
01b1ae63
KH
3289 unused = oldpage;
3290 }
69029cd5 3291 /*
ac39cf8c 3292 * We disallowed uncharge of pages under migration because mapcount
3293 * of the page goes down to zero, temporarly.
3294 * Clear the flag and check the page should be charged.
01b1ae63 3295 */
ac39cf8c 3296 pc = lookup_page_cgroup(oldpage);
3297 lock_page_cgroup(pc);
3298 ClearPageCgroupMigration(pc);
3299 unlock_page_cgroup(pc);
b2402857
KH
3300 anon = PageAnon(used);
3301 __mem_cgroup_uncharge_common(unused,
3302 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3303 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3304
01b1ae63 3305 /*
ac39cf8c 3306 * If a page is a file cache, radix-tree replacement is very atomic
3307 * and we can skip this check. When it was an Anon page, its mapcount
3308 * goes down to 0. But because we added MIGRATION flage, it's not
3309 * uncharged yet. There are several case but page->mapcount check
3310 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3311 * check. (see prepare_charge() also)
69029cd5 3312 */
b2402857 3313 if (anon)
ac39cf8c 3314 mem_cgroup_uncharge_page(used);
88703267 3315 /*
ac39cf8c 3316 * At migration, we may charge account against cgroup which has no
3317 * tasks.
88703267
KH
3318 * So, rmdir()->pre_destroy() can be called while we do this charge.
3319 * In that case, we need to call pre_destroy() again. check it here.
3320 */
c0ff4b85 3321 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3322}
78fb7466 3323
ab936cbc
KH
3324/*
3325 * At replace page cache, newpage is not under any memcg but it's on
3326 * LRU. So, this function doesn't touch res_counter but handles LRU
3327 * in correct way. Both pages are locked so we cannot race with uncharge.
3328 */
3329void mem_cgroup_replace_page_cache(struct page *oldpage,
3330 struct page *newpage)
3331{
bde05d1c 3332 struct mem_cgroup *memcg = NULL;
ab936cbc 3333 struct page_cgroup *pc;
ab936cbc 3334 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3335
3336 if (mem_cgroup_disabled())
3337 return;
3338
3339 pc = lookup_page_cgroup(oldpage);
3340 /* fix accounting on old pages */
3341 lock_page_cgroup(pc);
bde05d1c
HD
3342 if (PageCgroupUsed(pc)) {
3343 memcg = pc->mem_cgroup;
3344 mem_cgroup_charge_statistics(memcg, false, -1);
3345 ClearPageCgroupUsed(pc);
3346 }
ab936cbc
KH
3347 unlock_page_cgroup(pc);
3348
bde05d1c
HD
3349 /*
3350 * When called from shmem_replace_page(), in some cases the
3351 * oldpage has already been charged, and in some cases not.
3352 */
3353 if (!memcg)
3354 return;
3355
ab936cbc
KH
3356 if (PageSwapBacked(oldpage))
3357 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3358
ab936cbc
KH
3359 /*
3360 * Even if newpage->mapping was NULL before starting replacement,
3361 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3362 * LRU while we overwrite pc->mem_cgroup.
3363 */
ce587e65 3364 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3365}
3366
f212ad7c
DN
3367#ifdef CONFIG_DEBUG_VM
3368static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3369{
3370 struct page_cgroup *pc;
3371
3372 pc = lookup_page_cgroup(page);
cfa44946
JW
3373 /*
3374 * Can be NULL while feeding pages into the page allocator for
3375 * the first time, i.e. during boot or memory hotplug;
3376 * or when mem_cgroup_disabled().
3377 */
f212ad7c
DN
3378 if (likely(pc) && PageCgroupUsed(pc))
3379 return pc;
3380 return NULL;
3381}
3382
3383bool mem_cgroup_bad_page_check(struct page *page)
3384{
3385 if (mem_cgroup_disabled())
3386 return false;
3387
3388 return lookup_page_cgroup_used(page) != NULL;
3389}
3390
3391void mem_cgroup_print_bad_page(struct page *page)
3392{
3393 struct page_cgroup *pc;
3394
3395 pc = lookup_page_cgroup_used(page);
3396 if (pc) {
90b3feae 3397 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3398 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3399 }
3400}
3401#endif
3402
8c7c6e34
KH
3403static DEFINE_MUTEX(set_limit_mutex);
3404
d38d2a75 3405static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3406 unsigned long long val)
628f4235 3407{
81d39c20 3408 int retry_count;
3c11ecf4 3409 u64 memswlimit, memlimit;
628f4235 3410 int ret = 0;
81d39c20
KH
3411 int children = mem_cgroup_count_children(memcg);
3412 u64 curusage, oldusage;
3c11ecf4 3413 int enlarge;
81d39c20
KH
3414
3415 /*
3416 * For keeping hierarchical_reclaim simple, how long we should retry
3417 * is depends on callers. We set our retry-count to be function
3418 * of # of children which we should visit in this loop.
3419 */
3420 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3421
3422 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3423
3c11ecf4 3424 enlarge = 0;
8c7c6e34 3425 while (retry_count) {
628f4235
KH
3426 if (signal_pending(current)) {
3427 ret = -EINTR;
3428 break;
3429 }
8c7c6e34
KH
3430 /*
3431 * Rather than hide all in some function, I do this in
3432 * open coded manner. You see what this really does.
c0ff4b85 3433 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3434 */
3435 mutex_lock(&set_limit_mutex);
3436 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3437 if (memswlimit < val) {
3438 ret = -EINVAL;
3439 mutex_unlock(&set_limit_mutex);
628f4235
KH
3440 break;
3441 }
3c11ecf4
KH
3442
3443 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3444 if (memlimit < val)
3445 enlarge = 1;
3446
8c7c6e34 3447 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3448 if (!ret) {
3449 if (memswlimit == val)
3450 memcg->memsw_is_minimum = true;
3451 else
3452 memcg->memsw_is_minimum = false;
3453 }
8c7c6e34
KH
3454 mutex_unlock(&set_limit_mutex);
3455
3456 if (!ret)
3457 break;
3458
5660048c
JW
3459 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3460 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3461 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3462 /* Usage is reduced ? */
3463 if (curusage >= oldusage)
3464 retry_count--;
3465 else
3466 oldusage = curusage;
8c7c6e34 3467 }
3c11ecf4
KH
3468 if (!ret && enlarge)
3469 memcg_oom_recover(memcg);
14797e23 3470
8c7c6e34
KH
3471 return ret;
3472}
3473
338c8431
LZ
3474static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3475 unsigned long long val)
8c7c6e34 3476{
81d39c20 3477 int retry_count;
3c11ecf4 3478 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3479 int children = mem_cgroup_count_children(memcg);
3480 int ret = -EBUSY;
3c11ecf4 3481 int enlarge = 0;
8c7c6e34 3482
81d39c20
KH
3483 /* see mem_cgroup_resize_res_limit */
3484 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3485 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3486 while (retry_count) {
3487 if (signal_pending(current)) {
3488 ret = -EINTR;
3489 break;
3490 }
3491 /*
3492 * Rather than hide all in some function, I do this in
3493 * open coded manner. You see what this really does.
c0ff4b85 3494 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3495 */
3496 mutex_lock(&set_limit_mutex);
3497 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3498 if (memlimit > val) {
3499 ret = -EINVAL;
3500 mutex_unlock(&set_limit_mutex);
3501 break;
3502 }
3c11ecf4
KH
3503 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3504 if (memswlimit < val)
3505 enlarge = 1;
8c7c6e34 3506 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3507 if (!ret) {
3508 if (memlimit == val)
3509 memcg->memsw_is_minimum = true;
3510 else
3511 memcg->memsw_is_minimum = false;
3512 }
8c7c6e34
KH
3513 mutex_unlock(&set_limit_mutex);
3514
3515 if (!ret)
3516 break;
3517
5660048c
JW
3518 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3519 MEM_CGROUP_RECLAIM_NOSWAP |
3520 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3521 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3522 /* Usage is reduced ? */
8c7c6e34 3523 if (curusage >= oldusage)
628f4235 3524 retry_count--;
81d39c20
KH
3525 else
3526 oldusage = curusage;
628f4235 3527 }
3c11ecf4
KH
3528 if (!ret && enlarge)
3529 memcg_oom_recover(memcg);
628f4235
KH
3530 return ret;
3531}
3532
4e416953 3533unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3534 gfp_t gfp_mask,
3535 unsigned long *total_scanned)
4e416953
BS
3536{
3537 unsigned long nr_reclaimed = 0;
3538 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3539 unsigned long reclaimed;
3540 int loop = 0;
3541 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3542 unsigned long long excess;
0ae5e89c 3543 unsigned long nr_scanned;
4e416953
BS
3544
3545 if (order > 0)
3546 return 0;
3547
00918b6a 3548 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3549 /*
3550 * This loop can run a while, specially if mem_cgroup's continuously
3551 * keep exceeding their soft limit and putting the system under
3552 * pressure
3553 */
3554 do {
3555 if (next_mz)
3556 mz = next_mz;
3557 else
3558 mz = mem_cgroup_largest_soft_limit_node(mctz);
3559 if (!mz)
3560 break;
3561
0ae5e89c 3562 nr_scanned = 0;
d79154bb 3563 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3564 gfp_mask, &nr_scanned);
4e416953 3565 nr_reclaimed += reclaimed;
0ae5e89c 3566 *total_scanned += nr_scanned;
4e416953
BS
3567 spin_lock(&mctz->lock);
3568
3569 /*
3570 * If we failed to reclaim anything from this memory cgroup
3571 * it is time to move on to the next cgroup
3572 */
3573 next_mz = NULL;
3574 if (!reclaimed) {
3575 do {
3576 /*
3577 * Loop until we find yet another one.
