memcg: remove mem_cgroup_reclaimable check from soft reclaim
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
542f85f9 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31
JW
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673
JW
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
bea8c150 1278 struct lruvec *lruvec;
6d12e2d8 1279
bea8c150
HD
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
925b7673 1284
08e552c6 1285 pc = lookup_page_cgroup(page);
38c5d72f 1286 memcg = pc->mem_cgroup;
7512102c 1287 /*
dfe0e773 1288 * Swapcache readahead pages are added to the LRU - and
29833315 1289 * possibly migrated - before they are charged.
7512102c 1290 */
29833315
JW
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
7512102c 1293
e231875b 1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1295 lruvec = &mz->lruvec;
1296out:
1297 /*
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1301 */
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
08e552c6 1305}
b69408e8 1306
925b7673 1307/**
fa9add64
HD
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
925b7673 1312 *
fa9add64
HD
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
3f58a829 1315 */
fa9add64
HD
1316void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
3f58a829
MK
1318{
1319 struct mem_cgroup_per_zone *mz;
fa9add64 1320 unsigned long *lru_size;
3f58a829
MK
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
fa9add64
HD
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1329}
544122e5 1330
3e92041d 1331/*
c0ff4b85 1332 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1333 * hierarchy subtree
1334 */
c3ac9a8a
JW
1335bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
3e92041d 1337{
91c63734
JW
1338 if (root_memcg == memcg)
1339 return true;
3a981f48 1340 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1341 return false;
b47f77b5 1342 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1343}
1344
1345static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1346 struct mem_cgroup *memcg)
1347{
1348 bool ret;
1349
91c63734 1350 rcu_read_lock();
c3ac9a8a 1351 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1352 rcu_read_unlock();
1353 return ret;
3e92041d
MH
1354}
1355
ffbdccf5
DR
1356bool task_in_mem_cgroup(struct task_struct *task,
1357 const struct mem_cgroup *memcg)
4c4a2214 1358{
0b7f569e 1359 struct mem_cgroup *curr = NULL;
158e0a2d 1360 struct task_struct *p;
ffbdccf5 1361 bool ret;
4c4a2214 1362
158e0a2d 1363 p = find_lock_task_mm(task);
de077d22 1364 if (p) {
df381975 1365 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1366 task_unlock(p);
1367 } else {
1368 /*
1369 * All threads may have already detached their mm's, but the oom
1370 * killer still needs to detect if they have already been oom
1371 * killed to prevent needlessly killing additional tasks.
1372 */
ffbdccf5 1373 rcu_read_lock();
de077d22
DR
1374 curr = mem_cgroup_from_task(task);
1375 if (curr)
1376 css_get(&curr->css);
ffbdccf5 1377 rcu_read_unlock();
de077d22 1378 }
d31f56db 1379 /*
c0ff4b85 1380 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1381 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1382 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1383 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1384 */
c0ff4b85 1385 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1386 css_put(&curr->css);
4c4a2214
DR
1387 return ret;
1388}
1389
c56d5c7d 1390int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1391{
9b272977 1392 unsigned long inactive_ratio;
14797e23 1393 unsigned long inactive;
9b272977 1394 unsigned long active;
c772be93 1395 unsigned long gb;
14797e23 1396
4d7dcca2
HD
1397 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1398 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1399
c772be93
KM
1400 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1401 if (gb)
1402 inactive_ratio = int_sqrt(10 * gb);
1403 else
1404 inactive_ratio = 1;
1405
9b272977 1406 return inactive * inactive_ratio < active;
14797e23
KM
1407}
1408
3e32cb2e 1409#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1410 container_of(counter, struct mem_cgroup, member)
1411
19942822 1412/**
9d11ea9f 1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1414 * @memcg: the memory cgroup
19942822 1415 *
9d11ea9f 1416 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1417 * pages.
19942822 1418 */
c0ff4b85 1419static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1420{
3e32cb2e
JW
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
9d11ea9f 1424
3e32cb2e
JW
1425 count = page_counter_read(&memcg->memory);
1426 limit = ACCESS_ONCE(memcg->memory.limit);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_swap_account) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = ACCESS_ONCE(memcg->memsw.limit);
1433 if (count <= limit)
1434 margin = min(margin, limit - count);
1435 }
1436
1437 return margin;
19942822
JW
1438}
1439
1f4c025b 1440int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1441{
a7885eb8 1442 /* root ? */
14208b0e 1443 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1444 return vm_swappiness;
1445
bf1ff263 1446 return memcg->swappiness;
a7885eb8
KM
1447}
1448
32047e2a 1449/*
bdcbb659 1450 * A routine for checking "mem" is under move_account() or not.
32047e2a 1451 *
bdcbb659
QH
1452 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1453 * moving cgroups. This is for waiting at high-memory pressure
1454 * caused by "move".
32047e2a 1455 */
c0ff4b85 1456static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1457{
2bd9bb20
KH
1458 struct mem_cgroup *from;
1459 struct mem_cgroup *to;
4b534334 1460 bool ret = false;
2bd9bb20
KH
1461 /*
1462 * Unlike task_move routines, we access mc.to, mc.from not under
1463 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1464 */
1465 spin_lock(&mc.lock);
1466 from = mc.from;
1467 to = mc.to;
1468 if (!from)
1469 goto unlock;
3e92041d 1470
c0ff4b85
R
1471 ret = mem_cgroup_same_or_subtree(memcg, from)
1472 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1473unlock:
1474 spin_unlock(&mc.lock);
4b534334
KH
1475 return ret;
1476}
1477
c0ff4b85 1478static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1479{
1480 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1481 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1482 DEFINE_WAIT(wait);
1483 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1484 /* moving charge context might have finished. */
1485 if (mc.moving_task)
1486 schedule();
1487 finish_wait(&mc.waitq, &wait);
1488 return true;
1489 }
1490 }
1491 return false;
1492}
1493
58cf188e 1494#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1495/**
58cf188e 1496 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1497 * @memcg: The memory cgroup that went over limit
1498 * @p: Task that is going to be killed
1499 *
1500 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501 * enabled
1502 */
1503void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1504{
e61734c5 1505 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1506 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1507 struct mem_cgroup *iter;
1508 unsigned int i;
e222432b 1509
58cf188e 1510 if (!p)
e222432b
BS
1511 return;
1512
08088cb9 1513 mutex_lock(&oom_info_lock);
e222432b
BS
1514 rcu_read_lock();
1515
e61734c5
TH
1516 pr_info("Task in ");
1517 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1518 pr_info(" killed as a result of limit of ");
1519 pr_cont_cgroup_path(memcg->css.cgroup);
1520 pr_info("\n");
e222432b 1521
e222432b
BS
1522 rcu_read_unlock();
1523
3e32cb2e
JW
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
1526 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1527 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1528 K((u64)page_counter_read(&memcg->memsw)),
1529 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1530 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->kmem)),
1532 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1533
1534 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1535 pr_info("Memory cgroup stats for ");
1536 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1537 pr_cont(":");
1538
1539 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1540 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1541 continue;
1542 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1543 K(mem_cgroup_read_stat(iter, i)));
1544 }
1545
1546 for (i = 0; i < NR_LRU_LISTS; i++)
1547 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1548 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1549
1550 pr_cont("\n");
1551 }
08088cb9 1552 mutex_unlock(&oom_info_lock);
e222432b
BS
1553}
1554
81d39c20
KH
1555/*
1556 * This function returns the number of memcg under hierarchy tree. Returns
1557 * 1(self count) if no children.
1558 */
c0ff4b85 1559static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1560{
1561 int num = 0;
7d74b06f
KH
1562 struct mem_cgroup *iter;
1563
c0ff4b85 1564 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1565 num++;
81d39c20
KH
1566 return num;
1567}
1568
a63d83f4
DR
1569/*
1570 * Return the memory (and swap, if configured) limit for a memcg.
