mm/mempolicy.c: vma_migratable() can return bool
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
f64c3f54 326static struct mem_cgroup_per_zone *
e231875b 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 328{
e231875b
JZ
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
54f72fe0 332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
333}
334
ad7fa852
TH
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
ad7fa852
TH
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
ad7fa852
TH
350 memcg = page->mem_cgroup;
351
9e10a130 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
353 memcg = root_mem_cgroup;
354
ad7fa852
TH
355 return &memcg->css;
356}
357
2fc04524
VD
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
f64c3f54 386static struct mem_cgroup_per_zone *
e231875b 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 388{
97a6c37b
JW
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
f64c3f54 391
e231875b 392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
393}
394
bb4cc1a8
AM
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
cf2c8127
JW
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
cf2c8127
JW
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
cf2c8127
JW
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 453{
0a31bc97
JW
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 457 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 458 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
459}
460
3e32cb2e
JW
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
bb4cc1a8
AM
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
3e32cb2e 475 unsigned long excess;
bb4cc1a8
AM
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 478
e231875b 479 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 485 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 486 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
495 /* if on-tree, remove it */
496 if (mz->on_tree)
cf2c8127 497 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
cf2c8127 502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 503 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
bb4cc1a8 510 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
bb4cc1a8 513
e231875b
JZ
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 518 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
cf2c8127 541 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 542 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 543 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
0a31bc97 554 spin_lock_irq(&mctz->lock);
bb4cc1a8 555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 556 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
557 return mz;
558}
559
711d3d2c 560/*
484ebb3b
GT
561 * Return page count for single (non recursive) @memcg.
562 *
711d3d2c
KH
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 568 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 578 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
579 * implemented.
580 */
484ebb3b
GT
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 583{
7a159cc9 584 long val = 0;
c62b1a3b 585 int cpu;
c62b1a3b 586
484ebb3b 587 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
c62b1a3b
KH
596 return val;
597}
598
c0ff4b85 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
733a572e 605 for_each_possible_cpu(cpu)
c0ff4b85 606 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
607 return val;
608}
609
c0ff4b85 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 611 struct page *page,
f627c2f5 612 bool compound, int nr_pages)
d52aa412 613{
b2402857
KH
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
0a31bc97 618 if (PageAnon(page))
b2402857 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 620 nr_pages);
d52aa412 621 else
b2402857 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 623 nr_pages);
55e462b0 624
f627c2f5
KS
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
f627c2f5 629 }
b070e65c 630
e401f176
KH
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
c0ff4b85 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 634 else {
c0ff4b85 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
636 nr_pages = -nr_pages; /* for event */
637 }
e401f176 638
13114716 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
640}
641
0a6b76dd
VD
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
fa9add64
HD
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
3f58a829 1028 */
fa9add64
HD
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
3f58a829
MK
1031{
1032 struct mem_cgroup_per_zone *mz;
fa9add64 1033 unsigned long *lru_size;
3f58a829
MK
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
fa9add64
HD
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1042}
544122e5 1043
2314b42d 1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1045{
2314b42d 1046 struct mem_cgroup *task_memcg;
158e0a2d 1047 struct task_struct *p;
ffbdccf5 1048 bool ret;
4c4a2214 1049
158e0a2d 1050 p = find_lock_task_mm(task);
de077d22 1051 if (p) {
2314b42d 1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
ffbdccf5 1060 rcu_read_lock();
2314b42d
JW
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
ffbdccf5 1063 rcu_read_unlock();
de077d22 1064 }
2314b42d
JW
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
4c4a2214
DR
1067 return ret;
1068}
1069
19942822 1070/**
9d11ea9f 1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1072 * @memcg: the memory cgroup
19942822 1073 *
9d11ea9f 1074 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1075 * pages.
19942822 1076 */
c0ff4b85 1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1078{
3e32cb2e
JW
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
9d11ea9f 1082
3e32cb2e 1083 count = page_counter_read(&memcg->memory);
4db0c3c2 1084 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1085 if (count < limit)
1086 margin = limit - count;
1087
7941d214 1088 if (do_memsw_account()) {
3e32cb2e 1089 count = page_counter_read(&memcg->memsw);
4db0c3c2 1090 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
19942822
JW
1096}
1097
32047e2a 1098/*
bdcbb659 1099 * A routine for checking "mem" is under move_account() or not.
32047e2a 1100 *
bdcbb659
QH
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
32047e2a 1104 */
c0ff4b85 1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1106{
2bd9bb20
KH
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
4b534334 1109 bool ret = false;
2bd9bb20
KH
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
3e92041d 1119
2314b42d
JW
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1122unlock:
1123 spin_unlock(&mc.lock);
4b534334
KH
1124 return ret;
1125}
1126
c0ff4b85 1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1130 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
58cf188e 1143#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1144/**
58cf188e 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
58cf188e
SZ
1154 struct mem_cgroup *iter;
1155 unsigned int i;
e222432b 1156
e222432b
BS
1157 rcu_read_lock();
1158
2415b9f5
BV
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
e61734c5 1167 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1168 pr_cont("\n");
e222432b 1169
e222432b
BS
1170 rcu_read_unlock();
1171
3e32cb2e
JW
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1189 continue;
484ebb3b 1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
e222432b
BS
1200}
1201
81d39c20
KH
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
c0ff4b85 1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1207{
1208 int num = 0;
7d74b06f
KH
1209 struct mem_cgroup *iter;
1210
c0ff4b85 1211 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1212 num++;
81d39c20
KH
1213 return num;
1214}
1215
a63d83f4
DR
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
3e32cb2e 1219static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1220{
3e32cb2e 1221 unsigned long limit;
f3e8eb70 1222
3e32cb2e 1223 limit = memcg->memory.limit;
9a5a8f19 1224 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1225 unsigned long memsw_limit;
37e84351 1226 unsigned long swap_limit;
9a5a8f19 1227
3e32cb2e 1228 memsw_limit = memcg->memsw.limit;
37e84351
VD
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1232 }
9a5a8f19 1233 return limit;
a63d83f4
DR
1234}
1235
b6e6edcf 1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1237 int order)
9cbb78bb 1238{
6e0fc46d
DR
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
6e0fc46d 1244 };
9cbb78bb
DR
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1250
dc56401f
JW
1251 mutex_lock(&oom_lock);
1252
876aafbf 1253 /*
465adcf1
DR
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
876aafbf 1257 */
d003f371 1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1259 mark_oom_victim(current);
dc56401f 1260 goto unlock;
876aafbf
DR
1261 }
1262
6e0fc46d 1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1265 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1266 struct css_task_iter it;
9cbb78bb
DR
1267 struct task_struct *task;
1268
72ec7029
TH
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
72ec7029 1282 css_task_iter_end(&it);
9cbb78bb
DR
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
dc56401f 1286 goto unlock;
9cbb78bb
DR
1287 case OOM_SCAN_OK:
1288 break;
1289 };
1290 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1297
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
9cbb78bb 1303 }
72ec7029 1304 css_task_iter_end(&it);
9cbb78bb
DR
1305 }
1306
dc56401f
JW
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
dc56401f
JW
1311 }
1312unlock:
1313 mutex_unlock(&oom_lock);
b6e6edcf 1314 return chosen;
9cbb78bb
DR
1315}
1316
ae6e71d3
MC
1317#if MAX_NUMNODES > 1
1318
4d0c066d
KH
1319/**
1320 * test_mem_cgroup_node_reclaimable
dad7557e 1321 * @memcg: the target memcg
4d0c066d
KH
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1324 *
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1328 */
c0ff4b85 1329static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1330 int nid, bool noswap)
1331{
c0ff4b85 1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
c0ff4b85 1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1337 return true;
1338 return false;
1339
1340}
889976db
YH
1341
1342/*
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346 *
1347 */
c0ff4b85 1348static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1349{
1350 int nid;
453a9bf3
KH
1351 /*
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1354 */
c0ff4b85 1355 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1356 return;
c0ff4b85 1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1358 return;
1359
889976db 1360 /* make a nodemask where this memcg uses memory from */
31aaea4a 1361 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1362
31aaea4a 1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1364
c0ff4b85
R
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
889976db 1367 }
453a9bf3 1368
c0ff4b85
R
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1371}
1372
1373/*
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1377 *
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1382 *
1383 * Now, we use round-robin. Better algorithm is welcomed.
1384 */
c0ff4b85 1385int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1386{
1387 int node;
1388
c0ff4b85
R
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
889976db 1391
0edaf86c 1392 node = next_node_in(node, memcg->scan_nodes);
889976db
YH
1393 /*
1394 * We call this when we hit limit, not when pages are added to LRU.
1395 * No LRU may hold pages because all pages are UNEVICTABLE or
1396 * memcg is too small and all pages are not on LRU. In that case,
1397 * we use curret node.
1398 */
1399 if (unlikely(node == MAX_NUMNODES))
1400 node = numa_node_id();
1401
c0ff4b85 1402 memcg->last_scanned_node = node;
889976db
YH
1403 return node;
1404}
889976db 1405#else
c0ff4b85 1406int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1407{
1408 return 0;
1409}
1410#endif
1411
0608f43d
AM
1412static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1413 struct zone *zone,
1414 gfp_t gfp_mask,
1415 unsigned long *total_scanned)
1416{
1417 struct mem_cgroup *victim = NULL;
1418 int total = 0;
1419 int loop = 0;
1420 unsigned long excess;
1421 unsigned long nr_scanned;
1422 struct mem_cgroup_reclaim_cookie reclaim = {
1423 .zone = zone,
1424 .priority = 0,
1425 };
1426
3e32cb2e 1427 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1428
1429 while (1) {
1430 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1431 if (!victim) {
1432 loop++;
1433 if (loop >= 2) {
1434 /*
1435 * If we have not been able to reclaim
1436 * anything, it might because there are
1437 * no reclaimable pages under this hierarchy
1438 */
1439 if (!total)
1440 break;
1441 /*
1442 * We want to do more targeted reclaim.
1443 * excess >> 2 is not to excessive so as to
1444 * reclaim too much, nor too less that we keep
1445 * coming back to reclaim from this cgroup
1446 */
1447 if (total >= (excess >> 2) ||
1448 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1449 break;
1450 }
1451 continue;
1452 }
0608f43d
AM
1453 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1454 zone, &nr_scanned);
1455 *total_scanned += nr_scanned;
3e32cb2e 1456 if (!soft_limit_excess(root_memcg))
0608f43d 1457 break;
6d61ef40 1458 }
0608f43d
AM
1459 mem_cgroup_iter_break(root_memcg, victim);
1460 return total;
6d61ef40
BS
1461}
1462
0056f4e6
JW
1463#ifdef CONFIG_LOCKDEP
1464static struct lockdep_map memcg_oom_lock_dep_map = {
1465 .name = "memcg_oom_lock",
1466};
1467#endif
1468
fb2a6fc5
JW
1469static DEFINE_SPINLOCK(memcg_oom_lock);
1470
867578cb
KH
1471/*
1472 * Check OOM-Killer is already running under our hierarchy.
1473 * If someone is running, return false.
1474 */
fb2a6fc5 1475static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1476{
79dfdacc 1477 struct mem_cgroup *iter, *failed = NULL;
a636b327 1478
fb2a6fc5
JW
1479 spin_lock(&memcg_oom_lock);
1480
9f3a0d09 1481 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1482 if (iter->oom_lock) {
79dfdacc
MH
1483 /*
1484 * this subtree of our hierarchy is already locked
1485 * so we cannot give a lock.
1486 */
79dfdacc 1487 failed = iter;
9f3a0d09
JW
1488 mem_cgroup_iter_break(memcg, iter);
1489 break;
23751be0
JW
1490 } else
1491 iter->oom_lock = true;
7d74b06f 1492 }
867578cb 1493
fb2a6fc5
JW
1494 if (failed) {
1495 /*
1496 * OK, we failed to lock the whole subtree so we have
1497 * to clean up what we set up to the failing subtree
1498 */
1499 for_each_mem_cgroup_tree(iter, memcg) {
1500 if (iter == failed) {
1501 mem_cgroup_iter_break(memcg, iter);
1502 break;
1503 }
1504 iter->oom_lock = false;
79dfdacc 1505 }
0056f4e6
JW
1506 } else
1507 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1508
1509 spin_unlock(&memcg_oom_lock);
1510
1511 return !failed;
a636b327 1512}
0b7f569e 1513
fb2a6fc5 1514static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1515{
7d74b06f
KH
1516 struct mem_cgroup *iter;
1517
fb2a6fc5 1518 spin_lock(&memcg_oom_lock);
0056f4e6 1519 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1520 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1521 iter->oom_lock = false;
fb2a6fc5 1522 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1523}
1524
c0ff4b85 1525static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1526{
1527 struct mem_cgroup *iter;
1528
c2b42d3c 1529 spin_lock(&memcg_oom_lock);
c0ff4b85 1530 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1531 iter->under_oom++;
1532 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1533}
1534
c0ff4b85 1535static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1536{
1537 struct mem_cgroup *iter;
1538
867578cb
KH
1539 /*
1540 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1541 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1542 */
c2b42d3c 1543 spin_lock(&memcg_oom_lock);
c0ff4b85 1544 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1545 if (iter->under_oom > 0)
1546 iter->under_oom--;
1547 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1548}
1549
867578cb
KH
1550static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1551
dc98df5a 1552struct oom_wait_info {
d79154bb 1553 struct mem_cgroup *memcg;
dc98df5a
KH
1554 wait_queue_t wait;
1555};
1556
1557static int memcg_oom_wake_function(wait_queue_t *wait,
1558 unsigned mode, int sync, void *arg)
1559{
d79154bb
HD
1560 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1561 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1562 struct oom_wait_info *oom_wait_info;
1563
1564 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1565 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1566
2314b42d
JW
1567 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1568 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1569 return 0;
dc98df5a
KH
1570 return autoremove_wake_function(wait, mode, sync, arg);
1571}
1572
c0ff4b85 1573static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1574{
c2b42d3c
TH
1575 /*
1576 * For the following lockless ->under_oom test, the only required
1577 * guarantee is that it must see the state asserted by an OOM when
1578 * this function is called as a result of userland actions
1579 * triggered by the notification of the OOM. This is trivially
1580 * achieved by invoking mem_cgroup_mark_under_oom() before
1581 * triggering notification.
1582 */
1583 if (memcg && memcg->under_oom)
f4b90b70 1584 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1585}
1586
3812c8c8 1587static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1588{
626ebc41 1589 if (!current->memcg_may_oom)
3812c8c8 1590 return;
867578cb 1591 /*
49426420
JW
1592 * We are in the middle of the charge context here, so we
1593 * don't want to block when potentially sitting on a callstack
1594 * that holds all kinds of filesystem and mm locks.
1595 *
1596 * Also, the caller may handle a failed allocation gracefully
1597 * (like optional page cache readahead) and so an OOM killer
1598 * invocation might not even be necessary.
1599 *
1600 * That's why we don't do anything here except remember the
1601 * OOM context and then deal with it at the end of the page
1602 * fault when the stack is unwound, the locks are released,
1603 * and when we know whether the fault was overall successful.
867578cb 1604 */
49426420 1605 css_get(&memcg->css);
626ebc41
TH
1606 current->memcg_in_oom = memcg;
1607 current->memcg_oom_gfp_mask = mask;
1608 current->memcg_oom_order = order;
3812c8c8
JW
1609}
1610
1611/**
1612 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1613 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1614 *
49426420
JW
1615 * This has to be called at the end of a page fault if the memcg OOM
1616 * handler was enabled.
3812c8c8 1617 *
49426420 1618 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1619 * sleep on a waitqueue until the userspace task resolves the
1620 * situation. Sleeping directly in the charge context with all kinds
1621 * of locks held is not a good idea, instead we remember an OOM state
1622 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1623 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1624 *
1625 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1626 * completed, %false otherwise.
3812c8c8 1627 */
49426420 1628bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1629{
626ebc41 1630 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1631 struct oom_wait_info owait;
49426420 1632 bool locked;
3812c8c8
JW
1633
1634 /* OOM is global, do not handle */
3812c8c8 1635 if (!memcg)
49426420 1636 return false;
3812c8c8 1637
c32b3cbe 1638 if (!handle || oom_killer_disabled)
49426420 1639 goto cleanup;
3812c8c8
JW
1640
1641 owait.memcg = memcg;
1642 owait.wait.flags = 0;
1643 owait.wait.func = memcg_oom_wake_function;
1644 owait.wait.private = current;
1645 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1646
3812c8c8 1647 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1648 mem_cgroup_mark_under_oom(memcg);
1649
1650 locked = mem_cgroup_oom_trylock(memcg);
1651
1652 if (locked)
1653 mem_cgroup_oom_notify(memcg);
1654
1655 if (locked && !memcg->oom_kill_disable) {
1656 mem_cgroup_unmark_under_oom(memcg);
1657 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1658 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1659 current->memcg_oom_order);
49426420 1660 } else {
3812c8c8 1661 schedule();
49426420
JW
1662 mem_cgroup_unmark_under_oom(memcg);
1663 finish_wait(&memcg_oom_waitq, &owait.wait);
1664 }
1665
1666 if (locked) {
fb2a6fc5
JW
1667 mem_cgroup_oom_unlock(memcg);
1668 /*
1669 * There is no guarantee that an OOM-lock contender
1670 * sees the wakeups triggered by the OOM kill
1671 * uncharges. Wake any sleepers explicitely.
1672 */
1673 memcg_oom_recover(memcg);
1674 }
49426420 1675cleanup:
626ebc41 1676 current->memcg_in_oom = NULL;
3812c8c8 1677 css_put(&memcg->css);
867578cb 1678 return true;
0b7f569e
KH
1679}
1680
d7365e78 1681/**
81f8c3a4
JW
1682 * lock_page_memcg - lock a page->mem_cgroup binding
1683 * @page: the page
32047e2a 1684 *
81f8c3a4
JW
1685 * This function protects unlocked LRU pages from being moved to
1686 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1687 */
62cccb8c 1688void lock_page_memcg(struct page *page)
89c06bd5
KH
1689{
1690 struct mem_cgroup *memcg;
6de22619 1691 unsigned long flags;
89c06bd5 1692
6de22619
JW
1693 /*
1694 * The RCU lock is held throughout the transaction. The fast
1695 * path can get away without acquiring the memcg->move_lock
1696 * because page moving starts with an RCU grace period.