3578 *
3579 * By the time we get the soft_limit lock
3580 * again, someone might have aded the
3581 * group back on the RB tree. Iterate to
3582 * make sure we get a different mem.
3583 * mem_cgroup_largest_soft_limit_node returns
3584 * NULL if no other cgroup is present on
3585 * the tree
3586 */
3587 next_mz =
3588 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3589 if (next_mz == mz)
d79154bb 3590 css_put(&next_mz->memcg->css);
39cc98f1 3591 else /* next_mz == NULL or other memcg */
4e416953
BS
3592 break;
3593 } while (1);
3594 }
d79154bb
HD
3595 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3596 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3597 /*
3598 * One school of thought says that we should not add
3599 * back the node to the tree if reclaim returns 0.
3600 * But our reclaim could return 0, simply because due
3601 * to priority we are exposing a smaller subset of
3602 * memory to reclaim from. Consider this as a longer
3603 * term TODO.
3604 */
ef8745c1 3605 /* If excess == 0, no tree ops */
d79154bb 3606 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3607 spin_unlock(&mctz->lock);
d79154bb 3608 css_put(&mz->memcg->css);
4e416953
BS
3609 loop++;
3610 /*
3611 * Could not reclaim anything and there are no more
3612 * mem cgroups to try or we seem to be looping without
3613 * reclaiming anything.
3614 */
3615 if (!nr_reclaimed &&
3616 (next_mz == NULL ||
3617 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3618 break;
3619 } while (!nr_reclaimed);
3620 if (next_mz)
d79154bb 3621 css_put(&next_mz->memcg->css);
4e416953
BS
3622 return nr_reclaimed;
3623}
3624
cc847582
KH
3625/*
3626 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3627 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3628 */
c0ff4b85 3629static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3630 int node, int zid, enum lru_list lru)
cc847582 3631{
08e552c6 3632 struct mem_cgroup_per_zone *mz;
08e552c6 3633 unsigned long flags, loop;
072c56c1 3634 struct list_head *list;
925b7673
JW
3635 struct page *busy;
3636 struct zone *zone;
f817ed48 3637 int ret = 0;
072c56c1 3638
08e552c6 3639 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3640 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3641 list = &mz->lruvec.lists[lru];
cc847582 3642
1eb49272 3643 loop = mz->lru_size[lru];
f817ed48
KH
3644 /* give some margin against EBUSY etc...*/
3645 loop += 256;
3646 busy = NULL;
3647 while (loop--) {
925b7673 3648 struct page_cgroup *pc;
5564e88b
JW
3649 struct page *page;
3650
f817ed48 3651 ret = 0;
08e552c6 3652 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3653 if (list_empty(list)) {
08e552c6 3654 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3655 break;
f817ed48 3656 }
925b7673
JW
3657 page = list_entry(list->prev, struct page, lru);
3658 if (busy == page) {
3659 list_move(&page->lru, list);
648bcc77 3660 busy = NULL;
08e552c6 3661 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3662 continue;
3663 }
08e552c6 3664 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3665
925b7673 3666 pc = lookup_page_cgroup(page);
5564e88b 3667
c0ff4b85 3668 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3669 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3670 break;
f817ed48
KH
3671
3672 if (ret == -EBUSY || ret == -EINVAL) {
3673 /* found lock contention or "pc" is obsolete. */
925b7673 3674 busy = page;
f817ed48
KH
3675 cond_resched();
3676 } else
3677 busy = NULL;
cc847582 3678 }
08e552c6 3679
f817ed48
KH
3680 if (!ret && !list_empty(list))
3681 return -EBUSY;
3682 return ret;
cc847582
KH
3683}
3684
3685/*
3686 * make mem_cgroup's charge to be 0 if there is no task.
3687 * This enables deleting this mem_cgroup.
3688 */
c0ff4b85 3689static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3690{
f817ed48
KH
3691 int ret;
3692 int node, zid, shrink;
3693 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3694 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3695
c0ff4b85 3696 css_get(&memcg->css);
f817ed48
KH
3697
3698 shrink = 0;
c1e862c1
KH
3699 /* should free all ? */
3700 if (free_all)
3701 goto try_to_free;
f817ed48 3702move_account:
fce66477 3703 do {
f817ed48 3704 ret = -EBUSY;
c1e862c1
KH
3705 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3706 goto out;
3707 ret = -EINTR;
3708 if (signal_pending(current))
cc847582 3709 goto out;
52d4b9ac
KH
3710 /* This is for making all *used* pages to be on LRU. */
3711 lru_add_drain_all();
c0ff4b85 3712 drain_all_stock_sync(memcg);
f817ed48 3713 ret = 0;
c0ff4b85 3714 mem_cgroup_start_move(memcg);
299b4eaa 3715 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3716 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3717 enum lru_list lru;
3718 for_each_lru(lru) {
c0ff4b85 3719 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3720 node, zid, lru);
f817ed48
KH
3721 if (ret)
3722 break;
3723 }
1ecaab2b 3724 }
f817ed48
KH
3725 if (ret)
3726 break;
3727 }
c0ff4b85
R
3728 mem_cgroup_end_move(memcg);
3729 memcg_oom_recover(memcg);
f817ed48
KH
3730 /* it seems parent cgroup doesn't have enough mem */
3731 if (ret == -ENOMEM)
3732 goto try_to_free;
52d4b9ac 3733 cond_resched();
fce66477 3734 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3735 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3736out:
c0ff4b85 3737 css_put(&memcg->css);
cc847582 3738 return ret;
f817ed48
KH
3739
3740try_to_free:
c1e862c1
KH
3741 /* returns EBUSY if there is a task or if we come here twice. */
3742 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3743 ret = -EBUSY;
3744 goto out;
3745 }
c1e862c1
KH
3746 /* we call try-to-free pages for make this cgroup empty */
3747 lru_add_drain_all();
f817ed48
KH
3748 /* try to free all pages in this cgroup */
3749 shrink = 1;
569530fb 3750 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3751 int progress;
c1e862c1
KH
3752
3753 if (signal_pending(current)) {
3754 ret = -EINTR;
3755 goto out;
3756 }
c0ff4b85 3757 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3758 false);
c1e862c1 3759 if (!progress) {
f817ed48 3760 nr_retries--;
c1e862c1 3761 /* maybe some writeback is necessary */
8aa7e847 3762 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3763 }
f817ed48
KH
3764
3765 }
08e552c6 3766 lru_add_drain();
f817ed48 3767 /* try move_account...there may be some *locked* pages. */
fce66477 3768 goto move_account;
cc847582
KH
3769}
3770
6bbda35c 3771static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3772{
3773 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3774}
3775
3776
18f59ea7
BS
3777static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3778{
3779 return mem_cgroup_from_cont(cont)->use_hierarchy;
3780}
3781
3782static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3783 u64 val)
3784{
3785 int retval = 0;
c0ff4b85 3786 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3787 struct cgroup *parent = cont->parent;
c0ff4b85 3788 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3789
3790 if (parent)
c0ff4b85 3791 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3792
3793 cgroup_lock();
3794 /*
af901ca1 3795 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3796 * in the child subtrees. If it is unset, then the change can
3797 * occur, provided the current cgroup has no children.
3798 *
3799 * For the root cgroup, parent_mem is NULL, we allow value to be
3800 * set if there are no children.
3801 */
c0ff4b85 3802 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3803 (val == 1 || val == 0)) {
3804 if (list_empty(&cont->children))
c0ff4b85 3805 memcg->use_hierarchy = val;
18f59ea7
BS
3806 else
3807 retval = -EBUSY;
3808 } else
3809 retval = -EINVAL;
3810 cgroup_unlock();
3811
3812 return retval;
3813}
3814
0c3e73e8 3815
c0ff4b85 3816static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3817 enum mem_cgroup_stat_index idx)
0c3e73e8 3818{
7d74b06f 3819 struct mem_cgroup *iter;
7a159cc9 3820 long val = 0;
0c3e73e8 3821
7a159cc9 3822 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3823 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3824 val += mem_cgroup_read_stat(iter, idx);
3825
3826 if (val < 0) /* race ? */
3827 val = 0;
3828 return val;
0c3e73e8
BS
3829}
3830
c0ff4b85 3831static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3832{
7d74b06f 3833 u64 val;
104f3928 3834
c0ff4b85 3835 if (!mem_cgroup_is_root(memcg)) {
104f3928 3836 if (!swap)
65c64ce8 3837 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3838 else
65c64ce8 3839 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3840 }
3841
c0ff4b85
R
3842 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3843 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3844
7d74b06f 3845 if (swap)
c0ff4b85 3846 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3847
3848 return val << PAGE_SHIFT;
3849}
3850
af36f906
TH
3851static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3852 struct file *file, char __user *buf,
3853 size_t nbytes, loff_t *ppos)
8cdea7c0 3854{
c0ff4b85 3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3856 char str[64];
104f3928 3857 u64 val;
af36f906 3858 int type, name, len;
8c7c6e34
KH
3859
3860 type = MEMFILE_TYPE(cft->private);
3861 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3862
3863 if (!do_swap_account && type == _MEMSWAP)
3864 return -EOPNOTSUPP;
3865
8c7c6e34
KH
3866 switch (type) {
3867 case _MEM:
104f3928 3868 if (name == RES_USAGE)
c0ff4b85 3869 val = mem_cgroup_usage(memcg, false);
104f3928 3870 else
c0ff4b85 3871 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3872 break;
3873 case _MEMSWAP:
104f3928 3874 if (name == RES_USAGE)
c0ff4b85 3875 val = mem_cgroup_usage(memcg, true);
104f3928 3876 else
c0ff4b85 3877 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3878 break;
3879 default:
3880 BUG();
8c7c6e34 3881 }
af36f906
TH
3882
3883 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3884 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3885}
628f4235
KH
3886/*
3887 * The user of this function is...