1571 */
3e32cb2e 1572static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1573{
3e32cb2e 1574 unsigned long limit;
a63d83f4 1575
3e32cb2e 1576 limit = memcg->memory.limit;
9a5a8f19 1577 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1578 unsigned long memsw_limit;
9a5a8f19 1579
3e32cb2e
JW
1580 memsw_limit = memcg->memsw.limit;
1581 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1582 }
9a5a8f19 1583 return limit;
a63d83f4
DR
1584}
1585
19965460
DR
1586static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1587 int order)
9cbb78bb
DR
1588{
1589 struct mem_cgroup *iter;
1590 unsigned long chosen_points = 0;
1591 unsigned long totalpages;
1592 unsigned int points = 0;
1593 struct task_struct *chosen = NULL;
1594
876aafbf 1595 /*
465adcf1
DR
1596 * If current has a pending SIGKILL or is exiting, then automatically
1597 * select it. The goal is to allow it to allocate so that it may
1598 * quickly exit and free its memory.
876aafbf 1599 */
465adcf1 1600 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1601 set_thread_flag(TIF_MEMDIE);
1602 return;
1603 }
1604
1605 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1606 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1607 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1608 struct css_task_iter it;
9cbb78bb
DR
1609 struct task_struct *task;
1610
72ec7029
TH
1611 css_task_iter_start(&iter->css, &it);
1612 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1613 switch (oom_scan_process_thread(task, totalpages, NULL,
1614 false)) {
1615 case OOM_SCAN_SELECT:
1616 if (chosen)
1617 put_task_struct(chosen);
1618 chosen = task;
1619 chosen_points = ULONG_MAX;
1620 get_task_struct(chosen);
1621 /* fall through */
1622 case OOM_SCAN_CONTINUE:
1623 continue;
1624 case OOM_SCAN_ABORT:
72ec7029 1625 css_task_iter_end(&it);
9cbb78bb
DR
1626 mem_cgroup_iter_break(memcg, iter);
1627 if (chosen)
1628 put_task_struct(chosen);
1629 return;
1630 case OOM_SCAN_OK:
1631 break;
1632 };
1633 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1634 if (!points || points < chosen_points)
1635 continue;
1636 /* Prefer thread group leaders for display purposes */
1637 if (points == chosen_points &&
1638 thread_group_leader(chosen))
1639 continue;
1640
1641 if (chosen)
1642 put_task_struct(chosen);
1643 chosen = task;
1644 chosen_points = points;
1645 get_task_struct(chosen);
9cbb78bb 1646 }
72ec7029 1647 css_task_iter_end(&it);
9cbb78bb
DR
1648 }
1649
1650 if (!chosen)
1651 return;
1652 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1653 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1654 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1655}
1656
4d0c066d
KH
1657/**
1658 * test_mem_cgroup_node_reclaimable
dad7557e 1659 * @memcg: the target memcg
4d0c066d
KH
1660 * @nid: the node ID to be checked.
1661 * @noswap : specify true here if the user wants flle only information.
1662 *
1663 * This function returns whether the specified memcg contains any
1664 * reclaimable pages on a node. Returns true if there are any reclaimable
1665 * pages in the node.
1666 */
c0ff4b85 1667static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1668 int nid, bool noswap)
1669{
c0ff4b85 1670 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1671 return true;
1672 if (noswap || !total_swap_pages)
1673 return false;
c0ff4b85 1674 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1675 return true;
1676 return false;
1677
1678}
bb4cc1a8 1679#if MAX_NUMNODES > 1
889976db
YH
1680
1681/*
1682 * Always updating the nodemask is not very good - even if we have an empty
1683 * list or the wrong list here, we can start from some node and traverse all
1684 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1685 *
1686 */
c0ff4b85 1687static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1688{
1689 int nid;
453a9bf3
KH
1690 /*
1691 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1692 * pagein/pageout changes since the last update.
1693 */
c0ff4b85 1694 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1695 return;
c0ff4b85 1696 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1697 return;
1698
889976db 1699 /* make a nodemask where this memcg uses memory from */
31aaea4a 1700 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1701
31aaea4a 1702 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1703
c0ff4b85
R
1704 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1705 node_clear(nid, memcg->scan_nodes);
889976db 1706 }
453a9bf3 1707
c0ff4b85
R
1708 atomic_set(&memcg->numainfo_events, 0);
1709 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1710}
1711
1712/*
1713 * Selecting a node where we start reclaim from. Because what we need is just
1714 * reducing usage counter, start from anywhere is O,K. Considering
1715 * memory reclaim from current node, there are pros. and cons.
1716 *
1717 * Freeing memory from current node means freeing memory from a node which
1718 * we'll use or we've used. So, it may make LRU bad. And if several threads
1719 * hit limits, it will see a contention on a node. But freeing from remote
1720 * node means more costs for memory reclaim because of memory latency.
1721 *
1722 * Now, we use round-robin. Better algorithm is welcomed.
1723 */
c0ff4b85 1724int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1725{
1726 int node;
1727
c0ff4b85
R
1728 mem_cgroup_may_update_nodemask(memcg);
1729 node = memcg->last_scanned_node;
889976db 1730
c0ff4b85 1731 node = next_node(node, memcg->scan_nodes);
889976db 1732 if (node == MAX_NUMNODES)
c0ff4b85 1733 node = first_node(memcg->scan_nodes);
889976db
YH
1734 /*
1735 * We call this when we hit limit, not when pages are added to LRU.
1736 * No LRU may hold pages because all pages are UNEVICTABLE or
1737 * memcg is too small and all pages are not on LRU. In that case,
1738 * we use curret node.
1739 */
1740 if (unlikely(node == MAX_NUMNODES))
1741 node = numa_node_id();
1742
c0ff4b85 1743 memcg->last_scanned_node = node;
889976db
YH
1744 return node;
1745}
889976db 1746#else
c0ff4b85 1747int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1748{
1749 return 0;
1750}
1751#endif
1752
0608f43d
AM
1753static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1754 struct zone *zone,
1755 gfp_t gfp_mask,
1756 unsigned long *total_scanned)
1757{
1758 struct mem_cgroup *victim = NULL;
1759 int total = 0;
1760 int loop = 0;
1761 unsigned long excess;
1762 unsigned long nr_scanned;
1763 struct mem_cgroup_reclaim_cookie reclaim = {
1764 .zone = zone,
1765 .priority = 0,
1766 };
1767
3e32cb2e 1768 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1769
1770 while (1) {
1771 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1772 if (!victim) {
1773 loop++;
1774 if (loop >= 2) {
1775 /*
1776 * If we have not been able to reclaim
1777 * anything, it might because there are
1778 * no reclaimable pages under this hierarchy
1779 */
1780 if (!total)
1781 break;
1782 /*
1783 * We want to do more targeted reclaim.
1784 * excess >> 2 is not to excessive so as to
1785 * reclaim too much, nor too less that we keep
1786 * coming back to reclaim from this cgroup
1787 */
1788 if (total >= (excess >> 2) ||
1789 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1790 break;
1791 }
1792 continue;
1793 }
0608f43d
AM
1794 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1795 zone, &nr_scanned);
1796 *total_scanned += nr_scanned;
3e32cb2e 1797 if (!soft_limit_excess(root_memcg))
0608f43d 1798 break;
6d61ef40 1799 }
0608f43d
AM
1800 mem_cgroup_iter_break(root_memcg, victim);
1801 return total;
6d61ef40
BS
1802}
1803
0056f4e6
JW
1804#ifdef CONFIG_LOCKDEP
1805static struct lockdep_map memcg_oom_lock_dep_map = {
1806 .name = "memcg_oom_lock",
1807};
1808#endif
1809
fb2a6fc5
JW
1810static DEFINE_SPINLOCK(memcg_oom_lock);
1811
867578cb
KH
1812/*
1813 * Check OOM-Killer is already running under our hierarchy.
1814 * If someone is running, return false.
1815 */
fb2a6fc5 1816static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1817{
79dfdacc 1818 struct mem_cgroup *iter, *failed = NULL;
a636b327 1819
fb2a6fc5
JW
1820 spin_lock(&memcg_oom_lock);
1821
9f3a0d09 1822 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1823 if (iter->oom_lock) {
79dfdacc
MH
1824 /*
1825 * this subtree of our hierarchy is already locked
1826 * so we cannot give a lock.
