cgroup: use release_agent_path_lock in cgroup_release_agent_show()
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
15a4c835 530 return memcg->css.id;
34c00c31
LZ
531}
532
533static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
534{
535 struct cgroup_subsys_state *css;
536
7d699ddb 537 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
538 return mem_cgroup_from_css(css);
539}
540
e1aab161 541/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 542#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 543
e1aab161
GC
544void sock_update_memcg(struct sock *sk)
545{
376be5ff 546 if (mem_cgroup_sockets_enabled) {
e1aab161 547 struct mem_cgroup *memcg;
3f134619 548 struct cg_proto *cg_proto;
e1aab161
GC
549
550 BUG_ON(!sk->sk_prot->proto_cgroup);
551
f3f511e1
GC
552 /* Socket cloning can throw us here with sk_cgrp already
553 * filled. It won't however, necessarily happen from
554 * process context. So the test for root memcg given
555 * the current task's memcg won't help us in this case.
556 *
557 * Respecting the original socket's memcg is a better
558 * decision in this case.
559 */
560 if (sk->sk_cgrp) {
561 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 562 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
563 return;
564 }
565
e1aab161
GC
566 rcu_read_lock();
567 memcg = mem_cgroup_from_task(current);
3f134619 568 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
569 if (!mem_cgroup_is_root(memcg) &&
570 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 571 sk->sk_cgrp = cg_proto;
e1aab161
GC
572 }
573 rcu_read_unlock();
574 }
575}
576EXPORT_SYMBOL(sock_update_memcg);
577
578void sock_release_memcg(struct sock *sk)
579{
376be5ff 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
5347e5ae 584 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
585 }
586}
d1a4c0b3
GC
587
588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589{
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
2e685cad 593 return &memcg->tcp_mem;
d1a4c0b3
GC
594}
595EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 596
3f134619
GC
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
2e685cad 599 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602}
603#else
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606}
607#endif
608
a8964b9b 609#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
610/*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
55007d84
GC
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
623int memcg_limited_groups_array_size;
624
55007d84
GC
625/*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
b8627835 631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
635 * increase ours as well if it increases.
636 */
637#define MEMCG_CACHES_MIN_SIZE 4
b8627835 638#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 639
d7f25f8a
GC
640/*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
a8964b9b 646struct static_key memcg_kmem_enabled_key;
d7f25f8a 647EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
648
649static void disarm_kmem_keys(struct mem_cgroup *memcg)
650{
55007d84 651 if (memcg_kmem_is_active(memcg)) {
a8964b9b 652 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
bea207c8
GC
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
660}
661#else
662static void disarm_kmem_keys(struct mem_cgroup *memcg)
663{
664}
665#endif /* CONFIG_MEMCG_KMEM */
666
667static void disarm_static_keys(struct mem_cgroup *memcg)
668{
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671}
672
c0ff4b85 673static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 674
f64c3f54 675static struct mem_cgroup_per_zone *
c0ff4b85 676mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 677{
45cf7ebd 678 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 679 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
680}
681
c0ff4b85 682struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 683{
c0ff4b85 684 return &memcg->css;
d324236b
WF
685}
686
f64c3f54 687static struct mem_cgroup_per_zone *
c0ff4b85 688page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 689{
97a6c37b
JW
690 int nid = page_to_nid(page);
691 int zid = page_zonenum(page);
f64c3f54 692
c0ff4b85 693 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
694}
695
bb4cc1a8
AM
696static struct mem_cgroup_tree_per_zone *
697soft_limit_tree_node_zone(int nid, int zid)
698{
699 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
700}
701
702static struct mem_cgroup_tree_per_zone *
703soft_limit_tree_from_page(struct page *page)
704{
705 int nid = page_to_nid(page);
706 int zid = page_zonenum(page);
707
708 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
709}
710
711static void
712__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
713 struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
716{
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743}
744
745static void
746__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
747 struct mem_cgroup_per_zone *mz,
748 struct mem_cgroup_tree_per_zone *mctz)
749{
750 if (!mz->on_tree)
751 return;
752 rb_erase(&mz->tree_node, &mctz->rb_root);
753 mz->on_tree = false;
754}
755
756static void
757mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
758 struct mem_cgroup_per_zone *mz,
759 struct mem_cgroup_tree_per_zone *mctz)
760{
761 spin_lock(&mctz->lock);
762 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
763 spin_unlock(&mctz->lock);
764}
765
766
767static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
768{
769 unsigned long long excess;
770 struct mem_cgroup_per_zone *mz;
771 struct mem_cgroup_tree_per_zone *mctz;
772 int nid = page_to_nid(page);
773 int zid = page_zonenum(page);
774 mctz = soft_limit_tree_from_page(page);
775
776 /*
777 * Necessary to update all ancestors when hierarchy is used.
778 * because their event counter is not touched.
779 */
780 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
781 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
782 excess = res_counter_soft_limit_excess(&memcg->res);
783 /*
784 * We have to update the tree if mz is on RB-tree or
785 * mem is over its softlimit.
786 */
787 if (excess || mz->on_tree) {
788 spin_lock(&mctz->lock);
789 /* if on-tree, remove it */
790 if (mz->on_tree)
791 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
792 /*
793 * Insert again. mz->usage_in_excess will be updated.
794 * If excess is 0, no tree ops.
795 */
796 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
797 spin_unlock(&mctz->lock);
798 }
799 }
800}
801
802static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
803{
804 int node, zone;
805 struct mem_cgroup_per_zone *mz;
806 struct mem_cgroup_tree_per_zone *mctz;
807
808 for_each_node(node) {
809 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
810 mz = mem_cgroup_zoneinfo(memcg, node, zone);
811 mctz = soft_limit_tree_node_zone(node, zone);
812 mem_cgroup_remove_exceeded(memcg, mz, mctz);
813 }
814 }
815}
816
817static struct mem_cgroup_per_zone *
818__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
819{
820 struct rb_node *rightmost = NULL;
821 struct mem_cgroup_per_zone *mz;
822
823retry:
824 mz = NULL;
825 rightmost = rb_last(&mctz->rb_root);
826 if (!rightmost)
827 goto done; /* Nothing to reclaim from */
828
829 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
830 /*
831 * Remove the node now but someone else can add it back,
832 * we will to add it back at the end of reclaim to its correct
833 * position in the tree.
834 */
835 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
836 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
837 !css_tryget(&mz->memcg->css))
838 goto retry;
839done:
840 return mz;
841}
842
843static struct mem_cgroup_per_zone *
844mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
845{
846 struct mem_cgroup_per_zone *mz;
847
848 spin_lock(&mctz->lock);
849 mz = __mem_cgroup_largest_soft_limit_node(mctz);
850 spin_unlock(&mctz->lock);
851 return mz;
852}
853
711d3d2c
KH
854/*
855 * Implementation Note: reading percpu statistics for memcg.
856 *
857 * Both of vmstat[] and percpu_counter has threshold and do periodic
858 * synchronization to implement "quick" read. There are trade-off between
859 * reading cost and precision of value. Then, we may have a chance to implement
860 * a periodic synchronizion of counter in memcg's counter.
861 *
862 * But this _read() function is used for user interface now. The user accounts
863 * memory usage by memory cgroup and he _always_ requires exact value because
864 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
865 * have to visit all online cpus and make sum. So, for now, unnecessary
866 * synchronization is not implemented. (just implemented for cpu hotplug)
867 *
868 * If there are kernel internal actions which can make use of some not-exact
869 * value, and reading all cpu value can be performance bottleneck in some
870 * common workload, threashold and synchonization as vmstat[] should be
871 * implemented.
872 */
c0ff4b85 873static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 874 enum mem_cgroup_stat_index idx)
c62b1a3b 875{
7a159cc9 876 long val = 0;
c62b1a3b 877 int cpu;
c62b1a3b 878
711d3d2c
KH
879 get_online_cpus();
880 for_each_online_cpu(cpu)
c0ff4b85 881 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 882#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
883 spin_lock(&memcg->pcp_counter_lock);
884 val += memcg->nocpu_base.count[idx];
885 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
886#endif
887 put_online_cpus();
c62b1a3b
KH
888 return val;
889}
890
c0ff4b85 891static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
892 bool charge)
893{
894 int val = (charge) ? 1 : -1;
bff6bb83 895 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
896}
897
c0ff4b85 898static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
899 enum mem_cgroup_events_index idx)
900{
901 unsigned long val = 0;
902 int cpu;
903
9c567512 904 get_online_cpus();
e9f8974f 905 for_each_online_cpu(cpu)
c0ff4b85 906 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 907#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
908 spin_lock(&memcg->pcp_counter_lock);
909 val += memcg->nocpu_base.events[idx];
910 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 911#endif
9c567512 912 put_online_cpus();
e9f8974f
JW
913 return val;
914}
915
c0ff4b85 916static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 917 struct page *page,
b2402857 918 bool anon, int nr_pages)
d52aa412 919{
b2402857
KH
920 /*
921 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
922 * counted as CACHE even if it's on ANON LRU.
923 */
924 if (anon)
925 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 926 nr_pages);
d52aa412 927 else
b2402857 928 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 929 nr_pages);
55e462b0 930
b070e65c
DR
931 if (PageTransHuge(page))
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
933 nr_pages);
934
e401f176
KH
935 /* pagein of a big page is an event. So, ignore page size */
936 if (nr_pages > 0)
c0ff4b85 937 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 938 else {
c0ff4b85 939 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
940 nr_pages = -nr_pages; /* for event */
941 }
e401f176 942
13114716 943 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
944}
945
bb2a0de9 946unsigned long
4d7dcca2 947mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
948{
949 struct mem_cgroup_per_zone *mz;
950
951 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
952 return mz->lru_size[lru];
953}
954
955static unsigned long
c0ff4b85 956mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 957 unsigned int lru_mask)
889976db
YH
958{
959 struct mem_cgroup_per_zone *mz;
f156ab93 960 enum lru_list lru;
bb2a0de9
KH
961 unsigned long ret = 0;
962
c0ff4b85 963 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 964
f156ab93
HD
965 for_each_lru(lru) {
966 if (BIT(lru) & lru_mask)
967 ret += mz->lru_size[lru];
bb2a0de9
KH
968 }
969 return ret;
970}
971
972static unsigned long
c0ff4b85 973mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
974 int nid, unsigned int lru_mask)
975{
889976db
YH
976 u64 total = 0;
977 int zid;
978
bb2a0de9 979 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
980 total += mem_cgroup_zone_nr_lru_pages(memcg,
981 nid, zid, lru_mask);
bb2a0de9 982
889976db
YH
983 return total;
984}
bb2a0de9 985
c0ff4b85 986static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 987 unsigned int lru_mask)
6d12e2d8 988{
889976db 989 int nid;
6d12e2d8
KH
990 u64 total = 0;
991
31aaea4a 992 for_each_node_state(nid, N_MEMORY)
c0ff4b85 993 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 994 return total;
d52aa412
KH
995}
996
f53d7ce3
JW
997static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
998 enum mem_cgroup_events_target target)
7a159cc9
JW
999{
1000 unsigned long val, next;
1001
13114716 1002 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1003 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1004 /* from time_after() in jiffies.h */
f53d7ce3
JW
1005 if ((long)next - (long)val < 0) {
1006 switch (target) {
1007 case MEM_CGROUP_TARGET_THRESH:
1008 next = val + THRESHOLDS_EVENTS_TARGET;
1009 break;
bb4cc1a8
AM
1010 case MEM_CGROUP_TARGET_SOFTLIMIT:
1011 next = val + SOFTLIMIT_EVENTS_TARGET;
1012 break;
f53d7ce3
JW
1013 case MEM_CGROUP_TARGET_NUMAINFO:
1014 next = val + NUMAINFO_EVENTS_TARGET;
1015 break;
1016 default:
1017 break;
1018 }
1019 __this_cpu_write(memcg->stat->targets[target], next);
1020 return true;
7a159cc9 1021 }
f53d7ce3 1022 return false;
d2265e6f
KH
1023}
1024
1025/*
1026 * Check events in order.
1027 *
1028 */
c0ff4b85 1029static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1030{
4799401f 1031 preempt_disable();
d2265e6f 1032 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1033 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1034 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1035 bool do_softlimit;
82b3f2a7 1036 bool do_numainfo __maybe_unused;
f53d7ce3 1037
bb4cc1a8
AM
1038 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1039 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1040#if MAX_NUMNODES > 1
1041 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_NUMAINFO);
1043#endif
1044 preempt_enable();
1045
c0ff4b85 1046 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1047 if (unlikely(do_softlimit))
1048 mem_cgroup_update_tree(memcg, page);
453a9bf3 1049#if MAX_NUMNODES > 1
f53d7ce3 1050 if (unlikely(do_numainfo))
c0ff4b85 1051 atomic_inc(&memcg->numainfo_events);
453a9bf3 1052#endif
f53d7ce3
JW
1053 } else
1054 preempt_enable();
d2265e6f
KH
1055}
1056
cf475ad2 1057struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1058{
31a78f23
BS
1059 /*
1060 * mm_update_next_owner() may clear mm->owner to NULL
1061 * if it races with swapoff, page migration, etc.
1062 * So this can be called with p == NULL.
1063 */
1064 if (unlikely(!p))
1065 return NULL;
1066
073219e9 1067 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1068}
1069
df381975 1070static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1071{
c0ff4b85 1072 struct mem_cgroup *memcg = NULL;
0b7f569e 1073
54595fe2
KH
1074 rcu_read_lock();
1075 do {
c0ff4b85
R
1076 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1077 if (unlikely(!memcg))
df381975 1078 memcg = root_mem_cgroup;
c0ff4b85 1079 } while (!css_tryget(&memcg->css));
54595fe2 1080 rcu_read_unlock();
c0ff4b85 1081 return memcg;
54595fe2
KH
1082}
1083
16248d8f
MH
1084/*
1085 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1086 * ref. count) or NULL if the whole root's subtree has been visited.
1087 *
1088 * helper function to be used by mem_cgroup_iter
1089 */
1090static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1091 struct mem_cgroup *last_visited)
16248d8f 1092{
492eb21b 1093 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1094
bd8815a6 1095 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1096skip_node:
492eb21b 1097 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1098
1099 /*
1100 * Even if we found a group we have to make sure it is
1101 * alive. css && !memcg means that the groups should be
1102 * skipped and we should continue the tree walk.
1103 * last_visited css is safe to use because it is
1104 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1105 *
1106 * We do not take a reference on the root of the tree walk
1107 * because we might race with the root removal when it would
1108 * be the only node in the iterated hierarchy and mem_cgroup_iter
1109 * would end up in an endless loop because it expects that at
1110 * least one valid node will be returned. Root cannot disappear
1111 * because caller of the iterator should hold it already so
1112 * skipping css reference should be safe.
16248d8f 1113 */
492eb21b 1114 if (next_css) {
ce48225f
HD
1115 if ((next_css == &root->css) ||
1116 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
d8ad3055 1117 return mem_cgroup_from_css(next_css);
0eef6156
MH
1118
1119 prev_css = next_css;
1120 goto skip_node;
16248d8f
MH
1121 }
1122
1123 return NULL;
1124}
1125
519ebea3
JW
1126static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1127{
1128 /*
1129 * When a group in the hierarchy below root is destroyed, the
1130 * hierarchy iterator can no longer be trusted since it might
1131 * have pointed to the destroyed group. Invalidate it.
1132 */
1133 atomic_inc(&root->dead_count);
1134}
1135
1136static struct mem_cgroup *
1137mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1138 struct mem_cgroup *root,
1139 int *sequence)
1140{
1141 struct mem_cgroup *position = NULL;
1142 /*
1143 * A cgroup destruction happens in two stages: offlining and
1144 * release. They are separated by a RCU grace period.
1145 *
1146 * If the iterator is valid, we may still race with an
1147 * offlining. The RCU lock ensures the object won't be
1148 * released, tryget will fail if we lost the race.
1149 */
1150 *sequence = atomic_read(&root->dead_count);
1151 if (iter->last_dead_count == *sequence) {
1152 smp_rmb();
1153 position = iter->last_visited;
ecc736fc
MH
1154
1155 /*
1156 * We cannot take a reference to root because we might race
1157 * with root removal and returning NULL would end up in
1158 * an endless loop on the iterator user level when root
1159 * would be returned all the time.
1160 */
1161 if (position && position != root &&
1162 !css_tryget(&position->css))
519ebea3
JW
1163 position = NULL;
1164 }
1165 return position;
1166}
1167
1168static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1169 struct mem_cgroup *last_visited,
1170 struct mem_cgroup *new_position,
ecc736fc 1171 struct mem_cgroup *root,
519ebea3
JW
1172 int sequence)
1173{
ecc736fc
MH
1174 /* root reference counting symmetric to mem_cgroup_iter_load */
1175 if (last_visited && last_visited != root)
519ebea3
JW
1176 css_put(&last_visited->css);
1177 /*
1178 * We store the sequence count from the time @last_visited was
1179 * loaded successfully instead of rereading it here so that we
1180 * don't lose destruction events in between. We could have
1181 * raced with the destruction of @new_position after all.
1182 */
1183 iter->last_visited = new_position;
1184 smp_wmb();
1185 iter->last_dead_count = sequence;
1186}
1187
5660048c
JW
1188/**
1189 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1190 * @root: hierarchy root
1191 * @prev: previously returned memcg, NULL on first invocation
1192 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1193 *
1194 * Returns references to children of the hierarchy below @root, or
1195 * @root itself, or %NULL after a full round-trip.
1196 *
1197 * Caller must pass the return value in @prev on subsequent
1198 * invocations for reference counting, or use mem_cgroup_iter_break()
1199 * to cancel a hierarchy walk before the round-trip is complete.
1200 *
1201 * Reclaimers can specify a zone and a priority level in @reclaim to
1202 * divide up the memcgs in the hierarchy among all concurrent
1203 * reclaimers operating on the same zone and priority.
1204 */
694fbc0f 1205struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1206 struct mem_cgroup *prev,
694fbc0f 1207 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1208{
9f3a0d09 1209 struct mem_cgroup *memcg = NULL;
542f85f9 1210 struct mem_cgroup *last_visited = NULL;
711d3d2c 1211
694fbc0f
AM
1212 if (mem_cgroup_disabled())
1213 return NULL;
5660048c 1214
9f3a0d09
JW
1215 if (!root)
1216 root = root_mem_cgroup;
7d74b06f 1217
9f3a0d09 1218 if (prev && !reclaim)
542f85f9 1219 last_visited = prev;
14067bb3 1220
9f3a0d09
JW
1221 if (!root->use_hierarchy && root != root_mem_cgroup) {
1222 if (prev)
c40046f3 1223 goto out_css_put;
694fbc0f 1224 return root;
9f3a0d09 1225 }
14067bb3 1226
542f85f9 1227 rcu_read_lock();
9f3a0d09 1228 while (!memcg) {
527a5ec9 1229 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1230 int uninitialized_var(seq);
711d3d2c 1231
527a5ec9
JW
1232 if (reclaim) {
1233 int nid = zone_to_nid(reclaim->zone);
1234 int zid = zone_idx(reclaim->zone);
1235 struct mem_cgroup_per_zone *mz;
1236
1237 mz = mem_cgroup_zoneinfo(root, nid, zid);
1238 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1239 if (prev && reclaim->generation != iter->generation) {
5f578161 1240 iter->last_visited = NULL;
542f85f9
MH
1241 goto out_unlock;
1242 }
5f578161 1243
519ebea3 1244 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1245 }
7d74b06f 1246
694fbc0f 1247 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1248
527a5ec9 1249 if (reclaim) {
ecc736fc
MH
1250 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1251 seq);
542f85f9 1252
19f39402 1253 if (!memcg)
527a5ec9
JW
1254 iter->generation++;
1255 else if (!prev && memcg)
1256 reclaim->generation = iter->generation;
1257 }
9f3a0d09 1258
694fbc0f 1259 if (prev && !memcg)
542f85f9 1260 goto out_unlock;
9f3a0d09 1261 }
542f85f9
MH
1262out_unlock:
1263 rcu_read_unlock();
c40046f3
MH
1264out_css_put:
1265 if (prev && prev != root)
1266 css_put(&prev->css);
1267
9f3a0d09 1268 return memcg;
14067bb3 1269}
7d74b06f 1270
5660048c
JW
1271/**
1272 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1273 * @root: hierarchy root
1274 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1275 */
1276void mem_cgroup_iter_break(struct mem_cgroup *root,
1277 struct mem_cgroup *prev)
9f3a0d09
JW
1278{
1279 if (!root)
1280 root = root_mem_cgroup;
1281 if (prev && prev != root)
1282 css_put(&prev->css);
1283}
7d74b06f 1284
9f3a0d09
JW
1285/*
1286 * Iteration constructs for visiting all cgroups (under a tree). If
1287 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1288 * be used for reference counting.
1289 */
1290#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1291 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1292 iter != NULL; \
527a5ec9 1293 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1294
9f3a0d09 1295#define for_each_mem_cgroup(iter) \
527a5ec9 1296 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1297 iter != NULL; \
527a5ec9 1298 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1299
68ae564b 1300void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1301{
c0ff4b85 1302 struct mem_cgroup *memcg;
456f998e 1303
456f998e 1304 rcu_read_lock();
c0ff4b85
R
1305 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1306 if (unlikely(!memcg))
456f998e
YH
1307 goto out;
1308
1309 switch (idx) {
456f998e 1310 case PGFAULT:
0e574a93
JW
1311 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1312 break;
1313 case PGMAJFAULT:
1314 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1315 break;
1316 default:
1317 BUG();
1318 }
1319out:
1320 rcu_read_unlock();
1321}
68ae564b 1322EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1323
925b7673
JW
1324/**
1325 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1326 * @zone: zone of the wanted lruvec
fa9add64 1327 * @memcg: memcg of the wanted lruvec
925b7673
JW
1328 *
1329 * Returns the lru list vector holding pages for the given @zone and
1330 * @mem. This can be the global zone lruvec, if the memory controller
1331 * is disabled.
1332 */
1333struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1334 struct mem_cgroup *memcg)
1335{
1336 struct mem_cgroup_per_zone *mz;
bea8c150 1337 struct lruvec *lruvec;
925b7673 1338
bea8c150
HD
1339 if (mem_cgroup_disabled()) {
1340 lruvec = &zone->lruvec;
1341 goto out;
1342 }
925b7673
JW
1343
1344 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1345 lruvec = &mz->lruvec;
1346out:
1347 /*
1348 * Since a node can be onlined after the mem_cgroup was created,
1349 * we have to be prepared to initialize lruvec->zone here;
1350 * and if offlined then reonlined, we need to reinitialize it.
1351 */
1352 if (unlikely(lruvec->zone != zone))
1353 lruvec->zone = zone;
1354 return lruvec;
925b7673
JW
1355}
1356
08e552c6
KH
1357/*
1358 * Following LRU functions are allowed to be used without PCG_LOCK.
1359 * Operations are called by routine of global LRU independently from memcg.
1360 * What we have to take care of here is validness of pc->mem_cgroup.
1361 *
1362 * Changes to pc->mem_cgroup happens when
1363 * 1. charge
1364 * 2. moving account
1365 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1366 * It is added to LRU before charge.
1367 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1368 * When moving account, the page is not on LRU. It's isolated.
1369 */
4f98a2fe 1370
925b7673 1371/**
fa9add64 1372 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1373 * @page: the page
fa9add64 1374 * @zone: zone of the page
925b7673 1375 */
fa9add64 1376struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1377{
08e552c6 1378 struct mem_cgroup_per_zone *mz;
925b7673
JW
1379 struct mem_cgroup *memcg;
1380 struct page_cgroup *pc;
bea8c150 1381 struct lruvec *lruvec;
6d12e2d8 1382
bea8c150
HD
1383 if (mem_cgroup_disabled()) {
1384 lruvec = &zone->lruvec;
1385 goto out;
1386 }
925b7673 1387
08e552c6 1388 pc = lookup_page_cgroup(page);
38c5d72f 1389 memcg = pc->mem_cgroup;
7512102c
HD
1390
1391 /*
fa9add64 1392 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1393 * an uncharged page off lru does nothing to secure
1394 * its former mem_cgroup from sudden removal.
1395 *
1396 * Our caller holds lru_lock, and PageCgroupUsed is updated
1397 * under page_cgroup lock: between them, they make all uses
1398 * of pc->mem_cgroup safe.
1399 */
fa9add64 1400 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1401 pc->mem_cgroup = memcg = root_mem_cgroup;
1402
925b7673 1403 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1404 lruvec = &mz->lruvec;
1405out:
1406 /*
1407 * Since a node can be onlined after the mem_cgroup was created,
1408 * we have to be prepared to initialize lruvec->zone here;
1409 * and if offlined then reonlined, we need to reinitialize it.
1410 */
1411 if (unlikely(lruvec->zone != zone))
1412 lruvec->zone = zone;
1413 return lruvec;
08e552c6 1414}
b69408e8 1415
925b7673 1416/**
fa9add64
HD
1417 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1418 * @lruvec: mem_cgroup per zone lru vector
1419 * @lru: index of lru list the page is sitting on
1420 * @nr_pages: positive when adding or negative when removing
925b7673 1421 *
fa9add64
HD
1422 * This function must be called when a page is added to or removed from an
1423 * lru list.
3f58a829 1424 */
fa9add64
HD
1425void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1426 int nr_pages)
3f58a829
MK
1427{
1428 struct mem_cgroup_per_zone *mz;
fa9add64 1429 unsigned long *lru_size;
3f58a829
MK
1430
1431 if (mem_cgroup_disabled())
1432 return;
1433
fa9add64
HD
1434 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1435 lru_size = mz->lru_size + lru;
1436 *lru_size += nr_pages;
1437 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1438}
544122e5 1439
3e92041d 1440/*
c0ff4b85 1441 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1442 * hierarchy subtree
1443 */
c3ac9a8a
JW
1444bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1445 struct mem_cgroup *memcg)
3e92041d 1446{
91c63734
JW
1447 if (root_memcg == memcg)
1448 return true;
3a981f48 1449 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1450 return false;
b47f77b5 1451 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1452}
1453
1454static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1455 struct mem_cgroup *memcg)
1456{
1457 bool ret;
1458
91c63734 1459 rcu_read_lock();
c3ac9a8a 1460 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1461 rcu_read_unlock();
1462 return ret;
3e92041d
MH
1463}
1464
ffbdccf5
DR
1465bool task_in_mem_cgroup(struct task_struct *task,
1466 const struct mem_cgroup *memcg)
4c4a2214 1467{
0b7f569e 1468 struct mem_cgroup *curr = NULL;
158e0a2d 1469 struct task_struct *p;
ffbdccf5 1470 bool ret;
4c4a2214 1471
158e0a2d 1472 p = find_lock_task_mm(task);
de077d22 1473 if (p) {
df381975 1474 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1475 task_unlock(p);
1476 } else {
1477 /*
1478 * All threads may have already detached their mm's, but the oom
1479 * killer still needs to detect if they have already been oom
1480 * killed to prevent needlessly killing additional tasks.