6de22619 1697 */
d7365e78
JW
1698 rcu_read_lock();
1699
1700 if (mem_cgroup_disabled())
62cccb8c 1701 return;
89c06bd5 1702again:
1306a85a 1703 memcg = page->mem_cgroup;
29833315 1704 if (unlikely(!memcg))
62cccb8c 1705 return;
d7365e78 1706
bdcbb659 1707 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1708 return;
89c06bd5 1709
6de22619 1710 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1711 if (memcg != page->mem_cgroup) {
6de22619 1712 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1713 goto again;
1714 }
6de22619
JW
1715
1716 /*
1717 * When charge migration first begins, we can have locked and
1718 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1719 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1720 */
1721 memcg->move_lock_task = current;
1722 memcg->move_lock_flags = flags;
d7365e78 1723
62cccb8c 1724 return;
89c06bd5 1725}
81f8c3a4 1726EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1727
d7365e78 1728/**
81f8c3a4 1729 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1730 * @page: the page
d7365e78 1731 */
62cccb8c 1732void unlock_page_memcg(struct page *page)
89c06bd5 1733{
62cccb8c
JW
1734 struct mem_cgroup *memcg = page->mem_cgroup;
1735
6de22619
JW
1736 if (memcg && memcg->move_lock_task == current) {
1737 unsigned long flags = memcg->move_lock_flags;
1738
1739 memcg->move_lock_task = NULL;
1740 memcg->move_lock_flags = 0;
1741
1742 spin_unlock_irqrestore(&memcg->move_lock, flags);
1743 }
89c06bd5 1744
d7365e78 1745 rcu_read_unlock();
89c06bd5 1746}
81f8c3a4 1747EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1748
cdec2e42
KH
1749/*
1750 * size of first charge trial. "32" comes from vmscan.c's magic value.
1751 * TODO: maybe necessary to use big numbers in big irons.
1752 */
7ec99d62 1753#define CHARGE_BATCH 32U
cdec2e42
KH
1754struct memcg_stock_pcp {
1755 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1756 unsigned int nr_pages;
cdec2e42 1757 struct work_struct work;
26fe6168 1758 unsigned long flags;
a0db00fc 1759#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1760};
1761static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1762static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1763
a0956d54
SS
1764/**
1765 * consume_stock: Try to consume stocked charge on this cpu.
1766 * @memcg: memcg to consume from.
1767 * @nr_pages: how many pages to charge.
1768 *
1769 * The charges will only happen if @memcg matches the current cpu's memcg
1770 * stock, and at least @nr_pages are available in that stock. Failure to
1771 * service an allocation will refill the stock.
1772 *
1773 * returns true if successful, false otherwise.
cdec2e42 1774 */
a0956d54 1775static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1776{
1777 struct memcg_stock_pcp *stock;
3e32cb2e 1778 bool ret = false;
cdec2e42 1779
a0956d54 1780 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1781 return ret;
a0956d54 1782
cdec2e42 1783 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1784 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1785 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1786 ret = true;
1787 }
cdec2e42
KH
1788 put_cpu_var(memcg_stock);
1789 return ret;
1790}
1791
1792/*
3e32cb2e 1793 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1794 */
1795static void drain_stock(struct memcg_stock_pcp *stock)
1796{
1797 struct mem_cgroup *old = stock->cached;
1798
11c9ea4e 1799 if (stock->nr_pages) {
3e32cb2e 1800 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1801 if (do_memsw_account())
3e32cb2e 1802 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1803 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1804 stock->nr_pages = 0;
cdec2e42
KH
1805 }
1806 stock->cached = NULL;
cdec2e42
KH
1807}
1808
1809/*
1810 * This must be called under preempt disabled or must be called by
1811 * a thread which is pinned to local cpu.
1812 */
1813static void drain_local_stock(struct work_struct *dummy)
1814{
7c8e0181 1815 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1816 drain_stock(stock);
26fe6168 1817 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1818}
1819
1820/*
3e32cb2e 1821 * Cache charges(val) to local per_cpu area.
320cc51d 1822 * This will be consumed by consume_stock() function, later.
cdec2e42 1823 */
c0ff4b85 1824static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1825{
1826 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1827
c0ff4b85 1828 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1829 drain_stock(stock);
c0ff4b85 1830 stock->cached = memcg;
cdec2e42 1831 }
11c9ea4e 1832 stock->nr_pages += nr_pages;
cdec2e42
KH
1833 put_cpu_var(memcg_stock);
1834}
1835
1836/*
c0ff4b85 1837 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1838 * of the hierarchy under it.
cdec2e42 1839 */
6d3d6aa2 1840static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1841{
26fe6168 1842 int cpu, curcpu;
d38144b7 1843
6d3d6aa2
JW
1844 /* If someone's already draining, avoid adding running more workers. */
1845 if (!mutex_trylock(&percpu_charge_mutex))
1846 return;
cdec2e42 1847 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1848 get_online_cpus();
5af12d0e 1849 curcpu = get_cpu();
cdec2e42
KH
1850 for_each_online_cpu(cpu) {
1851 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1852 struct mem_cgroup *memcg;
26fe6168 1853
c0ff4b85
R
1854 memcg = stock->cached;
1855 if (!memcg || !stock->nr_pages)
26fe6168 1856 continue;
2314b42d 1857 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1858 continue;
d1a05b69
MH
1859 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1860 if (cpu == curcpu)
1861 drain_local_stock(&stock->work);
1862 else
1863 schedule_work_on(cpu, &stock->work);
1864 }
cdec2e42 1865 }
5af12d0e 1866 put_cpu();
f894ffa8 1867 put_online_cpus();
9f50fad6 1868 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1869}
1870
0db0628d 1871static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1872 unsigned long action,
1873 void *hcpu)
1874{
1875 int cpu = (unsigned long)hcpu;
1876 struct memcg_stock_pcp *stock;
1877
619d094b 1878 if (action == CPU_ONLINE)
1489ebad 1879 return NOTIFY_OK;
1489ebad 1880
d833049b 1881 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1882 return NOTIFY_OK;
711d3d2c 1883
cdec2e42
KH
1884 stock = &per_cpu(memcg_stock, cpu);
1885 drain_stock(stock);
1886 return NOTIFY_OK;
1887}
1888
f7e1cb6e
JW
1889static void reclaim_high(struct mem_cgroup *memcg,
1890 unsigned int nr_pages,
1891 gfp_t gfp_mask)
1892{
1893 do {
1894 if (page_counter_read(&memcg->memory) <= memcg->high)
1895 continue;
1896 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1897 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1898 } while ((memcg = parent_mem_cgroup(memcg)));
1899}
1900
1901static void high_work_func(struct work_struct *work)
1902{
1903 struct mem_cgroup *memcg;
1904
1905 memcg = container_of(work, struct mem_cgroup, high_work);
1906 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1907}
1908
b23afb93
TH
1909/*
1910 * Scheduled by try_charge() to be executed from the userland return path
1911 * and reclaims memory over the high limit.
1912 */
1913void mem_cgroup_handle_over_high(void)
1914{
1915 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1916 struct mem_cgroup *memcg;
b23afb93
TH
1917
1918 if (likely(!nr_pages))
1919 return;
1920
f7e1cb6e
JW
1921 memcg = get_mem_cgroup_from_mm(current->mm);
1922 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1923 css_put(&memcg->css);
1924 current->memcg_nr_pages_over_high = 0;
1925}
1926
00501b53
JW
1927static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1928 unsigned int nr_pages)
8a9f3ccd 1929{
7ec99d62 1930 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1931 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1932 struct mem_cgroup *mem_over_limit;
3e32cb2e 1933 struct page_counter *counter;
6539cc05 1934 unsigned long nr_reclaimed;
b70a2a21
JW
1935 bool may_swap = true;
1936 bool drained = false;
a636b327 1937
ce00a967 1938 if (mem_cgroup_is_root(memcg))
10d53c74 1939 return 0;
6539cc05 1940retry:
b6b6cc72 1941 if (consume_stock(memcg, nr_pages))
10d53c74 1942 return 0;
8a9f3ccd 1943
7941d214 1944 if (!do_memsw_account() ||
6071ca52
JW
1945 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1946 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1947 goto done_restock;
7941d214 1948 if (do_memsw_account())
3e32cb2e
JW
1949 page_counter_uncharge(&memcg->memsw, batch);
1950 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1951 } else {
3e32cb2e 1952 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1953 may_swap = false;
3fbe7244 1954 }
7a81b88c 1955
6539cc05
JW
1956 if (batch > nr_pages) {
1957 batch = nr_pages;
1958 goto retry;
1959 }
6d61ef40 1960
06b078fc
JW
1961 /*
1962 * Unlike in global OOM situations, memcg is not in a physical
1963 * memory shortage. Allow dying and OOM-killed tasks to
1964 * bypass the last charges so that they can exit quickly and
1965 * free their memory.
1966 */
1967 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1968 fatal_signal_pending(current) ||
1969 current->flags & PF_EXITING))
10d53c74 1970 goto force;
06b078fc
JW
1971
1972 if (unlikely(task_in_memcg_oom(current)))
1973 goto nomem;
1974
d0164adc 1975 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1976 goto nomem;
4b534334 1977
241994ed
JW
1978 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1979
b70a2a21
JW
1980 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1981 gfp_mask, may_swap);
6539cc05 1982
61e02c74 1983 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1984 goto retry;
28c34c29 1985
b70a2a21 1986 if (!drained) {
6d3d6aa2 1987 drain_all_stock(mem_over_limit);
b70a2a21
JW
1988 drained = true;
1989 goto retry;
1990 }
1991
28c34c29
JW
1992 if (gfp_mask & __GFP_NORETRY)
1993 goto nomem;
6539cc05
JW
1994 /*
1995 * Even though the limit is exceeded at this point, reclaim
1996 * may have been able to free some pages. Retry the charge
1997 * before killing the task.
1998 *
1999 * Only for regular pages, though: huge pages are rather
2000 * unlikely to succeed so close to the limit, and we fall back
2001 * to regular pages anyway in case of failure.
2002 */
61e02c74 2003 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2004 goto retry;
2005 /*
2006 * At task move, charge accounts can be doubly counted. So, it's
2007 * better to wait until the end of task_move if something is going on.
2008 */
2009 if (mem_cgroup_wait_acct_move(mem_over_limit))
2010 goto retry;
2011
9b130619
JW
2012 if (nr_retries--)
2013 goto retry;
2014
06b078fc 2015 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2016 goto force;
06b078fc 2017
6539cc05 2018 if (fatal_signal_pending(current))
10d53c74 2019 goto force;
6539cc05 2020
241994ed
JW
2021 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2022
3608de07
JM
2023 mem_cgroup_oom(mem_over_limit, gfp_mask,
2024 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2025nomem:
6d1fdc48 2026 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2027 return -ENOMEM;
10d53c74
TH
2028force:
2029 /*
2030 * The allocation either can't fail or will lead to more memory
2031 * being freed very soon. Allow memory usage go over the limit
2032 * temporarily by force charging it.
2033 */
2034 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2035 if (do_memsw_account())
10d53c74
TH
2036 page_counter_charge(&memcg->memsw, nr_pages);
2037 css_get_many(&memcg->css, nr_pages);
2038
2039 return 0;
6539cc05
JW
2040
2041done_restock:
e8ea14cc 2042 css_get_many(&memcg->css, batch);
6539cc05
JW
2043 if (batch > nr_pages)
2044 refill_stock(memcg, batch - nr_pages);
b23afb93 2045
241994ed 2046 /*
b23afb93
TH
2047 * If the hierarchy is above the normal consumption range, schedule
2048 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2049 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2050 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2051 * not recorded as it most likely matches current's and won't
2052 * change in the meantime. As high limit is checked again before
2053 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2054 */
2055 do {
b23afb93 2056 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2057 /* Don't bother a random interrupted task */
2058 if (in_interrupt()) {
2059 schedule_work(&memcg->high_work);
2060 break;
2061 }
9516a18a 2062 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2063 set_notify_resume(current);
2064 break;
2065 }
241994ed 2066 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2067
2068 return 0;
7a81b88c 2069}
8a9f3ccd 2070
00501b53 2071static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2072{
ce00a967
JW
2073 if (mem_cgroup_is_root(memcg))
2074 return;
2075
3e32cb2e 2076 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2077 if (do_memsw_account())
3e32cb2e 2078 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2079
e8ea14cc 2080 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2081}
2082
0a31bc97
JW
2083static void lock_page_lru(struct page *page, int *isolated)
2084{
2085 struct zone *zone = page_zone(page);
2086
2087 spin_lock_irq(&zone->lru_lock);
2088 if (PageLRU(page)) {
2089 struct lruvec *lruvec;
2090
2091 lruvec = mem_cgroup_page_lruvec(page, zone);
2092 ClearPageLRU(page);
2093 del_page_from_lru_list(page, lruvec, page_lru(page));
2094 *isolated = 1;
2095 } else
2096 *isolated = 0;
2097}
2098
2099static void unlock_page_lru(struct page *page, int isolated)
2100{
2101 struct zone *zone = page_zone(page);
2102
2103 if (isolated) {
2104 struct lruvec *lruvec;
2105
2106 lruvec = mem_cgroup_page_lruvec(page, zone);
2107 VM_BUG_ON_PAGE(PageLRU(page), page);
2108 SetPageLRU(page);
2109 add_page_to_lru_list(page, lruvec, page_lru(page));
2110 }
2111 spin_unlock_irq(&zone->lru_lock);
2112}
2113
00501b53 2114static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2115 bool lrucare)
7a81b88c 2116{
0a31bc97 2117 int isolated;
9ce70c02 2118
1306a85a 2119 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2120
2121 /*
2122 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2123 * may already be on some other mem_cgroup's LRU. Take care of it.
2124 */
0a31bc97
JW
2125 if (lrucare)
2126 lock_page_lru(page, &isolated);
9ce70c02 2127
0a31bc97
JW
2128 /*
2129 * Nobody should be changing or seriously looking at
1306a85a 2130 * page->mem_cgroup at this point:
0a31bc97
JW
2131 *
2132 * - the page is uncharged
2133 *
2134 * - the page is off-LRU
2135 *
2136 * - an anonymous fault has exclusive page access, except for
2137 * a locked page table
2138 *
2139 * - a page cache insertion, a swapin fault, or a migration
2140 * have the page locked
2141 */
1306a85a 2142 page->mem_cgroup = memcg;
9ce70c02 2143
0a31bc97
JW
2144 if (lrucare)
2145 unlock_page_lru(page, isolated);
7a81b88c 2146}
66e1707b 2147
127424c8 2148#ifndef CONFIG_SLOB
f3bb3043 2149static int memcg_alloc_cache_id(void)
55007d84 2150{
f3bb3043
VD
2151 int id, size;
2152 int err;
2153
dbcf73e2 2154 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2155 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2156 if (id < 0)
2157 return id;
55007d84 2158
dbcf73e2 2159 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2160 return id;
2161
2162 /*
2163 * There's no space for the new id in memcg_caches arrays,
2164 * so we have to grow them.
2165 */
05257a1a 2166 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2167
2168 size = 2 * (id + 1);
55007d84
GC
2169 if (size < MEMCG_CACHES_MIN_SIZE)
2170 size = MEMCG_CACHES_MIN_SIZE;
2171 else if (size > MEMCG_CACHES_MAX_SIZE)
2172 size = MEMCG_CACHES_MAX_SIZE;
2173
f3bb3043 2174 err = memcg_update_all_caches(size);
60d3fd32
VD
2175 if (!err)
2176 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2177 if (!err)
2178 memcg_nr_cache_ids = size;
2179
2180 up_write(&memcg_cache_ids_sem);
2181
f3bb3043 2182 if (err) {
dbcf73e2 2183 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2184 return err;
2185 }
2186 return id;
2187}
2188
2189static void memcg_free_cache_id(int id)
2190{
dbcf73e2 2191 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2192}
2193
d5b3cf71 2194struct memcg_kmem_cache_create_work {
5722d094
VD
2195 struct mem_cgroup *memcg;
2196 struct kmem_cache *cachep;
2197 struct work_struct work;
2198};
2199
d5b3cf71 2200static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2201{
d5b3cf71
VD
2202 struct memcg_kmem_cache_create_work *cw =
2203 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2204 struct mem_cgroup *memcg = cw->memcg;
2205 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2206
d5b3cf71 2207 memcg_create_kmem_cache(memcg, cachep);
bd673145 2208
5722d094 2209 css_put(&memcg->css);
d7f25f8a
GC
2210 kfree(cw);
2211}
2212
2213/*
2214 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2215 */
d5b3cf71
VD
2216static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2217 struct kmem_cache *cachep)
d7f25f8a 2218{
d5b3cf71 2219 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2220
776ed0f0 2221 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2222 if (!cw)
d7f25f8a 2223 return;
8135be5a
VD
2224
2225 css_get(&memcg->css);
d7f25f8a
GC
2226
2227 cw->memcg = memcg;
2228 cw->cachep = cachep;
d5b3cf71 2229 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2230
d7f25f8a
GC
2231 schedule_work(&cw->work);
2232}
2233
d5b3cf71
VD
2234static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235 struct kmem_cache *cachep)
0e9d92f2
GC
2236{
2237 /*
2238 * We need to stop accounting when we kmalloc, because if the
2239 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2240 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2241 *
2242 * However, it is better to enclose the whole function. Depending on
2243 * the debugging options enabled, INIT_WORK(), for instance, can
2244 * trigger an allocation. This too, will make us recurse. Because at
2245 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2246 * the safest choice is to do it like this, wrapping the whole function.
2247 */
6f185c29 2248 current->memcg_kmem_skip_account = 1;
d5b3cf71 2249 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2250 current->memcg_kmem_skip_account = 0;
0e9d92f2 2251}
c67a8a68 2252
d7f25f8a
GC
2253/*
2254 * Return the kmem_cache we're supposed to use for a slab allocation.
2255 * We try to use the current memcg's version of the cache.
2256 *
2257 * If the cache does not exist yet, if we are the first user of it,
2258 * we either create it immediately, if possible, or create it asynchronously
2259 * in a workqueue.
2260 * In the latter case, we will let the current allocation go through with
2261 * the original cache.
2262 *
2263 * Can't be called in interrupt context or from kernel threads.
2264 * This function needs to be called with rcu_read_lock() held.
2265 */
230e9fc2 2266struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2267{
2268 struct mem_cgroup *memcg;
959c8963 2269 struct kmem_cache *memcg_cachep;
2a4db7eb 2270 int kmemcg_id;
d7f25f8a 2271
f7ce3190 2272 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2273
230e9fc2
VD
2274 if (cachep->flags & SLAB_ACCOUNT)
2275 gfp |= __GFP_ACCOUNT;
2276
2277 if (!(gfp & __GFP_ACCOUNT))
2278 return cachep;
2279
9d100c5e 2280 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2281 return cachep;
2282
8135be5a 2283 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2284 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2285 if (kmemcg_id < 0)
ca0dde97 2286 goto out;
d7f25f8a 2287
2a4db7eb 2288 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2289 if (likely(memcg_cachep))
2290 return memcg_cachep;
ca0dde97
LZ
2291
2292 /*
2293 * If we are in a safe context (can wait, and not in interrupt
2294 * context), we could be be predictable and return right away.
2295 * This would guarantee that the allocation being performed
2296 * already belongs in the new cache.
2297 *
2298 * However, there are some clashes that can arrive from locking.