1827 */
79dfdacc 1828 failed = iter;
9f3a0d09
JW
1829 mem_cgroup_iter_break(memcg, iter);
1830 break;
23751be0
JW
1831 } else
1832 iter->oom_lock = true;
7d74b06f 1833 }
867578cb 1834
fb2a6fc5
JW
1835 if (failed) {
1836 /*
1837 * OK, we failed to lock the whole subtree so we have
1838 * to clean up what we set up to the failing subtree
1839 */
1840 for_each_mem_cgroup_tree(iter, memcg) {
1841 if (iter == failed) {
1842 mem_cgroup_iter_break(memcg, iter);
1843 break;
1844 }
1845 iter->oom_lock = false;
79dfdacc 1846 }
0056f4e6
JW
1847 } else
1848 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1849
1850 spin_unlock(&memcg_oom_lock);
1851
1852 return !failed;
a636b327 1853}
0b7f569e 1854
fb2a6fc5 1855static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1856{
7d74b06f
KH
1857 struct mem_cgroup *iter;
1858
fb2a6fc5 1859 spin_lock(&memcg_oom_lock);
0056f4e6 1860 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1861 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1862 iter->oom_lock = false;
fb2a6fc5 1863 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1864}
1865
c0ff4b85 1866static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1867{
1868 struct mem_cgroup *iter;
1869
c0ff4b85 1870 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1871 atomic_inc(&iter->under_oom);
1872}
1873
c0ff4b85 1874static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1875{
1876 struct mem_cgroup *iter;
1877
867578cb
KH
1878 /*
1879 * When a new child is created while the hierarchy is under oom,
1880 * mem_cgroup_oom_lock() may not be called. We have to use
1881 * atomic_add_unless() here.
1882 */
c0ff4b85 1883 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1884 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1885}
1886
867578cb
KH
1887static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1888
dc98df5a 1889struct oom_wait_info {
d79154bb 1890 struct mem_cgroup *memcg;
dc98df5a
KH
1891 wait_queue_t wait;
1892};
1893
1894static int memcg_oom_wake_function(wait_queue_t *wait,
1895 unsigned mode, int sync, void *arg)
1896{
d79154bb
HD
1897 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1898 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1899 struct oom_wait_info *oom_wait_info;
1900
1901 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1902 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1903
dc98df5a 1904 /*
d79154bb 1905 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1906 * Then we can use css_is_ancestor without taking care of RCU.
1907 */
c0ff4b85
R
1908 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1909 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1910 return 0;
dc98df5a
KH
1911 return autoremove_wake_function(wait, mode, sync, arg);
1912}
1913
c0ff4b85 1914static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1915{
3812c8c8 1916 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1917 /* for filtering, pass "memcg" as argument. */
1918 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1919}
1920
c0ff4b85 1921static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1922{
c0ff4b85
R
1923 if (memcg && atomic_read(&memcg->under_oom))
1924 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1925}
1926
3812c8c8 1927static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1928{
3812c8c8
JW
1929 if (!current->memcg_oom.may_oom)
1930 return;
867578cb 1931 /*
49426420
JW
1932 * We are in the middle of the charge context here, so we
1933 * don't want to block when potentially sitting on a callstack
1934 * that holds all kinds of filesystem and mm locks.
1935 *
1936 * Also, the caller may handle a failed allocation gracefully
1937 * (like optional page cache readahead) and so an OOM killer
1938 * invocation might not even be necessary.
1939 *
1940 * That's why we don't do anything here except remember the
1941 * OOM context and then deal with it at the end of the page
1942 * fault when the stack is unwound, the locks are released,
1943 * and when we know whether the fault was overall successful.
867578cb 1944 */
49426420
JW
1945 css_get(&memcg->css);
1946 current->memcg_oom.memcg = memcg;
1947 current->memcg_oom.gfp_mask = mask;
1948 current->memcg_oom.order = order;
3812c8c8
JW
1949}
1950
1951/**
1952 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1953 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1954 *
49426420
JW
1955 * This has to be called at the end of a page fault if the memcg OOM
1956 * handler was enabled.
3812c8c8 1957 *
49426420 1958 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1959 * sleep on a waitqueue until the userspace task resolves the
1960 * situation. Sleeping directly in the charge context with all kinds
1961 * of locks held is not a good idea, instead we remember an OOM state
1962 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1963 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1964 *
1965 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1966 * completed, %false otherwise.
3812c8c8 1967 */
49426420 1968bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1969{
49426420 1970 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1971 struct oom_wait_info owait;
49426420 1972 bool locked;
3812c8c8
JW
1973
1974 /* OOM is global, do not handle */
3812c8c8 1975 if (!memcg)
49426420 1976 return false;
3812c8c8 1977
49426420
JW
1978 if (!handle)
1979 goto cleanup;
3812c8c8
JW
1980
1981 owait.memcg = memcg;
1982 owait.wait.flags = 0;
1983 owait.wait.func = memcg_oom_wake_function;
1984 owait.wait.private = current;
1985 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1986
3812c8c8 1987 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1988 mem_cgroup_mark_under_oom(memcg);
1989
1990 locked = mem_cgroup_oom_trylock(memcg);
1991
1992 if (locked)
1993 mem_cgroup_oom_notify(memcg);
1994
1995 if (locked && !memcg->oom_kill_disable) {
1996 mem_cgroup_unmark_under_oom(memcg);
1997 finish_wait(&memcg_oom_waitq, &owait.wait);
1998 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1999 current->memcg_oom.order);
2000 } else {
3812c8c8 2001 schedule();
49426420
JW
2002 mem_cgroup_unmark_under_oom(memcg);
2003 finish_wait(&memcg_oom_waitq, &owait.wait);
2004 }
2005
2006 if (locked) {
fb2a6fc5
JW
2007 mem_cgroup_oom_unlock(memcg);
2008 /*
2009 * There is no guarantee that an OOM-lock contender
2010 * sees the wakeups triggered by the OOM kill
2011 * uncharges. Wake any sleepers explicitely.
2012 */
2013 memcg_oom_recover(memcg);
2014 }
49426420
JW
2015cleanup:
2016 current->memcg_oom.memcg = NULL;
3812c8c8 2017 css_put(&memcg->css);
867578cb 2018 return true;
0b7f569e
KH
2019}
2020
d7365e78
JW
2021/**
2022 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2023 * @page: page that is going to change accounted state
2024 * @locked: &memcg->move_lock slowpath was taken
2025 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2026 *
d7365e78
JW
2027 * This function must mark the beginning of an accounted page state
2028 * change to prevent double accounting when the page is concurrently
2029 * being moved to another memcg:
32047e2a 2030 *
d7365e78
JW
2031 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2032 * if (TestClearPageState(page))
2033 * mem_cgroup_update_page_stat(memcg, state, -1);
2034 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2035 *
d7365e78
JW
2036 * The RCU lock is held throughout the transaction. The fast path can
2037 * get away without acquiring the memcg->move_lock (@locked is false)
2038 * because page moving starts with an RCU grace period.