1481 */
ffbdccf5 1482 rcu_read_lock();
de077d22
DR
1483 curr = mem_cgroup_from_task(task);
1484 if (curr)
1485 css_get(&curr->css);
ffbdccf5 1486 rcu_read_unlock();
de077d22 1487 }
d31f56db 1488 /*
c0ff4b85 1489 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1490 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1491 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1492 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1493 */
c0ff4b85 1494 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1495 css_put(&curr->css);
4c4a2214
DR
1496 return ret;
1497}
1498
c56d5c7d 1499int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1500{
9b272977 1501 unsigned long inactive_ratio;
14797e23 1502 unsigned long inactive;
9b272977 1503 unsigned long active;
c772be93 1504 unsigned long gb;
14797e23 1505
4d7dcca2
HD
1506 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1507 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1508
c772be93
KM
1509 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1510 if (gb)
1511 inactive_ratio = int_sqrt(10 * gb);
1512 else
1513 inactive_ratio = 1;
1514
9b272977 1515 return inactive * inactive_ratio < active;
14797e23
KM
1516}
1517
6d61ef40
BS
1518#define mem_cgroup_from_res_counter(counter, member) \
1519 container_of(counter, struct mem_cgroup, member)
1520
19942822 1521/**
9d11ea9f 1522 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1523 * @memcg: the memory cgroup
19942822 1524 *
9d11ea9f 1525 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1526 * pages.
19942822 1527 */
c0ff4b85 1528static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1529{
9d11ea9f
JW
1530 unsigned long long margin;
1531
c0ff4b85 1532 margin = res_counter_margin(&memcg->res);
9d11ea9f 1533 if (do_swap_account)
c0ff4b85 1534 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1535 return margin >> PAGE_SHIFT;
19942822
JW
1536}
1537
1f4c025b 1538int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1539{
a7885eb8 1540 /* root ? */
63876986 1541 if (!css_parent(&memcg->css))
a7885eb8
KM
1542 return vm_swappiness;
1543
bf1ff263 1544 return memcg->swappiness;
a7885eb8
KM
1545}
1546
619d094b
KH
1547/*
1548 * memcg->moving_account is used for checking possibility that some thread is
1549 * calling move_account(). When a thread on CPU-A starts moving pages under
1550 * a memcg, other threads should check memcg->moving_account under
1551 * rcu_read_lock(), like this:
1552 *
1553 * CPU-A CPU-B
1554 * rcu_read_lock()
1555 * memcg->moving_account+1 if (memcg->mocing_account)
1556 * take heavy locks.
1557 * synchronize_rcu() update something.
1558 * rcu_read_unlock()
1559 * start move here.
1560 */
4331f7d3
KH
1561
1562/* for quick checking without looking up memcg */
1563atomic_t memcg_moving __read_mostly;
1564
c0ff4b85 1565static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1566{
4331f7d3 1567 atomic_inc(&memcg_moving);
619d094b 1568 atomic_inc(&memcg->moving_account);
32047e2a
KH
1569 synchronize_rcu();
1570}
1571
c0ff4b85 1572static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1573{
619d094b
KH
1574 /*
1575 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1576 * We check NULL in callee rather than caller.
1577 */
4331f7d3
KH
1578 if (memcg) {
1579 atomic_dec(&memcg_moving);
619d094b 1580 atomic_dec(&memcg->moving_account);
4331f7d3 1581 }
32047e2a 1582}
619d094b 1583
32047e2a
KH
1584/*
1585 * 2 routines for checking "mem" is under move_account() or not.
1586 *
13fd1dd9
AM
1587 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1588 * is used for avoiding races in accounting. If true,
32047e2a
KH
1589 * pc->mem_cgroup may be overwritten.
1590 *
1591 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1592 * under hierarchy of moving cgroups. This is for
1593 * waiting at hith-memory prressure caused by "move".
1594 */
1595
13fd1dd9 1596static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1597{
1598 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1599 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1600}
4b534334 1601
c0ff4b85 1602static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1603{
2bd9bb20
KH
1604 struct mem_cgroup *from;
1605 struct mem_cgroup *to;
4b534334 1606 bool ret = false;
2bd9bb20
KH
1607 /*
1608 * Unlike task_move routines, we access mc.to, mc.from not under
1609 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1610 */
1611 spin_lock(&mc.lock);
1612 from = mc.from;
1613 to = mc.to;
1614 if (!from)
1615 goto unlock;
3e92041d 1616
c0ff4b85
R
1617 ret = mem_cgroup_same_or_subtree(memcg, from)
1618 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1619unlock:
1620 spin_unlock(&mc.lock);
4b534334
KH
1621 return ret;
1622}
1623
c0ff4b85 1624static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1625{
1626 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1627 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1628 DEFINE_WAIT(wait);
1629 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1630 /* moving charge context might have finished. */
1631 if (mc.moving_task)
1632 schedule();
1633 finish_wait(&mc.waitq, &wait);
1634 return true;
1635 }
1636 }
1637 return false;
1638}
1639
312734c0
KH
1640/*
1641 * Take this lock when
1642 * - a code tries to modify page's memcg while it's USED.
1643 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1644 * see mem_cgroup_stolen(), too.
312734c0
KH
1645 */
1646static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1647 unsigned long *flags)
1648{
1649 spin_lock_irqsave(&memcg->move_lock, *flags);
1650}
1651
1652static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1653 unsigned long *flags)
1654{
1655 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1656}
1657
58cf188e 1658#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1659/**
58cf188e 1660 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1661 * @memcg: The memory cgroup that went over limit
1662 * @p: Task that is going to be killed
1663 *
1664 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1665 * enabled
1666 */
1667void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1668{
e61734c5 1669 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1670 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1671 struct mem_cgroup *iter;
1672 unsigned int i;
e222432b 1673
58cf188e 1674 if (!p)
e222432b
BS
1675 return;
1676
08088cb9 1677 mutex_lock(&oom_info_lock);
e222432b
BS
1678 rcu_read_lock();
1679
e61734c5
TH
1680 pr_info("Task in ");
1681 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1682 pr_info(" killed as a result of limit of ");
1683 pr_cont_cgroup_path(memcg->css.cgroup);
1684 pr_info("\n");
e222432b 1685
e222432b
BS
1686 rcu_read_unlock();
1687
d045197f 1688 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1689 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1690 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1691 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1692 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1693 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1694 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1695 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1696 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1697 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1700
1701 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1702 pr_info("Memory cgroup stats for ");
1703 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1704 pr_cont(":");
1705
1706 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1707 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1708 continue;
1709 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1710 K(mem_cgroup_read_stat(iter, i)));
1711 }
1712
1713 for (i = 0; i < NR_LRU_LISTS; i++)
1714 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1715 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1716
1717 pr_cont("\n");
1718 }
08088cb9 1719 mutex_unlock(&oom_info_lock);
e222432b
BS
1720}
1721
81d39c20
KH
1722/*
1723 * This function returns the number of memcg under hierarchy tree. Returns
1724 * 1(self count) if no children.
1725 */
c0ff4b85 1726static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1727{
1728 int num = 0;
7d74b06f
KH
1729 struct mem_cgroup *iter;
1730
c0ff4b85 1731 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1732 num++;
81d39c20
KH
1733 return num;
1734}
1735
a63d83f4
DR
1736/*
1737 * Return the memory (and swap, if configured) limit for a memcg.
1738 */
9cbb78bb 1739static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1740{
1741 u64 limit;
a63d83f4 1742
f3e8eb70 1743 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1744
a63d83f4 1745 /*
9a5a8f19 1746 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1747 */
9a5a8f19
MH
1748 if (mem_cgroup_swappiness(memcg)) {
1749 u64 memsw;
1750
1751 limit += total_swap_pages << PAGE_SHIFT;
1752 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1753
1754 /*
1755 * If memsw is finite and limits the amount of swap space
1756 * available to this memcg, return that limit.
1757 */
1758 limit = min(limit, memsw);
1759 }
1760
1761 return limit;
a63d83f4
DR
1762}
1763
19965460
DR
1764static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1765 int order)
9cbb78bb
DR
1766{
1767 struct mem_cgroup *iter;
1768 unsigned long chosen_points = 0;
1769 unsigned long totalpages;
1770 unsigned int points = 0;
1771 struct task_struct *chosen = NULL;
1772
876aafbf 1773 /*
465adcf1
DR
1774 * If current has a pending SIGKILL or is exiting, then automatically
1775 * select it. The goal is to allow it to allocate so that it may
1776 * quickly exit and free its memory.
876aafbf 1777 */
465adcf1 1778 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1779 set_thread_flag(TIF_MEMDIE);
1780 return;
1781 }
1782
1783 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1784 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1785 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1786 struct css_task_iter it;
9cbb78bb
DR
1787 struct task_struct *task;
1788
72ec7029
TH
1789 css_task_iter_start(&iter->css, &it);
1790 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1791 switch (oom_scan_process_thread(task, totalpages, NULL,
1792 false)) {
1793 case OOM_SCAN_SELECT:
1794 if (chosen)
1795 put_task_struct(chosen);
1796 chosen = task;
1797 chosen_points = ULONG_MAX;
1798 get_task_struct(chosen);
1799 /* fall through */
1800 case OOM_SCAN_CONTINUE:
1801 continue;
1802 case OOM_SCAN_ABORT:
72ec7029 1803 css_task_iter_end(&it);
9cbb78bb
DR
1804 mem_cgroup_iter_break(memcg, iter);
1805 if (chosen)
1806 put_task_struct(chosen);
1807 return;
1808 case OOM_SCAN_OK:
1809 break;
1810 };
1811 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1812 if (!points || points < chosen_points)
1813 continue;
1814 /* Prefer thread group leaders for display purposes */
1815 if (points == chosen_points &&
1816 thread_group_leader(chosen))
1817 continue;
1818
1819 if (chosen)
1820 put_task_struct(chosen);
1821 chosen = task;
1822 chosen_points = points;
1823 get_task_struct(chosen);
9cbb78bb 1824 }
72ec7029 1825 css_task_iter_end(&it);
9cbb78bb
DR
1826 }
1827
1828 if (!chosen)
1829 return;
1830 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1831 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1832 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1833}
1834
5660048c
JW
1835static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1836 gfp_t gfp_mask,
1837 unsigned long flags)
1838{
1839 unsigned long total = 0;
1840 bool noswap = false;
1841 int loop;
1842
1843 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1844 noswap = true;
1845 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1846 noswap = true;
1847
1848 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1849 if (loop)
1850 drain_all_stock_async(memcg);
1851 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1852 /*
1853 * Allow limit shrinkers, which are triggered directly
1854 * by userspace, to catch signals and stop reclaim
1855 * after minimal progress, regardless of the margin.
1856 */
1857 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1858 break;
1859 if (mem_cgroup_margin(memcg))
1860 break;
1861 /*
1862 * If nothing was reclaimed after two attempts, there
1863 * may be no reclaimable pages in this hierarchy.
1864 */
1865 if (loop && !total)
1866 break;
1867 }
1868 return total;
1869}
1870
4d0c066d
KH
1871/**
1872 * test_mem_cgroup_node_reclaimable
dad7557e 1873 * @memcg: the target memcg
4d0c066d
KH
1874 * @nid: the node ID to be checked.
1875 * @noswap : specify true here if the user wants flle only information.
1876 *
1877 * This function returns whether the specified memcg contains any
1878 * reclaimable pages on a node. Returns true if there are any reclaimable
1879 * pages in the node.
1880 */
c0ff4b85 1881static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1882 int nid, bool noswap)
1883{
c0ff4b85 1884 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1885 return true;
1886 if (noswap || !total_swap_pages)
1887 return false;
c0ff4b85 1888 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1889 return true;
1890 return false;
1891
1892}
bb4cc1a8 1893#if MAX_NUMNODES > 1
889976db
YH
1894
1895/*
1896 * Always updating the nodemask is not very good - even if we have an empty
1897 * list or the wrong list here, we can start from some node and traverse all
1898 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1899 *
1900 */
c0ff4b85 1901static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1902{
1903 int nid;
453a9bf3
KH
1904 /*
1905 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1906 * pagein/pageout changes since the last update.
1907 */
c0ff4b85 1908 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1909 return;
c0ff4b85 1910 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1911 return;
1912
889976db 1913 /* make a nodemask where this memcg uses memory from */
31aaea4a 1914 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1915
31aaea4a 1916 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1917
c0ff4b85
R
1918 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1919 node_clear(nid, memcg->scan_nodes);
889976db 1920 }
453a9bf3 1921
c0ff4b85
R
1922 atomic_set(&memcg->numainfo_events, 0);
1923 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1924}
1925
1926/*
1927 * Selecting a node where we start reclaim from. Because what we need is just
1928 * reducing usage counter, start from anywhere is O,K. Considering
1929 * memory reclaim from current node, there are pros. and cons.
1930 *
1931 * Freeing memory from current node means freeing memory from a node which
1932 * we'll use or we've used. So, it may make LRU bad. And if several threads
1933 * hit limits, it will see a contention on a node. But freeing from remote
1934 * node means more costs for memory reclaim because of memory latency.
1935 *
1936 * Now, we use round-robin. Better algorithm is welcomed.
1937 */
c0ff4b85 1938int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1939{
1940 int node;
1941
c0ff4b85
R
1942 mem_cgroup_may_update_nodemask(memcg);
1943 node = memcg->last_scanned_node;
889976db 1944
c0ff4b85 1945 node = next_node(node, memcg->scan_nodes);
889976db 1946 if (node == MAX_NUMNODES)
c0ff4b85 1947 node = first_node(memcg->scan_nodes);
889976db
YH
1948 /*
1949 * We call this when we hit limit, not when pages are added to LRU.
1950 * No LRU may hold pages because all pages are UNEVICTABLE or
1951 * memcg is too small and all pages are not on LRU. In that case,
1952 * we use curret node.
1953 */
1954 if (unlikely(node == MAX_NUMNODES))
1955 node = numa_node_id();
1956
c0ff4b85 1957 memcg->last_scanned_node = node;
889976db
YH
1958 return node;
1959}
1960
bb4cc1a8
AM
1961/*
1962 * Check all nodes whether it contains reclaimable pages or not.
1963 * For quick scan, we make use of scan_nodes. This will allow us to skip
1964 * unused nodes. But scan_nodes is lazily updated and may not cotain
1965 * enough new information. We need to do double check.
1966 */
1967static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1968{
1969 int nid;
1970
1971 /*
1972 * quick check...making use of scan_node.
1973 * We can skip unused nodes.
1974 */
1975 if (!nodes_empty(memcg->scan_nodes)) {
1976 for (nid = first_node(memcg->scan_nodes);
1977 nid < MAX_NUMNODES;
1978 nid = next_node(nid, memcg->scan_nodes)) {
1979
1980 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1981 return true;
1982 }
1983 }
1984 /*
1985 * Check rest of nodes.
1986 */
1987 for_each_node_state(nid, N_MEMORY) {
1988 if (node_isset(nid, memcg->scan_nodes))
1989 continue;
1990 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1991 return true;
1992 }
1993 return false;
1994}
1995
889976db 1996#else
c0ff4b85 1997int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1998{
1999 return 0;
2000}
4d0c066d 2001
bb4cc1a8
AM
2002static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2003{
2004 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2005}
889976db
YH
2006#endif
2007
0608f43d
AM
2008static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2009 struct zone *zone,
2010 gfp_t gfp_mask,
2011 unsigned long *total_scanned)
2012{
2013 struct mem_cgroup *victim = NULL;
2014 int total = 0;
2015 int loop = 0;
2016 unsigned long excess;
2017 unsigned long nr_scanned;
2018 struct mem_cgroup_reclaim_cookie reclaim = {
2019 .zone = zone,
2020 .priority = 0,
2021 };
2022
2023 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2024
2025 while (1) {
2026 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2027 if (!victim) {
2028 loop++;
2029 if (loop >= 2) {
2030 /*
2031 * If we have not been able to reclaim
2032 * anything, it might because there are
2033 * no reclaimable pages under this hierarchy
2034 */
2035 if (!total)
2036 break;
2037 /*
2038 * We want to do more targeted reclaim.
2039 * excess >> 2 is not to excessive so as to
2040 * reclaim too much, nor too less that we keep
2041 * coming back to reclaim from this cgroup
2042 */
2043 if (total >= (excess >> 2) ||
2044 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2045 break;
2046 }
2047 continue;
2048 }
2049 if (!mem_cgroup_reclaimable(victim, false))
2050 continue;
2051 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2052 zone, &nr_scanned);
2053 *total_scanned += nr_scanned;
2054 if (!res_counter_soft_limit_excess(&root_memcg->res))
2055 break;
6d61ef40 2056 }
0608f43d
AM
2057 mem_cgroup_iter_break(root_memcg, victim);
2058 return total;
6d61ef40
BS
2059}
2060
0056f4e6
JW
2061#ifdef CONFIG_LOCKDEP
2062static struct lockdep_map memcg_oom_lock_dep_map = {
2063 .name = "memcg_oom_lock",
2064};
2065#endif
2066
fb2a6fc5
JW
2067static DEFINE_SPINLOCK(memcg_oom_lock);
2068
867578cb
KH
2069/*
2070 * Check OOM-Killer is already running under our hierarchy.
2071 * If someone is running, return false.
2072 */
fb2a6fc5 2073static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2074{
79dfdacc 2075 struct mem_cgroup *iter, *failed = NULL;
a636b327 2076
fb2a6fc5
JW
2077 spin_lock(&memcg_oom_lock);
2078
9f3a0d09 2079 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2080 if (iter->oom_lock) {
79dfdacc
MH
2081 /*
2082 * this subtree of our hierarchy is already locked
2083 * so we cannot give a lock.
2084 */
79dfdacc 2085 failed = iter;
9f3a0d09
JW
2086 mem_cgroup_iter_break(memcg, iter);
2087 break;
23751be0
JW
2088 } else
2089 iter->oom_lock = true;
7d74b06f 2090 }
867578cb 2091
fb2a6fc5
JW
2092 if (failed) {
2093 /*
2094 * OK, we failed to lock the whole subtree so we have
2095 * to clean up what we set up to the failing subtree
2096 */
2097 for_each_mem_cgroup_tree(iter, memcg) {
2098 if (iter == failed) {
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
2101 }
2102 iter->oom_lock = false;
79dfdacc 2103 }
0056f4e6
JW
2104 } else
2105 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2106
2107 spin_unlock(&memcg_oom_lock);
2108
2109 return !failed;
a636b327 2110}
0b7f569e 2111
fb2a6fc5 2112static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2113{
7d74b06f
KH
2114 struct mem_cgroup *iter;
2115
fb2a6fc5 2116 spin_lock(&memcg_oom_lock);
0056f4e6 2117 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2118 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2119 iter->oom_lock = false;
fb2a6fc5 2120 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2121}
2122
c0ff4b85 2123static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2124{
2125 struct mem_cgroup *iter;
2126
c0ff4b85 2127 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2128 atomic_inc(&iter->under_oom);
2129}
2130
c0ff4b85 2131static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2132{
2133 struct mem_cgroup *iter;
2134
867578cb
KH
2135 /*
2136 * When a new child is created while the hierarchy is under oom,
2137 * mem_cgroup_oom_lock() may not be called. We have to use
2138 * atomic_add_unless() here.
2139 */
c0ff4b85 2140 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2141 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2142}
2143
867578cb
KH
2144static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2145
dc98df5a 2146struct oom_wait_info {
d79154bb 2147 struct mem_cgroup *memcg;
dc98df5a
KH
2148 wait_queue_t wait;
2149};
2150
2151static int memcg_oom_wake_function(wait_queue_t *wait,
2152 unsigned mode, int sync, void *arg)
2153{
d79154bb
HD
2154 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2155 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2156 struct oom_wait_info *oom_wait_info;
2157
2158 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2159 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2160
dc98df5a 2161 /*
d79154bb 2162 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2163 * Then we can use css_is_ancestor without taking care of RCU.
2164 */
c0ff4b85
R
2165 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2166 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2167 return 0;
dc98df5a
KH
2168 return autoremove_wake_function(wait, mode, sync, arg);
2169}
2170
c0ff4b85 2171static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2172{
3812c8c8 2173 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2174 /* for filtering, pass "memcg" as argument. */
2175 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2176}
2177
c0ff4b85 2178static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2179{
c0ff4b85
R
2180 if (memcg && atomic_read(&memcg->under_oom))
2181 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2182}
2183
3812c8c8 2184static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2185{
3812c8c8
JW
2186 if (!current->memcg_oom.may_oom)
2187 return;
867578cb 2188 /*
49426420
JW
2189 * We are in the middle of the charge context here, so we
2190 * don't want to block when potentially sitting on a callstack
2191 * that holds all kinds of filesystem and mm locks.
2192 *
2193 * Also, the caller may handle a failed allocation gracefully
2194 * (like optional page cache readahead) and so an OOM killer
2195 * invocation might not even be necessary.
2196 *
2197 * That's why we don't do anything here except remember the
2198 * OOM context and then deal with it at the end of the page
2199 * fault when the stack is unwound, the locks are released,
2200 * and when we know whether the fault was overall successful.
867578cb 2201 */
49426420
JW
2202 css_get(&memcg->css);
2203 current->memcg_oom.memcg = memcg;
2204 current->memcg_oom.gfp_mask = mask;
2205 current->memcg_oom.order = order;
3812c8c8
JW
2206}
2207
2208/**
2209 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2210 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2211 *
49426420
JW
2212 * This has to be called at the end of a page fault if the memcg OOM
2213 * handler was enabled.
3812c8c8 2214 *
49426420 2215 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2216 * sleep on a waitqueue until the userspace task resolves the
2217 * situation. Sleeping directly in the charge context with all kinds
2218 * of locks held is not a good idea, instead we remember an OOM state
2219 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2220 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2221 *
2222 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2223 * completed, %false otherwise.
3812c8c8 2224 */
49426420 2225bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2226{
49426420 2227 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2228 struct oom_wait_info owait;
49426420 2229 bool locked;
3812c8c8
JW
2230
2231 /* OOM is global, do not handle */
3812c8c8 2232 if (!memcg)
49426420 2233 return false;
3812c8c8 2234
49426420
JW
2235 if (!handle)
2236 goto cleanup;
3812c8c8
JW
2237
2238 owait.memcg = memcg;
2239 owait.wait.flags = 0;
2240 owait.wait.func = memcg_oom_wake_function;
2241 owait.wait.private = current;
2242 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2243
3812c8c8 2244 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2245 mem_cgroup_mark_under_oom(memcg);
2246
2247 locked = mem_cgroup_oom_trylock(memcg);
2248
2249 if (locked)
2250 mem_cgroup_oom_notify(memcg);
2251
2252 if (locked && !memcg->oom_kill_disable) {
2253 mem_cgroup_unmark_under_oom(memcg);
2254 finish_wait(&memcg_oom_waitq, &owait.wait);
2255 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2256 current->memcg_oom.order);
2257 } else {
3812c8c8 2258 schedule();
49426420
JW
2259 mem_cgroup_unmark_under_oom(memcg);
2260 finish_wait(&memcg_oom_waitq, &owait.wait);
2261 }
2262
2263 if (locked) {
fb2a6fc5
JW
2264 mem_cgroup_oom_unlock(memcg);
2265 /*
2266 * There is no guarantee that an OOM-lock contender
2267 * sees the wakeups triggered by the OOM kill
2268 * uncharges. Wake any sleepers explicitely.
2269 */
2270 memcg_oom_recover(memcg);
2271 }
49426420
JW
2272cleanup:
2273 current->memcg_oom.memcg = NULL;
3812c8c8 2274 css_put(&memcg->css);
867578cb 2275 return true;
0b7f569e
KH
2276}
2277
d69b042f
BS
2278/*
2279 * Currently used to update mapped file statistics, but the routine can be
2280 * generalized to update other statistics as well.
32047e2a
KH
2281 *
2282 * Notes: Race condition
2283 *
2284 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2285 * it tends to be costly. But considering some conditions, we doesn't need
2286 * to do so _always_.
2287 *
2288 * Considering "charge", lock_page_cgroup() is not required because all
2289 * file-stat operations happen after a page is attached to radix-tree. There
2290 * are no race with "charge".
2291 *
2292 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2293 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2294 * if there are race with "uncharge". Statistics itself is properly handled
2295 * by flags.
2296 *
2297 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2298 * small, we check mm->moving_account and detect there are possibility of race
2299 * If there is, we take a lock.
d69b042f 2300 */
26174efd 2301
89c06bd5
KH
2302void __mem_cgroup_begin_update_page_stat(struct page *page,
2303 bool *locked, unsigned long *flags)
2304{
2305 struct mem_cgroup *memcg;
2306 struct page_cgroup *pc;
2307
2308 pc = lookup_page_cgroup(page);
2309again:
2310 memcg = pc->mem_cgroup;
2311 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2312 return;
2313 /*
2314 * If this memory cgroup is not under account moving, we don't
da92c47d 2315 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2316 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2317 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2318 */
13fd1dd9 2319 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2320 return;
2321
2322 move_lock_mem_cgroup(memcg, flags);
2323 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2324 move_unlock_mem_cgroup(memcg, flags);
2325 goto again;
2326 }
2327 *locked = true;
2328}
2329
2330void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2331{
2332 struct page_cgroup *pc = lookup_page_cgroup(page);
2333
2334 /*
2335 * It's guaranteed that pc->mem_cgroup never changes while
2336 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2337 * should take move_lock_mem_cgroup().