2299 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2300 * memcg_create_kmem_cache, this means no further allocation
2301 * could happen with the slab_mutex held. So it's better to
2302 * defer everything.
ca0dde97 2303 */
d5b3cf71 2304 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2305out:
8135be5a 2306 css_put(&memcg->css);
ca0dde97 2307 return cachep;
d7f25f8a 2308}
d7f25f8a 2309
8135be5a
VD
2310void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2311{
2312 if (!is_root_cache(cachep))
f7ce3190 2313 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2314}
2315
f3ccb2c4
VD
2316int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2317 struct mem_cgroup *memcg)
7ae1e1d0 2318{
f3ccb2c4
VD
2319 unsigned int nr_pages = 1 << order;
2320 struct page_counter *counter;
7ae1e1d0
GC
2321 int ret;
2322
f3ccb2c4 2323 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2324 if (ret)
f3ccb2c4 2325 return ret;
52c29b04
JW
2326
2327 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2328 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2329 cancel_charge(memcg, nr_pages);
2330 return -ENOMEM;
7ae1e1d0
GC
2331 }
2332
f3ccb2c4 2333 page->mem_cgroup = memcg;
7ae1e1d0 2334
f3ccb2c4 2335 return 0;
7ae1e1d0
GC
2336}
2337
f3ccb2c4 2338int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2339{
f3ccb2c4 2340 struct mem_cgroup *memcg;
fcff7d7e 2341 int ret = 0;
7ae1e1d0 2342
f3ccb2c4 2343 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2344 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2345 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2346 css_put(&memcg->css);
d05e83a6 2347 return ret;
7ae1e1d0
GC
2348}
2349
d05e83a6 2350void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2351{
1306a85a 2352 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2353 unsigned int nr_pages = 1 << order;
7ae1e1d0 2354
7ae1e1d0
GC
2355 if (!memcg)
2356 return;
2357
309381fe 2358 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2359
52c29b04
JW
2360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2361 page_counter_uncharge(&memcg->kmem, nr_pages);
2362
f3ccb2c4 2363 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2364 if (do_memsw_account())
f3ccb2c4 2365 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2366
1306a85a 2367 page->mem_cgroup = NULL;
f3ccb2c4 2368 css_put_many(&memcg->css, nr_pages);
60d3fd32 2369}
127424c8 2370#endif /* !CONFIG_SLOB */
7ae1e1d0 2371
ca3e0214
KH
2372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2373
ca3e0214
KH
2374/*
2375 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2376 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2377 */
e94c8a9c 2378void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2379{
e94c8a9c 2380 int i;
ca3e0214 2381
3d37c4a9
KH
2382 if (mem_cgroup_disabled())
2383 return;
b070e65c 2384
29833315 2385 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2386 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2387
1306a85a 2388 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2389 HPAGE_PMD_NR);
ca3e0214 2390}
12d27107 2391#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2392
c255a458 2393#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2394static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2395 bool charge)
d13d1443 2396{
0a31bc97
JW
2397 int val = (charge) ? 1 : -1;
2398 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2399}
02491447
DN
2400
2401/**
2402 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2403 * @entry: swap entry to be moved
2404 * @from: mem_cgroup which the entry is moved from
2405 * @to: mem_cgroup which the entry is moved to
2406 *
2407 * It succeeds only when the swap_cgroup's record for this entry is the same
2408 * as the mem_cgroup's id of @from.
2409 *
2410 * Returns 0 on success, -EINVAL on failure.
2411 *
3e32cb2e 2412 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2413 * both res and memsw, and called css_get().
2414 */
2415static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2416 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2417{
2418 unsigned short old_id, new_id;
2419
34c00c31
LZ
2420 old_id = mem_cgroup_id(from);
2421 new_id = mem_cgroup_id(to);
02491447
DN
2422
2423 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2424 mem_cgroup_swap_statistics(from, false);
483c30b5 2425 mem_cgroup_swap_statistics(to, true);
02491447
DN
2426 return 0;
2427 }
2428 return -EINVAL;
2429}
2430#else
2431static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2432 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2433{
2434 return -EINVAL;
2435}
8c7c6e34 2436#endif
d13d1443 2437
3e32cb2e 2438static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2439
d38d2a75 2440static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2441 unsigned long limit)
628f4235 2442{
3e32cb2e
JW
2443 unsigned long curusage;
2444 unsigned long oldusage;
2445 bool enlarge = false;
81d39c20 2446 int retry_count;
3e32cb2e 2447 int ret;
81d39c20
KH
2448
2449 /*
2450 * For keeping hierarchical_reclaim simple, how long we should retry
2451 * is depends on callers. We set our retry-count to be function
2452 * of # of children which we should visit in this loop.
2453 */
3e32cb2e
JW
2454 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2455 mem_cgroup_count_children(memcg);
81d39c20 2456
3e32cb2e 2457 oldusage = page_counter_read(&memcg->memory);
628f4235 2458
3e32cb2e 2459 do {
628f4235
KH
2460 if (signal_pending(current)) {
2461 ret = -EINTR;
2462 break;
2463 }
3e32cb2e
JW
2464
2465 mutex_lock(&memcg_limit_mutex);
2466 if (limit > memcg->memsw.limit) {
2467 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2468 ret = -EINVAL;
628f4235
KH
2469 break;
2470 }
3e32cb2e
JW
2471 if (limit > memcg->memory.limit)
2472 enlarge = true;
2473 ret = page_counter_limit(&memcg->memory, limit);
2474 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2475
2476 if (!ret)
2477 break;
2478
b70a2a21
JW
2479 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2480
3e32cb2e 2481 curusage = page_counter_read(&memcg->memory);
81d39c20 2482 /* Usage is reduced ? */
f894ffa8 2483 if (curusage >= oldusage)
81d39c20
KH
2484 retry_count--;
2485 else
2486 oldusage = curusage;
3e32cb2e
JW
2487 } while (retry_count);
2488
3c11ecf4
KH
2489 if (!ret && enlarge)
2490 memcg_oom_recover(memcg);
14797e23 2491
8c7c6e34
KH
2492 return ret;
2493}
2494
338c8431 2495static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2496 unsigned long limit)
8c7c6e34 2497{
3e32cb2e
JW
2498 unsigned long curusage;
2499 unsigned long oldusage;
2500 bool enlarge = false;
81d39c20 2501 int retry_count;
3e32cb2e 2502 int ret;
8c7c6e34 2503
81d39c20 2504 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2505 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2506 mem_cgroup_count_children(memcg);
2507
2508 oldusage = page_counter_read(&memcg->memsw);
2509
2510 do {
8c7c6e34
KH
2511 if (signal_pending(current)) {
2512 ret = -EINTR;
2513 break;
2514 }
3e32cb2e
JW
2515
2516 mutex_lock(&memcg_limit_mutex);
2517 if (limit < memcg->memory.limit) {
2518 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2519 ret = -EINVAL;
8c7c6e34
KH
2520 break;
2521 }
3e32cb2e
JW
2522 if (limit > memcg->memsw.limit)
2523 enlarge = true;
2524 ret = page_counter_limit(&memcg->memsw, limit);
2525 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2526
2527 if (!ret)
2528 break;
2529
b70a2a21
JW
2530 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2531
3e32cb2e 2532 curusage = page_counter_read(&memcg->memsw);
81d39c20 2533 /* Usage is reduced ? */
8c7c6e34 2534 if (curusage >= oldusage)
628f4235 2535 retry_count--;
81d39c20
KH
2536 else
2537 oldusage = curusage;
3e32cb2e
JW
2538 } while (retry_count);
2539
3c11ecf4
KH
2540 if (!ret && enlarge)
2541 memcg_oom_recover(memcg);
3e32cb2e 2542
628f4235
KH
2543 return ret;
2544}
2545
0608f43d
AM
2546unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2547 gfp_t gfp_mask,
2548 unsigned long *total_scanned)
2549{
2550 unsigned long nr_reclaimed = 0;
2551 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2552 unsigned long reclaimed;
2553 int loop = 0;
2554 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2555 unsigned long excess;
0608f43d
AM
2556 unsigned long nr_scanned;
2557
2558 if (order > 0)
2559 return 0;
2560
2561 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2562 /*
2563 * This loop can run a while, specially if mem_cgroup's continuously
2564 * keep exceeding their soft limit and putting the system under
2565 * pressure
2566 */
2567 do {
2568 if (next_mz)
2569 mz = next_mz;
2570 else
2571 mz = mem_cgroup_largest_soft_limit_node(mctz);
2572 if (!mz)
2573 break;
2574
2575 nr_scanned = 0;
2576 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2577 gfp_mask, &nr_scanned);
2578 nr_reclaimed += reclaimed;
2579 *total_scanned += nr_scanned;
0a31bc97 2580 spin_lock_irq(&mctz->lock);
bc2f2e7f 2581 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2582
2583 /*
2584 * If we failed to reclaim anything from this memory cgroup
2585 * it is time to move on to the next cgroup
2586 */
2587 next_mz = NULL;
bc2f2e7f
VD
2588 if (!reclaimed)
2589 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
3e32cb2e 2591 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2592 /*
2593 * One school of thought says that we should not add
2594 * back the node to the tree if reclaim returns 0.
2595 * But our reclaim could return 0, simply because due
2596 * to priority we are exposing a smaller subset of
2597 * memory to reclaim from. Consider this as a longer
2598 * term TODO.
2599 */
2600 /* If excess == 0, no tree ops */
cf2c8127 2601 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2602 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2603 css_put(&mz->memcg->css);
2604 loop++;
2605 /*
2606 * Could not reclaim anything and there are no more
2607 * mem cgroups to try or we seem to be looping without
2608 * reclaiming anything.
2609 */
2610 if (!nr_reclaimed &&
2611 (next_mz == NULL ||
2612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613 break;
2614 } while (!nr_reclaimed);
2615 if (next_mz)
2616 css_put(&next_mz->memcg->css);
2617 return nr_reclaimed;
2618}
2619
ea280e7b
TH
2620/*
2621 * Test whether @memcg has children, dead or alive. Note that this
2622 * function doesn't care whether @memcg has use_hierarchy enabled and
2623 * returns %true if there are child csses according to the cgroup
2624 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2625 */
b5f99b53
GC
2626static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627{
ea280e7b
TH
2628 bool ret;
2629
ea280e7b
TH
2630 rcu_read_lock();
2631 ret = css_next_child(NULL, &memcg->css);
2632 rcu_read_unlock();
2633 return ret;
b5f99b53
GC
2634}
2635
c26251f9
MH
2636/*
2637 * Reclaims as many pages from the given memcg as possible and moves
2638 * the rest to the parent.
2639 *
2640 * Caller is responsible for holding css reference for memcg.
2641 */
2642static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2643{
2644 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2645
c1e862c1
KH
2646 /* we call try-to-free pages for make this cgroup empty */
2647 lru_add_drain_all();
f817ed48 2648 /* try to free all pages in this cgroup */
3e32cb2e 2649 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2650 int progress;
c1e862c1 2651
c26251f9
MH
2652 if (signal_pending(current))
2653 return -EINTR;
2654
b70a2a21
JW
2655 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2656 GFP_KERNEL, true);
c1e862c1 2657 if (!progress) {
f817ed48 2658 nr_retries--;
c1e862c1 2659 /* maybe some writeback is necessary */
8aa7e847 2660 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2661 }
f817ed48
KH
2662
2663 }
ab5196c2
MH
2664
2665 return 0;
cc847582
KH
2666}
2667
6770c64e
TH
2668static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2669 char *buf, size_t nbytes,
2670 loff_t off)
c1e862c1 2671{
6770c64e 2672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2673
d8423011
MH
2674 if (mem_cgroup_is_root(memcg))
2675 return -EINVAL;
6770c64e 2676 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2677}
2678
182446d0
TH
2679static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2680 struct cftype *cft)
18f59ea7 2681{
182446d0 2682 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2683}
2684
182446d0
TH
2685static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2686 struct cftype *cft, u64 val)
18f59ea7
BS
2687{
2688 int retval = 0;
182446d0 2689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2690 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2691
567fb435 2692 if (memcg->use_hierarchy == val)
0b8f73e1 2693 return 0;
567fb435 2694
18f59ea7 2695 /*
af901ca1 2696 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2697 * in the child subtrees. If it is unset, then the change can
2698 * occur, provided the current cgroup has no children.
2699 *
2700 * For the root cgroup, parent_mem is NULL, we allow value to be
2701 * set if there are no children.
2702 */
c0ff4b85 2703 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2704 (val == 1 || val == 0)) {
ea280e7b 2705 if (!memcg_has_children(memcg))
c0ff4b85 2706 memcg->use_hierarchy = val;
18f59ea7
BS
2707 else
2708 retval = -EBUSY;
2709 } else
2710 retval = -EINVAL;
567fb435 2711
18f59ea7
BS
2712 return retval;
2713}
2714
72b54e73 2715static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2716{
2717 struct mem_cgroup *iter;
72b54e73 2718 int i;
ce00a967 2719
72b54e73 2720 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2721
72b54e73
VD
2722 for_each_mem_cgroup_tree(iter, memcg) {
2723 for (i = 0; i < MEMCG_NR_STAT; i++)
2724 stat[i] += mem_cgroup_read_stat(iter, i);
2725 }
ce00a967
JW
2726}
2727
72b54e73 2728static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2729{
2730 struct mem_cgroup *iter;
72b54e73 2731 int i;
587d9f72 2732
72b54e73 2733 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2734
72b54e73
VD
2735 for_each_mem_cgroup_tree(iter, memcg) {
2736 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2737 events[i] += mem_cgroup_read_events(iter, i);
2738 }
587d9f72
JW
2739}
2740
6f646156 2741static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2742{
72b54e73 2743 unsigned long val = 0;
ce00a967 2744
3e32cb2e 2745 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2746 struct mem_cgroup *iter;
2747
2748 for_each_mem_cgroup_tree(iter, memcg) {
2749 val += mem_cgroup_read_stat(iter,
2750 MEM_CGROUP_STAT_CACHE);
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_RSS);
2753 if (swap)
2754 val += mem_cgroup_read_stat(iter,
2755 MEM_CGROUP_STAT_SWAP);
2756 }
3e32cb2e 2757 } else {
ce00a967 2758 if (!swap)
3e32cb2e 2759 val = page_counter_read(&memcg->memory);
ce00a967 2760 else
3e32cb2e 2761 val = page_counter_read(&memcg->memsw);
ce00a967 2762 }
c12176d3 2763 return val;
ce00a967
JW
2764}
2765
3e32cb2e
JW
2766enum {
2767 RES_USAGE,
2768 RES_LIMIT,
2769 RES_MAX_USAGE,
2770 RES_FAILCNT,
2771 RES_SOFT_LIMIT,
2772};
ce00a967 2773
791badbd 2774static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2775 struct cftype *cft)
8cdea7c0 2776{
182446d0 2777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2778 struct page_counter *counter;
af36f906 2779
3e32cb2e 2780 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2781 case _MEM:
3e32cb2e
JW
2782 counter = &memcg->memory;
2783 break;
8c7c6e34 2784 case _MEMSWAP:
3e32cb2e
JW
2785 counter = &memcg->memsw;
2786 break;
510fc4e1 2787 case _KMEM:
3e32cb2e 2788 counter = &memcg->kmem;
510fc4e1 2789 break;
d55f90bf 2790 case _TCP:
0db15298 2791 counter = &memcg->tcpmem;
d55f90bf 2792 break;
8c7c6e34
KH
2793 default:
2794 BUG();
8c7c6e34 2795 }
3e32cb2e
JW
2796
2797 switch (MEMFILE_ATTR(cft->private)) {
2798 case RES_USAGE:
2799 if (counter == &memcg->memory)
c12176d3 2800 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2801 if (counter == &memcg->memsw)
c12176d3 2802 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2803 return (u64)page_counter_read(counter) * PAGE_SIZE;
2804 case RES_LIMIT:
2805 return (u64)counter->limit * PAGE_SIZE;
2806 case RES_MAX_USAGE:
2807 return (u64)counter->watermark * PAGE_SIZE;
2808 case RES_FAILCNT:
2809 return counter->failcnt;
2810 case RES_SOFT_LIMIT:
2811 return (u64)memcg->soft_limit * PAGE_SIZE;
2812 default:
2813 BUG();
2814 }
8cdea7c0 2815}
510fc4e1 2816
127424c8 2817#ifndef CONFIG_SLOB
567e9ab2 2818static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2819{
d6441637
VD
2820 int memcg_id;
2821
b313aeee
VD
2822 if (cgroup_memory_nokmem)
2823 return 0;
2824
2a4db7eb 2825 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2826 BUG_ON(memcg->kmem_state);
d6441637 2827
f3bb3043 2828 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2829 if (memcg_id < 0)
2830 return memcg_id;
d6441637 2831
ef12947c 2832 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2833 /*
567e9ab2 2834 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2835 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2836 * guarantee no one starts accounting before all call sites are
2837 * patched.
2838 */
900a38f0 2839 memcg->kmemcg_id = memcg_id;
567e9ab2 2840 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2841
2842 return 0;
d6441637
VD
2843}
2844
8e0a8912
JW
2845static void memcg_offline_kmem(struct mem_cgroup *memcg)
2846{
2847 struct cgroup_subsys_state *css;
2848 struct mem_cgroup *parent, *child;
2849 int kmemcg_id;
2850
2851 if (memcg->kmem_state != KMEM_ONLINE)
2852 return;
2853 /*
2854 * Clear the online state before clearing memcg_caches array
2855 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2856 * guarantees that no cache will be created for this cgroup
2857 * after we are done (see memcg_create_kmem_cache()).
2858 */
2859 memcg->kmem_state = KMEM_ALLOCATED;
2860
2861 memcg_deactivate_kmem_caches(memcg);
2862
2863 kmemcg_id = memcg->kmemcg_id;
2864 BUG_ON(kmemcg_id < 0);
2865
2866 parent = parent_mem_cgroup(memcg);
2867 if (!parent)
2868 parent = root_mem_cgroup;
2869
2870 /*
2871 * Change kmemcg_id of this cgroup and all its descendants to the
2872 * parent's id, and then move all entries from this cgroup's list_lrus
2873 * to ones of the parent. After we have finished, all list_lrus
2874 * corresponding to this cgroup are guaranteed to remain empty. The
2875 * ordering is imposed by list_lru_node->lock taken by
2876 * memcg_drain_all_list_lrus().