32047e2a 2039 *
d7365e78
JW
2040 * The RCU lock also protects the memcg from being freed when the page
2041 * state that is going to change is the only thing preventing the page
2042 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2043 * which allows migration to go ahead and uncharge the page before the
2044 * account transaction might be complete.
d69b042f 2045 */
d7365e78
JW
2046struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2047 bool *locked,
2048 unsigned long *flags)
89c06bd5
KH
2049{
2050 struct mem_cgroup *memcg;
2051 struct page_cgroup *pc;
2052
d7365e78
JW
2053 rcu_read_lock();
2054
2055 if (mem_cgroup_disabled())
2056 return NULL;
2057
89c06bd5
KH
2058 pc = lookup_page_cgroup(page);
2059again:
2060 memcg = pc->mem_cgroup;
29833315 2061 if (unlikely(!memcg))
d7365e78
JW
2062 return NULL;
2063
2064 *locked = false;
bdcbb659 2065 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2066 return memcg;
89c06bd5 2067
354a4783 2068 spin_lock_irqsave(&memcg->move_lock, *flags);
29833315 2069 if (memcg != pc->mem_cgroup) {
354a4783 2070 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2071 goto again;
2072 }
2073 *locked = true;
d7365e78
JW
2074
2075 return memcg;
89c06bd5
KH
2076}
2077
d7365e78
JW
2078/**
2079 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2080 * @memcg: the memcg that was accounted against
2081 * @locked: value received from mem_cgroup_begin_page_stat()
2082 * @flags: value received from mem_cgroup_begin_page_stat()
2083 */
2084void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2085 unsigned long flags)
89c06bd5 2086{
d7365e78 2087 if (memcg && locked)
354a4783 2088 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5 2089
d7365e78 2090 rcu_read_unlock();
89c06bd5
KH
2091}
2092
d7365e78
JW
2093/**
2094 * mem_cgroup_update_page_stat - update page state statistics
2095 * @memcg: memcg to account against
2096 * @idx: page state item to account
2097 * @val: number of pages (positive or negative)
2098 *
2099 * See mem_cgroup_begin_page_stat() for locking requirements.
2100 */
2101void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2102 enum mem_cgroup_stat_index idx, int val)
d69b042f 2103{
658b72c5 2104 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2105
d7365e78
JW
2106 if (memcg)
2107 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2108}
26174efd 2109
cdec2e42
KH
2110/*
2111 * size of first charge trial. "32" comes from vmscan.c's magic value.
2112 * TODO: maybe necessary to use big numbers in big irons.
2113 */
7ec99d62 2114#define CHARGE_BATCH 32U
cdec2e42
KH
2115struct memcg_stock_pcp {
2116 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2117 unsigned int nr_pages;
cdec2e42 2118 struct work_struct work;
26fe6168 2119 unsigned long flags;
a0db00fc 2120#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2121};
2122static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2123static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2124
a0956d54
SS
2125/**
2126 * consume_stock: Try to consume stocked charge on this cpu.
2127 * @memcg: memcg to consume from.
2128 * @nr_pages: how many pages to charge.
2129 *
2130 * The charges will only happen if @memcg matches the current cpu's memcg
2131 * stock, and at least @nr_pages are available in that stock. Failure to
2132 * service an allocation will refill the stock.
2133 *
2134 * returns true if successful, false otherwise.
cdec2e42 2135 */
a0956d54 2136static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2137{
2138 struct memcg_stock_pcp *stock;
3e32cb2e 2139 bool ret = false;
cdec2e42 2140
a0956d54 2141 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2142 return ret;
a0956d54 2143
cdec2e42 2144 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2145 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2146 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2147 ret = true;
2148 }
cdec2e42
KH
2149 put_cpu_var(memcg_stock);
2150 return ret;
2151}
2152
2153/*
3e32cb2e 2154 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2155 */
2156static void drain_stock(struct memcg_stock_pcp *stock)
2157{
2158 struct mem_cgroup *old = stock->cached;
2159
11c9ea4e 2160 if (stock->nr_pages) {
3e32cb2e 2161 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2162 if (do_swap_account)
3e32cb2e 2163 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2164 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2165 stock->nr_pages = 0;
cdec2e42
KH
2166 }
2167 stock->cached = NULL;
cdec2e42
KH
2168}
2169
2170/*
2171 * This must be called under preempt disabled or must be called by
2172 * a thread which is pinned to local cpu.
2173 */
2174static void drain_local_stock(struct work_struct *dummy)
2175{
7c8e0181 2176 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2177 drain_stock(stock);
26fe6168 2178 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2179}
2180
e4777496
MH
2181static void __init memcg_stock_init(void)
2182{
2183 int cpu;
2184
2185 for_each_possible_cpu(cpu) {
2186 struct memcg_stock_pcp *stock =
2187 &per_cpu(memcg_stock, cpu);
2188 INIT_WORK(&stock->work, drain_local_stock);
2189 }
2190}
2191
cdec2e42 2192/*
3e32cb2e 2193 * Cache charges(val) to local per_cpu area.
320cc51d 2194 * This will be consumed by consume_stock() function, later.
cdec2e42 2195 */
c0ff4b85 2196static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2197{
2198 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2199
c0ff4b85 2200 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2201 drain_stock(stock);
c0ff4b85 2202 stock->cached = memcg;
cdec2e42 2203 }
11c9ea4e 2204 stock->nr_pages += nr_pages;
cdec2e42
KH
2205 put_cpu_var(memcg_stock);
2206}
2207
2208/*
c0ff4b85 2209 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2210 * of the hierarchy under it.
cdec2e42 2211 */
6d3d6aa2 2212static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2213{
26fe6168 2214 int cpu, curcpu;
d38144b7 2215
6d3d6aa2
JW
2216 /* If someone's already draining, avoid adding running more workers. */
2217 if (!mutex_trylock(&percpu_charge_mutex))
2218 return;
cdec2e42 2219 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2220 get_online_cpus();
5af12d0e 2221 curcpu = get_cpu();
cdec2e42
KH
2222 for_each_online_cpu(cpu) {
2223 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2224 struct mem_cgroup *memcg;
26fe6168 2225
c0ff4b85
R
2226 memcg = stock->cached;
2227 if (!memcg || !stock->nr_pages)
26fe6168 2228 continue;
c0ff4b85 2229 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2230 continue;
d1a05b69
MH
2231 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2232 if (cpu == curcpu)
2233 drain_local_stock(&stock->work);
2234 else
2235 schedule_work_on(cpu, &stock->work);
2236 }
cdec2e42 2237 }
5af12d0e 2238 put_cpu();
f894ffa8 2239 put_online_cpus();
9f50fad6 2240 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2241}
2242
711d3d2c
KH
2243/*
2244 * This function drains percpu counter value from DEAD cpu and
2245 * move it to local cpu. Note that this function can be preempted.
2246 */
c0ff4b85 2247static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2248{
2249 int i;
2250
c0ff4b85 2251 spin_lock(&memcg->pcp_counter_lock);
6104621d 2252 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2253 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2254
c0ff4b85
R
2255 per_cpu(memcg->stat->count[i], cpu) = 0;
2256 memcg->nocpu_base.count[i] += x;
711d3d2c 2257 }
e9f8974f 2258 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2259 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2260
c0ff4b85
R
2261 per_cpu(memcg->stat->events[i], cpu) = 0;
2262 memcg->nocpu_base.events[i] += x;
e9f8974f 2263 }
c0ff4b85 2264 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2265}
2266
0db0628d 2267static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2268 unsigned long action,
2269 void *hcpu)
2270{
2271 int cpu = (unsigned long)hcpu;
2272 struct memcg_stock_pcp *stock;
711d3d2c 2273 struct mem_cgroup *iter;
cdec2e42 2274
619d094b 2275 if (action == CPU_ONLINE)
1489ebad 2276 return NOTIFY_OK;
1489ebad 2277
d833049b 2278 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2279 return NOTIFY_OK;
711d3d2c 2280
9f3a0d09 2281 for_each_mem_cgroup(iter)
711d3d2c
KH
2282 mem_cgroup_drain_pcp_counter(iter, cpu);
2283
cdec2e42
KH
2284 stock = &per_cpu(memcg_stock, cpu);
2285 drain_stock(stock);
2286 return NOTIFY_OK;
2287}
2288
00501b53
JW
2289static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2290 unsigned int nr_pages)
8a9f3ccd 2291{
7ec99d62 2292 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2293 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2294 struct mem_cgroup *mem_over_limit;
3e32cb2e 2295 struct page_counter *counter;
6539cc05 2296 unsigned long nr_reclaimed;
b70a2a21
JW
2297 bool may_swap = true;
2298 bool drained = false;
05b84301 2299 int ret = 0;
a636b327 2300
ce00a967
JW
2301 if (mem_cgroup_is_root(memcg))
2302 goto done;
6539cc05 2303retry:
b6b6cc72
MH
2304 if (consume_stock(memcg, nr_pages))
2305 goto done;
8a9f3ccd 2306
3fbe7244 2307 if (!do_swap_account ||
3e32cb2e
JW
2308 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2309 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2310 goto done_restock;
3fbe7244 2311 if (do_swap_account)
3e32cb2e
JW
2312 page_counter_uncharge(&memcg->memsw, batch);
2313 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2314 } else {
3e32cb2e 2315 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2316 may_swap = false;
3fbe7244 2317 }
7a81b88c 2318
6539cc05
JW
2319 if (batch > nr_pages) {
2320 batch = nr_pages;
2321 goto retry;
2322 }
6d61ef40 2323
06b078fc
JW
2324 /*
2325 * Unlike in global OOM situations, memcg is not in a physical
2326 * memory shortage. Allow dying and OOM-killed tasks to
2327 * bypass the last charges so that they can exit quickly and
2328 * free their memory.