89c06bd5
KH
2338 */
2339 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2340}
2341
2a7106f2 2342void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2343 enum mem_cgroup_stat_index idx, int val)
d69b042f 2344{
c0ff4b85 2345 struct mem_cgroup *memcg;
32047e2a 2346 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2347 unsigned long uninitialized_var(flags);
d69b042f 2348
cfa44946 2349 if (mem_cgroup_disabled())
d69b042f 2350 return;
89c06bd5 2351
658b72c5 2352 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2353 memcg = pc->mem_cgroup;
2354 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2355 return;
26174efd 2356
c0ff4b85 2357 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2358}
26174efd 2359
cdec2e42
KH
2360/*
2361 * size of first charge trial. "32" comes from vmscan.c's magic value.
2362 * TODO: maybe necessary to use big numbers in big irons.
2363 */
7ec99d62 2364#define CHARGE_BATCH 32U
cdec2e42
KH
2365struct memcg_stock_pcp {
2366 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2367 unsigned int nr_pages;
cdec2e42 2368 struct work_struct work;
26fe6168 2369 unsigned long flags;
a0db00fc 2370#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2371};
2372static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2373static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2374
a0956d54
SS
2375/**
2376 * consume_stock: Try to consume stocked charge on this cpu.
2377 * @memcg: memcg to consume from.
2378 * @nr_pages: how many pages to charge.
2379 *
2380 * The charges will only happen if @memcg matches the current cpu's memcg
2381 * stock, and at least @nr_pages are available in that stock. Failure to
2382 * service an allocation will refill the stock.
2383 *
2384 * returns true if successful, false otherwise.
cdec2e42 2385 */
a0956d54 2386static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2387{
2388 struct memcg_stock_pcp *stock;
2389 bool ret = true;
2390
a0956d54
SS
2391 if (nr_pages > CHARGE_BATCH)
2392 return false;
2393
cdec2e42 2394 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2395 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2396 stock->nr_pages -= nr_pages;
cdec2e42
KH
2397 else /* need to call res_counter_charge */
2398 ret = false;
2399 put_cpu_var(memcg_stock);
2400 return ret;
2401}
2402
2403/*
2404 * Returns stocks cached in percpu to res_counter and reset cached information.
2405 */
2406static void drain_stock(struct memcg_stock_pcp *stock)
2407{
2408 struct mem_cgroup *old = stock->cached;
2409
11c9ea4e
JW
2410 if (stock->nr_pages) {
2411 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2412
2413 res_counter_uncharge(&old->res, bytes);
cdec2e42 2414 if (do_swap_account)
11c9ea4e
JW
2415 res_counter_uncharge(&old->memsw, bytes);
2416 stock->nr_pages = 0;
cdec2e42
KH
2417 }
2418 stock->cached = NULL;
cdec2e42
KH
2419}
2420
2421/*
2422 * This must be called under preempt disabled or must be called by
2423 * a thread which is pinned to local cpu.
2424 */
2425static void drain_local_stock(struct work_struct *dummy)
2426{
2427 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2428 drain_stock(stock);
26fe6168 2429 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2430}
2431
e4777496
MH
2432static void __init memcg_stock_init(void)
2433{
2434 int cpu;
2435
2436 for_each_possible_cpu(cpu) {
2437 struct memcg_stock_pcp *stock =
2438 &per_cpu(memcg_stock, cpu);
2439 INIT_WORK(&stock->work, drain_local_stock);
2440 }
2441}
2442
cdec2e42
KH
2443/*
2444 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2445 * This will be consumed by consume_stock() function, later.
cdec2e42 2446 */
c0ff4b85 2447static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2448{
2449 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2450
c0ff4b85 2451 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2452 drain_stock(stock);
c0ff4b85 2453 stock->cached = memcg;
cdec2e42 2454 }
11c9ea4e 2455 stock->nr_pages += nr_pages;
cdec2e42
KH
2456 put_cpu_var(memcg_stock);
2457}
2458
2459/*
c0ff4b85 2460 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2461 * of the hierarchy under it. sync flag says whether we should block
2462 * until the work is done.
cdec2e42 2463 */
c0ff4b85 2464static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2465{
26fe6168 2466 int cpu, curcpu;
d38144b7 2467
cdec2e42 2468 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2469 get_online_cpus();
5af12d0e 2470 curcpu = get_cpu();
cdec2e42
KH
2471 for_each_online_cpu(cpu) {
2472 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2473 struct mem_cgroup *memcg;
26fe6168 2474
c0ff4b85
R
2475 memcg = stock->cached;
2476 if (!memcg || !stock->nr_pages)
26fe6168 2477 continue;
c0ff4b85 2478 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2479 continue;
d1a05b69
MH
2480 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2481 if (cpu == curcpu)
2482 drain_local_stock(&stock->work);
2483 else
2484 schedule_work_on(cpu, &stock->work);
2485 }
cdec2e42 2486 }
5af12d0e 2487 put_cpu();
d38144b7
MH
2488
2489 if (!sync)
2490 goto out;
2491
2492 for_each_online_cpu(cpu) {
2493 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2494 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2495 flush_work(&stock->work);
2496 }
2497out:
f894ffa8 2498 put_online_cpus();
d38144b7
MH
2499}
2500
2501/*
2502 * Tries to drain stocked charges in other cpus. This function is asynchronous
2503 * and just put a work per cpu for draining localy on each cpu. Caller can
2504 * expects some charges will be back to res_counter later but cannot wait for
2505 * it.
2506 */
c0ff4b85 2507static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2508{
9f50fad6
MH
2509 /*
2510 * If someone calls draining, avoid adding more kworker runs.
2511 */
2512 if (!mutex_trylock(&percpu_charge_mutex))
2513 return;
c0ff4b85 2514 drain_all_stock(root_memcg, false);
9f50fad6 2515 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2516}
2517
2518/* This is a synchronous drain interface. */
c0ff4b85 2519static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2520{
2521 /* called when force_empty is called */
9f50fad6 2522 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2523 drain_all_stock(root_memcg, true);
9f50fad6 2524 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2525}
2526
711d3d2c
KH
2527/*
2528 * This function drains percpu counter value from DEAD cpu and
2529 * move it to local cpu. Note that this function can be preempted.
2530 */
c0ff4b85 2531static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2532{
2533 int i;
2534
c0ff4b85 2535 spin_lock(&memcg->pcp_counter_lock);
6104621d 2536 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2537 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2538
c0ff4b85
R
2539 per_cpu(memcg->stat->count[i], cpu) = 0;
2540 memcg->nocpu_base.count[i] += x;
711d3d2c 2541 }
e9f8974f 2542 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2543 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2544
c0ff4b85
R
2545 per_cpu(memcg->stat->events[i], cpu) = 0;
2546 memcg->nocpu_base.events[i] += x;
e9f8974f 2547 }
c0ff4b85 2548 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2549}
2550
0db0628d 2551static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2552 unsigned long action,
2553 void *hcpu)
2554{
2555 int cpu = (unsigned long)hcpu;
2556 struct memcg_stock_pcp *stock;
711d3d2c 2557 struct mem_cgroup *iter;
cdec2e42 2558
619d094b 2559 if (action == CPU_ONLINE)
1489ebad 2560 return NOTIFY_OK;
1489ebad 2561
d833049b 2562 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2563 return NOTIFY_OK;
711d3d2c 2564
9f3a0d09 2565 for_each_mem_cgroup(iter)
711d3d2c
KH
2566 mem_cgroup_drain_pcp_counter(iter, cpu);
2567
cdec2e42
KH
2568 stock = &per_cpu(memcg_stock, cpu);
2569 drain_stock(stock);
2570 return NOTIFY_OK;
2571}
2572
4b534334 2573
6d1fdc48 2574/* See mem_cgroup_try_charge() for details */
4b534334
KH
2575enum {
2576 CHARGE_OK, /* success */
2577 CHARGE_RETRY, /* need to retry but retry is not bad */
2578 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2579 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2580};
2581
c0ff4b85 2582static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2583 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2584 bool invoke_oom)
4b534334 2585{
7ec99d62 2586 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2587 struct mem_cgroup *mem_over_limit;
2588 struct res_counter *fail_res;
2589 unsigned long flags = 0;
2590 int ret;
2591
c0ff4b85 2592 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2593
2594 if (likely(!ret)) {
2595 if (!do_swap_account)
2596 return CHARGE_OK;
c0ff4b85 2597 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2598 if (likely(!ret))
2599 return CHARGE_OK;
2600
c0ff4b85 2601 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2602 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2603 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2604 } else
2605 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2606 /*
9221edb7
JW
2607 * Never reclaim on behalf of optional batching, retry with a
2608 * single page instead.
2609 */
4c9c5359 2610 if (nr_pages > min_pages)
4b534334
KH
2611 return CHARGE_RETRY;
2612
2613 if (!(gfp_mask & __GFP_WAIT))
2614 return CHARGE_WOULDBLOCK;
2615
4c9c5359
SS
2616 if (gfp_mask & __GFP_NORETRY)
2617 return CHARGE_NOMEM;
2618
5660048c 2619 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2620 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2621 return CHARGE_RETRY;
4b534334 2622 /*
19942822
JW
2623 * Even though the limit is exceeded at this point, reclaim
2624 * may have been able to free some pages. Retry the charge
2625 * before killing the task.
2626 *
2627 * Only for regular pages, though: huge pages are rather
2628 * unlikely to succeed so close to the limit, and we fall back
2629 * to regular pages anyway in case of failure.
4b534334 2630 */
4c9c5359 2631 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2632 return CHARGE_RETRY;
2633
2634 /*
2635 * At task move, charge accounts can be doubly counted. So, it's
2636 * better to wait until the end of task_move if something is going on.
2637 */
2638 if (mem_cgroup_wait_acct_move(mem_over_limit))
2639 return CHARGE_RETRY;
2640
3812c8c8
JW
2641 if (invoke_oom)
2642 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2643
3812c8c8 2644 return CHARGE_NOMEM;
4b534334
KH
2645}
2646
6d1fdc48
JW
2647/**
2648 * mem_cgroup_try_charge - try charging a memcg
2649 * @memcg: memcg to charge
2650 * @nr_pages: number of pages to charge
2651 * @oom: trigger OOM if reclaim fails
38c5d72f 2652 *
6d1fdc48
JW
2653 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2654 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
8a9f3ccd 2655 */
6d1fdc48
JW
2656static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2657 gfp_t gfp_mask,
2658 unsigned int nr_pages,
2659 bool oom)
8a9f3ccd 2660{
7ec99d62 2661 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2662 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
4b534334 2663 int ret;
a636b327 2664
6d1fdc48
JW
2665 if (mem_cgroup_is_root(memcg))
2666 goto done;
867578cb 2667 /*
6d1fdc48
JW
2668 * Unlike in global OOM situations, memcg is not in a physical
2669 * memory shortage. Allow dying and OOM-killed tasks to
2670 * bypass the last charges so that they can exit quickly and
2671 * free their memory.
867578cb 2672 */
6d1fdc48
JW
2673 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2674 fatal_signal_pending(current)))
867578cb 2675 goto bypass;
a636b327 2676
49426420 2677 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2678 goto nomem;
49426420 2679
a0d8b00a
JW
2680 if (gfp_mask & __GFP_NOFAIL)
2681 oom = false;
f75ca962 2682again:
b6b6cc72
MH
2683 if (consume_stock(memcg, nr_pages))
2684 goto done;
8a9f3ccd 2685
4b534334 2686 do {
3812c8c8 2687 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2688
4b534334 2689 /* If killed, bypass charge */
6d1fdc48 2690 if (fatal_signal_pending(current))
4b534334 2691 goto bypass;
6d61ef40 2692
3812c8c8
JW
2693 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2694 nr_pages, invoke_oom);
4b534334
KH
2695 switch (ret) {
2696 case CHARGE_OK:
2697 break;
2698 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2699 batch = nr_pages;
f75ca962 2700 goto again;
4b534334
KH
2701 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2702 goto nomem;
2703 case CHARGE_NOMEM: /* OOM routine works */
6d1fdc48 2704 if (!oom || invoke_oom)
867578cb 2705 goto nomem;
4b534334
KH
2706 nr_oom_retries--;
2707 break;
66e1707b 2708 }
4b534334
KH
2709 } while (ret != CHARGE_OK);
2710
7ec99d62 2711 if (batch > nr_pages)
c0ff4b85 2712 refill_stock(memcg, batch - nr_pages);
0c3e73e8 2713done:
7a81b88c
KH
2714 return 0;
2715nomem:
6d1fdc48 2716 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2717 return -ENOMEM;
867578cb 2718bypass:
38c5d72f 2719 return -EINTR;
7a81b88c 2720}
8a9f3ccd 2721
6d1fdc48
JW
2722/**
2723 * mem_cgroup_try_charge_mm - try charging a mm
2724 * @mm: mm_struct to charge
2725 * @nr_pages: number of pages to charge
2726 * @oom: trigger OOM if reclaim fails
2727 *
2728 * Returns the charged mem_cgroup associated with the given mm_struct or
2729 * NULL the charge failed.
2730 */
2731static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2732 gfp_t gfp_mask,
2733 unsigned int nr_pages,
2734 bool oom)
2735
2736{
2737 struct mem_cgroup *memcg;
2738 int ret;
2739
2740 memcg = get_mem_cgroup_from_mm(mm);
2741 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2742 css_put(&memcg->css);
2743 if (ret == -EINTR)
2744 memcg = root_mem_cgroup;
2745 else if (ret)
2746 memcg = NULL;
2747
2748 return memcg;
2749}
2750
a3032a2c
DN
2751/*
2752 * Somemtimes we have to undo a charge we got by try_charge().
2753 * This function is for that and do uncharge, put css's refcnt.
2754 * gotten by try_charge().
2755 */
c0ff4b85 2756static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2757 unsigned int nr_pages)
a3032a2c 2758{
c0ff4b85 2759 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2760 unsigned long bytes = nr_pages * PAGE_SIZE;
2761
c0ff4b85 2762 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2763 if (do_swap_account)
c0ff4b85 2764 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2765 }
854ffa8d
DN
2766}
2767
d01dd17f
KH
2768/*
2769 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2770 * This is useful when moving usage to parent cgroup.
2771 */
2772static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2773 unsigned int nr_pages)
2774{
2775 unsigned long bytes = nr_pages * PAGE_SIZE;
2776
2777 if (mem_cgroup_is_root(memcg))
2778 return;
2779
2780 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2781 if (do_swap_account)
2782 res_counter_uncharge_until(&memcg->memsw,
2783 memcg->memsw.parent, bytes);
2784}
2785
a3b2d692
KH
2786/*
2787 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2788 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2789 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2790 * called against removed memcg.)
a3b2d692
KH
2791 */
2792static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2793{
a3b2d692
KH
2794 /* ID 0 is unused ID */
2795 if (!id)
2796 return NULL;
34c00c31 2797 return mem_cgroup_from_id(id);
a3b2d692
KH
2798}
2799
e42d9d5d 2800struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2801{
c0ff4b85 2802 struct mem_cgroup *memcg = NULL;
3c776e64 2803 struct page_cgroup *pc;
a3b2d692 2804 unsigned short id;
b5a84319
KH
2805 swp_entry_t ent;
2806
309381fe 2807 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2808
3c776e64 2809 pc = lookup_page_cgroup(page);
c0bd3f63 2810 lock_page_cgroup(pc);
a3b2d692 2811 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2812 memcg = pc->mem_cgroup;
2813 if (memcg && !css_tryget(&memcg->css))
2814 memcg = NULL;
e42d9d5d 2815 } else if (PageSwapCache(page)) {
3c776e64 2816 ent.val = page_private(page);
9fb4b7cc 2817 id = lookup_swap_cgroup_id(ent);
a3b2d692 2818 rcu_read_lock();
c0ff4b85
R
2819 memcg = mem_cgroup_lookup(id);
2820 if (memcg && !css_tryget(&memcg->css))
2821 memcg = NULL;
a3b2d692 2822 rcu_read_unlock();
3c776e64 2823 }
c0bd3f63 2824 unlock_page_cgroup(pc);
c0ff4b85 2825 return memcg;
b5a84319
KH
2826}
2827
c0ff4b85 2828static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2829 struct page *page,
7ec99d62 2830 unsigned int nr_pages,
9ce70c02
HD
2831 enum charge_type ctype,
2832 bool lrucare)
7a81b88c 2833{
ce587e65 2834 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2835 struct zone *uninitialized_var(zone);
fa9add64 2836 struct lruvec *lruvec;
9ce70c02 2837 bool was_on_lru = false;
b2402857 2838 bool anon;
9ce70c02 2839
ca3e0214 2840 lock_page_cgroup(pc);
309381fe 2841 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2842 /*
2843 * we don't need page_cgroup_lock about tail pages, becase they are not
2844 * accessed by any other context at this point.
2845 */
9ce70c02
HD
2846
2847 /*
2848 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2849 * may already be on some other mem_cgroup's LRU. Take care of it.
2850 */
2851 if (lrucare) {
2852 zone = page_zone(page);
2853 spin_lock_irq(&zone->lru_lock);
2854 if (PageLRU(page)) {
fa9add64 2855 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2856 ClearPageLRU(page);
fa9add64 2857 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2858 was_on_lru = true;
2859 }
2860 }
2861
c0ff4b85 2862 pc->mem_cgroup = memcg;
261fb61a
KH
2863 /*
2864 * We access a page_cgroup asynchronously without lock_page_cgroup().
2865 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2866 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2867 * before USED bit, we need memory barrier here.
2868 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2869 */
08e552c6 2870 smp_wmb();
b2402857 2871 SetPageCgroupUsed(pc);
3be91277 2872
9ce70c02
HD
2873 if (lrucare) {
2874 if (was_on_lru) {
fa9add64 2875 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2876 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2877 SetPageLRU(page);
fa9add64 2878 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2879 }
2880 spin_unlock_irq(&zone->lru_lock);
2881 }
2882
41326c17 2883 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2884 anon = true;
2885 else
2886 anon = false;
2887
b070e65c 2888 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2889 unlock_page_cgroup(pc);
9ce70c02 2890
430e4863 2891 /*
bb4cc1a8
AM
2892 * "charge_statistics" updated event counter. Then, check it.
2893 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2894 * if they exceeds softlimit.
430e4863 2895 */
c0ff4b85 2896 memcg_check_events(memcg, page);
7a81b88c 2897}
66e1707b 2898
7cf27982
GC
2899static DEFINE_MUTEX(set_limit_mutex);
2900
7ae1e1d0 2901#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
2902static DEFINE_MUTEX(activate_kmem_mutex);
2903
7ae1e1d0
GC
2904static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2905{
2906 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2907 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2908}
2909
1f458cbf
GC
2910/*
2911 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2912 * in the memcg_cache_params struct.
2913 */
2914static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2915{
2916 struct kmem_cache *cachep;
2917
2918 VM_BUG_ON(p->is_root_cache);
2919 cachep = p->root_cache;
7a67d7ab 2920 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2921}
2922
749c5415 2923#ifdef CONFIG_SLABINFO
2da8ca82 2924static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2925{
2da8ca82 2926 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2927 struct memcg_cache_params *params;
2928
2929 if (!memcg_can_account_kmem(memcg))
2930 return -EIO;
2931
2932 print_slabinfo_header(m);
2933
2934 mutex_lock(&memcg->slab_caches_mutex);
2935 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2936 cache_show(memcg_params_to_cache(params), m);
2937 mutex_unlock(&memcg->slab_caches_mutex);
2938
2939 return 0;
2940}
2941#endif
2942
7ae1e1d0
GC
2943static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2944{
2945 struct res_counter *fail_res;
7ae1e1d0 2946 int ret = 0;
7ae1e1d0
GC
2947
2948 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2949 if (ret)
2950 return ret;
2951
6d1fdc48
JW
2952 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2953 oom_gfp_allowed(gfp));
7ae1e1d0
GC
2954 if (ret == -EINTR) {
2955 /*
6d1fdc48 2956 * mem_cgroup_try_charge() chosed to bypass to root due to
7ae1e1d0
GC
2957 * OOM kill or fatal signal. Since our only options are to
2958 * either fail the allocation or charge it to this cgroup, do
2959 * it as a temporary condition. But we can't fail. From a
2960 * kmem/slab perspective, the cache has already been selected,
2961 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2962 * our minds.
2963 *
2964 * This condition will only trigger if the task entered
2965 * memcg_charge_kmem in a sane state, but was OOM-killed during
6d1fdc48 2966 * mem_cgroup_try_charge() above. Tasks that were already
7ae1e1d0
GC
2967 * dying when the allocation triggers should have been already
2968 * directed to the root cgroup in memcontrol.h
2969 */
2970 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2971 if (do_swap_account)
2972 res_counter_charge_nofail(&memcg->memsw, size,
2973 &fail_res);
2974 ret = 0;
2975 } else if (ret)
2976 res_counter_uncharge(&memcg->kmem, size);
2977
2978 return ret;
2979}
2980
2981static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2982{
7ae1e1d0
GC
2983 res_counter_uncharge(&memcg->res, size);
2984 if (do_swap_account)
2985 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2986
2987 /* Not down to 0 */
2988 if (res_counter_uncharge(&memcg->kmem, size))
2989 return;
2990
10d5ebf4
LZ
2991 /*
2992 * Releases a reference taken in kmem_cgroup_css_offline in case
2993 * this last uncharge is racing with the offlining code or it is
2994 * outliving the memcg existence.
2995 *
2996 * The memory barrier imposed by test&clear is paired with the
2997 * explicit one in memcg_kmem_mark_dead().
2998 */
7de37682 2999 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3000 css_put(&memcg->css);
7ae1e1d0
GC
3001}
3002
2633d7a0
GC
3003/*
3004 * helper for acessing a memcg's index. It will be used as an index in the
3005 * child cache array in kmem_cache, and also to derive its name. This function
3006 * will return -1 when this is not a kmem-limited memcg.
3007 */
3008int memcg_cache_id(struct mem_cgroup *memcg)
3009{
3010 return memcg ? memcg->kmemcg_id : -1;
3011}
3012
55007d84
GC
3013static size_t memcg_caches_array_size(int num_groups)
3014{
3015 ssize_t size;
3016 if (num_groups <= 0)
3017 return 0;
3018
3019 size = 2 * num_groups;
3020 if (size < MEMCG_CACHES_MIN_SIZE)
3021 size = MEMCG_CACHES_MIN_SIZE;
3022 else if (size > MEMCG_CACHES_MAX_SIZE)
3023 size = MEMCG_CACHES_MAX_SIZE;
3024
3025 return size;
3026}
3027
3028/*
3029 * We should update the current array size iff all caches updates succeed. This
3030 * can only be done from the slab side. The slab mutex needs to be held when
3031 * calling this.
3032 */
3033void memcg_update_array_size(int num)
3034{
3035 if (num > memcg_limited_groups_array_size)
3036 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3037}
3038
15cf17d2
KK
3039static void kmem_cache_destroy_work_func(struct work_struct *w);
3040
55007d84
GC
3041int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3042{
3043 struct memcg_cache_params *cur_params = s->memcg_params;
3044
f35c3a8e 3045 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3046
3047 if (num_groups > memcg_limited_groups_array_size) {
3048 int i;
f8570263 3049 struct memcg_cache_params *new_params;
55007d84
GC
3050 ssize_t size = memcg_caches_array_size(num_groups);
3051
3052 size *= sizeof(void *);
90c7a79c 3053 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3054
f8570263
VD
3055 new_params = kzalloc(size, GFP_KERNEL);
3056 if (!new_params)
55007d84 3057 return -ENOMEM;
55007d84 3058
f8570263 3059 new_params->is_root_cache = true;
55007d84
GC
3060
3061 /*
3062 * There is the chance it will be bigger than
3063 * memcg_limited_groups_array_size, if we failed an allocation
3064 * in a cache, in which case all caches updated before it, will
3065 * have a bigger array.
3066 *
3067 * But if that is the case, the data after
3068 * memcg_limited_groups_array_size is certainly unused
3069 */
3070 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3071 if (!cur_params->memcg_caches[i])
3072 continue;
f8570263 3073 new_params->memcg_caches[i] =
55007d84
GC
3074 cur_params->memcg_caches[i];
3075 }
3076
3077 /*
3078 * Ideally, we would wait until all caches succeed, and only
3079 * then free the old one. But this is not worth the extra
3080 * pointer per-cache we'd have to have for this.
3081 *
3082 * It is not a big deal if some caches are left with a size
3083 * bigger than the others. And all updates will reset this
3084 * anyway.
3085 */
f8570263
VD
3086 rcu_assign_pointer(s->memcg_params, new_params);
3087 if (cur_params)
3088 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3089 }
3090 return 0;
3091}
3092
5722d094
VD
3093char *memcg_create_cache_name(struct mem_cgroup *memcg,
3094 struct kmem_cache *root_cache)
3095{
3096 static char *buf = NULL;
3097
3098 /*
3099 * We need a mutex here to protect the shared buffer. Since this is
3100 * expected to be called only on cache creation, we can employ the
3101 * slab_mutex for that purpose.
3102 */
3103 lockdep_assert_held(&slab_mutex);
3104
3105 if (!buf) {
3106 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3107 if (!buf)
3108 return NULL;
3109 }
3110
3111 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
3112 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3113 memcg_cache_id(memcg), buf);
3114}
3115
363a044f
VD
3116int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3117 struct kmem_cache *root_cache)
2633d7a0 3118{
90c7a79c 3119 size_t size;
2633d7a0
GC
3120
3121 if (!memcg_kmem_enabled())
3122 return 0;
3123
90c7a79c
AV
3124 if (!memcg) {
3125 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3126 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3127 } else
3128 size = sizeof(struct memcg_cache_params);
55007d84 3129
2633d7a0
GC
3130 s->memcg_params = kzalloc(size, GFP_KERNEL);
3131 if (!s->memcg_params)
3132 return -ENOMEM;
3133
943a451a 3134 if (memcg) {
2633d7a0 3135 s->memcg_params->memcg = memcg;
943a451a 3136 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3137 INIT_WORK(&s->memcg_params->destroy,
3138 kmem_cache_destroy_work_func);
051dd460 3139 css_get(&memcg->css);
4ba902b5
GC
3140 } else
3141 s->memcg_params->is_root_cache = true;
3142
2633d7a0
GC
3143 return 0;
3144}
3145
363a044f
VD
3146void memcg_free_cache_params(struct kmem_cache *s)
3147{
051dd460
VD
3148 if (!s->memcg_params)
3149 return;
3150 if (!s->memcg_params->is_root_cache)
3151 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3152 kfree(s->memcg_params);
3153}
3154
1aa13254 3155void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3156{
d7f25f8a
GC
3157 struct kmem_cache *root;
3158 struct mem_cgroup *memcg;
3159 int id;
3160
1aa13254
VD
3161 if (is_root_cache(s))
3162 return;
3163
2edefe11
VD
3164 /*
3165 * Holding the slab_mutex assures nobody will touch the memcg_caches
3166 * array while we are modifying it.