2877 */
2878 css_for_each_descendant_pre(css, &memcg->css) {
2879 child = mem_cgroup_from_css(css);
2880 BUG_ON(child->kmemcg_id != kmemcg_id);
2881 child->kmemcg_id = parent->kmemcg_id;
2882 if (!memcg->use_hierarchy)
2883 break;
2884 }
2885 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2886
2887 memcg_free_cache_id(kmemcg_id);
2888}
2889
2890static void memcg_free_kmem(struct mem_cgroup *memcg)
2891{
0b8f73e1
JW
2892 /* css_alloc() failed, offlining didn't happen */
2893 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2894 memcg_offline_kmem(memcg);
2895
8e0a8912
JW
2896 if (memcg->kmem_state == KMEM_ALLOCATED) {
2897 memcg_destroy_kmem_caches(memcg);
2898 static_branch_dec(&memcg_kmem_enabled_key);
2899 WARN_ON(page_counter_read(&memcg->kmem));
2900 }
8e0a8912 2901}
d6441637 2902#else
0b8f73e1 2903static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2904{
2905 return 0;
2906}
2907static void memcg_offline_kmem(struct mem_cgroup *memcg)
2908{
2909}
2910static void memcg_free_kmem(struct mem_cgroup *memcg)
2911{
2912}
2913#endif /* !CONFIG_SLOB */
2914
d6441637 2915static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2916 unsigned long limit)
d6441637 2917{
b313aeee 2918 int ret;
127424c8
JW
2919
2920 mutex_lock(&memcg_limit_mutex);
127424c8 2921 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2922 mutex_unlock(&memcg_limit_mutex);
2923 return ret;
d6441637 2924}
510fc4e1 2925
d55f90bf
VD
2926static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2927{
2928 int ret;
2929
2930 mutex_lock(&memcg_limit_mutex);
2931
0db15298 2932 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2933 if (ret)
2934 goto out;
2935
0db15298 2936 if (!memcg->tcpmem_active) {
d55f90bf
VD
2937 /*
2938 * The active flag needs to be written after the static_key
2939 * update. This is what guarantees that the socket activation
2940 * function is the last one to run. See sock_update_memcg() for
2941 * details, and note that we don't mark any socket as belonging
2942 * to this memcg until that flag is up.
2943 *
2944 * We need to do this, because static_keys will span multiple
2945 * sites, but we can't control their order. If we mark a socket
2946 * as accounted, but the accounting functions are not patched in
2947 * yet, we'll lose accounting.
2948 *
2949 * We never race with the readers in sock_update_memcg(),
2950 * because when this value change, the code to process it is not
2951 * patched in yet.
2952 */
2953 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2954 memcg->tcpmem_active = true;
d55f90bf
VD
2955 }
2956out:
2957 mutex_unlock(&memcg_limit_mutex);
2958 return ret;
2959}
d55f90bf 2960
628f4235
KH
2961/*
2962 * The user of this function is...
2963 * RES_LIMIT.
2964 */
451af504
TH
2965static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2966 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2967{
451af504 2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2969 unsigned long nr_pages;
628f4235
KH
2970 int ret;
2971
451af504 2972 buf = strstrip(buf);
650c5e56 2973 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2974 if (ret)
2975 return ret;
af36f906 2976
3e32cb2e 2977 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2978 case RES_LIMIT:
4b3bde4c
BS
2979 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2980 ret = -EINVAL;
2981 break;
2982 }
3e32cb2e
JW
2983 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2984 case _MEM:
2985 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2986 break;
3e32cb2e
JW
2987 case _MEMSWAP:
2988 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2989 break;
3e32cb2e
JW
2990 case _KMEM:
2991 ret = memcg_update_kmem_limit(memcg, nr_pages);
2992 break;
d55f90bf
VD
2993 case _TCP:
2994 ret = memcg_update_tcp_limit(memcg, nr_pages);
2995 break;
3e32cb2e 2996 }
296c81d8 2997 break;
3e32cb2e
JW
2998 case RES_SOFT_LIMIT:
2999 memcg->soft_limit = nr_pages;
3000 ret = 0;
628f4235
KH
3001 break;
3002 }
451af504 3003 return ret ?: nbytes;
8cdea7c0
BS
3004}
3005
6770c64e
TH
3006static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3007 size_t nbytes, loff_t off)
c84872e1 3008{
6770c64e 3009 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3010 struct page_counter *counter;
c84872e1 3011
3e32cb2e
JW
3012 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3013 case _MEM:
3014 counter = &memcg->memory;
3015 break;
3016 case _MEMSWAP:
3017 counter = &memcg->memsw;
3018 break;
3019 case _KMEM:
3020 counter = &memcg->kmem;
3021 break;
d55f90bf 3022 case _TCP:
0db15298 3023 counter = &memcg->tcpmem;
d55f90bf 3024 break;
3e32cb2e
JW
3025 default:
3026 BUG();
3027 }
af36f906 3028
3e32cb2e 3029 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3030 case RES_MAX_USAGE:
3e32cb2e 3031 page_counter_reset_watermark(counter);
29f2a4da
PE
3032 break;
3033 case RES_FAILCNT:
3e32cb2e 3034 counter->failcnt = 0;
29f2a4da 3035 break;
3e32cb2e
JW
3036 default:
3037 BUG();
29f2a4da 3038 }
f64c3f54 3039
6770c64e 3040 return nbytes;
c84872e1
PE
3041}
3042
182446d0 3043static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3044 struct cftype *cft)
3045{
182446d0 3046 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3047}
3048
02491447 3049#ifdef CONFIG_MMU
182446d0 3050static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3051 struct cftype *cft, u64 val)
3052{
182446d0 3053 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3054
1dfab5ab 3055 if (val & ~MOVE_MASK)
7dc74be0 3056 return -EINVAL;
ee5e8472 3057
7dc74be0 3058 /*
ee5e8472
GC
3059 * No kind of locking is needed in here, because ->can_attach() will
3060 * check this value once in the beginning of the process, and then carry
3061 * on with stale data. This means that changes to this value will only
3062 * affect task migrations starting after the change.
7dc74be0 3063 */
c0ff4b85 3064 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3065 return 0;
3066}
02491447 3067#else
182446d0 3068static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3069 struct cftype *cft, u64 val)
3070{
3071 return -ENOSYS;
3072}
3073#endif
7dc74be0 3074
406eb0c9 3075#ifdef CONFIG_NUMA
2da8ca82 3076static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3077{
25485de6
GT
3078 struct numa_stat {
3079 const char *name;
3080 unsigned int lru_mask;
3081 };
3082
3083 static const struct numa_stat stats[] = {
3084 { "total", LRU_ALL },
3085 { "file", LRU_ALL_FILE },
3086 { "anon", LRU_ALL_ANON },
3087 { "unevictable", BIT(LRU_UNEVICTABLE) },
3088 };
3089 const struct numa_stat *stat;
406eb0c9 3090 int nid;
25485de6 3091 unsigned long nr;
2da8ca82 3092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3093
25485de6
GT
3094 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3095 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3096 seq_printf(m, "%s=%lu", stat->name, nr);
3097 for_each_node_state(nid, N_MEMORY) {
3098 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3099 stat->lru_mask);
3100 seq_printf(m, " N%d=%lu", nid, nr);
3101 }
3102 seq_putc(m, '\n');
406eb0c9 3103 }
406eb0c9 3104
071aee13
YH
3105 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 struct mem_cgroup *iter;
3107
3108 nr = 0;
3109 for_each_mem_cgroup_tree(iter, memcg)
3110 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3111 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3112 for_each_node_state(nid, N_MEMORY) {
3113 nr = 0;
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 nr += mem_cgroup_node_nr_lru_pages(
3116 iter, nid, stat->lru_mask);
3117 seq_printf(m, " N%d=%lu", nid, nr);
3118 }
3119 seq_putc(m, '\n');
406eb0c9 3120 }
406eb0c9 3121
406eb0c9
YH
3122 return 0;
3123}
3124#endif /* CONFIG_NUMA */
3125
2da8ca82 3126static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3127{
2da8ca82 3128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3129 unsigned long memory, memsw;
af7c4b0e
JW
3130 struct mem_cgroup *mi;
3131 unsigned int i;
406eb0c9 3132
0ca44b14
GT
3133 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3134 MEM_CGROUP_STAT_NSTATS);
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3136 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3138
af7c4b0e 3139 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3140 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3141 continue;
484ebb3b 3142 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3143 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3144 }
7b854121 3145
af7c4b0e
JW
3146 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3147 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3148 mem_cgroup_read_events(memcg, i));
3149
3150 for (i = 0; i < NR_LRU_LISTS; i++)
3151 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3152 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3153
14067bb3 3154 /* Hierarchical information */
3e32cb2e
JW
3155 memory = memsw = PAGE_COUNTER_MAX;
3156 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3157 memory = min(memory, mi->memory.limit);
3158 memsw = min(memsw, mi->memsw.limit);
fee7b548 3159 }
3e32cb2e
JW
3160 seq_printf(m, "hierarchical_memory_limit %llu\n",
3161 (u64)memory * PAGE_SIZE);
7941d214 3162 if (do_memsw_account())
3e32cb2e
JW
3163 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3164 (u64)memsw * PAGE_SIZE);
7f016ee8 3165
af7c4b0e 3166 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3167 unsigned long long val = 0;
af7c4b0e 3168
7941d214 3169 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3170 continue;
af7c4b0e
JW
3171 for_each_mem_cgroup_tree(mi, memcg)
3172 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3173 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3174 }
3175
3176 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3177 unsigned long long val = 0;
3178
3179 for_each_mem_cgroup_tree(mi, memcg)
3180 val += mem_cgroup_read_events(mi, i);
3181 seq_printf(m, "total_%s %llu\n",
3182 mem_cgroup_events_names[i], val);
3183 }
3184
3185 for (i = 0; i < NR_LRU_LISTS; i++) {
3186 unsigned long long val = 0;
3187
3188 for_each_mem_cgroup_tree(mi, memcg)
3189 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3190 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3191 }
14067bb3 3192
7f016ee8 3193#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3194 {
3195 int nid, zid;
3196 struct mem_cgroup_per_zone *mz;
89abfab1 3197 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3198 unsigned long recent_rotated[2] = {0, 0};
3199 unsigned long recent_scanned[2] = {0, 0};
3200
3201 for_each_online_node(nid)
3202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3203 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3204 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3205
89abfab1
HD
3206 recent_rotated[0] += rstat->recent_rotated[0];
3207 recent_rotated[1] += rstat->recent_rotated[1];
3208 recent_scanned[0] += rstat->recent_scanned[0];
3209 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3210 }
78ccf5b5
JW
3211 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3212 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3213 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3214 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3215 }
3216#endif
3217
d2ceb9b7
KH
3218 return 0;
3219}
3220
182446d0
TH
3221static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3222 struct cftype *cft)
a7885eb8 3223{
182446d0 3224 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3225
1f4c025b 3226 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3227}
3228
182446d0
TH
3229static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3230 struct cftype *cft, u64 val)
a7885eb8 3231{
182446d0 3232 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3233
3dae7fec 3234 if (val > 100)
a7885eb8
KM
3235 return -EINVAL;
3236
14208b0e 3237 if (css->parent)
3dae7fec
JW
3238 memcg->swappiness = val;
3239 else
3240 vm_swappiness = val;
068b38c1 3241
a7885eb8
KM
3242 return 0;
3243}
3244
2e72b634
KS
3245static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3246{
3247 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3248 unsigned long usage;
2e72b634
KS
3249 int i;
3250
3251 rcu_read_lock();
3252 if (!swap)
2c488db2 3253 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3254 else
2c488db2 3255 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3256
3257 if (!t)
3258 goto unlock;
3259
ce00a967 3260 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3261
3262 /*
748dad36 3263 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3264 * If it's not true, a threshold was crossed after last
3265 * call of __mem_cgroup_threshold().
3266 */
5407a562 3267 i = t->current_threshold;
2e72b634
KS
3268
3269 /*
3270 * Iterate backward over array of thresholds starting from
3271 * current_threshold and check if a threshold is crossed.
3272 * If none of thresholds below usage is crossed, we read
3273 * only one element of the array here.
3274 */
3275 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3276 eventfd_signal(t->entries[i].eventfd, 1);
3277
3278 /* i = current_threshold + 1 */
3279 i++;
3280
3281 /*
3282 * Iterate forward over array of thresholds starting from
3283 * current_threshold+1 and check if a threshold is crossed.
3284 * If none of thresholds above usage is crossed, we read
3285 * only one element of the array here.
3286 */
3287 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3288 eventfd_signal(t->entries[i].eventfd, 1);
3289
3290 /* Update current_threshold */
5407a562 3291 t->current_threshold = i - 1;
2e72b634
KS
3292unlock:
3293 rcu_read_unlock();
3294}
3295
3296static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3297{
ad4ca5f4
KS
3298 while (memcg) {
3299 __mem_cgroup_threshold(memcg, false);
7941d214 3300 if (do_memsw_account())
ad4ca5f4
KS
3301 __mem_cgroup_threshold(memcg, true);
3302
3303 memcg = parent_mem_cgroup(memcg);
3304 }
2e72b634
KS
3305}
3306
3307static int compare_thresholds(const void *a, const void *b)
3308{
3309 const struct mem_cgroup_threshold *_a = a;
3310 const struct mem_cgroup_threshold *_b = b;
3311
2bff24a3
GT
3312 if (_a->threshold > _b->threshold)
3313 return 1;
3314
3315 if (_a->threshold < _b->threshold)
3316 return -1;
3317
3318 return 0;
2e72b634
KS
3319}
3320
c0ff4b85 3321static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3322{
3323 struct mem_cgroup_eventfd_list *ev;
3324
2bcf2e92
MH
3325 spin_lock(&memcg_oom_lock);
3326
c0ff4b85 3327 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3328 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3329
3330 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3331 return 0;
3332}
3333
c0ff4b85 3334static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3335{
7d74b06f
KH
3336 struct mem_cgroup *iter;
3337
c0ff4b85 3338 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3339 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3340}
3341
59b6f873 3342static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3343 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3344{
2c488db2
KS
3345 struct mem_cgroup_thresholds *thresholds;
3346 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3347 unsigned long threshold;
3348 unsigned long usage;
2c488db2 3349 int i, size, ret;
2e72b634 3350
650c5e56 3351 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3352 if (ret)
3353 return ret;
3354
3355 mutex_lock(&memcg->thresholds_lock);
2c488db2 3356
05b84301 3357 if (type == _MEM) {
2c488db2 3358 thresholds = &memcg->thresholds;
ce00a967 3359 usage = mem_cgroup_usage(memcg, false);
05b84301 3360 } else if (type == _MEMSWAP) {
2c488db2 3361 thresholds = &memcg->memsw_thresholds;
ce00a967 3362 usage = mem_cgroup_usage(memcg, true);
05b84301 3363 } else
2e72b634
KS
3364 BUG();
3365
2e72b634 3366 /* Check if a threshold crossed before adding a new one */
2c488db2 3367 if (thresholds->primary)
2e72b634
KS
3368 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3369
2c488db2 3370 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3371
3372 /* Allocate memory for new array of thresholds */
2c488db2 3373 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3374 GFP_KERNEL);
2c488db2 3375 if (!new) {
2e72b634
KS
3376 ret = -ENOMEM;
3377 goto unlock;
3378 }
2c488db2 3379 new->size = size;
2e72b634
KS
3380
3381 /* Copy thresholds (if any) to new array */
2c488db2
KS
3382 if (thresholds->primary) {
3383 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3384 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3385 }
3386
2e72b634 3387 /* Add new threshold */
2c488db2
KS
3388 new->entries[size - 1].eventfd = eventfd;
3389 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3390
3391 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3392 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3393 compare_thresholds, NULL);
3394
3395 /* Find current threshold */
2c488db2 3396 new->current_threshold = -1;
2e72b634 3397 for (i = 0; i < size; i++) {
748dad36 3398 if (new->entries[i].threshold <= usage) {
2e72b634 3399 /*
2c488db2
KS
3400 * new->current_threshold will not be used until
3401 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3402 * it here.
3403 */
2c488db2 3404 ++new->current_threshold;
748dad36
SZ
3405 } else
3406 break;
2e72b634
KS
3407 }
3408
2c488db2
KS
3409 /* Free old spare buffer and save old primary buffer as spare */
3410 kfree(thresholds->spare);
3411 thresholds->spare = thresholds->primary;
3412
3413 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3414
907860ed 3415 /* To be sure that nobody uses thresholds */
2e72b634
KS
3416 synchronize_rcu();
3417
2e72b634
KS
3418unlock:
3419 mutex_unlock(&memcg->thresholds_lock);
3420
3421 return ret;
3422}
3423
59b6f873 3424static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3425 struct eventfd_ctx *eventfd, const char *args)
3426{
59b6f873 3427 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3428}
3429
59b6f873 3430static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3431 struct eventfd_ctx *eventfd, const char *args)
3432{
59b6f873 3433 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3434}
3435
59b6f873 3436static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3437 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3438{
2c488db2
KS
3439 struct mem_cgroup_thresholds *thresholds;
3440 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3441 unsigned long usage;
2c488db2 3442 int i, j, size;
2e72b634
KS
3443
3444 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3445
3446 if (type == _MEM) {
2c488db2 3447 thresholds = &memcg->thresholds;
ce00a967 3448 usage = mem_cgroup_usage(memcg, false);
05b84301 3449 } else if (type == _MEMSWAP) {
2c488db2 3450 thresholds = &memcg->memsw_thresholds;
ce00a967 3451 usage = mem_cgroup_usage(memcg, true);
05b84301 3452 } else
2e72b634
KS
3453 BUG();
3454
371528ca
AV
3455 if (!thresholds->primary)
3456 goto unlock;
3457
2e72b634
KS
3458 /* Check if a threshold crossed before removing */
3459 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3460
3461 /* Calculate new number of threshold */
2c488db2
KS
3462 size = 0;
3463 for (i = 0; i < thresholds->primary->size; i++) {
3464 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3465 size++;
3466 }
3467
2c488db2 3468 new = thresholds->spare;
907860ed 3469
2e72b634
KS
3470 /* Set thresholds array to NULL if we don't have thresholds */
3471 if (!size) {
2c488db2
KS
3472 kfree(new);
3473 new = NULL;
907860ed 3474 goto swap_buffers;
2e72b634
KS
3475 }
3476
2c488db2 3477 new->size = size;
2e72b634
KS
3478
3479 /* Copy thresholds and find current threshold */
2c488db2
KS
3480 new->current_threshold = -1;
3481 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3482 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3483 continue;
3484
2c488db2 3485 new->entries[j] = thresholds->primary->entries[i];
748dad36 3486 if (new->entries[j].threshold <= usage) {
2e72b634 3487 /*
2c488db2 3488 * new->current_threshold will not be used
2e72b634
KS
3489 * until rcu_assign_pointer(), so it's safe to increment
3490 * it here.