3888 * RES_LIMIT.
3889 */
856c13aa
PM
3890static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3891 const char *buffer)
8cdea7c0 3892{
628f4235 3893 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3894 int type, name;
628f4235
KH
3895 unsigned long long val;
3896 int ret;
3897
8c7c6e34
KH
3898 type = MEMFILE_TYPE(cft->private);
3899 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3900
3901 if (!do_swap_account && type == _MEMSWAP)
3902 return -EOPNOTSUPP;
3903
8c7c6e34 3904 switch (name) {
628f4235 3905 case RES_LIMIT:
4b3bde4c
BS
3906 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3907 ret = -EINVAL;
3908 break;
3909 }
628f4235
KH
3910 /* This function does all necessary parse...reuse it */
3911 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3912 if (ret)
3913 break;
3914 if (type == _MEM)
628f4235 3915 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3916 else
3917 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3918 break;
296c81d8
BS
3919 case RES_SOFT_LIMIT:
3920 ret = res_counter_memparse_write_strategy(buffer, &val);
3921 if (ret)
3922 break;
3923 /*
3924 * For memsw, soft limits are hard to implement in terms
3925 * of semantics, for now, we support soft limits for
3926 * control without swap
3927 */
3928 if (type == _MEM)
3929 ret = res_counter_set_soft_limit(&memcg->res, val);
3930 else
3931 ret = -EINVAL;
3932 break;
628f4235
KH
3933 default:
3934 ret = -EINVAL; /* should be BUG() ? */
3935 break;
3936 }
3937 return ret;
8cdea7c0
BS
3938}
3939
fee7b548
KH
3940static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3941 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3942{
3943 struct cgroup *cgroup;
3944 unsigned long long min_limit, min_memsw_limit, tmp;
3945
3946 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3947 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3948 cgroup = memcg->css.cgroup;
3949 if (!memcg->use_hierarchy)
3950 goto out;
3951
3952 while (cgroup->parent) {
3953 cgroup = cgroup->parent;
3954 memcg = mem_cgroup_from_cont(cgroup);
3955 if (!memcg->use_hierarchy)
3956 break;
3957 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3958 min_limit = min(min_limit, tmp);
3959 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3960 min_memsw_limit = min(min_memsw_limit, tmp);
3961 }
3962out:
3963 *mem_limit = min_limit;
3964 *memsw_limit = min_memsw_limit;
fee7b548
KH
3965}
3966
29f2a4da 3967static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3968{
af36f906 3969 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3970 int type, name;
c84872e1 3971
8c7c6e34
KH
3972 type = MEMFILE_TYPE(event);
3973 name = MEMFILE_ATTR(event);
af36f906
TH
3974
3975 if (!do_swap_account && type == _MEMSWAP)
3976 return -EOPNOTSUPP;
3977
8c7c6e34 3978 switch (name) {
29f2a4da 3979 case RES_MAX_USAGE:
8c7c6e34 3980 if (type == _MEM)
c0ff4b85 3981 res_counter_reset_max(&memcg->res);
8c7c6e34 3982 else
c0ff4b85 3983 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3984 break;
3985 case RES_FAILCNT:
8c7c6e34 3986 if (type == _MEM)
c0ff4b85 3987 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3988 else
c0ff4b85 3989 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3990 break;
3991 }
f64c3f54 3992
85cc59db 3993 return 0;
c84872e1
PE
3994}
3995
7dc74be0
DN
3996static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3997 struct cftype *cft)
3998{
3999 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4000}
4001
02491447 4002#ifdef CONFIG_MMU
7dc74be0
DN
4003static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4004 struct cftype *cft, u64 val)
4005{
c0ff4b85 4006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4007
4008 if (val >= (1 << NR_MOVE_TYPE))
4009 return -EINVAL;
4010 /*
4011 * We check this value several times in both in can_attach() and
4012 * attach(), so we need cgroup lock to prevent this value from being
4013 * inconsistent.
4014 */
4015 cgroup_lock();
c0ff4b85 4016 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4017 cgroup_unlock();
4018
4019 return 0;
4020}
02491447
DN
4021#else
4022static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4023 struct cftype *cft, u64 val)
4024{
4025 return -ENOSYS;
4026}
4027#endif
7dc74be0 4028
14067bb3
KH
4029
4030/* For read statistics */
4031enum {
4032 MCS_CACHE,
4033 MCS_RSS,
d8046582 4034 MCS_FILE_MAPPED,
14067bb3
KH
4035 MCS_PGPGIN,
4036 MCS_PGPGOUT,
1dd3a273 4037 MCS_SWAP,
456f998e
YH
4038 MCS_PGFAULT,
4039 MCS_PGMAJFAULT,
14067bb3
KH
4040 MCS_INACTIVE_ANON,
4041 MCS_ACTIVE_ANON,
4042 MCS_INACTIVE_FILE,
4043 MCS_ACTIVE_FILE,
4044 MCS_UNEVICTABLE,
4045 NR_MCS_STAT,
4046};
4047
4048struct mcs_total_stat {
4049 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4050};
4051
6bbda35c 4052static struct {
14067bb3
KH
4053 char *local_name;
4054 char *total_name;
4055} memcg_stat_strings[NR_MCS_STAT] = {
4056 {"cache", "total_cache"},
4057 {"rss", "total_rss"},
d69b042f 4058 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4059 {"pgpgin", "total_pgpgin"},
4060 {"pgpgout", "total_pgpgout"},
1dd3a273 4061 {"swap", "total_swap"},
456f998e
YH
4062 {"pgfault", "total_pgfault"},
4063 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4064 {"inactive_anon", "total_inactive_anon"},
4065 {"active_anon", "total_active_anon"},
4066 {"inactive_file", "total_inactive_file"},
4067 {"active_file", "total_active_file"},
4068 {"unevictable", "total_unevictable"}
4069};
4070
4071
7d74b06f 4072static void
c0ff4b85 4073mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4074{
14067bb3
KH
4075 s64 val;
4076
4077 /* per cpu stat */
c0ff4b85 4078 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4079 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4080 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4081 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4082 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4083 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4084 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4085 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4086 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4087 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4088 if (do_swap_account) {
c0ff4b85 4089 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4090 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4091 }
c0ff4b85 4092 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4093 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4094 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4095 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4096
4097 /* per zone stat */
c0ff4b85 4098 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4099 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4100 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4101 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4102 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4103 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4104 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4105 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4106 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4107 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4108}
4109
4110static void
c0ff4b85 4111mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4112{
7d74b06f
KH
4113 struct mem_cgroup *iter;
4114
c0ff4b85 4115 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4116 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4117}
4118
406eb0c9
YH
4119#ifdef CONFIG_NUMA
4120static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4121{
4122 int nid;
4123 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4124 unsigned long node_nr;
4125 struct cgroup *cont = m->private;
d79154bb 4126 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4127
d79154bb 4128 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4129 seq_printf(m, "total=%lu", total_nr);
4130 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4131 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4132 seq_printf(m, " N%d=%lu", nid, node_nr);
4133 }
4134 seq_putc(m, '\n');
4135
d79154bb 4136 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4137 seq_printf(m, "file=%lu", file_nr);
4138 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4139 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4140 LRU_ALL_FILE);
406eb0c9
YH
4141 seq_printf(m, " N%d=%lu", nid, node_nr);
4142 }
4143 seq_putc(m, '\n');
4144
d79154bb 4145 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4146 seq_printf(m, "anon=%lu", anon_nr);
4147 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4148 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4149 LRU_ALL_ANON);
406eb0c9
YH
4150 seq_printf(m, " N%d=%lu", nid, node_nr);
4151 }
4152 seq_putc(m, '\n');
4153
d79154bb 4154 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4155 seq_printf(m, "unevictable=%lu", unevictable_nr);
4156 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4157 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4158 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4159 seq_printf(m, " N%d=%lu", nid, node_nr);
4160 }
4161 seq_putc(m, '\n');
4162 return 0;
4163}
4164#endif /* CONFIG_NUMA */
4165
c64745cf
PM
4166static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4167 struct cgroup_map_cb *cb)
d2ceb9b7 4168{
d79154bb 4169 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4170 struct mcs_total_stat mystat;
d2ceb9b7
KH
4171 int i;
4172
14067bb3 4173 memset(&mystat, 0, sizeof(mystat));
d79154bb 4174 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4175
406eb0c9 4176
1dd3a273
DN
4177 for (i = 0; i < NR_MCS_STAT; i++) {
4178 if (i == MCS_SWAP && !do_swap_account)
4179 continue;
14067bb3 4180 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4181 }
7b854121 4182
14067bb3 4183 /* Hierarchical information */
fee7b548
KH
4184 {
4185 unsigned long long limit, memsw_limit;
d79154bb 4186 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4187 cb->fill(cb, "hierarchical_memory_limit", limit);
4188 if (do_swap_account)
4189 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4190 }
7f016ee8 4191
14067bb3 4192 memset(&mystat, 0, sizeof(mystat));
d79154bb 4193 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4194 for (i = 0; i < NR_MCS_STAT; i++) {
4195 if (i == MCS_SWAP && !do_swap_account)
4196 continue;
14067bb3 4197 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4198 }
14067bb3 4199
7f016ee8 4200#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4201 {
4202 int nid, zid;
4203 struct mem_cgroup_per_zone *mz;
89abfab1 4204 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4205 unsigned long recent_rotated[2] = {0, 0};
4206 unsigned long recent_scanned[2] = {0, 0};
4207
4208 for_each_online_node(nid)
4209 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4210 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4211 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4212
89abfab1
HD
4213 recent_rotated[0] += rstat->recent_rotated[0];
4214 recent_rotated[1] += rstat->recent_rotated[1];
4215 recent_scanned[0] += rstat->recent_scanned[0];
4216 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8
KM
4217 }
4218 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4219 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4220 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4221 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4222 }
4223#endif
4224
d2ceb9b7
KH
4225 return 0;
4226}
4227
a7885eb8
KM
4228static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4229{
4230 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4231
1f4c025b 4232 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4233}
4234
4235static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4236 u64 val)
4237{
4238 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4239 struct mem_cgroup *parent;
068b38c1 4240
a7885eb8
KM
4241 if (val > 100)
4242 return -EINVAL;
4243
4244 if (cgrp->parent == NULL)
4245 return -EINVAL;
4246
4247 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4248
4249 cgroup_lock();
4250
a7885eb8
KM
4251 /* If under hierarchy, only empty-root can set this value */
4252 if ((parent->use_hierarchy) ||
068b38c1
LZ
4253 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4254 cgroup_unlock();
a7885eb8 4255 return -EINVAL;
068b38c1 4256 }
a7885eb8 4257
a7885eb8 4258 memcg->swappiness = val;
a7885eb8 4259
068b38c1
LZ
4260 cgroup_unlock();
4261
a7885eb8
KM
4262 return 0;
4263}
4264
2e72b634
KS
4265static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4266{
4267 struct mem_cgroup_threshold_ary *t;
4268 u64 usage;
4269 int i;
4270
4271 rcu_read_lock();
4272 if (!swap)
2c488db2 4273 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4274 else
2c488db2 4275 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4276
4277 if (!t)
4278 goto unlock;
4279
4280 usage = mem_cgroup_usage(memcg, swap);
4281
4282 /*
4283 * current_threshold points to threshold just below usage.
