mm: update comment for DEFAULT_MAX_MAP_COUNT
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
b2145145
WL
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499{
a7c6d554 500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
501}
502
70ddf637
AV
503/* Some nice accessors for the vmpressure. */
504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505{
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509}
510
511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512{
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514}
515
7ffc0edc
MH
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
4219b2da
LZ
521/*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525#define MEM_CGROUP_ID_MAX USHRT_MAX
526
34c00c31
LZ
527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528{
529 /*
530 * The ID of the root cgroup is 0, but memcg treat 0 as an
531 * invalid ID, so we return (cgroup_id + 1).
532 */
533 return memcg->css.cgroup->id + 1;
534}
535
536static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
537{
538 struct cgroup_subsys_state *css;
539
073219e9 540 css = css_from_id(id - 1, &memory_cgrp_subsys);
34c00c31
LZ
541 return mem_cgroup_from_css(css);
542}
543
e1aab161 544/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 545#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 546
e1aab161
GC
547void sock_update_memcg(struct sock *sk)
548{
376be5ff 549 if (mem_cgroup_sockets_enabled) {
e1aab161 550 struct mem_cgroup *memcg;
3f134619 551 struct cg_proto *cg_proto;
e1aab161
GC
552
553 BUG_ON(!sk->sk_prot->proto_cgroup);
554
f3f511e1
GC
555 /* Socket cloning can throw us here with sk_cgrp already
556 * filled. It won't however, necessarily happen from
557 * process context. So the test for root memcg given
558 * the current task's memcg won't help us in this case.
559 *
560 * Respecting the original socket's memcg is a better
561 * decision in this case.
562 */
563 if (sk->sk_cgrp) {
564 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 565 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
566 return;
567 }
568
e1aab161
GC
569 rcu_read_lock();
570 memcg = mem_cgroup_from_task(current);
3f134619 571 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
572 if (!mem_cgroup_is_root(memcg) &&
573 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 574 sk->sk_cgrp = cg_proto;
e1aab161
GC
575 }
576 rcu_read_unlock();
577 }
578}
579EXPORT_SYMBOL(sock_update_memcg);
580
581void sock_release_memcg(struct sock *sk)
582{
376be5ff 583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
5347e5ae 587 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
588 }
589}
d1a4c0b3
GC
590
591struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592{
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
2e685cad 596 return &memcg->tcp_mem;
d1a4c0b3
GC
597}
598EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 599
3f134619
GC
600static void disarm_sock_keys(struct mem_cgroup *memcg)
601{
2e685cad 602 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605}
606#else
607static void disarm_sock_keys(struct mem_cgroup *memcg)
608{
609}
610#endif
611
a8964b9b 612#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
613/*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
55007d84
GC
620 *
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
623 * increase it.
624 */
625static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
626int memcg_limited_groups_array_size;
627
55007d84
GC
628/*
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
633 *
b8627835 634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
638 * increase ours as well if it increases.
639 */
640#define MEMCG_CACHES_MIN_SIZE 4
b8627835 641#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 642
d7f25f8a
GC
643/*
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
648 */
a8964b9b 649struct static_key memcg_kmem_enabled_key;
d7f25f8a 650EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
651
652static void disarm_kmem_keys(struct mem_cgroup *memcg)
653{
55007d84 654 if (memcg_kmem_is_active(memcg)) {
a8964b9b 655 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
656 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
657 }
bea207c8
GC
658 /*
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
661 */
662 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
663}
664#else
665static void disarm_kmem_keys(struct mem_cgroup *memcg)
666{
667}
668#endif /* CONFIG_MEMCG_KMEM */
669
670static void disarm_static_keys(struct mem_cgroup *memcg)
671{
672 disarm_sock_keys(memcg);
673 disarm_kmem_keys(memcg);
674}
675
c0ff4b85 676static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 677
f64c3f54 678static struct mem_cgroup_per_zone *
c0ff4b85 679mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 680{
45cf7ebd 681 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 682 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
683}
684
c0ff4b85 685struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 686{
c0ff4b85 687 return &memcg->css;
d324236b
WF
688}
689
f64c3f54 690static struct mem_cgroup_per_zone *
c0ff4b85 691page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 692{
97a6c37b
JW
693 int nid = page_to_nid(page);
694 int zid = page_zonenum(page);
f64c3f54 695
c0ff4b85 696 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
697}
698
bb4cc1a8
AM
699static struct mem_cgroup_tree_per_zone *
700soft_limit_tree_node_zone(int nid, int zid)
701{
702 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
703}
704
705static struct mem_cgroup_tree_per_zone *
706soft_limit_tree_from_page(struct page *page)
707{
708 int nid = page_to_nid(page);
709 int zid = page_zonenum(page);
710
711 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
712}
713
714static void
715__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
716 struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz,
718 unsigned long long new_usage_in_excess)
719{
720 struct rb_node **p = &mctz->rb_root.rb_node;
721 struct rb_node *parent = NULL;
722 struct mem_cgroup_per_zone *mz_node;
723
724 if (mz->on_tree)
725 return;
726
727 mz->usage_in_excess = new_usage_in_excess;
728 if (!mz->usage_in_excess)
729 return;
730 while (*p) {
731 parent = *p;
732 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
733 tree_node);
734 if (mz->usage_in_excess < mz_node->usage_in_excess)
735 p = &(*p)->rb_left;
736 /*
737 * We can't avoid mem cgroups that are over their soft
738 * limit by the same amount
739 */
740 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
741 p = &(*p)->rb_right;
742 }
743 rb_link_node(&mz->tree_node, parent, p);
744 rb_insert_color(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = true;
746}
747
748static void
749__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
750 struct mem_cgroup_per_zone *mz,
751 struct mem_cgroup_tree_per_zone *mctz)
752{
753 if (!mz->on_tree)
754 return;
755 rb_erase(&mz->tree_node, &mctz->rb_root);
756 mz->on_tree = false;
757}
758
759static void
760mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
761 struct mem_cgroup_per_zone *mz,
762 struct mem_cgroup_tree_per_zone *mctz)
763{
764 spin_lock(&mctz->lock);
765 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
766 spin_unlock(&mctz->lock);
767}
768
769
770static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
771{
772 unsigned long long excess;
773 struct mem_cgroup_per_zone *mz;
774 struct mem_cgroup_tree_per_zone *mctz;
775 int nid = page_to_nid(page);
776 int zid = page_zonenum(page);
777 mctz = soft_limit_tree_from_page(page);
778
779 /*
780 * Necessary to update all ancestors when hierarchy is used.
781 * because their event counter is not touched.
782 */
783 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
784 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
785 excess = res_counter_soft_limit_excess(&memcg->res);
786 /*
787 * We have to update the tree if mz is on RB-tree or
788 * mem is over its softlimit.
789 */
790 if (excess || mz->on_tree) {
791 spin_lock(&mctz->lock);
792 /* if on-tree, remove it */
793 if (mz->on_tree)
794 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 /*
796 * Insert again. mz->usage_in_excess will be updated.
797 * If excess is 0, no tree ops.
798 */
799 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
800 spin_unlock(&mctz->lock);
801 }
802 }
803}
804
805static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
806{
807 int node, zone;
808 struct mem_cgroup_per_zone *mz;
809 struct mem_cgroup_tree_per_zone *mctz;
810
811 for_each_node(node) {
812 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
813 mz = mem_cgroup_zoneinfo(memcg, node, zone);
814 mctz = soft_limit_tree_node_zone(node, zone);
815 mem_cgroup_remove_exceeded(memcg, mz, mctz);
816 }
817 }
818}
819
820static struct mem_cgroup_per_zone *
821__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
822{
823 struct rb_node *rightmost = NULL;
824 struct mem_cgroup_per_zone *mz;
825
826retry:
827 mz = NULL;
828 rightmost = rb_last(&mctz->rb_root);
829 if (!rightmost)
830 goto done; /* Nothing to reclaim from */
831
832 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
833 /*
834 * Remove the node now but someone else can add it back,
835 * we will to add it back at the end of reclaim to its correct
836 * position in the tree.
837 */
838 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
839 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
840 !css_tryget(&mz->memcg->css))
841 goto retry;
842done:
843 return mz;
844}
845
846static struct mem_cgroup_per_zone *
847mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
848{
849 struct mem_cgroup_per_zone *mz;
850
851 spin_lock(&mctz->lock);
852 mz = __mem_cgroup_largest_soft_limit_node(mctz);
853 spin_unlock(&mctz->lock);
854 return mz;
855}
856
711d3d2c
KH
857/*
858 * Implementation Note: reading percpu statistics for memcg.
859 *
860 * Both of vmstat[] and percpu_counter has threshold and do periodic
861 * synchronization to implement "quick" read. There are trade-off between
862 * reading cost and precision of value. Then, we may have a chance to implement
863 * a periodic synchronizion of counter in memcg's counter.
864 *
865 * But this _read() function is used for user interface now. The user accounts
866 * memory usage by memory cgroup and he _always_ requires exact value because
867 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
868 * have to visit all online cpus and make sum. So, for now, unnecessary
869 * synchronization is not implemented. (just implemented for cpu hotplug)
870 *
871 * If there are kernel internal actions which can make use of some not-exact
872 * value, and reading all cpu value can be performance bottleneck in some
873 * common workload, threashold and synchonization as vmstat[] should be
874 * implemented.
875 */
c0ff4b85 876static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 877 enum mem_cgroup_stat_index idx)
c62b1a3b 878{
7a159cc9 879 long val = 0;
c62b1a3b 880 int cpu;
c62b1a3b 881
711d3d2c
KH
882 get_online_cpus();
883 for_each_online_cpu(cpu)
c0ff4b85 884 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 885#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
886 spin_lock(&memcg->pcp_counter_lock);
887 val += memcg->nocpu_base.count[idx];
888 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
889#endif
890 put_online_cpus();
c62b1a3b
KH
891 return val;
892}
893
c0ff4b85 894static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
895 bool charge)
896{
897 int val = (charge) ? 1 : -1;
bff6bb83 898 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
899}
900
c0ff4b85 901static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
902 enum mem_cgroup_events_index idx)
903{
904 unsigned long val = 0;
905 int cpu;
906
9c567512 907 get_online_cpus();
e9f8974f 908 for_each_online_cpu(cpu)
c0ff4b85 909 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 910#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
911 spin_lock(&memcg->pcp_counter_lock);
912 val += memcg->nocpu_base.events[idx];
913 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 914#endif
9c567512 915 put_online_cpus();
e9f8974f
JW
916 return val;
917}
918
c0ff4b85 919static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 920 struct page *page,
b2402857 921 bool anon, int nr_pages)
d52aa412 922{
b2402857
KH
923 /*
924 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
925 * counted as CACHE even if it's on ANON LRU.
926 */
927 if (anon)
928 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 929 nr_pages);
d52aa412 930 else
b2402857 931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 932 nr_pages);
55e462b0 933
b070e65c
DR
934 if (PageTransHuge(page))
935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
936 nr_pages);
937
e401f176
KH
938 /* pagein of a big page is an event. So, ignore page size */
939 if (nr_pages > 0)
c0ff4b85 940 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 941 else {
c0ff4b85 942 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
943 nr_pages = -nr_pages; /* for event */
944 }
e401f176 945
13114716 946 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
947}
948
bb2a0de9 949unsigned long
4d7dcca2 950mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
951{
952 struct mem_cgroup_per_zone *mz;
953
954 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
955 return mz->lru_size[lru];
956}
957
958static unsigned long
c0ff4b85 959mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 960 unsigned int lru_mask)
889976db
YH
961{
962 struct mem_cgroup_per_zone *mz;
f156ab93 963 enum lru_list lru;
bb2a0de9
KH
964 unsigned long ret = 0;
965
c0ff4b85 966 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 967
f156ab93
HD
968 for_each_lru(lru) {
969 if (BIT(lru) & lru_mask)
970 ret += mz->lru_size[lru];
bb2a0de9
KH
971 }
972 return ret;
973}
974
975static unsigned long
c0ff4b85 976mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
977 int nid, unsigned int lru_mask)
978{
889976db
YH
979 u64 total = 0;
980 int zid;
981
bb2a0de9 982 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
983 total += mem_cgroup_zone_nr_lru_pages(memcg,
984 nid, zid, lru_mask);
bb2a0de9 985
889976db
YH
986 return total;
987}
bb2a0de9 988
c0ff4b85 989static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 990 unsigned int lru_mask)
6d12e2d8 991{
889976db 992 int nid;
6d12e2d8
KH
993 u64 total = 0;
994
31aaea4a 995 for_each_node_state(nid, N_MEMORY)
c0ff4b85 996 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 997 return total;
d52aa412
KH
998}
999
f53d7ce3
JW
1000static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1001 enum mem_cgroup_events_target target)
7a159cc9
JW
1002{
1003 unsigned long val, next;
1004
13114716 1005 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1006 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1007 /* from time_after() in jiffies.h */
f53d7ce3
JW
1008 if ((long)next - (long)val < 0) {
1009 switch (target) {
1010 case MEM_CGROUP_TARGET_THRESH:
1011 next = val + THRESHOLDS_EVENTS_TARGET;
1012 break;
bb4cc1a8
AM
1013 case MEM_CGROUP_TARGET_SOFTLIMIT:
1014 next = val + SOFTLIMIT_EVENTS_TARGET;
1015 break;
f53d7ce3
JW
1016 case MEM_CGROUP_TARGET_NUMAINFO:
1017 next = val + NUMAINFO_EVENTS_TARGET;
1018 break;
1019 default:
1020 break;
1021 }
1022 __this_cpu_write(memcg->stat->targets[target], next);
1023 return true;
7a159cc9 1024 }
f53d7ce3 1025 return false;
d2265e6f
KH
1026}
1027
1028/*
1029 * Check events in order.
1030 *
1031 */
c0ff4b85 1032static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1033{
4799401f 1034 preempt_disable();
d2265e6f 1035 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1036 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1037 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1038 bool do_softlimit;
82b3f2a7 1039 bool do_numainfo __maybe_unused;
f53d7ce3 1040
bb4cc1a8
AM
1041 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1043#if MAX_NUMNODES > 1
1044 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1045 MEM_CGROUP_TARGET_NUMAINFO);
1046#endif
1047 preempt_enable();
1048
c0ff4b85 1049 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1050 if (unlikely(do_softlimit))
1051 mem_cgroup_update_tree(memcg, page);
453a9bf3 1052#if MAX_NUMNODES > 1
f53d7ce3 1053 if (unlikely(do_numainfo))
c0ff4b85 1054 atomic_inc(&memcg->numainfo_events);
453a9bf3 1055#endif
f53d7ce3
JW
1056 } else
1057 preempt_enable();
d2265e6f
KH
1058}
1059
cf475ad2 1060struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1061{
31a78f23
BS
1062 /*
1063 * mm_update_next_owner() may clear mm->owner to NULL
1064 * if it races with swapoff, page migration, etc.
1065 * So this can be called with p == NULL.
1066 */
1067 if (unlikely(!p))
1068 return NULL;
1069
073219e9 1070 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1071}
1072
df381975 1073static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1074{
c0ff4b85 1075 struct mem_cgroup *memcg = NULL;
0b7f569e 1076
54595fe2
KH
1077 rcu_read_lock();
1078 do {
6f6acb00
MH
1079 /*
1080 * Page cache insertions can happen withou an
1081 * actual mm context, e.g. during disk probing
1082 * on boot, loopback IO, acct() writes etc.
1083 */
1084 if (unlikely(!mm))
df381975 1085 memcg = root_mem_cgroup;
6f6acb00
MH
1086 else {
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
1089 memcg = root_mem_cgroup;
1090 }
c0ff4b85 1091 } while (!css_tryget(&memcg->css));
54595fe2 1092 rcu_read_unlock();
c0ff4b85 1093 return memcg;
54595fe2
KH
1094}
1095
16248d8f
MH
1096/*
1097 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1098 * ref. count) or NULL if the whole root's subtree has been visited.
1099 *
1100 * helper function to be used by mem_cgroup_iter
1101 */
1102static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1103 struct mem_cgroup *last_visited)
16248d8f 1104{
492eb21b 1105 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1106
bd8815a6 1107 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1108skip_node:
492eb21b 1109 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1110
1111 /*
1112 * Even if we found a group we have to make sure it is
1113 * alive. css && !memcg means that the groups should be
1114 * skipped and we should continue the tree walk.
1115 * last_visited css is safe to use because it is
1116 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1117 *
1118 * We do not take a reference on the root of the tree walk
1119 * because we might race with the root removal when it would
1120 * be the only node in the iterated hierarchy and mem_cgroup_iter
1121 * would end up in an endless loop because it expects that at
1122 * least one valid node will be returned. Root cannot disappear
1123 * because caller of the iterator should hold it already so
1124 * skipping css reference should be safe.
16248d8f 1125 */
492eb21b 1126 if (next_css) {
ce48225f
HD
1127 if ((next_css == &root->css) ||
1128 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
d8ad3055 1129 return mem_cgroup_from_css(next_css);
0eef6156
MH
1130
1131 prev_css = next_css;
1132 goto skip_node;
16248d8f
MH
1133 }
1134
1135 return NULL;
1136}
1137
519ebea3
JW
1138static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1139{
1140 /*
1141 * When a group in the hierarchy below root is destroyed, the
1142 * hierarchy iterator can no longer be trusted since it might
1143 * have pointed to the destroyed group. Invalidate it.
1144 */
1145 atomic_inc(&root->dead_count);
1146}
1147
1148static struct mem_cgroup *
1149mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1150 struct mem_cgroup *root,
1151 int *sequence)
1152{
1153 struct mem_cgroup *position = NULL;
1154 /*
1155 * A cgroup destruction happens in two stages: offlining and
1156 * release. They are separated by a RCU grace period.
1157 *
1158 * If the iterator is valid, we may still race with an
1159 * offlining. The RCU lock ensures the object won't be
1160 * released, tryget will fail if we lost the race.
1161 */
1162 *sequence = atomic_read(&root->dead_count);
1163 if (iter->last_dead_count == *sequence) {
1164 smp_rmb();
1165 position = iter->last_visited;
ecc736fc
MH
1166
1167 /*
1168 * We cannot take a reference to root because we might race
1169 * with root removal and returning NULL would end up in
1170 * an endless loop on the iterator user level when root
1171 * would be returned all the time.
1172 */
1173 if (position && position != root &&
1174 !css_tryget(&position->css))
519ebea3
JW
1175 position = NULL;
1176 }
1177 return position;
1178}
1179
1180static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1181 struct mem_cgroup *last_visited,
1182 struct mem_cgroup *new_position,
ecc736fc 1183 struct mem_cgroup *root,
519ebea3
JW
1184 int sequence)
1185{
ecc736fc
MH
1186 /* root reference counting symmetric to mem_cgroup_iter_load */
1187 if (last_visited && last_visited != root)
519ebea3
JW
1188 css_put(&last_visited->css);
1189 /*
1190 * We store the sequence count from the time @last_visited was
1191 * loaded successfully instead of rereading it here so that we
1192 * don't lose destruction events in between. We could have
1193 * raced with the destruction of @new_position after all.
1194 */
1195 iter->last_visited = new_position;
1196 smp_wmb();
1197 iter->last_dead_count = sequence;
1198}
1199
5660048c
JW
1200/**
1201 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1202 * @root: hierarchy root
1203 * @prev: previously returned memcg, NULL on first invocation
1204 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1205 *
1206 * Returns references to children of the hierarchy below @root, or
1207 * @root itself, or %NULL after a full round-trip.
1208 *
1209 * Caller must pass the return value in @prev on subsequent
1210 * invocations for reference counting, or use mem_cgroup_iter_break()
1211 * to cancel a hierarchy walk before the round-trip is complete.
1212 *
1213 * Reclaimers can specify a zone and a priority level in @reclaim to
1214 * divide up the memcgs in the hierarchy among all concurrent
1215 * reclaimers operating on the same zone and priority.
1216 */
694fbc0f 1217struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1218 struct mem_cgroup *prev,
694fbc0f 1219 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1220{
9f3a0d09 1221 struct mem_cgroup *memcg = NULL;
542f85f9 1222 struct mem_cgroup *last_visited = NULL;
711d3d2c 1223
694fbc0f
AM
1224 if (mem_cgroup_disabled())
1225 return NULL;
5660048c 1226
9f3a0d09
JW
1227 if (!root)
1228 root = root_mem_cgroup;
7d74b06f 1229
9f3a0d09 1230 if (prev && !reclaim)
542f85f9 1231 last_visited = prev;
14067bb3 1232
9f3a0d09
JW
1233 if (!root->use_hierarchy && root != root_mem_cgroup) {
1234 if (prev)
c40046f3 1235 goto out_css_put;
694fbc0f 1236 return root;
9f3a0d09 1237 }
14067bb3 1238
542f85f9 1239 rcu_read_lock();
9f3a0d09 1240 while (!memcg) {
527a5ec9 1241 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1242 int uninitialized_var(seq);
711d3d2c 1243
527a5ec9
JW
1244 if (reclaim) {
1245 int nid = zone_to_nid(reclaim->zone);
1246 int zid = zone_idx(reclaim->zone);
1247 struct mem_cgroup_per_zone *mz;
1248
1249 mz = mem_cgroup_zoneinfo(root, nid, zid);
1250 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1251 if (prev && reclaim->generation != iter->generation) {
5f578161 1252 iter->last_visited = NULL;
542f85f9
MH
1253 goto out_unlock;
1254 }
5f578161 1255
519ebea3 1256 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1257 }
7d74b06f 1258
694fbc0f 1259 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1260
527a5ec9 1261 if (reclaim) {
ecc736fc
MH
1262 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1263 seq);
542f85f9 1264
19f39402 1265 if (!memcg)
527a5ec9
JW
1266 iter->generation++;
1267 else if (!prev && memcg)
1268 reclaim->generation = iter->generation;
1269 }
9f3a0d09 1270
694fbc0f 1271 if (prev && !memcg)
542f85f9 1272 goto out_unlock;
9f3a0d09 1273 }
542f85f9
MH
1274out_unlock:
1275 rcu_read_unlock();
c40046f3
MH
1276out_css_put:
1277 if (prev && prev != root)
1278 css_put(&prev->css);
1279
9f3a0d09 1280 return memcg;
14067bb3 1281}
7d74b06f 1282
5660048c
JW
1283/**
1284 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1285 * @root: hierarchy root
1286 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1287 */
1288void mem_cgroup_iter_break(struct mem_cgroup *root,
1289 struct mem_cgroup *prev)
9f3a0d09
JW
1290{
1291 if (!root)
1292 root = root_mem_cgroup;
1293 if (prev && prev != root)
1294 css_put(&prev->css);
1295}
7d74b06f 1296
9f3a0d09
JW
1297/*
1298 * Iteration constructs for visiting all cgroups (under a tree). If
1299 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1300 * be used for reference counting.
1301 */
1302#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1303 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1304 iter != NULL; \
527a5ec9 1305 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1306
9f3a0d09 1307#define for_each_mem_cgroup(iter) \
527a5ec9 1308 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1309 iter != NULL; \
527a5ec9 1310 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1311
68ae564b 1312void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1313{
c0ff4b85 1314 struct mem_cgroup *memcg;
456f998e 1315
456f998e 1316 rcu_read_lock();
c0ff4b85
R
1317 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1318 if (unlikely(!memcg))
456f998e
YH
1319 goto out;
1320
1321 switch (idx) {
456f998e 1322 case PGFAULT:
0e574a93
JW
1323 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1324 break;
1325 case PGMAJFAULT:
1326 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1327 break;
1328 default:
1329 BUG();
1330 }
1331out:
1332 rcu_read_unlock();
1333}
68ae564b 1334EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1335
925b7673
JW
1336/**
1337 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1338 * @zone: zone of the wanted lruvec
fa9add64 1339 * @memcg: memcg of the wanted lruvec
925b7673
JW
1340 *
1341 * Returns the lru list vector holding pages for the given @zone and
1342 * @mem. This can be the global zone lruvec, if the memory controller
1343 * is disabled.
1344 */
1345struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1346 struct mem_cgroup *memcg)
1347{
1348 struct mem_cgroup_per_zone *mz;
bea8c150 1349 struct lruvec *lruvec;
925b7673 1350
bea8c150
HD
1351 if (mem_cgroup_disabled()) {
1352 lruvec = &zone->lruvec;
1353 goto out;
1354 }
925b7673
JW
1355
1356 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1357 lruvec = &mz->lruvec;
1358out:
1359 /*
1360 * Since a node can be onlined after the mem_cgroup was created,
1361 * we have to be prepared to initialize lruvec->zone here;
1362 * and if offlined then reonlined, we need to reinitialize it.
1363 */
1364 if (unlikely(lruvec->zone != zone))
1365 lruvec->zone = zone;
1366 return lruvec;
925b7673
JW
1367}
1368
08e552c6
KH
1369/*
1370 * Following LRU functions are allowed to be used without PCG_LOCK.
1371 * Operations are called by routine of global LRU independently from memcg.
1372 * What we have to take care of here is validness of pc->mem_cgroup.
1373 *
1374 * Changes to pc->mem_cgroup happens when
1375 * 1. charge
1376 * 2. moving account
1377 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1378 * It is added to LRU before charge.
1379 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1380 * When moving account, the page is not on LRU. It's isolated.
1381 */
4f98a2fe 1382
925b7673 1383/**
fa9add64 1384 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1385 * @page: the page
fa9add64 1386 * @zone: zone of the page
925b7673 1387 */
fa9add64 1388struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1389{
08e552c6 1390 struct mem_cgroup_per_zone *mz;
925b7673
JW
1391 struct mem_cgroup *memcg;
1392 struct page_cgroup *pc;
bea8c150 1393 struct lruvec *lruvec;
6d12e2d8 1394
bea8c150
HD
1395 if (mem_cgroup_disabled()) {
1396 lruvec = &zone->lruvec;
1397 goto out;
1398 }
925b7673 1399
08e552c6 1400 pc = lookup_page_cgroup(page);
38c5d72f 1401 memcg = pc->mem_cgroup;
7512102c
HD
1402
1403 /*
fa9add64 1404 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1405 * an uncharged page off lru does nothing to secure
1406 * its former mem_cgroup from sudden removal.