3491 */
2c488db2 3492 ++new->current_threshold;
2e72b634
KS
3493 }
3494 j++;
3495 }
3496
907860ed 3497swap_buffers:
2c488db2
KS
3498 /* Swap primary and spare array */
3499 thresholds->spare = thresholds->primary;
8c757763 3500
2c488db2 3501 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3502
907860ed 3503 /* To be sure that nobody uses thresholds */
2e72b634 3504 synchronize_rcu();
6611d8d7
MC
3505
3506 /* If all events are unregistered, free the spare array */
3507 if (!new) {
3508 kfree(thresholds->spare);
3509 thresholds->spare = NULL;
3510 }
371528ca 3511unlock:
2e72b634 3512 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3513}
c1e862c1 3514
59b6f873 3515static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3516 struct eventfd_ctx *eventfd)
3517{
59b6f873 3518 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3519}
3520
59b6f873 3521static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3522 struct eventfd_ctx *eventfd)
3523{
59b6f873 3524 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3525}
3526
59b6f873 3527static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3528 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3529{
9490ff27 3530 struct mem_cgroup_eventfd_list *event;
9490ff27 3531
9490ff27
KH
3532 event = kmalloc(sizeof(*event), GFP_KERNEL);
3533 if (!event)
3534 return -ENOMEM;
3535
1af8efe9 3536 spin_lock(&memcg_oom_lock);
9490ff27
KH
3537
3538 event->eventfd = eventfd;
3539 list_add(&event->list, &memcg->oom_notify);
3540
3541 /* already in OOM ? */
c2b42d3c 3542 if (memcg->under_oom)
9490ff27 3543 eventfd_signal(eventfd, 1);
1af8efe9 3544 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3545
3546 return 0;
3547}
3548
59b6f873 3549static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3550 struct eventfd_ctx *eventfd)
9490ff27 3551{
9490ff27 3552 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3553
1af8efe9 3554 spin_lock(&memcg_oom_lock);
9490ff27 3555
c0ff4b85 3556 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3557 if (ev->eventfd == eventfd) {
3558 list_del(&ev->list);
3559 kfree(ev);
3560 }
3561 }
3562
1af8efe9 3563 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3564}
3565
2da8ca82 3566static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3567{
2da8ca82 3568 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3569
791badbd 3570 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3571 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3572 return 0;
3573}
3574
182446d0 3575static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3576 struct cftype *cft, u64 val)
3577{
182446d0 3578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3579
3580 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3581 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3582 return -EINVAL;
3583
c0ff4b85 3584 memcg->oom_kill_disable = val;
4d845ebf 3585 if (!val)
c0ff4b85 3586 memcg_oom_recover(memcg);
3dae7fec 3587
3c11ecf4
KH
3588 return 0;
3589}
3590
52ebea74
TH
3591#ifdef CONFIG_CGROUP_WRITEBACK
3592
3593struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3594{
3595 return &memcg->cgwb_list;
3596}
3597
841710aa
TH
3598static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3599{
3600 return wb_domain_init(&memcg->cgwb_domain, gfp);
3601}
3602
3603static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3604{
3605 wb_domain_exit(&memcg->cgwb_domain);
3606}
3607
2529bb3a
TH
3608static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3609{
3610 wb_domain_size_changed(&memcg->cgwb_domain);
3611}
3612
841710aa
TH
3613struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3614{
3615 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3616
3617 if (!memcg->css.parent)
3618 return NULL;
3619
3620 return &memcg->cgwb_domain;
3621}
3622
c2aa723a
TH
3623/**
3624 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3625 * @wb: bdi_writeback in question
c5edf9cd
TH
3626 * @pfilepages: out parameter for number of file pages
3627 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3628 * @pdirty: out parameter for number of dirty pages
3629 * @pwriteback: out parameter for number of pages under writeback
3630 *
c5edf9cd
TH
3631 * Determine the numbers of file, headroom, dirty, and writeback pages in
3632 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3633 * is a bit more involved.
c2aa723a 3634 *
c5edf9cd
TH
3635 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3636 * headroom is calculated as the lowest headroom of itself and the
3637 * ancestors. Note that this doesn't consider the actual amount of
3638 * available memory in the system. The caller should further cap
3639 * *@pheadroom accordingly.
c2aa723a 3640 */
c5edf9cd
TH
3641void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3642 unsigned long *pheadroom, unsigned long *pdirty,
3643 unsigned long *pwriteback)
c2aa723a
TH
3644{
3645 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3646 struct mem_cgroup *parent;
c2aa723a
TH
3647
3648 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3649
3650 /* this should eventually include NR_UNSTABLE_NFS */
3651 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3652 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3653 (1 << LRU_ACTIVE_FILE));
3654 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3655
c2aa723a
TH
3656 while ((parent = parent_mem_cgroup(memcg))) {
3657 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3658 unsigned long used = page_counter_read(&memcg->memory);
3659
c5edf9cd 3660 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3661 memcg = parent;
3662 }
c2aa723a
TH
3663}
3664
841710aa
TH
3665#else /* CONFIG_CGROUP_WRITEBACK */
3666
3667static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3668{
3669 return 0;
3670}
3671
3672static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3673{
3674}
3675
2529bb3a
TH
3676static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3677{
3678}
3679
52ebea74
TH
3680#endif /* CONFIG_CGROUP_WRITEBACK */
3681
3bc942f3
TH
3682/*
3683 * DO NOT USE IN NEW FILES.
3684 *
3685 * "cgroup.event_control" implementation.
3686 *
3687 * This is way over-engineered. It tries to support fully configurable
3688 * events for each user. Such level of flexibility is completely
3689 * unnecessary especially in the light of the planned unified hierarchy.
3690 *
3691 * Please deprecate this and replace with something simpler if at all
3692 * possible.
3693 */
3694
79bd9814
TH
3695/*
3696 * Unregister event and free resources.
3697 *
3698 * Gets called from workqueue.
3699 */
3bc942f3 3700static void memcg_event_remove(struct work_struct *work)
79bd9814 3701{
3bc942f3
TH
3702 struct mem_cgroup_event *event =
3703 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3704 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3705
3706 remove_wait_queue(event->wqh, &event->wait);
3707
59b6f873 3708 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3709
3710 /* Notify userspace the event is going away. */
3711 eventfd_signal(event->eventfd, 1);
3712
3713 eventfd_ctx_put(event->eventfd);
3714 kfree(event);
59b6f873 3715 css_put(&memcg->css);
79bd9814
TH
3716}
3717
3718/*
3719 * Gets called on POLLHUP on eventfd when user closes it.
3720 *
3721 * Called with wqh->lock held and interrupts disabled.
3722 */
3bc942f3
TH
3723static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3724 int sync, void *key)
79bd9814 3725{
3bc942f3
TH
3726 struct mem_cgroup_event *event =
3727 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3728 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3729 unsigned long flags = (unsigned long)key;
3730
3731 if (flags & POLLHUP) {
3732 /*
3733 * If the event has been detached at cgroup removal, we
3734 * can simply return knowing the other side will cleanup
3735 * for us.
3736 *
3737 * We can't race against event freeing since the other
3738 * side will require wqh->lock via remove_wait_queue(),
3739 * which we hold.
3740 */
fba94807 3741 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3742 if (!list_empty(&event->list)) {
3743 list_del_init(&event->list);
3744 /*
3745 * We are in atomic context, but cgroup_event_remove()
3746 * may sleep, so we have to call it in workqueue.
3747 */
3748 schedule_work(&event->remove);
3749 }
fba94807 3750 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3751 }
3752
3753 return 0;
3754}
3755
3bc942f3 3756static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3757 wait_queue_head_t *wqh, poll_table *pt)
3758{
3bc942f3
TH
3759 struct mem_cgroup_event *event =
3760 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3761
3762 event->wqh = wqh;
3763 add_wait_queue(wqh, &event->wait);
3764}
3765
3766/*
3bc942f3
TH
3767 * DO NOT USE IN NEW FILES.
3768 *
79bd9814
TH
3769 * Parse input and register new cgroup event handler.
3770 *
3771 * Input must be in format '<event_fd> <control_fd> <args>'.
3772 * Interpretation of args is defined by control file implementation.
3773 */
451af504
TH
3774static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3775 char *buf, size_t nbytes, loff_t off)
79bd9814 3776{
451af504 3777 struct cgroup_subsys_state *css = of_css(of);
fba94807 3778 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3779 struct mem_cgroup_event *event;
79bd9814
TH
3780 struct cgroup_subsys_state *cfile_css;
3781 unsigned int efd, cfd;
3782 struct fd efile;
3783 struct fd cfile;
fba94807 3784 const char *name;
79bd9814
TH
3785 char *endp;
3786 int ret;
3787
451af504
TH
3788 buf = strstrip(buf);
3789
3790 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3791 if (*endp != ' ')
3792 return -EINVAL;
451af504 3793 buf = endp + 1;
79bd9814 3794
451af504 3795 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3796 if ((*endp != ' ') && (*endp != '\0'))
3797 return -EINVAL;
451af504 3798 buf = endp + 1;
79bd9814
TH
3799
3800 event = kzalloc(sizeof(*event), GFP_KERNEL);
3801 if (!event)
3802 return -ENOMEM;
3803
59b6f873 3804 event->memcg = memcg;
79bd9814 3805 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3806 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3807 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3808 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3809
3810 efile = fdget(efd);
3811 if (!efile.file) {
3812 ret = -EBADF;
3813 goto out_kfree;
3814 }
3815
3816 event->eventfd = eventfd_ctx_fileget(efile.file);
3817 if (IS_ERR(event->eventfd)) {
3818 ret = PTR_ERR(event->eventfd);
3819 goto out_put_efile;
3820 }
3821
3822 cfile = fdget(cfd);
3823 if (!cfile.file) {
3824 ret = -EBADF;
3825 goto out_put_eventfd;
3826 }
3827
3828 /* the process need read permission on control file */
3829 /* AV: shouldn't we check that it's been opened for read instead? */
3830 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3831 if (ret < 0)
3832 goto out_put_cfile;
3833
fba94807
TH
3834 /*
3835 * Determine the event callbacks and set them in @event. This used
3836 * to be done via struct cftype but cgroup core no longer knows
3837 * about these events. The following is crude but the whole thing
3838 * is for compatibility anyway.
3bc942f3
TH
3839 *
3840 * DO NOT ADD NEW FILES.
fba94807 3841 */
b583043e 3842 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3843
3844 if (!strcmp(name, "memory.usage_in_bytes")) {
3845 event->register_event = mem_cgroup_usage_register_event;
3846 event->unregister_event = mem_cgroup_usage_unregister_event;
3847 } else if (!strcmp(name, "memory.oom_control")) {
3848 event->register_event = mem_cgroup_oom_register_event;
3849 event->unregister_event = mem_cgroup_oom_unregister_event;
3850 } else if (!strcmp(name, "memory.pressure_level")) {
3851 event->register_event = vmpressure_register_event;
3852 event->unregister_event = vmpressure_unregister_event;
3853 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3854 event->register_event = memsw_cgroup_usage_register_event;
3855 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3856 } else {
3857 ret = -EINVAL;
3858 goto out_put_cfile;
3859 }
3860
79bd9814 3861 /*
b5557c4c
TH
3862 * Verify @cfile should belong to @css. Also, remaining events are
3863 * automatically removed on cgroup destruction but the removal is
3864 * asynchronous, so take an extra ref on @css.
79bd9814 3865 */
b583043e 3866 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3867 &memory_cgrp_subsys);
79bd9814 3868 ret = -EINVAL;
5a17f543 3869 if (IS_ERR(cfile_css))
79bd9814 3870 goto out_put_cfile;
5a17f543
TH
3871 if (cfile_css != css) {
3872 css_put(cfile_css);
79bd9814 3873 goto out_put_cfile;
5a17f543 3874 }
79bd9814 3875
451af504 3876 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3877 if (ret)
3878 goto out_put_css;
3879
3880 efile.file->f_op->poll(efile.file, &event->pt);
3881
fba94807
TH
3882 spin_lock(&memcg->event_list_lock);
3883 list_add(&event->list, &memcg->event_list);
3884 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3885
3886 fdput(cfile);
3887 fdput(efile);
3888
451af504 3889 return nbytes;
79bd9814
TH
3890
3891out_put_css:
b5557c4c 3892 css_put(css);
79bd9814
TH
3893out_put_cfile:
3894 fdput(cfile);
3895out_put_eventfd:
3896 eventfd_ctx_put(event->eventfd);
3897out_put_efile:
3898 fdput(efile);
3899out_kfree:
3900 kfree(event);
3901
3902 return ret;
3903}
3904
241994ed 3905static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3906 {
0eea1030 3907 .name = "usage_in_bytes",
8c7c6e34 3908 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3909 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3910 },
c84872e1
PE
3911 {
3912 .name = "max_usage_in_bytes",
8c7c6e34 3913 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3914 .write = mem_cgroup_reset,
791badbd 3915 .read_u64 = mem_cgroup_read_u64,
c84872e1 3916 },
8cdea7c0 3917 {
0eea1030 3918 .name = "limit_in_bytes",
8c7c6e34 3919 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3920 .write = mem_cgroup_write,
791badbd 3921 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3922 },
296c81d8
BS
3923 {
3924 .name = "soft_limit_in_bytes",
3925 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3926 .write = mem_cgroup_write,
791badbd 3927 .read_u64 = mem_cgroup_read_u64,
296c81d8 3928 },
8cdea7c0
BS
3929 {
3930 .name = "failcnt",
8c7c6e34 3931 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3932 .write = mem_cgroup_reset,
791badbd 3933 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3934 },
d2ceb9b7
KH
3935 {
3936 .name = "stat",
2da8ca82 3937 .seq_show = memcg_stat_show,
d2ceb9b7 3938 },
c1e862c1
KH
3939 {
3940 .name = "force_empty",
6770c64e 3941 .write = mem_cgroup_force_empty_write,
c1e862c1 3942 },
18f59ea7
BS
3943 {
3944 .name = "use_hierarchy",
3945 .write_u64 = mem_cgroup_hierarchy_write,
3946 .read_u64 = mem_cgroup_hierarchy_read,
3947 },
79bd9814 3948 {
3bc942f3 3949 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3950 .write = memcg_write_event_control,
7dbdb199 3951 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3952 },
a7885eb8
KM
3953 {
3954 .name = "swappiness",
3955 .read_u64 = mem_cgroup_swappiness_read,
3956 .write_u64 = mem_cgroup_swappiness_write,
3957 },
7dc74be0
DN
3958 {
3959 .name = "move_charge_at_immigrate",
3960 .read_u64 = mem_cgroup_move_charge_read,
3961 .write_u64 = mem_cgroup_move_charge_write,
3962 },
9490ff27
KH
3963 {
3964 .name = "oom_control",
2da8ca82 3965 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3966 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3967 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3968 },
70ddf637
AV
3969 {
3970 .name = "pressure_level",
70ddf637 3971 },
406eb0c9
YH
3972#ifdef CONFIG_NUMA
3973 {
3974 .name = "numa_stat",
2da8ca82 3975 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3976 },
3977#endif
510fc4e1
GC
3978 {
3979 .name = "kmem.limit_in_bytes",
3980 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3981 .write = mem_cgroup_write,
791badbd 3982 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3983 },
3984 {
3985 .name = "kmem.usage_in_bytes",
3986 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3987 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3988 },
3989 {
3990 .name = "kmem.failcnt",
3991 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3992 .write = mem_cgroup_reset,
791badbd 3993 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3994 },
3995 {
3996 .name = "kmem.max_usage_in_bytes",
3997 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 3998 .write = mem_cgroup_reset,
791badbd 3999 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4000 },
749c5415
GC
4001#ifdef CONFIG_SLABINFO
4002 {
4003 .name = "kmem.slabinfo",
b047501c
VD
4004 .seq_start = slab_start,
4005 .seq_next = slab_next,
4006 .seq_stop = slab_stop,
4007 .seq_show = memcg_slab_show,
749c5415
GC
4008 },
4009#endif
d55f90bf
VD
4010 {
4011 .name = "kmem.tcp.limit_in_bytes",
4012 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4013 .write = mem_cgroup_write,
4014 .read_u64 = mem_cgroup_read_u64,
4015 },
4016 {
4017 .name = "kmem.tcp.usage_in_bytes",
4018 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "kmem.tcp.failcnt",
4023 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4024 .write = mem_cgroup_reset,
4025 .read_u64 = mem_cgroup_read_u64,
4026 },
4027 {
4028 .name = "kmem.tcp.max_usage_in_bytes",
4029 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4030 .write = mem_cgroup_reset,
4031 .read_u64 = mem_cgroup_read_u64,
4032 },
6bc10349 4033 { }, /* terminate */
af36f906 4034};
8c7c6e34 4035
c0ff4b85 4036static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4037{
4038 struct mem_cgroup_per_node *pn;
1ecaab2b 4039 struct mem_cgroup_per_zone *mz;
41e3355d 4040 int zone, tmp = node;
1ecaab2b
KH
4041 /*
4042 * This routine is called against possible nodes.
4043 * But it's BUG to call kmalloc() against offline node.
4044 *
4045 * TODO: this routine can waste much memory for nodes which will
4046 * never be onlined. It's better to use memory hotplug callback
4047 * function.
4048 */
41e3355d
KH
4049 if (!node_state(node, N_NORMAL_MEMORY))
4050 tmp = -1;
17295c88 4051 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4052 if (!pn)
4053 return 1;
1ecaab2b 4054
1ecaab2b
KH
4055 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4056 mz = &pn->zoneinfo[zone];
bea8c150 4057 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4058 mz->usage_in_excess = 0;
4059 mz->on_tree = false;
d79154bb 4060 mz->memcg = memcg;
1ecaab2b 4061 }
54f72fe0 4062 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4063 return 0;
4064}
4065
c0ff4b85 4066static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4067{
54f72fe0 4068 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4069}
4070
0b8f73e1 4071static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4072{
c8b2a36f 4073 int node;
59927fb9 4074
0b8f73e1 4075 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4076 for_each_node(node)
4077 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4078 free_percpu(memcg->stat);
8ff69e2c 4079 kfree(memcg);
59927fb9 4080}
3afe36b1 4081
0b8f73e1 4082static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4083{
d142e3e6 4084 struct mem_cgroup *memcg;
0b8f73e1 4085 size_t size;
6d12e2d8 4086 int node;
8cdea7c0 4087
0b8f73e1
JW
4088 size = sizeof(struct mem_cgroup);
4089 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4090
4091 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4092 if (!memcg)
0b8f73e1
JW
4093 return NULL;
4094
4095 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4096 if (!memcg->stat)
4097 goto fail;
78fb7466 4098
3ed28fa1 4099 for_each_node(node)
c0ff4b85 4100 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4101 goto fail;
f64c3f54 4102
0b8f73e1
JW
4103 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4104 goto fail;
28dbc4b6 4105
f7e1cb6e 4106 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4107 memcg->last_scanned_node = MAX_NUMNODES;
4108 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4109 mutex_init(&memcg->thresholds_lock);
4110 spin_lock_init(&memcg->move_lock);
70ddf637 4111 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4112 INIT_LIST_HEAD(&memcg->event_list);
4113 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4114 memcg->socket_pressure = jiffies;
127424c8 4115#ifndef CONFIG_SLOB
900a38f0 4116 memcg->kmemcg_id = -1;
900a38f0 4117#endif
52ebea74
TH
4118#ifdef CONFIG_CGROUP_WRITEBACK
4119 INIT_LIST_HEAD(&memcg->cgwb_list);
4120#endif
0b8f73e1
JW
4121 return memcg;
4122fail:
4123 mem_cgroup_free(memcg);
4124 return NULL;
d142e3e6
GC
4125}
4126
0b8f73e1
JW
4127static struct cgroup_subsys_state * __ref
4128mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4129{
0b8f73e1
JW
4130 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4131 struct mem_cgroup *memcg;
4132 long error = -ENOMEM;
d142e3e6 4133
0b8f73e1
JW
4134 memcg = mem_cgroup_alloc();
4135 if (!memcg)
4136 return ERR_PTR(error);
d142e3e6 4137
0b8f73e1
JW
4138 memcg->high = PAGE_COUNTER_MAX;
4139 memcg->soft_limit = PAGE_COUNTER_MAX;
4140 if (parent) {
4141 memcg->swappiness = mem_cgroup_swappiness(parent);
4142 memcg->oom_kill_disable = parent->oom_kill_disable;
4143 }
4144 if (parent && parent->use_hierarchy) {
4145 memcg->use_hierarchy = true;
3e32cb2e 4146 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4147 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4148 page_counter_init(&memcg->memsw, &parent->memsw);
4149 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4150 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4151 } else {
3e32cb2e 4152 page_counter_init(&memcg->memory, NULL);
37e84351 4153 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4154 page_counter_init(&memcg->memsw, NULL);
4155 page_counter_init(&memcg->kmem, NULL);
0db15298 4156 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4157 /*
4158 * Deeper hierachy with use_hierarchy == false doesn't make
4159 * much sense so let cgroup subsystem know about this
4160 * unfortunate state in our controller.