3167 */
3168 lockdep_assert_held(&slab_mutex);
3169
1aa13254
VD
3170 root = s->memcg_params->root_cache;
3171 memcg = s->memcg_params->memcg;
3172 id = memcg_cache_id(memcg);
3173
d7f25f8a 3174 /*
959c8963
VD
3175 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3176 * barrier here to ensure nobody will see the kmem_cache partially
3177 * initialized.
d7f25f8a 3178 */
959c8963
VD
3179 smp_wmb();
3180
96403da2
VD
3181 /*
3182 * Initialize the pointer to this cache in its parent's memcg_params
3183 * before adding it to the memcg_slab_caches list, otherwise we can
3184 * fail to convert memcg_params_to_cache() while traversing the list.
3185 */
2edefe11 3186 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3187 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3188
3189 mutex_lock(&memcg->slab_caches_mutex);
3190 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3191 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3192}
d7f25f8a 3193
1aa13254
VD
3194void memcg_unregister_cache(struct kmem_cache *s)
3195{
3196 struct kmem_cache *root;
3197 struct mem_cgroup *memcg;
3198 int id;
3199
3200 if (is_root_cache(s))
3201 return;
d7f25f8a 3202
2edefe11
VD
3203 /*
3204 * Holding the slab_mutex assures nobody will touch the memcg_caches
3205 * array while we are modifying it.
3206 */
3207 lockdep_assert_held(&slab_mutex);
3208
d7f25f8a 3209 root = s->memcg_params->root_cache;
96403da2
VD
3210 memcg = s->memcg_params->memcg;
3211 id = memcg_cache_id(memcg);
d7f25f8a
GC
3212
3213 mutex_lock(&memcg->slab_caches_mutex);
3214 list_del(&s->memcg_params->list);
3215 mutex_unlock(&memcg->slab_caches_mutex);
3216
96403da2
VD
3217 /*
3218 * Clear the pointer to this cache in its parent's memcg_params only
3219 * after removing it from the memcg_slab_caches list, otherwise we can
3220 * fail to convert memcg_params_to_cache() while traversing the list.
3221 */
051dd460 3222 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
96403da2 3223 root->memcg_params->memcg_caches[id] = NULL;
2633d7a0
GC
3224}
3225
0e9d92f2
GC
3226/*
3227 * During the creation a new cache, we need to disable our accounting mechanism
3228 * altogether. This is true even if we are not creating, but rather just
3229 * enqueing new caches to be created.
3230 *
3231 * This is because that process will trigger allocations; some visible, like
3232 * explicit kmallocs to auxiliary data structures, name strings and internal
3233 * cache structures; some well concealed, like INIT_WORK() that can allocate
3234 * objects during debug.
3235 *
3236 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3237 * to it. This may not be a bounded recursion: since the first cache creation
3238 * failed to complete (waiting on the allocation), we'll just try to create the
3239 * cache again, failing at the same point.
3240 *
3241 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3242 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3243 * inside the following two functions.
3244 */
3245static inline void memcg_stop_kmem_account(void)
3246{
3247 VM_BUG_ON(!current->mm);
3248 current->memcg_kmem_skip_account++;
3249}
3250
3251static inline void memcg_resume_kmem_account(void)
3252{
3253 VM_BUG_ON(!current->mm);
3254 current->memcg_kmem_skip_account--;
3255}
3256
1f458cbf
GC
3257static void kmem_cache_destroy_work_func(struct work_struct *w)
3258{
3259 struct kmem_cache *cachep;
3260 struct memcg_cache_params *p;
3261
3262 p = container_of(w, struct memcg_cache_params, destroy);
3263
3264 cachep = memcg_params_to_cache(p);
3265
22933152
GC
3266 /*
3267 * If we get down to 0 after shrink, we could delete right away.
3268 * However, memcg_release_pages() already puts us back in the workqueue
3269 * in that case. If we proceed deleting, we'll get a dangling
3270 * reference, and removing the object from the workqueue in that case
3271 * is unnecessary complication. We are not a fast path.
3272 *
3273 * Note that this case is fundamentally different from racing with
3274 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3275 * kmem_cache_shrink, not only we would be reinserting a dead cache
3276 * into the queue, but doing so from inside the worker racing to
3277 * destroy it.
3278 *
3279 * So if we aren't down to zero, we'll just schedule a worker and try
3280 * again
3281 */
0d8a4a37 3282 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
22933152 3283 kmem_cache_shrink(cachep);
0d8a4a37 3284 else
1f458cbf
GC
3285 kmem_cache_destroy(cachep);
3286}
3287
3288void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3289{
3290 if (!cachep->memcg_params->dead)
3291 return;
3292
22933152
GC
3293 /*
3294 * There are many ways in which we can get here.
3295 *
3296 * We can get to a memory-pressure situation while the delayed work is
3297 * still pending to run. The vmscan shrinkers can then release all
3298 * cache memory and get us to destruction. If this is the case, we'll
3299 * be executed twice, which is a bug (the second time will execute over
3300 * bogus data). In this case, cancelling the work should be fine.
3301 *
3302 * But we can also get here from the worker itself, if
3303 * kmem_cache_shrink is enough to shake all the remaining objects and
3304 * get the page count to 0. In this case, we'll deadlock if we try to
3305 * cancel the work (the worker runs with an internal lock held, which
3306 * is the same lock we would hold for cancel_work_sync().)
3307 *
3308 * Since we can't possibly know who got us here, just refrain from
3309 * running if there is already work pending
3310 */
3311 if (work_pending(&cachep->memcg_params->destroy))
3312 return;
1f458cbf
GC
3313 /*
3314 * We have to defer the actual destroying to a workqueue, because
3315 * we might currently be in a context that cannot sleep.
3316 */
3317 schedule_work(&cachep->memcg_params->destroy);
3318}
3319
b8529907 3320int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
7cf27982
GC
3321{
3322 struct kmem_cache *c;
b8529907 3323 int i, failed = 0;
7cf27982
GC
3324
3325 /*
3326 * If the cache is being destroyed, we trust that there is no one else
3327 * requesting objects from it. Even if there are, the sanity checks in
3328 * kmem_cache_destroy should caught this ill-case.
3329 *
3330 * Still, we don't want anyone else freeing memcg_caches under our
3331 * noses, which can happen if a new memcg comes to life. As usual,
d6441637
VD
3332 * we'll take the activate_kmem_mutex to protect ourselves against
3333 * this.
7cf27982 3334 */
d6441637 3335 mutex_lock(&activate_kmem_mutex);
7a67d7ab
QH
3336 for_each_memcg_cache_index(i) {
3337 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3338 if (!c)
3339 continue;
3340
3341 /*
3342 * We will now manually delete the caches, so to avoid races
3343 * we need to cancel all pending destruction workers and
3344 * proceed with destruction ourselves.
3345 *
3346 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3347 * and that could spawn the workers again: it is likely that
3348 * the cache still have active pages until this very moment.
3349 * This would lead us back to mem_cgroup_destroy_cache.
3350 *
3351 * But that will not execute at all if the "dead" flag is not
3352 * set, so flip it down to guarantee we are in control.
3353 */
3354 c->memcg_params->dead = false;
22933152 3355 cancel_work_sync(&c->memcg_params->destroy);
7cf27982 3356 kmem_cache_destroy(c);
b8529907
VD
3357
3358 if (cache_from_memcg_idx(s, i))
3359 failed++;
7cf27982 3360 }
d6441637 3361 mutex_unlock(&activate_kmem_mutex);
b8529907 3362 return failed;
7cf27982
GC
3363}
3364
1f458cbf
GC
3365static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3366{
3367 struct kmem_cache *cachep;
3368 struct memcg_cache_params *params;
3369
3370 if (!memcg_kmem_is_active(memcg))
3371 return;
3372
3373 mutex_lock(&memcg->slab_caches_mutex);
3374 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3375 cachep = memcg_params_to_cache(params);
3376 cachep->memcg_params->dead = true;
1f458cbf
GC
3377 schedule_work(&cachep->memcg_params->destroy);
3378 }
3379 mutex_unlock(&memcg->slab_caches_mutex);
3380}
3381
5722d094
VD
3382struct create_work {
3383 struct mem_cgroup *memcg;
3384 struct kmem_cache *cachep;
3385 struct work_struct work;
3386};
3387
d7f25f8a
GC
3388static void memcg_create_cache_work_func(struct work_struct *w)
3389{
5722d094
VD
3390 struct create_work *cw = container_of(w, struct create_work, work);
3391 struct mem_cgroup *memcg = cw->memcg;
3392 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3393
794b1248 3394 kmem_cache_create_memcg(memcg, cachep);
5722d094 3395 css_put(&memcg->css);
d7f25f8a
GC
3396 kfree(cw);
3397}
3398
3399/*
3400 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3401 */
0e9d92f2
GC
3402static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3403 struct kmem_cache *cachep)
d7f25f8a
GC
3404{
3405 struct create_work *cw;
3406
3407 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3408 if (cw == NULL) {
3409 css_put(&memcg->css);
d7f25f8a
GC
3410 return;
3411 }
3412
3413 cw->memcg = memcg;
3414 cw->cachep = cachep;
3415
3416 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3417 schedule_work(&cw->work);
3418}
3419
0e9d92f2
GC
3420static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3421 struct kmem_cache *cachep)
3422{
3423 /*
3424 * We need to stop accounting when we kmalloc, because if the
3425 * corresponding kmalloc cache is not yet created, the first allocation
3426 * in __memcg_create_cache_enqueue will recurse.
3427 *
3428 * However, it is better to enclose the whole function. Depending on
3429 * the debugging options enabled, INIT_WORK(), for instance, can
3430 * trigger an allocation. This too, will make us recurse. Because at
3431 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3432 * the safest choice is to do it like this, wrapping the whole function.
3433 */
3434 memcg_stop_kmem_account();
3435 __memcg_create_cache_enqueue(memcg, cachep);
3436 memcg_resume_kmem_account();
3437}
d7f25f8a
GC
3438/*
3439 * Return the kmem_cache we're supposed to use for a slab allocation.
3440 * We try to use the current memcg's version of the cache.
3441 *
3442 * If the cache does not exist yet, if we are the first user of it,
3443 * we either create it immediately, if possible, or create it asynchronously
3444 * in a workqueue.
3445 * In the latter case, we will let the current allocation go through with
3446 * the original cache.
3447 *
3448 * Can't be called in interrupt context or from kernel threads.
3449 * This function needs to be called with rcu_read_lock() held.
3450 */
3451struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3452 gfp_t gfp)
3453{
3454 struct mem_cgroup *memcg;
959c8963 3455 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3456
3457 VM_BUG_ON(!cachep->memcg_params);
3458 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3459
0e9d92f2
GC
3460 if (!current->mm || current->memcg_kmem_skip_account)
3461 return cachep;
3462
d7f25f8a
GC
3463 rcu_read_lock();
3464 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3465
3466 if (!memcg_can_account_kmem(memcg))
ca0dde97 3467 goto out;
d7f25f8a 3468
959c8963
VD
3469 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3470 if (likely(memcg_cachep)) {
3471 cachep = memcg_cachep;
ca0dde97 3472 goto out;
d7f25f8a
GC
3473 }
3474
ca0dde97
LZ
3475 /* The corresponding put will be done in the workqueue. */
3476 if (!css_tryget(&memcg->css))
3477 goto out;
3478 rcu_read_unlock();
3479
3480 /*
3481 * If we are in a safe context (can wait, and not in interrupt
3482 * context), we could be be predictable and return right away.
3483 * This would guarantee that the allocation being performed
3484 * already belongs in the new cache.
3485 *
3486 * However, there are some clashes that can arrive from locking.
3487 * For instance, because we acquire the slab_mutex while doing
3488 * kmem_cache_dup, this means no further allocation could happen
3489 * with the slab_mutex held.
3490 *
3491 * Also, because cache creation issue get_online_cpus(), this
3492 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3493 * that ends up reversed during cpu hotplug. (cpuset allocates
3494 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3495 * better to defer everything.
3496 */
3497 memcg_create_cache_enqueue(memcg, cachep);
3498 return cachep;
3499out:
3500 rcu_read_unlock();
3501 return cachep;
d7f25f8a
GC
3502}
3503EXPORT_SYMBOL(__memcg_kmem_get_cache);
3504
7ae1e1d0
GC
3505/*
3506 * We need to verify if the allocation against current->mm->owner's memcg is
3507 * possible for the given order. But the page is not allocated yet, so we'll
3508 * need a further commit step to do the final arrangements.
3509 *
3510 * It is possible for the task to switch cgroups in this mean time, so at
3511 * commit time, we can't rely on task conversion any longer. We'll then use
3512 * the handle argument to return to the caller which cgroup we should commit
3513 * against. We could also return the memcg directly and avoid the pointer
3514 * passing, but a boolean return value gives better semantics considering
3515 * the compiled-out case as well.
3516 *
3517 * Returning true means the allocation is possible.
3518 */
3519bool
3520__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3521{
3522 struct mem_cgroup *memcg;
3523 int ret;
3524
3525 *_memcg = NULL;
6d42c232
GC
3526
3527 /*
3528 * Disabling accounting is only relevant for some specific memcg
3529 * internal allocations. Therefore we would initially not have such
3530 * check here, since direct calls to the page allocator that are marked
3531 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3532 * concerned with cache allocations, and by having this test at
3533 * memcg_kmem_get_cache, we are already able to relay the allocation to
3534 * the root cache and bypass the memcg cache altogether.
3535 *
3536 * There is one exception, though: the SLUB allocator does not create
3537 * large order caches, but rather service large kmallocs directly from
3538 * the page allocator. Therefore, the following sequence when backed by
3539 * the SLUB allocator:
3540 *
f894ffa8
AM
3541 * memcg_stop_kmem_account();
3542 * kmalloc(<large_number>)
3543 * memcg_resume_kmem_account();
6d42c232
GC
3544 *
3545 * would effectively ignore the fact that we should skip accounting,
3546 * since it will drive us directly to this function without passing
3547 * through the cache selector memcg_kmem_get_cache. Such large
3548 * allocations are extremely rare but can happen, for instance, for the
3549 * cache arrays. We bring this test here.
3550 */
3551 if (!current->mm || current->memcg_kmem_skip_account)
3552 return true;
3553
df381975 3554 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3555
3556 if (!memcg_can_account_kmem(memcg)) {
3557 css_put(&memcg->css);
3558 return true;
3559 }
3560
7ae1e1d0
GC
3561 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3562 if (!ret)
3563 *_memcg = memcg;
7ae1e1d0
GC
3564
3565 css_put(&memcg->css);
3566 return (ret == 0);
3567}
3568
3569void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3570 int order)
3571{
3572 struct page_cgroup *pc;
3573
3574 VM_BUG_ON(mem_cgroup_is_root(memcg));
3575
3576 /* The page allocation failed. Revert */
3577 if (!page) {
3578 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3579 return;
3580 }
3581
3582 pc = lookup_page_cgroup(page);
3583 lock_page_cgroup(pc);
3584 pc->mem_cgroup = memcg;
3585 SetPageCgroupUsed(pc);
3586 unlock_page_cgroup(pc);
3587}
3588
3589void __memcg_kmem_uncharge_pages(struct page *page, int order)
3590{
3591 struct mem_cgroup *memcg = NULL;
3592 struct page_cgroup *pc;
3593
3594
3595 pc = lookup_page_cgroup(page);
3596 /*
3597 * Fast unlocked return. Theoretically might have changed, have to
3598 * check again after locking.
3599 */
3600 if (!PageCgroupUsed(pc))
3601 return;
3602
3603 lock_page_cgroup(pc);
3604 if (PageCgroupUsed(pc)) {
3605 memcg = pc->mem_cgroup;
3606 ClearPageCgroupUsed(pc);
3607 }
3608 unlock_page_cgroup(pc);
3609
3610 /*
3611 * We trust that only if there is a memcg associated with the page, it
3612 * is a valid allocation
3613 */
3614 if (!memcg)
3615 return;
3616
309381fe 3617 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3618 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3619}
1f458cbf
GC
3620#else
3621static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3622{
3623}
7ae1e1d0
GC
3624#endif /* CONFIG_MEMCG_KMEM */
3625
ca3e0214
KH
3626#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3627
a0db00fc 3628#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3629/*
3630 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3631 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3632 * charge/uncharge will be never happen and move_account() is done under
3633 * compound_lock(), so we don't have to take care of races.
ca3e0214 3634 */
e94c8a9c 3635void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3636{
3637 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3638 struct page_cgroup *pc;
b070e65c 3639 struct mem_cgroup *memcg;
e94c8a9c 3640 int i;
ca3e0214 3641
3d37c4a9
KH
3642 if (mem_cgroup_disabled())
3643 return;
b070e65c
DR
3644
3645 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3646 for (i = 1; i < HPAGE_PMD_NR; i++) {
3647 pc = head_pc + i;
b070e65c 3648 pc->mem_cgroup = memcg;
e94c8a9c 3649 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3650 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3651 }
b070e65c
DR
3652 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3653 HPAGE_PMD_NR);
ca3e0214 3654}
12d27107 3655#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3656
f817ed48 3657/**
de3638d9 3658 * mem_cgroup_move_account - move account of the page
5564e88b 3659 * @page: the page
7ec99d62 3660 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3661 * @pc: page_cgroup of the page.
3662 * @from: mem_cgroup which the page is moved from.
3663 * @to: mem_cgroup which the page is moved to. @from != @to.
3664 *
3665 * The caller must confirm following.
08e552c6 3666 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3667 * - compound_lock is held when nr_pages > 1
f817ed48 3668 *
2f3479b1
KH
3669 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3670 * from old cgroup.
f817ed48 3671 */
7ec99d62
JW
3672static int mem_cgroup_move_account(struct page *page,
3673 unsigned int nr_pages,
3674 struct page_cgroup *pc,
3675 struct mem_cgroup *from,
2f3479b1 3676 struct mem_cgroup *to)
f817ed48 3677{
de3638d9
JW
3678 unsigned long flags;
3679 int ret;
b2402857 3680 bool anon = PageAnon(page);
987eba66 3681
f817ed48 3682 VM_BUG_ON(from == to);
309381fe 3683 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3684 /*
3685 * The page is isolated from LRU. So, collapse function
3686 * will not handle this page. But page splitting can happen.
3687 * Do this check under compound_page_lock(). The caller should
3688 * hold it.
3689 */
3690 ret = -EBUSY;
7ec99d62 3691 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3692 goto out;
3693
3694 lock_page_cgroup(pc);
3695
3696 ret = -EINVAL;
3697 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3698 goto unlock;
3699
312734c0 3700 move_lock_mem_cgroup(from, &flags);
f817ed48 3701
59d1d256
JW
3702 if (!anon && page_mapped(page)) {
3703 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3704 nr_pages);
3705 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3706 nr_pages);
3707 }
3ea67d06 3708
59d1d256
JW
3709 if (PageWriteback(page)) {
3710 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3711 nr_pages);
3712 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3713 nr_pages);
3714 }
3ea67d06 3715
b070e65c 3716 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3717
854ffa8d 3718 /* caller should have done css_get */
08e552c6 3719 pc->mem_cgroup = to;
b070e65c 3720 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3721 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3722 ret = 0;
3723unlock:
57f9fd7d 3724 unlock_page_cgroup(pc);
d2265e6f
KH
3725 /*
3726 * check events
3727 */
5564e88b
JW
3728 memcg_check_events(to, page);
3729 memcg_check_events(from, page);
de3638d9 3730out:
f817ed48
KH
3731 return ret;
3732}
3733
2ef37d3f
MH
3734/**
3735 * mem_cgroup_move_parent - moves page to the parent group
3736 * @page: the page to move
3737 * @pc: page_cgroup of the page
3738 * @child: page's cgroup
3739 *
3740 * move charges to its parent or the root cgroup if the group has no
3741 * parent (aka use_hierarchy==0).
3742 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3743 * mem_cgroup_move_account fails) the failure is always temporary and
3744 * it signals a race with a page removal/uncharge or migration. In the
3745 * first case the page is on the way out and it will vanish from the LRU
3746 * on the next attempt and the call should be retried later.
3747 * Isolation from the LRU fails only if page has been isolated from
3748 * the LRU since we looked at it and that usually means either global
3749 * reclaim or migration going on. The page will either get back to the
3750 * LRU or vanish.
3751 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3752 * (!PageCgroupUsed) or moved to a different group. The page will
3753 * disappear in the next attempt.
f817ed48 3754 */
5564e88b
JW
3755static int mem_cgroup_move_parent(struct page *page,
3756 struct page_cgroup *pc,
6068bf01 3757 struct mem_cgroup *child)
f817ed48 3758{
f817ed48 3759 struct mem_cgroup *parent;
7ec99d62 3760 unsigned int nr_pages;
4be4489f 3761 unsigned long uninitialized_var(flags);
f817ed48
KH
3762 int ret;
3763
d8423011 3764 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3765
57f9fd7d
DN
3766 ret = -EBUSY;
3767 if (!get_page_unless_zero(page))
3768 goto out;
3769 if (isolate_lru_page(page))
3770 goto put;
52dbb905 3771
7ec99d62 3772 nr_pages = hpage_nr_pages(page);
08e552c6 3773
cc926f78
KH
3774 parent = parent_mem_cgroup(child);
3775 /*
3776 * If no parent, move charges to root cgroup.
3777 */
3778 if (!parent)
3779 parent = root_mem_cgroup;
f817ed48 3780
2ef37d3f 3781 if (nr_pages > 1) {
309381fe 3782 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3783 flags = compound_lock_irqsave(page);
2ef37d3f 3784 }
987eba66 3785
cc926f78 3786 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3787 pc, child, parent);
cc926f78
KH
3788 if (!ret)
3789 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3790
7ec99d62 3791 if (nr_pages > 1)
987eba66 3792 compound_unlock_irqrestore(page, flags);
08e552c6 3793 putback_lru_page(page);
57f9fd7d 3794put:
40d58138 3795 put_page(page);
57f9fd7d 3796out:
f817ed48
KH
3797 return ret;
3798}
3799
d715ae08 3800int mem_cgroup_charge_anon(struct page *page,
1bec6b33 3801 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3802{
7ec99d62 3803 unsigned int nr_pages = 1;
6d1fdc48 3804 struct mem_cgroup *memcg;
8493ae43 3805 bool oom = true;
ec168510 3806
1bec6b33
JW
3807 if (mem_cgroup_disabled())
3808 return 0;
3809
3810 VM_BUG_ON_PAGE(page_mapped(page), page);
3811 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3812 VM_BUG_ON(!mm);
3813
37c2ac78 3814 if (PageTransHuge(page)) {
7ec99d62 3815 nr_pages <<= compound_order(page);
309381fe 3816 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3817 /*
3818 * Never OOM-kill a process for a huge page. The
3819 * fault handler will fall back to regular pages.
3820 */
3821 oom = false;
37c2ac78 3822 }
7a81b88c 3823
6d1fdc48
JW
3824 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3825 if (!memcg)
3826 return -ENOMEM;
1bec6b33
JW
3827 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3828 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3829 return 0;
8a9f3ccd
BS
3830}
3831
54595fe2
KH
3832/*
3833 * While swap-in, try_charge -> commit or cancel, the page is locked.
3834 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3835 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3836 * "commit()" or removed by "cancel()"
3837 */
0435a2fd
JW
3838static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3839 struct page *page,
3840 gfp_t mask,
3841 struct mem_cgroup **memcgp)
8c7c6e34 3842{
6d1fdc48 3843 struct mem_cgroup *memcg = NULL;
90deb788 3844 struct page_cgroup *pc;
54595fe2 3845 int ret;
8c7c6e34 3846
90deb788
JW
3847 pc = lookup_page_cgroup(page);
3848 /*
3849 * Every swap fault against a single page tries to charge the
3850 * page, bail as early as possible. shmem_unuse() encounters
3851 * already charged pages, too. The USED bit is protected by
3852 * the page lock, which serializes swap cache removal, which
3853 * in turn serializes uncharging.
3854 */
3855 if (PageCgroupUsed(pc))
6d1fdc48
JW
3856 goto out;
3857 if (do_swap_account)
3858 memcg = try_get_mem_cgroup_from_page(page);
c0ff4b85 3859 if (!memcg)
6d1fdc48
JW
3860 memcg = get_mem_cgroup_from_mm(mm);
3861 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
c0ff4b85 3862 css_put(&memcg->css);
38c5d72f 3863 if (ret == -EINTR)
6d1fdc48
JW
3864 memcg = root_mem_cgroup;
3865 else if (ret)
3866 return ret;
3867out:
3868 *memcgp = memcg;
3869 return 0;
8c7c6e34
KH
3870}
3871
0435a2fd
JW
3872int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3873 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3874{
6d1fdc48
JW
3875 if (mem_cgroup_disabled()) {
3876 *memcgp = NULL;
0435a2fd 3877 return 0;
6d1fdc48 3878 }
bdf4f4d2
JW
3879 /*
3880 * A racing thread's fault, or swapoff, may have already
3881 * updated the pte, and even removed page from swap cache: in
3882 * those cases unuse_pte()'s pte_same() test will fail; but
3883 * there's also a KSM case which does need to charge the page.
3884 */
3885 if (!PageSwapCache(page)) {
6d1fdc48 3886 struct mem_cgroup *memcg;
bdf4f4d2 3887
6d1fdc48
JW
3888 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3889 if (!memcg)
3890 return -ENOMEM;
3891 *memcgp = memcg;
3892 return 0;
bdf4f4d2 3893 }
0435a2fd
JW
3894 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3895}
3896
827a03d2
JW
3897void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3898{
3899 if (mem_cgroup_disabled())
3900 return;
3901 if (!memcg)
3902 return;
3903 __mem_cgroup_cancel_charge(memcg, 1);
3904}
3905
83aae4c7 3906static void
72835c86 3907__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3908 enum charge_type ctype)
7a81b88c 3909{
f8d66542 3910 if (mem_cgroup_disabled())
7a81b88c 3911 return;
72835c86 3912 if (!memcg)
7a81b88c 3913 return;
5a6475a4 3914
ce587e65 3915 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3916 /*
3917 * Now swap is on-memory. This means this page may be
3918 * counted both as mem and swap....double count.