1407 *
1408 * Our caller holds lru_lock, and PageCgroupUsed is updated
1409 * under page_cgroup lock: between them, they make all uses
1410 * of pc->mem_cgroup safe.
1411 */
fa9add64 1412 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1413 pc->mem_cgroup = memcg = root_mem_cgroup;
1414
925b7673 1415 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1416 lruvec = &mz->lruvec;
1417out:
1418 /*
1419 * Since a node can be onlined after the mem_cgroup was created,
1420 * we have to be prepared to initialize lruvec->zone here;
1421 * and if offlined then reonlined, we need to reinitialize it.
1422 */
1423 if (unlikely(lruvec->zone != zone))
1424 lruvec->zone = zone;
1425 return lruvec;
08e552c6 1426}
b69408e8 1427
925b7673 1428/**
fa9add64
HD
1429 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1430 * @lruvec: mem_cgroup per zone lru vector
1431 * @lru: index of lru list the page is sitting on
1432 * @nr_pages: positive when adding or negative when removing
925b7673 1433 *
fa9add64
HD
1434 * This function must be called when a page is added to or removed from an
1435 * lru list.
3f58a829 1436 */
fa9add64
HD
1437void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1438 int nr_pages)
3f58a829
MK
1439{
1440 struct mem_cgroup_per_zone *mz;
fa9add64 1441 unsigned long *lru_size;
3f58a829
MK
1442
1443 if (mem_cgroup_disabled())
1444 return;
1445
fa9add64
HD
1446 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1447 lru_size = mz->lru_size + lru;
1448 *lru_size += nr_pages;
1449 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1450}
544122e5 1451
3e92041d 1452/*
c0ff4b85 1453 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1454 * hierarchy subtree
1455 */
c3ac9a8a
JW
1456bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1457 struct mem_cgroup *memcg)
3e92041d 1458{
91c63734
JW
1459 if (root_memcg == memcg)
1460 return true;
3a981f48 1461 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1462 return false;
b47f77b5 1463 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1464}
1465
1466static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1467 struct mem_cgroup *memcg)
1468{
1469 bool ret;
1470
91c63734 1471 rcu_read_lock();
c3ac9a8a 1472 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1473 rcu_read_unlock();
1474 return ret;
3e92041d
MH
1475}
1476
ffbdccf5
DR
1477bool task_in_mem_cgroup(struct task_struct *task,
1478 const struct mem_cgroup *memcg)
4c4a2214 1479{
0b7f569e 1480 struct mem_cgroup *curr = NULL;
158e0a2d 1481 struct task_struct *p;
ffbdccf5 1482 bool ret;
4c4a2214 1483
158e0a2d 1484 p = find_lock_task_mm(task);
de077d22 1485 if (p) {
df381975 1486 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1487 task_unlock(p);
1488 } else {
1489 /*
1490 * All threads may have already detached their mm's, but the oom
1491 * killer still needs to detect if they have already been oom
1492 * killed to prevent needlessly killing additional tasks.
1493 */
ffbdccf5 1494 rcu_read_lock();
de077d22
DR
1495 curr = mem_cgroup_from_task(task);
1496 if (curr)
1497 css_get(&curr->css);
ffbdccf5 1498 rcu_read_unlock();
de077d22 1499 }
d31f56db 1500 /*
c0ff4b85 1501 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1502 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1503 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1504 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1505 */
c0ff4b85 1506 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1507 css_put(&curr->css);
4c4a2214
DR
1508 return ret;
1509}
1510
c56d5c7d 1511int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1512{
9b272977 1513 unsigned long inactive_ratio;
14797e23 1514 unsigned long inactive;
9b272977 1515 unsigned long active;
c772be93 1516 unsigned long gb;
14797e23 1517
4d7dcca2
HD
1518 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1519 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1520
c772be93
KM
1521 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1522 if (gb)
1523 inactive_ratio = int_sqrt(10 * gb);
1524 else
1525 inactive_ratio = 1;
1526
9b272977 1527 return inactive * inactive_ratio < active;
14797e23
KM
1528}
1529
6d61ef40
BS
1530#define mem_cgroup_from_res_counter(counter, member) \
1531 container_of(counter, struct mem_cgroup, member)
1532
19942822 1533/**
9d11ea9f 1534 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1535 * @memcg: the memory cgroup
19942822 1536 *
9d11ea9f 1537 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1538 * pages.
19942822 1539 */
c0ff4b85 1540static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1541{
9d11ea9f
JW
1542 unsigned long long margin;
1543
c0ff4b85 1544 margin = res_counter_margin(&memcg->res);
9d11ea9f 1545 if (do_swap_account)
c0ff4b85 1546 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1547 return margin >> PAGE_SHIFT;
19942822
JW
1548}
1549
1f4c025b 1550int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1551{
a7885eb8 1552 /* root ? */
63876986 1553 if (!css_parent(&memcg->css))
a7885eb8
KM
1554 return vm_swappiness;
1555
bf1ff263 1556 return memcg->swappiness;
a7885eb8
KM
1557}
1558
619d094b
KH
1559/*
1560 * memcg->moving_account is used for checking possibility that some thread is
1561 * calling move_account(). When a thread on CPU-A starts moving pages under
1562 * a memcg, other threads should check memcg->moving_account under
1563 * rcu_read_lock(), like this:
1564 *
1565 * CPU-A CPU-B
1566 * rcu_read_lock()
1567 * memcg->moving_account+1 if (memcg->mocing_account)
1568 * take heavy locks.
1569 * synchronize_rcu() update something.
1570 * rcu_read_unlock()
1571 * start move here.
1572 */
4331f7d3
KH
1573
1574/* for quick checking without looking up memcg */
1575atomic_t memcg_moving __read_mostly;
1576
c0ff4b85 1577static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1578{
4331f7d3 1579 atomic_inc(&memcg_moving);
619d094b 1580 atomic_inc(&memcg->moving_account);
32047e2a
KH
1581 synchronize_rcu();
1582}
1583
c0ff4b85 1584static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1585{
619d094b
KH
1586 /*
1587 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1588 * We check NULL in callee rather than caller.
1589 */
4331f7d3
KH
1590 if (memcg) {
1591 atomic_dec(&memcg_moving);
619d094b 1592 atomic_dec(&memcg->moving_account);
4331f7d3 1593 }
32047e2a 1594}
619d094b 1595
32047e2a
KH
1596/*
1597 * 2 routines for checking "mem" is under move_account() or not.
1598 *
13fd1dd9
AM
1599 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1600 * is used for avoiding races in accounting. If true,
32047e2a
KH
1601 * pc->mem_cgroup may be overwritten.
1602 *
1603 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1604 * under hierarchy of moving cgroups. This is for
1605 * waiting at hith-memory prressure caused by "move".
1606 */
1607
13fd1dd9 1608static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1609{
1610 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1611 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1612}
4b534334 1613
c0ff4b85 1614static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1615{
2bd9bb20
KH
1616 struct mem_cgroup *from;
1617 struct mem_cgroup *to;
4b534334 1618 bool ret = false;
2bd9bb20
KH
1619 /*
1620 * Unlike task_move routines, we access mc.to, mc.from not under
1621 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1622 */
1623 spin_lock(&mc.lock);
1624 from = mc.from;
1625 to = mc.to;
1626 if (!from)
1627 goto unlock;
3e92041d 1628
c0ff4b85
R
1629 ret = mem_cgroup_same_or_subtree(memcg, from)
1630 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1631unlock:
1632 spin_unlock(&mc.lock);
4b534334
KH
1633 return ret;
1634}
1635
c0ff4b85 1636static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1637{
1638 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1639 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1640 DEFINE_WAIT(wait);
1641 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1642 /* moving charge context might have finished. */
1643 if (mc.moving_task)
1644 schedule();
1645 finish_wait(&mc.waitq, &wait);
1646 return true;
1647 }
1648 }
1649 return false;
1650}
1651
312734c0
KH
1652/*
1653 * Take this lock when
1654 * - a code tries to modify page's memcg while it's USED.
1655 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1656 * see mem_cgroup_stolen(), too.
312734c0
KH
1657 */
1658static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1659 unsigned long *flags)
1660{
1661 spin_lock_irqsave(&memcg->move_lock, *flags);
1662}
1663
1664static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1665 unsigned long *flags)
1666{
1667 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1668}
1669
58cf188e 1670#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1671/**
58cf188e 1672 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1673 * @memcg: The memory cgroup that went over limit
1674 * @p: Task that is going to be killed
1675 *
1676 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1677 * enabled
1678 */
1679void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1680{
e61734c5 1681 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1682 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1683 struct mem_cgroup *iter;
1684 unsigned int i;
e222432b 1685
58cf188e 1686 if (!p)
e222432b
BS
1687 return;
1688
08088cb9 1689 mutex_lock(&oom_info_lock);
e222432b
BS
1690 rcu_read_lock();
1691
e61734c5
TH
1692 pr_info("Task in ");
1693 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1694 pr_info(" killed as a result of limit of ");
1695 pr_cont_cgroup_path(memcg->css.cgroup);
1696 pr_info("\n");
e222432b 1697
e222432b
BS
1698 rcu_read_unlock();
1699
d045197f 1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1701 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1704 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1705 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1706 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1709 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1710 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1712
1713 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1714 pr_info("Memory cgroup stats for ");
1715 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1716 pr_cont(":");
1717
1718 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1719 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1720 continue;
1721 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1722 K(mem_cgroup_read_stat(iter, i)));
1723 }
1724
1725 for (i = 0; i < NR_LRU_LISTS; i++)
1726 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1727 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1728
1729 pr_cont("\n");
1730 }
08088cb9 1731 mutex_unlock(&oom_info_lock);
e222432b
BS
1732}
1733
81d39c20
KH
1734/*
1735 * This function returns the number of memcg under hierarchy tree. Returns
1736 * 1(self count) if no children.
1737 */
c0ff4b85 1738static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1739{
1740 int num = 0;
7d74b06f
KH
1741 struct mem_cgroup *iter;
1742
c0ff4b85 1743 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1744 num++;
81d39c20
KH
1745 return num;
1746}
1747
a63d83f4
DR
1748/*
1749 * Return the memory (and swap, if configured) limit for a memcg.
1750 */
9cbb78bb 1751static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1752{
1753 u64 limit;
a63d83f4 1754
f3e8eb70 1755 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1756
a63d83f4 1757 /*
9a5a8f19 1758 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1759 */
9a5a8f19
MH
1760 if (mem_cgroup_swappiness(memcg)) {
1761 u64 memsw;
1762
1763 limit += total_swap_pages << PAGE_SHIFT;
1764 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1765
1766 /*
1767 * If memsw is finite and limits the amount of swap space
1768 * available to this memcg, return that limit.
1769 */
1770 limit = min(limit, memsw);
1771 }
1772
1773 return limit;
a63d83f4
DR
1774}
1775
19965460
DR
1776static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1777 int order)
9cbb78bb
DR
1778{
1779 struct mem_cgroup *iter;
1780 unsigned long chosen_points = 0;
1781 unsigned long totalpages;
1782 unsigned int points = 0;
1783 struct task_struct *chosen = NULL;
1784
876aafbf 1785 /*
465adcf1
DR
1786 * If current has a pending SIGKILL or is exiting, then automatically
1787 * select it. The goal is to allow it to allocate so that it may
1788 * quickly exit and free its memory.
876aafbf 1789 */
465adcf1 1790 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1791 set_thread_flag(TIF_MEMDIE);
1792 return;
1793 }
1794
1795 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1796 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1797 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1798 struct css_task_iter it;
9cbb78bb
DR
1799 struct task_struct *task;
1800
72ec7029
TH
1801 css_task_iter_start(&iter->css, &it);
1802 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1803 switch (oom_scan_process_thread(task, totalpages, NULL,
1804 false)) {
1805 case OOM_SCAN_SELECT:
1806 if (chosen)
1807 put_task_struct(chosen);
1808 chosen = task;
1809 chosen_points = ULONG_MAX;
1810 get_task_struct(chosen);
1811 /* fall through */
1812 case OOM_SCAN_CONTINUE:
1813 continue;
1814 case OOM_SCAN_ABORT:
72ec7029 1815 css_task_iter_end(&it);
9cbb78bb
DR
1816 mem_cgroup_iter_break(memcg, iter);
1817 if (chosen)
1818 put_task_struct(chosen);
1819 return;
1820 case OOM_SCAN_OK:
1821 break;
1822 };
1823 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1824 if (!points || points < chosen_points)
1825 continue;
1826 /* Prefer thread group leaders for display purposes */
1827 if (points == chosen_points &&
1828 thread_group_leader(chosen))
1829 continue;
1830
1831 if (chosen)
1832 put_task_struct(chosen);
1833 chosen = task;
1834 chosen_points = points;
1835 get_task_struct(chosen);
9cbb78bb 1836 }
72ec7029 1837 css_task_iter_end(&it);
9cbb78bb
DR
1838 }
1839
1840 if (!chosen)
1841 return;
1842 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1843 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1844 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1845}
1846
5660048c
JW
1847static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1848 gfp_t gfp_mask,
1849 unsigned long flags)
1850{
1851 unsigned long total = 0;
1852 bool noswap = false;
1853 int loop;
1854
1855 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1856 noswap = true;
1857 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1858 noswap = true;
1859
1860 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1861 if (loop)
1862 drain_all_stock_async(memcg);
1863 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 /*
1865 * Allow limit shrinkers, which are triggered directly
1866 * by userspace, to catch signals and stop reclaim
1867 * after minimal progress, regardless of the margin.
1868 */
1869 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1870 break;
1871 if (mem_cgroup_margin(memcg))
1872 break;
1873 /*
1874 * If nothing was reclaimed after two attempts, there
1875 * may be no reclaimable pages in this hierarchy.
1876 */
1877 if (loop && !total)
1878 break;
1879 }
1880 return total;
1881}
1882
4d0c066d
KH
1883/**
1884 * test_mem_cgroup_node_reclaimable
dad7557e 1885 * @memcg: the target memcg
4d0c066d
KH
1886 * @nid: the node ID to be checked.
1887 * @noswap : specify true here if the user wants flle only information.
1888 *
1889 * This function returns whether the specified memcg contains any
1890 * reclaimable pages on a node. Returns true if there are any reclaimable
1891 * pages in the node.
1892 */
c0ff4b85 1893static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1894 int nid, bool noswap)
1895{
c0ff4b85 1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1897 return true;
1898 if (noswap || !total_swap_pages)
1899 return false;
c0ff4b85 1900 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1901 return true;
1902 return false;
1903
1904}
bb4cc1a8 1905#if MAX_NUMNODES > 1
889976db
YH
1906
1907/*
1908 * Always updating the nodemask is not very good - even if we have an empty
1909 * list or the wrong list here, we can start from some node and traverse all
1910 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1911 *
1912 */
c0ff4b85 1913static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1914{
1915 int nid;
453a9bf3
KH
1916 /*
1917 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1918 * pagein/pageout changes since the last update.
1919 */
c0ff4b85 1920 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1921 return;
c0ff4b85 1922 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1923 return;
1924
889976db 1925 /* make a nodemask where this memcg uses memory from */
31aaea4a 1926 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1927
31aaea4a 1928 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1929
c0ff4b85
R
1930 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1931 node_clear(nid, memcg->scan_nodes);
889976db 1932 }
453a9bf3 1933
c0ff4b85
R
1934 atomic_set(&memcg->numainfo_events, 0);
1935 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1936}
1937
1938/*
1939 * Selecting a node where we start reclaim from. Because what we need is just
1940 * reducing usage counter, start from anywhere is O,K. Considering
1941 * memory reclaim from current node, there are pros. and cons.
1942 *
1943 * Freeing memory from current node means freeing memory from a node which
1944 * we'll use or we've used. So, it may make LRU bad. And if several threads
1945 * hit limits, it will see a contention on a node. But freeing from remote
1946 * node means more costs for memory reclaim because of memory latency.
1947 *
1948 * Now, we use round-robin. Better algorithm is welcomed.
1949 */
c0ff4b85 1950int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1951{
1952 int node;
1953
c0ff4b85
R
1954 mem_cgroup_may_update_nodemask(memcg);
1955 node = memcg->last_scanned_node;
889976db 1956
c0ff4b85 1957 node = next_node(node, memcg->scan_nodes);
889976db 1958 if (node == MAX_NUMNODES)
c0ff4b85 1959 node = first_node(memcg->scan_nodes);
889976db
YH
1960 /*
1961 * We call this when we hit limit, not when pages are added to LRU.
1962 * No LRU may hold pages because all pages are UNEVICTABLE or
1963 * memcg is too small and all pages are not on LRU. In that case,
1964 * we use curret node.
1965 */
1966 if (unlikely(node == MAX_NUMNODES))
1967 node = numa_node_id();
1968
c0ff4b85 1969 memcg->last_scanned_node = node;
889976db
YH
1970 return node;
1971}
1972
bb4cc1a8
AM
1973/*
1974 * Check all nodes whether it contains reclaimable pages or not.
1975 * For quick scan, we make use of scan_nodes. This will allow us to skip
1976 * unused nodes. But scan_nodes is lazily updated and may not cotain
1977 * enough new information. We need to do double check.
1978 */
1979static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1980{
1981 int nid;
1982
1983 /*
1984 * quick check...making use of scan_node.
1985 * We can skip unused nodes.
1986 */
1987 if (!nodes_empty(memcg->scan_nodes)) {
1988 for (nid = first_node(memcg->scan_nodes);
1989 nid < MAX_NUMNODES;
1990 nid = next_node(nid, memcg->scan_nodes)) {
1991
1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1993 return true;
1994 }
1995 }
1996 /*
1997 * Check rest of nodes.
1998 */
1999 for_each_node_state(nid, N_MEMORY) {
2000 if (node_isset(nid, memcg->scan_nodes))
2001 continue;
2002 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2003 return true;
2004 }
2005 return false;
2006}
2007
889976db 2008#else
c0ff4b85 2009int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2010{
2011 return 0;
2012}
4d0c066d 2013
bb4cc1a8
AM
2014static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2015{
2016 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2017}
889976db
YH
2018#endif
2019
0608f43d
AM
2020static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2021 struct zone *zone,
2022 gfp_t gfp_mask,
2023 unsigned long *total_scanned)
2024{
2025 struct mem_cgroup *victim = NULL;
2026 int total = 0;
2027 int loop = 0;
2028 unsigned long excess;
2029 unsigned long nr_scanned;
2030 struct mem_cgroup_reclaim_cookie reclaim = {
2031 .zone = zone,
2032 .priority = 0,
2033 };
2034
2035 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2036
2037 while (1) {
2038 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2039 if (!victim) {
2040 loop++;
2041 if (loop >= 2) {
2042 /*
2043 * If we have not been able to reclaim
2044 * anything, it might because there are
2045 * no reclaimable pages under this hierarchy
2046 */
2047 if (!total)
2048 break;
2049 /*
2050 * We want to do more targeted reclaim.
2051 * excess >> 2 is not to excessive so as to
2052 * reclaim too much, nor too less that we keep
2053 * coming back to reclaim from this cgroup
2054 */
2055 if (total >= (excess >> 2) ||
2056 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2057 break;
2058 }
2059 continue;
2060 }
2061 if (!mem_cgroup_reclaimable(victim, false))
2062 continue;
2063 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2064 zone, &nr_scanned);
2065 *total_scanned += nr_scanned;
2066 if (!res_counter_soft_limit_excess(&root_memcg->res))
2067 break;
6d61ef40 2068 }
0608f43d
AM
2069 mem_cgroup_iter_break(root_memcg, victim);
2070 return total;
6d61ef40
BS
2071}
2072
0056f4e6
JW
2073#ifdef CONFIG_LOCKDEP
2074static struct lockdep_map memcg_oom_lock_dep_map = {
2075 .name = "memcg_oom_lock",
2076};
2077#endif
2078
fb2a6fc5
JW
2079static DEFINE_SPINLOCK(memcg_oom_lock);
2080
867578cb
KH
2081/*
2082 * Check OOM-Killer is already running under our hierarchy.
2083 * If someone is running, return false.
2084 */
fb2a6fc5 2085static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2086{
79dfdacc 2087 struct mem_cgroup *iter, *failed = NULL;
a636b327 2088
fb2a6fc5
JW
2089 spin_lock(&memcg_oom_lock);
2090
9f3a0d09 2091 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2092 if (iter->oom_lock) {
79dfdacc
MH
2093 /*
2094 * this subtree of our hierarchy is already locked
2095 * so we cannot give a lock.
2096 */
79dfdacc 2097 failed = iter;
9f3a0d09
JW
2098 mem_cgroup_iter_break(memcg, iter);
2099 break;
23751be0
JW
2100 } else
2101 iter->oom_lock = true;
7d74b06f 2102 }
867578cb 2103
fb2a6fc5
JW
2104 if (failed) {
2105 /*
2106 * OK, we failed to lock the whole subtree so we have
2107 * to clean up what we set up to the failing subtree
2108 */
2109 for_each_mem_cgroup_tree(iter, memcg) {
2110 if (iter == failed) {
2111 mem_cgroup_iter_break(memcg, iter);
2112 break;
2113 }
2114 iter->oom_lock = false;
79dfdacc 2115 }
0056f4e6
JW
2116 } else
2117 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2118
2119 spin_unlock(&memcg_oom_lock);
2120
2121 return !failed;
a636b327 2122}
0b7f569e 2123
fb2a6fc5 2124static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2125{
7d74b06f
KH
2126 struct mem_cgroup *iter;
2127
fb2a6fc5 2128 spin_lock(&memcg_oom_lock);
0056f4e6 2129 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2130 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2131 iter->oom_lock = false;
fb2a6fc5 2132 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2133}
2134
c0ff4b85 2135static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2136{
2137 struct mem_cgroup *iter;
2138
c0ff4b85 2139 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2140 atomic_inc(&iter->under_oom);
2141}
2142
c0ff4b85 2143static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2144{
2145 struct mem_cgroup *iter;
2146
867578cb
KH
2147 /*
2148 * When a new child is created while the hierarchy is under oom,
2149 * mem_cgroup_oom_lock() may not be called. We have to use
2150 * atomic_add_unless() here.
2151 */
c0ff4b85 2152 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2153 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2154}
2155
867578cb
KH
2156static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2157
dc98df5a 2158struct oom_wait_info {
d79154bb 2159 struct mem_cgroup *memcg;
dc98df5a
KH
2160 wait_queue_t wait;
2161};
2162
2163static int memcg_oom_wake_function(wait_queue_t *wait,
2164 unsigned mode, int sync, void *arg)
2165{
d79154bb
HD
2166 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2167 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2168 struct oom_wait_info *oom_wait_info;
2169
2170 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2171 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2172
dc98df5a 2173 /*
d79154bb 2174 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2175 * Then we can use css_is_ancestor without taking care of RCU.
2176 */
c0ff4b85
R
2177 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2178 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2179 return 0;
dc98df5a
KH
2180 return autoremove_wake_function(wait, mode, sync, arg);
2181}
2182
c0ff4b85 2183static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2184{
3812c8c8 2185 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2186 /* for filtering, pass "memcg" as argument. */
2187 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2188}
2189
c0ff4b85 2190static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2191{
c0ff4b85
R
2192 if (memcg && atomic_read(&memcg->under_oom))
2193 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2194}
2195
3812c8c8 2196static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2197{
3812c8c8
JW
2198 if (!current->memcg_oom.may_oom)
2199 return;
867578cb 2200 /*
49426420
JW
2201 * We are in the middle of the charge context here, so we
2202 * don't want to block when potentially sitting on a callstack
2203 * that holds all kinds of filesystem and mm locks.
2204 *
2205 * Also, the caller may handle a failed allocation gracefully
2206 * (like optional page cache readahead) and so an OOM killer
2207 * invocation might not even be necessary.
2208 *
2209 * That's why we don't do anything here except remember the
2210 * OOM context and then deal with it at the end of the page
2211 * fault when the stack is unwound, the locks are released,
2212 * and when we know whether the fault was overall successful.
867578cb 2213 */
49426420
JW
2214 css_get(&memcg->css);
2215 current->memcg_oom.memcg = memcg;
2216 current->memcg_oom.gfp_mask = mask;
2217 current->memcg_oom.order = order;
3812c8c8
JW
2218}
2219
2220/**
2221 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2222 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2223 *
49426420
JW
2224 * This has to be called at the end of a page fault if the memcg OOM
2225 * handler was enabled.
3812c8c8 2226 *
49426420 2227 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2228 * sleep on a waitqueue until the userspace task resolves the
2229 * situation. Sleeping directly in the charge context with all kinds
2230 * of locks held is not a good idea, instead we remember an OOM state
2231 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2232 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2233 *
2234 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2235 * completed, %false otherwise.
3812c8c8 2236 */
49426420 2237bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2238{
49426420 2239 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2240 struct oom_wait_info owait;
49426420 2241 bool locked;
3812c8c8
JW
2242
2243 /* OOM is global, do not handle */
3812c8c8 2244 if (!memcg)
49426420 2245 return false;
3812c8c8 2246
49426420
JW
2247 if (!handle)
2248 goto cleanup;
3812c8c8
JW
2249
2250 owait.memcg = memcg;
2251 owait.wait.flags = 0;
2252 owait.wait.func = memcg_oom_wake_function;
2253 owait.wait.private = current;
2254 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2255
3812c8c8 2256 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2257 mem_cgroup_mark_under_oom(memcg);
2258
2259 locked = mem_cgroup_oom_trylock(memcg);
2260
2261 if (locked)
2262 mem_cgroup_oom_notify(memcg);
2263
2264 if (locked && !memcg->oom_kill_disable) {
2265 mem_cgroup_unmark_under_oom(memcg);
2266 finish_wait(&memcg_oom_waitq, &owait.wait);
2267 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2268 current->memcg_oom.order);
2269 } else {
3812c8c8 2270 schedule();
49426420
JW
2271 mem_cgroup_unmark_under_oom(memcg);
2272 finish_wait(&memcg_oom_waitq, &owait.wait);
2273 }
2274
2275 if (locked) {
fb2a6fc5
JW
2276 mem_cgroup_oom_unlock(memcg);
2277 /*
2278 * There is no guarantee that an OOM-lock contender
2279 * sees the wakeups triggered by the OOM kill
2280 * uncharges. Wake any sleepers explicitely.