2329 */
2330 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2331 fatal_signal_pending(current) ||
2332 current->flags & PF_EXITING))
2333 goto bypass;
2334
2335 if (unlikely(task_in_memcg_oom(current)))
2336 goto nomem;
2337
6539cc05
JW
2338 if (!(gfp_mask & __GFP_WAIT))
2339 goto nomem;
4b534334 2340
b70a2a21
JW
2341 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2342 gfp_mask, may_swap);
6539cc05 2343
61e02c74 2344 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2345 goto retry;
28c34c29 2346
b70a2a21 2347 if (!drained) {
6d3d6aa2 2348 drain_all_stock(mem_over_limit);
b70a2a21
JW
2349 drained = true;
2350 goto retry;
2351 }
2352
28c34c29
JW
2353 if (gfp_mask & __GFP_NORETRY)
2354 goto nomem;
6539cc05
JW
2355 /*
2356 * Even though the limit is exceeded at this point, reclaim
2357 * may have been able to free some pages. Retry the charge
2358 * before killing the task.
2359 *
2360 * Only for regular pages, though: huge pages are rather
2361 * unlikely to succeed so close to the limit, and we fall back
2362 * to regular pages anyway in case of failure.
2363 */
61e02c74 2364 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2365 goto retry;
2366 /*
2367 * At task move, charge accounts can be doubly counted. So, it's
2368 * better to wait until the end of task_move if something is going on.
2369 */
2370 if (mem_cgroup_wait_acct_move(mem_over_limit))
2371 goto retry;
2372
9b130619
JW
2373 if (nr_retries--)
2374 goto retry;
2375
06b078fc
JW
2376 if (gfp_mask & __GFP_NOFAIL)
2377 goto bypass;
2378
6539cc05
JW
2379 if (fatal_signal_pending(current))
2380 goto bypass;
2381
61e02c74 2382 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2383nomem:
6d1fdc48 2384 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2385 return -ENOMEM;
867578cb 2386bypass:
ce00a967 2387 return -EINTR;
6539cc05
JW
2388
2389done_restock:
e8ea14cc 2390 css_get_many(&memcg->css, batch);
6539cc05
JW
2391 if (batch > nr_pages)
2392 refill_stock(memcg, batch - nr_pages);
2393done:
05b84301 2394 return ret;
7a81b88c 2395}
8a9f3ccd 2396
00501b53 2397static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2398{
ce00a967
JW
2399 if (mem_cgroup_is_root(memcg))
2400 return;
2401
3e32cb2e 2402 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2403 if (do_swap_account)
3e32cb2e 2404 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2405
2406 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2407}
2408
a3b2d692
KH
2409/*
2410 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2411 * rcu_read_lock(). The caller is responsible for calling
2412 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2413 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2414 */
2415static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2416{
a3b2d692
KH
2417 /* ID 0 is unused ID */
2418 if (!id)
2419 return NULL;
34c00c31 2420 return mem_cgroup_from_id(id);
a3b2d692
KH
2421}
2422
0a31bc97
JW
2423/*
2424 * try_get_mem_cgroup_from_page - look up page's memcg association
2425 * @page: the page
2426 *
2427 * Look up, get a css reference, and return the memcg that owns @page.
2428 *
2429 * The page must be locked to prevent racing with swap-in and page
2430 * cache charges. If coming from an unlocked page table, the caller
2431 * must ensure the page is on the LRU or this can race with charging.
2432 */
e42d9d5d 2433struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2434{
29833315 2435 struct mem_cgroup *memcg;
3c776e64 2436 struct page_cgroup *pc;
a3b2d692 2437 unsigned short id;
b5a84319
KH
2438 swp_entry_t ent;
2439
309381fe 2440 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2441
3c776e64 2442 pc = lookup_page_cgroup(page);
29833315
JW
2443 memcg = pc->mem_cgroup;
2444
2445 if (memcg) {
2446 if (!css_tryget_online(&memcg->css))
c0ff4b85 2447 memcg = NULL;
e42d9d5d 2448 } else if (PageSwapCache(page)) {
3c776e64 2449 ent.val = page_private(page);
9fb4b7cc 2450 id = lookup_swap_cgroup_id(ent);
a3b2d692 2451 rcu_read_lock();
c0ff4b85 2452 memcg = mem_cgroup_lookup(id);
ec903c0c 2453 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2454 memcg = NULL;
a3b2d692 2455 rcu_read_unlock();
3c776e64 2456 }
c0ff4b85 2457 return memcg;
b5a84319
KH
2458}
2459
0a31bc97
JW
2460static void lock_page_lru(struct page *page, int *isolated)
2461{
2462 struct zone *zone = page_zone(page);
2463
2464 spin_lock_irq(&zone->lru_lock);
2465 if (PageLRU(page)) {
2466 struct lruvec *lruvec;
2467
2468 lruvec = mem_cgroup_page_lruvec(page, zone);
2469 ClearPageLRU(page);
2470 del_page_from_lru_list(page, lruvec, page_lru(page));
2471 *isolated = 1;
2472 } else
2473 *isolated = 0;
2474}
2475
2476static void unlock_page_lru(struct page *page, int isolated)
2477{
2478 struct zone *zone = page_zone(page);
2479
2480 if (isolated) {
2481 struct lruvec *lruvec;
2482
2483 lruvec = mem_cgroup_page_lruvec(page, zone);
2484 VM_BUG_ON_PAGE(PageLRU(page), page);
2485 SetPageLRU(page);
2486 add_page_to_lru_list(page, lruvec, page_lru(page));
2487 }
2488 spin_unlock_irq(&zone->lru_lock);
2489}
2490
00501b53 2491static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2492 bool lrucare)
7a81b88c 2493{
ce587e65 2494 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2495 int isolated;
9ce70c02 2496
29833315 2497 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
ca3e0214
KH
2498 /*
2499 * we don't need page_cgroup_lock about tail pages, becase they are not
2500 * accessed by any other context at this point.
2501 */
9ce70c02
HD
2502
2503 /*
2504 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2505 * may already be on some other mem_cgroup's LRU. Take care of it.
2506 */
0a31bc97
JW
2507 if (lrucare)
2508 lock_page_lru(page, &isolated);
9ce70c02 2509
0a31bc97
JW
2510 /*
2511 * Nobody should be changing or seriously looking at
29833315 2512 * pc->mem_cgroup at this point:
0a31bc97
JW
2513 *
2514 * - the page is uncharged
2515 *
2516 * - the page is off-LRU
2517 *
2518 * - an anonymous fault has exclusive page access, except for
2519 * a locked page table
2520 *
2521 * - a page cache insertion, a swapin fault, or a migration
2522 * have the page locked
2523 */
c0ff4b85 2524 pc->mem_cgroup = memcg;
9ce70c02 2525
0a31bc97
JW
2526 if (lrucare)
2527 unlock_page_lru(page, isolated);
7a81b88c 2528}
66e1707b 2529
7ae1e1d0 2530#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2531/*
2532 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2533 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2534 */
2535static DEFINE_MUTEX(memcg_slab_mutex);
2536
1f458cbf
GC
2537/*
2538 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2539 * in the memcg_cache_params struct.