4284 * If it's not true, a threshold was crossed after last
4285 * call of __mem_cgroup_threshold().
4286 */
5407a562 4287 i = t->current_threshold;
2e72b634
KS
4288
4289 /*
4290 * Iterate backward over array of thresholds starting from
4291 * current_threshold and check if a threshold is crossed.
4292 * If none of thresholds below usage is crossed, we read
4293 * only one element of the array here.
4294 */
4295 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4296 eventfd_signal(t->entries[i].eventfd, 1);
4297
4298 /* i = current_threshold + 1 */
4299 i++;
4300
4301 /*
4302 * Iterate forward over array of thresholds starting from
4303 * current_threshold+1 and check if a threshold is crossed.
4304 * If none of thresholds above usage is crossed, we read
4305 * only one element of the array here.
4306 */
4307 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4308 eventfd_signal(t->entries[i].eventfd, 1);
4309
4310 /* Update current_threshold */
5407a562 4311 t->current_threshold = i - 1;
2e72b634
KS
4312unlock:
4313 rcu_read_unlock();
4314}
4315
4316static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4317{
ad4ca5f4
KS
4318 while (memcg) {
4319 __mem_cgroup_threshold(memcg, false);
4320 if (do_swap_account)
4321 __mem_cgroup_threshold(memcg, true);
4322
4323 memcg = parent_mem_cgroup(memcg);
4324 }
2e72b634
KS
4325}
4326
4327static int compare_thresholds(const void *a, const void *b)
4328{
4329 const struct mem_cgroup_threshold *_a = a;
4330 const struct mem_cgroup_threshold *_b = b;
4331
4332 return _a->threshold - _b->threshold;
4333}
4334
c0ff4b85 4335static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4336{
4337 struct mem_cgroup_eventfd_list *ev;
4338
c0ff4b85 4339 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4340 eventfd_signal(ev->eventfd, 1);
4341 return 0;
4342}
4343
c0ff4b85 4344static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4345{
7d74b06f
KH
4346 struct mem_cgroup *iter;
4347
c0ff4b85 4348 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4349 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4350}
4351
4352static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4353 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4354{
4355 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4356 struct mem_cgroup_thresholds *thresholds;
4357 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4358 int type = MEMFILE_TYPE(cft->private);
4359 u64 threshold, usage;
2c488db2 4360 int i, size, ret;
2e72b634
KS
4361
4362 ret = res_counter_memparse_write_strategy(args, &threshold);
4363 if (ret)
4364 return ret;
4365
4366 mutex_lock(&memcg->thresholds_lock);
2c488db2 4367
2e72b634 4368 if (type == _MEM)
2c488db2 4369 thresholds = &memcg->thresholds;
2e72b634 4370 else if (type == _MEMSWAP)
2c488db2 4371 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4372 else
4373 BUG();
4374
4375 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4376
4377 /* Check if a threshold crossed before adding a new one */
2c488db2 4378 if (thresholds->primary)
2e72b634
KS
4379 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4380
2c488db2 4381 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4382
4383 /* Allocate memory for new array of thresholds */
2c488db2 4384 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4385 GFP_KERNEL);
2c488db2 4386 if (!new) {
2e72b634
KS
4387 ret = -ENOMEM;
4388 goto unlock;
4389 }
2c488db2 4390 new->size = size;
2e72b634
KS
4391
4392 /* Copy thresholds (if any) to new array */
2c488db2
KS
4393 if (thresholds->primary) {
4394 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4395 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4396 }
4397
2e72b634 4398 /* Add new threshold */
2c488db2
KS
4399 new->entries[size - 1].eventfd = eventfd;
4400 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4401
4402 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4403 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4404 compare_thresholds, NULL);
4405
4406 /* Find current threshold */
2c488db2 4407 new->current_threshold = -1;
2e72b634 4408 for (i = 0; i < size; i++) {
2c488db2 4409 if (new->entries[i].threshold < usage) {
2e72b634 4410 /*
2c488db2
KS
4411 * new->current_threshold will not be used until
4412 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4413 * it here.
4414 */
2c488db2 4415 ++new->current_threshold;
2e72b634
KS
4416 }
4417 }
4418
2c488db2
KS
4419 /* Free old spare buffer and save old primary buffer as spare */
4420 kfree(thresholds->spare);
4421 thresholds->spare = thresholds->primary;
4422
4423 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4424
907860ed 4425 /* To be sure that nobody uses thresholds */
2e72b634
KS
4426 synchronize_rcu();
4427
2e72b634
KS
4428unlock:
4429 mutex_unlock(&memcg->thresholds_lock);
4430
4431 return ret;
4432}
4433
907860ed 4434static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4435 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4436{
4437 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4438 struct mem_cgroup_thresholds *thresholds;
4439 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4440 int type = MEMFILE_TYPE(cft->private);
4441 u64 usage;
2c488db2 4442 int i, j, size;
2e72b634
KS
4443
4444 mutex_lock(&memcg->thresholds_lock);
4445 if (type == _MEM)
2c488db2 4446 thresholds = &memcg->thresholds;
2e72b634 4447 else if (type == _MEMSWAP)
2c488db2 4448 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4449 else
4450 BUG();
4451
371528ca
AV
4452 if (!thresholds->primary)
4453 goto unlock;
4454
2e72b634
KS
4455 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4456
4457 /* Check if a threshold crossed before removing */
4458 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4459
4460 /* Calculate new number of threshold */
2c488db2
KS
4461 size = 0;
4462 for (i = 0; i < thresholds->primary->size; i++) {
4463 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4464 size++;
4465 }
4466
2c488db2 4467 new = thresholds->spare;
907860ed 4468
2e72b634
KS
4469 /* Set thresholds array to NULL if we don't have thresholds */
4470 if (!size) {
2c488db2
KS
4471 kfree(new);
4472 new = NULL;
907860ed 4473 goto swap_buffers;
2e72b634
KS
4474 }
4475
2c488db2 4476 new->size = size;
2e72b634
KS
4477
4478 /* Copy thresholds and find current threshold */
2c488db2
KS
4479 new->current_threshold = -1;
4480 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4481 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4482 continue;
4483
2c488db2
KS
4484 new->entries[j] = thresholds->primary->entries[i];
4485 if (new->entries[j].threshold < usage) {
2e72b634 4486 /*
2c488db2 4487 * new->current_threshold will not be used
2e72b634
KS
4488 * until rcu_assign_pointer(), so it's safe to increment
4489 * it here.