2281 */
2282 memcg_oom_recover(memcg);
2283 }
49426420
JW
2284cleanup:
2285 current->memcg_oom.memcg = NULL;
3812c8c8 2286 css_put(&memcg->css);
867578cb 2287 return true;
0b7f569e
KH
2288}
2289
d69b042f
BS
2290/*
2291 * Currently used to update mapped file statistics, but the routine can be
2292 * generalized to update other statistics as well.
32047e2a
KH
2293 *
2294 * Notes: Race condition
2295 *
2296 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2297 * it tends to be costly. But considering some conditions, we doesn't need
2298 * to do so _always_.
2299 *
2300 * Considering "charge", lock_page_cgroup() is not required because all
2301 * file-stat operations happen after a page is attached to radix-tree. There
2302 * are no race with "charge".
2303 *
2304 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2305 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2306 * if there are race with "uncharge". Statistics itself is properly handled
2307 * by flags.
2308 *
2309 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2310 * small, we check mm->moving_account and detect there are possibility of race
2311 * If there is, we take a lock.
d69b042f 2312 */
26174efd 2313
89c06bd5
KH
2314void __mem_cgroup_begin_update_page_stat(struct page *page,
2315 bool *locked, unsigned long *flags)
2316{
2317 struct mem_cgroup *memcg;
2318 struct page_cgroup *pc;
2319
2320 pc = lookup_page_cgroup(page);
2321again:
2322 memcg = pc->mem_cgroup;
2323 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2324 return;
2325 /*
2326 * If this memory cgroup is not under account moving, we don't
da92c47d 2327 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2328 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2329 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2330 */
13fd1dd9 2331 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2332 return;
2333
2334 move_lock_mem_cgroup(memcg, flags);
2335 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2336 move_unlock_mem_cgroup(memcg, flags);
2337 goto again;
2338 }
2339 *locked = true;
2340}
2341
2342void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2343{
2344 struct page_cgroup *pc = lookup_page_cgroup(page);
2345
2346 /*
2347 * It's guaranteed that pc->mem_cgroup never changes while
2348 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2349 * should take move_lock_mem_cgroup().
89c06bd5
KH
2350 */
2351 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2352}
2353
2a7106f2 2354void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2355 enum mem_cgroup_stat_index idx, int val)
d69b042f 2356{
c0ff4b85 2357 struct mem_cgroup *memcg;
32047e2a 2358 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2359 unsigned long uninitialized_var(flags);
d69b042f 2360
cfa44946 2361 if (mem_cgroup_disabled())
d69b042f 2362 return;
89c06bd5 2363
658b72c5 2364 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2365 memcg = pc->mem_cgroup;
2366 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2367 return;
26174efd 2368
c0ff4b85 2369 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2370}
26174efd 2371
cdec2e42
KH
2372/*
2373 * size of first charge trial. "32" comes from vmscan.c's magic value.
2374 * TODO: maybe necessary to use big numbers in big irons.
2375 */
7ec99d62 2376#define CHARGE_BATCH 32U
cdec2e42
KH
2377struct memcg_stock_pcp {
2378 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2379 unsigned int nr_pages;
cdec2e42 2380 struct work_struct work;
26fe6168 2381 unsigned long flags;
a0db00fc 2382#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2383};
2384static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2385static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2386
a0956d54
SS
2387/**
2388 * consume_stock: Try to consume stocked charge on this cpu.
2389 * @memcg: memcg to consume from.
2390 * @nr_pages: how many pages to charge.
2391 *
2392 * The charges will only happen if @memcg matches the current cpu's memcg
2393 * stock, and at least @nr_pages are available in that stock. Failure to
2394 * service an allocation will refill the stock.
2395 *
2396 * returns true if successful, false otherwise.
cdec2e42 2397 */
a0956d54 2398static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2399{
2400 struct memcg_stock_pcp *stock;
2401 bool ret = true;
2402
a0956d54
SS
2403 if (nr_pages > CHARGE_BATCH)
2404 return false;
2405
cdec2e42 2406 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2407 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2408 stock->nr_pages -= nr_pages;
cdec2e42
KH
2409 else /* need to call res_counter_charge */
2410 ret = false;
2411 put_cpu_var(memcg_stock);
2412 return ret;
2413}
2414
2415/*
2416 * Returns stocks cached in percpu to res_counter and reset cached information.
2417 */
2418static void drain_stock(struct memcg_stock_pcp *stock)
2419{
2420 struct mem_cgroup *old = stock->cached;
2421
11c9ea4e
JW
2422 if (stock->nr_pages) {
2423 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2424
2425 res_counter_uncharge(&old->res, bytes);
cdec2e42 2426 if (do_swap_account)
11c9ea4e
JW
2427 res_counter_uncharge(&old->memsw, bytes);
2428 stock->nr_pages = 0;
cdec2e42
KH
2429 }
2430 stock->cached = NULL;
cdec2e42
KH
2431}
2432
2433/*
2434 * This must be called under preempt disabled or must be called by
2435 * a thread which is pinned to local cpu.
2436 */
2437static void drain_local_stock(struct work_struct *dummy)
2438{
7c8e0181 2439 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2440 drain_stock(stock);
26fe6168 2441 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2442}
2443
e4777496
MH
2444static void __init memcg_stock_init(void)
2445{
2446 int cpu;
2447
2448 for_each_possible_cpu(cpu) {
2449 struct memcg_stock_pcp *stock =
2450 &per_cpu(memcg_stock, cpu);
2451 INIT_WORK(&stock->work, drain_local_stock);
2452 }
2453}
2454
cdec2e42
KH
2455/*
2456 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2457 * This will be consumed by consume_stock() function, later.
cdec2e42 2458 */
c0ff4b85 2459static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2460{
2461 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2462
c0ff4b85 2463 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2464 drain_stock(stock);
c0ff4b85 2465 stock->cached = memcg;
cdec2e42 2466 }
11c9ea4e 2467 stock->nr_pages += nr_pages;
cdec2e42
KH
2468 put_cpu_var(memcg_stock);
2469}
2470
2471/*
c0ff4b85 2472 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2473 * of the hierarchy under it. sync flag says whether we should block
2474 * until the work is done.
cdec2e42 2475 */
c0ff4b85 2476static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2477{
26fe6168 2478 int cpu, curcpu;
d38144b7 2479
cdec2e42 2480 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2481 get_online_cpus();
5af12d0e 2482 curcpu = get_cpu();
cdec2e42
KH
2483 for_each_online_cpu(cpu) {
2484 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2485 struct mem_cgroup *memcg;
26fe6168 2486
c0ff4b85
R
2487 memcg = stock->cached;
2488 if (!memcg || !stock->nr_pages)
26fe6168 2489 continue;
c0ff4b85 2490 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2491 continue;
d1a05b69
MH
2492 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2493 if (cpu == curcpu)
2494 drain_local_stock(&stock->work);
2495 else
2496 schedule_work_on(cpu, &stock->work);
2497 }
cdec2e42 2498 }
5af12d0e 2499 put_cpu();
d38144b7
MH
2500
2501 if (!sync)
2502 goto out;
2503
2504 for_each_online_cpu(cpu) {
2505 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2506 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2507 flush_work(&stock->work);
2508 }
2509out:
f894ffa8 2510 put_online_cpus();
d38144b7
MH
2511}
2512
2513/*
2514 * Tries to drain stocked charges in other cpus. This function is asynchronous
2515 * and just put a work per cpu for draining localy on each cpu. Caller can
2516 * expects some charges will be back to res_counter later but cannot wait for
2517 * it.
2518 */
c0ff4b85 2519static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2520{
9f50fad6
MH
2521 /*
2522 * If someone calls draining, avoid adding more kworker runs.
2523 */
2524 if (!mutex_trylock(&percpu_charge_mutex))
2525 return;
c0ff4b85 2526 drain_all_stock(root_memcg, false);
9f50fad6 2527 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2528}
2529
2530/* This is a synchronous drain interface. */
c0ff4b85 2531static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2532{
2533 /* called when force_empty is called */
9f50fad6 2534 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2535 drain_all_stock(root_memcg, true);
9f50fad6 2536 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2537}
2538
711d3d2c
KH
2539/*
2540 * This function drains percpu counter value from DEAD cpu and
2541 * move it to local cpu. Note that this function can be preempted.
2542 */
c0ff4b85 2543static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2544{
2545 int i;
2546
c0ff4b85 2547 spin_lock(&memcg->pcp_counter_lock);
6104621d 2548 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2549 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2550
c0ff4b85
R
2551 per_cpu(memcg->stat->count[i], cpu) = 0;
2552 memcg->nocpu_base.count[i] += x;
711d3d2c 2553 }
e9f8974f 2554 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2555 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2556
c0ff4b85
R
2557 per_cpu(memcg->stat->events[i], cpu) = 0;
2558 memcg->nocpu_base.events[i] += x;
e9f8974f 2559 }
c0ff4b85 2560 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2561}
2562
0db0628d 2563static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2564 unsigned long action,
2565 void *hcpu)
2566{
2567 int cpu = (unsigned long)hcpu;
2568 struct memcg_stock_pcp *stock;
711d3d2c 2569 struct mem_cgroup *iter;
cdec2e42 2570
619d094b 2571 if (action == CPU_ONLINE)
1489ebad 2572 return NOTIFY_OK;
1489ebad 2573
d833049b 2574 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2575 return NOTIFY_OK;
711d3d2c 2576
9f3a0d09 2577 for_each_mem_cgroup(iter)
711d3d2c
KH
2578 mem_cgroup_drain_pcp_counter(iter, cpu);
2579
cdec2e42
KH
2580 stock = &per_cpu(memcg_stock, cpu);
2581 drain_stock(stock);
2582 return NOTIFY_OK;
2583}
2584
4b534334 2585
6d1fdc48 2586/* See mem_cgroup_try_charge() for details */
4b534334
KH
2587enum {
2588 CHARGE_OK, /* success */
2589 CHARGE_RETRY, /* need to retry but retry is not bad */
2590 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2591 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2592};
2593
c0ff4b85 2594static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2595 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2596 bool invoke_oom)
4b534334 2597{
7ec99d62 2598 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2599 struct mem_cgroup *mem_over_limit;
2600 struct res_counter *fail_res;
2601 unsigned long flags = 0;
2602 int ret;
2603
c0ff4b85 2604 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2605
2606 if (likely(!ret)) {
2607 if (!do_swap_account)
2608 return CHARGE_OK;
c0ff4b85 2609 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2610 if (likely(!ret))
2611 return CHARGE_OK;
2612
c0ff4b85 2613 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2614 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2615 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2616 } else
2617 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2618 /*
9221edb7
JW
2619 * Never reclaim on behalf of optional batching, retry with a
2620 * single page instead.
2621 */
4c9c5359 2622 if (nr_pages > min_pages)
4b534334
KH
2623 return CHARGE_RETRY;
2624
2625 if (!(gfp_mask & __GFP_WAIT))
2626 return CHARGE_WOULDBLOCK;
2627
4c9c5359
SS
2628 if (gfp_mask & __GFP_NORETRY)
2629 return CHARGE_NOMEM;
2630
5660048c 2631 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2632 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2633 return CHARGE_RETRY;
4b534334 2634 /*
19942822
JW
2635 * Even though the limit is exceeded at this point, reclaim
2636 * may have been able to free some pages. Retry the charge
2637 * before killing the task.
2638 *
2639 * Only for regular pages, though: huge pages are rather
2640 * unlikely to succeed so close to the limit, and we fall back
2641 * to regular pages anyway in case of failure.
4b534334 2642 */
4c9c5359 2643 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2644 return CHARGE_RETRY;
2645
2646 /*
2647 * At task move, charge accounts can be doubly counted. So, it's
2648 * better to wait until the end of task_move if something is going on.
2649 */
2650 if (mem_cgroup_wait_acct_move(mem_over_limit))
2651 return CHARGE_RETRY;
2652
3812c8c8
JW
2653 if (invoke_oom)
2654 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2655
3812c8c8 2656 return CHARGE_NOMEM;
4b534334
KH
2657}
2658
6d1fdc48
JW
2659/**
2660 * mem_cgroup_try_charge - try charging a memcg
2661 * @memcg: memcg to charge
2662 * @nr_pages: number of pages to charge
2663 * @oom: trigger OOM if reclaim fails
38c5d72f 2664 *
6d1fdc48
JW
2665 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2666 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
8a9f3ccd 2667 */
6d1fdc48
JW
2668static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2669 gfp_t gfp_mask,
2670 unsigned int nr_pages,
2671 bool oom)
8a9f3ccd 2672{
7ec99d62 2673 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2674 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
4b534334 2675 int ret;
a636b327 2676
6d1fdc48
JW
2677 if (mem_cgroup_is_root(memcg))
2678 goto done;
867578cb 2679 /*
6d1fdc48
JW
2680 * Unlike in global OOM situations, memcg is not in a physical
2681 * memory shortage. Allow dying and OOM-killed tasks to
2682 * bypass the last charges so that they can exit quickly and
2683 * free their memory.
867578cb 2684 */
6d1fdc48 2685 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
d8dc595c
MH
2686 fatal_signal_pending(current) ||
2687 current->flags & PF_EXITING))
867578cb 2688 goto bypass;
a636b327 2689
49426420 2690 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2691 goto nomem;
49426420 2692
a0d8b00a
JW
2693 if (gfp_mask & __GFP_NOFAIL)
2694 oom = false;
f75ca962 2695again:
b6b6cc72
MH
2696 if (consume_stock(memcg, nr_pages))
2697 goto done;
8a9f3ccd 2698
4b534334 2699 do {
3812c8c8 2700 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2701
4b534334 2702 /* If killed, bypass charge */
6d1fdc48 2703 if (fatal_signal_pending(current))
4b534334 2704 goto bypass;
6d61ef40 2705
3812c8c8
JW
2706 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2707 nr_pages, invoke_oom);
4b534334
KH
2708 switch (ret) {
2709 case CHARGE_OK:
2710 break;
2711 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2712 batch = nr_pages;
f75ca962 2713 goto again;
4b534334
KH
2714 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2715 goto nomem;
2716 case CHARGE_NOMEM: /* OOM routine works */
6d1fdc48 2717 if (!oom || invoke_oom)
867578cb 2718 goto nomem;
4b534334
KH
2719 nr_oom_retries--;
2720 break;
66e1707b 2721 }
4b534334
KH
2722 } while (ret != CHARGE_OK);
2723
7ec99d62 2724 if (batch > nr_pages)
c0ff4b85 2725 refill_stock(memcg, batch - nr_pages);
0c3e73e8 2726done:
7a81b88c
KH
2727 return 0;
2728nomem:
6d1fdc48 2729 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2730 return -ENOMEM;
867578cb 2731bypass:
38c5d72f 2732 return -EINTR;
7a81b88c 2733}
8a9f3ccd 2734
6d1fdc48
JW
2735/**
2736 * mem_cgroup_try_charge_mm - try charging a mm
2737 * @mm: mm_struct to charge
2738 * @nr_pages: number of pages to charge
2739 * @oom: trigger OOM if reclaim fails
2740 *
2741 * Returns the charged mem_cgroup associated with the given mm_struct or
2742 * NULL the charge failed.
2743 */
2744static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2745 gfp_t gfp_mask,
2746 unsigned int nr_pages,
2747 bool oom)
2748
2749{
2750 struct mem_cgroup *memcg;
2751 int ret;
2752
2753 memcg = get_mem_cgroup_from_mm(mm);
2754 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2755 css_put(&memcg->css);
2756 if (ret == -EINTR)
2757 memcg = root_mem_cgroup;
2758 else if (ret)
2759 memcg = NULL;
2760
2761 return memcg;
2762}
2763
a3032a2c
DN
2764/*
2765 * Somemtimes we have to undo a charge we got by try_charge().
2766 * This function is for that and do uncharge, put css's refcnt.
2767 * gotten by try_charge().
2768 */
c0ff4b85 2769static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2770 unsigned int nr_pages)
a3032a2c 2771{
c0ff4b85 2772 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2773 unsigned long bytes = nr_pages * PAGE_SIZE;
2774
c0ff4b85 2775 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2776 if (do_swap_account)
c0ff4b85 2777 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2778 }
854ffa8d
DN
2779}
2780
d01dd17f
KH
2781/*
2782 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2783 * This is useful when moving usage to parent cgroup.
2784 */
2785static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2786 unsigned int nr_pages)
2787{
2788 unsigned long bytes = nr_pages * PAGE_SIZE;
2789
2790 if (mem_cgroup_is_root(memcg))
2791 return;
2792
2793 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2794 if (do_swap_account)
2795 res_counter_uncharge_until(&memcg->memsw,
2796 memcg->memsw.parent, bytes);
2797}
2798
a3b2d692
KH
2799/*
2800 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2801 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2802 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2803 * called against removed memcg.)
a3b2d692
KH
2804 */
2805static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2806{
a3b2d692
KH
2807 /* ID 0 is unused ID */
2808 if (!id)
2809 return NULL;
34c00c31 2810 return mem_cgroup_from_id(id);
a3b2d692
KH
2811}
2812
e42d9d5d 2813struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2814{
c0ff4b85 2815 struct mem_cgroup *memcg = NULL;
3c776e64 2816 struct page_cgroup *pc;
a3b2d692 2817 unsigned short id;
b5a84319
KH
2818 swp_entry_t ent;
2819
309381fe 2820 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2821
3c776e64 2822 pc = lookup_page_cgroup(page);
c0bd3f63 2823 lock_page_cgroup(pc);
a3b2d692 2824 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2825 memcg = pc->mem_cgroup;
2826 if (memcg && !css_tryget(&memcg->css))
2827 memcg = NULL;
e42d9d5d 2828 } else if (PageSwapCache(page)) {
3c776e64 2829 ent.val = page_private(page);
9fb4b7cc 2830 id = lookup_swap_cgroup_id(ent);
a3b2d692 2831 rcu_read_lock();
c0ff4b85
R
2832 memcg = mem_cgroup_lookup(id);
2833 if (memcg && !css_tryget(&memcg->css))
2834 memcg = NULL;
a3b2d692 2835 rcu_read_unlock();
3c776e64 2836 }
c0bd3f63 2837 unlock_page_cgroup(pc);
c0ff4b85 2838 return memcg;
b5a84319
KH
2839}
2840
c0ff4b85 2841static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2842 struct page *page,
7ec99d62 2843 unsigned int nr_pages,
9ce70c02
HD
2844 enum charge_type ctype,
2845 bool lrucare)
7a81b88c 2846{
ce587e65 2847 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2848 struct zone *uninitialized_var(zone);
fa9add64 2849 struct lruvec *lruvec;
9ce70c02 2850 bool was_on_lru = false;
b2402857 2851 bool anon;
9ce70c02 2852
ca3e0214 2853 lock_page_cgroup(pc);
309381fe 2854 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2855 /*
2856 * we don't need page_cgroup_lock about tail pages, becase they are not
2857 * accessed by any other context at this point.
2858 */
9ce70c02
HD
2859
2860 /*
2861 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2862 * may already be on some other mem_cgroup's LRU. Take care of it.
2863 */
2864 if (lrucare) {
2865 zone = page_zone(page);
2866 spin_lock_irq(&zone->lru_lock);
2867 if (PageLRU(page)) {
fa9add64 2868 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2869 ClearPageLRU(page);
fa9add64 2870 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2871 was_on_lru = true;
2872 }
2873 }
2874
c0ff4b85 2875 pc->mem_cgroup = memcg;
261fb61a
KH
2876 /*
2877 * We access a page_cgroup asynchronously without lock_page_cgroup().
2878 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2879 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2880 * before USED bit, we need memory barrier here.
2881 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2882 */
08e552c6 2883 smp_wmb();
b2402857 2884 SetPageCgroupUsed(pc);
3be91277 2885
9ce70c02
HD
2886 if (lrucare) {
2887 if (was_on_lru) {
fa9add64 2888 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2889 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2890 SetPageLRU(page);
fa9add64 2891 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2892 }
2893 spin_unlock_irq(&zone->lru_lock);
2894 }
2895
41326c17 2896 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2897 anon = true;
2898 else
2899 anon = false;
2900
b070e65c 2901 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2902 unlock_page_cgroup(pc);
9ce70c02 2903
430e4863 2904 /*
bb4cc1a8
AM
2905 * "charge_statistics" updated event counter. Then, check it.
2906 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2907 * if they exceeds softlimit.
430e4863 2908 */
c0ff4b85 2909 memcg_check_events(memcg, page);
7a81b88c 2910}
66e1707b 2911
7cf27982
GC
2912static DEFINE_MUTEX(set_limit_mutex);
2913
7ae1e1d0 2914#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2915/*
2916 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2917 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2918 */
2919static DEFINE_MUTEX(memcg_slab_mutex);
2920
d6441637
VD
2921static DEFINE_MUTEX(activate_kmem_mutex);
2922
7ae1e1d0
GC
2923static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2924{
2925 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2926 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2927}
2928
1f458cbf
GC
2929/*
2930 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2931 * in the memcg_cache_params struct.
2932 */
2933static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2934{
2935 struct kmem_cache *cachep;
2936
2937 VM_BUG_ON(p->is_root_cache);
2938 cachep = p->root_cache;
7a67d7ab 2939 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2940}
2941
749c5415 2942#ifdef CONFIG_SLABINFO
2da8ca82 2943static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2944{
2da8ca82 2945 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2946 struct memcg_cache_params *params;
2947
2948 if (!memcg_can_account_kmem(memcg))
2949 return -EIO;
2950
2951 print_slabinfo_header(m);
2952
bd673145 2953 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2954 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2955 cache_show(memcg_params_to_cache(params), m);
bd673145 2956 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2957
2958 return 0;
2959}
2960#endif
2961
c67a8a68 2962static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2963{
2964 struct res_counter *fail_res;
7ae1e1d0 2965 int ret = 0;
7ae1e1d0
GC
2966
2967 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2968 if (ret)
2969 return ret;
2970
6d1fdc48
JW
2971 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2972 oom_gfp_allowed(gfp));
7ae1e1d0
GC
2973 if (ret == -EINTR) {
2974 /*
6d1fdc48 2975 * mem_cgroup_try_charge() chosed to bypass to root due to
7ae1e1d0
GC
2976 * OOM kill or fatal signal. Since our only options are to
2977 * either fail the allocation or charge it to this cgroup, do
2978 * it as a temporary condition. But we can't fail. From a
2979 * kmem/slab perspective, the cache has already been selected,
2980 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2981 * our minds.
2982 *
2983 * This condition will only trigger if the task entered
2984 * memcg_charge_kmem in a sane state, but was OOM-killed during
6d1fdc48 2985 * mem_cgroup_try_charge() above. Tasks that were already
7ae1e1d0
GC
2986 * dying when the allocation triggers should have been already
2987 * directed to the root cgroup in memcontrol.h
2988 */
2989 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2990 if (do_swap_account)
2991 res_counter_charge_nofail(&memcg->memsw, size,
2992 &fail_res);
2993 ret = 0;
2994 } else if (ret)
2995 res_counter_uncharge(&memcg->kmem, size);
2996
2997 return ret;
2998}
2999
c67a8a68 3000static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 3001{
7ae1e1d0
GC
3002 res_counter_uncharge(&memcg->res, size);
3003 if (do_swap_account)
3004 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3005
3006 /* Not down to 0 */
3007 if (res_counter_uncharge(&memcg->kmem, size))
3008 return;
3009
10d5ebf4
LZ
3010 /*
3011 * Releases a reference taken in kmem_cgroup_css_offline in case
3012 * this last uncharge is racing with the offlining code or it is
3013 * outliving the memcg existence.
3014 *
3015 * The memory barrier imposed by test&clear is paired with the
3016 * explicit one in memcg_kmem_mark_dead().
3017 */
7de37682 3018 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3019 css_put(&memcg->css);
7ae1e1d0
GC
3020}
3021
2633d7a0
GC
3022/*
3023 * helper for acessing a memcg's index. It will be used as an index in the
3024 * child cache array in kmem_cache, and also to derive its name. This function
3025 * will return -1 when this is not a kmem-limited memcg.
3026 */
3027int memcg_cache_id(struct mem_cgroup *memcg)
3028{
3029 return memcg ? memcg->kmemcg_id : -1;
3030}
3031
55007d84
GC
3032static size_t memcg_caches_array_size(int num_groups)
3033{
3034 ssize_t size;
3035 if (num_groups <= 0)
3036 return 0;
3037
3038 size = 2 * num_groups;
3039 if (size < MEMCG_CACHES_MIN_SIZE)
3040 size = MEMCG_CACHES_MIN_SIZE;
3041 else if (size > MEMCG_CACHES_MAX_SIZE)
3042 size = MEMCG_CACHES_MAX_SIZE;
3043
3044 return size;
3045}
3046
3047/*
3048 * We should update the current array size iff all caches updates succeed. This
3049 * can only be done from the slab side. The slab mutex needs to be held when
3050 * calling this.
3051 */
3052void memcg_update_array_size(int num)
3053{
3054 if (num > memcg_limited_groups_array_size)
3055 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3056}
3057
3058int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3059{
3060 struct memcg_cache_params *cur_params = s->memcg_params;
3061
f35c3a8e 3062 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3063
3064 if (num_groups > memcg_limited_groups_array_size) {
3065 int i;
f8570263 3066 struct memcg_cache_params *new_params;
55007d84
GC
3067 ssize_t size = memcg_caches_array_size(num_groups);
3068
3069 size *= sizeof(void *);
90c7a79c 3070 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3071
f8570263
VD
3072 new_params = kzalloc(size, GFP_KERNEL);
3073 if (!new_params)
55007d84 3074 return -ENOMEM;
55007d84 3075
f8570263 3076 new_params->is_root_cache = true;
55007d84
GC
3077
3078 /*
3079 * There is the chance it will be bigger than
3080 * memcg_limited_groups_array_size, if we failed an allocation
3081 * in a cache, in which case all caches updated before it, will
3082 * have a bigger array.