2540 */
2541static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2542{
2543 struct kmem_cache *cachep;
2544
2545 VM_BUG_ON(p->is_root_cache);
2546 cachep = p->root_cache;
7a67d7ab 2547 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2548}
2549
749c5415 2550#ifdef CONFIG_SLABINFO
2da8ca82 2551static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2552{
2da8ca82 2553 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2554 struct memcg_cache_params *params;
2555
cf2b8fbf 2556 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2557 return -EIO;
2558
2559 print_slabinfo_header(m);
2560
bd673145 2561 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2562 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2563 cache_show(memcg_params_to_cache(params), m);
bd673145 2564 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2565
2566 return 0;
2567}
2568#endif
2569
3e32cb2e
JW
2570static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2571 unsigned long nr_pages)
7ae1e1d0 2572{
3e32cb2e 2573 struct page_counter *counter;
7ae1e1d0 2574 int ret = 0;
7ae1e1d0 2575
3e32cb2e
JW
2576 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2577 if (ret < 0)
7ae1e1d0
GC
2578 return ret;
2579
3e32cb2e 2580 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2581 if (ret == -EINTR) {
2582 /*
00501b53
JW
2583 * try_charge() chose to bypass to root due to OOM kill or
2584 * fatal signal. Since our only options are to either fail
2585 * the allocation or charge it to this cgroup, do it as a
2586 * temporary condition. But we can't fail. From a kmem/slab
2587 * perspective, the cache has already been selected, by
2588 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2589 * our minds.
2590 *
2591 * This condition will only trigger if the task entered
00501b53
JW
2592 * memcg_charge_kmem in a sane state, but was OOM-killed
2593 * during try_charge() above. Tasks that were already dying
2594 * when the allocation triggers should have been already
7ae1e1d0
GC
2595 * directed to the root cgroup in memcontrol.h
2596 */
3e32cb2e 2597 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2598 if (do_swap_account)
3e32cb2e 2599 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2600 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2601 ret = 0;
2602 } else if (ret)
3e32cb2e 2603 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2604
2605 return ret;
2606}
2607
3e32cb2e
JW
2608static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2609 unsigned long nr_pages)
7ae1e1d0 2610{
3e32cb2e 2611 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2612 if (do_swap_account)
3e32cb2e 2613 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2614
64f21993 2615 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2616
2617 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2618}
2619
2633d7a0
GC
2620/*
2621 * helper for acessing a memcg's index. It will be used as an index in the
2622 * child cache array in kmem_cache, and also to derive its name. This function
2623 * will return -1 when this is not a kmem-limited memcg.
2624 */
2625int memcg_cache_id(struct mem_cgroup *memcg)
2626{
2627 return memcg ? memcg->kmemcg_id : -1;
2628}
2629
f3bb3043 2630static int memcg_alloc_cache_id(void)
55007d84 2631{
f3bb3043
VD
2632 int id, size;
2633 int err;
2634
2635 id = ida_simple_get(&kmem_limited_groups,
2636 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2637 if (id < 0)
2638 return id;
55007d84 2639
f3bb3043
VD
2640 if (id < memcg_limited_groups_array_size)
2641 return id;
2642
2643 /*
2644 * There's no space for the new id in memcg_caches arrays,
2645 * so we have to grow them.
2646 */
2647
2648 size = 2 * (id + 1);
55007d84
GC
2649 if (size < MEMCG_CACHES_MIN_SIZE)
2650 size = MEMCG_CACHES_MIN_SIZE;
2651 else if (size > MEMCG_CACHES_MAX_SIZE)
2652 size = MEMCG_CACHES_MAX_SIZE;
2653
f3bb3043
VD
2654 mutex_lock(&memcg_slab_mutex);
2655 err = memcg_update_all_caches(size);
2656 mutex_unlock(&memcg_slab_mutex);
2657
2658 if (err) {
2659 ida_simple_remove(&kmem_limited_groups, id);
2660 return err;
2661 }
2662 return id;
2663}
2664
2665static void memcg_free_cache_id(int id)
2666{
2667 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2668}
2669
2670/*
2671 * We should update the current array size iff all caches updates succeed. This
2672 * can only be done from the slab side. The slab mutex needs to be held when
2673 * calling this.
2674 */
2675void memcg_update_array_size(int num)
2676{
f3bb3043 2677 memcg_limited_groups_array_size = num;
55007d84
GC
2678}
2679
776ed0f0
VD
2680static void memcg_register_cache(struct mem_cgroup *memcg,
2681 struct kmem_cache *root_cache)
2633d7a0 2682{
93f39eea
VD
2683 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2684 memcg_slab_mutex */
bd673145 2685 struct kmem_cache *cachep;
d7f25f8a
GC
2686 int id;
2687
bd673145
VD
2688 lockdep_assert_held(&memcg_slab_mutex);
2689
2690 id = memcg_cache_id(memcg);
2691
2692 /*
2693 * Since per-memcg caches are created asynchronously on first
2694 * allocation (see memcg_kmem_get_cache()), several threads can try to
2695 * create the same cache, but only one of them may succeed.
2696 */
2697 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2698 return;
2699
073ee1c6 2700 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2701 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2702 /*
bd673145
VD
2703 * If we could not create a memcg cache, do not complain, because
2704 * that's not critical at all as we can always proceed with the root
2705 * cache.
2edefe11 2706 */
bd673145
VD
2707 if (!cachep)
2708 return;
2edefe11 2709
33a690c4 2710 css_get(&memcg->css);
bd673145 2711 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2712
d7f25f8a 2713 /*
959c8963
VD
2714 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2715 * barrier here to ensure nobody will see the kmem_cache partially
2716 * initialized.
d7f25f8a 2717 */
959c8963
VD
2718 smp_wmb();
2719
bd673145
VD
2720 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2721 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2722}
d7f25f8a 2723
776ed0f0 2724static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2725{
bd673145 2726 struct kmem_cache *root_cache;
1aa13254
VD
2727 struct mem_cgroup *memcg;
2728 int id;
2729
bd673145 2730 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2731
bd673145 2732 BUG_ON(is_root_cache(cachep));
2edefe11 2733
bd673145
VD
2734 root_cache = cachep->memcg_params->root_cache;
2735 memcg = cachep->memcg_params->memcg;
96403da2 2736 id = memcg_cache_id(memcg);
d7f25f8a 2737
bd673145
VD
2738 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2739 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2740
bd673145
VD
2741 list_del(&cachep->memcg_params->list);
2742
2743 kmem_cache_destroy(cachep);
33a690c4
VD
2744
2745 /* drop the reference taken in memcg_register_cache */
2746 css_put(&memcg->css);
2633d7a0
GC
2747}
2748
0e9d92f2
GC
2749/*
2750 * During the creation a new cache, we need to disable our accounting mechanism
2751 * altogether. This is true even if we are not creating, but rather just
2752 * enqueing new caches to be created.
2753 *
2754 * This is because that process will trigger allocations; some visible, like
2755 * explicit kmallocs to auxiliary data structures, name strings and internal
2756 * cache structures; some well concealed, like INIT_WORK() that can allocate
2757 * objects during debug.
2758 *
2759 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2760 * to it. This may not be a bounded recursion: since the first cache creation
2761 * failed to complete (waiting on the allocation), we'll just try to create the
2762 * cache again, failing at the same point.
2763 *
2764 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2765 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2766 * inside the following two functions.