03f3c433
KH
3919 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3920 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3921 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3922 */
03f3c433 3923 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3924 swp_entry_t ent = {.val = page_private(page)};
86493009 3925 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3926 }
7a81b88c
KH
3927}
3928
72835c86
JW
3929void mem_cgroup_commit_charge_swapin(struct page *page,
3930 struct mem_cgroup *memcg)
83aae4c7 3931{
72835c86 3932 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3933 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3934}
3935
d715ae08 3936int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
827a03d2 3937 gfp_t gfp_mask)
7a81b88c 3938{
827a03d2 3939 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
6d1fdc48 3940 struct mem_cgroup *memcg;
827a03d2
JW
3941 int ret;
3942
f8d66542 3943 if (mem_cgroup_disabled())
827a03d2
JW
3944 return 0;
3945 if (PageCompound(page))
3946 return 0;
3947
6d1fdc48 3948 if (PageSwapCache(page)) { /* shmem */
0435a2fd
JW
3949 ret = __mem_cgroup_try_charge_swapin(mm, page,
3950 gfp_mask, &memcg);
6d1fdc48
JW
3951 if (ret)
3952 return ret;
3953 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3954 return 0;
827a03d2 3955 }
6d1fdc48
JW
3956
3957 /*
3958 * Page cache insertions can happen without an actual mm
3959 * context, e.g. during disk probing on boot.
3960 */
3961 if (unlikely(!mm))
3962 memcg = root_mem_cgroup;
3963 else {
3964 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3965 if (!memcg)
3966 return -ENOMEM;
3967 }
3968 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3969 return 0;
7a81b88c
KH
3970}
3971
c0ff4b85 3972static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3973 unsigned int nr_pages,
3974 const enum charge_type ctype)
569b846d
KH
3975{
3976 struct memcg_batch_info *batch = NULL;
3977 bool uncharge_memsw = true;
7ec99d62 3978
569b846d
KH
3979 /* If swapout, usage of swap doesn't decrease */
3980 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3981 uncharge_memsw = false;
569b846d
KH
3982
3983 batch = &current->memcg_batch;
3984 /*
3985 * In usual, we do css_get() when we remember memcg pointer.
3986 * But in this case, we keep res->usage until end of a series of
3987 * uncharges. Then, it's ok to ignore memcg's refcnt.
3988 */
3989 if (!batch->memcg)
c0ff4b85 3990 batch->memcg = memcg;
3c11ecf4
KH
3991 /*
3992 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3993 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3994 * the same cgroup and we have chance to coalesce uncharges.
3995 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3996 * because we want to do uncharge as soon as possible.
3997 */
3998
3999 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4000 goto direct_uncharge;
4001
7ec99d62 4002 if (nr_pages > 1)
ec168510
AA
4003 goto direct_uncharge;
4004
569b846d
KH
4005 /*
4006 * In typical case, batch->memcg == mem. This means we can
4007 * merge a series of uncharges to an uncharge of res_counter.
4008 * If not, we uncharge res_counter ony by one.
4009 */
c0ff4b85 4010 if (batch->memcg != memcg)
569b846d
KH
4011 goto direct_uncharge;
4012 /* remember freed charge and uncharge it later */
7ffd4ca7 4013 batch->nr_pages++;
569b846d 4014 if (uncharge_memsw)
7ffd4ca7 4015 batch->memsw_nr_pages++;
569b846d
KH
4016 return;
4017direct_uncharge:
c0ff4b85 4018 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4019 if (uncharge_memsw)
c0ff4b85
R
4020 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4021 if (unlikely(batch->memcg != memcg))
4022 memcg_oom_recover(memcg);
569b846d 4023}
7a81b88c 4024
8a9f3ccd 4025/*
69029cd5 4026 * uncharge if !page_mapped(page)
8a9f3ccd 4027 */
8c7c6e34 4028static struct mem_cgroup *
0030f535
JW
4029__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4030 bool end_migration)
8a9f3ccd 4031{
c0ff4b85 4032 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4033 unsigned int nr_pages = 1;
4034 struct page_cgroup *pc;
b2402857 4035 bool anon;
8a9f3ccd 4036
f8d66542 4037 if (mem_cgroup_disabled())
8c7c6e34 4038 return NULL;
4077960e 4039
37c2ac78 4040 if (PageTransHuge(page)) {
7ec99d62 4041 nr_pages <<= compound_order(page);
309381fe 4042 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4043 }
8697d331 4044 /*
3c541e14 4045 * Check if our page_cgroup is valid
8697d331 4046 */
52d4b9ac 4047 pc = lookup_page_cgroup(page);
cfa44946 4048 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4049 return NULL;
b9c565d5 4050
52d4b9ac 4051 lock_page_cgroup(pc);
d13d1443 4052
c0ff4b85 4053 memcg = pc->mem_cgroup;
8c7c6e34 4054
d13d1443
KH
4055 if (!PageCgroupUsed(pc))
4056 goto unlock_out;
4057
b2402857
KH
4058 anon = PageAnon(page);
4059
d13d1443 4060 switch (ctype) {
41326c17 4061 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4062 /*
4063 * Generally PageAnon tells if it's the anon statistics to be
4064 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4065 * used before page reached the stage of being marked PageAnon.
4066 */
b2402857
KH
4067 anon = true;
4068 /* fallthrough */
8a9478ca 4069 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4070 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4071 if (page_mapped(page))
4072 goto unlock_out;
4073 /*
4074 * Pages under migration may not be uncharged. But
4075 * end_migration() /must/ be the one uncharging the
4076 * unused post-migration page and so it has to call
4077 * here with the migration bit still set. See the
4078 * res_counter handling below.
4079 */
4080 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4081 goto unlock_out;
4082 break;
4083 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4084 if (!PageAnon(page)) { /* Shared memory */
4085 if (page->mapping && !page_is_file_cache(page))
4086 goto unlock_out;
4087 } else if (page_mapped(page)) /* Anon */
4088 goto unlock_out;
4089 break;
4090 default:
4091 break;
52d4b9ac 4092 }
d13d1443 4093
b070e65c 4094 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4095
52d4b9ac 4096 ClearPageCgroupUsed(pc);
544122e5
KH
4097 /*
4098 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4099 * freed from LRU. This is safe because uncharged page is expected not
4100 * to be reused (freed soon). Exception is SwapCache, it's handled by
4101 * special functions.
4102 */
b9c565d5 4103
52d4b9ac 4104 unlock_page_cgroup(pc);
f75ca962 4105 /*
c0ff4b85 4106 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4107 * will never be freed, so it's safe to call css_get().
f75ca962 4108 */
c0ff4b85 4109 memcg_check_events(memcg, page);
f75ca962 4110 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4111 mem_cgroup_swap_statistics(memcg, true);
4050377b 4112 css_get(&memcg->css);
f75ca962 4113 }
0030f535
JW
4114 /*
4115 * Migration does not charge the res_counter for the
4116 * replacement page, so leave it alone when phasing out the
4117 * page that is unused after the migration.
4118 */
4119 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4120 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4121
c0ff4b85 4122 return memcg;
d13d1443
KH
4123
4124unlock_out:
4125 unlock_page_cgroup(pc);
8c7c6e34 4126 return NULL;
3c541e14
BS
4127}
4128
69029cd5
KH
4129void mem_cgroup_uncharge_page(struct page *page)
4130{
52d4b9ac
KH
4131 /* early check. */
4132 if (page_mapped(page))
4133 return;
309381fe 4134 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4135 /*
4136 * If the page is in swap cache, uncharge should be deferred
4137 * to the swap path, which also properly accounts swap usage
4138 * and handles memcg lifetime.
4139 *
4140 * Note that this check is not stable and reclaim may add the
4141 * page to swap cache at any time after this. However, if the
4142 * page is not in swap cache by the time page->mapcount hits
4143 * 0, there won't be any page table references to the swap
4144 * slot, and reclaim will free it and not actually write the
4145 * page to disk.
4146 */
0c59b89c
JW
4147 if (PageSwapCache(page))
4148 return;
0030f535 4149 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4150}
4151
4152void mem_cgroup_uncharge_cache_page(struct page *page)
4153{
309381fe
SL
4154 VM_BUG_ON_PAGE(page_mapped(page), page);
4155 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4156 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4157}
4158
569b846d
KH
4159/*
4160 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4161 * In that cases, pages are freed continuously and we can expect pages
4162 * are in the same memcg. All these calls itself limits the number of
4163 * pages freed at once, then uncharge_start/end() is called properly.
4164 * This may be called prural(2) times in a context,
4165 */
4166
4167void mem_cgroup_uncharge_start(void)
4168{
4169 current->memcg_batch.do_batch++;
4170 /* We can do nest. */
4171 if (current->memcg_batch.do_batch == 1) {
4172 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4173 current->memcg_batch.nr_pages = 0;
4174 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4175 }
4176}
4177
4178void mem_cgroup_uncharge_end(void)
4179{
4180 struct memcg_batch_info *batch = &current->memcg_batch;
4181
4182 if (!batch->do_batch)
4183 return;
4184
4185 batch->do_batch--;
4186 if (batch->do_batch) /* If stacked, do nothing. */
4187 return;
4188
4189 if (!batch->memcg)
4190 return;
4191 /*
4192 * This "batch->memcg" is valid without any css_get/put etc...
4193 * bacause we hide charges behind us.
4194 */
7ffd4ca7
JW
4195 if (batch->nr_pages)
4196 res_counter_uncharge(&batch->memcg->res,
4197 batch->nr_pages * PAGE_SIZE);
4198 if (batch->memsw_nr_pages)
4199 res_counter_uncharge(&batch->memcg->memsw,
4200 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4201 memcg_oom_recover(batch->memcg);
569b846d
KH
4202 /* forget this pointer (for sanity check) */
4203 batch->memcg = NULL;
4204}
4205
e767e056 4206#ifdef CONFIG_SWAP
8c7c6e34 4207/*
e767e056 4208 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4209 * memcg information is recorded to swap_cgroup of "ent"
4210 */
8a9478ca
KH
4211void
4212mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4213{
4214 struct mem_cgroup *memcg;
8a9478ca
KH
4215 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4216
4217 if (!swapout) /* this was a swap cache but the swap is unused ! */
4218 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4219
0030f535 4220 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4221
f75ca962
KH
4222 /*
4223 * record memcg information, if swapout && memcg != NULL,
4050377b 4224 * css_get() was called in uncharge().
f75ca962
KH
4225 */
4226 if (do_swap_account && swapout && memcg)
34c00c31 4227 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4228}
e767e056 4229#endif
8c7c6e34 4230
c255a458 4231#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4232/*
4233 * called from swap_entry_free(). remove record in swap_cgroup and
4234 * uncharge "memsw" account.
4235 */
4236void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4237{
8c7c6e34 4238 struct mem_cgroup *memcg;
a3b2d692 4239 unsigned short id;
8c7c6e34
KH
4240
4241 if (!do_swap_account)
4242 return;
4243
a3b2d692
KH
4244 id = swap_cgroup_record(ent, 0);
4245 rcu_read_lock();
4246 memcg = mem_cgroup_lookup(id);
8c7c6e34 4247 if (memcg) {
a3b2d692
KH
4248 /*
4249 * We uncharge this because swap is freed.
4250 * This memcg can be obsolete one. We avoid calling css_tryget
4251 */
0c3e73e8 4252 if (!mem_cgroup_is_root(memcg))
4e649152 4253 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4254 mem_cgroup_swap_statistics(memcg, false);
4050377b 4255 css_put(&memcg->css);
8c7c6e34 4256 }
a3b2d692 4257 rcu_read_unlock();
d13d1443 4258}
02491447
DN
4259
4260/**
4261 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4262 * @entry: swap entry to be moved
4263 * @from: mem_cgroup which the entry is moved from
4264 * @to: mem_cgroup which the entry is moved to
4265 *
4266 * It succeeds only when the swap_cgroup's record for this entry is the same
4267 * as the mem_cgroup's id of @from.
4268 *
4269 * Returns 0 on success, -EINVAL on failure.
4270 *
4271 * The caller must have charged to @to, IOW, called res_counter_charge() about
4272 * both res and memsw, and called css_get().
4273 */
4274static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4275 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4276{
4277 unsigned short old_id, new_id;
4278
34c00c31
LZ
4279 old_id = mem_cgroup_id(from);
4280 new_id = mem_cgroup_id(to);
02491447
DN
4281
4282 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4283 mem_cgroup_swap_statistics(from, false);
483c30b5 4284 mem_cgroup_swap_statistics(to, true);
02491447 4285 /*
483c30b5
DN
4286 * This function is only called from task migration context now.
4287 * It postpones res_counter and refcount handling till the end
4288 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4289 * improvement. But we cannot postpone css_get(to) because if
4290 * the process that has been moved to @to does swap-in, the
4291 * refcount of @to might be decreased to 0.
4292 *
4293 * We are in attach() phase, so the cgroup is guaranteed to be
4294 * alive, so we can just call css_get().
02491447 4295 */
4050377b 4296 css_get(&to->css);
02491447
DN
4297 return 0;
4298 }
4299 return -EINVAL;
4300}
4301#else
4302static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4303 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4304{
4305 return -EINVAL;
4306}
8c7c6e34 4307#endif
d13d1443 4308
ae41be37 4309/*
01b1ae63
KH
4310 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4311 * page belongs to.
ae41be37 4312 */
0030f535
JW
4313void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4314 struct mem_cgroup **memcgp)
ae41be37 4315{
c0ff4b85 4316 struct mem_cgroup *memcg = NULL;
b32967ff 4317 unsigned int nr_pages = 1;
7ec99d62 4318 struct page_cgroup *pc;
ac39cf8c 4319 enum charge_type ctype;
8869b8f6 4320
72835c86 4321 *memcgp = NULL;
56039efa 4322
f8d66542 4323 if (mem_cgroup_disabled())
0030f535 4324 return;
4077960e 4325
b32967ff
MG
4326 if (PageTransHuge(page))
4327 nr_pages <<= compound_order(page);
4328
52d4b9ac
KH
4329 pc = lookup_page_cgroup(page);
4330 lock_page_cgroup(pc);
4331 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4332 memcg = pc->mem_cgroup;
4333 css_get(&memcg->css);
ac39cf8c 4334 /*
4335 * At migrating an anonymous page, its mapcount goes down
4336 * to 0 and uncharge() will be called. But, even if it's fully
4337 * unmapped, migration may fail and this page has to be
4338 * charged again. We set MIGRATION flag here and delay uncharge
4339 * until end_migration() is called
4340 *
4341 * Corner Case Thinking
4342 * A)
4343 * When the old page was mapped as Anon and it's unmap-and-freed
4344 * while migration was ongoing.
4345 * If unmap finds the old page, uncharge() of it will be delayed
4346 * until end_migration(). If unmap finds a new page, it's
4347 * uncharged when it make mapcount to be 1->0. If unmap code
4348 * finds swap_migration_entry, the new page will not be mapped
4349 * and end_migration() will find it(mapcount==0).
4350 *
4351 * B)
4352 * When the old page was mapped but migraion fails, the kernel
4353 * remaps it. A charge for it is kept by MIGRATION flag even
4354 * if mapcount goes down to 0. We can do remap successfully
4355 * without charging it again.
4356 *
4357 * C)
4358 * The "old" page is under lock_page() until the end of
4359 * migration, so, the old page itself will not be swapped-out.
4360 * If the new page is swapped out before end_migraton, our
4361 * hook to usual swap-out path will catch the event.
4362 */
4363 if (PageAnon(page))
4364 SetPageCgroupMigration(pc);
e8589cc1 4365 }
52d4b9ac 4366 unlock_page_cgroup(pc);
ac39cf8c 4367 /*
4368 * If the page is not charged at this point,
4369 * we return here.
4370 */
c0ff4b85 4371 if (!memcg)
0030f535 4372 return;
01b1ae63 4373
72835c86 4374 *memcgp = memcg;
ac39cf8c 4375 /*
4376 * We charge new page before it's used/mapped. So, even if unlock_page()
4377 * is called before end_migration, we can catch all events on this new
4378 * page. In the case new page is migrated but not remapped, new page's
4379 * mapcount will be finally 0 and we call uncharge in end_migration().
4380 */
ac39cf8c 4381 if (PageAnon(page))
41326c17 4382 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4383 else
62ba7442 4384 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4385 /*
4386 * The page is committed to the memcg, but it's not actually
4387 * charged to the res_counter since we plan on replacing the
4388 * old one and only one page is going to be left afterwards.
4389 */
b32967ff 4390 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4391}
8869b8f6 4392
69029cd5 4393/* remove redundant charge if migration failed*/
c0ff4b85 4394void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4395 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4396{
ac39cf8c 4397 struct page *used, *unused;
01b1ae63 4398 struct page_cgroup *pc;
b2402857 4399 bool anon;
01b1ae63 4400
c0ff4b85 4401 if (!memcg)
01b1ae63 4402 return;
b25ed609 4403
50de1dd9 4404 if (!migration_ok) {
ac39cf8c 4405 used = oldpage;
4406 unused = newpage;
01b1ae63 4407 } else {
ac39cf8c 4408 used = newpage;
01b1ae63
KH
4409 unused = oldpage;
4410 }
0030f535 4411 anon = PageAnon(used);
7d188958
JW
4412 __mem_cgroup_uncharge_common(unused,
4413 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4414 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4415 true);
0030f535 4416 css_put(&memcg->css);
69029cd5 4417 /*
ac39cf8c 4418 * We disallowed uncharge of pages under migration because mapcount
4419 * of the page goes down to zero, temporarly.
4420 * Clear the flag and check the page should be charged.
01b1ae63 4421 */
ac39cf8c 4422 pc = lookup_page_cgroup(oldpage);
4423 lock_page_cgroup(pc);
4424 ClearPageCgroupMigration(pc);
4425 unlock_page_cgroup(pc);
ac39cf8c 4426
01b1ae63 4427 /*
ac39cf8c 4428 * If a page is a file cache, radix-tree replacement is very atomic
4429 * and we can skip this check. When it was an Anon page, its mapcount
4430 * goes down to 0. But because we added MIGRATION flage, it's not
4431 * uncharged yet. There are several case but page->mapcount check
4432 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4433 * check. (see prepare_charge() also)
69029cd5 4434 */
b2402857 4435 if (anon)
ac39cf8c 4436 mem_cgroup_uncharge_page(used);
ae41be37 4437}
78fb7466 4438
ab936cbc
KH
4439/*
4440 * At replace page cache, newpage is not under any memcg but it's on
4441 * LRU. So, this function doesn't touch res_counter but handles LRU
4442 * in correct way. Both pages are locked so we cannot race with uncharge.
4443 */
4444void mem_cgroup_replace_page_cache(struct page *oldpage,
4445 struct page *newpage)
4446{
bde05d1c 4447 struct mem_cgroup *memcg = NULL;
ab936cbc 4448 struct page_cgroup *pc;
ab936cbc 4449 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4450
4451 if (mem_cgroup_disabled())
4452 return;
4453
4454 pc = lookup_page_cgroup(oldpage);
4455 /* fix accounting on old pages */
4456 lock_page_cgroup(pc);
bde05d1c
HD
4457 if (PageCgroupUsed(pc)) {
4458 memcg = pc->mem_cgroup;
b070e65c 4459 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4460 ClearPageCgroupUsed(pc);
4461 }
ab936cbc
KH
4462 unlock_page_cgroup(pc);
4463
bde05d1c
HD
4464 /*
4465 * When called from shmem_replace_page(), in some cases the
4466 * oldpage has already been charged, and in some cases not.
4467 */
4468 if (!memcg)
4469 return;
ab936cbc
KH
4470 /*
4471 * Even if newpage->mapping was NULL before starting replacement,
4472 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4473 * LRU while we overwrite pc->mem_cgroup.
4474 */
ce587e65 4475 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4476}
4477
f212ad7c
DN
4478#ifdef CONFIG_DEBUG_VM
4479static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4480{
4481 struct page_cgroup *pc;
4482
4483 pc = lookup_page_cgroup(page);
cfa44946
JW
4484 /*
4485 * Can be NULL while feeding pages into the page allocator for
4486 * the first time, i.e. during boot or memory hotplug;
4487 * or when mem_cgroup_disabled().
4488 */
f212ad7c
DN
4489 if (likely(pc) && PageCgroupUsed(pc))
4490 return pc;
4491 return NULL;
4492}
4493
4494bool mem_cgroup_bad_page_check(struct page *page)
4495{
4496 if (mem_cgroup_disabled())
4497 return false;
4498
4499 return lookup_page_cgroup_used(page) != NULL;
4500}
4501
4502void mem_cgroup_print_bad_page(struct page *page)
4503{
4504 struct page_cgroup *pc;
4505
4506 pc = lookup_page_cgroup_used(page);
4507 if (pc) {
d045197f
AM
4508 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4509 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4510 }
4511}
4512#endif
4513
d38d2a75 4514static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4515 unsigned long long val)
628f4235 4516{
81d39c20 4517 int retry_count;
3c11ecf4 4518 u64 memswlimit, memlimit;
628f4235 4519 int ret = 0;
81d39c20
KH
4520 int children = mem_cgroup_count_children(memcg);
4521 u64 curusage, oldusage;
3c11ecf4 4522 int enlarge;
81d39c20
KH
4523
4524 /*
4525 * For keeping hierarchical_reclaim simple, how long we should retry
4526 * is depends on callers. We set our retry-count to be function
4527 * of # of children which we should visit in this loop.
4528 */
4529 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4530
4531 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4532
3c11ecf4 4533 enlarge = 0;
8c7c6e34 4534 while (retry_count) {
628f4235
KH
4535 if (signal_pending(current)) {
4536 ret = -EINTR;
4537 break;
4538 }
8c7c6e34
KH
4539 /*
4540 * Rather than hide all in some function, I do this in
4541 * open coded manner. You see what this really does.
aaad153e 4542 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4543 */
4544 mutex_lock(&set_limit_mutex);
4545 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4546 if (memswlimit < val) {
4547 ret = -EINVAL;
4548 mutex_unlock(&set_limit_mutex);
628f4235
KH
4549 break;
4550 }
3c11ecf4
KH
4551
4552 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4553 if (memlimit < val)
4554 enlarge = 1;
4555
8c7c6e34 4556 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4557 if (!ret) {
4558 if (memswlimit == val)
4559 memcg->memsw_is_minimum = true;
4560 else
4561 memcg->memsw_is_minimum = false;
4562 }
8c7c6e34
KH
4563 mutex_unlock(&set_limit_mutex);
4564
4565 if (!ret)
4566 break;
4567
5660048c
JW
4568 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4569 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4570 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4571 /* Usage is reduced ? */
f894ffa8 4572 if (curusage >= oldusage)
81d39c20
KH
4573 retry_count--;
4574 else
4575 oldusage = curusage;
8c7c6e34 4576 }
3c11ecf4
KH
4577 if (!ret && enlarge)
4578 memcg_oom_recover(memcg);
14797e23 4579
8c7c6e34
KH
4580 return ret;
4581}
4582
338c8431
LZ
4583static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4584 unsigned long long val)
8c7c6e34 4585{
81d39c20 4586 int retry_count;
3c11ecf4 4587 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4588 int children = mem_cgroup_count_children(memcg);
4589 int ret = -EBUSY;
3c11ecf4 4590 int enlarge = 0;
8c7c6e34 4591
81d39c20 4592 /* see mem_cgroup_resize_res_limit */
f894ffa8 4593 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4594 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4595 while (retry_count) {
4596 if (signal_pending(current)) {
4597 ret = -EINTR;
4598 break;
4599 }
4600 /*
4601 * Rather than hide all in some function, I do this in
4602 * open coded manner. You see what this really does.
aaad153e 4603 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4604 */
4605 mutex_lock(&set_limit_mutex);
4606 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4607 if (memlimit > val) {
4608 ret = -EINVAL;
4609 mutex_unlock(&set_limit_mutex);
4610 break;
4611 }
3c11ecf4
KH
4612 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4613 if (memswlimit < val)
4614 enlarge = 1;
8c7c6e34 4615 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4616 if (!ret) {
4617 if (memlimit == val)
4618 memcg->memsw_is_minimum = true;
4619 else
4620 memcg->memsw_is_minimum = false;
4621 }
8c7c6e34
KH
4622 mutex_unlock(&set_limit_mutex);
4623
4624 if (!ret)
4625 break;
4626
5660048c
JW
4627 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4628 MEM_CGROUP_RECLAIM_NOSWAP |
4629 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4630 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4631 /* Usage is reduced ? */
8c7c6e34 4632 if (curusage >= oldusage)
628f4235 4633 retry_count--;
81d39c20
KH
4634 else
4635 oldusage = curusage;
628f4235 4636 }
3c11ecf4
KH
4637 if (!ret && enlarge)
4638 memcg_oom_recover(memcg);
628f4235
KH
4639 return ret;
4640}
4641
0608f43d
AM
4642unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4643 gfp_t gfp_mask,
4644 unsigned long *total_scanned)
4645{
4646 unsigned long nr_reclaimed = 0;
4647 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4648 unsigned long reclaimed;
4649 int loop = 0;
4650 struct mem_cgroup_tree_per_zone *mctz;
4651 unsigned long long excess;
4652 unsigned long nr_scanned;
4653
4654 if (order > 0)
4655 return 0;
4656
4657 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4658 /*
4659 * This loop can run a while, specially if mem_cgroup's continuously
4660 * keep exceeding their soft limit and putting the system under
4661 * pressure
4662 */
4663 do {
4664 if (next_mz)
4665 mz = next_mz;
4666 else
4667 mz = mem_cgroup_largest_soft_limit_node(mctz);
4668 if (!mz)
4669 break;
4670
4671 nr_scanned = 0;
4672 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4673 gfp_mask, &nr_scanned);
4674 nr_reclaimed += reclaimed;
4675 *total_scanned += nr_scanned;
4676 spin_lock(&mctz->lock);
4677
4678 /*
4679 * If we failed to reclaim anything from this memory cgroup
4680 * it is time to move on to the next cgroup
4681 */
4682 next_mz = NULL;
4683 if (!reclaimed) {
4684 do {
4685 /*
4686 * Loop until we find yet another one.
4687 *
4688 * By the time we get the soft_limit lock
4689 * again, someone might have aded the
4690 * group back on the RB tree. Iterate to
4691 * make sure we get a different mem.