3083 *
3084 * But if that is the case, the data after
3085 * memcg_limited_groups_array_size is certainly unused
3086 */
3087 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3088 if (!cur_params->memcg_caches[i])
3089 continue;
f8570263 3090 new_params->memcg_caches[i] =
55007d84
GC
3091 cur_params->memcg_caches[i];
3092 }
3093
3094 /*
3095 * Ideally, we would wait until all caches succeed, and only
3096 * then free the old one. But this is not worth the extra
3097 * pointer per-cache we'd have to have for this.
3098 *
3099 * It is not a big deal if some caches are left with a size
3100 * bigger than the others. And all updates will reset this
3101 * anyway.
3102 */
f8570263
VD
3103 rcu_assign_pointer(s->memcg_params, new_params);
3104 if (cur_params)
3105 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3106 }
3107 return 0;
3108}
3109
5722d094
VD
3110char *memcg_create_cache_name(struct mem_cgroup *memcg,
3111 struct kmem_cache *root_cache)
3112{
ada4ba59 3113 static char *buf;
5722d094
VD
3114
3115 /*
3116 * We need a mutex here to protect the shared buffer. Since this is
3117 * expected to be called only on cache creation, we can employ the
3118 * slab_mutex for that purpose.
3119 */
3120 lockdep_assert_held(&slab_mutex);
3121
3122 if (!buf) {
3123 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3124 if (!buf)
3125 return NULL;
3126 }
3127
3128 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
3129 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3130 memcg_cache_id(memcg), buf);
3131}
3132
363a044f
VD
3133int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3134 struct kmem_cache *root_cache)
2633d7a0 3135{
90c7a79c 3136 size_t size;
2633d7a0
GC
3137
3138 if (!memcg_kmem_enabled())
3139 return 0;
3140
90c7a79c
AV
3141 if (!memcg) {
3142 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3143 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3144 } else
3145 size = sizeof(struct memcg_cache_params);
55007d84 3146
2633d7a0
GC
3147 s->memcg_params = kzalloc(size, GFP_KERNEL);
3148 if (!s->memcg_params)
3149 return -ENOMEM;
3150
943a451a 3151 if (memcg) {
2633d7a0 3152 s->memcg_params->memcg = memcg;
943a451a 3153 s->memcg_params->root_cache = root_cache;
051dd460 3154 css_get(&memcg->css);
4ba902b5
GC
3155 } else
3156 s->memcg_params->is_root_cache = true;
3157
2633d7a0
GC
3158 return 0;
3159}
3160
363a044f
VD
3161void memcg_free_cache_params(struct kmem_cache *s)
3162{
051dd460
VD
3163 if (!s->memcg_params)
3164 return;
3165 if (!s->memcg_params->is_root_cache)
3166 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3167 kfree(s->memcg_params);
3168}
3169
bd673145
VD
3170static void memcg_kmem_create_cache(struct mem_cgroup *memcg,
3171 struct kmem_cache *root_cache)
2633d7a0 3172{
bd673145 3173 struct kmem_cache *cachep;
d7f25f8a
GC
3174 int id;
3175
bd673145
VD
3176 lockdep_assert_held(&memcg_slab_mutex);
3177
3178 id = memcg_cache_id(memcg);
3179
3180 /*
3181 * Since per-memcg caches are created asynchronously on first
3182 * allocation (see memcg_kmem_get_cache()), several threads can try to
3183 * create the same cache, but only one of them may succeed.
3184 */
3185 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
3186 return;
3187
bd673145 3188 cachep = kmem_cache_create_memcg(memcg, root_cache);
2edefe11 3189 /*
bd673145
VD
3190 * If we could not create a memcg cache, do not complain, because
3191 * that's not critical at all as we can always proceed with the root
3192 * cache.
2edefe11 3193 */
bd673145
VD
3194 if (!cachep)
3195 return;
2edefe11 3196
bd673145 3197 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 3198
d7f25f8a 3199 /*
959c8963
VD
3200 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3201 * barrier here to ensure nobody will see the kmem_cache partially
3202 * initialized.
d7f25f8a 3203 */
959c8963
VD
3204 smp_wmb();
3205
bd673145
VD
3206 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3207 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 3208}
d7f25f8a 3209
bd673145 3210static void memcg_kmem_destroy_cache(struct kmem_cache *cachep)
1aa13254 3211{
bd673145 3212 struct kmem_cache *root_cache;
1aa13254
VD
3213 struct mem_cgroup *memcg;
3214 int id;
3215
bd673145 3216 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3217
bd673145 3218 BUG_ON(is_root_cache(cachep));
2edefe11 3219
bd673145
VD
3220 root_cache = cachep->memcg_params->root_cache;
3221 memcg = cachep->memcg_params->memcg;
96403da2 3222 id = memcg_cache_id(memcg);
d7f25f8a 3223
bd673145
VD
3224 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3225 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3226
bd673145
VD
3227 list_del(&cachep->memcg_params->list);
3228
3229 kmem_cache_destroy(cachep);
2633d7a0
GC
3230}
3231
0e9d92f2
GC
3232/*
3233 * During the creation a new cache, we need to disable our accounting mechanism
3234 * altogether. This is true even if we are not creating, but rather just
3235 * enqueing new caches to be created.
3236 *
3237 * This is because that process will trigger allocations; some visible, like
3238 * explicit kmallocs to auxiliary data structures, name strings and internal
3239 * cache structures; some well concealed, like INIT_WORK() that can allocate
3240 * objects during debug.
3241 *
3242 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3243 * to it. This may not be a bounded recursion: since the first cache creation
3244 * failed to complete (waiting on the allocation), we'll just try to create the
3245 * cache again, failing at the same point.
3246 *
3247 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3248 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3249 * inside the following two functions.
3250 */
3251static inline void memcg_stop_kmem_account(void)
3252{
3253 VM_BUG_ON(!current->mm);
3254 current->memcg_kmem_skip_account++;
3255}
3256
3257static inline void memcg_resume_kmem_account(void)
3258{
3259 VM_BUG_ON(!current->mm);
3260 current->memcg_kmem_skip_account--;
3261}
3262
b8529907 3263int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
7cf27982
GC
3264{
3265 struct kmem_cache *c;
b8529907 3266 int i, failed = 0;
7cf27982 3267
bd673145 3268 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3269 for_each_memcg_cache_index(i) {
3270 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3271 if (!c)
3272 continue;
3273
bd673145 3274 memcg_kmem_destroy_cache(c);
b8529907
VD
3275
3276 if (cache_from_memcg_idx(s, i))
3277 failed++;
7cf27982 3278 }
bd673145 3279 mutex_unlock(&memcg_slab_mutex);
b8529907 3280 return failed;
7cf27982
GC
3281}
3282
1f458cbf
GC
3283static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3284{
3285 struct kmem_cache *cachep;
bd673145 3286 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3287
3288 if (!memcg_kmem_is_active(memcg))
3289 return;
3290
bd673145
VD
3291 mutex_lock(&memcg_slab_mutex);
3292 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3293 cachep = memcg_params_to_cache(params);
bd673145
VD
3294 kmem_cache_shrink(cachep);
3295 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3296 memcg_kmem_destroy_cache(cachep);
1f458cbf 3297 }
bd673145 3298 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3299}
3300
5722d094
VD
3301struct create_work {
3302 struct mem_cgroup *memcg;
3303 struct kmem_cache *cachep;
3304 struct work_struct work;
3305};
3306
d7f25f8a
GC
3307static void memcg_create_cache_work_func(struct work_struct *w)
3308{
5722d094
VD
3309 struct create_work *cw = container_of(w, struct create_work, work);
3310 struct mem_cgroup *memcg = cw->memcg;
3311 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3312
bd673145
VD
3313 mutex_lock(&memcg_slab_mutex);
3314 memcg_kmem_create_cache(memcg, cachep);
3315 mutex_unlock(&memcg_slab_mutex);
3316
5722d094 3317 css_put(&memcg->css);
d7f25f8a
GC
3318 kfree(cw);
3319}
3320
3321/*
3322 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3323 */
0e9d92f2
GC
3324static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3325 struct kmem_cache *cachep)
d7f25f8a
GC
3326{
3327 struct create_work *cw;
3328
3329 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3330 if (cw == NULL) {
3331 css_put(&memcg->css);
d7f25f8a
GC
3332 return;
3333 }
3334
3335 cw->memcg = memcg;
3336 cw->cachep = cachep;
3337
3338 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3339 schedule_work(&cw->work);
3340}
3341
0e9d92f2
GC
3342static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3343 struct kmem_cache *cachep)
3344{
3345 /*
3346 * We need to stop accounting when we kmalloc, because if the
3347 * corresponding kmalloc cache is not yet created, the first allocation
3348 * in __memcg_create_cache_enqueue will recurse.
3349 *
3350 * However, it is better to enclose the whole function. Depending on
3351 * the debugging options enabled, INIT_WORK(), for instance, can
3352 * trigger an allocation. This too, will make us recurse. Because at
3353 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3354 * the safest choice is to do it like this, wrapping the whole function.
3355 */
3356 memcg_stop_kmem_account();
3357 __memcg_create_cache_enqueue(memcg, cachep);
3358 memcg_resume_kmem_account();
3359}
c67a8a68
VD
3360
3361int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3362{
3363 int res;
3364
3365 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3366 PAGE_SIZE << order);
3367 if (!res)
3368 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3369 return res;
3370}
3371
3372void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3373{
3374 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3375 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3376}
3377
d7f25f8a
GC
3378/*
3379 * Return the kmem_cache we're supposed to use for a slab allocation.
3380 * We try to use the current memcg's version of the cache.
3381 *
3382 * If the cache does not exist yet, if we are the first user of it,
3383 * we either create it immediately, if possible, or create it asynchronously
3384 * in a workqueue.
3385 * In the latter case, we will let the current allocation go through with
3386 * the original cache.
3387 *
3388 * Can't be called in interrupt context or from kernel threads.
3389 * This function needs to be called with rcu_read_lock() held.
3390 */
3391struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3392 gfp_t gfp)
3393{
3394 struct mem_cgroup *memcg;
959c8963 3395 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3396
3397 VM_BUG_ON(!cachep->memcg_params);
3398 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3399
0e9d92f2
GC
3400 if (!current->mm || current->memcg_kmem_skip_account)
3401 return cachep;
3402
d7f25f8a
GC
3403 rcu_read_lock();
3404 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3405
3406 if (!memcg_can_account_kmem(memcg))
ca0dde97 3407 goto out;
d7f25f8a 3408
959c8963
VD
3409 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3410 if (likely(memcg_cachep)) {
3411 cachep = memcg_cachep;
ca0dde97 3412 goto out;
d7f25f8a
GC
3413 }
3414
ca0dde97
LZ
3415 /* The corresponding put will be done in the workqueue. */
3416 if (!css_tryget(&memcg->css))
3417 goto out;
3418 rcu_read_unlock();
3419
3420 /*
3421 * If we are in a safe context (can wait, and not in interrupt
3422 * context), we could be be predictable and return right away.
3423 * This would guarantee that the allocation being performed
3424 * already belongs in the new cache.
3425 *
3426 * However, there are some clashes that can arrive from locking.
3427 * For instance, because we acquire the slab_mutex while doing
3428 * kmem_cache_dup, this means no further allocation could happen
3429 * with the slab_mutex held.
3430 *
3431 * Also, because cache creation issue get_online_cpus(), this
3432 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3433 * that ends up reversed during cpu hotplug. (cpuset allocates
3434 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3435 * better to defer everything.
3436 */
3437 memcg_create_cache_enqueue(memcg, cachep);
3438 return cachep;
3439out:
3440 rcu_read_unlock();
3441 return cachep;
d7f25f8a 3442}
d7f25f8a 3443
7ae1e1d0
GC
3444/*
3445 * We need to verify if the allocation against current->mm->owner's memcg is
3446 * possible for the given order. But the page is not allocated yet, so we'll
3447 * need a further commit step to do the final arrangements.
3448 *
3449 * It is possible for the task to switch cgroups in this mean time, so at
3450 * commit time, we can't rely on task conversion any longer. We'll then use
3451 * the handle argument to return to the caller which cgroup we should commit
3452 * against. We could also return the memcg directly and avoid the pointer
3453 * passing, but a boolean return value gives better semantics considering
3454 * the compiled-out case as well.
3455 *
3456 * Returning true means the allocation is possible.
3457 */
3458bool
3459__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3460{
3461 struct mem_cgroup *memcg;
3462 int ret;
3463
3464 *_memcg = NULL;
6d42c232
GC
3465
3466 /*
3467 * Disabling accounting is only relevant for some specific memcg
3468 * internal allocations. Therefore we would initially not have such
52383431
VD
3469 * check here, since direct calls to the page allocator that are
3470 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3471 * outside memcg core. We are mostly concerned with cache allocations,
3472 * and by having this test at memcg_kmem_get_cache, we are already able
3473 * to relay the allocation to the root cache and bypass the memcg cache
3474 * altogether.
6d42c232
GC
3475 *
3476 * There is one exception, though: the SLUB allocator does not create
3477 * large order caches, but rather service large kmallocs directly from
3478 * the page allocator. Therefore, the following sequence when backed by
3479 * the SLUB allocator:
3480 *
f894ffa8
AM
3481 * memcg_stop_kmem_account();
3482 * kmalloc(<large_number>)
3483 * memcg_resume_kmem_account();
6d42c232
GC
3484 *
3485 * would effectively ignore the fact that we should skip accounting,
3486 * since it will drive us directly to this function without passing
3487 * through the cache selector memcg_kmem_get_cache. Such large
3488 * allocations are extremely rare but can happen, for instance, for the
3489 * cache arrays. We bring this test here.
3490 */
3491 if (!current->mm || current->memcg_kmem_skip_account)
3492 return true;
3493
df381975 3494 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3495
3496 if (!memcg_can_account_kmem(memcg)) {
3497 css_put(&memcg->css);
3498 return true;
3499 }
3500
7ae1e1d0
GC
3501 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3502 if (!ret)
3503 *_memcg = memcg;
7ae1e1d0
GC
3504
3505 css_put(&memcg->css);
3506 return (ret == 0);
3507}
3508
3509void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3510 int order)
3511{
3512 struct page_cgroup *pc;
3513
3514 VM_BUG_ON(mem_cgroup_is_root(memcg));
3515
3516 /* The page allocation failed. Revert */
3517 if (!page) {
3518 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3519 return;
3520 }
3521
3522 pc = lookup_page_cgroup(page);
3523 lock_page_cgroup(pc);
3524 pc->mem_cgroup = memcg;
3525 SetPageCgroupUsed(pc);
3526 unlock_page_cgroup(pc);
3527}
3528
3529void __memcg_kmem_uncharge_pages(struct page *page, int order)
3530{
3531 struct mem_cgroup *memcg = NULL;
3532 struct page_cgroup *pc;
3533
3534
3535 pc = lookup_page_cgroup(page);
3536 /*
3537 * Fast unlocked return. Theoretically might have changed, have to
3538 * check again after locking.
3539 */
3540 if (!PageCgroupUsed(pc))
3541 return;
3542
3543 lock_page_cgroup(pc);
3544 if (PageCgroupUsed(pc)) {
3545 memcg = pc->mem_cgroup;
3546 ClearPageCgroupUsed(pc);
3547 }
3548 unlock_page_cgroup(pc);
3549
3550 /*
3551 * We trust that only if there is a memcg associated with the page, it
3552 * is a valid allocation
3553 */
3554 if (!memcg)
3555 return;
3556
309381fe 3557 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3558 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3559}
1f458cbf
GC
3560#else
3561static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3562{
3563}
7ae1e1d0
GC
3564#endif /* CONFIG_MEMCG_KMEM */
3565
ca3e0214
KH
3566#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3567
a0db00fc 3568#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3569/*
3570 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3571 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3572 * charge/uncharge will be never happen and move_account() is done under
3573 * compound_lock(), so we don't have to take care of races.
ca3e0214 3574 */
e94c8a9c 3575void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3576{
3577 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3578 struct page_cgroup *pc;
b070e65c 3579 struct mem_cgroup *memcg;
e94c8a9c 3580 int i;
ca3e0214 3581
3d37c4a9
KH
3582 if (mem_cgroup_disabled())
3583 return;
b070e65c
DR
3584
3585 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3586 for (i = 1; i < HPAGE_PMD_NR; i++) {
3587 pc = head_pc + i;
b070e65c 3588 pc->mem_cgroup = memcg;
e94c8a9c 3589 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3590 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3591 }
b070e65c
DR
3592 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3593 HPAGE_PMD_NR);
ca3e0214 3594}
12d27107 3595#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3596
f817ed48 3597/**
de3638d9 3598 * mem_cgroup_move_account - move account of the page
5564e88b 3599 * @page: the page
7ec99d62 3600 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3601 * @pc: page_cgroup of the page.
3602 * @from: mem_cgroup which the page is moved from.
3603 * @to: mem_cgroup which the page is moved to. @from != @to.
3604 *
3605 * The caller must confirm following.
08e552c6 3606 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3607 * - compound_lock is held when nr_pages > 1
f817ed48 3608 *
2f3479b1
KH
3609 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3610 * from old cgroup.
f817ed48 3611 */
7ec99d62
JW
3612static int mem_cgroup_move_account(struct page *page,
3613 unsigned int nr_pages,
3614 struct page_cgroup *pc,
3615 struct mem_cgroup *from,
2f3479b1 3616 struct mem_cgroup *to)
f817ed48 3617{
de3638d9
JW
3618 unsigned long flags;
3619 int ret;
b2402857 3620 bool anon = PageAnon(page);
987eba66 3621
f817ed48 3622 VM_BUG_ON(from == to);
309381fe 3623 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3624 /*
3625 * The page is isolated from LRU. So, collapse function
3626 * will not handle this page. But page splitting can happen.
3627 * Do this check under compound_page_lock(). The caller should
3628 * hold it.
3629 */
3630 ret = -EBUSY;
7ec99d62 3631 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3632 goto out;
3633
3634 lock_page_cgroup(pc);
3635
3636 ret = -EINVAL;
3637 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3638 goto unlock;
3639
312734c0 3640 move_lock_mem_cgroup(from, &flags);
f817ed48 3641
59d1d256
JW
3642 if (!anon && page_mapped(page)) {
3643 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3644 nr_pages);
3645 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3646 nr_pages);
3647 }
3ea67d06 3648
59d1d256
JW
3649 if (PageWriteback(page)) {
3650 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3651 nr_pages);
3652 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3653 nr_pages);
3654 }
3ea67d06 3655
b070e65c 3656 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3657
854ffa8d 3658 /* caller should have done css_get */
08e552c6 3659 pc->mem_cgroup = to;
b070e65c 3660 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3661 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3662 ret = 0;
3663unlock:
57f9fd7d 3664 unlock_page_cgroup(pc);
d2265e6f
KH
3665 /*
3666 * check events
3667 */
5564e88b
JW
3668 memcg_check_events(to, page);
3669 memcg_check_events(from, page);
de3638d9 3670out:
f817ed48
KH
3671 return ret;
3672}
3673
2ef37d3f
MH
3674/**
3675 * mem_cgroup_move_parent - moves page to the parent group
3676 * @page: the page to move
3677 * @pc: page_cgroup of the page
3678 * @child: page's cgroup
3679 *
3680 * move charges to its parent or the root cgroup if the group has no
3681 * parent (aka use_hierarchy==0).
3682 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3683 * mem_cgroup_move_account fails) the failure is always temporary and
3684 * it signals a race with a page removal/uncharge or migration. In the
3685 * first case the page is on the way out and it will vanish from the LRU
3686 * on the next attempt and the call should be retried later.
3687 * Isolation from the LRU fails only if page has been isolated from
3688 * the LRU since we looked at it and that usually means either global
3689 * reclaim or migration going on. The page will either get back to the
3690 * LRU or vanish.
3691 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3692 * (!PageCgroupUsed) or moved to a different group. The page will
3693 * disappear in the next attempt.
f817ed48 3694 */
5564e88b
JW
3695static int mem_cgroup_move_parent(struct page *page,
3696 struct page_cgroup *pc,
6068bf01 3697 struct mem_cgroup *child)
f817ed48 3698{
f817ed48 3699 struct mem_cgroup *parent;
7ec99d62 3700 unsigned int nr_pages;
4be4489f 3701 unsigned long uninitialized_var(flags);
f817ed48
KH
3702 int ret;
3703
d8423011 3704 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3705
57f9fd7d
DN
3706 ret = -EBUSY;
3707 if (!get_page_unless_zero(page))
3708 goto out;
3709 if (isolate_lru_page(page))
3710 goto put;
52dbb905 3711
7ec99d62 3712 nr_pages = hpage_nr_pages(page);
08e552c6 3713
cc926f78
KH
3714 parent = parent_mem_cgroup(child);
3715 /*
3716 * If no parent, move charges to root cgroup.
3717 */
3718 if (!parent)
3719 parent = root_mem_cgroup;
f817ed48 3720
2ef37d3f 3721 if (nr_pages > 1) {
309381fe 3722 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3723 flags = compound_lock_irqsave(page);
2ef37d3f 3724 }
987eba66 3725
cc926f78 3726 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3727 pc, child, parent);
cc926f78
KH
3728 if (!ret)
3729 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3730
7ec99d62 3731 if (nr_pages > 1)
987eba66 3732 compound_unlock_irqrestore(page, flags);
08e552c6 3733 putback_lru_page(page);
57f9fd7d 3734put:
40d58138 3735 put_page(page);
57f9fd7d 3736out:
f817ed48
KH
3737 return ret;
3738}
3739
d715ae08 3740int mem_cgroup_charge_anon(struct page *page,
1bec6b33 3741 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3742{
7ec99d62 3743 unsigned int nr_pages = 1;
6d1fdc48 3744 struct mem_cgroup *memcg;
8493ae43 3745 bool oom = true;
ec168510 3746
1bec6b33
JW
3747 if (mem_cgroup_disabled())
3748 return 0;
3749
3750 VM_BUG_ON_PAGE(page_mapped(page), page);
3751 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3752 VM_BUG_ON(!mm);
3753
37c2ac78 3754 if (PageTransHuge(page)) {
7ec99d62 3755 nr_pages <<= compound_order(page);
309381fe 3756 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3757 /*
3758 * Never OOM-kill a process for a huge page. The
3759 * fault handler will fall back to regular pages.
3760 */
3761 oom = false;
37c2ac78 3762 }
7a81b88c 3763
6d1fdc48
JW
3764 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3765 if (!memcg)
3766 return -ENOMEM;
1bec6b33
JW
3767 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3768 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3769 return 0;
8a9f3ccd
BS
3770}
3771
54595fe2
KH
3772/*
3773 * While swap-in, try_charge -> commit or cancel, the page is locked.
3774 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3775 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3776 * "commit()" or removed by "cancel()"
3777 */
0435a2fd
JW
3778static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3779 struct page *page,
3780 gfp_t mask,
3781 struct mem_cgroup **memcgp)
8c7c6e34 3782{
6d1fdc48 3783 struct mem_cgroup *memcg = NULL;
90deb788 3784 struct page_cgroup *pc;
54595fe2 3785 int ret;
8c7c6e34 3786
90deb788
JW
3787 pc = lookup_page_cgroup(page);
3788 /*
3789 * Every swap fault against a single page tries to charge the
3790 * page, bail as early as possible. shmem_unuse() encounters
3791 * already charged pages, too. The USED bit is protected by
3792 * the page lock, which serializes swap cache removal, which
3793 * in turn serializes uncharging.
3794 */
3795 if (PageCgroupUsed(pc))
6d1fdc48
JW
3796 goto out;
3797 if (do_swap_account)
3798 memcg = try_get_mem_cgroup_from_page(page);
c0ff4b85 3799 if (!memcg)
6d1fdc48
JW
3800 memcg = get_mem_cgroup_from_mm(mm);
3801 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
c0ff4b85 3802 css_put(&memcg->css);
38c5d72f 3803 if (ret == -EINTR)
6d1fdc48
JW
3804 memcg = root_mem_cgroup;
3805 else if (ret)
3806 return ret;
3807out:
3808 *memcgp = memcg;
3809 return 0;
8c7c6e34
KH
3810}
3811
0435a2fd
JW
3812int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3813 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3814{
6d1fdc48
JW
3815 if (mem_cgroup_disabled()) {
3816 *memcgp = NULL;
0435a2fd 3817 return 0;
6d1fdc48 3818 }
bdf4f4d2
JW
3819 /*
3820 * A racing thread's fault, or swapoff, may have already
3821 * updated the pte, and even removed page from swap cache: in
3822 * those cases unuse_pte()'s pte_same() test will fail; but
3823 * there's also a KSM case which does need to charge the page.
3824 */
3825 if (!PageSwapCache(page)) {
6d1fdc48 3826 struct mem_cgroup *memcg;
bdf4f4d2 3827
6d1fdc48
JW
3828 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3829 if (!memcg)
3830 return -ENOMEM;
3831 *memcgp = memcg;
3832 return 0;
bdf4f4d2 3833 }
0435a2fd
JW
3834 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3835}
3836
827a03d2
JW
3837void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3838{
3839 if (mem_cgroup_disabled())
3840 return;
3841 if (!memcg)
3842 return;
3843 __mem_cgroup_cancel_charge(memcg, 1);
3844}
3845
83aae4c7 3846static void
72835c86 3847__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3848 enum charge_type ctype)
7a81b88c 3849{
f8d66542 3850 if (mem_cgroup_disabled())
7a81b88c 3851 return;
72835c86 3852 if (!memcg)
7a81b88c 3853 return;
5a6475a4 3854
ce587e65 3855 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3856 /*
3857 * Now swap is on-memory. This means this page may be
3858 * counted both as mem and swap....double count.