4490 */
2c488db2 4491 ++new->current_threshold;
2e72b634
KS
4492 }
4493 j++;
4494 }
4495
907860ed 4496swap_buffers:
2c488db2
KS
4497 /* Swap primary and spare array */
4498 thresholds->spare = thresholds->primary;
8c757763
SZ
4499 /* If all events are unregistered, free the spare array */
4500 if (!new) {
4501 kfree(thresholds->spare);
4502 thresholds->spare = NULL;
4503 }
4504
2c488db2 4505 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4506
907860ed 4507 /* To be sure that nobody uses thresholds */
2e72b634 4508 synchronize_rcu();
371528ca 4509unlock:
2e72b634 4510 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4511}
c1e862c1 4512
9490ff27
KH
4513static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4514 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4515{
4516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4517 struct mem_cgroup_eventfd_list *event;
4518 int type = MEMFILE_TYPE(cft->private);
4519
4520 BUG_ON(type != _OOM_TYPE);
4521 event = kmalloc(sizeof(*event), GFP_KERNEL);
4522 if (!event)
4523 return -ENOMEM;
4524
1af8efe9 4525 spin_lock(&memcg_oom_lock);
9490ff27
KH
4526
4527 event->eventfd = eventfd;
4528 list_add(&event->list, &memcg->oom_notify);
4529
4530 /* already in OOM ? */
79dfdacc 4531 if (atomic_read(&memcg->under_oom))
9490ff27 4532 eventfd_signal(eventfd, 1);
1af8efe9 4533 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4534
4535 return 0;
4536}
4537
907860ed 4538static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4539 struct cftype *cft, struct eventfd_ctx *eventfd)
4540{
c0ff4b85 4541 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4542 struct mem_cgroup_eventfd_list *ev, *tmp;
4543 int type = MEMFILE_TYPE(cft->private);
4544
4545 BUG_ON(type != _OOM_TYPE);
4546
1af8efe9 4547 spin_lock(&memcg_oom_lock);
9490ff27 4548
c0ff4b85 4549 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4550 if (ev->eventfd == eventfd) {
4551 list_del(&ev->list);
4552 kfree(ev);
4553 }
4554 }
4555
1af8efe9 4556 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4557}
4558
3c11ecf4
KH
4559static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4560 struct cftype *cft, struct cgroup_map_cb *cb)
4561{
c0ff4b85 4562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4563
c0ff4b85 4564 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4565
c0ff4b85 4566 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4567 cb->fill(cb, "under_oom", 1);
4568 else
4569 cb->fill(cb, "under_oom", 0);
4570 return 0;
4571}
4572
3c11ecf4
KH
4573static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4574 struct cftype *cft, u64 val)
4575{
c0ff4b85 4576 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4577 struct mem_cgroup *parent;
4578
4579 /* cannot set to root cgroup and only 0 and 1 are allowed */
4580 if (!cgrp->parent || !((val == 0) || (val == 1)))
4581 return -EINVAL;
4582
4583 parent = mem_cgroup_from_cont(cgrp->parent);
4584
4585 cgroup_lock();
4586 /* oom-kill-disable is a flag for subhierarchy. */
4587 if ((parent->use_hierarchy) ||
c0ff4b85 4588 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4589 cgroup_unlock();
4590 return -EINVAL;
4591 }
c0ff4b85 4592 memcg->oom_kill_disable = val;
4d845ebf 4593 if (!val)
c0ff4b85 4594 memcg_oom_recover(memcg);
3c11ecf4
KH
4595 cgroup_unlock();
4596 return 0;
4597}
4598
406eb0c9
YH
4599#ifdef CONFIG_NUMA
4600static const struct file_operations mem_control_numa_stat_file_operations = {
4601 .read = seq_read,
4602 .llseek = seq_lseek,
4603 .release = single_release,
4604};
4605
4606static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4607{
4608 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4609
4610 file->f_op = &mem_control_numa_stat_file_operations;
4611 return single_open(file, mem_control_numa_stat_show, cont);
4612}
4613#endif /* CONFIG_NUMA */
4614
e5671dfa 4615#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4616static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4617{
1d62e436 4618 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4619};
4620
1d62e436 4621static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4622{
1d62e436 4623 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4624}
e5671dfa 4625#else
cbe128e3 4626static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4627{
4628 return 0;
4629}
d1a4c0b3 4630
1d62e436 4631static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4632{
4633}
e5671dfa
GC
4634#endif
4635
8cdea7c0
BS
4636static struct cftype mem_cgroup_files[] = {
4637 {
0eea1030 4638 .name = "usage_in_bytes",
8c7c6e34 4639 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4640 .read = mem_cgroup_read,
9490ff27
KH
4641 .register_event = mem_cgroup_usage_register_event,
4642 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4643 },
c84872e1
PE
4644 {
4645 .name = "max_usage_in_bytes",
8c7c6e34 4646 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4647 .trigger = mem_cgroup_reset,
af36f906 4648 .read = mem_cgroup_read,
c84872e1 4649 },
8cdea7c0 4650 {
0eea1030 4651 .name = "limit_in_bytes",
8c7c6e34 4652 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4653 .write_string = mem_cgroup_write,
af36f906 4654 .read = mem_cgroup_read,
8cdea7c0 4655 },
296c81d8
BS
4656 {
4657 .name = "soft_limit_in_bytes",
4658 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4659 .write_string = mem_cgroup_write,
af36f906 4660 .read = mem_cgroup_read,
296c81d8 4661 },
8cdea7c0
BS
4662 {
4663 .name = "failcnt",
8c7c6e34 4664 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4665 .trigger = mem_cgroup_reset,
af36f906 4666 .read = mem_cgroup_read,
8cdea7c0 4667 },
d2ceb9b7
KH
4668 {
4669 .name = "stat",
c64745cf 4670 .read_map = mem_control_stat_show,
d2ceb9b7 4671 },
c1e862c1
KH
4672 {
4673 .name = "force_empty",
4674 .trigger = mem_cgroup_force_empty_write,
4675 },
18f59ea7
BS
4676 {
4677 .name = "use_hierarchy",
4678 .write_u64 = mem_cgroup_hierarchy_write,
4679 .read_u64 = mem_cgroup_hierarchy_read,
4680 },
a7885eb8
KM
4681 {
4682 .name = "swappiness",
4683 .read_u64 = mem_cgroup_swappiness_read,
4684 .write_u64 = mem_cgroup_swappiness_write,
4685 },
7dc74be0
DN
4686 {
4687 .name = "move_charge_at_immigrate",
4688 .read_u64 = mem_cgroup_move_charge_read,
4689 .write_u64 = mem_cgroup_move_charge_write,
4690 },
9490ff27
KH
4691 {
4692 .name = "oom_control",
3c11ecf4
KH
4693 .read_map = mem_cgroup_oom_control_read,
4694 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4695 .register_event = mem_cgroup_oom_register_event,
4696 .unregister_event = mem_cgroup_oom_unregister_event,
4697 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4698 },
406eb0c9
YH
4699#ifdef CONFIG_NUMA
4700 {
4701 .name = "numa_stat",
4702 .open = mem_control_numa_stat_open,
89577127 4703 .mode = S_IRUGO,
406eb0c9
YH
4704 },
4705#endif
8c7c6e34 4706#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4707 {
4708 .name = "memsw.usage_in_bytes",
4709 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4710 .read = mem_cgroup_read,
9490ff27
KH
4711 .register_event = mem_cgroup_usage_register_event,
4712 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4713 },
4714 {
4715 .name = "memsw.max_usage_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4717 .trigger = mem_cgroup_reset,
af36f906 4718 .read = mem_cgroup_read,
8c7c6e34
KH
4719 },
4720 {
4721 .name = "memsw.limit_in_bytes",
4722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4723 .write_string = mem_cgroup_write,
af36f906 4724 .read = mem_cgroup_read,
8c7c6e34
KH
4725 },
4726 {
4727 .name = "memsw.failcnt",
4728 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4729 .trigger = mem_cgroup_reset,
af36f906 4730 .read = mem_cgroup_read,
8c7c6e34 4731 },
8c7c6e34 4732#endif
6bc10349 4733 { }, /* terminate */
af36f906 4734};
8c7c6e34 4735
c0ff4b85 4736static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4737{
4738 struct mem_cgroup_per_node *pn;
1ecaab2b 4739 struct mem_cgroup_per_zone *mz;
f156ab93 4740 enum lru_list lru;
41e3355d 4741 int zone, tmp = node;
1ecaab2b
KH
4742 /*
4743 * This routine is called against possible nodes.
4744 * But it's BUG to call kmalloc() against offline node.
4745 *
4746 * TODO: this routine can waste much memory for nodes which will
4747 * never be onlined. It's better to use memory hotplug callback
4748 * function.
4749 */
41e3355d
KH
4750 if (!node_state(node, N_NORMAL_MEMORY))
4751 tmp = -1;
17295c88 4752 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4753 if (!pn)
4754 return 1;
1ecaab2b 4755
1ecaab2b
KH
4756 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4757 mz = &pn->zoneinfo[zone];
f156ab93
HD
4758 for_each_lru(lru)
4759 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
f64c3f54 4760 mz->usage_in_excess = 0;
4e416953 4761 mz->on_tree = false;
d79154bb 4762 mz->memcg = memcg;
1ecaab2b 4763 }
0a619e58 4764 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4765 return 0;
4766}
4767
c0ff4b85 4768static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4769{
c0ff4b85 4770 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4771}
4772
33327948
KH
4773static struct mem_cgroup *mem_cgroup_alloc(void)
4774{
d79154bb 4775 struct mem_cgroup *memcg;
c62b1a3b 4776 int size = sizeof(struct mem_cgroup);
33327948 4777
c62b1a3b 4778 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4779 if (size < PAGE_SIZE)
d79154bb 4780 memcg = kzalloc(size, GFP_KERNEL);
33327948 4781 else
d79154bb 4782 memcg = vzalloc(size);
33327948 4783
d79154bb 4784 if (!memcg)
e7bbcdf3
DC
4785 return NULL;
4786
d79154bb
HD
4787 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4788 if (!memcg->stat)
d2e61b8d 4789 goto out_free;
d79154bb
HD
4790 spin_lock_init(&memcg->pcp_counter_lock);
4791 return memcg;
d2e61b8d
DC
4792
4793out_free:
4794 if (size < PAGE_SIZE)
d79154bb 4795 kfree(memcg);
d2e61b8d 4796 else
d79154bb 4797 vfree(memcg);
d2e61b8d 4798 return NULL;
33327948
KH
4799}
4800
59927fb9
HD
4801/*
4802 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4803 * but in process context. The work_freeing structure is overlaid
4804 * on the rcu_freeing structure, which itself is overlaid on memsw.