4692 * mem_cgroup_largest_soft_limit_node returns
4693 * NULL if no other cgroup is present on
4694 * the tree
4695 */
4696 next_mz =
4697 __mem_cgroup_largest_soft_limit_node(mctz);
4698 if (next_mz == mz)
4699 css_put(&next_mz->memcg->css);
4700 else /* next_mz == NULL or other memcg */
4701 break;
4702 } while (1);
4703 }
4704 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4705 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4706 /*
4707 * One school of thought says that we should not add
4708 * back the node to the tree if reclaim returns 0.
4709 * But our reclaim could return 0, simply because due
4710 * to priority we are exposing a smaller subset of
4711 * memory to reclaim from. Consider this as a longer
4712 * term TODO.
4713 */
4714 /* If excess == 0, no tree ops */
4715 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4716 spin_unlock(&mctz->lock);
4717 css_put(&mz->memcg->css);
4718 loop++;
4719 /*
4720 * Could not reclaim anything and there are no more
4721 * mem cgroups to try or we seem to be looping without
4722 * reclaiming anything.
4723 */
4724 if (!nr_reclaimed &&
4725 (next_mz == NULL ||
4726 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4727 break;
4728 } while (!nr_reclaimed);
4729 if (next_mz)
4730 css_put(&next_mz->memcg->css);
4731 return nr_reclaimed;
4732}
4733
2ef37d3f
MH
4734/**
4735 * mem_cgroup_force_empty_list - clears LRU of a group
4736 * @memcg: group to clear
4737 * @node: NUMA node
4738 * @zid: zone id
4739 * @lru: lru to to clear
4740 *
3c935d18 4741 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4742 * reclaim the pages page themselves - pages are moved to the parent (or root)
4743 * group.
cc847582 4744 */
2ef37d3f 4745static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4746 int node, int zid, enum lru_list lru)
cc847582 4747{
bea8c150 4748 struct lruvec *lruvec;
2ef37d3f 4749 unsigned long flags;
072c56c1 4750 struct list_head *list;
925b7673
JW
4751 struct page *busy;
4752 struct zone *zone;
072c56c1 4753
08e552c6 4754 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4755 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4756 list = &lruvec->lists[lru];
cc847582 4757
f817ed48 4758 busy = NULL;
2ef37d3f 4759 do {
925b7673 4760 struct page_cgroup *pc;
5564e88b
JW
4761 struct page *page;
4762
08e552c6 4763 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4764 if (list_empty(list)) {
08e552c6 4765 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4766 break;
f817ed48 4767 }
925b7673
JW
4768 page = list_entry(list->prev, struct page, lru);
4769 if (busy == page) {
4770 list_move(&page->lru, list);
648bcc77 4771 busy = NULL;
08e552c6 4772 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4773 continue;
4774 }
08e552c6 4775 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4776
925b7673 4777 pc = lookup_page_cgroup(page);
5564e88b 4778
3c935d18 4779 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4780 /* found lock contention or "pc" is obsolete. */
925b7673 4781 busy = page;
f817ed48
KH
4782 cond_resched();
4783 } else
4784 busy = NULL;
2ef37d3f 4785 } while (!list_empty(list));
cc847582
KH
4786}
4787
4788/*
c26251f9
MH
4789 * make mem_cgroup's charge to be 0 if there is no task by moving
4790 * all the charges and pages to the parent.
cc847582 4791 * This enables deleting this mem_cgroup.
c26251f9
MH
4792 *
4793 * Caller is responsible for holding css reference on the memcg.
cc847582 4794 */
ab5196c2 4795static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4796{
c26251f9 4797 int node, zid;
bea207c8 4798 u64 usage;
f817ed48 4799
fce66477 4800 do {
52d4b9ac
KH
4801 /* This is for making all *used* pages to be on LRU. */
4802 lru_add_drain_all();
c0ff4b85 4803 drain_all_stock_sync(memcg);
c0ff4b85 4804 mem_cgroup_start_move(memcg);
31aaea4a 4805 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4806 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4807 enum lru_list lru;
4808 for_each_lru(lru) {
2ef37d3f 4809 mem_cgroup_force_empty_list(memcg,
f156ab93 4810 node, zid, lru);
f817ed48 4811 }
1ecaab2b 4812 }
f817ed48 4813 }
c0ff4b85
R
4814 mem_cgroup_end_move(memcg);
4815 memcg_oom_recover(memcg);
52d4b9ac 4816 cond_resched();
f817ed48 4817
2ef37d3f 4818 /*
bea207c8
GC
4819 * Kernel memory may not necessarily be trackable to a specific
4820 * process. So they are not migrated, and therefore we can't
4821 * expect their value to drop to 0 here.
4822 * Having res filled up with kmem only is enough.
4823 *
2ef37d3f
MH
4824 * This is a safety check because mem_cgroup_force_empty_list
4825 * could have raced with mem_cgroup_replace_page_cache callers
4826 * so the lru seemed empty but the page could have been added
4827 * right after the check. RES_USAGE should be safe as we always
4828 * charge before adding to the LRU.
4829 */
bea207c8
GC
4830 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4831 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4832 } while (usage > 0);
c26251f9
MH
4833}
4834
b5f99b53
GC
4835static inline bool memcg_has_children(struct mem_cgroup *memcg)
4836{
696ac172
JW
4837 lockdep_assert_held(&memcg_create_mutex);
4838 /*
4839 * The lock does not prevent addition or deletion to the list
4840 * of children, but it prevents a new child from being
4841 * initialized based on this parent in css_online(), so it's
4842 * enough to decide whether hierarchically inherited
4843 * attributes can still be changed or not.
4844 */
4845 return memcg->use_hierarchy &&
4846 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4847}
4848
c26251f9
MH
4849/*
4850 * Reclaims as many pages from the given memcg as possible and moves
4851 * the rest to the parent.
4852 *
4853 * Caller is responsible for holding css reference for memcg.
4854 */
4855static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4856{
4857 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4858 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4859
c1e862c1 4860 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4861 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4862 return -EBUSY;
4863
c1e862c1
KH
4864 /* we call try-to-free pages for make this cgroup empty */
4865 lru_add_drain_all();
f817ed48 4866 /* try to free all pages in this cgroup */
569530fb 4867 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4868 int progress;
c1e862c1 4869
c26251f9
MH
4870 if (signal_pending(current))
4871 return -EINTR;
4872
c0ff4b85 4873 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4874 false);
c1e862c1 4875 if (!progress) {
f817ed48 4876 nr_retries--;
c1e862c1 4877 /* maybe some writeback is necessary */
8aa7e847 4878 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4879 }
f817ed48
KH
4880
4881 }
08e552c6 4882 lru_add_drain();
ab5196c2
MH
4883 mem_cgroup_reparent_charges(memcg);
4884
4885 return 0;
cc847582
KH
4886}
4887
182446d0
TH
4888static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4889 unsigned int event)
c1e862c1 4890{
182446d0 4891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4892
d8423011
MH
4893 if (mem_cgroup_is_root(memcg))
4894 return -EINVAL;
c33bd835 4895 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4896}
4897
182446d0
TH
4898static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4899 struct cftype *cft)
18f59ea7 4900{
182446d0 4901 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4902}
4903
182446d0
TH
4904static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4905 struct cftype *cft, u64 val)
18f59ea7
BS
4906{
4907 int retval = 0;
182446d0 4908 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4909 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4910
0999821b 4911 mutex_lock(&memcg_create_mutex);
567fb435
GC
4912
4913 if (memcg->use_hierarchy == val)
4914 goto out;
4915
18f59ea7 4916 /*
af901ca1 4917 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4918 * in the child subtrees. If it is unset, then the change can
4919 * occur, provided the current cgroup has no children.
4920 *
4921 * For the root cgroup, parent_mem is NULL, we allow value to be
4922 * set if there are no children.
4923 */
c0ff4b85 4924 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4925 (val == 1 || val == 0)) {
696ac172 4926 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 4927 memcg->use_hierarchy = val;
18f59ea7
BS
4928 else
4929 retval = -EBUSY;
4930 } else
4931 retval = -EINVAL;
567fb435
GC
4932
4933out:
0999821b 4934 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4935
4936 return retval;
4937}
4938
0c3e73e8 4939
c0ff4b85 4940static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4941 enum mem_cgroup_stat_index idx)
0c3e73e8 4942{
7d74b06f 4943 struct mem_cgroup *iter;
7a159cc9 4944 long val = 0;
0c3e73e8 4945
7a159cc9 4946 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4947 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4948 val += mem_cgroup_read_stat(iter, idx);
4949
4950 if (val < 0) /* race ? */
4951 val = 0;
4952 return val;
0c3e73e8
BS
4953}
4954
c0ff4b85 4955static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4956{
7d74b06f 4957 u64 val;
104f3928 4958
c0ff4b85 4959 if (!mem_cgroup_is_root(memcg)) {
104f3928 4960 if (!swap)
65c64ce8 4961 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4962 else
65c64ce8 4963 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4964 }
4965
b070e65c
DR
4966 /*
4967 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4968 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4969 */
c0ff4b85
R
4970 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4971 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4972
7d74b06f 4973 if (swap)
bff6bb83 4974 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4975
4976 return val << PAGE_SHIFT;
4977}
4978
791badbd
TH
4979static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4980 struct cftype *cft)
8cdea7c0 4981{
182446d0 4982 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 4983 u64 val;
791badbd 4984 int name;
86ae53e1 4985 enum res_type type;
8c7c6e34
KH
4986
4987 type = MEMFILE_TYPE(cft->private);
4988 name = MEMFILE_ATTR(cft->private);
af36f906 4989
8c7c6e34
KH
4990 switch (type) {
4991 case _MEM:
104f3928 4992 if (name == RES_USAGE)
c0ff4b85 4993 val = mem_cgroup_usage(memcg, false);
104f3928 4994 else
c0ff4b85 4995 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4996 break;
4997 case _MEMSWAP:
104f3928 4998 if (name == RES_USAGE)
c0ff4b85 4999 val = mem_cgroup_usage(memcg, true);
104f3928 5000 else
c0ff4b85 5001 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5002 break;
510fc4e1
GC
5003 case _KMEM:
5004 val = res_counter_read_u64(&memcg->kmem, name);
5005 break;
8c7c6e34
KH
5006 default:
5007 BUG();
8c7c6e34 5008 }
af36f906 5009
791badbd 5010 return val;
8cdea7c0 5011}
510fc4e1 5012
510fc4e1 5013#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
5014/* should be called with activate_kmem_mutex held */
5015static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5016 unsigned long long limit)
5017{
5018 int err = 0;
5019 int memcg_id;
5020
5021 if (memcg_kmem_is_active(memcg))
5022 return 0;
5023
5024 /*
5025 * We are going to allocate memory for data shared by all memory
5026 * cgroups so let's stop accounting here.
5027 */
5028 memcg_stop_kmem_account();
5029
510fc4e1
GC
5030 /*
5031 * For simplicity, we won't allow this to be disabled. It also can't
5032 * be changed if the cgroup has children already, or if tasks had
5033 * already joined.
5034 *
5035 * If tasks join before we set the limit, a person looking at
5036 * kmem.usage_in_bytes will have no way to determine when it took
5037 * place, which makes the value quite meaningless.
5038 *
5039 * After it first became limited, changes in the value of the limit are
5040 * of course permitted.
510fc4e1 5041 */
0999821b 5042 mutex_lock(&memcg_create_mutex);
07bc356e 5043 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
5044 err = -EBUSY;
5045 mutex_unlock(&memcg_create_mutex);
5046 if (err)
5047 goto out;
510fc4e1 5048
d6441637
VD
5049 memcg_id = ida_simple_get(&kmem_limited_groups,
5050 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5051 if (memcg_id < 0) {
5052 err = memcg_id;
5053 goto out;
5054 }
5055
5056 /*
5057 * Make sure we have enough space for this cgroup in each root cache's
5058 * memcg_params.
5059 */
5060 err = memcg_update_all_caches(memcg_id + 1);
5061 if (err)
5062 goto out_rmid;
5063
5064 memcg->kmemcg_id = memcg_id;
5065 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5066 mutex_init(&memcg->slab_caches_mutex);
5067
5068 /*
5069 * We couldn't have accounted to this cgroup, because it hasn't got the
5070 * active bit set yet, so this should succeed.
5071 */
5072 err = res_counter_set_limit(&memcg->kmem, limit);
5073 VM_BUG_ON(err);
5074
5075 static_key_slow_inc(&memcg_kmem_enabled_key);
5076 /*
5077 * Setting the active bit after enabling static branching will
5078 * guarantee no one starts accounting before all call sites are
5079 * patched.
5080 */
5081 memcg_kmem_set_active(memcg);
510fc4e1 5082out:
d6441637
VD
5083 memcg_resume_kmem_account();
5084 return err;
5085
5086out_rmid:
5087 ida_simple_remove(&kmem_limited_groups, memcg_id);
5088 goto out;
5089}
5090
5091static int memcg_activate_kmem(struct mem_cgroup *memcg,
5092 unsigned long long limit)
5093{
5094 int ret;
5095
5096 mutex_lock(&activate_kmem_mutex);
5097 ret = __memcg_activate_kmem(memcg, limit);
5098 mutex_unlock(&activate_kmem_mutex);
5099 return ret;
5100}
5101
5102static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5103 unsigned long long val)
5104{
5105 int ret;
5106
5107 if (!memcg_kmem_is_active(memcg))
5108 ret = memcg_activate_kmem(memcg, val);
5109 else
5110 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5111 return ret;
5112}
5113
55007d84 5114static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5115{
55007d84 5116 int ret = 0;
510fc4e1 5117 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5118
d6441637
VD
5119 if (!parent)
5120 return 0;
55007d84 5121
d6441637 5122 mutex_lock(&activate_kmem_mutex);
55007d84 5123 /*
d6441637
VD
5124 * If the parent cgroup is not kmem-active now, it cannot be activated
5125 * after this point, because it has at least one child already.
55007d84 5126 */
d6441637
VD
5127 if (memcg_kmem_is_active(parent))
5128 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5129 mutex_unlock(&activate_kmem_mutex);
55007d84 5130 return ret;
510fc4e1 5131}
d6441637
VD
5132#else
5133static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5134 unsigned long long val)
5135{
5136 return -EINVAL;
5137}
6d043990 5138#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5139
628f4235
KH
5140/*
5141 * The user of this function is...
5142 * RES_LIMIT.
5143 */
182446d0 5144static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5145 char *buffer)
8cdea7c0 5146{
182446d0 5147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5148 enum res_type type;
5149 int name;
628f4235
KH
5150 unsigned long long val;
5151 int ret;
5152
8c7c6e34
KH
5153 type = MEMFILE_TYPE(cft->private);
5154 name = MEMFILE_ATTR(cft->private);
af36f906 5155
8c7c6e34 5156 switch (name) {
628f4235 5157 case RES_LIMIT:
4b3bde4c
BS
5158 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5159 ret = -EINVAL;
5160 break;
5161 }
628f4235
KH
5162 /* This function does all necessary parse...reuse it */
5163 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5164 if (ret)
5165 break;
5166 if (type == _MEM)
628f4235 5167 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5168 else if (type == _MEMSWAP)
8c7c6e34 5169 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5170 else if (type == _KMEM)
d6441637 5171 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5172 else
5173 return -EINVAL;
628f4235 5174 break;
296c81d8
BS
5175 case RES_SOFT_LIMIT:
5176 ret = res_counter_memparse_write_strategy(buffer, &val);
5177 if (ret)
5178 break;
5179 /*
5180 * For memsw, soft limits are hard to implement in terms
5181 * of semantics, for now, we support soft limits for
5182 * control without swap
5183 */
5184 if (type == _MEM)
5185 ret = res_counter_set_soft_limit(&memcg->res, val);
5186 else
5187 ret = -EINVAL;
5188 break;
628f4235
KH
5189 default:
5190 ret = -EINVAL; /* should be BUG() ? */
5191 break;
5192 }
5193 return ret;
8cdea7c0
BS
5194}
5195
fee7b548
KH
5196static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5197 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5198{
fee7b548
KH
5199 unsigned long long min_limit, min_memsw_limit, tmp;
5200
5201 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5202 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5203 if (!memcg->use_hierarchy)
5204 goto out;
5205
63876986
TH
5206 while (css_parent(&memcg->css)) {
5207 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5208 if (!memcg->use_hierarchy)
5209 break;
5210 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5211 min_limit = min(min_limit, tmp);
5212 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5213 min_memsw_limit = min(min_memsw_limit, tmp);
5214 }
5215out:
5216 *mem_limit = min_limit;
5217 *memsw_limit = min_memsw_limit;
fee7b548
KH
5218}
5219
182446d0 5220static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5221{
182446d0 5222 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5223 int name;
5224 enum res_type type;
c84872e1 5225
8c7c6e34
KH
5226 type = MEMFILE_TYPE(event);
5227 name = MEMFILE_ATTR(event);
af36f906 5228
8c7c6e34 5229 switch (name) {
29f2a4da 5230 case RES_MAX_USAGE:
8c7c6e34 5231 if (type == _MEM)
c0ff4b85 5232 res_counter_reset_max(&memcg->res);
510fc4e1 5233 else if (type == _MEMSWAP)
c0ff4b85 5234 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5235 else if (type == _KMEM)
5236 res_counter_reset_max(&memcg->kmem);
5237 else
5238 return -EINVAL;
29f2a4da
PE
5239 break;
5240 case RES_FAILCNT:
8c7c6e34 5241 if (type == _MEM)
c0ff4b85 5242 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5243 else if (type == _MEMSWAP)
c0ff4b85 5244 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5245 else if (type == _KMEM)
5246 res_counter_reset_failcnt(&memcg->kmem);
5247 else
5248 return -EINVAL;
29f2a4da
PE
5249 break;
5250 }
f64c3f54 5251
85cc59db 5252 return 0;
c84872e1
PE
5253}
5254
182446d0 5255static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5256 struct cftype *cft)
5257{
182446d0 5258 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5259}
5260
02491447 5261#ifdef CONFIG_MMU
182446d0 5262static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5263 struct cftype *cft, u64 val)
5264{
182446d0 5265 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5266
5267 if (val >= (1 << NR_MOVE_TYPE))
5268 return -EINVAL;
ee5e8472 5269
7dc74be0 5270 /*
ee5e8472
GC
5271 * No kind of locking is needed in here, because ->can_attach() will
5272 * check this value once in the beginning of the process, and then carry
5273 * on with stale data. This means that changes to this value will only
5274 * affect task migrations starting after the change.
7dc74be0 5275 */
c0ff4b85 5276 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5277 return 0;
5278}
02491447 5279#else
182446d0 5280static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5281 struct cftype *cft, u64 val)
5282{
5283 return -ENOSYS;
5284}
5285#endif
7dc74be0 5286
406eb0c9 5287#ifdef CONFIG_NUMA
2da8ca82 5288static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5289{
25485de6
GT
5290 struct numa_stat {
5291 const char *name;
5292 unsigned int lru_mask;
5293 };
5294
5295 static const struct numa_stat stats[] = {
5296 { "total", LRU_ALL },
5297 { "file", LRU_ALL_FILE },
5298 { "anon", LRU_ALL_ANON },
5299 { "unevictable", BIT(LRU_UNEVICTABLE) },
5300 };
5301 const struct numa_stat *stat;
406eb0c9 5302 int nid;
25485de6 5303 unsigned long nr;
2da8ca82 5304 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5305
25485de6
GT
5306 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5307 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5308 seq_printf(m, "%s=%lu", stat->name, nr);
5309 for_each_node_state(nid, N_MEMORY) {
5310 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5311 stat->lru_mask);
5312 seq_printf(m, " N%d=%lu", nid, nr);
5313 }
5314 seq_putc(m, '\n');
406eb0c9 5315 }
406eb0c9 5316
071aee13
YH
5317 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5318 struct mem_cgroup *iter;
5319
5320 nr = 0;
5321 for_each_mem_cgroup_tree(iter, memcg)
5322 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5323 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5324 for_each_node_state(nid, N_MEMORY) {
5325 nr = 0;
5326 for_each_mem_cgroup_tree(iter, memcg)
5327 nr += mem_cgroup_node_nr_lru_pages(
5328 iter, nid, stat->lru_mask);
5329 seq_printf(m, " N%d=%lu", nid, nr);
5330 }
5331 seq_putc(m, '\n');
406eb0c9 5332 }
406eb0c9 5333
406eb0c9
YH
5334 return 0;
5335}
5336#endif /* CONFIG_NUMA */
5337
af7c4b0e
JW
5338static inline void mem_cgroup_lru_names_not_uptodate(void)
5339{
5340 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5341}
5342
2da8ca82 5343static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5344{
2da8ca82 5345 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5346 struct mem_cgroup *mi;
5347 unsigned int i;
406eb0c9 5348
af7c4b0e 5349 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5350 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5351 continue;
af7c4b0e
JW
5352 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5353 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5354 }
7b854121 5355
af7c4b0e
JW
5356 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5357 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5358 mem_cgroup_read_events(memcg, i));
5359
5360 for (i = 0; i < NR_LRU_LISTS; i++)
5361 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5362 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5363
14067bb3 5364 /* Hierarchical information */
fee7b548
KH
5365 {
5366 unsigned long long limit, memsw_limit;
d79154bb 5367 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5368 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5369 if (do_swap_account)
78ccf5b5
JW
5370 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5371 memsw_limit);
fee7b548 5372 }
7f016ee8 5373
af7c4b0e
JW
5374 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5375 long long val = 0;
5376
bff6bb83 5377 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5378 continue;
af7c4b0e
JW
5379 for_each_mem_cgroup_tree(mi, memcg)
5380 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5381 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5382 }
5383
5384 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5385 unsigned long long val = 0;
5386
5387 for_each_mem_cgroup_tree(mi, memcg)
5388 val += mem_cgroup_read_events(mi, i);
5389 seq_printf(m, "total_%s %llu\n",
5390 mem_cgroup_events_names[i], val);
5391 }
5392
5393 for (i = 0; i < NR_LRU_LISTS; i++) {
5394 unsigned long long val = 0;
5395
5396 for_each_mem_cgroup_tree(mi, memcg)
5397 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5398 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5399 }
14067bb3 5400
7f016ee8 5401#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5402 {
5403 int nid, zid;
5404 struct mem_cgroup_per_zone *mz;
89abfab1 5405 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5406 unsigned long recent_rotated[2] = {0, 0};
5407 unsigned long recent_scanned[2] = {0, 0};
5408
5409 for_each_online_node(nid)
5410 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5411 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5412 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5413
89abfab1
HD
5414 recent_rotated[0] += rstat->recent_rotated[0];
5415 recent_rotated[1] += rstat->recent_rotated[1];
5416 recent_scanned[0] += rstat->recent_scanned[0];
5417 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5418 }
78ccf5b5
JW
5419 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5420 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5421 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5422 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5423 }
5424#endif
5425
d2ceb9b7
KH
5426 return 0;
5427}
5428
182446d0
TH
5429static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5430 struct cftype *cft)
a7885eb8 5431{
182446d0 5432 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5433
1f4c025b 5434 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5435}
5436
182446d0
TH
5437static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5438 struct cftype *cft, u64 val)
a7885eb8 5439{
182446d0 5440 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5441 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5442
63876986 5443 if (val > 100 || !parent)
a7885eb8
KM
5444 return -EINVAL;
5445
0999821b 5446 mutex_lock(&memcg_create_mutex);
068b38c1 5447
a7885eb8 5448 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5449 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5450 mutex_unlock(&memcg_create_mutex);
a7885eb8 5451 return -EINVAL;
068b38c1 5452 }
a7885eb8 5453
a7885eb8 5454 memcg->swappiness = val;
a7885eb8 5455
0999821b 5456 mutex_unlock(&memcg_create_mutex);
068b38c1 5457
a7885eb8
KM
5458 return 0;
5459}
5460
2e72b634
KS
5461static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5462{
5463 struct mem_cgroup_threshold_ary *t;
5464 u64 usage;
5465 int i;
5466
5467 rcu_read_lock();
5468 if (!swap)
2c488db2 5469 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5470 else
2c488db2 5471 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5472
5473 if (!t)
5474 goto unlock;
5475
5476 usage = mem_cgroup_usage(memcg, swap);
5477
5478 /*
748dad36 5479 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5480 * If it's not true, a threshold was crossed after last
5481 * call of __mem_cgroup_threshold().
5482 */
5407a562 5483 i = t->current_threshold;
2e72b634
KS
5484
5485 /*
5486 * Iterate backward over array of thresholds starting from
5487 * current_threshold and check if a threshold is crossed.
5488 * If none of thresholds below usage is crossed, we read
5489 * only one element of the array here.
5490 */
5491 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5492 eventfd_signal(t->entries[i].eventfd, 1);
5493
5494 /* i = current_threshold + 1 */
5495 i++;
5496
5497 /*
5498 * Iterate forward over array of thresholds starting from
5499 * current_threshold+1 and check if a threshold is crossed.
5500 * If none of thresholds above usage is crossed, we read
5501 * only one element of the array here.