03f3c433
KH
3859 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3860 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3861 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3862 */
03f3c433 3863 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3864 swp_entry_t ent = {.val = page_private(page)};
86493009 3865 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3866 }
7a81b88c
KH
3867}
3868
72835c86
JW
3869void mem_cgroup_commit_charge_swapin(struct page *page,
3870 struct mem_cgroup *memcg)
83aae4c7 3871{
72835c86 3872 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3873 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3874}
3875
d715ae08 3876int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
827a03d2 3877 gfp_t gfp_mask)
7a81b88c 3878{
827a03d2 3879 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
6d1fdc48 3880 struct mem_cgroup *memcg;
827a03d2
JW
3881 int ret;
3882
f8d66542 3883 if (mem_cgroup_disabled())
827a03d2
JW
3884 return 0;
3885 if (PageCompound(page))
3886 return 0;
3887
6d1fdc48 3888 if (PageSwapCache(page)) { /* shmem */
0435a2fd
JW
3889 ret = __mem_cgroup_try_charge_swapin(mm, page,
3890 gfp_mask, &memcg);
6d1fdc48
JW
3891 if (ret)
3892 return ret;
3893 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3894 return 0;
827a03d2 3895 }
6d1fdc48 3896
6f6acb00
MH
3897 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3898 if (!memcg)
3899 return -ENOMEM;
6d1fdc48
JW
3900 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3901 return 0;
7a81b88c
KH
3902}
3903
c0ff4b85 3904static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3905 unsigned int nr_pages,
3906 const enum charge_type ctype)
569b846d
KH
3907{
3908 struct memcg_batch_info *batch = NULL;
3909 bool uncharge_memsw = true;
7ec99d62 3910
569b846d
KH
3911 /* If swapout, usage of swap doesn't decrease */
3912 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3913 uncharge_memsw = false;
569b846d
KH
3914
3915 batch = &current->memcg_batch;
3916 /*
3917 * In usual, we do css_get() when we remember memcg pointer.
3918 * But in this case, we keep res->usage until end of a series of
3919 * uncharges. Then, it's ok to ignore memcg's refcnt.
3920 */
3921 if (!batch->memcg)
c0ff4b85 3922 batch->memcg = memcg;
3c11ecf4
KH
3923 /*
3924 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3925 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3926 * the same cgroup and we have chance to coalesce uncharges.
3927 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3928 * because we want to do uncharge as soon as possible.
3929 */
3930
3931 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3932 goto direct_uncharge;
3933
7ec99d62 3934 if (nr_pages > 1)
ec168510
AA
3935 goto direct_uncharge;
3936
569b846d
KH
3937 /*
3938 * In typical case, batch->memcg == mem. This means we can
3939 * merge a series of uncharges to an uncharge of res_counter.
3940 * If not, we uncharge res_counter ony by one.
3941 */
c0ff4b85 3942 if (batch->memcg != memcg)
569b846d
KH
3943 goto direct_uncharge;
3944 /* remember freed charge and uncharge it later */
7ffd4ca7 3945 batch->nr_pages++;
569b846d 3946 if (uncharge_memsw)
7ffd4ca7 3947 batch->memsw_nr_pages++;
569b846d
KH
3948 return;
3949direct_uncharge:
c0ff4b85 3950 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3951 if (uncharge_memsw)
c0ff4b85
R
3952 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3953 if (unlikely(batch->memcg != memcg))
3954 memcg_oom_recover(memcg);
569b846d 3955}
7a81b88c 3956
8a9f3ccd 3957/*
69029cd5 3958 * uncharge if !page_mapped(page)
8a9f3ccd 3959 */
8c7c6e34 3960static struct mem_cgroup *
0030f535
JW
3961__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3962 bool end_migration)
8a9f3ccd 3963{
c0ff4b85 3964 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3965 unsigned int nr_pages = 1;
3966 struct page_cgroup *pc;
b2402857 3967 bool anon;
8a9f3ccd 3968
f8d66542 3969 if (mem_cgroup_disabled())
8c7c6e34 3970 return NULL;
4077960e 3971
37c2ac78 3972 if (PageTransHuge(page)) {
7ec99d62 3973 nr_pages <<= compound_order(page);
309381fe 3974 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 3975 }
8697d331 3976 /*
3c541e14 3977 * Check if our page_cgroup is valid
8697d331 3978 */
52d4b9ac 3979 pc = lookup_page_cgroup(page);
cfa44946 3980 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3981 return NULL;
b9c565d5 3982
52d4b9ac 3983 lock_page_cgroup(pc);
d13d1443 3984
c0ff4b85 3985 memcg = pc->mem_cgroup;
8c7c6e34 3986
d13d1443
KH
3987 if (!PageCgroupUsed(pc))
3988 goto unlock_out;
3989
b2402857
KH
3990 anon = PageAnon(page);
3991
d13d1443 3992 switch (ctype) {
41326c17 3993 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3994 /*
3995 * Generally PageAnon tells if it's the anon statistics to be
3996 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3997 * used before page reached the stage of being marked PageAnon.
3998 */
b2402857
KH
3999 anon = true;
4000 /* fallthrough */
8a9478ca 4001 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4002 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4003 if (page_mapped(page))
4004 goto unlock_out;
4005 /*
4006 * Pages under migration may not be uncharged. But
4007 * end_migration() /must/ be the one uncharging the
4008 * unused post-migration page and so it has to call
4009 * here with the migration bit still set. See the
4010 * res_counter handling below.
4011 */
4012 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4013 goto unlock_out;
4014 break;
4015 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4016 if (!PageAnon(page)) { /* Shared memory */
4017 if (page->mapping && !page_is_file_cache(page))
4018 goto unlock_out;
4019 } else if (page_mapped(page)) /* Anon */
4020 goto unlock_out;
4021 break;
4022 default:
4023 break;
52d4b9ac 4024 }
d13d1443 4025
b070e65c 4026 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4027
52d4b9ac 4028 ClearPageCgroupUsed(pc);
544122e5
KH
4029 /*
4030 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4031 * freed from LRU. This is safe because uncharged page is expected not
4032 * to be reused (freed soon). Exception is SwapCache, it's handled by
4033 * special functions.
4034 */
b9c565d5 4035
52d4b9ac 4036 unlock_page_cgroup(pc);
f75ca962 4037 /*
c0ff4b85 4038 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4039 * will never be freed, so it's safe to call css_get().
f75ca962 4040 */
c0ff4b85 4041 memcg_check_events(memcg, page);
f75ca962 4042 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4043 mem_cgroup_swap_statistics(memcg, true);
4050377b 4044 css_get(&memcg->css);
f75ca962 4045 }
0030f535
JW
4046 /*
4047 * Migration does not charge the res_counter for the
4048 * replacement page, so leave it alone when phasing out the
4049 * page that is unused after the migration.
4050 */
4051 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4052 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4053
c0ff4b85 4054 return memcg;
d13d1443
KH
4055
4056unlock_out:
4057 unlock_page_cgroup(pc);
8c7c6e34 4058 return NULL;
3c541e14
BS
4059}
4060
69029cd5
KH
4061void mem_cgroup_uncharge_page(struct page *page)
4062{
52d4b9ac
KH
4063 /* early check. */
4064 if (page_mapped(page))
4065 return;
309381fe 4066 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4067 /*
4068 * If the page is in swap cache, uncharge should be deferred
4069 * to the swap path, which also properly accounts swap usage
4070 * and handles memcg lifetime.
4071 *
4072 * Note that this check is not stable and reclaim may add the
4073 * page to swap cache at any time after this. However, if the
4074 * page is not in swap cache by the time page->mapcount hits
4075 * 0, there won't be any page table references to the swap
4076 * slot, and reclaim will free it and not actually write the
4077 * page to disk.
4078 */
0c59b89c
JW
4079 if (PageSwapCache(page))
4080 return;
0030f535 4081 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4082}
4083
4084void mem_cgroup_uncharge_cache_page(struct page *page)
4085{
309381fe
SL
4086 VM_BUG_ON_PAGE(page_mapped(page), page);
4087 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4088 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4089}
4090
569b846d
KH
4091/*
4092 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4093 * In that cases, pages are freed continuously and we can expect pages
4094 * are in the same memcg. All these calls itself limits the number of
4095 * pages freed at once, then uncharge_start/end() is called properly.
4096 * This may be called prural(2) times in a context,
4097 */
4098
4099void mem_cgroup_uncharge_start(void)
4100{
4101 current->memcg_batch.do_batch++;
4102 /* We can do nest. */
4103 if (current->memcg_batch.do_batch == 1) {
4104 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4105 current->memcg_batch.nr_pages = 0;
4106 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4107 }
4108}
4109
4110void mem_cgroup_uncharge_end(void)
4111{
4112 struct memcg_batch_info *batch = &current->memcg_batch;
4113
4114 if (!batch->do_batch)
4115 return;
4116
4117 batch->do_batch--;
4118 if (batch->do_batch) /* If stacked, do nothing. */
4119 return;
4120
4121 if (!batch->memcg)
4122 return;
4123 /*
4124 * This "batch->memcg" is valid without any css_get/put etc...
4125 * bacause we hide charges behind us.
4126 */
7ffd4ca7
JW
4127 if (batch->nr_pages)
4128 res_counter_uncharge(&batch->memcg->res,
4129 batch->nr_pages * PAGE_SIZE);
4130 if (batch->memsw_nr_pages)
4131 res_counter_uncharge(&batch->memcg->memsw,
4132 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4133 memcg_oom_recover(batch->memcg);
569b846d
KH
4134 /* forget this pointer (for sanity check) */
4135 batch->memcg = NULL;
4136}
4137
e767e056 4138#ifdef CONFIG_SWAP
8c7c6e34 4139/*
e767e056 4140 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4141 * memcg information is recorded to swap_cgroup of "ent"
4142 */
8a9478ca
KH
4143void
4144mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4145{
4146 struct mem_cgroup *memcg;
8a9478ca
KH
4147 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4148
4149 if (!swapout) /* this was a swap cache but the swap is unused ! */
4150 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4151
0030f535 4152 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4153
f75ca962
KH
4154 /*
4155 * record memcg information, if swapout && memcg != NULL,
4050377b 4156 * css_get() was called in uncharge().
f75ca962
KH
4157 */
4158 if (do_swap_account && swapout && memcg)
34c00c31 4159 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4160}
e767e056 4161#endif
8c7c6e34 4162
c255a458 4163#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4164/*
4165 * called from swap_entry_free(). remove record in swap_cgroup and
4166 * uncharge "memsw" account.
4167 */
4168void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4169{
8c7c6e34 4170 struct mem_cgroup *memcg;
a3b2d692 4171 unsigned short id;
8c7c6e34
KH
4172
4173 if (!do_swap_account)
4174 return;
4175
a3b2d692
KH
4176 id = swap_cgroup_record(ent, 0);
4177 rcu_read_lock();
4178 memcg = mem_cgroup_lookup(id);
8c7c6e34 4179 if (memcg) {
a3b2d692
KH
4180 /*
4181 * We uncharge this because swap is freed.
4182 * This memcg can be obsolete one. We avoid calling css_tryget
4183 */
0c3e73e8 4184 if (!mem_cgroup_is_root(memcg))
4e649152 4185 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4186 mem_cgroup_swap_statistics(memcg, false);
4050377b 4187 css_put(&memcg->css);
8c7c6e34 4188 }
a3b2d692 4189 rcu_read_unlock();
d13d1443 4190}
02491447
DN
4191
4192/**
4193 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4194 * @entry: swap entry to be moved
4195 * @from: mem_cgroup which the entry is moved from
4196 * @to: mem_cgroup which the entry is moved to
4197 *
4198 * It succeeds only when the swap_cgroup's record for this entry is the same
4199 * as the mem_cgroup's id of @from.
4200 *
4201 * Returns 0 on success, -EINVAL on failure.
4202 *
4203 * The caller must have charged to @to, IOW, called res_counter_charge() about
4204 * both res and memsw, and called css_get().
4205 */
4206static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4207 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4208{
4209 unsigned short old_id, new_id;
4210
34c00c31
LZ
4211 old_id = mem_cgroup_id(from);
4212 new_id = mem_cgroup_id(to);
02491447
DN
4213
4214 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4215 mem_cgroup_swap_statistics(from, false);
483c30b5 4216 mem_cgroup_swap_statistics(to, true);
02491447 4217 /*
483c30b5
DN
4218 * This function is only called from task migration context now.
4219 * It postpones res_counter and refcount handling till the end
4220 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4221 * improvement. But we cannot postpone css_get(to) because if
4222 * the process that has been moved to @to does swap-in, the
4223 * refcount of @to might be decreased to 0.
4224 *
4225 * We are in attach() phase, so the cgroup is guaranteed to be
4226 * alive, so we can just call css_get().
02491447 4227 */
4050377b 4228 css_get(&to->css);
02491447
DN
4229 return 0;
4230 }
4231 return -EINVAL;
4232}
4233#else
4234static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4235 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4236{
4237 return -EINVAL;
4238}
8c7c6e34 4239#endif
d13d1443 4240
ae41be37 4241/*
01b1ae63
KH
4242 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4243 * page belongs to.
ae41be37 4244 */
0030f535
JW
4245void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4246 struct mem_cgroup **memcgp)
ae41be37 4247{
c0ff4b85 4248 struct mem_cgroup *memcg = NULL;
b32967ff 4249 unsigned int nr_pages = 1;
7ec99d62 4250 struct page_cgroup *pc;
ac39cf8c 4251 enum charge_type ctype;
8869b8f6 4252
72835c86 4253 *memcgp = NULL;
56039efa 4254
f8d66542 4255 if (mem_cgroup_disabled())
0030f535 4256 return;
4077960e 4257
b32967ff
MG
4258 if (PageTransHuge(page))
4259 nr_pages <<= compound_order(page);
4260
52d4b9ac
KH
4261 pc = lookup_page_cgroup(page);
4262 lock_page_cgroup(pc);
4263 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4264 memcg = pc->mem_cgroup;
4265 css_get(&memcg->css);
ac39cf8c 4266 /*
4267 * At migrating an anonymous page, its mapcount goes down
4268 * to 0 and uncharge() will be called. But, even if it's fully
4269 * unmapped, migration may fail and this page has to be
4270 * charged again. We set MIGRATION flag here and delay uncharge
4271 * until end_migration() is called
4272 *
4273 * Corner Case Thinking
4274 * A)
4275 * When the old page was mapped as Anon and it's unmap-and-freed
4276 * while migration was ongoing.
4277 * If unmap finds the old page, uncharge() of it will be delayed
4278 * until end_migration(). If unmap finds a new page, it's
4279 * uncharged when it make mapcount to be 1->0. If unmap code
4280 * finds swap_migration_entry, the new page will not be mapped
4281 * and end_migration() will find it(mapcount==0).
4282 *
4283 * B)
4284 * When the old page was mapped but migraion fails, the kernel
4285 * remaps it. A charge for it is kept by MIGRATION flag even
4286 * if mapcount goes down to 0. We can do remap successfully
4287 * without charging it again.
4288 *
4289 * C)
4290 * The "old" page is under lock_page() until the end of
4291 * migration, so, the old page itself will not be swapped-out.
4292 * If the new page is swapped out before end_migraton, our
4293 * hook to usual swap-out path will catch the event.
4294 */
4295 if (PageAnon(page))
4296 SetPageCgroupMigration(pc);
e8589cc1 4297 }
52d4b9ac 4298 unlock_page_cgroup(pc);
ac39cf8c 4299 /*
4300 * If the page is not charged at this point,
4301 * we return here.
4302 */
c0ff4b85 4303 if (!memcg)
0030f535 4304 return;
01b1ae63 4305
72835c86 4306 *memcgp = memcg;
ac39cf8c 4307 /*
4308 * We charge new page before it's used/mapped. So, even if unlock_page()
4309 * is called before end_migration, we can catch all events on this new
4310 * page. In the case new page is migrated but not remapped, new page's
4311 * mapcount will be finally 0 and we call uncharge in end_migration().
4312 */
ac39cf8c 4313 if (PageAnon(page))
41326c17 4314 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4315 else
62ba7442 4316 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4317 /*
4318 * The page is committed to the memcg, but it's not actually
4319 * charged to the res_counter since we plan on replacing the
4320 * old one and only one page is going to be left afterwards.
4321 */
b32967ff 4322 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4323}
8869b8f6 4324
69029cd5 4325/* remove redundant charge if migration failed*/
c0ff4b85 4326void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4327 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4328{
ac39cf8c 4329 struct page *used, *unused;
01b1ae63 4330 struct page_cgroup *pc;
b2402857 4331 bool anon;
01b1ae63 4332
c0ff4b85 4333 if (!memcg)
01b1ae63 4334 return;
b25ed609 4335
50de1dd9 4336 if (!migration_ok) {
ac39cf8c 4337 used = oldpage;
4338 unused = newpage;
01b1ae63 4339 } else {
ac39cf8c 4340 used = newpage;
01b1ae63
KH
4341 unused = oldpage;
4342 }
0030f535 4343 anon = PageAnon(used);
7d188958
JW
4344 __mem_cgroup_uncharge_common(unused,
4345 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4346 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4347 true);
0030f535 4348 css_put(&memcg->css);
69029cd5 4349 /*
ac39cf8c 4350 * We disallowed uncharge of pages under migration because mapcount
4351 * of the page goes down to zero, temporarly.
4352 * Clear the flag and check the page should be charged.
01b1ae63 4353 */
ac39cf8c 4354 pc = lookup_page_cgroup(oldpage);
4355 lock_page_cgroup(pc);
4356 ClearPageCgroupMigration(pc);
4357 unlock_page_cgroup(pc);
ac39cf8c 4358
01b1ae63 4359 /*
ac39cf8c 4360 * If a page is a file cache, radix-tree replacement is very atomic
4361 * and we can skip this check. When it was an Anon page, its mapcount
4362 * goes down to 0. But because we added MIGRATION flage, it's not
4363 * uncharged yet. There are several case but page->mapcount check
4364 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4365 * check. (see prepare_charge() also)
69029cd5 4366 */
b2402857 4367 if (anon)
ac39cf8c 4368 mem_cgroup_uncharge_page(used);
ae41be37 4369}
78fb7466 4370
ab936cbc
KH
4371/*
4372 * At replace page cache, newpage is not under any memcg but it's on
4373 * LRU. So, this function doesn't touch res_counter but handles LRU
4374 * in correct way. Both pages are locked so we cannot race with uncharge.
4375 */
4376void mem_cgroup_replace_page_cache(struct page *oldpage,
4377 struct page *newpage)
4378{
bde05d1c 4379 struct mem_cgroup *memcg = NULL;
ab936cbc 4380 struct page_cgroup *pc;
ab936cbc 4381 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4382
4383 if (mem_cgroup_disabled())
4384 return;
4385
4386 pc = lookup_page_cgroup(oldpage);
4387 /* fix accounting on old pages */
4388 lock_page_cgroup(pc);
bde05d1c
HD
4389 if (PageCgroupUsed(pc)) {
4390 memcg = pc->mem_cgroup;
b070e65c 4391 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4392 ClearPageCgroupUsed(pc);
4393 }
ab936cbc
KH
4394 unlock_page_cgroup(pc);
4395
bde05d1c
HD
4396 /*
4397 * When called from shmem_replace_page(), in some cases the
4398 * oldpage has already been charged, and in some cases not.
4399 */
4400 if (!memcg)
4401 return;
ab936cbc
KH
4402 /*
4403 * Even if newpage->mapping was NULL before starting replacement,
4404 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4405 * LRU while we overwrite pc->mem_cgroup.
4406 */
ce587e65 4407 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4408}
4409
f212ad7c
DN
4410#ifdef CONFIG_DEBUG_VM
4411static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4412{
4413 struct page_cgroup *pc;
4414
4415 pc = lookup_page_cgroup(page);
cfa44946
JW
4416 /*
4417 * Can be NULL while feeding pages into the page allocator for
4418 * the first time, i.e. during boot or memory hotplug;
4419 * or when mem_cgroup_disabled().
4420 */
f212ad7c
DN
4421 if (likely(pc) && PageCgroupUsed(pc))
4422 return pc;
4423 return NULL;
4424}
4425
4426bool mem_cgroup_bad_page_check(struct page *page)
4427{
4428 if (mem_cgroup_disabled())
4429 return false;
4430
4431 return lookup_page_cgroup_used(page) != NULL;
4432}
4433
4434void mem_cgroup_print_bad_page(struct page *page)
4435{
4436 struct page_cgroup *pc;
4437
4438 pc = lookup_page_cgroup_used(page);
4439 if (pc) {
d045197f
AM
4440 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4441 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4442 }
4443}
4444#endif
4445
d38d2a75 4446static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4447 unsigned long long val)
628f4235 4448{
81d39c20 4449 int retry_count;
3c11ecf4 4450 u64 memswlimit, memlimit;
628f4235 4451 int ret = 0;
81d39c20
KH
4452 int children = mem_cgroup_count_children(memcg);
4453 u64 curusage, oldusage;
3c11ecf4 4454 int enlarge;
81d39c20
KH
4455
4456 /*
4457 * For keeping hierarchical_reclaim simple, how long we should retry
4458 * is depends on callers. We set our retry-count to be function
4459 * of # of children which we should visit in this loop.
4460 */
4461 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4462
4463 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4464
3c11ecf4 4465 enlarge = 0;
8c7c6e34 4466 while (retry_count) {
628f4235
KH
4467 if (signal_pending(current)) {
4468 ret = -EINTR;
4469 break;
4470 }
8c7c6e34
KH
4471 /*
4472 * Rather than hide all in some function, I do this in
4473 * open coded manner. You see what this really does.
aaad153e 4474 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4475 */
4476 mutex_lock(&set_limit_mutex);
4477 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4478 if (memswlimit < val) {
4479 ret = -EINVAL;
4480 mutex_unlock(&set_limit_mutex);
628f4235
KH
4481 break;
4482 }
3c11ecf4
KH
4483
4484 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4485 if (memlimit < val)
4486 enlarge = 1;
4487
8c7c6e34 4488 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4489 if (!ret) {
4490 if (memswlimit == val)
4491 memcg->memsw_is_minimum = true;
4492 else
4493 memcg->memsw_is_minimum = false;
4494 }
8c7c6e34
KH
4495 mutex_unlock(&set_limit_mutex);
4496
4497 if (!ret)
4498 break;
4499
5660048c
JW
4500 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4501 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4502 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4503 /* Usage is reduced ? */
f894ffa8 4504 if (curusage >= oldusage)
81d39c20
KH
4505 retry_count--;
4506 else
4507 oldusage = curusage;
8c7c6e34 4508 }
3c11ecf4
KH
4509 if (!ret && enlarge)
4510 memcg_oom_recover(memcg);
14797e23 4511
8c7c6e34
KH
4512 return ret;
4513}
4514
338c8431
LZ
4515static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4516 unsigned long long val)
8c7c6e34 4517{
81d39c20 4518 int retry_count;
3c11ecf4 4519 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4520 int children = mem_cgroup_count_children(memcg);
4521 int ret = -EBUSY;
3c11ecf4 4522 int enlarge = 0;
8c7c6e34 4523
81d39c20 4524 /* see mem_cgroup_resize_res_limit */
f894ffa8 4525 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4526 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4527 while (retry_count) {
4528 if (signal_pending(current)) {
4529 ret = -EINTR;
4530 break;
4531 }
4532 /*
4533 * Rather than hide all in some function, I do this in
4534 * open coded manner. You see what this really does.
aaad153e 4535 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4536 */
4537 mutex_lock(&set_limit_mutex);
4538 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4539 if (memlimit > val) {
4540 ret = -EINVAL;
4541 mutex_unlock(&set_limit_mutex);
4542 break;
4543 }
3c11ecf4
KH
4544 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4545 if (memswlimit < val)
4546 enlarge = 1;
8c7c6e34 4547 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4548 if (!ret) {
4549 if (memlimit == val)
4550 memcg->memsw_is_minimum = true;
4551 else
4552 memcg->memsw_is_minimum = false;
4553 }
8c7c6e34
KH
4554 mutex_unlock(&set_limit_mutex);
4555
4556 if (!ret)
4557 break;
4558
5660048c
JW
4559 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4560 MEM_CGROUP_RECLAIM_NOSWAP |
4561 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4562 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4563 /* Usage is reduced ? */
8c7c6e34 4564 if (curusage >= oldusage)
628f4235 4565 retry_count--;
81d39c20
KH
4566 else
4567 oldusage = curusage;
628f4235 4568 }
3c11ecf4
KH
4569 if (!ret && enlarge)
4570 memcg_oom_recover(memcg);
628f4235
KH
4571 return ret;
4572}
4573
0608f43d
AM
4574unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4575 gfp_t gfp_mask,
4576 unsigned long *total_scanned)
4577{
4578 unsigned long nr_reclaimed = 0;
4579 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4580 unsigned long reclaimed;
4581 int loop = 0;
4582 struct mem_cgroup_tree_per_zone *mctz;
4583 unsigned long long excess;
4584 unsigned long nr_scanned;
4585
4586 if (order > 0)
4587 return 0;
4588
4589 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4590 /*
4591 * This loop can run a while, specially if mem_cgroup's continuously
4592 * keep exceeding their soft limit and putting the system under
4593 * pressure
4594 */
4595 do {
4596 if (next_mz)
4597 mz = next_mz;
4598 else
4599 mz = mem_cgroup_largest_soft_limit_node(mctz);
4600 if (!mz)
4601 break;
4602
4603 nr_scanned = 0;
4604 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4605 gfp_mask, &nr_scanned);
4606 nr_reclaimed += reclaimed;
4607 *total_scanned += nr_scanned;
4608 spin_lock(&mctz->lock);
4609
4610 /*
4611 * If we failed to reclaim anything from this memory cgroup
4612 * it is time to move on to the next cgroup
4613 */
4614 next_mz = NULL;
4615 if (!reclaimed) {
4616 do {
4617 /*
4618 * Loop until we find yet another one.
4619 *
4620 * By the time we get the soft_limit lock
4621 * again, someone might have aded the
4622 * group back on the RB tree. Iterate to
4623 * make sure we get a different mem.
4624 * mem_cgroup_largest_soft_limit_node returns
4625 * NULL if no other cgroup is present on
4626 * the tree
4627 */
4628 next_mz =
4629 __mem_cgroup_largest_soft_limit_node(mctz);
4630 if (next_mz == mz)
4631 css_put(&next_mz->memcg->css);
4632 else /* next_mz == NULL or other memcg */
4633 break;
4634 } while (1);
4635 }
4636 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4637 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4638 /*
4639 * One school of thought says that we should not add
4640 * back the node to the tree if reclaim returns 0.
4641 * But our reclaim could return 0, simply because due
4642 * to priority we are exposing a smaller subset of
4643 * memory to reclaim from. Consider this as a longer
4644 * term TODO.