4805 */
4806static void vfree_work(struct work_struct *work)
4807{
4808 struct mem_cgroup *memcg;
4809
4810 memcg = container_of(work, struct mem_cgroup, work_freeing);
4811 vfree(memcg);
4812}
4813static void vfree_rcu(struct rcu_head *rcu_head)
4814{
4815 struct mem_cgroup *memcg;
4816
4817 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4818 INIT_WORK(&memcg->work_freeing, vfree_work);
4819 schedule_work(&memcg->work_freeing);
4820}
4821
8c7c6e34
KH
4822/*
4823 * At destroying mem_cgroup, references from swap_cgroup can remain.
4824 * (scanning all at force_empty is too costly...)
4825 *
4826 * Instead of clearing all references at force_empty, we remember
4827 * the number of reference from swap_cgroup and free mem_cgroup when
4828 * it goes down to 0.
4829 *
8c7c6e34
KH
4830 * Removal of cgroup itself succeeds regardless of refs from swap.
4831 */
4832
c0ff4b85 4833static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4834{
08e552c6
KH
4835 int node;
4836
c0ff4b85
R
4837 mem_cgroup_remove_from_trees(memcg);
4838 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4839
3ed28fa1 4840 for_each_node(node)
c0ff4b85 4841 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4842
c0ff4b85 4843 free_percpu(memcg->stat);
c62b1a3b 4844 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4845 kfree_rcu(memcg, rcu_freeing);
33327948 4846 else
59927fb9 4847 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4848}
4849
c0ff4b85 4850static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4851{
c0ff4b85 4852 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4853}
4854
c0ff4b85 4855static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4856{
c0ff4b85
R
4857 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4858 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4859 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4860 if (parent)
4861 mem_cgroup_put(parent);
4862 }
8c7c6e34
KH
4863}
4864
c0ff4b85 4865static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4866{
c0ff4b85 4867 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4868}
4869
7bcc1bb1
DN
4870/*
4871 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4872 */
e1aab161 4873struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4874{
c0ff4b85 4875 if (!memcg->res.parent)
7bcc1bb1 4876 return NULL;
c0ff4b85 4877 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4878}
e1aab161 4879EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4880
c077719b
KH
4881#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4882static void __init enable_swap_cgroup(void)
4883{
f8d66542 4884 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4885 do_swap_account = 1;
4886}
4887#else
4888static void __init enable_swap_cgroup(void)
4889{
4890}
4891#endif
4892
f64c3f54
BS
4893static int mem_cgroup_soft_limit_tree_init(void)
4894{
4895 struct mem_cgroup_tree_per_node *rtpn;
4896 struct mem_cgroup_tree_per_zone *rtpz;
4897 int tmp, node, zone;
4898
3ed28fa1 4899 for_each_node(node) {
f64c3f54
BS
4900 tmp = node;
4901 if (!node_state(node, N_NORMAL_MEMORY))
4902 tmp = -1;
4903 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4904 if (!rtpn)
c3cecc68 4905 goto err_cleanup;
f64c3f54
BS
4906
4907 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4908
4909 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4910 rtpz = &rtpn->rb_tree_per_zone[zone];
4911 rtpz->rb_root = RB_ROOT;
4912 spin_lock_init(&rtpz->lock);
4913 }
4914 }
4915 return 0;
c3cecc68
MH
4916
4917err_cleanup:
3ed28fa1 4918 for_each_node(node) {
c3cecc68
MH
4919 if (!soft_limit_tree.rb_tree_per_node[node])
4920 break;
4921 kfree(soft_limit_tree.rb_tree_per_node[node]);
4922 soft_limit_tree.rb_tree_per_node[node] = NULL;
4923 }
4924 return 1;
4925
f64c3f54
BS
4926}
4927
0eb253e2 4928static struct cgroup_subsys_state * __ref
761b3ef5 4929mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4930{
c0ff4b85 4931 struct mem_cgroup *memcg, *parent;
04046e1a 4932 long error = -ENOMEM;
6d12e2d8 4933 int node;
8cdea7c0 4934
c0ff4b85
R
4935 memcg = mem_cgroup_alloc();
4936 if (!memcg)
04046e1a 4937 return ERR_PTR(error);
78fb7466 4938
3ed28fa1 4939 for_each_node(node)
c0ff4b85 4940 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4941 goto free_out;
f64c3f54 4942
c077719b 4943 /* root ? */
28dbc4b6 4944 if (cont->parent == NULL) {
cdec2e42 4945 int cpu;
c077719b 4946 enable_swap_cgroup();
28dbc4b6 4947 parent = NULL;
f64c3f54
BS
4948 if (mem_cgroup_soft_limit_tree_init())
4949 goto free_out;
a41c58a6 4950 root_mem_cgroup = memcg;
cdec2e42
KH
4951 for_each_possible_cpu(cpu) {
4952 struct memcg_stock_pcp *stock =
4953 &per_cpu(memcg_stock, cpu);
4954 INIT_WORK(&stock->work, drain_local_stock);
4955 }
711d3d2c 4956 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4957 } else {
28dbc4b6 4958 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4959 memcg->use_hierarchy = parent->use_hierarchy;
4960 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4961 }
28dbc4b6 4962
18f59ea7 4963 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4964 res_counter_init(&memcg->res, &parent->res);
4965 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4966 /*
4967 * We increment refcnt of the parent to ensure that we can
4968 * safely access it on res_counter_charge/uncharge.
4969 * This refcnt will be decremented when freeing this
4970 * mem_cgroup(see mem_cgroup_put).
4971 */
4972 mem_cgroup_get(parent);
18f59ea7 4973 } else {
c0ff4b85
R
4974 res_counter_init(&memcg->res, NULL);
4975 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4976 }
c0ff4b85
R
4977 memcg->last_scanned_node = MAX_NUMNODES;
4978 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4979
a7885eb8 4980 if (parent)
c0ff4b85
R
4981 memcg->swappiness = mem_cgroup_swappiness(parent);
4982 atomic_set(&memcg->refcnt, 1);
4983 memcg->move_charge_at_immigrate = 0;
4984 mutex_init(&memcg->thresholds_lock);
312734c0 4985 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4986
4987 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4988 if (error) {
4989 /*
4990 * We call put now because our (and parent's) refcnts
4991 * are already in place. mem_cgroup_put() will internally
4992 * call __mem_cgroup_free, so return directly
4993 */
4994 mem_cgroup_put(memcg);
4995 return ERR_PTR(error);
4996 }
c0ff4b85 4997 return &memcg->css;
6d12e2d8 4998free_out:
c0ff4b85 4999 __mem_cgroup_free(memcg);
04046e1a 5000 return ERR_PTR(error);
8cdea7c0
BS
5001}
5002
761b3ef5 5003static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5004{
c0ff4b85 5005 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5006
c0ff4b85 5007 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5008}
5009
761b3ef5 5010static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5011{
c0ff4b85 5012 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5013
1d62e436 5014 kmem_cgroup_destroy(memcg);
d1a4c0b3 5015
c0ff4b85 5016 mem_cgroup_put(memcg);
8cdea7c0
BS
5017}
5018
02491447 5019#ifdef CONFIG_MMU
7dc74be0 5020/* Handlers for move charge at task migration. */
854ffa8d
DN
5021#define PRECHARGE_COUNT_AT_ONCE 256
5022static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5023{
854ffa8d
DN
5024 int ret = 0;
5025 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5026 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5027
c0ff4b85 5028 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5029 mc.precharge += count;
5030 /* we don't need css_get for root */
5031 return ret;
5032 }
5033 /* try to charge at once */
5034 if (count > 1) {
5035 struct res_counter *dummy;
5036 /*
c0ff4b85 5037 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5038 * by cgroup_lock_live_cgroup() that it is not removed and we
5039 * are still under the same cgroup_mutex. So we can postpone
5040 * css_get().
5041 */
c0ff4b85 5042 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5043 goto one_by_one;
c0ff4b85 5044 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5045 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5046 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5047 goto one_by_one;
5048 }
5049 mc.precharge += count;
854ffa8d
DN
5050 return ret;
5051 }
5052one_by_one:
5053 /* fall back to one by one charge */
5054 while (count--) {
5055 if (signal_pending(current)) {
5056 ret = -EINTR;
5057 break;
5058 }
5059 if (!batch_count--) {
5060 batch_count = PRECHARGE_COUNT_AT_ONCE;
5061 cond_resched();
5062 }
c0ff4b85
R
5063 ret = __mem_cgroup_try_charge(NULL,
5064 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5065 if (ret)
854ffa8d 5066 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5067 return ret;
854ffa8d
DN
5068 mc.precharge++;
5069 }
4ffef5fe
DN
5070 return ret;
5071}
5072
5073/**
8d32ff84 5074 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5075 * @vma: the vma the pte to be checked belongs
5076 * @addr: the address corresponding to the pte to be checked
5077 * @ptent: the pte to be checked
02491447 5078 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5079 *
5080 * Returns
5081 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5082 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5083 * move charge. if @target is not NULL, the page is stored in target->page
5084 * with extra refcnt got(Callers should handle it).