5502 */
5503 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5504 eventfd_signal(t->entries[i].eventfd, 1);
5505
5506 /* Update current_threshold */
5407a562 5507 t->current_threshold = i - 1;
2e72b634
KS
5508unlock:
5509 rcu_read_unlock();
5510}
5511
5512static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5513{
ad4ca5f4
KS
5514 while (memcg) {
5515 __mem_cgroup_threshold(memcg, false);
5516 if (do_swap_account)
5517 __mem_cgroup_threshold(memcg, true);
5518
5519 memcg = parent_mem_cgroup(memcg);
5520 }
2e72b634
KS
5521}
5522
5523static int compare_thresholds(const void *a, const void *b)
5524{
5525 const struct mem_cgroup_threshold *_a = a;
5526 const struct mem_cgroup_threshold *_b = b;
5527
2bff24a3
GT
5528 if (_a->threshold > _b->threshold)
5529 return 1;
5530
5531 if (_a->threshold < _b->threshold)
5532 return -1;
5533
5534 return 0;
2e72b634
KS
5535}
5536
c0ff4b85 5537static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5538{
5539 struct mem_cgroup_eventfd_list *ev;
5540
c0ff4b85 5541 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5542 eventfd_signal(ev->eventfd, 1);
5543 return 0;
5544}
5545
c0ff4b85 5546static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5547{
7d74b06f
KH
5548 struct mem_cgroup *iter;
5549
c0ff4b85 5550 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5551 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5552}
5553
59b6f873 5554static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5555 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5556{
2c488db2
KS
5557 struct mem_cgroup_thresholds *thresholds;
5558 struct mem_cgroup_threshold_ary *new;
2e72b634 5559 u64 threshold, usage;
2c488db2 5560 int i, size, ret;
2e72b634
KS
5561
5562 ret = res_counter_memparse_write_strategy(args, &threshold);
5563 if (ret)
5564 return ret;
5565
5566 mutex_lock(&memcg->thresholds_lock);
2c488db2 5567
2e72b634 5568 if (type == _MEM)
2c488db2 5569 thresholds = &memcg->thresholds;
2e72b634 5570 else if (type == _MEMSWAP)
2c488db2 5571 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5572 else
5573 BUG();
5574
5575 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5576
5577 /* Check if a threshold crossed before adding a new one */
2c488db2 5578 if (thresholds->primary)
2e72b634
KS
5579 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5580
2c488db2 5581 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5582
5583 /* Allocate memory for new array of thresholds */
2c488db2 5584 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5585 GFP_KERNEL);
2c488db2 5586 if (!new) {
2e72b634
KS
5587 ret = -ENOMEM;
5588 goto unlock;
5589 }
2c488db2 5590 new->size = size;
2e72b634
KS
5591
5592 /* Copy thresholds (if any) to new array */
2c488db2
KS
5593 if (thresholds->primary) {
5594 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5595 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5596 }
5597
2e72b634 5598 /* Add new threshold */
2c488db2
KS
5599 new->entries[size - 1].eventfd = eventfd;
5600 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5601
5602 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5603 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5604 compare_thresholds, NULL);
5605
5606 /* Find current threshold */
2c488db2 5607 new->current_threshold = -1;
2e72b634 5608 for (i = 0; i < size; i++) {
748dad36 5609 if (new->entries[i].threshold <= usage) {
2e72b634 5610 /*
2c488db2
KS
5611 * new->current_threshold will not be used until
5612 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5613 * it here.
5614 */
2c488db2 5615 ++new->current_threshold;
748dad36
SZ
5616 } else
5617 break;
2e72b634
KS
5618 }
5619
2c488db2
KS
5620 /* Free old spare buffer and save old primary buffer as spare */
5621 kfree(thresholds->spare);
5622 thresholds->spare = thresholds->primary;
5623
5624 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5625
907860ed 5626 /* To be sure that nobody uses thresholds */
2e72b634
KS
5627 synchronize_rcu();
5628
2e72b634
KS
5629unlock:
5630 mutex_unlock(&memcg->thresholds_lock);
5631
5632 return ret;
5633}
5634
59b6f873 5635static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5636 struct eventfd_ctx *eventfd, const char *args)
5637{
59b6f873 5638 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5639}
5640
59b6f873 5641static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5642 struct eventfd_ctx *eventfd, const char *args)
5643{
59b6f873 5644 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5645}
5646
59b6f873 5647static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5648 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5649{
2c488db2
KS
5650 struct mem_cgroup_thresholds *thresholds;
5651 struct mem_cgroup_threshold_ary *new;
2e72b634 5652 u64 usage;
2c488db2 5653 int i, j, size;
2e72b634
KS
5654
5655 mutex_lock(&memcg->thresholds_lock);
5656 if (type == _MEM)
2c488db2 5657 thresholds = &memcg->thresholds;
2e72b634 5658 else if (type == _MEMSWAP)
2c488db2 5659 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5660 else
5661 BUG();
5662
371528ca
AV
5663 if (!thresholds->primary)
5664 goto unlock;
5665
2e72b634
KS
5666 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5667
5668 /* Check if a threshold crossed before removing */
5669 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5670
5671 /* Calculate new number of threshold */
2c488db2
KS
5672 size = 0;
5673 for (i = 0; i < thresholds->primary->size; i++) {
5674 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5675 size++;
5676 }
5677
2c488db2 5678 new = thresholds->spare;
907860ed 5679
2e72b634
KS
5680 /* Set thresholds array to NULL if we don't have thresholds */
5681 if (!size) {
2c488db2
KS
5682 kfree(new);
5683 new = NULL;
907860ed 5684 goto swap_buffers;
2e72b634
KS
5685 }
5686
2c488db2 5687 new->size = size;
2e72b634
KS
5688
5689 /* Copy thresholds and find current threshold */
2c488db2
KS
5690 new->current_threshold = -1;
5691 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5692 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5693 continue;
5694
2c488db2 5695 new->entries[j] = thresholds->primary->entries[i];
748dad36 5696 if (new->entries[j].threshold <= usage) {
2e72b634 5697 /*
2c488db2 5698 * new->current_threshold will not be used
2e72b634
KS
5699 * until rcu_assign_pointer(), so it's safe to increment
5700 * it here.
5701 */
2c488db2 5702 ++new->current_threshold;
2e72b634
KS
5703 }
5704 j++;
5705 }
5706
907860ed 5707swap_buffers:
2c488db2
KS
5708 /* Swap primary and spare array */
5709 thresholds->spare = thresholds->primary;
8c757763
SZ
5710 /* If all events are unregistered, free the spare array */
5711 if (!new) {
5712 kfree(thresholds->spare);
5713 thresholds->spare = NULL;
5714 }
5715
2c488db2 5716 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5717
907860ed 5718 /* To be sure that nobody uses thresholds */
2e72b634 5719 synchronize_rcu();
371528ca 5720unlock:
2e72b634 5721 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5722}
c1e862c1 5723
59b6f873 5724static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5725 struct eventfd_ctx *eventfd)
5726{
59b6f873 5727 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5728}
5729
59b6f873 5730static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5731 struct eventfd_ctx *eventfd)
5732{
59b6f873 5733 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5734}
5735
59b6f873 5736static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5737 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5738{
9490ff27 5739 struct mem_cgroup_eventfd_list *event;
9490ff27 5740
9490ff27
KH
5741 event = kmalloc(sizeof(*event), GFP_KERNEL);
5742 if (!event)
5743 return -ENOMEM;
5744
1af8efe9 5745 spin_lock(&memcg_oom_lock);
9490ff27
KH
5746
5747 event->eventfd = eventfd;
5748 list_add(&event->list, &memcg->oom_notify);
5749
5750 /* already in OOM ? */
79dfdacc 5751 if (atomic_read(&memcg->under_oom))
9490ff27 5752 eventfd_signal(eventfd, 1);
1af8efe9 5753 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5754
5755 return 0;
5756}
5757
59b6f873 5758static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5759 struct eventfd_ctx *eventfd)
9490ff27 5760{
9490ff27 5761 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5762
1af8efe9 5763 spin_lock(&memcg_oom_lock);
9490ff27 5764
c0ff4b85 5765 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5766 if (ev->eventfd == eventfd) {
5767 list_del(&ev->list);
5768 kfree(ev);
5769 }
5770 }
5771
1af8efe9 5772 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5773}
5774
2da8ca82 5775static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5776{
2da8ca82 5777 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5778
791badbd
TH
5779 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5780 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5781 return 0;
5782}
5783
182446d0 5784static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5785 struct cftype *cft, u64 val)
5786{
182446d0 5787 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5788 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5789
5790 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5791 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5792 return -EINVAL;
5793
0999821b 5794 mutex_lock(&memcg_create_mutex);
3c11ecf4 5795 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5796 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5797 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5798 return -EINVAL;
5799 }
c0ff4b85 5800 memcg->oom_kill_disable = val;
4d845ebf 5801 if (!val)
c0ff4b85 5802 memcg_oom_recover(memcg);
0999821b 5803 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5804 return 0;
5805}
5806
c255a458 5807#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5808static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5809{
55007d84
GC
5810 int ret;
5811
2633d7a0 5812 memcg->kmemcg_id = -1;
55007d84
GC
5813 ret = memcg_propagate_kmem(memcg);
5814 if (ret)
5815 return ret;
2633d7a0 5816
1d62e436 5817 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5818}
e5671dfa 5819
10d5ebf4 5820static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5821{
1d62e436 5822 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5823}
5824
5825static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5826{
5827 if (!memcg_kmem_is_active(memcg))
5828 return;
5829
5830 /*
5831 * kmem charges can outlive the cgroup. In the case of slab
5832 * pages, for instance, a page contain objects from various
5833 * processes. As we prevent from taking a reference for every
5834 * such allocation we have to be careful when doing uncharge
5835 * (see memcg_uncharge_kmem) and here during offlining.
5836 *
5837 * The idea is that that only the _last_ uncharge which sees
5838 * the dead memcg will drop the last reference. An additional
5839 * reference is taken here before the group is marked dead
5840 * which is then paired with css_put during uncharge resp. here.
5841 *
5842 * Although this might sound strange as this path is called from
5843 * css_offline() when the referencemight have dropped down to 0
5844 * and shouldn't be incremented anymore (css_tryget would fail)
5845 * we do not have other options because of the kmem allocations
5846 * lifetime.
5847 */
5848 css_get(&memcg->css);
7de37682
GC
5849
5850 memcg_kmem_mark_dead(memcg);
5851
5852 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5853 return;
5854
7de37682 5855 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5856 css_put(&memcg->css);
d1a4c0b3 5857}
e5671dfa 5858#else
cbe128e3 5859static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5860{
5861 return 0;
5862}
d1a4c0b3 5863
10d5ebf4
LZ
5864static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5865{
5866}
5867
5868static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5869{
5870}
e5671dfa
GC
5871#endif
5872
3bc942f3
TH
5873/*
5874 * DO NOT USE IN NEW FILES.
5875 *
5876 * "cgroup.event_control" implementation.
5877 *
5878 * This is way over-engineered. It tries to support fully configurable
5879 * events for each user. Such level of flexibility is completely
5880 * unnecessary especially in the light of the planned unified hierarchy.
5881 *
5882 * Please deprecate this and replace with something simpler if at all
5883 * possible.
5884 */
5885
79bd9814
TH
5886/*
5887 * Unregister event and free resources.
5888 *
5889 * Gets called from workqueue.
5890 */
3bc942f3 5891static void memcg_event_remove(struct work_struct *work)
79bd9814 5892{
3bc942f3
TH
5893 struct mem_cgroup_event *event =
5894 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5895 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5896
5897 remove_wait_queue(event->wqh, &event->wait);
5898
59b6f873 5899 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5900
5901 /* Notify userspace the event is going away. */
5902 eventfd_signal(event->eventfd, 1);
5903
5904 eventfd_ctx_put(event->eventfd);
5905 kfree(event);
59b6f873 5906 css_put(&memcg->css);
79bd9814
TH
5907}
5908
5909/*
5910 * Gets called on POLLHUP on eventfd when user closes it.
5911 *
5912 * Called with wqh->lock held and interrupts disabled.
5913 */
3bc942f3
TH
5914static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5915 int sync, void *key)
79bd9814 5916{
3bc942f3
TH
5917 struct mem_cgroup_event *event =
5918 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5919 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5920 unsigned long flags = (unsigned long)key;
5921
5922 if (flags & POLLHUP) {
5923 /*
5924 * If the event has been detached at cgroup removal, we
5925 * can simply return knowing the other side will cleanup
5926 * for us.
5927 *
5928 * We can't race against event freeing since the other
5929 * side will require wqh->lock via remove_wait_queue(),
5930 * which we hold.
5931 */
fba94807 5932 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5933 if (!list_empty(&event->list)) {
5934 list_del_init(&event->list);
5935 /*
5936 * We are in atomic context, but cgroup_event_remove()
5937 * may sleep, so we have to call it in workqueue.
5938 */
5939 schedule_work(&event->remove);
5940 }
fba94807 5941 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5942 }
5943
5944 return 0;
5945}
5946
3bc942f3 5947static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5948 wait_queue_head_t *wqh, poll_table *pt)
5949{
3bc942f3
TH
5950 struct mem_cgroup_event *event =
5951 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5952
5953 event->wqh = wqh;
5954 add_wait_queue(wqh, &event->wait);
5955}
5956
5957/*
3bc942f3
TH
5958 * DO NOT USE IN NEW FILES.
5959 *
79bd9814
TH
5960 * Parse input and register new cgroup event handler.
5961 *
5962 * Input must be in format '<event_fd> <control_fd> <args>'.
5963 * Interpretation of args is defined by control file implementation.
5964 */
3bc942f3 5965static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 5966 struct cftype *cft, char *buffer)
79bd9814 5967{
fba94807 5968 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5969 struct mem_cgroup_event *event;
79bd9814
TH
5970 struct cgroup_subsys_state *cfile_css;
5971 unsigned int efd, cfd;
5972 struct fd efile;
5973 struct fd cfile;
fba94807 5974 const char *name;
79bd9814
TH
5975 char *endp;
5976 int ret;
5977
5978 efd = simple_strtoul(buffer, &endp, 10);
5979 if (*endp != ' ')
5980 return -EINVAL;
5981 buffer = endp + 1;
5982
5983 cfd = simple_strtoul(buffer, &endp, 10);
5984 if ((*endp != ' ') && (*endp != '\0'))
5985 return -EINVAL;
5986 buffer = endp + 1;
5987
5988 event = kzalloc(sizeof(*event), GFP_KERNEL);
5989 if (!event)
5990 return -ENOMEM;
5991
59b6f873 5992 event->memcg = memcg;
79bd9814 5993 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5994 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5995 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5996 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5997
5998 efile = fdget(efd);
5999 if (!efile.file) {
6000 ret = -EBADF;
6001 goto out_kfree;
6002 }
6003
6004 event->eventfd = eventfd_ctx_fileget(efile.file);
6005 if (IS_ERR(event->eventfd)) {
6006 ret = PTR_ERR(event->eventfd);
6007 goto out_put_efile;
6008 }
6009
6010 cfile = fdget(cfd);
6011 if (!cfile.file) {
6012 ret = -EBADF;
6013 goto out_put_eventfd;
6014 }
6015
6016 /* the process need read permission on control file */
6017 /* AV: shouldn't we check that it's been opened for read instead? */
6018 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6019 if (ret < 0)
6020 goto out_put_cfile;
6021
fba94807
TH
6022 /*
6023 * Determine the event callbacks and set them in @event. This used
6024 * to be done via struct cftype but cgroup core no longer knows
6025 * about these events. The following is crude but the whole thing
6026 * is for compatibility anyway.
3bc942f3
TH
6027 *
6028 * DO NOT ADD NEW FILES.
fba94807
TH
6029 */
6030 name = cfile.file->f_dentry->d_name.name;
6031
6032 if (!strcmp(name, "memory.usage_in_bytes")) {
6033 event->register_event = mem_cgroup_usage_register_event;
6034 event->unregister_event = mem_cgroup_usage_unregister_event;
6035 } else if (!strcmp(name, "memory.oom_control")) {
6036 event->register_event = mem_cgroup_oom_register_event;
6037 event->unregister_event = mem_cgroup_oom_unregister_event;
6038 } else if (!strcmp(name, "memory.pressure_level")) {
6039 event->register_event = vmpressure_register_event;
6040 event->unregister_event = vmpressure_unregister_event;
6041 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6042 event->register_event = memsw_cgroup_usage_register_event;
6043 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6044 } else {
6045 ret = -EINVAL;
6046 goto out_put_cfile;
6047 }
6048
79bd9814 6049 /*
b5557c4c
TH
6050 * Verify @cfile should belong to @css. Also, remaining events are
6051 * automatically removed on cgroup destruction but the removal is
6052 * asynchronous, so take an extra ref on @css.
79bd9814 6053 */
5a17f543
TH
6054 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6055 &memory_cgrp_subsys);
79bd9814 6056 ret = -EINVAL;
5a17f543 6057 if (IS_ERR(cfile_css))
79bd9814 6058 goto out_put_cfile;
5a17f543
TH
6059 if (cfile_css != css) {
6060 css_put(cfile_css);
79bd9814 6061 goto out_put_cfile;
5a17f543 6062 }
79bd9814 6063
59b6f873 6064 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6065 if (ret)
6066 goto out_put_css;
6067
6068 efile.file->f_op->poll(efile.file, &event->pt);
6069
fba94807
TH
6070 spin_lock(&memcg->event_list_lock);
6071 list_add(&event->list, &memcg->event_list);
6072 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6073
6074 fdput(cfile);
6075 fdput(efile);
6076
6077 return 0;
6078
6079out_put_css:
b5557c4c 6080 css_put(css);
79bd9814
TH
6081out_put_cfile:
6082 fdput(cfile);
6083out_put_eventfd:
6084 eventfd_ctx_put(event->eventfd);
6085out_put_efile:
6086 fdput(efile);
6087out_kfree:
6088 kfree(event);
6089
6090 return ret;
6091}
6092
8cdea7c0
BS
6093static struct cftype mem_cgroup_files[] = {
6094 {
0eea1030 6095 .name = "usage_in_bytes",
8c7c6e34 6096 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6097 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6098 },
c84872e1
PE
6099 {
6100 .name = "max_usage_in_bytes",
8c7c6e34 6101 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6102 .trigger = mem_cgroup_reset,
791badbd 6103 .read_u64 = mem_cgroup_read_u64,
c84872e1 6104 },
8cdea7c0 6105 {
0eea1030 6106 .name = "limit_in_bytes",
8c7c6e34 6107 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6108 .write_string = mem_cgroup_write,
791badbd 6109 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6110 },
296c81d8
BS
6111 {
6112 .name = "soft_limit_in_bytes",
6113 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6114 .write_string = mem_cgroup_write,
791badbd 6115 .read_u64 = mem_cgroup_read_u64,
296c81d8 6116 },
8cdea7c0
BS
6117 {
6118 .name = "failcnt",
8c7c6e34 6119 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6120 .trigger = mem_cgroup_reset,
791badbd 6121 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6122 },
d2ceb9b7
KH
6123 {
6124 .name = "stat",
2da8ca82 6125 .seq_show = memcg_stat_show,
d2ceb9b7 6126 },
c1e862c1
KH
6127 {
6128 .name = "force_empty",
6129 .trigger = mem_cgroup_force_empty_write,
6130 },
18f59ea7
BS
6131 {
6132 .name = "use_hierarchy",
f00baae7 6133 .flags = CFTYPE_INSANE,
18f59ea7
BS
6134 .write_u64 = mem_cgroup_hierarchy_write,
6135 .read_u64 = mem_cgroup_hierarchy_read,
6136 },
79bd9814 6137 {
3bc942f3
TH
6138 .name = "cgroup.event_control", /* XXX: for compat */
6139 .write_string = memcg_write_event_control,
79bd9814
TH
6140 .flags = CFTYPE_NO_PREFIX,
6141 .mode = S_IWUGO,
6142 },
a7885eb8
KM
6143 {
6144 .name = "swappiness",
6145 .read_u64 = mem_cgroup_swappiness_read,
6146 .write_u64 = mem_cgroup_swappiness_write,
6147 },
7dc74be0
DN
6148 {
6149 .name = "move_charge_at_immigrate",
6150 .read_u64 = mem_cgroup_move_charge_read,
6151 .write_u64 = mem_cgroup_move_charge_write,
6152 },
9490ff27
KH
6153 {
6154 .name = "oom_control",
2da8ca82 6155 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6156 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6157 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6158 },
70ddf637
AV
6159 {
6160 .name = "pressure_level",
70ddf637 6161 },
406eb0c9
YH
6162#ifdef CONFIG_NUMA
6163 {
6164 .name = "numa_stat",
2da8ca82 6165 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6166 },
6167#endif
510fc4e1
GC
6168#ifdef CONFIG_MEMCG_KMEM
6169 {
6170 .name = "kmem.limit_in_bytes",
6171 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6172 .write_string = mem_cgroup_write,
791badbd 6173 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6174 },
6175 {
6176 .name = "kmem.usage_in_bytes",
6177 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6178 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6179 },
6180 {
6181 .name = "kmem.failcnt",
6182 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6183 .trigger = mem_cgroup_reset,
791badbd 6184 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6185 },
6186 {
6187 .name = "kmem.max_usage_in_bytes",
6188 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6189 .trigger = mem_cgroup_reset,
791badbd 6190 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6191 },
749c5415
GC
6192#ifdef CONFIG_SLABINFO
6193 {
6194 .name = "kmem.slabinfo",
2da8ca82 6195 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6196 },
6197#endif
8c7c6e34 6198#endif
6bc10349 6199 { }, /* terminate */
af36f906 6200};
8c7c6e34 6201
2d11085e
MH
6202#ifdef CONFIG_MEMCG_SWAP
6203static struct cftype memsw_cgroup_files[] = {
6204 {
6205 .name = "memsw.usage_in_bytes",
6206 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6207 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6208 },
6209 {
6210 .name = "memsw.max_usage_in_bytes",
6211 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6212 .trigger = mem_cgroup_reset,
791badbd 6213 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6214 },
6215 {
6216 .name = "memsw.limit_in_bytes",
6217 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6218 .write_string = mem_cgroup_write,
791badbd 6219 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6220 },
6221 {
6222 .name = "memsw.failcnt",
6223 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6224 .trigger = mem_cgroup_reset,
791badbd 6225 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6226 },
6227 { }, /* terminate */
6228};
6229#endif
c0ff4b85 6230static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6231{
6232 struct mem_cgroup_per_node *pn;
1ecaab2b 6233 struct mem_cgroup_per_zone *mz;
41e3355d 6234 int zone, tmp = node;
1ecaab2b
KH
6235 /*
6236 * This routine is called against possible nodes.
6237 * But it's BUG to call kmalloc() against offline node.
6238 *
6239 * TODO: this routine can waste much memory for nodes which will
6240 * never be onlined. It's better to use memory hotplug callback
6241 * function.
6242 */
41e3355d
KH
6243 if (!node_state(node, N_NORMAL_MEMORY))
6244 tmp = -1;
17295c88 6245 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6246 if (!pn)
6247 return 1;
1ecaab2b 6248
1ecaab2b
KH
6249 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6250 mz = &pn->zoneinfo[zone];
bea8c150 6251 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6252 mz->usage_in_excess = 0;
6253 mz->on_tree = false;
d79154bb 6254 mz->memcg = memcg;
1ecaab2b 6255 }
54f72fe0 6256 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6257 return 0;
6258}
6259
c0ff4b85 6260static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6261{
54f72fe0 6262 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6263}
6264
33327948
KH
6265static struct mem_cgroup *mem_cgroup_alloc(void)
6266{
d79154bb 6267 struct mem_cgroup *memcg;
8ff69e2c 6268 size_t size;
33327948 6269
8ff69e2c
VD
6270 size = sizeof(struct mem_cgroup);
6271 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6272
8ff69e2c 6273 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6274 if (!memcg)
e7bbcdf3
DC
6275 return NULL;
6276
d79154bb
HD
6277 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6278 if (!memcg->stat)
d2e61b8d 6279 goto out_free;
d79154bb
HD
6280 spin_lock_init(&memcg->pcp_counter_lock);
6281 return memcg;
d2e61b8d
DC
6282
6283out_free:
8ff69e2c 6284 kfree(memcg);
d2e61b8d 6285 return NULL;
33327948
KH
6286}
6287
59927fb9 6288/*
c8b2a36f
GC
6289 * At destroying mem_cgroup, references from swap_cgroup can remain.
6290 * (scanning all at force_empty is too costly...)
6291 *
6292 * Instead of clearing all references at force_empty, we remember
6293 * the number of reference from swap_cgroup and free mem_cgroup when
6294 * it goes down to 0.
6295 *
6296 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6297 */
c8b2a36f
GC
6298
6299static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6300{
c8b2a36f 6301 int node;
59927fb9 6302
bb4cc1a8 6303 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6304
6305 for_each_node(node)
6306 free_mem_cgroup_per_zone_info(memcg, node);
6307
6308 free_percpu(memcg->stat);
6309
3f134619
GC
6310 /*
6311 * We need to make sure that (at least for now), the jump label
6312 * destruction code runs outside of the cgroup lock. This is because
6313 * get_online_cpus(), which is called from the static_branch update,
6314 * can't be called inside the cgroup_lock. cpusets are the ones
6315 * enforcing this dependency, so if they ever change, we might as well.
6316 *
6317 * schedule_work() will guarantee this happens. Be careful if you need
6318 * to move this code around, and make sure it is outside
6319 * the cgroup_lock.
6320 */
a8964b9b 6321 disarm_static_keys(memcg);
8ff69e2c 6322 kfree(memcg);
59927fb9 6323}
3afe36b1 6324
7bcc1bb1
DN
6325/*
6326 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6327 */
e1aab161 6328struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6329{
c0ff4b85 6330 if (!memcg->res.parent)
7bcc1bb1 6331 return NULL;
c0ff4b85 6332 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6333}
e1aab161 6334EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6335
bb4cc1a8
AM
6336static void __init mem_cgroup_soft_limit_tree_init(void)
6337{
6338 struct mem_cgroup_tree_per_node *rtpn;
6339 struct mem_cgroup_tree_per_zone *rtpz;
6340 int tmp, node, zone;
6341
6342 for_each_node(node) {
6343 tmp = node;
6344 if (!node_state(node, N_NORMAL_MEMORY))
6345 tmp = -1;
6346 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6347 BUG_ON(!rtpn);
6348
6349 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6350
6351 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6352 rtpz = &rtpn->rb_tree_per_zone[zone];
6353 rtpz->rb_root = RB_ROOT;
6354 spin_lock_init(&rtpz->lock);
6355 }
6356 }
6357}
6358
0eb253e2 6359static struct cgroup_subsys_state * __ref
eb95419b 6360mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6361{
d142e3e6 6362 struct mem_cgroup *memcg;
04046e1a 6363 long error = -ENOMEM;
6d12e2d8 6364 int node;
8cdea7c0 6365
c0ff4b85
R
6366 memcg = mem_cgroup_alloc();
6367 if (!memcg)
04046e1a 6368 return ERR_PTR(error);
78fb7466 6369
3ed28fa1 6370 for_each_node(node)
c0ff4b85 6371 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6372 goto free_out;
f64c3f54 6373
c077719b 6374 /* root ? */
eb95419b 6375 if (parent_css == NULL) {
a41c58a6 6376 root_mem_cgroup = memcg;
d142e3e6
GC
6377 res_counter_init(&memcg->res, NULL);
6378 res_counter_init(&memcg->memsw, NULL);
6379 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6380 }
28dbc4b6 6381
d142e3e6
GC
6382 memcg->last_scanned_node = MAX_NUMNODES;
6383 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6384 memcg->move_charge_at_immigrate = 0;
6385 mutex_init(&memcg->thresholds_lock);
6386 spin_lock_init(&memcg->move_lock);
70ddf637 6387 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6388 INIT_LIST_HEAD(&memcg->event_list);
6389 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6390
6391 return &memcg->css;
6392
6393free_out:
6394 __mem_cgroup_free(memcg);
6395 return ERR_PTR(error);
6396}
6397
6398static int
eb95419b 6399mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6400{
eb95419b
TH
6401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6402 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6403
15a4c835 6404 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
6405 return -ENOSPC;
6406
63876986 6407 if (!parent)
d142e3e6
GC
6408 return 0;
6409
0999821b 6410 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6411
6412 memcg->use_hierarchy = parent->use_hierarchy;
6413 memcg->oom_kill_disable = parent->oom_kill_disable;
6414 memcg->swappiness = mem_cgroup_swappiness(parent);
6415
6416 if (parent->use_hierarchy) {
c0ff4b85
R
6417 res_counter_init(&memcg->res, &parent->res);
6418 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6419 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6420
7bcc1bb1 6421 /*
8d76a979
LZ
6422 * No need to take a reference to the parent because cgroup
6423 * core guarantees its existence.