4645 */
4646 /* If excess == 0, no tree ops */
4647 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4648 spin_unlock(&mctz->lock);
4649 css_put(&mz->memcg->css);
4650 loop++;
4651 /*
4652 * Could not reclaim anything and there are no more
4653 * mem cgroups to try or we seem to be looping without
4654 * reclaiming anything.
4655 */
4656 if (!nr_reclaimed &&
4657 (next_mz == NULL ||
4658 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4659 break;
4660 } while (!nr_reclaimed);
4661 if (next_mz)
4662 css_put(&next_mz->memcg->css);
4663 return nr_reclaimed;
4664}
4665
2ef37d3f
MH
4666/**
4667 * mem_cgroup_force_empty_list - clears LRU of a group
4668 * @memcg: group to clear
4669 * @node: NUMA node
4670 * @zid: zone id
4671 * @lru: lru to to clear
4672 *
3c935d18 4673 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4674 * reclaim the pages page themselves - pages are moved to the parent (or root)
4675 * group.
cc847582 4676 */
2ef37d3f 4677static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4678 int node, int zid, enum lru_list lru)
cc847582 4679{
bea8c150 4680 struct lruvec *lruvec;
2ef37d3f 4681 unsigned long flags;
072c56c1 4682 struct list_head *list;
925b7673
JW
4683 struct page *busy;
4684 struct zone *zone;
072c56c1 4685
08e552c6 4686 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4687 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4688 list = &lruvec->lists[lru];
cc847582 4689
f817ed48 4690 busy = NULL;
2ef37d3f 4691 do {
925b7673 4692 struct page_cgroup *pc;
5564e88b
JW
4693 struct page *page;
4694
08e552c6 4695 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4696 if (list_empty(list)) {
08e552c6 4697 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4698 break;
f817ed48 4699 }
925b7673
JW
4700 page = list_entry(list->prev, struct page, lru);
4701 if (busy == page) {
4702 list_move(&page->lru, list);
648bcc77 4703 busy = NULL;
08e552c6 4704 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4705 continue;
4706 }
08e552c6 4707 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4708
925b7673 4709 pc = lookup_page_cgroup(page);
5564e88b 4710
3c935d18 4711 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4712 /* found lock contention or "pc" is obsolete. */
925b7673 4713 busy = page;
f817ed48
KH
4714 cond_resched();
4715 } else
4716 busy = NULL;
2ef37d3f 4717 } while (!list_empty(list));
cc847582
KH
4718}
4719
4720/*
c26251f9
MH
4721 * make mem_cgroup's charge to be 0 if there is no task by moving
4722 * all the charges and pages to the parent.
cc847582 4723 * This enables deleting this mem_cgroup.
c26251f9
MH
4724 *
4725 * Caller is responsible for holding css reference on the memcg.
cc847582 4726 */
ab5196c2 4727static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4728{
c26251f9 4729 int node, zid;
bea207c8 4730 u64 usage;
f817ed48 4731
fce66477 4732 do {
52d4b9ac
KH
4733 /* This is for making all *used* pages to be on LRU. */
4734 lru_add_drain_all();
c0ff4b85 4735 drain_all_stock_sync(memcg);
c0ff4b85 4736 mem_cgroup_start_move(memcg);
31aaea4a 4737 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4738 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4739 enum lru_list lru;
4740 for_each_lru(lru) {
2ef37d3f 4741 mem_cgroup_force_empty_list(memcg,
f156ab93 4742 node, zid, lru);
f817ed48 4743 }
1ecaab2b 4744 }
f817ed48 4745 }
c0ff4b85
R
4746 mem_cgroup_end_move(memcg);
4747 memcg_oom_recover(memcg);
52d4b9ac 4748 cond_resched();
f817ed48 4749
2ef37d3f 4750 /*
bea207c8
GC
4751 * Kernel memory may not necessarily be trackable to a specific
4752 * process. So they are not migrated, and therefore we can't
4753 * expect their value to drop to 0 here.
4754 * Having res filled up with kmem only is enough.
4755 *
2ef37d3f
MH
4756 * This is a safety check because mem_cgroup_force_empty_list
4757 * could have raced with mem_cgroup_replace_page_cache callers
4758 * so the lru seemed empty but the page could have been added
4759 * right after the check. RES_USAGE should be safe as we always
4760 * charge before adding to the LRU.
4761 */
bea207c8
GC
4762 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4763 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4764 } while (usage > 0);
c26251f9
MH
4765}
4766
b5f99b53
GC
4767static inline bool memcg_has_children(struct mem_cgroup *memcg)
4768{
696ac172
JW
4769 lockdep_assert_held(&memcg_create_mutex);
4770 /*
4771 * The lock does not prevent addition or deletion to the list
4772 * of children, but it prevents a new child from being
4773 * initialized based on this parent in css_online(), so it's
4774 * enough to decide whether hierarchically inherited
4775 * attributes can still be changed or not.
4776 */
4777 return memcg->use_hierarchy &&
4778 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4779}
4780
c26251f9
MH
4781/*
4782 * Reclaims as many pages from the given memcg as possible and moves
4783 * the rest to the parent.
4784 *
4785 * Caller is responsible for holding css reference for memcg.
4786 */
4787static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4788{
4789 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4790 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4791
c1e862c1 4792 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4793 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4794 return -EBUSY;
4795
c1e862c1
KH
4796 /* we call try-to-free pages for make this cgroup empty */
4797 lru_add_drain_all();
f817ed48 4798 /* try to free all pages in this cgroup */
569530fb 4799 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4800 int progress;
c1e862c1 4801
c26251f9
MH
4802 if (signal_pending(current))
4803 return -EINTR;
4804
c0ff4b85 4805 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4806 false);
c1e862c1 4807 if (!progress) {
f817ed48 4808 nr_retries--;
c1e862c1 4809 /* maybe some writeback is necessary */
8aa7e847 4810 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4811 }
f817ed48
KH
4812
4813 }
08e552c6 4814 lru_add_drain();
ab5196c2
MH
4815 mem_cgroup_reparent_charges(memcg);
4816
4817 return 0;
cc847582
KH
4818}
4819
182446d0
TH
4820static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4821 unsigned int event)
c1e862c1 4822{
182446d0 4823 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4824
d8423011
MH
4825 if (mem_cgroup_is_root(memcg))
4826 return -EINVAL;
c33bd835 4827 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4828}
4829
182446d0
TH
4830static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4831 struct cftype *cft)
18f59ea7 4832{
182446d0 4833 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4834}
4835
182446d0
TH
4836static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4837 struct cftype *cft, u64 val)
18f59ea7
BS
4838{
4839 int retval = 0;
182446d0 4840 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4841 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4842
0999821b 4843 mutex_lock(&memcg_create_mutex);
567fb435
GC
4844
4845 if (memcg->use_hierarchy == val)
4846 goto out;
4847
18f59ea7 4848 /*
af901ca1 4849 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4850 * in the child subtrees. If it is unset, then the change can
4851 * occur, provided the current cgroup has no children.
4852 *
4853 * For the root cgroup, parent_mem is NULL, we allow value to be
4854 * set if there are no children.
4855 */
c0ff4b85 4856 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4857 (val == 1 || val == 0)) {
696ac172 4858 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 4859 memcg->use_hierarchy = val;
18f59ea7
BS
4860 else
4861 retval = -EBUSY;
4862 } else
4863 retval = -EINVAL;
567fb435
GC
4864
4865out:
0999821b 4866 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4867
4868 return retval;
4869}
4870
0c3e73e8 4871
c0ff4b85 4872static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4873 enum mem_cgroup_stat_index idx)
0c3e73e8 4874{
7d74b06f 4875 struct mem_cgroup *iter;
7a159cc9 4876 long val = 0;
0c3e73e8 4877
7a159cc9 4878 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4879 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4880 val += mem_cgroup_read_stat(iter, idx);
4881
4882 if (val < 0) /* race ? */
4883 val = 0;
4884 return val;
0c3e73e8
BS
4885}
4886
c0ff4b85 4887static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4888{
7d74b06f 4889 u64 val;
104f3928 4890
c0ff4b85 4891 if (!mem_cgroup_is_root(memcg)) {
104f3928 4892 if (!swap)
65c64ce8 4893 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4894 else
65c64ce8 4895 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4896 }
4897
b070e65c
DR
4898 /*
4899 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4900 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4901 */
c0ff4b85
R
4902 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4903 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4904
7d74b06f 4905 if (swap)
bff6bb83 4906 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4907
4908 return val << PAGE_SHIFT;
4909}
4910
791badbd
TH
4911static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4912 struct cftype *cft)
8cdea7c0 4913{
182446d0 4914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 4915 u64 val;
791badbd 4916 int name;
86ae53e1 4917 enum res_type type;
8c7c6e34
KH
4918
4919 type = MEMFILE_TYPE(cft->private);
4920 name = MEMFILE_ATTR(cft->private);
af36f906 4921
8c7c6e34
KH
4922 switch (type) {
4923 case _MEM:
104f3928 4924 if (name == RES_USAGE)
c0ff4b85 4925 val = mem_cgroup_usage(memcg, false);
104f3928 4926 else
c0ff4b85 4927 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4928 break;
4929 case _MEMSWAP:
104f3928 4930 if (name == RES_USAGE)
c0ff4b85 4931 val = mem_cgroup_usage(memcg, true);
104f3928 4932 else
c0ff4b85 4933 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4934 break;
510fc4e1
GC
4935 case _KMEM:
4936 val = res_counter_read_u64(&memcg->kmem, name);
4937 break;
8c7c6e34
KH
4938 default:
4939 BUG();
8c7c6e34 4940 }
af36f906 4941
791badbd 4942 return val;
8cdea7c0 4943}
510fc4e1 4944
510fc4e1 4945#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4946/* should be called with activate_kmem_mutex held */
4947static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4948 unsigned long long limit)
4949{
4950 int err = 0;
4951 int memcg_id;
4952
4953 if (memcg_kmem_is_active(memcg))
4954 return 0;
4955
4956 /*
4957 * We are going to allocate memory for data shared by all memory
4958 * cgroups so let's stop accounting here.
4959 */
4960 memcg_stop_kmem_account();
4961
510fc4e1
GC
4962 /*
4963 * For simplicity, we won't allow this to be disabled. It also can't
4964 * be changed if the cgroup has children already, or if tasks had
4965 * already joined.
4966 *
4967 * If tasks join before we set the limit, a person looking at
4968 * kmem.usage_in_bytes will have no way to determine when it took
4969 * place, which makes the value quite meaningless.
4970 *
4971 * After it first became limited, changes in the value of the limit are
4972 * of course permitted.
510fc4e1 4973 */
0999821b 4974 mutex_lock(&memcg_create_mutex);
07bc356e 4975 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
4976 err = -EBUSY;
4977 mutex_unlock(&memcg_create_mutex);
4978 if (err)
4979 goto out;
510fc4e1 4980
d6441637
VD
4981 memcg_id = ida_simple_get(&kmem_limited_groups,
4982 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4983 if (memcg_id < 0) {
4984 err = memcg_id;
4985 goto out;
4986 }
4987
4988 /*
4989 * Make sure we have enough space for this cgroup in each root cache's
4990 * memcg_params.
4991 */
bd673145 4992 mutex_lock(&memcg_slab_mutex);
d6441637 4993 err = memcg_update_all_caches(memcg_id + 1);
bd673145 4994 mutex_unlock(&memcg_slab_mutex);
d6441637
VD
4995 if (err)
4996 goto out_rmid;
4997
4998 memcg->kmemcg_id = memcg_id;
4999 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
5000
5001 /*
5002 * We couldn't have accounted to this cgroup, because it hasn't got the
5003 * active bit set yet, so this should succeed.
5004 */
5005 err = res_counter_set_limit(&memcg->kmem, limit);
5006 VM_BUG_ON(err);
5007
5008 static_key_slow_inc(&memcg_kmem_enabled_key);
5009 /*
5010 * Setting the active bit after enabling static branching will
5011 * guarantee no one starts accounting before all call sites are
5012 * patched.
5013 */
5014 memcg_kmem_set_active(memcg);
510fc4e1 5015out:
d6441637
VD
5016 memcg_resume_kmem_account();
5017 return err;
5018
5019out_rmid:
5020 ida_simple_remove(&kmem_limited_groups, memcg_id);
5021 goto out;
5022}
5023
5024static int memcg_activate_kmem(struct mem_cgroup *memcg,
5025 unsigned long long limit)
5026{
5027 int ret;
5028
5029 mutex_lock(&activate_kmem_mutex);
5030 ret = __memcg_activate_kmem(memcg, limit);
5031 mutex_unlock(&activate_kmem_mutex);
5032 return ret;
5033}
5034
5035static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5036 unsigned long long val)
5037{
5038 int ret;
5039
5040 if (!memcg_kmem_is_active(memcg))
5041 ret = memcg_activate_kmem(memcg, val);
5042 else
5043 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5044 return ret;
5045}
5046
55007d84 5047static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5048{
55007d84 5049 int ret = 0;
510fc4e1 5050 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5051
d6441637
VD
5052 if (!parent)
5053 return 0;
55007d84 5054
d6441637 5055 mutex_lock(&activate_kmem_mutex);
55007d84 5056 /*
d6441637
VD
5057 * If the parent cgroup is not kmem-active now, it cannot be activated
5058 * after this point, because it has at least one child already.
55007d84 5059 */
d6441637
VD
5060 if (memcg_kmem_is_active(parent))
5061 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5062 mutex_unlock(&activate_kmem_mutex);
55007d84 5063 return ret;
510fc4e1 5064}
d6441637
VD
5065#else
5066static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5067 unsigned long long val)
5068{
5069 return -EINVAL;
5070}
6d043990 5071#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5072
628f4235
KH
5073/*
5074 * The user of this function is...
5075 * RES_LIMIT.
5076 */
182446d0 5077static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5078 char *buffer)
8cdea7c0 5079{
182446d0 5080 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5081 enum res_type type;
5082 int name;
628f4235
KH
5083 unsigned long long val;
5084 int ret;
5085
8c7c6e34
KH
5086 type = MEMFILE_TYPE(cft->private);
5087 name = MEMFILE_ATTR(cft->private);
af36f906 5088
8c7c6e34 5089 switch (name) {
628f4235 5090 case RES_LIMIT:
4b3bde4c
BS
5091 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5092 ret = -EINVAL;
5093 break;
5094 }
628f4235
KH
5095 /* This function does all necessary parse...reuse it */
5096 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5097 if (ret)
5098 break;
5099 if (type == _MEM)
628f4235 5100 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5101 else if (type == _MEMSWAP)
8c7c6e34 5102 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5103 else if (type == _KMEM)
d6441637 5104 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5105 else
5106 return -EINVAL;
628f4235 5107 break;
296c81d8
BS
5108 case RES_SOFT_LIMIT:
5109 ret = res_counter_memparse_write_strategy(buffer, &val);
5110 if (ret)
5111 break;
5112 /*
5113 * For memsw, soft limits are hard to implement in terms
5114 * of semantics, for now, we support soft limits for
5115 * control without swap
5116 */
5117 if (type == _MEM)
5118 ret = res_counter_set_soft_limit(&memcg->res, val);
5119 else
5120 ret = -EINVAL;
5121 break;
628f4235
KH
5122 default:
5123 ret = -EINVAL; /* should be BUG() ? */
5124 break;
5125 }
5126 return ret;
8cdea7c0
BS
5127}
5128
fee7b548
KH
5129static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5130 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5131{
fee7b548
KH
5132 unsigned long long min_limit, min_memsw_limit, tmp;
5133
5134 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5135 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5136 if (!memcg->use_hierarchy)
5137 goto out;
5138
63876986
TH
5139 while (css_parent(&memcg->css)) {
5140 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5141 if (!memcg->use_hierarchy)
5142 break;
5143 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5144 min_limit = min(min_limit, tmp);
5145 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5146 min_memsw_limit = min(min_memsw_limit, tmp);
5147 }
5148out:
5149 *mem_limit = min_limit;
5150 *memsw_limit = min_memsw_limit;
fee7b548
KH
5151}
5152
182446d0 5153static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5154{
182446d0 5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5156 int name;
5157 enum res_type type;
c84872e1 5158
8c7c6e34
KH
5159 type = MEMFILE_TYPE(event);
5160 name = MEMFILE_ATTR(event);
af36f906 5161
8c7c6e34 5162 switch (name) {
29f2a4da 5163 case RES_MAX_USAGE:
8c7c6e34 5164 if (type == _MEM)
c0ff4b85 5165 res_counter_reset_max(&memcg->res);
510fc4e1 5166 else if (type == _MEMSWAP)
c0ff4b85 5167 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5168 else if (type == _KMEM)
5169 res_counter_reset_max(&memcg->kmem);
5170 else
5171 return -EINVAL;
29f2a4da
PE
5172 break;
5173 case RES_FAILCNT:
8c7c6e34 5174 if (type == _MEM)
c0ff4b85 5175 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5176 else if (type == _MEMSWAP)
c0ff4b85 5177 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5178 else if (type == _KMEM)
5179 res_counter_reset_failcnt(&memcg->kmem);
5180 else
5181 return -EINVAL;
29f2a4da
PE
5182 break;
5183 }
f64c3f54 5184
85cc59db 5185 return 0;
c84872e1
PE
5186}
5187
182446d0 5188static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5189 struct cftype *cft)
5190{
182446d0 5191 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5192}
5193
02491447 5194#ifdef CONFIG_MMU
182446d0 5195static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5196 struct cftype *cft, u64 val)
5197{
182446d0 5198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5199
5200 if (val >= (1 << NR_MOVE_TYPE))
5201 return -EINVAL;
ee5e8472 5202
7dc74be0 5203 /*
ee5e8472
GC
5204 * No kind of locking is needed in here, because ->can_attach() will
5205 * check this value once in the beginning of the process, and then carry
5206 * on with stale data. This means that changes to this value will only
5207 * affect task migrations starting after the change.
7dc74be0 5208 */
c0ff4b85 5209 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5210 return 0;
5211}
02491447 5212#else
182446d0 5213static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5214 struct cftype *cft, u64 val)
5215{
5216 return -ENOSYS;
5217}
5218#endif
7dc74be0 5219
406eb0c9 5220#ifdef CONFIG_NUMA
2da8ca82 5221static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5222{
25485de6
GT
5223 struct numa_stat {
5224 const char *name;
5225 unsigned int lru_mask;
5226 };
5227
5228 static const struct numa_stat stats[] = {
5229 { "total", LRU_ALL },
5230 { "file", LRU_ALL_FILE },
5231 { "anon", LRU_ALL_ANON },
5232 { "unevictable", BIT(LRU_UNEVICTABLE) },
5233 };
5234 const struct numa_stat *stat;
406eb0c9 5235 int nid;
25485de6 5236 unsigned long nr;
2da8ca82 5237 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5238
25485de6
GT
5239 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5240 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5241 seq_printf(m, "%s=%lu", stat->name, nr);
5242 for_each_node_state(nid, N_MEMORY) {
5243 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5244 stat->lru_mask);
5245 seq_printf(m, " N%d=%lu", nid, nr);
5246 }
5247 seq_putc(m, '\n');
406eb0c9 5248 }
406eb0c9 5249
071aee13
YH
5250 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5251 struct mem_cgroup *iter;
5252
5253 nr = 0;
5254 for_each_mem_cgroup_tree(iter, memcg)
5255 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5256 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5257 for_each_node_state(nid, N_MEMORY) {
5258 nr = 0;
5259 for_each_mem_cgroup_tree(iter, memcg)
5260 nr += mem_cgroup_node_nr_lru_pages(
5261 iter, nid, stat->lru_mask);
5262 seq_printf(m, " N%d=%lu", nid, nr);
5263 }
5264 seq_putc(m, '\n');
406eb0c9 5265 }
406eb0c9 5266
406eb0c9
YH
5267 return 0;
5268}
5269#endif /* CONFIG_NUMA */
5270
af7c4b0e
JW
5271static inline void mem_cgroup_lru_names_not_uptodate(void)
5272{
5273 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5274}
5275
2da8ca82 5276static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5277{
2da8ca82 5278 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5279 struct mem_cgroup *mi;
5280 unsigned int i;
406eb0c9 5281
af7c4b0e 5282 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5283 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5284 continue;
af7c4b0e
JW
5285 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5286 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5287 }
7b854121 5288
af7c4b0e
JW
5289 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5290 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5291 mem_cgroup_read_events(memcg, i));
5292
5293 for (i = 0; i < NR_LRU_LISTS; i++)
5294 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5295 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5296
14067bb3 5297 /* Hierarchical information */
fee7b548
KH
5298 {
5299 unsigned long long limit, memsw_limit;
d79154bb 5300 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5301 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5302 if (do_swap_account)
78ccf5b5
JW
5303 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5304 memsw_limit);
fee7b548 5305 }
7f016ee8 5306
af7c4b0e
JW
5307 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5308 long long val = 0;
5309
bff6bb83 5310 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5311 continue;
af7c4b0e
JW
5312 for_each_mem_cgroup_tree(mi, memcg)
5313 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5314 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5315 }
5316
5317 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5318 unsigned long long val = 0;
5319
5320 for_each_mem_cgroup_tree(mi, memcg)
5321 val += mem_cgroup_read_events(mi, i);
5322 seq_printf(m, "total_%s %llu\n",
5323 mem_cgroup_events_names[i], val);
5324 }
5325
5326 for (i = 0; i < NR_LRU_LISTS; i++) {
5327 unsigned long long val = 0;
5328
5329 for_each_mem_cgroup_tree(mi, memcg)
5330 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5331 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5332 }
14067bb3 5333
7f016ee8 5334#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5335 {
5336 int nid, zid;
5337 struct mem_cgroup_per_zone *mz;
89abfab1 5338 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5339 unsigned long recent_rotated[2] = {0, 0};
5340 unsigned long recent_scanned[2] = {0, 0};
5341
5342 for_each_online_node(nid)
5343 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5344 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5345 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5346
89abfab1
HD
5347 recent_rotated[0] += rstat->recent_rotated[0];
5348 recent_rotated[1] += rstat->recent_rotated[1];
5349 recent_scanned[0] += rstat->recent_scanned[0];
5350 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5351 }
78ccf5b5
JW
5352 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5353 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5354 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5355 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5356 }
5357#endif
5358
d2ceb9b7
KH
5359 return 0;
5360}
5361
182446d0
TH
5362static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5363 struct cftype *cft)
a7885eb8 5364{
182446d0 5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5366
1f4c025b 5367 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5368}
5369
182446d0
TH
5370static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5371 struct cftype *cft, u64 val)
a7885eb8 5372{
182446d0 5373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5374
3dae7fec 5375 if (val > 100)
a7885eb8
KM
5376 return -EINVAL;
5377
3dae7fec
JW
5378 if (css_parent(css))
5379 memcg->swappiness = val;
5380 else
5381 vm_swappiness = val;
068b38c1 5382
a7885eb8
KM
5383 return 0;
5384}
5385
2e72b634
KS
5386static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5387{
5388 struct mem_cgroup_threshold_ary *t;
5389 u64 usage;
5390 int i;
5391
5392 rcu_read_lock();
5393 if (!swap)
2c488db2 5394 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5395 else
2c488db2 5396 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5397
5398 if (!t)
5399 goto unlock;
5400
5401 usage = mem_cgroup_usage(memcg, swap);
5402
5403 /*
748dad36 5404 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5405 * If it's not true, a threshold was crossed after last
5406 * call of __mem_cgroup_threshold().
5407 */
5407a562 5408 i = t->current_threshold;
2e72b634
KS
5409
5410 /*
5411 * Iterate backward over array of thresholds starting from
5412 * current_threshold and check if a threshold is crossed.
5413 * If none of thresholds below usage is crossed, we read
5414 * only one element of the array here.
5415 */
5416 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5417 eventfd_signal(t->entries[i].eventfd, 1);
5418
5419 /* i = current_threshold + 1 */
5420 i++;
5421
5422 /*
5423 * Iterate forward over array of thresholds starting from
5424 * current_threshold+1 and check if a threshold is crossed.
5425 * If none of thresholds above usage is crossed, we read
5426 * only one element of the array here.
5427 */
5428 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5429 eventfd_signal(t->entries[i].eventfd, 1);
5430
5431 /* Update current_threshold */
5407a562 5432 t->current_threshold = i - 1;
2e72b634
KS
5433unlock:
5434 rcu_read_unlock();
5435}
5436
5437static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5438{
ad4ca5f4
KS
5439 while (memcg) {
5440 __mem_cgroup_threshold(memcg, false);
5441 if (do_swap_account)
5442 __mem_cgroup_threshold(memcg, true);
5443
5444 memcg = parent_mem_cgroup(memcg);
5445 }
2e72b634
KS
5446}
5447
5448static int compare_thresholds(const void *a, const void *b)
5449{
5450 const struct mem_cgroup_threshold *_a = a;
5451 const struct mem_cgroup_threshold *_b = b;
5452
2bff24a3
GT
5453 if (_a->threshold > _b->threshold)
5454 return 1;
5455
5456 if (_a->threshold < _b->threshold)
5457 return -1;
5458
5459 return 0;
2e72b634
KS
5460}
5461
c0ff4b85 5462static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5463{
5464 struct mem_cgroup_eventfd_list *ev;
5465
c0ff4b85 5466 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5467 eventfd_signal(ev->eventfd, 1);
5468 return 0;
5469}
5470
c0ff4b85 5471static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5472{
7d74b06f
KH
5473 struct mem_cgroup *iter;
5474
c0ff4b85 5475 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5476 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5477}
5478
59b6f873 5479static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5480 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5481{
2c488db2
KS
5482 struct mem_cgroup_thresholds *thresholds;
5483 struct mem_cgroup_threshold_ary *new;
2e72b634 5484 u64 threshold, usage;
2c488db2 5485 int i, size, ret;
2e72b634
KS
5486
5487 ret = res_counter_memparse_write_strategy(args, &threshold);
5488 if (ret)
5489 return ret;
5490
5491 mutex_lock(&memcg->thresholds_lock);
2c488db2 5492
2e72b634 5493 if (type == _MEM)
2c488db2 5494 thresholds = &memcg->thresholds;
2e72b634 5495 else if (type == _MEMSWAP)
2c488db2 5496 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5497 else
5498 BUG();
5499
5500 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5501
5502 /* Check if a threshold crossed before adding a new one */
2c488db2 5503 if (thresholds->primary)
2e72b634
KS
5504 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5505
2c488db2 5506 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5507
5508 /* Allocate memory for new array of thresholds */
2c488db2 5509 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5510 GFP_KERNEL);
2c488db2 5511 if (!new) {
2e72b634
KS
5512 ret = -ENOMEM;
5513 goto unlock;
5514 }
2c488db2 5515 new->size = size;
2e72b634
KS
5516
5517 /* Copy thresholds (if any) to new array */
2c488db2
KS
5518 if (thresholds->primary) {
5519 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5520 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5521 }
5522
2e72b634 5523 /* Add new threshold */
2c488db2
KS
5524 new->entries[size - 1].eventfd = eventfd;
5525 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5526
5527 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5528 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5529 compare_thresholds, NULL);
5530
5531 /* Find current threshold */
2c488db2 5532 new->current_threshold = -1;
2e72b634 5533 for (i = 0; i < size; i++) {
748dad36 5534 if (new->entries[i].threshold <= usage) {
2e72b634 5535 /*
2c488db2
KS
5536 * new->current_threshold will not be used until
5537 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5538 * it here.