4161 */
d142e3e6 4162 if (parent != root_mem_cgroup)
073219e9 4163 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4164 }
d6441637 4165
0b8f73e1
JW
4166 /* The following stuff does not apply to the root */
4167 if (!parent) {
4168 root_mem_cgroup = memcg;
4169 return &memcg->css;
4170 }
4171
b313aeee 4172 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4173 if (error)
4174 goto fail;
127424c8 4175
f7e1cb6e 4176 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4177 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4178
0b8f73e1
JW
4179 return &memcg->css;
4180fail:
4181 mem_cgroup_free(memcg);
4182 return NULL;
4183}
4184
4185static int
4186mem_cgroup_css_online(struct cgroup_subsys_state *css)
4187{
4188 if (css->id > MEM_CGROUP_ID_MAX)
4189 return -ENOSPC;
2f7dd7a4
JW
4190
4191 return 0;
8cdea7c0
BS
4192}
4193
eb95419b 4194static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4195{
eb95419b 4196 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4197 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4198
4199 /*
4200 * Unregister events and notify userspace.
4201 * Notify userspace about cgroup removing only after rmdir of cgroup
4202 * directory to avoid race between userspace and kernelspace.
4203 */
fba94807
TH
4204 spin_lock(&memcg->event_list_lock);
4205 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4206 list_del_init(&event->list);
4207 schedule_work(&event->remove);
4208 }
fba94807 4209 spin_unlock(&memcg->event_list_lock);
ec64f515 4210
567e9ab2 4211 memcg_offline_kmem(memcg);
52ebea74 4212 wb_memcg_offline(memcg);
df878fb0
KH
4213}
4214
6df38689
VD
4215static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4216{
4217 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4218
4219 invalidate_reclaim_iterators(memcg);
4220}
4221
eb95419b 4222static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4223{
eb95419b 4224 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4225
f7e1cb6e 4226 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4227 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4228
0db15298 4229 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4230 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4231
0b8f73e1
JW
4232 vmpressure_cleanup(&memcg->vmpressure);
4233 cancel_work_sync(&memcg->high_work);
4234 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4235 memcg_free_kmem(memcg);
0b8f73e1 4236 mem_cgroup_free(memcg);
8cdea7c0
BS
4237}
4238
1ced953b
TH
4239/**
4240 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4241 * @css: the target css
4242 *
4243 * Reset the states of the mem_cgroup associated with @css. This is
4244 * invoked when the userland requests disabling on the default hierarchy
4245 * but the memcg is pinned through dependency. The memcg should stop
4246 * applying policies and should revert to the vanilla state as it may be
4247 * made visible again.
4248 *
4249 * The current implementation only resets the essential configurations.
4250 * This needs to be expanded to cover all the visible parts.
4251 */
4252static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4253{
4254 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4255
d334c9bc
VD
4256 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4257 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4258 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4261 memcg->low = 0;
4262 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4263 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4264 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4265}
4266
02491447 4267#ifdef CONFIG_MMU
7dc74be0 4268/* Handlers for move charge at task migration. */
854ffa8d 4269static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4270{
05b84301 4271 int ret;
9476db97 4272
d0164adc
MG
4273 /* Try a single bulk charge without reclaim first, kswapd may wake */
4274 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4275 if (!ret) {
854ffa8d 4276 mc.precharge += count;
854ffa8d
DN
4277 return ret;
4278 }
9476db97
JW
4279
4280 /* Try charges one by one with reclaim */
854ffa8d 4281 while (count--) {
00501b53 4282 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4283 if (ret)
38c5d72f 4284 return ret;
854ffa8d 4285 mc.precharge++;
9476db97 4286 cond_resched();
854ffa8d 4287 }
9476db97 4288 return 0;
4ffef5fe
DN
4289}
4290
4291/**
8d32ff84 4292 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4293 * @vma: the vma the pte to be checked belongs
4294 * @addr: the address corresponding to the pte to be checked
4295 * @ptent: the pte to be checked
02491447 4296 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4297 *
4298 * Returns
4299 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4300 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4301 * move charge. if @target is not NULL, the page is stored in target->page
4302 * with extra refcnt got(Callers should handle it).
02491447
DN
4303 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4304 * target for charge migration. if @target is not NULL, the entry is stored
4305 * in target->ent.
4ffef5fe
DN
4306 *
4307 * Called with pte lock held.
4308 */
4ffef5fe
DN
4309union mc_target {
4310 struct page *page;
02491447 4311 swp_entry_t ent;
4ffef5fe
DN
4312};
4313
4ffef5fe 4314enum mc_target_type {
8d32ff84 4315 MC_TARGET_NONE = 0,
4ffef5fe 4316 MC_TARGET_PAGE,
02491447 4317 MC_TARGET_SWAP,
4ffef5fe
DN
4318};
4319
90254a65
DN
4320static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4321 unsigned long addr, pte_t ptent)
4ffef5fe 4322{
90254a65 4323 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4324
90254a65
DN
4325 if (!page || !page_mapped(page))
4326 return NULL;
4327 if (PageAnon(page)) {
1dfab5ab 4328 if (!(mc.flags & MOVE_ANON))
90254a65 4329 return NULL;
1dfab5ab
JW
4330 } else {
4331 if (!(mc.flags & MOVE_FILE))
4332 return NULL;
4333 }
90254a65
DN
4334 if (!get_page_unless_zero(page))
4335 return NULL;
4336
4337 return page;
4338}
4339
4b91355e 4340#ifdef CONFIG_SWAP
90254a65
DN
4341static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4342 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4343{
90254a65
DN
4344 struct page *page = NULL;
4345 swp_entry_t ent = pte_to_swp_entry(ptent);
4346
1dfab5ab 4347 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4348 return NULL;
4b91355e
KH
4349 /*
4350 * Because lookup_swap_cache() updates some statistics counter,
4351 * we call find_get_page() with swapper_space directly.
4352 */
33806f06 4353 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4354 if (do_memsw_account())
90254a65
DN
4355 entry->val = ent.val;
4356
4357 return page;
4358}
4b91355e
KH
4359#else
4360static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4361 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4362{
4363 return NULL;
4364}
4365#endif
90254a65 4366
87946a72
DN
4367static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4368 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4369{
4370 struct page *page = NULL;
87946a72
DN
4371 struct address_space *mapping;
4372 pgoff_t pgoff;
4373
4374 if (!vma->vm_file) /* anonymous vma */
4375 return NULL;
1dfab5ab 4376 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4377 return NULL;
4378
87946a72 4379 mapping = vma->vm_file->f_mapping;
0661a336 4380 pgoff = linear_page_index(vma, addr);
87946a72
DN
4381
4382 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4383#ifdef CONFIG_SWAP
4384 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4385 if (shmem_mapping(mapping)) {
4386 page = find_get_entry(mapping, pgoff);
4387 if (radix_tree_exceptional_entry(page)) {
4388 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4389 if (do_memsw_account())
139b6a6f
JW
4390 *entry = swp;
4391 page = find_get_page(swap_address_space(swp), swp.val);
4392 }
4393 } else
4394 page = find_get_page(mapping, pgoff);
4395#else
4396 page = find_get_page(mapping, pgoff);
aa3b1895 4397#endif
87946a72
DN
4398 return page;
4399}
4400
b1b0deab
CG
4401/**
4402 * mem_cgroup_move_account - move account of the page
4403 * @page: the page
4404 * @nr_pages: number of regular pages (>1 for huge pages)
4405 * @from: mem_cgroup which the page is moved from.
4406 * @to: mem_cgroup which the page is moved to. @from != @to.
4407 *
3ac808fd 4408 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4409 *
4410 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4411 * from old cgroup.
4412 */
4413static int mem_cgroup_move_account(struct page *page,
f627c2f5 4414 bool compound,
b1b0deab
CG
4415 struct mem_cgroup *from,
4416 struct mem_cgroup *to)
4417{
4418 unsigned long flags;
f627c2f5 4419 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4420 int ret;
c4843a75 4421 bool anon;
b1b0deab
CG
4422
4423 VM_BUG_ON(from == to);
4424 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4425 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4426
4427 /*
6a93ca8f 4428 * Prevent mem_cgroup_migrate() from looking at
45637bab 4429 * page->mem_cgroup of its source page while we change it.
b1b0deab 4430 */
f627c2f5 4431 ret = -EBUSY;
b1b0deab
CG
4432 if (!trylock_page(page))
4433 goto out;
4434
4435 ret = -EINVAL;
4436 if (page->mem_cgroup != from)
4437 goto out_unlock;
4438
c4843a75
GT
4439 anon = PageAnon(page);
4440
b1b0deab
CG
4441 spin_lock_irqsave(&from->move_lock, flags);
4442
c4843a75 4443 if (!anon && page_mapped(page)) {
b1b0deab
CG
4444 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4445 nr_pages);
4446 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 }
4449
c4843a75
GT
4450 /*
4451 * move_lock grabbed above and caller set from->moving_account, so
4452 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4453 * So mapping should be stable for dirty pages.
4454 */
4455 if (!anon && PageDirty(page)) {
4456 struct address_space *mapping = page_mapping(page);
4457
4458 if (mapping_cap_account_dirty(mapping)) {
4459 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4460 nr_pages);
4461 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 }
4464 }
4465
b1b0deab
CG
4466 if (PageWriteback(page)) {
4467 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4468 nr_pages);
4469 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 }
4472
4473 /*
4474 * It is safe to change page->mem_cgroup here because the page
4475 * is referenced, charged, and isolated - we can't race with
4476 * uncharging, charging, migration, or LRU putback.
4477 */
4478
4479 /* caller should have done css_get */
4480 page->mem_cgroup = to;
4481 spin_unlock_irqrestore(&from->move_lock, flags);
4482
4483 ret = 0;
4484
4485 local_irq_disable();
f627c2f5 4486 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4487 memcg_check_events(to, page);
f627c2f5 4488 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4489 memcg_check_events(from, page);
4490 local_irq_enable();
4491out_unlock:
4492 unlock_page(page);
4493out:
4494 return ret;
4495}
4496
8d32ff84 4497static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4498 unsigned long addr, pte_t ptent, union mc_target *target)
4499{
4500 struct page *page = NULL;
8d32ff84 4501 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4502 swp_entry_t ent = { .val = 0 };
4503
4504 if (pte_present(ptent))
4505 page = mc_handle_present_pte(vma, addr, ptent);
4506 else if (is_swap_pte(ptent))
4507 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4508 else if (pte_none(ptent))
87946a72 4509 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4510
4511 if (!page && !ent.val)
8d32ff84 4512 return ret;
02491447 4513 if (page) {
02491447 4514 /*
0a31bc97 4515 * Do only loose check w/o serialization.
1306a85a 4516 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4517 * not under LRU exclusion.
02491447 4518 */
1306a85a 4519 if (page->mem_cgroup == mc.from) {
02491447
DN
4520 ret = MC_TARGET_PAGE;
4521 if (target)
4522 target->page = page;
4523 }
4524 if (!ret || !target)
4525 put_page(page);
4526 }
90254a65
DN
4527 /* There is a swap entry and a page doesn't exist or isn't charged */
4528 if (ent.val && !ret &&
34c00c31 4529 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4530 ret = MC_TARGET_SWAP;
4531 if (target)
4532 target->ent = ent;
4ffef5fe 4533 }
4ffef5fe
DN
4534 return ret;
4535}
4536
12724850
NH
4537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4538/*
4539 * We don't consider swapping or file mapped pages because THP does not
4540 * support them for now.
4541 * Caller should make sure that pmd_trans_huge(pmd) is true.
4542 */
4543static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4544 unsigned long addr, pmd_t pmd, union mc_target *target)
4545{
4546 struct page *page = NULL;
12724850
NH
4547 enum mc_target_type ret = MC_TARGET_NONE;
4548
4549 page = pmd_page(pmd);
309381fe 4550 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4551 if (!(mc.flags & MOVE_ANON))
12724850 4552 return ret;
1306a85a 4553 if (page->mem_cgroup == mc.from) {
12724850
NH
4554 ret = MC_TARGET_PAGE;
4555 if (target) {
4556 get_page(page);
4557 target->page = page;
4558 }
4559 }
4560 return ret;
4561}
4562#else
4563static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4564 unsigned long addr, pmd_t pmd, union mc_target *target)
4565{
4566 return MC_TARGET_NONE;
4567}
4568#endif
4569
4ffef5fe
DN
4570static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4571 unsigned long addr, unsigned long end,
4572 struct mm_walk *walk)
4573{
26bcd64a 4574 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4575 pte_t *pte;
4576 spinlock_t *ptl;
4577
b6ec57f4
KS
4578 ptl = pmd_trans_huge_lock(pmd, vma);
4579 if (ptl) {
12724850
NH
4580 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4581 mc.precharge += HPAGE_PMD_NR;
bf929152 4582 spin_unlock(ptl);
1a5a9906 4583 return 0;
12724850 4584 }
03319327 4585
45f83cef
AA
4586 if (pmd_trans_unstable(pmd))
4587 return 0;
4ffef5fe
DN
4588 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4589 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4590 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4591 mc.precharge++; /* increment precharge temporarily */
4592 pte_unmap_unlock(pte - 1, ptl);
4593 cond_resched();
4594
7dc74be0
DN
4595 return 0;
4596}
4597
4ffef5fe
DN
4598static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4599{
4600 unsigned long precharge;
4ffef5fe 4601
26bcd64a
NH
4602 struct mm_walk mem_cgroup_count_precharge_walk = {
4603 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4604 .mm = mm,
4605 };
dfe076b0 4606 down_read(&mm->mmap_sem);
26bcd64a 4607 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4608 up_read(&mm->mmap_sem);
4ffef5fe
DN
4609
4610 precharge = mc.precharge;
4611 mc.precharge = 0;
4612
4613 return precharge;
4614}
4615
4ffef5fe
DN
4616static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4617{
dfe076b0
DN
4618 unsigned long precharge = mem_cgroup_count_precharge(mm);
4619
4620 VM_BUG_ON(mc.moving_task);
4621 mc.moving_task = current;
4622 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4623}
4624
dfe076b0
DN
4625/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4626static void __mem_cgroup_clear_mc(void)
4ffef5fe 4627{
2bd9bb20
KH
4628 struct mem_cgroup *from = mc.from;
4629 struct mem_cgroup *to = mc.to;
4630
4ffef5fe 4631 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4632 if (mc.precharge) {
00501b53 4633 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4634 mc.precharge = 0;
4635 }
4636 /*
4637 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4638 * we must uncharge here.
4639 */
4640 if (mc.moved_charge) {
00501b53 4641 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4642 mc.moved_charge = 0;
4ffef5fe 4643 }
483c30b5
DN
4644 /* we must fixup refcnts and charges */
4645 if (mc.moved_swap) {
483c30b5 4646 /* uncharge swap account from the old cgroup */
ce00a967 4647 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4648 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4649
05b84301 4650 /*
3e32cb2e
JW
4651 * we charged both to->memory and to->memsw, so we
4652 * should uncharge to->memory.
05b84301 4653 */
ce00a967 4654 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4655 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4656
e8ea14cc 4657 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4658
4050377b 4659 /* we've already done css_get(mc.to) */
483c30b5
DN
4660 mc.moved_swap = 0;
4661 }
dfe076b0
DN
4662 memcg_oom_recover(from);
4663 memcg_oom_recover(to);
4664 wake_up_all(&mc.waitq);
4665}
4666
4667static void mem_cgroup_clear_mc(void)
4668{
264a0ae1
TH
4669 struct mm_struct *mm = mc.mm;
4670
dfe076b0
DN
4671 /*
4672 * we must clear moving_task before waking up waiters at the end of
4673 * task migration.
4674 */
4675 mc.moving_task = NULL;
4676 __mem_cgroup_clear_mc();
2bd9bb20 4677 spin_lock(&mc.lock);
4ffef5fe
DN
4678 mc.from = NULL;
4679 mc.to = NULL;
264a0ae1 4680 mc.mm = NULL;
2bd9bb20 4681 spin_unlock(&mc.lock);
264a0ae1
TH
4682
4683 mmput(mm);
4ffef5fe
DN
4684}
4685
1f7dd3e5 4686static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4687{
1f7dd3e5 4688 struct cgroup_subsys_state *css;
eed67d75 4689 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4690 struct mem_cgroup *from;
4530eddb 4691 struct task_struct *leader, *p;
9f2115f9 4692 struct mm_struct *mm;
1dfab5ab 4693 unsigned long move_flags;
9f2115f9 4694 int ret = 0;
7dc74be0 4695
1f7dd3e5
TH
4696 /* charge immigration isn't supported on the default hierarchy */
4697 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4698 return 0;
4699
4530eddb
TH
4700 /*
4701 * Multi-process migrations only happen on the default hierarchy
4702 * where charge immigration is not used. Perform charge
4703 * immigration if @tset contains a leader and whine if there are
4704 * multiple.
4705 */
4706 p = NULL;
1f7dd3e5 4707 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4708 WARN_ON_ONCE(p);
4709 p = leader;
1f7dd3e5 4710 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4711 }
4712 if (!p)
4713 return 0;
4714
1f7dd3e5
TH
4715 /*
4716 * We are now commited to this value whatever it is. Changes in this
4717 * tunable will only affect upcoming migrations, not the current one.
4718 * So we need to save it, and keep it going.