7bcc1bb1 6424 */
18f59ea7 6425 } else {
c0ff4b85
R
6426 res_counter_init(&memcg->res, NULL);
6427 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6428 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6429 /*
6430 * Deeper hierachy with use_hierarchy == false doesn't make
6431 * much sense so let cgroup subsystem know about this
6432 * unfortunate state in our controller.
6433 */
d142e3e6 6434 if (parent != root_mem_cgroup)
073219e9 6435 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6436 }
0999821b 6437 mutex_unlock(&memcg_create_mutex);
d6441637 6438
073219e9 6439 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6440}
6441
5f578161
MH
6442/*
6443 * Announce all parents that a group from their hierarchy is gone.
6444 */
6445static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6446{
6447 struct mem_cgroup *parent = memcg;
6448
6449 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6450 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6451
6452 /*
6453 * if the root memcg is not hierarchical we have to check it
6454 * explicitely.
6455 */
6456 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6457 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6458}
6459
eb95419b 6460static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6461{
eb95419b 6462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6463 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6464 struct cgroup_subsys_state *iter;
79bd9814
TH
6465
6466 /*
6467 * Unregister events and notify userspace.
6468 * Notify userspace about cgroup removing only after rmdir of cgroup
6469 * directory to avoid race between userspace and kernelspace.
6470 */
fba94807
TH
6471 spin_lock(&memcg->event_list_lock);
6472 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6473 list_del_init(&event->list);
6474 schedule_work(&event->remove);
6475 }
fba94807 6476 spin_unlock(&memcg->event_list_lock);
ec64f515 6477
10d5ebf4
LZ
6478 kmem_cgroup_css_offline(memcg);
6479
5f578161 6480 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6481
6482 /*
6483 * This requires that offlining is serialized. Right now that is
6484 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6485 */
6486 css_for_each_descendant_post(iter, css)
6487 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6488
1f458cbf 6489 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6490 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6491}
6492
eb95419b 6493static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6494{
eb95419b 6495 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6496 /*
6497 * XXX: css_offline() would be where we should reparent all
6498 * memory to prepare the cgroup for destruction. However,
6499 * memcg does not do css_tryget() and res_counter charging
6500 * under the same RCU lock region, which means that charging
6501 * could race with offlining. Offlining only happens to
6502 * cgroups with no tasks in them but charges can show up
6503 * without any tasks from the swapin path when the target
6504 * memcg is looked up from the swapout record and not from the
6505 * current task as it usually is. A race like this can leak
6506 * charges and put pages with stale cgroup pointers into
6507 * circulation:
6508 *
6509 * #0 #1
6510 * lookup_swap_cgroup_id()
6511 * rcu_read_lock()
6512 * mem_cgroup_lookup()
6513 * css_tryget()
6514 * rcu_read_unlock()
6515 * disable css_tryget()
6516 * call_rcu()
6517 * offline_css()
6518 * reparent_charges()
6519 * res_counter_charge()
6520 * css_put()
6521 * css_free()
6522 * pc->mem_cgroup = dead memcg
6523 * add page to lru
6524 *
6525 * The bulk of the charges are still moved in offline_css() to
6526 * avoid pinning a lot of pages in case a long-term reference
6527 * like a swapout record is deferring the css_free() to long
6528 * after offlining. But this makes sure we catch any charges
6529 * made after offlining:
6530 */
6531 mem_cgroup_reparent_charges(memcg);
c268e994 6532
10d5ebf4 6533 memcg_destroy_kmem(memcg);
465939a1 6534 __mem_cgroup_free(memcg);
8cdea7c0
BS
6535}
6536
02491447 6537#ifdef CONFIG_MMU
7dc74be0 6538/* Handlers for move charge at task migration. */
854ffa8d
DN
6539#define PRECHARGE_COUNT_AT_ONCE 256
6540static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6541{
854ffa8d
DN
6542 int ret = 0;
6543 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6544 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6545
c0ff4b85 6546 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6547 mc.precharge += count;
6548 /* we don't need css_get for root */
6549 return ret;
6550 }
6551 /* try to charge at once */
6552 if (count > 1) {
6553 struct res_counter *dummy;
6554 /*
c0ff4b85 6555 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6556 * by cgroup_lock_live_cgroup() that it is not removed and we
6557 * are still under the same cgroup_mutex. So we can postpone
6558 * css_get().
6559 */
c0ff4b85 6560 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6561 goto one_by_one;
c0ff4b85 6562 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6563 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6564 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6565 goto one_by_one;
6566 }
6567 mc.precharge += count;
854ffa8d
DN
6568 return ret;
6569 }
6570one_by_one:
6571 /* fall back to one by one charge */
6572 while (count--) {
6573 if (signal_pending(current)) {
6574 ret = -EINTR;
6575 break;
6576 }
6577 if (!batch_count--) {
6578 batch_count = PRECHARGE_COUNT_AT_ONCE;
6579 cond_resched();
6580 }
6d1fdc48 6581 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
38c5d72f 6582 if (ret)
854ffa8d 6583 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6584 return ret;
854ffa8d
DN
6585 mc.precharge++;
6586 }
4ffef5fe
DN
6587 return ret;
6588}
6589
6590/**
8d32ff84 6591 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6592 * @vma: the vma the pte to be checked belongs
6593 * @addr: the address corresponding to the pte to be checked
6594 * @ptent: the pte to be checked
02491447 6595 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6596 *
6597 * Returns
6598 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6599 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6600 * move charge. if @target is not NULL, the page is stored in target->page
6601 * with extra refcnt got(Callers should handle it).
02491447
DN
6602 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6603 * target for charge migration. if @target is not NULL, the entry is stored
6604 * in target->ent.
4ffef5fe
DN
6605 *
6606 * Called with pte lock held.
6607 */
4ffef5fe
DN
6608union mc_target {
6609 struct page *page;
02491447 6610 swp_entry_t ent;
4ffef5fe
DN
6611};
6612
4ffef5fe 6613enum mc_target_type {
8d32ff84 6614 MC_TARGET_NONE = 0,
4ffef5fe 6615 MC_TARGET_PAGE,
02491447 6616 MC_TARGET_SWAP,
4ffef5fe
DN
6617};
6618
90254a65
DN
6619static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6620 unsigned long addr, pte_t ptent)
4ffef5fe 6621{
90254a65 6622 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6623
90254a65
DN
6624 if (!page || !page_mapped(page))
6625 return NULL;
6626 if (PageAnon(page)) {
6627 /* we don't move shared anon */
4b91355e 6628 if (!move_anon())
90254a65 6629 return NULL;
87946a72
DN
6630 } else if (!move_file())
6631 /* we ignore mapcount for file pages */
90254a65
DN
6632 return NULL;
6633 if (!get_page_unless_zero(page))
6634 return NULL;
6635
6636 return page;
6637}
6638
4b91355e 6639#ifdef CONFIG_SWAP
90254a65
DN
6640static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6641 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6642{
90254a65
DN
6643 struct page *page = NULL;
6644 swp_entry_t ent = pte_to_swp_entry(ptent);
6645
6646 if (!move_anon() || non_swap_entry(ent))
6647 return NULL;
4b91355e
KH
6648 /*
6649 * Because lookup_swap_cache() updates some statistics counter,
6650 * we call find_get_page() with swapper_space directly.
6651 */
33806f06 6652 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6653 if (do_swap_account)
6654 entry->val = ent.val;
6655
6656 return page;
6657}
4b91355e
KH
6658#else
6659static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6660 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6661{
6662 return NULL;
6663}
6664#endif
90254a65 6665
87946a72
DN
6666static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6667 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6668{
6669 struct page *page = NULL;
87946a72
DN
6670 struct address_space *mapping;
6671 pgoff_t pgoff;
6672
6673 if (!vma->vm_file) /* anonymous vma */
6674 return NULL;
6675 if (!move_file())
6676 return NULL;
6677
87946a72
DN
6678 mapping = vma->vm_file->f_mapping;
6679 if (pte_none(ptent))
6680 pgoff = linear_page_index(vma, addr);
6681 else /* pte_file(ptent) is true */
6682 pgoff = pte_to_pgoff(ptent);
6683
6684 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6685 page = find_get_page(mapping, pgoff);
6686
6687#ifdef CONFIG_SWAP
6688 /* shmem/tmpfs may report page out on swap: account for that too. */
6689 if (radix_tree_exceptional_entry(page)) {
6690 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6691 if (do_swap_account)
aa3b1895 6692 *entry = swap;
33806f06 6693 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6694 }
aa3b1895 6695#endif
87946a72
DN
6696 return page;
6697}
6698
8d32ff84 6699static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6700 unsigned long addr, pte_t ptent, union mc_target *target)
6701{
6702 struct page *page = NULL;
6703 struct page_cgroup *pc;
8d32ff84 6704 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6705 swp_entry_t ent = { .val = 0 };
6706
6707 if (pte_present(ptent))
6708 page = mc_handle_present_pte(vma, addr, ptent);
6709 else if (is_swap_pte(ptent))
6710 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6711 else if (pte_none(ptent) || pte_file(ptent))
6712 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6713
6714 if (!page && !ent.val)
8d32ff84 6715 return ret;
02491447
DN
6716 if (page) {
6717 pc = lookup_page_cgroup(page);
6718 /*
6719 * Do only loose check w/o page_cgroup lock.
6720 * mem_cgroup_move_account() checks the pc is valid or not under
6721 * the lock.
6722 */
6723 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6724 ret = MC_TARGET_PAGE;
6725 if (target)
6726 target->page = page;
6727 }
6728 if (!ret || !target)
6729 put_page(page);
6730 }
90254a65
DN
6731 /* There is a swap entry and a page doesn't exist or isn't charged */
6732 if (ent.val && !ret &&
34c00c31 6733 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6734 ret = MC_TARGET_SWAP;
6735 if (target)
6736 target->ent = ent;
4ffef5fe 6737 }
4ffef5fe
DN
6738 return ret;
6739}
6740
12724850
NH
6741#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6742/*
6743 * We don't consider swapping or file mapped pages because THP does not
6744 * support them for now.
6745 * Caller should make sure that pmd_trans_huge(pmd) is true.
6746 */
6747static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6748 unsigned long addr, pmd_t pmd, union mc_target *target)
6749{
6750 struct page *page = NULL;
6751 struct page_cgroup *pc;
6752 enum mc_target_type ret = MC_TARGET_NONE;
6753
6754 page = pmd_page(pmd);
309381fe 6755 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6756 if (!move_anon())
6757 return ret;
6758 pc = lookup_page_cgroup(page);
6759 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6760 ret = MC_TARGET_PAGE;
6761 if (target) {
6762 get_page(page);
6763 target->page = page;
6764 }
6765 }
6766 return ret;
6767}
6768#else
6769static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6770 unsigned long addr, pmd_t pmd, union mc_target *target)
6771{
6772 return MC_TARGET_NONE;
6773}
6774#endif
6775
4ffef5fe
DN
6776static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6777 unsigned long addr, unsigned long end,
6778 struct mm_walk *walk)
6779{
6780 struct vm_area_struct *vma = walk->private;
6781 pte_t *pte;
6782 spinlock_t *ptl;
6783
bf929152 6784 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6785 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6786 mc.precharge += HPAGE_PMD_NR;
bf929152 6787 spin_unlock(ptl);
1a5a9906 6788 return 0;
12724850 6789 }
03319327 6790
45f83cef
AA
6791 if (pmd_trans_unstable(pmd))
6792 return 0;
4ffef5fe
DN
6793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6794 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6795 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6796 mc.precharge++; /* increment precharge temporarily */
6797 pte_unmap_unlock(pte - 1, ptl);
6798 cond_resched();
6799
7dc74be0
DN
6800 return 0;
6801}
6802
4ffef5fe
DN
6803static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6804{
6805 unsigned long precharge;
6806 struct vm_area_struct *vma;
6807
dfe076b0 6808 down_read(&mm->mmap_sem);
4ffef5fe
DN
6809 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6810 struct mm_walk mem_cgroup_count_precharge_walk = {
6811 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6812 .mm = mm,
6813 .private = vma,
6814 };
6815 if (is_vm_hugetlb_page(vma))
6816 continue;
4ffef5fe
DN
6817 walk_page_range(vma->vm_start, vma->vm_end,
6818 &mem_cgroup_count_precharge_walk);
6819 }
dfe076b0 6820 up_read(&mm->mmap_sem);
4ffef5fe
DN
6821
6822 precharge = mc.precharge;
6823 mc.precharge = 0;
6824
6825 return precharge;
6826}
6827
4ffef5fe
DN
6828static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6829{
dfe076b0
DN
6830 unsigned long precharge = mem_cgroup_count_precharge(mm);
6831
6832 VM_BUG_ON(mc.moving_task);
6833 mc.moving_task = current;
6834 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6835}
6836
dfe076b0
DN
6837/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6838static void __mem_cgroup_clear_mc(void)
4ffef5fe 6839{
2bd9bb20
KH
6840 struct mem_cgroup *from = mc.from;
6841 struct mem_cgroup *to = mc.to;
4050377b 6842 int i;
2bd9bb20 6843
4ffef5fe 6844 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6845 if (mc.precharge) {
6846 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6847 mc.precharge = 0;
6848 }
6849 /*
6850 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6851 * we must uncharge here.
6852 */
6853 if (mc.moved_charge) {
6854 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6855 mc.moved_charge = 0;
4ffef5fe 6856 }
483c30b5
DN
6857 /* we must fixup refcnts and charges */
6858 if (mc.moved_swap) {
483c30b5
DN
6859 /* uncharge swap account from the old cgroup */
6860 if (!mem_cgroup_is_root(mc.from))
6861 res_counter_uncharge(&mc.from->memsw,
6862 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6863
6864 for (i = 0; i < mc.moved_swap; i++)
6865 css_put(&mc.from->css);
483c30b5
DN
6866
6867 if (!mem_cgroup_is_root(mc.to)) {
6868 /*
6869 * we charged both to->res and to->memsw, so we should
6870 * uncharge to->res.
6871 */
6872 res_counter_uncharge(&mc.to->res,
6873 PAGE_SIZE * mc.moved_swap);
483c30b5 6874 }
4050377b 6875 /* we've already done css_get(mc.to) */
483c30b5
DN
6876 mc.moved_swap = 0;
6877 }
dfe076b0
DN
6878 memcg_oom_recover(from);
6879 memcg_oom_recover(to);
6880 wake_up_all(&mc.waitq);
6881}
6882
6883static void mem_cgroup_clear_mc(void)
6884{
6885 struct mem_cgroup *from = mc.from;
6886
6887 /*
6888 * we must clear moving_task before waking up waiters at the end of
6889 * task migration.
6890 */
6891 mc.moving_task = NULL;
6892 __mem_cgroup_clear_mc();
2bd9bb20 6893 spin_lock(&mc.lock);
4ffef5fe
DN
6894 mc.from = NULL;
6895 mc.to = NULL;
2bd9bb20 6896 spin_unlock(&mc.lock);
32047e2a 6897 mem_cgroup_end_move(from);
4ffef5fe
DN
6898}
6899
eb95419b 6900static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6901 struct cgroup_taskset *tset)
7dc74be0 6902{
2f7ee569 6903 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6904 int ret = 0;
eb95419b 6905 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6906 unsigned long move_charge_at_immigrate;
7dc74be0 6907
ee5e8472
GC
6908 /*
6909 * We are now commited to this value whatever it is. Changes in this
6910 * tunable will only affect upcoming migrations, not the current one.
6911 * So we need to save it, and keep it going.
6912 */
6913 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6914 if (move_charge_at_immigrate) {
7dc74be0
DN
6915 struct mm_struct *mm;
6916 struct mem_cgroup *from = mem_cgroup_from_task(p);
6917
c0ff4b85 6918 VM_BUG_ON(from == memcg);
7dc74be0
DN
6919
6920 mm = get_task_mm(p);
6921 if (!mm)
6922 return 0;
7dc74be0 6923 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6924 if (mm->owner == p) {
6925 VM_BUG_ON(mc.from);
6926 VM_BUG_ON(mc.to);
6927 VM_BUG_ON(mc.precharge);
854ffa8d 6928 VM_BUG_ON(mc.moved_charge);
483c30b5 6929 VM_BUG_ON(mc.moved_swap);
32047e2a 6930 mem_cgroup_start_move(from);
2bd9bb20 6931 spin_lock(&mc.lock);
4ffef5fe 6932 mc.from = from;
c0ff4b85 6933 mc.to = memcg;
ee5e8472 6934 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6935 spin_unlock(&mc.lock);
dfe076b0 6936 /* We set mc.moving_task later */
4ffef5fe
DN
6937
6938 ret = mem_cgroup_precharge_mc(mm);
6939 if (ret)
6940 mem_cgroup_clear_mc();
dfe076b0
DN
6941 }
6942 mmput(mm);
7dc74be0
DN
6943 }
6944 return ret;
6945}
6946
eb95419b 6947static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6948 struct cgroup_taskset *tset)
7dc74be0 6949{
4ffef5fe 6950 mem_cgroup_clear_mc();
7dc74be0
DN
6951}
6952
4ffef5fe
DN
6953static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6954 unsigned long addr, unsigned long end,
6955 struct mm_walk *walk)
7dc74be0 6956{
4ffef5fe
DN
6957 int ret = 0;
6958 struct vm_area_struct *vma = walk->private;
6959 pte_t *pte;
6960 spinlock_t *ptl;
12724850
NH
6961 enum mc_target_type target_type;
6962 union mc_target target;
6963 struct page *page;
6964 struct page_cgroup *pc;
4ffef5fe 6965
12724850
NH
6966 /*
6967 * We don't take compound_lock() here but no race with splitting thp
6968 * happens because:
6969 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6970 * under splitting, which means there's no concurrent thp split,
6971 * - if another thread runs into split_huge_page() just after we
6972 * entered this if-block, the thread must wait for page table lock
6973 * to be unlocked in __split_huge_page_splitting(), where the main
6974 * part of thp split is not executed yet.
6975 */
bf929152 6976 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6977 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6978 spin_unlock(ptl);
12724850
NH
6979 return 0;
6980 }
6981 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6982 if (target_type == MC_TARGET_PAGE) {
6983 page = target.page;
6984 if (!isolate_lru_page(page)) {
6985 pc = lookup_page_cgroup(page);
6986 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6987 pc, mc.from, mc.to)) {
12724850
NH
6988 mc.precharge -= HPAGE_PMD_NR;
6989 mc.moved_charge += HPAGE_PMD_NR;
6990 }
6991 putback_lru_page(page);
6992 }
6993 put_page(page);
6994 }
bf929152 6995 spin_unlock(ptl);
1a5a9906 6996 return 0;
12724850
NH
6997 }
6998
45f83cef
AA
6999 if (pmd_trans_unstable(pmd))
7000 return 0;
4ffef5fe
DN
7001retry:
7002 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7003 for (; addr != end; addr += PAGE_SIZE) {
7004 pte_t ptent = *(pte++);
02491447 7005 swp_entry_t ent;
4ffef5fe
DN
7006
7007 if (!mc.precharge)
7008 break;
7009
8d32ff84 7010 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7011 case MC_TARGET_PAGE:
7012 page = target.page;
7013 if (isolate_lru_page(page))
7014 goto put;
7015 pc = lookup_page_cgroup(page);
7ec99d62 7016 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7017 mc.from, mc.to)) {
4ffef5fe 7018 mc.precharge--;
854ffa8d
DN
7019 /* we uncharge from mc.from later. */
7020 mc.moved_charge++;
4ffef5fe
DN
7021 }
7022 putback_lru_page(page);
8d32ff84 7023put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7024 put_page(page);
7025 break;
02491447
DN
7026 case MC_TARGET_SWAP:
7027 ent = target.ent;
e91cbb42 7028 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7029 mc.precharge--;
483c30b5
DN
7030 /* we fixup refcnts and charges later. */
7031 mc.moved_swap++;
7032 }
02491447 7033 break;
4ffef5fe
DN
7034 default:
7035 break;
7036 }
7037 }
7038 pte_unmap_unlock(pte - 1, ptl);
7039 cond_resched();
7040
7041 if (addr != end) {
7042 /*
7043 * We have consumed all precharges we got in can_attach().
7044 * We try charge one by one, but don't do any additional
7045 * charges to mc.to if we have failed in charge once in attach()
7046 * phase.
7047 */
854ffa8d 7048 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7049 if (!ret)
7050 goto retry;
7051 }
7052
7053 return ret;
7054}
7055
7056static void mem_cgroup_move_charge(struct mm_struct *mm)
7057{
7058 struct vm_area_struct *vma;
7059
7060 lru_add_drain_all();
dfe076b0
DN
7061retry:
7062 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7063 /*
7064 * Someone who are holding the mmap_sem might be waiting in
7065 * waitq. So we cancel all extra charges, wake up all waiters,
7066 * and retry. Because we cancel precharges, we might not be able
7067 * to move enough charges, but moving charge is a best-effort
7068 * feature anyway, so it wouldn't be a big problem.
7069 */
7070 __mem_cgroup_clear_mc();
7071 cond_resched();
7072 goto retry;
7073 }
4ffef5fe
DN
7074 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7075 int ret;
7076 struct mm_walk mem_cgroup_move_charge_walk = {
7077 .pmd_entry = mem_cgroup_move_charge_pte_range,
7078 .mm = mm,
7079 .private = vma,
7080 };
7081 if (is_vm_hugetlb_page(vma))
7082 continue;
4ffef5fe
DN
7083 ret = walk_page_range(vma->vm_start, vma->vm_end,
7084 &mem_cgroup_move_charge_walk);
7085 if (ret)
7086 /*
7087 * means we have consumed all precharges and failed in
7088 * doing additional charge. Just abandon here.
7089 */
7090 break;
7091 }
dfe076b0 7092 up_read(&mm->mmap_sem);
7dc74be0
DN
7093}
7094
eb95419b 7095static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7096 struct cgroup_taskset *tset)
67e465a7 7097{
2f7ee569 7098 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7099 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7100
dfe076b0 7101 if (mm) {
a433658c
KM
7102 if (mc.to)
7103 mem_cgroup_move_charge(mm);
dfe076b0
DN
7104 mmput(mm);
7105 }
a433658c
KM
7106 if (mc.to)
7107 mem_cgroup_clear_mc();
67e465a7 7108}
5cfb80a7 7109#else /* !CONFIG_MMU */
eb95419b 7110static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7111 struct cgroup_taskset *tset)
5cfb80a7
DN
7112{
7113 return 0;
7114}
eb95419b 7115static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7116 struct cgroup_taskset *tset)
5cfb80a7
DN
7117{
7118}
eb95419b 7119static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7120 struct cgroup_taskset *tset)
5cfb80a7
DN
7121{
7122}
7123#endif
67e465a7 7124
f00baae7
TH
7125/*
7126 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7127 * to verify sane_behavior flag on each mount attempt.
7128 */
eb95419b 7129static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7130{
7131 /*
7132 * use_hierarchy is forced with sane_behavior. cgroup core
7133 * guarantees that @root doesn't have any children, so turning it
7134 * on for the root memcg is enough.
7135 */
eb95419b
TH
7136 if (cgroup_sane_behavior(root_css->cgroup))
7137 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7138}
7139
073219e9 7140struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7141 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7142 .css_online = mem_cgroup_css_online,
92fb9748
TH
7143 .css_offline = mem_cgroup_css_offline,
7144 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7145 .can_attach = mem_cgroup_can_attach,
7146 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7147 .attach = mem_cgroup_move_task,
f00baae7 7148 .bind = mem_cgroup_bind,
6bc10349 7149 .base_cftypes = mem_cgroup_files,
6d12e2d8 7150 .early_init = 0,
8cdea7c0 7151};
c077719b 7152
c255a458 7153#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7154static int __init enable_swap_account(char *s)
7155{
a2c8990a 7156 if (!strcmp(s, "1"))
a42c390c 7157 really_do_swap_account = 1;
a2c8990a 7158 else if (!strcmp(s, "0"))
a42c390c
MH
7159 really_do_swap_account = 0;
7160 return 1;
7161}
a2c8990a 7162__setup("swapaccount=", enable_swap_account);
c077719b 7163
2d11085e
MH
7164static void __init memsw_file_init(void)
7165{
073219e9 7166 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7167}
7168
7169static void __init enable_swap_cgroup(void)
7170{
7171 if (!mem_cgroup_disabled() && really_do_swap_account) {
7172 do_swap_account = 1;
7173 memsw_file_init();
7174 }
2d11085e 7175}
6acc8b02 7176
2d11085e 7177#else
6acc8b02 7178static void __init enable_swap_cgroup(void)
2d11085e
MH
7179{
7180}
c077719b 7181#endif
2d11085e
MH
7182
7183/*
1081312f
MH
7184 * subsys_initcall() for memory controller.
7185 *
7186 * Some parts like hotcpu_notifier() have to be initialized from this context
7187 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7188 * everything that doesn't depend on a specific mem_cgroup structure should
7189 * be initialized from here.
2d11085e
MH
7190 */
7191static int __init mem_cgroup_init(void)
7192{
7193 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7194 enable_swap_cgroup();
bb4cc1a8 7195 mem_cgroup_soft_limit_tree_init();
e4777496 7196 memcg_stock_init();
2d11085e
MH
7197 return 0;
7198}
7199subsys_initcall(mem_cgroup_init);
This page took 1.079355 seconds and 5 git commands to generate.