02491447
DN
5085 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5086 * target for charge migration. if @target is not NULL, the entry is stored
5087 * in target->ent.
4ffef5fe
DN
5088 *
5089 * Called with pte lock held.
5090 */
4ffef5fe
DN
5091union mc_target {
5092 struct page *page;
02491447 5093 swp_entry_t ent;
4ffef5fe
DN
5094};
5095
4ffef5fe 5096enum mc_target_type {
8d32ff84 5097 MC_TARGET_NONE = 0,
4ffef5fe 5098 MC_TARGET_PAGE,
02491447 5099 MC_TARGET_SWAP,
4ffef5fe
DN
5100};
5101
90254a65
DN
5102static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5103 unsigned long addr, pte_t ptent)
4ffef5fe 5104{
90254a65 5105 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5106
90254a65
DN
5107 if (!page || !page_mapped(page))
5108 return NULL;
5109 if (PageAnon(page)) {
5110 /* we don't move shared anon */
4b91355e 5111 if (!move_anon())
90254a65 5112 return NULL;
87946a72
DN
5113 } else if (!move_file())
5114 /* we ignore mapcount for file pages */
90254a65
DN
5115 return NULL;
5116 if (!get_page_unless_zero(page))
5117 return NULL;
5118
5119 return page;
5120}
5121
4b91355e 5122#ifdef CONFIG_SWAP
90254a65
DN
5123static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5124 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5125{
90254a65
DN
5126 struct page *page = NULL;
5127 swp_entry_t ent = pte_to_swp_entry(ptent);
5128
5129 if (!move_anon() || non_swap_entry(ent))
5130 return NULL;
4b91355e
KH
5131 /*
5132 * Because lookup_swap_cache() updates some statistics counter,
5133 * we call find_get_page() with swapper_space directly.
5134 */
5135 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5136 if (do_swap_account)
5137 entry->val = ent.val;
5138
5139 return page;
5140}
4b91355e
KH
5141#else
5142static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5143 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5144{
5145 return NULL;
5146}
5147#endif
90254a65 5148
87946a72
DN
5149static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5150 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5151{
5152 struct page *page = NULL;
87946a72
DN
5153 struct address_space *mapping;
5154 pgoff_t pgoff;
5155
5156 if (!vma->vm_file) /* anonymous vma */
5157 return NULL;
5158 if (!move_file())
5159 return NULL;
5160
87946a72
DN
5161 mapping = vma->vm_file->f_mapping;
5162 if (pte_none(ptent))
5163 pgoff = linear_page_index(vma, addr);
5164 else /* pte_file(ptent) is true */
5165 pgoff = pte_to_pgoff(ptent);
5166
5167 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5168 page = find_get_page(mapping, pgoff);
5169
5170#ifdef CONFIG_SWAP
5171 /* shmem/tmpfs may report page out on swap: account for that too. */
5172 if (radix_tree_exceptional_entry(page)) {
5173 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5174 if (do_swap_account)
aa3b1895
HD
5175 *entry = swap;
5176 page = find_get_page(&swapper_space, swap.val);
87946a72 5177 }
aa3b1895 5178#endif
87946a72
DN
5179 return page;
5180}
5181
8d32ff84 5182static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5183 unsigned long addr, pte_t ptent, union mc_target *target)
5184{
5185 struct page *page = NULL;
5186 struct page_cgroup *pc;
8d32ff84 5187 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5188 swp_entry_t ent = { .val = 0 };
5189
5190 if (pte_present(ptent))
5191 page = mc_handle_present_pte(vma, addr, ptent);
5192 else if (is_swap_pte(ptent))
5193 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5194 else if (pte_none(ptent) || pte_file(ptent))
5195 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5196
5197 if (!page && !ent.val)
8d32ff84 5198 return ret;
02491447
DN
5199 if (page) {
5200 pc = lookup_page_cgroup(page);
5201 /*
5202 * Do only loose check w/o page_cgroup lock.
5203 * mem_cgroup_move_account() checks the pc is valid or not under
5204 * the lock.
5205 */
5206 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5207 ret = MC_TARGET_PAGE;
5208 if (target)
5209 target->page = page;
5210 }
5211 if (!ret || !target)
5212 put_page(page);
5213 }
90254a65
DN
5214 /* There is a swap entry and a page doesn't exist or isn't charged */
5215 if (ent.val && !ret &&
9fb4b7cc 5216 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5217 ret = MC_TARGET_SWAP;
5218 if (target)
5219 target->ent = ent;
4ffef5fe 5220 }
4ffef5fe
DN
5221 return ret;
5222}
5223
12724850
NH
5224#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5225/*
5226 * We don't consider swapping or file mapped pages because THP does not
5227 * support them for now.
5228 * Caller should make sure that pmd_trans_huge(pmd) is true.
5229 */
5230static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5231 unsigned long addr, pmd_t pmd, union mc_target *target)
5232{
5233 struct page *page = NULL;
5234 struct page_cgroup *pc;
5235 enum mc_target_type ret = MC_TARGET_NONE;
5236
5237 page = pmd_page(pmd);
5238 VM_BUG_ON(!page || !PageHead(page));
5239 if (!move_anon())
5240 return ret;
5241 pc = lookup_page_cgroup(page);
5242 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5243 ret = MC_TARGET_PAGE;
5244 if (target) {
5245 get_page(page);
5246 target->page = page;
5247 }
5248 }
5249 return ret;
5250}
5251#else
5252static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5253 unsigned long addr, pmd_t pmd, union mc_target *target)
5254{
5255 return MC_TARGET_NONE;
5256}
5257#endif
5258
4ffef5fe
DN
5259static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5260 unsigned long addr, unsigned long end,
5261 struct mm_walk *walk)
5262{
5263 struct vm_area_struct *vma = walk->private;
5264 pte_t *pte;
5265 spinlock_t *ptl;
5266
12724850
NH
5267 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5268 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5269 mc.precharge += HPAGE_PMD_NR;
5270 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5271 return 0;
12724850 5272 }
03319327 5273
45f83cef
AA
5274 if (pmd_trans_unstable(pmd))
5275 return 0;
4ffef5fe
DN
5276 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5277 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5278 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5279 mc.precharge++; /* increment precharge temporarily */
5280 pte_unmap_unlock(pte - 1, ptl);
5281 cond_resched();
5282
7dc74be0
DN
5283 return 0;
5284}
5285
4ffef5fe
DN
5286static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5287{
5288 unsigned long precharge;
5289 struct vm_area_struct *vma;
5290
dfe076b0 5291 down_read(&mm->mmap_sem);
4ffef5fe
DN
5292 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5293 struct mm_walk mem_cgroup_count_precharge_walk = {
5294 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5295 .mm = mm,
5296 .private = vma,
5297 };
5298 if (is_vm_hugetlb_page(vma))
5299 continue;
4ffef5fe
DN
5300 walk_page_range(vma->vm_start, vma->vm_end,
5301 &mem_cgroup_count_precharge_walk);
5302 }
dfe076b0 5303 up_read(&mm->mmap_sem);
4ffef5fe
DN
5304
5305 precharge = mc.precharge;
5306 mc.precharge = 0;
5307
5308 return precharge;
5309}
5310
4ffef5fe
DN
5311static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5312{
dfe076b0
DN
5313 unsigned long precharge = mem_cgroup_count_precharge(mm);
5314
5315 VM_BUG_ON(mc.moving_task);
5316 mc.moving_task = current;
5317 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5318}
5319
dfe076b0
DN
5320/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5321static void __mem_cgroup_clear_mc(void)
4ffef5fe 5322{
2bd9bb20
KH
5323 struct mem_cgroup *from = mc.from;
5324 struct mem_cgroup *to = mc.to;
5325
4ffef5fe 5326 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5327 if (mc.precharge) {
5328 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5329 mc.precharge = 0;
5330 }
5331 /*
5332 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5333 * we must uncharge here.
5334 */
5335 if (mc.moved_charge) {
5336 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5337 mc.moved_charge = 0;
4ffef5fe 5338 }
483c30b5
DN
5339 /* we must fixup refcnts and charges */
5340 if (mc.moved_swap) {
483c30b5
DN
5341 /* uncharge swap account from the old cgroup */
5342 if (!mem_cgroup_is_root(mc.from))
5343 res_counter_uncharge(&mc.from->memsw,
5344 PAGE_SIZE * mc.moved_swap);
5345 __mem_cgroup_put(mc.from, mc.moved_swap);
5346
5347 if (!mem_cgroup_is_root(mc.to)) {
5348 /*
5349 * we charged both to->res and to->memsw, so we should
5350 * uncharge to->res.
5351 */
5352 res_counter_uncharge(&mc.to->res,
5353 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5354 }
5355 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5356 mc.moved_swap = 0;
5357 }
dfe076b0
DN
5358 memcg_oom_recover(from);
5359 memcg_oom_recover(to);
5360 wake_up_all(&mc.waitq);
5361}
5362
5363static void mem_cgroup_clear_mc(void)
5364{
5365 struct mem_cgroup *from = mc.from;
5366
5367 /*
5368 * we must clear moving_task before waking up waiters at the end of
5369 * task migration.