5539 */
2c488db2 5540 ++new->current_threshold;
748dad36
SZ
5541 } else
5542 break;
2e72b634
KS
5543 }
5544
2c488db2
KS
5545 /* Free old spare buffer and save old primary buffer as spare */
5546 kfree(thresholds->spare);
5547 thresholds->spare = thresholds->primary;
5548
5549 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5550
907860ed 5551 /* To be sure that nobody uses thresholds */
2e72b634
KS
5552 synchronize_rcu();
5553
2e72b634
KS
5554unlock:
5555 mutex_unlock(&memcg->thresholds_lock);
5556
5557 return ret;
5558}
5559
59b6f873 5560static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5561 struct eventfd_ctx *eventfd, const char *args)
5562{
59b6f873 5563 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5564}
5565
59b6f873 5566static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5567 struct eventfd_ctx *eventfd, const char *args)
5568{
59b6f873 5569 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5570}
5571
59b6f873 5572static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5573 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5574{
2c488db2
KS
5575 struct mem_cgroup_thresholds *thresholds;
5576 struct mem_cgroup_threshold_ary *new;
2e72b634 5577 u64 usage;
2c488db2 5578 int i, j, size;
2e72b634
KS
5579
5580 mutex_lock(&memcg->thresholds_lock);
5581 if (type == _MEM)
2c488db2 5582 thresholds = &memcg->thresholds;
2e72b634 5583 else if (type == _MEMSWAP)
2c488db2 5584 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5585 else
5586 BUG();
5587
371528ca
AV
5588 if (!thresholds->primary)
5589 goto unlock;
5590
2e72b634
KS
5591 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5592
5593 /* Check if a threshold crossed before removing */
5594 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5595
5596 /* Calculate new number of threshold */
2c488db2
KS
5597 size = 0;
5598 for (i = 0; i < thresholds->primary->size; i++) {
5599 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5600 size++;
5601 }
5602
2c488db2 5603 new = thresholds->spare;
907860ed 5604
2e72b634
KS
5605 /* Set thresholds array to NULL if we don't have thresholds */
5606 if (!size) {
2c488db2
KS
5607 kfree(new);
5608 new = NULL;
907860ed 5609 goto swap_buffers;
2e72b634
KS
5610 }
5611
2c488db2 5612 new->size = size;
2e72b634
KS
5613
5614 /* Copy thresholds and find current threshold */
2c488db2
KS
5615 new->current_threshold = -1;
5616 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5617 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5618 continue;
5619
2c488db2 5620 new->entries[j] = thresholds->primary->entries[i];
748dad36 5621 if (new->entries[j].threshold <= usage) {
2e72b634 5622 /*
2c488db2 5623 * new->current_threshold will not be used
2e72b634
KS
5624 * until rcu_assign_pointer(), so it's safe to increment
5625 * it here.
5626 */
2c488db2 5627 ++new->current_threshold;
2e72b634
KS
5628 }
5629 j++;
5630 }
5631
907860ed 5632swap_buffers:
2c488db2
KS
5633 /* Swap primary and spare array */
5634 thresholds->spare = thresholds->primary;
8c757763
SZ
5635 /* If all events are unregistered, free the spare array */
5636 if (!new) {
5637 kfree(thresholds->spare);
5638 thresholds->spare = NULL;
5639 }
5640
2c488db2 5641 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5642
907860ed 5643 /* To be sure that nobody uses thresholds */
2e72b634 5644 synchronize_rcu();
371528ca 5645unlock:
2e72b634 5646 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5647}
c1e862c1 5648
59b6f873 5649static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5650 struct eventfd_ctx *eventfd)
5651{
59b6f873 5652 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5653}
5654
59b6f873 5655static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5656 struct eventfd_ctx *eventfd)
5657{
59b6f873 5658 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5659}
5660
59b6f873 5661static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5662 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5663{
9490ff27 5664 struct mem_cgroup_eventfd_list *event;
9490ff27 5665
9490ff27
KH
5666 event = kmalloc(sizeof(*event), GFP_KERNEL);
5667 if (!event)
5668 return -ENOMEM;
5669
1af8efe9 5670 spin_lock(&memcg_oom_lock);
9490ff27
KH
5671
5672 event->eventfd = eventfd;
5673 list_add(&event->list, &memcg->oom_notify);
5674
5675 /* already in OOM ? */
79dfdacc 5676 if (atomic_read(&memcg->under_oom))
9490ff27 5677 eventfd_signal(eventfd, 1);
1af8efe9 5678 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5679
5680 return 0;
5681}
5682
59b6f873 5683static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5684 struct eventfd_ctx *eventfd)
9490ff27 5685{
9490ff27 5686 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5687
1af8efe9 5688 spin_lock(&memcg_oom_lock);
9490ff27 5689
c0ff4b85 5690 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5691 if (ev->eventfd == eventfd) {
5692 list_del(&ev->list);
5693 kfree(ev);
5694 }
5695 }
5696
1af8efe9 5697 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5698}
5699
2da8ca82 5700static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5701{
2da8ca82 5702 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5703
791badbd
TH
5704 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5705 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5706 return 0;
5707}
5708
182446d0 5709static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5710 struct cftype *cft, u64 val)
5711{
182446d0 5712 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
5713
5714 /* cannot set to root cgroup and only 0 and 1 are allowed */
3dae7fec 5715 if (!css_parent(css) || !((val == 0) || (val == 1)))
3c11ecf4
KH
5716 return -EINVAL;
5717
c0ff4b85 5718 memcg->oom_kill_disable = val;
4d845ebf 5719 if (!val)
c0ff4b85 5720 memcg_oom_recover(memcg);
3dae7fec 5721
3c11ecf4
KH
5722 return 0;
5723}
5724
c255a458 5725#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5726static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5727{
55007d84
GC
5728 int ret;
5729
2633d7a0 5730 memcg->kmemcg_id = -1;
55007d84
GC
5731 ret = memcg_propagate_kmem(memcg);
5732 if (ret)
5733 return ret;
2633d7a0 5734
1d62e436 5735 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5736}
e5671dfa 5737
10d5ebf4 5738static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5739{
1d62e436 5740 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5741}
5742
5743static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5744{
5745 if (!memcg_kmem_is_active(memcg))
5746 return;
5747
5748 /*
5749 * kmem charges can outlive the cgroup. In the case of slab
5750 * pages, for instance, a page contain objects from various
5751 * processes. As we prevent from taking a reference for every
5752 * such allocation we have to be careful when doing uncharge
5753 * (see memcg_uncharge_kmem) and here during offlining.
5754 *
5755 * The idea is that that only the _last_ uncharge which sees
5756 * the dead memcg will drop the last reference. An additional
5757 * reference is taken here before the group is marked dead
5758 * which is then paired with css_put during uncharge resp. here.
5759 *
5760 * Although this might sound strange as this path is called from
5761 * css_offline() when the referencemight have dropped down to 0
5762 * and shouldn't be incremented anymore (css_tryget would fail)
5763 * we do not have other options because of the kmem allocations
5764 * lifetime.
5765 */
5766 css_get(&memcg->css);
7de37682
GC
5767
5768 memcg_kmem_mark_dead(memcg);
5769
5770 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5771 return;
5772
7de37682 5773 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5774 css_put(&memcg->css);
d1a4c0b3 5775}
e5671dfa 5776#else
cbe128e3 5777static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5778{
5779 return 0;
5780}
d1a4c0b3 5781
10d5ebf4
LZ
5782static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5783{
5784}
5785
5786static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5787{
5788}
e5671dfa
GC
5789#endif
5790
3bc942f3
TH
5791/*
5792 * DO NOT USE IN NEW FILES.
5793 *
5794 * "cgroup.event_control" implementation.
5795 *
5796 * This is way over-engineered. It tries to support fully configurable
5797 * events for each user. Such level of flexibility is completely
5798 * unnecessary especially in the light of the planned unified hierarchy.
5799 *
5800 * Please deprecate this and replace with something simpler if at all
5801 * possible.
5802 */
5803
79bd9814
TH
5804/*
5805 * Unregister event and free resources.
5806 *
5807 * Gets called from workqueue.
5808 */
3bc942f3 5809static void memcg_event_remove(struct work_struct *work)
79bd9814 5810{
3bc942f3
TH
5811 struct mem_cgroup_event *event =
5812 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5813 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5814
5815 remove_wait_queue(event->wqh, &event->wait);
5816
59b6f873 5817 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5818
5819 /* Notify userspace the event is going away. */
5820 eventfd_signal(event->eventfd, 1);
5821
5822 eventfd_ctx_put(event->eventfd);
5823 kfree(event);
59b6f873 5824 css_put(&memcg->css);
79bd9814
TH
5825}
5826
5827/*
5828 * Gets called on POLLHUP on eventfd when user closes it.
5829 *
5830 * Called with wqh->lock held and interrupts disabled.
5831 */
3bc942f3
TH
5832static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5833 int sync, void *key)
79bd9814 5834{
3bc942f3
TH
5835 struct mem_cgroup_event *event =
5836 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5837 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5838 unsigned long flags = (unsigned long)key;
5839
5840 if (flags & POLLHUP) {
5841 /*
5842 * If the event has been detached at cgroup removal, we
5843 * can simply return knowing the other side will cleanup
5844 * for us.
5845 *
5846 * We can't race against event freeing since the other
5847 * side will require wqh->lock via remove_wait_queue(),
5848 * which we hold.
5849 */
fba94807 5850 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5851 if (!list_empty(&event->list)) {
5852 list_del_init(&event->list);
5853 /*
5854 * We are in atomic context, but cgroup_event_remove()
5855 * may sleep, so we have to call it in workqueue.
5856 */
5857 schedule_work(&event->remove);
5858 }
fba94807 5859 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5860 }
5861
5862 return 0;
5863}
5864
3bc942f3 5865static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5866 wait_queue_head_t *wqh, poll_table *pt)
5867{
3bc942f3
TH
5868 struct mem_cgroup_event *event =
5869 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5870
5871 event->wqh = wqh;
5872 add_wait_queue(wqh, &event->wait);
5873}
5874
5875/*
3bc942f3
TH
5876 * DO NOT USE IN NEW FILES.
5877 *
79bd9814
TH
5878 * Parse input and register new cgroup event handler.
5879 *
5880 * Input must be in format '<event_fd> <control_fd> <args>'.
5881 * Interpretation of args is defined by control file implementation.
5882 */
3bc942f3 5883static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 5884 struct cftype *cft, char *buffer)
79bd9814 5885{
fba94807 5886 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5887 struct mem_cgroup_event *event;
79bd9814
TH
5888 struct cgroup_subsys_state *cfile_css;
5889 unsigned int efd, cfd;
5890 struct fd efile;
5891 struct fd cfile;
fba94807 5892 const char *name;
79bd9814
TH
5893 char *endp;
5894 int ret;
5895
5896 efd = simple_strtoul(buffer, &endp, 10);
5897 if (*endp != ' ')
5898 return -EINVAL;
5899 buffer = endp + 1;
5900
5901 cfd = simple_strtoul(buffer, &endp, 10);
5902 if ((*endp != ' ') && (*endp != '\0'))
5903 return -EINVAL;
5904 buffer = endp + 1;
5905
5906 event = kzalloc(sizeof(*event), GFP_KERNEL);
5907 if (!event)
5908 return -ENOMEM;
5909
59b6f873 5910 event->memcg = memcg;
79bd9814 5911 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5912 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5913 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5914 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5915
5916 efile = fdget(efd);
5917 if (!efile.file) {
5918 ret = -EBADF;
5919 goto out_kfree;
5920 }
5921
5922 event->eventfd = eventfd_ctx_fileget(efile.file);
5923 if (IS_ERR(event->eventfd)) {
5924 ret = PTR_ERR(event->eventfd);
5925 goto out_put_efile;
5926 }
5927
5928 cfile = fdget(cfd);
5929 if (!cfile.file) {
5930 ret = -EBADF;
5931 goto out_put_eventfd;
5932 }
5933
5934 /* the process need read permission on control file */
5935 /* AV: shouldn't we check that it's been opened for read instead? */
5936 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5937 if (ret < 0)
5938 goto out_put_cfile;
5939
fba94807
TH
5940 /*
5941 * Determine the event callbacks and set them in @event. This used
5942 * to be done via struct cftype but cgroup core no longer knows
5943 * about these events. The following is crude but the whole thing
5944 * is for compatibility anyway.
3bc942f3
TH
5945 *
5946 * DO NOT ADD NEW FILES.
fba94807
TH
5947 */
5948 name = cfile.file->f_dentry->d_name.name;
5949
5950 if (!strcmp(name, "memory.usage_in_bytes")) {
5951 event->register_event = mem_cgroup_usage_register_event;
5952 event->unregister_event = mem_cgroup_usage_unregister_event;
5953 } else if (!strcmp(name, "memory.oom_control")) {
5954 event->register_event = mem_cgroup_oom_register_event;
5955 event->unregister_event = mem_cgroup_oom_unregister_event;
5956 } else if (!strcmp(name, "memory.pressure_level")) {
5957 event->register_event = vmpressure_register_event;
5958 event->unregister_event = vmpressure_unregister_event;
5959 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5960 event->register_event = memsw_cgroup_usage_register_event;
5961 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5962 } else {
5963 ret = -EINVAL;
5964 goto out_put_cfile;
5965 }
5966
79bd9814 5967 /*
b5557c4c
TH
5968 * Verify @cfile should belong to @css. Also, remaining events are
5969 * automatically removed on cgroup destruction but the removal is
5970 * asynchronous, so take an extra ref on @css.
79bd9814 5971 */
5a17f543
TH
5972 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
5973 &memory_cgrp_subsys);
79bd9814 5974 ret = -EINVAL;
5a17f543 5975 if (IS_ERR(cfile_css))
79bd9814 5976 goto out_put_cfile;
5a17f543
TH
5977 if (cfile_css != css) {
5978 css_put(cfile_css);
79bd9814 5979 goto out_put_cfile;
5a17f543 5980 }
79bd9814 5981
59b6f873 5982 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
5983 if (ret)
5984 goto out_put_css;
5985
5986 efile.file->f_op->poll(efile.file, &event->pt);
5987
fba94807
TH
5988 spin_lock(&memcg->event_list_lock);
5989 list_add(&event->list, &memcg->event_list);
5990 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5991
5992 fdput(cfile);
5993 fdput(efile);
5994
5995 return 0;
5996
5997out_put_css:
b5557c4c 5998 css_put(css);
79bd9814
TH
5999out_put_cfile:
6000 fdput(cfile);
6001out_put_eventfd:
6002 eventfd_ctx_put(event->eventfd);
6003out_put_efile:
6004 fdput(efile);
6005out_kfree:
6006 kfree(event);
6007
6008 return ret;
6009}
6010
8cdea7c0
BS
6011static struct cftype mem_cgroup_files[] = {
6012 {
0eea1030 6013 .name = "usage_in_bytes",
8c7c6e34 6014 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6015 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6016 },
c84872e1
PE
6017 {
6018 .name = "max_usage_in_bytes",
8c7c6e34 6019 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6020 .trigger = mem_cgroup_reset,
791badbd 6021 .read_u64 = mem_cgroup_read_u64,
c84872e1 6022 },
8cdea7c0 6023 {
0eea1030 6024 .name = "limit_in_bytes",
8c7c6e34 6025 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6026 .write_string = mem_cgroup_write,
791badbd 6027 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6028 },
296c81d8
BS
6029 {
6030 .name = "soft_limit_in_bytes",
6031 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6032 .write_string = mem_cgroup_write,
791badbd 6033 .read_u64 = mem_cgroup_read_u64,
296c81d8 6034 },
8cdea7c0
BS
6035 {
6036 .name = "failcnt",
8c7c6e34 6037 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6038 .trigger = mem_cgroup_reset,
791badbd 6039 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6040 },
d2ceb9b7
KH
6041 {
6042 .name = "stat",
2da8ca82 6043 .seq_show = memcg_stat_show,
d2ceb9b7 6044 },
c1e862c1
KH
6045 {
6046 .name = "force_empty",
6047 .trigger = mem_cgroup_force_empty_write,
6048 },
18f59ea7
BS
6049 {
6050 .name = "use_hierarchy",
f00baae7 6051 .flags = CFTYPE_INSANE,
18f59ea7
BS
6052 .write_u64 = mem_cgroup_hierarchy_write,
6053 .read_u64 = mem_cgroup_hierarchy_read,
6054 },
79bd9814 6055 {
3bc942f3
TH
6056 .name = "cgroup.event_control", /* XXX: for compat */
6057 .write_string = memcg_write_event_control,
79bd9814
TH
6058 .flags = CFTYPE_NO_PREFIX,
6059 .mode = S_IWUGO,
6060 },
a7885eb8
KM
6061 {
6062 .name = "swappiness",
6063 .read_u64 = mem_cgroup_swappiness_read,
6064 .write_u64 = mem_cgroup_swappiness_write,
6065 },
7dc74be0
DN
6066 {
6067 .name = "move_charge_at_immigrate",
6068 .read_u64 = mem_cgroup_move_charge_read,
6069 .write_u64 = mem_cgroup_move_charge_write,
6070 },
9490ff27
KH
6071 {
6072 .name = "oom_control",
2da8ca82 6073 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6074 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6075 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6076 },
70ddf637
AV
6077 {
6078 .name = "pressure_level",
70ddf637 6079 },
406eb0c9
YH
6080#ifdef CONFIG_NUMA
6081 {
6082 .name = "numa_stat",
2da8ca82 6083 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6084 },
6085#endif
510fc4e1
GC
6086#ifdef CONFIG_MEMCG_KMEM
6087 {
6088 .name = "kmem.limit_in_bytes",
6089 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6090 .write_string = mem_cgroup_write,
791badbd 6091 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6092 },
6093 {
6094 .name = "kmem.usage_in_bytes",
6095 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6096 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6097 },
6098 {
6099 .name = "kmem.failcnt",
6100 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6101 .trigger = mem_cgroup_reset,
791badbd 6102 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6103 },
6104 {
6105 .name = "kmem.max_usage_in_bytes",
6106 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6107 .trigger = mem_cgroup_reset,
791badbd 6108 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6109 },
749c5415
GC
6110#ifdef CONFIG_SLABINFO
6111 {
6112 .name = "kmem.slabinfo",
2da8ca82 6113 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6114 },
6115#endif
8c7c6e34 6116#endif
6bc10349 6117 { }, /* terminate */
af36f906 6118};
8c7c6e34 6119
2d11085e
MH
6120#ifdef CONFIG_MEMCG_SWAP
6121static struct cftype memsw_cgroup_files[] = {
6122 {
6123 .name = "memsw.usage_in_bytes",
6124 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6125 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6126 },
6127 {
6128 .name = "memsw.max_usage_in_bytes",
6129 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6130 .trigger = mem_cgroup_reset,
791badbd 6131 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6132 },
6133 {
6134 .name = "memsw.limit_in_bytes",
6135 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6136 .write_string = mem_cgroup_write,
791badbd 6137 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6138 },
6139 {
6140 .name = "memsw.failcnt",
6141 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6142 .trigger = mem_cgroup_reset,
791badbd 6143 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6144 },
6145 { }, /* terminate */
6146};
6147#endif
c0ff4b85 6148static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6149{
6150 struct mem_cgroup_per_node *pn;
1ecaab2b 6151 struct mem_cgroup_per_zone *mz;
41e3355d 6152 int zone, tmp = node;
1ecaab2b
KH
6153 /*
6154 * This routine is called against possible nodes.
6155 * But it's BUG to call kmalloc() against offline node.
6156 *
6157 * TODO: this routine can waste much memory for nodes which will
6158 * never be onlined. It's better to use memory hotplug callback
6159 * function.
6160 */
41e3355d
KH
6161 if (!node_state(node, N_NORMAL_MEMORY))
6162 tmp = -1;
17295c88 6163 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6164 if (!pn)
6165 return 1;
1ecaab2b 6166
1ecaab2b
KH
6167 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6168 mz = &pn->zoneinfo[zone];
bea8c150 6169 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6170 mz->usage_in_excess = 0;
6171 mz->on_tree = false;
d79154bb 6172 mz->memcg = memcg;
1ecaab2b 6173 }
54f72fe0 6174 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6175 return 0;
6176}
6177
c0ff4b85 6178static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6179{
54f72fe0 6180 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6181}
6182
33327948
KH
6183static struct mem_cgroup *mem_cgroup_alloc(void)
6184{
d79154bb 6185 struct mem_cgroup *memcg;
8ff69e2c 6186 size_t size;
33327948 6187
8ff69e2c
VD
6188 size = sizeof(struct mem_cgroup);
6189 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6190
8ff69e2c 6191 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6192 if (!memcg)
e7bbcdf3
DC
6193 return NULL;
6194
d79154bb
HD
6195 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6196 if (!memcg->stat)
d2e61b8d 6197 goto out_free;
d79154bb
HD
6198 spin_lock_init(&memcg->pcp_counter_lock);
6199 return memcg;
d2e61b8d
DC
6200
6201out_free:
8ff69e2c 6202 kfree(memcg);
d2e61b8d 6203 return NULL;
33327948
KH
6204}
6205
59927fb9 6206/*
c8b2a36f
GC
6207 * At destroying mem_cgroup, references from swap_cgroup can remain.
6208 * (scanning all at force_empty is too costly...)
6209 *
6210 * Instead of clearing all references at force_empty, we remember
6211 * the number of reference from swap_cgroup and free mem_cgroup when
6212 * it goes down to 0.
6213 *
6214 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6215 */
c8b2a36f
GC
6216
6217static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6218{
c8b2a36f 6219 int node;
59927fb9 6220
bb4cc1a8 6221 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6222
6223 for_each_node(node)
6224 free_mem_cgroup_per_zone_info(memcg, node);
6225
6226 free_percpu(memcg->stat);
6227
3f134619
GC
6228 /*
6229 * We need to make sure that (at least for now), the jump label
6230 * destruction code runs outside of the cgroup lock. This is because
6231 * get_online_cpus(), which is called from the static_branch update,
6232 * can't be called inside the cgroup_lock. cpusets are the ones
6233 * enforcing this dependency, so if they ever change, we might as well.
6234 *
6235 * schedule_work() will guarantee this happens. Be careful if you need
6236 * to move this code around, and make sure it is outside
6237 * the cgroup_lock.
6238 */
a8964b9b 6239 disarm_static_keys(memcg);
8ff69e2c 6240 kfree(memcg);
59927fb9 6241}
3afe36b1 6242
7bcc1bb1
DN
6243/*
6244 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6245 */
e1aab161 6246struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6247{
c0ff4b85 6248 if (!memcg->res.parent)
7bcc1bb1 6249 return NULL;
c0ff4b85 6250 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6251}
e1aab161 6252EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6253
bb4cc1a8
AM
6254static void __init mem_cgroup_soft_limit_tree_init(void)
6255{
6256 struct mem_cgroup_tree_per_node *rtpn;
6257 struct mem_cgroup_tree_per_zone *rtpz;
6258 int tmp, node, zone;
6259
6260 for_each_node(node) {
6261 tmp = node;
6262 if (!node_state(node, N_NORMAL_MEMORY))
6263 tmp = -1;
6264 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6265 BUG_ON(!rtpn);
6266
6267 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6268
6269 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6270 rtpz = &rtpn->rb_tree_per_zone[zone];
6271 rtpz->rb_root = RB_ROOT;
6272 spin_lock_init(&rtpz->lock);
6273 }
6274 }
6275}
6276
0eb253e2 6277static struct cgroup_subsys_state * __ref
eb95419b 6278mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6279{
d142e3e6 6280 struct mem_cgroup *memcg;
04046e1a 6281 long error = -ENOMEM;
6d12e2d8 6282 int node;
8cdea7c0 6283
c0ff4b85
R
6284 memcg = mem_cgroup_alloc();
6285 if (!memcg)
04046e1a 6286 return ERR_PTR(error);
78fb7466 6287
3ed28fa1 6288 for_each_node(node)
c0ff4b85 6289 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6290 goto free_out;
f64c3f54 6291
c077719b 6292 /* root ? */
eb95419b 6293 if (parent_css == NULL) {
a41c58a6 6294 root_mem_cgroup = memcg;
d142e3e6
GC
6295 res_counter_init(&memcg->res, NULL);
6296 res_counter_init(&memcg->memsw, NULL);
6297 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6298 }
28dbc4b6 6299
d142e3e6
GC
6300 memcg->last_scanned_node = MAX_NUMNODES;
6301 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6302 memcg->move_charge_at_immigrate = 0;
6303 mutex_init(&memcg->thresholds_lock);
6304 spin_lock_init(&memcg->move_lock);
70ddf637 6305 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6306 INIT_LIST_HEAD(&memcg->event_list);
6307 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6308
6309 return &memcg->css;
6310
6311free_out:
6312 __mem_cgroup_free(memcg);
6313 return ERR_PTR(error);
6314}
6315
6316static int
eb95419b 6317mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6318{
eb95419b
TH
6319 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6320 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6321
4219b2da
LZ
6322 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6323 return -ENOSPC;
6324
63876986 6325 if (!parent)
d142e3e6
GC
6326 return 0;
6327
0999821b 6328 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6329
6330 memcg->use_hierarchy = parent->use_hierarchy;
6331 memcg->oom_kill_disable = parent->oom_kill_disable;
6332 memcg->swappiness = mem_cgroup_swappiness(parent);
6333
6334 if (parent->use_hierarchy) {
c0ff4b85
R
6335 res_counter_init(&memcg->res, &parent->res);
6336 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6337 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6338
7bcc1bb1 6339 /*
8d76a979
LZ
6340 * No need to take a reference to the parent because cgroup
6341 * core guarantees its existence.