2767 */
2768static inline void memcg_stop_kmem_account(void)
2769{
2770 VM_BUG_ON(!current->mm);
2771 current->memcg_kmem_skip_account++;
2772}
2773
2774static inline void memcg_resume_kmem_account(void)
2775{
2776 VM_BUG_ON(!current->mm);
2777 current->memcg_kmem_skip_account--;
2778}
2779
776ed0f0 2780int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2781{
2782 struct kmem_cache *c;
b8529907 2783 int i, failed = 0;
7cf27982 2784
bd673145 2785 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2786 for_each_memcg_cache_index(i) {
2787 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2788 if (!c)
2789 continue;
2790
776ed0f0 2791 memcg_unregister_cache(c);
b8529907
VD
2792
2793 if (cache_from_memcg_idx(s, i))
2794 failed++;
7cf27982 2795 }
bd673145 2796 mutex_unlock(&memcg_slab_mutex);
b8529907 2797 return failed;
7cf27982
GC
2798}
2799
776ed0f0 2800static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2801{
2802 struct kmem_cache *cachep;
bd673145 2803 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2804
2805 if (!memcg_kmem_is_active(memcg))
2806 return;
2807
bd673145
VD
2808 mutex_lock(&memcg_slab_mutex);
2809 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2810 cachep = memcg_params_to_cache(params);
bd673145
VD
2811 kmem_cache_shrink(cachep);
2812 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2813 memcg_unregister_cache(cachep);
1f458cbf 2814 }
bd673145 2815 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2816}
2817
776ed0f0 2818struct memcg_register_cache_work {
5722d094
VD
2819 struct mem_cgroup *memcg;
2820 struct kmem_cache *cachep;
2821 struct work_struct work;
2822};
2823
776ed0f0 2824static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2825{
776ed0f0
VD
2826 struct memcg_register_cache_work *cw =
2827 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2828 struct mem_cgroup *memcg = cw->memcg;
2829 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2830
bd673145 2831 mutex_lock(&memcg_slab_mutex);
776ed0f0 2832 memcg_register_cache(memcg, cachep);
bd673145
VD
2833 mutex_unlock(&memcg_slab_mutex);
2834
5722d094 2835 css_put(&memcg->css);
d7f25f8a
GC
2836 kfree(cw);
2837}
2838
2839/*
2840 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2841 */
776ed0f0
VD
2842static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2843 struct kmem_cache *cachep)
d7f25f8a 2844{
776ed0f0 2845 struct memcg_register_cache_work *cw;
d7f25f8a 2846
776ed0f0 2847 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2848 if (cw == NULL) {
2849 css_put(&memcg->css);
d7f25f8a
GC
2850 return;
2851 }
2852
2853 cw->memcg = memcg;
2854 cw->cachep = cachep;
2855
776ed0f0 2856 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2857 schedule_work(&cw->work);
2858}
2859
776ed0f0
VD
2860static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2861 struct kmem_cache *cachep)
0e9d92f2
GC
2862{
2863 /*
2864 * We need to stop accounting when we kmalloc, because if the
2865 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2866 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2867 *
2868 * However, it is better to enclose the whole function. Depending on
2869 * the debugging options enabled, INIT_WORK(), for instance, can
2870 * trigger an allocation. This too, will make us recurse. Because at
2871 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2872 * the safest choice is to do it like this, wrapping the whole function.
2873 */
2874 memcg_stop_kmem_account();
776ed0f0 2875 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2876 memcg_resume_kmem_account();
2877}
c67a8a68
VD
2878
2879int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2880{
3e32cb2e 2881 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2882 int res;
2883
3e32cb2e 2884 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2885 if (!res)
3e32cb2e 2886 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2887 return res;
2888}
2889
2890void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2891{
3e32cb2e
JW
2892 unsigned int nr_pages = 1 << order;
2893
2894 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2895 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2896}
2897
d7f25f8a
GC
2898/*
2899 * Return the kmem_cache we're supposed to use for a slab allocation.
2900 * We try to use the current memcg's version of the cache.
2901 *
2902 * If the cache does not exist yet, if we are the first user of it,
2903 * we either create it immediately, if possible, or create it asynchronously
2904 * in a workqueue.
2905 * In the latter case, we will let the current allocation go through with
2906 * the original cache.
2907 *
2908 * Can't be called in interrupt context or from kernel threads.
2909 * This function needs to be called with rcu_read_lock() held.
2910 */
2911struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2912 gfp_t gfp)
2913{
2914 struct mem_cgroup *memcg;
959c8963 2915 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2916
2917 VM_BUG_ON(!cachep->memcg_params);
2918 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2919
0e9d92f2
GC
2920 if (!current->mm || current->memcg_kmem_skip_account)
2921 return cachep;
2922
d7f25f8a
GC
2923 rcu_read_lock();
2924 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2925
cf2b8fbf 2926 if (!memcg_kmem_is_active(memcg))
ca0dde97 2927 goto out;
d7f25f8a 2928
959c8963
VD
2929 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2930 if (likely(memcg_cachep)) {
2931 cachep = memcg_cachep;
ca0dde97 2932 goto out;
d7f25f8a
GC
2933 }
2934
ca0dde97 2935 /* The corresponding put will be done in the workqueue. */
ec903c0c 2936 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
2937 goto out;
2938 rcu_read_unlock();
2939
2940 /*
2941 * If we are in a safe context (can wait, and not in interrupt
2942 * context), we could be be predictable and return right away.
2943 * This would guarantee that the allocation being performed
2944 * already belongs in the new cache.
2945 *
2946 * However, there are some clashes that can arrive from locking.
2947 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2948 * memcg_create_kmem_cache, this means no further allocation
2949 * could happen with the slab_mutex held. So it's better to
2950 * defer everything.
ca0dde97 2951 */
776ed0f0 2952 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
2953 return cachep;
2954out:
2955 rcu_read_unlock();
2956 return cachep;
d7f25f8a 2957}
d7f25f8a 2958
7ae1e1d0
GC
2959/*
2960 * We need to verify if the allocation against current->mm->owner's memcg is
2961 * possible for the given order. But the page is not allocated yet, so we'll
2962 * need a further commit step to do the final arrangements.
2963 *
2964 * It is possible for the task to switch cgroups in this mean time, so at
2965 * commit time, we can't rely on task conversion any longer. We'll then use
2966 * the handle argument to return to the caller which cgroup we should commit
2967 * against. We could also return the memcg directly and avoid the pointer
2968 * passing, but a boolean return value gives better semantics considering
2969 * the compiled-out case as well.
2970 *
2971 * Returning true means the allocation is possible.
2972 */
2973bool
2974__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2975{
2976 struct mem_cgroup *memcg;
2977 int ret;
2978
2979 *_memcg = NULL;
6d42c232
GC
2980
2981 /*
2982 * Disabling accounting is only relevant for some specific memcg
2983 * internal allocations. Therefore we would initially not have such
52383431
VD
2984 * check here, since direct calls to the page allocator that are
2985 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2986 * outside memcg core. We are mostly concerned with cache allocations,
2987 * and by having this test at memcg_kmem_get_cache, we are already able
2988 * to relay the allocation to the root cache and bypass the memcg cache
2989 * altogether.
6d42c232
GC
2990 *
2991 * There is one exception, though: the SLUB allocator does not create
2992 * large order caches, but rather service large kmallocs directly from
2993 * the page allocator. Therefore, the following sequence when backed by
2994 * the SLUB allocator:
2995 *
f894ffa8
AM
2996 * memcg_stop_kmem_account();
2997 * kmalloc(<large_number>)
2998 * memcg_resume_kmem_account();
6d42c232
GC
2999 *
3000 * would effectively ignore the fact that we should skip accounting,
3001 * since it will drive us directly to this function without passing
3002 * through the cache selector memcg_kmem_get_cache. Such large
3003 * allocations are extremely rare but can happen, for instance, for the
3004 * cache arrays. We bring this test here.