4719 */
4720 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4721 if (!move_flags)
4722 return 0;
4723
9f2115f9
TH
4724 from = mem_cgroup_from_task(p);
4725
4726 VM_BUG_ON(from == memcg);
4727
4728 mm = get_task_mm(p);
4729 if (!mm)
4730 return 0;
4731 /* We move charges only when we move a owner of the mm */
4732 if (mm->owner == p) {
4733 VM_BUG_ON(mc.from);
4734 VM_BUG_ON(mc.to);
4735 VM_BUG_ON(mc.precharge);
4736 VM_BUG_ON(mc.moved_charge);
4737 VM_BUG_ON(mc.moved_swap);
4738
4739 spin_lock(&mc.lock);
264a0ae1 4740 mc.mm = mm;
9f2115f9
TH
4741 mc.from = from;
4742 mc.to = memcg;
4743 mc.flags = move_flags;
4744 spin_unlock(&mc.lock);
4745 /* We set mc.moving_task later */
4746
4747 ret = mem_cgroup_precharge_mc(mm);
4748 if (ret)
4749 mem_cgroup_clear_mc();
264a0ae1
TH
4750 } else {
4751 mmput(mm);
7dc74be0
DN
4752 }
4753 return ret;
4754}
4755
1f7dd3e5 4756static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4757{
4e2f245d
JW
4758 if (mc.to)
4759 mem_cgroup_clear_mc();
7dc74be0
DN
4760}
4761
4ffef5fe
DN
4762static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4763 unsigned long addr, unsigned long end,
4764 struct mm_walk *walk)
7dc74be0 4765{
4ffef5fe 4766 int ret = 0;
26bcd64a 4767 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4768 pte_t *pte;
4769 spinlock_t *ptl;
12724850
NH
4770 enum mc_target_type target_type;
4771 union mc_target target;
4772 struct page *page;
4ffef5fe 4773
b6ec57f4
KS
4774 ptl = pmd_trans_huge_lock(pmd, vma);
4775 if (ptl) {
62ade86a 4776 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4777 spin_unlock(ptl);
12724850
NH
4778 return 0;
4779 }
4780 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4781 if (target_type == MC_TARGET_PAGE) {
4782 page = target.page;
4783 if (!isolate_lru_page(page)) {
f627c2f5 4784 if (!mem_cgroup_move_account(page, true,
1306a85a 4785 mc.from, mc.to)) {
12724850
NH
4786 mc.precharge -= HPAGE_PMD_NR;
4787 mc.moved_charge += HPAGE_PMD_NR;
4788 }
4789 putback_lru_page(page);
4790 }
4791 put_page(page);
4792 }
bf929152 4793 spin_unlock(ptl);
1a5a9906 4794 return 0;
12724850
NH
4795 }
4796
45f83cef
AA
4797 if (pmd_trans_unstable(pmd))
4798 return 0;
4ffef5fe
DN
4799retry:
4800 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4801 for (; addr != end; addr += PAGE_SIZE) {
4802 pte_t ptent = *(pte++);
02491447 4803 swp_entry_t ent;
4ffef5fe
DN
4804
4805 if (!mc.precharge)
4806 break;
4807
8d32ff84 4808 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4809 case MC_TARGET_PAGE:
4810 page = target.page;
53f9263b
KS
4811 /*
4812 * We can have a part of the split pmd here. Moving it
4813 * can be done but it would be too convoluted so simply
4814 * ignore such a partial THP and keep it in original
4815 * memcg. There should be somebody mapping the head.
4816 */
4817 if (PageTransCompound(page))
4818 goto put;
4ffef5fe
DN
4819 if (isolate_lru_page(page))
4820 goto put;
f627c2f5
KS
4821 if (!mem_cgroup_move_account(page, false,
4822 mc.from, mc.to)) {
4ffef5fe 4823 mc.precharge--;
854ffa8d
DN
4824 /* we uncharge from mc.from later. */
4825 mc.moved_charge++;
4ffef5fe
DN
4826 }
4827 putback_lru_page(page);
8d32ff84 4828put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4829 put_page(page);
4830 break;
02491447
DN
4831 case MC_TARGET_SWAP:
4832 ent = target.ent;
e91cbb42 4833 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4834 mc.precharge--;
483c30b5
DN
4835 /* we fixup refcnts and charges later. */
4836 mc.moved_swap++;
4837 }
02491447 4838 break;
4ffef5fe
DN
4839 default:
4840 break;
4841 }
4842 }
4843 pte_unmap_unlock(pte - 1, ptl);
4844 cond_resched();
4845
4846 if (addr != end) {
4847 /*
4848 * We have consumed all precharges we got in can_attach().
4849 * We try charge one by one, but don't do any additional
4850 * charges to mc.to if we have failed in charge once in attach()
4851 * phase.
4852 */
854ffa8d 4853 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4854 if (!ret)
4855 goto retry;
4856 }
4857
4858 return ret;
4859}
4860
264a0ae1 4861static void mem_cgroup_move_charge(void)
4ffef5fe 4862{
26bcd64a
NH
4863 struct mm_walk mem_cgroup_move_charge_walk = {
4864 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4865 .mm = mc.mm,
26bcd64a 4866 };
4ffef5fe
DN
4867
4868 lru_add_drain_all();
312722cb 4869 /*
81f8c3a4
JW
4870 * Signal lock_page_memcg() to take the memcg's move_lock
4871 * while we're moving its pages to another memcg. Then wait
4872 * for already started RCU-only updates to finish.
312722cb
JW
4873 */
4874 atomic_inc(&mc.from->moving_account);
4875 synchronize_rcu();
dfe076b0 4876retry:
264a0ae1 4877 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4878 /*
4879 * Someone who are holding the mmap_sem might be waiting in
4880 * waitq. So we cancel all extra charges, wake up all waiters,
4881 * and retry. Because we cancel precharges, we might not be able
4882 * to move enough charges, but moving charge is a best-effort
4883 * feature anyway, so it wouldn't be a big problem.
4884 */
4885 __mem_cgroup_clear_mc();
4886 cond_resched();
4887 goto retry;
4888 }
26bcd64a
NH
4889 /*
4890 * When we have consumed all precharges and failed in doing
4891 * additional charge, the page walk just aborts.
4892 */
4893 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4894 up_read(&mc.mm->mmap_sem);
312722cb 4895 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4896}
4897
264a0ae1 4898static void mem_cgroup_move_task(void)
67e465a7 4899{
264a0ae1
TH
4900 if (mc.to) {
4901 mem_cgroup_move_charge();
a433658c 4902 mem_cgroup_clear_mc();
264a0ae1 4903 }
67e465a7 4904}
5cfb80a7 4905#else /* !CONFIG_MMU */
1f7dd3e5 4906static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4907{
4908 return 0;
4909}
1f7dd3e5 4910static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4911{
4912}
264a0ae1 4913static void mem_cgroup_move_task(void)
5cfb80a7
DN
4914{
4915}
4916#endif
67e465a7 4917
f00baae7
TH
4918/*
4919 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4920 * to verify whether we're attached to the default hierarchy on each mount
4921 * attempt.
f00baae7 4922 */
eb95419b 4923static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4924{
4925 /*
aa6ec29b 4926 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4927 * guarantees that @root doesn't have any children, so turning it
4928 * on for the root memcg is enough.
4929 */
9e10a130 4930 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4931 root_mem_cgroup->use_hierarchy = true;
4932 else
4933 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4934}
4935
241994ed
JW
4936static u64 memory_current_read(struct cgroup_subsys_state *css,
4937 struct cftype *cft)
4938{
f5fc3c5d
JW
4939 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4940
4941 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4942}
4943
4944static int memory_low_show(struct seq_file *m, void *v)
4945{
4946 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4947 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4948
4949 if (low == PAGE_COUNTER_MAX)
d2973697 4950 seq_puts(m, "max\n");
241994ed
JW
4951 else
4952 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4953
4954 return 0;
4955}
4956
4957static ssize_t memory_low_write(struct kernfs_open_file *of,
4958 char *buf, size_t nbytes, loff_t off)
4959{
4960 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4961 unsigned long low;
4962 int err;
4963
4964 buf = strstrip(buf);
d2973697 4965 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4966 if (err)
4967 return err;
4968
4969 memcg->low = low;
4970
4971 return nbytes;
4972}
4973
4974static int memory_high_show(struct seq_file *m, void *v)
4975{
4976 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4977 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4978
4979 if (high == PAGE_COUNTER_MAX)
d2973697 4980 seq_puts(m, "max\n");
241994ed
JW
4981 else
4982 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4983
4984 return 0;
4985}
4986
4987static ssize_t memory_high_write(struct kernfs_open_file *of,
4988 char *buf, size_t nbytes, loff_t off)
4989{
4990 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 4991 unsigned long nr_pages;
241994ed
JW
4992 unsigned long high;
4993 int err;
4994
4995 buf = strstrip(buf);
d2973697 4996 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
4997 if (err)
4998 return err;
4999
5000 memcg->high = high;
5001
588083bb
JW
5002 nr_pages = page_counter_read(&memcg->memory);
5003 if (nr_pages > high)
5004 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5005 GFP_KERNEL, true);
5006
2529bb3a 5007 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5008 return nbytes;
5009}
5010
5011static int memory_max_show(struct seq_file *m, void *v)
5012{
5013 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5014 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5015
5016 if (max == PAGE_COUNTER_MAX)
d2973697 5017 seq_puts(m, "max\n");
241994ed
JW
5018 else
5019 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5020
5021 return 0;
5022}
5023
5024static ssize_t memory_max_write(struct kernfs_open_file *of,
5025 char *buf, size_t nbytes, loff_t off)
5026{
5027 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5028 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5029 bool drained = false;
241994ed
JW
5030 unsigned long max;
5031 int err;
5032
5033 buf = strstrip(buf);
d2973697 5034 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5035 if (err)
5036 return err;
5037
b6e6edcf
JW
5038 xchg(&memcg->memory.limit, max);
5039
5040 for (;;) {
5041 unsigned long nr_pages = page_counter_read(&memcg->memory);
5042
5043 if (nr_pages <= max)
5044 break;
5045
5046 if (signal_pending(current)) {
5047 err = -EINTR;
5048 break;
5049 }
5050
5051 if (!drained) {
5052 drain_all_stock(memcg);
5053 drained = true;
5054 continue;
5055 }
5056
5057 if (nr_reclaims) {
5058 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5059 GFP_KERNEL, true))
5060 nr_reclaims--;
5061 continue;
5062 }
5063
5064 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5065 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5066 break;
5067 }
241994ed 5068
2529bb3a 5069 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5070 return nbytes;
5071}
5072
5073static int memory_events_show(struct seq_file *m, void *v)
5074{
5075 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5076
5077 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5078 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5079 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5080 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5081
5082 return 0;
5083}
5084
587d9f72
JW
5085static int memory_stat_show(struct seq_file *m, void *v)
5086{
5087 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5088 unsigned long stat[MEMCG_NR_STAT];
5089 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5090 int i;
5091
5092 /*
5093 * Provide statistics on the state of the memory subsystem as
5094 * well as cumulative event counters that show past behavior.
5095 *
5096 * This list is ordered following a combination of these gradients:
5097 * 1) generic big picture -> specifics and details
5098 * 2) reflecting userspace activity -> reflecting kernel heuristics
5099 *
5100 * Current memory state:
5101 */
5102
72b54e73
VD
5103 tree_stat(memcg, stat);
5104 tree_events(memcg, events);
5105
587d9f72 5106 seq_printf(m, "anon %llu\n",
72b54e73 5107 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5108 seq_printf(m, "file %llu\n",
72b54e73 5109 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5110 seq_printf(m, "kernel_stack %llu\n",
5111 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5112 seq_printf(m, "slab %llu\n",
5113 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5114 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5115 seq_printf(m, "sock %llu\n",
72b54e73 5116 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5117
5118 seq_printf(m, "file_mapped %llu\n",
72b54e73 5119 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5120 seq_printf(m, "file_dirty %llu\n",
72b54e73 5121 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5122 seq_printf(m, "file_writeback %llu\n",
72b54e73 5123 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5124
5125 for (i = 0; i < NR_LRU_LISTS; i++) {
5126 struct mem_cgroup *mi;
5127 unsigned long val = 0;
5128
5129 for_each_mem_cgroup_tree(mi, memcg)
5130 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5131 seq_printf(m, "%s %llu\n",
5132 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5133 }
5134
27ee57c9
VD
5135 seq_printf(m, "slab_reclaimable %llu\n",
5136 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5137 seq_printf(m, "slab_unreclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5139
587d9f72
JW
5140 /* Accumulated memory events */
5141
5142 seq_printf(m, "pgfault %lu\n",
72b54e73 5143 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5144 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5145 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5146
5147 return 0;
5148}
5149
241994ed
JW
5150static struct cftype memory_files[] = {
5151 {
5152 .name = "current",
f5fc3c5d 5153 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5154 .read_u64 = memory_current_read,
5155 },
5156 {
5157 .name = "low",
5158 .flags = CFTYPE_NOT_ON_ROOT,
5159 .seq_show = memory_low_show,
5160 .write = memory_low_write,
5161 },
5162 {
5163 .name = "high",
5164 .flags = CFTYPE_NOT_ON_ROOT,
5165 .seq_show = memory_high_show,
5166 .write = memory_high_write,
5167 },
5168 {
5169 .name = "max",
5170 .flags = CFTYPE_NOT_ON_ROOT,
5171 .seq_show = memory_max_show,
5172 .write = memory_max_write,
5173 },
5174 {
5175 .name = "events",
5176 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5177 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5178 .seq_show = memory_events_show,
5179 },
587d9f72
JW
5180 {
5181 .name = "stat",
5182 .flags = CFTYPE_NOT_ON_ROOT,
5183 .seq_show = memory_stat_show,
5184 },
241994ed
JW
5185 { } /* terminate */
5186};
5187
073219e9 5188struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5189 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5190 .css_online = mem_cgroup_css_online,
92fb9748 5191 .css_offline = mem_cgroup_css_offline,
6df38689 5192 .css_released = mem_cgroup_css_released,
92fb9748 5193 .css_free = mem_cgroup_css_free,
1ced953b 5194 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5195 .can_attach = mem_cgroup_can_attach,
5196 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5197 .post_attach = mem_cgroup_move_task,
f00baae7 5198 .bind = mem_cgroup_bind,
241994ed
JW
5199 .dfl_cftypes = memory_files,
5200 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5201 .early_init = 0,
8cdea7c0 5202};
c077719b 5203
241994ed
JW
5204/**
5205 * mem_cgroup_low - check if memory consumption is below the normal range
5206 * @root: the highest ancestor to consider
5207 * @memcg: the memory cgroup to check
5208 *
5209 * Returns %true if memory consumption of @memcg, and that of all
5210 * configurable ancestors up to @root, is below the normal range.
5211 */
5212bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5213{
5214 if (mem_cgroup_disabled())
5215 return false;
5216
5217 /*
5218 * The toplevel group doesn't have a configurable range, so
5219 * it's never low when looked at directly, and it is not
5220 * considered an ancestor when assessing the hierarchy.
5221 */
5222
5223 if (memcg == root_mem_cgroup)
5224 return false;
5225
4e54dede 5226 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5227 return false;
5228
5229 while (memcg != root) {
5230 memcg = parent_mem_cgroup(memcg);
5231
5232 if (memcg == root_mem_cgroup)
5233 break;
5234
4e54dede 5235 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5236 return false;
5237 }
5238 return true;
5239}
5240
00501b53
JW
5241/**
5242 * mem_cgroup_try_charge - try charging a page
5243 * @page: page to charge
5244 * @mm: mm context of the victim
5245 * @gfp_mask: reclaim mode
5246 * @memcgp: charged memcg return
5247 *
5248 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5249 * pages according to @gfp_mask if necessary.
5250 *
5251 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5252 * Otherwise, an error code is returned.
5253 *
5254 * After page->mapping has been set up, the caller must finalize the
5255 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5256 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5257 */
5258int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5259 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5260 bool compound)
00501b53
JW
5261{
5262 struct mem_cgroup *memcg = NULL;
f627c2f5 5263 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5264 int ret = 0;
5265
5266 if (mem_cgroup_disabled())
5267 goto out;
5268
5269 if (PageSwapCache(page)) {
00501b53
JW
5270 /*
5271 * Every swap fault against a single page tries to charge the
5272 * page, bail as early as possible. shmem_unuse() encounters
5273 * already charged pages, too. The USED bit is protected by
5274 * the page lock, which serializes swap cache removal, which
5275 * in turn serializes uncharging.
5276 */
e993d905 5277 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5278 if (page->mem_cgroup)
00501b53 5279 goto out;
e993d905 5280
37e84351 5281 if (do_swap_account) {
e993d905
VD
5282 swp_entry_t ent = { .val = page_private(page), };
5283 unsigned short id = lookup_swap_cgroup_id(ent);
5284
5285 rcu_read_lock();
5286 memcg = mem_cgroup_from_id(id);
5287 if (memcg && !css_tryget_online(&memcg->css))
5288 memcg = NULL;
5289 rcu_read_unlock();
5290 }
00501b53
JW
5291 }
5292
00501b53
JW
5293 if (!memcg)
5294 memcg = get_mem_cgroup_from_mm(mm);
5295
5296 ret = try_charge(memcg, gfp_mask, nr_pages);
5297
5298 css_put(&memcg->css);
00501b53
JW
5299out:
5300 *memcgp = memcg;
5301 return ret;
5302}
5303
5304/**
5305 * mem_cgroup_commit_charge - commit a page charge
5306 * @page: page to charge
5307 * @memcg: memcg to charge the page to
5308 * @lrucare: page might be on LRU already
5309 *
5310 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5311 * after page->mapping has been set up. This must happen atomically
5312 * as part of the page instantiation, i.e. under the page table lock
5313 * for anonymous pages, under the page lock for page and swap cache.
5314 *
5315 * In addition, the page must not be on the LRU during the commit, to
5316 * prevent racing with task migration. If it might be, use @lrucare.
5317 *
5318 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5319 */
5320void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5321 bool lrucare, bool compound)
00501b53 5322{
f627c2f5 5323 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5324
5325 VM_BUG_ON_PAGE(!page->mapping, page);
5326 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5327
5328 if (mem_cgroup_disabled())
5329 return;
5330 /*
5331 * Swap faults will attempt to charge the same page multiple
5332 * times. But reuse_swap_page() might have removed the page
5333 * from swapcache already, so we can't check PageSwapCache().
5334 */
5335 if (!memcg)
5336 return;
5337
6abb5a86
JW
5338 commit_charge(page, memcg, lrucare);
5339
6abb5a86 5340 local_irq_disable();
f627c2f5 5341 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5342 memcg_check_events(memcg, page);
5343 local_irq_enable();
00501b53 5344
7941d214 5345 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5346 swp_entry_t entry = { .val = page_private(page) };
5347 /*
5348 * The swap entry might not get freed for a long time,
5349 * let's not wait for it. The page already received a
5350 * memory+swap charge, drop the swap entry duplicate.
5351 */
5352 mem_cgroup_uncharge_swap(entry);
5353 }
5354}
5355
5356/**
5357 * mem_cgroup_cancel_charge - cancel a page charge
5358 * @page: page to charge
5359 * @memcg: memcg to charge the page to
5360 *
5361 * Cancel a charge transaction started by mem_cgroup_try_charge().