7bcc1bb1 6342 */
18f59ea7 6343 } else {
c0ff4b85
R
6344 res_counter_init(&memcg->res, NULL);
6345 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6346 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6347 /*
6348 * Deeper hierachy with use_hierarchy == false doesn't make
6349 * much sense so let cgroup subsystem know about this
6350 * unfortunate state in our controller.
6351 */
d142e3e6 6352 if (parent != root_mem_cgroup)
073219e9 6353 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6354 }
0999821b 6355 mutex_unlock(&memcg_create_mutex);
d6441637 6356
073219e9 6357 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6358}
6359
5f578161
MH
6360/*
6361 * Announce all parents that a group from their hierarchy is gone.
6362 */
6363static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6364{
6365 struct mem_cgroup *parent = memcg;
6366
6367 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6368 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6369
6370 /*
6371 * if the root memcg is not hierarchical we have to check it
6372 * explicitely.
6373 */
6374 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6375 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6376}
6377
eb95419b 6378static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6379{
eb95419b 6380 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6381 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6382 struct cgroup_subsys_state *iter;
79bd9814
TH
6383
6384 /*
6385 * Unregister events and notify userspace.
6386 * Notify userspace about cgroup removing only after rmdir of cgroup
6387 * directory to avoid race between userspace and kernelspace.
6388 */
fba94807
TH
6389 spin_lock(&memcg->event_list_lock);
6390 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6391 list_del_init(&event->list);
6392 schedule_work(&event->remove);
6393 }
fba94807 6394 spin_unlock(&memcg->event_list_lock);
ec64f515 6395
10d5ebf4
LZ
6396 kmem_cgroup_css_offline(memcg);
6397
5f578161 6398 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6399
6400 /*
6401 * This requires that offlining is serialized. Right now that is
6402 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6403 */
6404 css_for_each_descendant_post(iter, css)
6405 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6406
1f458cbf 6407 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6408 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6409}
6410
eb95419b 6411static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6412{
eb95419b 6413 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6414 /*
6415 * XXX: css_offline() would be where we should reparent all
6416 * memory to prepare the cgroup for destruction. However,
6417 * memcg does not do css_tryget() and res_counter charging
6418 * under the same RCU lock region, which means that charging
6419 * could race with offlining. Offlining only happens to
6420 * cgroups with no tasks in them but charges can show up
6421 * without any tasks from the swapin path when the target
6422 * memcg is looked up from the swapout record and not from the
6423 * current task as it usually is. A race like this can leak
6424 * charges and put pages with stale cgroup pointers into
6425 * circulation:
6426 *
6427 * #0 #1
6428 * lookup_swap_cgroup_id()
6429 * rcu_read_lock()
6430 * mem_cgroup_lookup()
6431 * css_tryget()
6432 * rcu_read_unlock()
6433 * disable css_tryget()
6434 * call_rcu()
6435 * offline_css()
6436 * reparent_charges()
6437 * res_counter_charge()
6438 * css_put()
6439 * css_free()
6440 * pc->mem_cgroup = dead memcg
6441 * add page to lru
6442 *
6443 * The bulk of the charges are still moved in offline_css() to
6444 * avoid pinning a lot of pages in case a long-term reference
6445 * like a swapout record is deferring the css_free() to long
6446 * after offlining. But this makes sure we catch any charges
6447 * made after offlining:
6448 */
6449 mem_cgroup_reparent_charges(memcg);
c268e994 6450
10d5ebf4 6451 memcg_destroy_kmem(memcg);
465939a1 6452 __mem_cgroup_free(memcg);
8cdea7c0
BS
6453}
6454
02491447 6455#ifdef CONFIG_MMU
7dc74be0 6456/* Handlers for move charge at task migration. */
854ffa8d
DN
6457#define PRECHARGE_COUNT_AT_ONCE 256
6458static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6459{
854ffa8d
DN
6460 int ret = 0;
6461 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6462 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6463
c0ff4b85 6464 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6465 mc.precharge += count;
6466 /* we don't need css_get for root */
6467 return ret;
6468 }
6469 /* try to charge at once */
6470 if (count > 1) {
6471 struct res_counter *dummy;
6472 /*
c0ff4b85 6473 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6474 * by cgroup_lock_live_cgroup() that it is not removed and we
6475 * are still under the same cgroup_mutex. So we can postpone
6476 * css_get().
6477 */
c0ff4b85 6478 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6479 goto one_by_one;
c0ff4b85 6480 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6481 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6482 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6483 goto one_by_one;
6484 }
6485 mc.precharge += count;
854ffa8d
DN
6486 return ret;
6487 }
6488one_by_one:
6489 /* fall back to one by one charge */
6490 while (count--) {
6491 if (signal_pending(current)) {
6492 ret = -EINTR;
6493 break;
6494 }
6495 if (!batch_count--) {
6496 batch_count = PRECHARGE_COUNT_AT_ONCE;
6497 cond_resched();
6498 }
6d1fdc48 6499 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
38c5d72f 6500 if (ret)
854ffa8d 6501 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6502 return ret;
854ffa8d
DN
6503 mc.precharge++;
6504 }
4ffef5fe
DN
6505 return ret;
6506}
6507
6508/**
8d32ff84 6509 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6510 * @vma: the vma the pte to be checked belongs
6511 * @addr: the address corresponding to the pte to be checked
6512 * @ptent: the pte to be checked
02491447 6513 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6514 *
6515 * Returns
6516 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6517 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6518 * move charge. if @target is not NULL, the page is stored in target->page
6519 * with extra refcnt got(Callers should handle it).
02491447
DN
6520 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6521 * target for charge migration. if @target is not NULL, the entry is stored
6522 * in target->ent.
4ffef5fe
DN
6523 *
6524 * Called with pte lock held.
6525 */
4ffef5fe
DN
6526union mc_target {
6527 struct page *page;
02491447 6528 swp_entry_t ent;
4ffef5fe
DN
6529};
6530
4ffef5fe 6531enum mc_target_type {
8d32ff84 6532 MC_TARGET_NONE = 0,
4ffef5fe 6533 MC_TARGET_PAGE,
02491447 6534 MC_TARGET_SWAP,
4ffef5fe
DN
6535};
6536
90254a65
DN
6537static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6538 unsigned long addr, pte_t ptent)
4ffef5fe 6539{
90254a65 6540 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6541
90254a65
DN
6542 if (!page || !page_mapped(page))
6543 return NULL;
6544 if (PageAnon(page)) {
6545 /* we don't move shared anon */
4b91355e 6546 if (!move_anon())
90254a65 6547 return NULL;
87946a72
DN
6548 } else if (!move_file())
6549 /* we ignore mapcount for file pages */
90254a65
DN
6550 return NULL;
6551 if (!get_page_unless_zero(page))
6552 return NULL;
6553
6554 return page;
6555}
6556
4b91355e 6557#ifdef CONFIG_SWAP
90254a65
DN
6558static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6559 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6560{
90254a65
DN
6561 struct page *page = NULL;
6562 swp_entry_t ent = pte_to_swp_entry(ptent);
6563
6564 if (!move_anon() || non_swap_entry(ent))
6565 return NULL;
4b91355e
KH
6566 /*
6567 * Because lookup_swap_cache() updates some statistics counter,
6568 * we call find_get_page() with swapper_space directly.
6569 */
33806f06 6570 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6571 if (do_swap_account)
6572 entry->val = ent.val;
6573
6574 return page;
6575}
4b91355e
KH
6576#else
6577static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6578 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6579{
6580 return NULL;
6581}
6582#endif
90254a65 6583
87946a72
DN
6584static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6585 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6586{
6587 struct page *page = NULL;
87946a72
DN
6588 struct address_space *mapping;
6589 pgoff_t pgoff;
6590
6591 if (!vma->vm_file) /* anonymous vma */
6592 return NULL;
6593 if (!move_file())
6594 return NULL;
6595
87946a72
DN
6596 mapping = vma->vm_file->f_mapping;
6597 if (pte_none(ptent))
6598 pgoff = linear_page_index(vma, addr);
6599 else /* pte_file(ptent) is true */
6600 pgoff = pte_to_pgoff(ptent);
6601
6602 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6603#ifdef CONFIG_SWAP
6604 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
6605 if (shmem_mapping(mapping)) {
6606 page = find_get_entry(mapping, pgoff);
6607 if (radix_tree_exceptional_entry(page)) {
6608 swp_entry_t swp = radix_to_swp_entry(page);
6609 if (do_swap_account)
6610 *entry = swp;
6611 page = find_get_page(swap_address_space(swp), swp.val);
6612 }
6613 } else
6614 page = find_get_page(mapping, pgoff);
6615#else
6616 page = find_get_page(mapping, pgoff);
aa3b1895 6617#endif
87946a72
DN
6618 return page;
6619}
6620
8d32ff84 6621static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6622 unsigned long addr, pte_t ptent, union mc_target *target)
6623{
6624 struct page *page = NULL;
6625 struct page_cgroup *pc;
8d32ff84 6626 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6627 swp_entry_t ent = { .val = 0 };
6628
6629 if (pte_present(ptent))
6630 page = mc_handle_present_pte(vma, addr, ptent);
6631 else if (is_swap_pte(ptent))
6632 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6633 else if (pte_none(ptent) || pte_file(ptent))
6634 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6635
6636 if (!page && !ent.val)
8d32ff84 6637 return ret;
02491447
DN
6638 if (page) {
6639 pc = lookup_page_cgroup(page);
6640 /*
6641 * Do only loose check w/o page_cgroup lock.
6642 * mem_cgroup_move_account() checks the pc is valid or not under
6643 * the lock.
6644 */
6645 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6646 ret = MC_TARGET_PAGE;
6647 if (target)
6648 target->page = page;
6649 }
6650 if (!ret || !target)
6651 put_page(page);
6652 }
90254a65
DN
6653 /* There is a swap entry and a page doesn't exist or isn't charged */
6654 if (ent.val && !ret &&
34c00c31 6655 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6656 ret = MC_TARGET_SWAP;
6657 if (target)
6658 target->ent = ent;
4ffef5fe 6659 }
4ffef5fe
DN
6660 return ret;
6661}
6662
12724850
NH
6663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6664/*
6665 * We don't consider swapping or file mapped pages because THP does not
6666 * support them for now.
6667 * Caller should make sure that pmd_trans_huge(pmd) is true.
6668 */
6669static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6670 unsigned long addr, pmd_t pmd, union mc_target *target)
6671{
6672 struct page *page = NULL;
6673 struct page_cgroup *pc;
6674 enum mc_target_type ret = MC_TARGET_NONE;
6675
6676 page = pmd_page(pmd);
309381fe 6677 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6678 if (!move_anon())
6679 return ret;
6680 pc = lookup_page_cgroup(page);
6681 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6682 ret = MC_TARGET_PAGE;
6683 if (target) {
6684 get_page(page);
6685 target->page = page;
6686 }
6687 }
6688 return ret;
6689}
6690#else
6691static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6692 unsigned long addr, pmd_t pmd, union mc_target *target)
6693{
6694 return MC_TARGET_NONE;
6695}
6696#endif
6697
4ffef5fe
DN
6698static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6699 unsigned long addr, unsigned long end,
6700 struct mm_walk *walk)
6701{
6702 struct vm_area_struct *vma = walk->private;
6703 pte_t *pte;
6704 spinlock_t *ptl;
6705
bf929152 6706 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6707 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6708 mc.precharge += HPAGE_PMD_NR;
bf929152 6709 spin_unlock(ptl);
1a5a9906 6710 return 0;
12724850 6711 }
03319327 6712
45f83cef
AA
6713 if (pmd_trans_unstable(pmd))
6714 return 0;
4ffef5fe
DN
6715 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6716 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6717 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6718 mc.precharge++; /* increment precharge temporarily */
6719 pte_unmap_unlock(pte - 1, ptl);
6720 cond_resched();
6721
7dc74be0
DN
6722 return 0;
6723}
6724
4ffef5fe
DN
6725static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6726{
6727 unsigned long precharge;
6728 struct vm_area_struct *vma;
6729
dfe076b0 6730 down_read(&mm->mmap_sem);
4ffef5fe
DN
6731 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6732 struct mm_walk mem_cgroup_count_precharge_walk = {
6733 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6734 .mm = mm,
6735 .private = vma,
6736 };
6737 if (is_vm_hugetlb_page(vma))
6738 continue;
4ffef5fe
DN
6739 walk_page_range(vma->vm_start, vma->vm_end,
6740 &mem_cgroup_count_precharge_walk);
6741 }
dfe076b0 6742 up_read(&mm->mmap_sem);
4ffef5fe
DN
6743
6744 precharge = mc.precharge;
6745 mc.precharge = 0;
6746
6747 return precharge;
6748}
6749
4ffef5fe
DN
6750static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6751{
dfe076b0
DN
6752 unsigned long precharge = mem_cgroup_count_precharge(mm);
6753
6754 VM_BUG_ON(mc.moving_task);
6755 mc.moving_task = current;
6756 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6757}
6758
dfe076b0
DN
6759/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6760static void __mem_cgroup_clear_mc(void)
4ffef5fe 6761{
2bd9bb20
KH
6762 struct mem_cgroup *from = mc.from;
6763 struct mem_cgroup *to = mc.to;
4050377b 6764 int i;
2bd9bb20 6765
4ffef5fe 6766 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6767 if (mc.precharge) {
6768 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6769 mc.precharge = 0;
6770 }
6771 /*
6772 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6773 * we must uncharge here.
6774 */
6775 if (mc.moved_charge) {
6776 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6777 mc.moved_charge = 0;
4ffef5fe 6778 }
483c30b5
DN
6779 /* we must fixup refcnts and charges */
6780 if (mc.moved_swap) {
483c30b5
DN
6781 /* uncharge swap account from the old cgroup */
6782 if (!mem_cgroup_is_root(mc.from))
6783 res_counter_uncharge(&mc.from->memsw,
6784 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6785
6786 for (i = 0; i < mc.moved_swap; i++)
6787 css_put(&mc.from->css);
483c30b5
DN
6788
6789 if (!mem_cgroup_is_root(mc.to)) {
6790 /*
6791 * we charged both to->res and to->memsw, so we should
6792 * uncharge to->res.
6793 */
6794 res_counter_uncharge(&mc.to->res,
6795 PAGE_SIZE * mc.moved_swap);
483c30b5 6796 }
4050377b 6797 /* we've already done css_get(mc.to) */
483c30b5
DN
6798 mc.moved_swap = 0;
6799 }
dfe076b0
DN
6800 memcg_oom_recover(from);
6801 memcg_oom_recover(to);
6802 wake_up_all(&mc.waitq);
6803}
6804
6805static void mem_cgroup_clear_mc(void)
6806{
6807 struct mem_cgroup *from = mc.from;
6808
6809 /*
6810 * we must clear moving_task before waking up waiters at the end of
6811 * task migration.
6812 */
6813 mc.moving_task = NULL;
6814 __mem_cgroup_clear_mc();
2bd9bb20 6815 spin_lock(&mc.lock);
4ffef5fe
DN
6816 mc.from = NULL;
6817 mc.to = NULL;
2bd9bb20 6818 spin_unlock(&mc.lock);
32047e2a 6819 mem_cgroup_end_move(from);
4ffef5fe
DN
6820}
6821
eb95419b 6822static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6823 struct cgroup_taskset *tset)
7dc74be0 6824{
2f7ee569 6825 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6826 int ret = 0;
eb95419b 6827 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6828 unsigned long move_charge_at_immigrate;
7dc74be0 6829
ee5e8472
GC
6830 /*
6831 * We are now commited to this value whatever it is. Changes in this
6832 * tunable will only affect upcoming migrations, not the current one.
6833 * So we need to save it, and keep it going.
6834 */
6835 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6836 if (move_charge_at_immigrate) {
7dc74be0
DN
6837 struct mm_struct *mm;
6838 struct mem_cgroup *from = mem_cgroup_from_task(p);
6839
c0ff4b85 6840 VM_BUG_ON(from == memcg);
7dc74be0
DN
6841
6842 mm = get_task_mm(p);
6843 if (!mm)
6844 return 0;
7dc74be0 6845 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6846 if (mm->owner == p) {
6847 VM_BUG_ON(mc.from);
6848 VM_BUG_ON(mc.to);
6849 VM_BUG_ON(mc.precharge);
854ffa8d 6850 VM_BUG_ON(mc.moved_charge);
483c30b5 6851 VM_BUG_ON(mc.moved_swap);
32047e2a 6852 mem_cgroup_start_move(from);
2bd9bb20 6853 spin_lock(&mc.lock);
4ffef5fe 6854 mc.from = from;
c0ff4b85 6855 mc.to = memcg;
ee5e8472 6856 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6857 spin_unlock(&mc.lock);
dfe076b0 6858 /* We set mc.moving_task later */
4ffef5fe
DN
6859
6860 ret = mem_cgroup_precharge_mc(mm);
6861 if (ret)
6862 mem_cgroup_clear_mc();
dfe076b0
DN
6863 }
6864 mmput(mm);
7dc74be0
DN
6865 }
6866 return ret;
6867}
6868
eb95419b 6869static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6870 struct cgroup_taskset *tset)
7dc74be0 6871{
4ffef5fe 6872 mem_cgroup_clear_mc();
7dc74be0
DN
6873}
6874
4ffef5fe
DN
6875static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6876 unsigned long addr, unsigned long end,
6877 struct mm_walk *walk)
7dc74be0 6878{
4ffef5fe
DN
6879 int ret = 0;
6880 struct vm_area_struct *vma = walk->private;
6881 pte_t *pte;
6882 spinlock_t *ptl;
12724850
NH
6883 enum mc_target_type target_type;
6884 union mc_target target;
6885 struct page *page;
6886 struct page_cgroup *pc;
4ffef5fe 6887
12724850
NH
6888 /*
6889 * We don't take compound_lock() here but no race with splitting thp
6890 * happens because:
6891 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6892 * under splitting, which means there's no concurrent thp split,
6893 * - if another thread runs into split_huge_page() just after we
6894 * entered this if-block, the thread must wait for page table lock
6895 * to be unlocked in __split_huge_page_splitting(), where the main
6896 * part of thp split is not executed yet.
6897 */
bf929152 6898 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6899 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6900 spin_unlock(ptl);
12724850
NH
6901 return 0;
6902 }
6903 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6904 if (target_type == MC_TARGET_PAGE) {
6905 page = target.page;
6906 if (!isolate_lru_page(page)) {
6907 pc = lookup_page_cgroup(page);
6908 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6909 pc, mc.from, mc.to)) {
12724850
NH
6910 mc.precharge -= HPAGE_PMD_NR;
6911 mc.moved_charge += HPAGE_PMD_NR;
6912 }
6913 putback_lru_page(page);
6914 }
6915 put_page(page);
6916 }
bf929152 6917 spin_unlock(ptl);
1a5a9906 6918 return 0;
12724850
NH
6919 }
6920
45f83cef
AA
6921 if (pmd_trans_unstable(pmd))
6922 return 0;
4ffef5fe
DN
6923retry:
6924 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6925 for (; addr != end; addr += PAGE_SIZE) {
6926 pte_t ptent = *(pte++);
02491447 6927 swp_entry_t ent;
4ffef5fe
DN
6928
6929 if (!mc.precharge)
6930 break;
6931
8d32ff84 6932 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6933 case MC_TARGET_PAGE:
6934 page = target.page;
6935 if (isolate_lru_page(page))
6936 goto put;
6937 pc = lookup_page_cgroup(page);
7ec99d62 6938 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6939 mc.from, mc.to)) {
4ffef5fe 6940 mc.precharge--;
854ffa8d
DN
6941 /* we uncharge from mc.from later. */
6942 mc.moved_charge++;
4ffef5fe
DN
6943 }
6944 putback_lru_page(page);
8d32ff84 6945put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6946 put_page(page);
6947 break;
02491447
DN
6948 case MC_TARGET_SWAP:
6949 ent = target.ent;
e91cbb42 6950 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6951 mc.precharge--;
483c30b5
DN
6952 /* we fixup refcnts and charges later. */
6953 mc.moved_swap++;
6954 }
02491447 6955 break;
4ffef5fe
DN
6956 default:
6957 break;
6958 }
6959 }
6960 pte_unmap_unlock(pte - 1, ptl);
6961 cond_resched();
6962
6963 if (addr != end) {
6964 /*
6965 * We have consumed all precharges we got in can_attach().
6966 * We try charge one by one, but don't do any additional
6967 * charges to mc.to if we have failed in charge once in attach()
6968 * phase.
6969 */
854ffa8d 6970 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6971 if (!ret)
6972 goto retry;
6973 }
6974
6975 return ret;
6976}
6977
6978static void mem_cgroup_move_charge(struct mm_struct *mm)
6979{
6980 struct vm_area_struct *vma;
6981
6982 lru_add_drain_all();
dfe076b0
DN
6983retry:
6984 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6985 /*
6986 * Someone who are holding the mmap_sem might be waiting in
6987 * waitq. So we cancel all extra charges, wake up all waiters,
6988 * and retry. Because we cancel precharges, we might not be able
6989 * to move enough charges, but moving charge is a best-effort
6990 * feature anyway, so it wouldn't be a big problem.
6991 */
6992 __mem_cgroup_clear_mc();
6993 cond_resched();
6994 goto retry;
6995 }
4ffef5fe
DN
6996 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6997 int ret;
6998 struct mm_walk mem_cgroup_move_charge_walk = {
6999 .pmd_entry = mem_cgroup_move_charge_pte_range,
7000 .mm = mm,
7001 .private = vma,
7002 };
7003 if (is_vm_hugetlb_page(vma))
7004 continue;
4ffef5fe
DN
7005 ret = walk_page_range(vma->vm_start, vma->vm_end,
7006 &mem_cgroup_move_charge_walk);
7007 if (ret)
7008 /*
7009 * means we have consumed all precharges and failed in
7010 * doing additional charge. Just abandon here.
7011 */
7012 break;
7013 }
dfe076b0 7014 up_read(&mm->mmap_sem);
7dc74be0
DN
7015}
7016
eb95419b 7017static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7018 struct cgroup_taskset *tset)
67e465a7 7019{
2f7ee569 7020 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7021 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7022
dfe076b0 7023 if (mm) {
a433658c
KM
7024 if (mc.to)
7025 mem_cgroup_move_charge(mm);
dfe076b0
DN
7026 mmput(mm);
7027 }
a433658c
KM
7028 if (mc.to)
7029 mem_cgroup_clear_mc();
67e465a7 7030}
5cfb80a7 7031#else /* !CONFIG_MMU */
eb95419b 7032static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7033 struct cgroup_taskset *tset)
5cfb80a7
DN
7034{
7035 return 0;
7036}
eb95419b 7037static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7038 struct cgroup_taskset *tset)
5cfb80a7
DN
7039{
7040}
eb95419b 7041static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7042 struct cgroup_taskset *tset)
5cfb80a7
DN
7043{
7044}
7045#endif
67e465a7 7046
f00baae7
TH
7047/*
7048 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7049 * to verify sane_behavior flag on each mount attempt.
7050 */
eb95419b 7051static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7052{
7053 /*
7054 * use_hierarchy is forced with sane_behavior. cgroup core
7055 * guarantees that @root doesn't have any children, so turning it
7056 * on for the root memcg is enough.
7057 */
eb95419b
TH
7058 if (cgroup_sane_behavior(root_css->cgroup))
7059 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7060}
7061
073219e9 7062struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7063 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7064 .css_online = mem_cgroup_css_online,
92fb9748
TH
7065 .css_offline = mem_cgroup_css_offline,
7066 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7067 .can_attach = mem_cgroup_can_attach,
7068 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7069 .attach = mem_cgroup_move_task,
f00baae7 7070 .bind = mem_cgroup_bind,
6bc10349 7071 .base_cftypes = mem_cgroup_files,
6d12e2d8 7072 .early_init = 0,
8cdea7c0 7073};
c077719b 7074
c255a458 7075#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7076static int __init enable_swap_account(char *s)
7077{
a2c8990a 7078 if (!strcmp(s, "1"))
a42c390c 7079 really_do_swap_account = 1;
a2c8990a 7080 else if (!strcmp(s, "0"))
a42c390c
MH
7081 really_do_swap_account = 0;
7082 return 1;
7083}
a2c8990a 7084__setup("swapaccount=", enable_swap_account);
c077719b 7085
2d11085e
MH
7086static void __init memsw_file_init(void)
7087{
073219e9 7088 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7089}
7090
7091static void __init enable_swap_cgroup(void)
7092{
7093 if (!mem_cgroup_disabled() && really_do_swap_account) {
7094 do_swap_account = 1;
7095 memsw_file_init();
7096 }
2d11085e 7097}
6acc8b02 7098
2d11085e 7099#else
6acc8b02 7100static void __init enable_swap_cgroup(void)
2d11085e
MH
7101{
7102}
c077719b 7103#endif
2d11085e
MH
7104
7105/*
1081312f
MH
7106 * subsys_initcall() for memory controller.
7107 *
7108 * Some parts like hotcpu_notifier() have to be initialized from this context
7109 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7110 * everything that doesn't depend on a specific mem_cgroup structure should
7111 * be initialized from here.
2d11085e
MH
7112 */
7113static int __init mem_cgroup_init(void)
7114{
7115 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7116 enable_swap_cgroup();
bb4cc1a8 7117 mem_cgroup_soft_limit_tree_init();
e4777496 7118 memcg_stock_init();
2d11085e
MH
7119 return 0;
7120}
7121subsys_initcall(mem_cgroup_init);
This page took 1.128541 seconds and 5 git commands to generate.