5370 */
5371 mc.moving_task = NULL;
5372 __mem_cgroup_clear_mc();
2bd9bb20 5373 spin_lock(&mc.lock);
4ffef5fe
DN
5374 mc.from = NULL;
5375 mc.to = NULL;
2bd9bb20 5376 spin_unlock(&mc.lock);
32047e2a 5377 mem_cgroup_end_move(from);
4ffef5fe
DN
5378}
5379
761b3ef5
LZ
5380static int mem_cgroup_can_attach(struct cgroup *cgroup,
5381 struct cgroup_taskset *tset)
7dc74be0 5382{
2f7ee569 5383 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5384 int ret = 0;
c0ff4b85 5385 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5386
c0ff4b85 5387 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5388 struct mm_struct *mm;
5389 struct mem_cgroup *from = mem_cgroup_from_task(p);
5390
c0ff4b85 5391 VM_BUG_ON(from == memcg);
7dc74be0
DN
5392
5393 mm = get_task_mm(p);
5394 if (!mm)
5395 return 0;
7dc74be0 5396 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5397 if (mm->owner == p) {
5398 VM_BUG_ON(mc.from);
5399 VM_BUG_ON(mc.to);
5400 VM_BUG_ON(mc.precharge);
854ffa8d 5401 VM_BUG_ON(mc.moved_charge);
483c30b5 5402 VM_BUG_ON(mc.moved_swap);
32047e2a 5403 mem_cgroup_start_move(from);
2bd9bb20 5404 spin_lock(&mc.lock);
4ffef5fe 5405 mc.from = from;
c0ff4b85 5406 mc.to = memcg;
2bd9bb20 5407 spin_unlock(&mc.lock);
dfe076b0 5408 /* We set mc.moving_task later */
4ffef5fe
DN
5409
5410 ret = mem_cgroup_precharge_mc(mm);
5411 if (ret)
5412 mem_cgroup_clear_mc();
dfe076b0
DN
5413 }
5414 mmput(mm);
7dc74be0
DN
5415 }
5416 return ret;
5417}
5418
761b3ef5
LZ
5419static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5420 struct cgroup_taskset *tset)
7dc74be0 5421{
4ffef5fe 5422 mem_cgroup_clear_mc();
7dc74be0
DN
5423}
5424
4ffef5fe
DN
5425static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5426 unsigned long addr, unsigned long end,
5427 struct mm_walk *walk)
7dc74be0 5428{
4ffef5fe
DN
5429 int ret = 0;
5430 struct vm_area_struct *vma = walk->private;
5431 pte_t *pte;
5432 spinlock_t *ptl;
12724850
NH
5433 enum mc_target_type target_type;
5434 union mc_target target;
5435 struct page *page;
5436 struct page_cgroup *pc;
4ffef5fe 5437
12724850
NH
5438 /*
5439 * We don't take compound_lock() here but no race with splitting thp
5440 * happens because:
5441 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5442 * under splitting, which means there's no concurrent thp split,
5443 * - if another thread runs into split_huge_page() just after we
5444 * entered this if-block, the thread must wait for page table lock
5445 * to be unlocked in __split_huge_page_splitting(), where the main
5446 * part of thp split is not executed yet.
5447 */
5448 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5449 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5450 spin_unlock(&vma->vm_mm->page_table_lock);
5451 return 0;
5452 }
5453 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5454 if (target_type == MC_TARGET_PAGE) {
5455 page = target.page;
5456 if (!isolate_lru_page(page)) {
5457 pc = lookup_page_cgroup(page);
5458 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5459 pc, mc.from, mc.to,
5460 false)) {
5461 mc.precharge -= HPAGE_PMD_NR;
5462 mc.moved_charge += HPAGE_PMD_NR;
5463 }
5464 putback_lru_page(page);
5465 }
5466 put_page(page);
5467 }
5468 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5469 return 0;
12724850
NH
5470 }
5471
45f83cef
AA
5472 if (pmd_trans_unstable(pmd))
5473 return 0;
4ffef5fe
DN
5474retry:
5475 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5476 for (; addr != end; addr += PAGE_SIZE) {
5477 pte_t ptent = *(pte++);
02491447 5478 swp_entry_t ent;
4ffef5fe
DN
5479
5480 if (!mc.precharge)
5481 break;
5482
8d32ff84 5483 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5484 case MC_TARGET_PAGE:
5485 page = target.page;
5486 if (isolate_lru_page(page))
5487 goto put;
5488 pc = lookup_page_cgroup(page);
7ec99d62
JW
5489 if (!mem_cgroup_move_account(page, 1, pc,
5490 mc.from, mc.to, false)) {
4ffef5fe 5491 mc.precharge--;
854ffa8d
DN
5492 /* we uncharge from mc.from later. */
5493 mc.moved_charge++;
4ffef5fe
DN
5494 }
5495 putback_lru_page(page);
8d32ff84 5496put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5497 put_page(page);
5498 break;
02491447
DN
5499 case MC_TARGET_SWAP:
5500 ent = target.ent;
e91cbb42 5501 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5502 mc.precharge--;
483c30b5
DN
5503 /* we fixup refcnts and charges later. */
5504 mc.moved_swap++;
5505 }
02491447 5506 break;
4ffef5fe
DN
5507 default:
5508 break;
5509 }
5510 }
5511 pte_unmap_unlock(pte - 1, ptl);
5512 cond_resched();
5513
5514 if (addr != end) {
5515 /*
5516 * We have consumed all precharges we got in can_attach().
5517 * We try charge one by one, but don't do any additional
5518 * charges to mc.to if we have failed in charge once in attach()
5519 * phase.
5520 */
854ffa8d 5521 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5522 if (!ret)
5523 goto retry;
5524 }
5525
5526 return ret;
5527}
5528
5529static void mem_cgroup_move_charge(struct mm_struct *mm)
5530{
5531 struct vm_area_struct *vma;
5532
5533 lru_add_drain_all();
dfe076b0
DN
5534retry:
5535 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5536 /*
5537 * Someone who are holding the mmap_sem might be waiting in
5538 * waitq. So we cancel all extra charges, wake up all waiters,
5539 * and retry. Because we cancel precharges, we might not be able
5540 * to move enough charges, but moving charge is a best-effort
5541 * feature anyway, so it wouldn't be a big problem.
5542 */
5543 __mem_cgroup_clear_mc();
5544 cond_resched();
5545 goto retry;
5546 }
4ffef5fe
DN
5547 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5548 int ret;
5549 struct mm_walk mem_cgroup_move_charge_walk = {
5550 .pmd_entry = mem_cgroup_move_charge_pte_range,
5551 .mm = mm,
5552 .private = vma,
5553 };
5554 if (is_vm_hugetlb_page(vma))
5555 continue;
4ffef5fe
DN
5556 ret = walk_page_range(vma->vm_start, vma->vm_end,
5557 &mem_cgroup_move_charge_walk);
5558 if (ret)
5559 /*
5560 * means we have consumed all precharges and failed in
5561 * doing additional charge. Just abandon here.
5562 */
5563 break;
5564 }
dfe076b0 5565 up_read(&mm->mmap_sem);
7dc74be0
DN
5566}
5567
761b3ef5
LZ
5568static void mem_cgroup_move_task(struct cgroup *cont,
5569 struct cgroup_taskset *tset)
67e465a7 5570{
2f7ee569 5571 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5572 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5573
dfe076b0 5574 if (mm) {
a433658c
KM
5575 if (mc.to)
5576 mem_cgroup_move_charge(mm);
dfe076b0
DN
5577 mmput(mm);
5578 }
a433658c
KM
5579 if (mc.to)
5580 mem_cgroup_clear_mc();
67e465a7 5581}
5cfb80a7 5582#else /* !CONFIG_MMU */
761b3ef5
LZ
5583static int mem_cgroup_can_attach(struct cgroup *cgroup,
5584 struct cgroup_taskset *tset)
5cfb80a7
DN
5585{
5586 return 0;
5587}
761b3ef5
LZ
5588static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5589 struct cgroup_taskset *tset)
5cfb80a7
DN
5590{
5591}
761b3ef5
LZ
5592static void mem_cgroup_move_task(struct cgroup *cont,
5593 struct cgroup_taskset *tset)
5cfb80a7
DN
5594{
5595}
5596#endif
67e465a7 5597
8cdea7c0
BS
5598struct cgroup_subsys mem_cgroup_subsys = {
5599 .name = "memory",
5600 .subsys_id = mem_cgroup_subsys_id,
5601 .create = mem_cgroup_create,
df878fb0 5602 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5603 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5604 .can_attach = mem_cgroup_can_attach,
5605 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5606 .attach = mem_cgroup_move_task,
6bc10349 5607 .base_cftypes = mem_cgroup_files,
6d12e2d8 5608 .early_init = 0,
04046e1a 5609 .use_id = 1,
48ddbe19 5610 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5611};
c077719b
KH
5612
5613#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5614static int __init enable_swap_account(char *s)
5615{
5616 /* consider enabled if no parameter or 1 is given */
a2c8990a 5617 if (!strcmp(s, "1"))
a42c390c 5618 really_do_swap_account = 1;
a2c8990a 5619 else if (!strcmp(s, "0"))
a42c390c
MH
5620 really_do_swap_account = 0;
5621 return 1;
5622}
a2c8990a 5623__setup("swapaccount=", enable_swap_account);
c077719b 5624
c077719b 5625#endif
This page took 0.778961 seconds and 5 git commands to generate.