5362 */
f627c2f5
KS
5363void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5364 bool compound)
00501b53 5365{
f627c2f5 5366 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5367
5368 if (mem_cgroup_disabled())
5369 return;
5370 /*
5371 * Swap faults will attempt to charge the same page multiple
5372 * times. But reuse_swap_page() might have removed the page
5373 * from swapcache already, so we can't check PageSwapCache().
5374 */
5375 if (!memcg)
5376 return;
5377
00501b53
JW
5378 cancel_charge(memcg, nr_pages);
5379}
5380
747db954 5381static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5382 unsigned long nr_anon, unsigned long nr_file,
5383 unsigned long nr_huge, struct page *dummy_page)
5384{
18eca2e6 5385 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5386 unsigned long flags;
5387
ce00a967 5388 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5389 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5390 if (do_memsw_account())
18eca2e6 5391 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5392 memcg_oom_recover(memcg);
5393 }
747db954
JW
5394
5395 local_irq_save(flags);
5396 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5399 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5400 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5401 memcg_check_events(memcg, dummy_page);
5402 local_irq_restore(flags);
e8ea14cc
JW
5403
5404 if (!mem_cgroup_is_root(memcg))
18eca2e6 5405 css_put_many(&memcg->css, nr_pages);
747db954
JW
5406}
5407
5408static void uncharge_list(struct list_head *page_list)
5409{
5410 struct mem_cgroup *memcg = NULL;
747db954
JW
5411 unsigned long nr_anon = 0;
5412 unsigned long nr_file = 0;
5413 unsigned long nr_huge = 0;
5414 unsigned long pgpgout = 0;
747db954
JW
5415 struct list_head *next;
5416 struct page *page;
5417
8b592656
JW
5418 /*
5419 * Note that the list can be a single page->lru; hence the
5420 * do-while loop instead of a simple list_for_each_entry().
5421 */
747db954
JW
5422 next = page_list->next;
5423 do {
5424 unsigned int nr_pages = 1;
747db954
JW
5425
5426 page = list_entry(next, struct page, lru);
5427 next = page->lru.next;
5428
5429 VM_BUG_ON_PAGE(PageLRU(page), page);
5430 VM_BUG_ON_PAGE(page_count(page), page);
5431
1306a85a 5432 if (!page->mem_cgroup)
747db954
JW
5433 continue;
5434
5435 /*
5436 * Nobody should be changing or seriously looking at
1306a85a 5437 * page->mem_cgroup at this point, we have fully
29833315 5438 * exclusive access to the page.
747db954
JW
5439 */
5440
1306a85a 5441 if (memcg != page->mem_cgroup) {
747db954 5442 if (memcg) {
18eca2e6
JW
5443 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5444 nr_huge, page);
5445 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5446 }
1306a85a 5447 memcg = page->mem_cgroup;
747db954
JW
5448 }
5449
5450 if (PageTransHuge(page)) {
5451 nr_pages <<= compound_order(page);
5452 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5453 nr_huge += nr_pages;
5454 }
5455
5456 if (PageAnon(page))
5457 nr_anon += nr_pages;
5458 else
5459 nr_file += nr_pages;
5460
1306a85a 5461 page->mem_cgroup = NULL;
747db954
JW
5462
5463 pgpgout++;
5464 } while (next != page_list);
5465
5466 if (memcg)
18eca2e6
JW
5467 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5468 nr_huge, page);
747db954
JW
5469}
5470
0a31bc97
JW
5471/**
5472 * mem_cgroup_uncharge - uncharge a page
5473 * @page: page to uncharge
5474 *
5475 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5476 * mem_cgroup_commit_charge().
5477 */
5478void mem_cgroup_uncharge(struct page *page)
5479{
0a31bc97
JW
5480 if (mem_cgroup_disabled())
5481 return;
5482
747db954 5483 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5484 if (!page->mem_cgroup)
0a31bc97
JW
5485 return;
5486
747db954
JW
5487 INIT_LIST_HEAD(&page->lru);
5488 uncharge_list(&page->lru);
5489}
0a31bc97 5490
747db954
JW
5491/**
5492 * mem_cgroup_uncharge_list - uncharge a list of page
5493 * @page_list: list of pages to uncharge
5494 *
5495 * Uncharge a list of pages previously charged with
5496 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5497 */
5498void mem_cgroup_uncharge_list(struct list_head *page_list)
5499{
5500 if (mem_cgroup_disabled())
5501 return;
0a31bc97 5502
747db954
JW
5503 if (!list_empty(page_list))
5504 uncharge_list(page_list);
0a31bc97
JW
5505}
5506
5507/**
6a93ca8f
JW
5508 * mem_cgroup_migrate - charge a page's replacement
5509 * @oldpage: currently circulating page
5510 * @newpage: replacement page
0a31bc97 5511 *
6a93ca8f
JW
5512 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5513 * be uncharged upon free.
0a31bc97
JW
5514 *
5515 * Both pages must be locked, @newpage->mapping must be set up.
5516 */
6a93ca8f 5517void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5518{
29833315 5519 struct mem_cgroup *memcg;
44b7a8d3
JW
5520 unsigned int nr_pages;
5521 bool compound;
0a31bc97
JW
5522
5523 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5524 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5525 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5526 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5527 newpage);
0a31bc97
JW
5528
5529 if (mem_cgroup_disabled())
5530 return;
5531
5532 /* Page cache replacement: new page already charged? */
1306a85a 5533 if (newpage->mem_cgroup)
0a31bc97
JW
5534 return;
5535
45637bab 5536 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5537 memcg = oldpage->mem_cgroup;
29833315 5538 if (!memcg)
0a31bc97
JW
5539 return;
5540
44b7a8d3
JW
5541 /* Force-charge the new page. The old one will be freed soon */
5542 compound = PageTransHuge(newpage);
5543 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5544
5545 page_counter_charge(&memcg->memory, nr_pages);
5546 if (do_memsw_account())
5547 page_counter_charge(&memcg->memsw, nr_pages);
5548 css_get_many(&memcg->css, nr_pages);
0a31bc97 5549
9cf7666a 5550 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5551
5552 local_irq_disable();
5553 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5554 memcg_check_events(memcg, newpage);
5555 local_irq_enable();
0a31bc97
JW
5556}
5557
ef12947c 5558DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5559EXPORT_SYMBOL(memcg_sockets_enabled_key);
5560
5561void sock_update_memcg(struct sock *sk)
5562{
5563 struct mem_cgroup *memcg;
5564
5565 /* Socket cloning can throw us here with sk_cgrp already
5566 * filled. It won't however, necessarily happen from
5567 * process context. So the test for root memcg given
5568 * the current task's memcg won't help us in this case.
5569 *
5570 * Respecting the original socket's memcg is a better
5571 * decision in this case.
5572 */
5573 if (sk->sk_memcg) {
5574 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5575 css_get(&sk->sk_memcg->css);
5576 return;
5577 }
5578
5579 rcu_read_lock();
5580 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5581 if (memcg == root_mem_cgroup)
5582 goto out;
0db15298 5583 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5584 goto out;
f7e1cb6e 5585 if (css_tryget_online(&memcg->css))
11092087 5586 sk->sk_memcg = memcg;
f7e1cb6e 5587out:
11092087
JW
5588 rcu_read_unlock();
5589}
5590EXPORT_SYMBOL(sock_update_memcg);
5591
5592void sock_release_memcg(struct sock *sk)
5593{
5594 WARN_ON(!sk->sk_memcg);
5595 css_put(&sk->sk_memcg->css);
5596}
5597
5598/**
5599 * mem_cgroup_charge_skmem - charge socket memory
5600 * @memcg: memcg to charge
5601 * @nr_pages: number of pages to charge
5602 *
5603 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5604 * @memcg's configured limit, %false if the charge had to be forced.
5605 */
5606bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5607{
f7e1cb6e 5608 gfp_t gfp_mask = GFP_KERNEL;
11092087 5609
f7e1cb6e 5610 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5611 struct page_counter *fail;
f7e1cb6e 5612
0db15298
JW
5613 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5614 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5615 return true;
5616 }
0db15298
JW
5617 page_counter_charge(&memcg->tcpmem, nr_pages);
5618 memcg->tcpmem_pressure = 1;
f7e1cb6e 5619 return false;
11092087 5620 }
d886f4e4 5621
f7e1cb6e
JW
5622 /* Don't block in the packet receive path */
5623 if (in_softirq())
5624 gfp_mask = GFP_NOWAIT;
5625
b2807f07
JW
5626 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5627
f7e1cb6e
JW
5628 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5629 return true;
5630
5631 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5632 return false;
5633}
5634
5635/**
5636 * mem_cgroup_uncharge_skmem - uncharge socket memory
5637 * @memcg - memcg to uncharge
5638 * @nr_pages - number of pages to uncharge
5639 */
5640void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5641{
f7e1cb6e 5642 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5643 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5644 return;
5645 }
d886f4e4 5646
b2807f07
JW
5647 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5648
f7e1cb6e
JW
5649 page_counter_uncharge(&memcg->memory, nr_pages);
5650 css_put_many(&memcg->css, nr_pages);
11092087
JW
5651}
5652
f7e1cb6e
JW
5653static int __init cgroup_memory(char *s)
5654{
5655 char *token;
5656
5657 while ((token = strsep(&s, ",")) != NULL) {
5658 if (!*token)
5659 continue;
5660 if (!strcmp(token, "nosocket"))
5661 cgroup_memory_nosocket = true;
04823c83
VD
5662 if (!strcmp(token, "nokmem"))
5663 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5664 }
5665 return 0;
5666}
5667__setup("cgroup.memory=", cgroup_memory);
11092087 5668
2d11085e 5669/*
1081312f
MH
5670 * subsys_initcall() for memory controller.
5671 *
5672 * Some parts like hotcpu_notifier() have to be initialized from this context
5673 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5674 * everything that doesn't depend on a specific mem_cgroup structure should
5675 * be initialized from here.
2d11085e
MH
5676 */
5677static int __init mem_cgroup_init(void)
5678{
95a045f6
JW
5679 int cpu, node;
5680
2d11085e 5681 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5682
5683 for_each_possible_cpu(cpu)
5684 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5685 drain_local_stock);
5686
5687 for_each_node(node) {
5688 struct mem_cgroup_tree_per_node *rtpn;
5689 int zone;
5690
5691 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5692 node_online(node) ? node : NUMA_NO_NODE);
5693
5694 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5695 struct mem_cgroup_tree_per_zone *rtpz;
5696
5697 rtpz = &rtpn->rb_tree_per_zone[zone];
5698 rtpz->rb_root = RB_ROOT;
5699 spin_lock_init(&rtpz->lock);
5700 }
5701 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5702 }
5703
2d11085e
MH
5704 return 0;
5705}
5706subsys_initcall(mem_cgroup_init);
21afa38e
JW
5707
5708#ifdef CONFIG_MEMCG_SWAP
5709/**
5710 * mem_cgroup_swapout - transfer a memsw charge to swap
5711 * @page: page whose memsw charge to transfer
5712 * @entry: swap entry to move the charge to
5713 *
5714 * Transfer the memsw charge of @page to @entry.
5715 */
5716void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5717{
5718 struct mem_cgroup *memcg;
5719 unsigned short oldid;
5720
5721 VM_BUG_ON_PAGE(PageLRU(page), page);
5722 VM_BUG_ON_PAGE(page_count(page), page);
5723
7941d214 5724 if (!do_memsw_account())
21afa38e
JW
5725 return;
5726
5727 memcg = page->mem_cgroup;
5728
5729 /* Readahead page, never charged */
5730 if (!memcg)
5731 return;
5732
5733 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5734 VM_BUG_ON_PAGE(oldid, page);
5735 mem_cgroup_swap_statistics(memcg, true);
5736
5737 page->mem_cgroup = NULL;
5738
5739 if (!mem_cgroup_is_root(memcg))
5740 page_counter_uncharge(&memcg->memory, 1);
5741
ce9ce665
SAS
5742 /*
5743 * Interrupts should be disabled here because the caller holds the
5744 * mapping->tree_lock lock which is taken with interrupts-off. It is
5745 * important here to have the interrupts disabled because it is the
5746 * only synchronisation we have for udpating the per-CPU variables.
5747 */
5748 VM_BUG_ON(!irqs_disabled());
f627c2f5 5749 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5750 memcg_check_events(memcg, page);
5751}
5752
37e84351
VD
5753/*
5754 * mem_cgroup_try_charge_swap - try charging a swap entry
5755 * @page: page being added to swap
5756 * @entry: swap entry to charge
5757 *
5758 * Try to charge @entry to the memcg that @page belongs to.
5759 *
5760 * Returns 0 on success, -ENOMEM on failure.
5761 */
5762int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5763{
5764 struct mem_cgroup *memcg;
5765 struct page_counter *counter;
5766 unsigned short oldid;
5767
5768 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5769 return 0;
5770
5771 memcg = page->mem_cgroup;
5772
5773 /* Readahead page, never charged */
5774 if (!memcg)
5775 return 0;
5776
5777 if (!mem_cgroup_is_root(memcg) &&
5778 !page_counter_try_charge(&memcg->swap, 1, &counter))
5779 return -ENOMEM;
5780
5781 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5782 VM_BUG_ON_PAGE(oldid, page);
5783 mem_cgroup_swap_statistics(memcg, true);
5784
5785 css_get(&memcg->css);
5786 return 0;
5787}
5788
21afa38e
JW
5789/**
5790 * mem_cgroup_uncharge_swap - uncharge a swap entry
5791 * @entry: swap entry to uncharge
5792 *
37e84351 5793 * Drop the swap charge associated with @entry.
21afa38e
JW
5794 */
5795void mem_cgroup_uncharge_swap(swp_entry_t entry)
5796{
5797 struct mem_cgroup *memcg;
5798 unsigned short id;
5799
37e84351 5800 if (!do_swap_account)
21afa38e
JW
5801 return;
5802
5803 id = swap_cgroup_record(entry, 0);
5804 rcu_read_lock();
adbe427b 5805 memcg = mem_cgroup_from_id(id);
21afa38e 5806 if (memcg) {
37e84351
VD
5807 if (!mem_cgroup_is_root(memcg)) {
5808 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5809 page_counter_uncharge(&memcg->swap, 1);
5810 else
5811 page_counter_uncharge(&memcg->memsw, 1);
5812 }
21afa38e
JW
5813 mem_cgroup_swap_statistics(memcg, false);
5814 css_put(&memcg->css);
5815 }
5816 rcu_read_unlock();
5817}
5818
d8b38438
VD
5819long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5820{
5821 long nr_swap_pages = get_nr_swap_pages();
5822
5823 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5824 return nr_swap_pages;
5825 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5826 nr_swap_pages = min_t(long, nr_swap_pages,
5827 READ_ONCE(memcg->swap.limit) -
5828 page_counter_read(&memcg->swap));
5829 return nr_swap_pages;
5830}
5831
5ccc5aba
VD
5832bool mem_cgroup_swap_full(struct page *page)
5833{
5834 struct mem_cgroup *memcg;
5835
5836 VM_BUG_ON_PAGE(!PageLocked(page), page);
5837
5838 if (vm_swap_full())
5839 return true;
5840 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5841 return false;
5842
5843 memcg = page->mem_cgroup;
5844 if (!memcg)
5845 return false;
5846
5847 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5848 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5849 return true;
5850
5851 return false;
5852}
5853
21afa38e
JW
5854/* for remember boot option*/
5855#ifdef CONFIG_MEMCG_SWAP_ENABLED
5856static int really_do_swap_account __initdata = 1;
5857#else
5858static int really_do_swap_account __initdata;
5859#endif
5860
5861static int __init enable_swap_account(char *s)
5862{
5863 if (!strcmp(s, "1"))
5864 really_do_swap_account = 1;
5865 else if (!strcmp(s, "0"))
5866 really_do_swap_account = 0;
5867 return 1;
5868}
5869__setup("swapaccount=", enable_swap_account);
5870
37e84351
VD
5871static u64 swap_current_read(struct cgroup_subsys_state *css,
5872 struct cftype *cft)
5873{
5874 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5875
5876 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5877}
5878
5879static int swap_max_show(struct seq_file *m, void *v)
5880{
5881 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5882 unsigned long max = READ_ONCE(memcg->swap.limit);
5883
5884 if (max == PAGE_COUNTER_MAX)
5885 seq_puts(m, "max\n");
5886 else
5887 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5888
5889 return 0;
5890}
5891
5892static ssize_t swap_max_write(struct kernfs_open_file *of,
5893 char *buf, size_t nbytes, loff_t off)
5894{
5895 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5896 unsigned long max;
5897 int err;
5898
5899 buf = strstrip(buf);
5900 err = page_counter_memparse(buf, "max", &max);
5901 if (err)
5902 return err;
5903
5904 mutex_lock(&memcg_limit_mutex);
5905 err = page_counter_limit(&memcg->swap, max);
5906 mutex_unlock(&memcg_limit_mutex);
5907 if (err)
5908 return err;
5909
5910 return nbytes;
5911}
5912
5913static struct cftype swap_files[] = {
5914 {
5915 .name = "swap.current",
5916 .flags = CFTYPE_NOT_ON_ROOT,
5917 .read_u64 = swap_current_read,
5918 },
5919 {
5920 .name = "swap.max",
5921 .flags = CFTYPE_NOT_ON_ROOT,
5922 .seq_show = swap_max_show,
5923 .write = swap_max_write,
5924 },
5925 { } /* terminate */
5926};
5927
21afa38e
JW
5928static struct cftype memsw_cgroup_files[] = {
5929 {
5930 .name = "memsw.usage_in_bytes",
5931 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5932 .read_u64 = mem_cgroup_read_u64,
5933 },
5934 {
5935 .name = "memsw.max_usage_in_bytes",
5936 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5937 .write = mem_cgroup_reset,
5938 .read_u64 = mem_cgroup_read_u64,
5939 },
5940 {
5941 .name = "memsw.limit_in_bytes",
5942 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5943 .write = mem_cgroup_write,
5944 .read_u64 = mem_cgroup_read_u64,
5945 },
5946 {
5947 .name = "memsw.failcnt",
5948 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5949 .write = mem_cgroup_reset,
5950 .read_u64 = mem_cgroup_read_u64,
5951 },
5952 { }, /* terminate */
5953};
5954
5955static int __init mem_cgroup_swap_init(void)
5956{
5957 if (!mem_cgroup_disabled() && really_do_swap_account) {
5958 do_swap_account = 1;
37e84351
VD
5959 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5960 swap_files));
21afa38e
JW
5961 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5962 memsw_cgroup_files));
5963 }
5964 return 0;
5965}
5966subsys_initcall(mem_cgroup_swap_init);
5967
5968#endif /* CONFIG_MEMCG_SWAP */
This page took 1.258419 seconds and 5 git commands to generate.