3005 */
3006 if (!current->mm || current->memcg_kmem_skip_account)
3007 return true;
3008
df381975 3009 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3010
cf2b8fbf 3011 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3012 css_put(&memcg->css);
3013 return true;
3014 }
3015
3e32cb2e 3016 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3017 if (!ret)
3018 *_memcg = memcg;
7ae1e1d0
GC
3019
3020 css_put(&memcg->css);
3021 return (ret == 0);
3022}
3023
3024void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3025 int order)
3026{
3027 struct page_cgroup *pc;
3028
3029 VM_BUG_ON(mem_cgroup_is_root(memcg));
3030
3031 /* The page allocation failed. Revert */
3032 if (!page) {
3e32cb2e 3033 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3034 return;
3035 }
7ae1e1d0 3036 pc = lookup_page_cgroup(page);
7ae1e1d0 3037 pc->mem_cgroup = memcg;
7ae1e1d0
GC
3038}
3039
3040void __memcg_kmem_uncharge_pages(struct page *page, int order)
3041{
29833315
JW
3042 struct page_cgroup *pc = lookup_page_cgroup(page);
3043 struct mem_cgroup *memcg = pc->mem_cgroup;
7ae1e1d0 3044
7ae1e1d0
GC
3045 if (!memcg)
3046 return;
3047
309381fe 3048 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 3049
3e32cb2e 3050 memcg_uncharge_kmem(memcg, 1 << order);
29833315 3051 pc->mem_cgroup = NULL;
7ae1e1d0 3052}
1f458cbf 3053#else
776ed0f0 3054static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3055{
3056}
7ae1e1d0
GC
3057#endif /* CONFIG_MEMCG_KMEM */
3058
ca3e0214
KH
3059#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3060
ca3e0214
KH
3061/*
3062 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3063 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3064 * charge/uncharge will be never happen and move_account() is done under
3065 * compound_lock(), so we don't have to take care of races.
ca3e0214 3066 */
e94c8a9c 3067void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3068{
29833315 3069 struct page_cgroup *pc = lookup_page_cgroup(head);
e94c8a9c 3070 int i;
ca3e0214 3071
3d37c4a9
KH
3072 if (mem_cgroup_disabled())
3073 return;
b070e65c 3074
29833315
JW
3075 for (i = 1; i < HPAGE_PMD_NR; i++)
3076 pc[i].mem_cgroup = pc[0].mem_cgroup;
b9982f8d 3077
29833315 3078 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 3079 HPAGE_PMD_NR);
ca3e0214 3080}
12d27107 3081#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3082
f817ed48 3083/**
de3638d9 3084 * mem_cgroup_move_account - move account of the page
5564e88b 3085 * @page: the page
7ec99d62 3086 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3087 * @pc: page_cgroup of the page.
3088 * @from: mem_cgroup which the page is moved from.
3089 * @to: mem_cgroup which the page is moved to. @from != @to.
3090 *
3091 * The caller must confirm following.
08e552c6 3092 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3093 * - compound_lock is held when nr_pages > 1
f817ed48 3094 *
2f3479b1
KH
3095 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3096 * from old cgroup.
f817ed48 3097 */
7ec99d62
JW
3098static int mem_cgroup_move_account(struct page *page,
3099 unsigned int nr_pages,
3100 struct page_cgroup *pc,
3101 struct mem_cgroup *from,
2f3479b1 3102 struct mem_cgroup *to)
f817ed48 3103{
de3638d9
JW
3104 unsigned long flags;
3105 int ret;
987eba66 3106
f817ed48 3107 VM_BUG_ON(from == to);
309381fe 3108 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3109 /*
3110 * The page is isolated from LRU. So, collapse function
3111 * will not handle this page. But page splitting can happen.
3112 * Do this check under compound_page_lock(). The caller should
3113 * hold it.
3114 */
3115 ret = -EBUSY;
7ec99d62 3116 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3117 goto out;
3118
0a31bc97
JW
3119 /*
3120 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3121 * of its source page while we change it: page migration takes
3122 * both pages off the LRU, but page cache replacement doesn't.
3123 */
3124 if (!trylock_page(page))
3125 goto out;
de3638d9
JW
3126
3127 ret = -EINVAL;
29833315 3128 if (pc->mem_cgroup != from)
0a31bc97 3129 goto out_unlock;
de3638d9 3130
354a4783 3131 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3132
0a31bc97 3133 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3134 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3135 nr_pages);
3136 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3137 nr_pages);
3138 }
3ea67d06 3139
59d1d256
JW
3140 if (PageWriteback(page)) {
3141 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3142 nr_pages);
3143 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3144 nr_pages);
3145 }
3ea67d06 3146
0a31bc97
JW
3147 /*
3148 * It is safe to change pc->mem_cgroup here because the page
3149 * is referenced, charged, and isolated - we can't race with
3150 * uncharging, charging, migration, or LRU putback.
3151 */
d69b042f 3152
854ffa8d 3153 /* caller should have done css_get */
08e552c6 3154 pc->mem_cgroup = to;
354a4783
JW
3155 spin_unlock_irqrestore(&from->move_lock, flags);
3156
de3638d9 3157 ret = 0;
0a31bc97
JW
3158
3159 local_irq_disable();
3160 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3161 memcg_check_events(to, page);
0a31bc97 3162 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3163 memcg_check_events(from, page);
0a31bc97
JW
3164 local_irq_enable();
3165out_unlock:
3166 unlock_page(page);
de3638d9 3167out:
f817ed48
KH
3168 return ret;
3169}
3170
c255a458 3171#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3172static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3173 bool charge)
d13d1443 3174{
0a31bc97
JW
3175 int val = (charge) ? 1 : -1;
3176 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3177}
02491447
DN
3178
3179/**
3180 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3181 * @entry: swap entry to be moved
3182 * @from: mem_cgroup which the entry is moved from
3183 * @to: mem_cgroup which the entry is moved to
3184 *
3185 * It succeeds only when the swap_cgroup's record for this entry is the same
3186 * as the mem_cgroup's id of @from.
3187 *
3188 * Returns 0 on success, -EINVAL on failure.
3189 *
3e32cb2e 3190 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3191 * both res and memsw, and called css_get().
3192 */
3193static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3194 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3195{
3196 unsigned short old_id, new_id;
3197
34c00c31
LZ
3198 old_id = mem_cgroup_id(from);
3199 new_id = mem_cgroup_id(to);
02491447
DN
3200
3201 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3202 mem_cgroup_swap_statistics(from, false);
483c30b5 3203 mem_cgroup_swap_statistics(to, true);
02491447 3204 /*
483c30b5 3205 * This function is only called from task migration context now.
3e32cb2e 3206 * It postpones page_counter and refcount handling till the end
483c30b5 3207 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3208 * improvement. But we cannot postpone css_get(to) because if
3209 * the process that has been moved to @to does swap-in, the
3210 * refcount of @to might be decreased to 0.
3211 *
3212 * We are in attach() phase, so the cgroup is guaranteed to be
3213 * alive, so we can just call css_get().
02491447 3214 */
4050377b 3215 css_get(&to->css);
02491447
DN
3216 return 0;
3217 }
3218 return -EINVAL;
3219}
3220#else
3221static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3222 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3223{
3224 return -EINVAL;
3225}
8c7c6e34 3226#endif
d13d1443 3227
f212ad7c
DN
3228#ifdef CONFIG_DEBUG_VM
3229static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3230{
3231 struct page_cgroup *pc;
3232
3233 pc = lookup_page_cgroup(page);
cfa44946
JW
3234 /*
3235 * Can be NULL while feeding pages into the page allocator for
3236 * the first time, i.e. during boot or memory hotplug;
3237 * or when mem_cgroup_disabled().
3238 */
29833315 3239 if (likely(pc) && pc->mem_cgroup)
f212ad7c
DN
3240 return pc;
3241 return NULL;
3242}
3243
3244bool mem_cgroup_bad_page_check(struct page *page)
3245{
3246 if (mem_cgroup_disabled())
3247 return false;
3248
3249 return lookup_page_cgroup_used(page) != NULL;
3250}
3251
3252void mem_cgroup_print_bad_page(struct page *page)
3253{
3254 struct page_cgroup *pc;
3255
3256 pc = lookup_page_cgroup_used(page);
29833315
JW
3257 if (pc)
3258 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
f212ad7c
DN
3259}
3260#endif
3261
3e32cb2e
JW
3262static DEFINE_MUTEX(memcg_limit_mutex);
3263
d38d2a75 3264static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3265 unsigned long limit)
628f4235 3266{
3e32cb2e
JW
3267 unsigned long curusage;
3268 unsigned long oldusage;
3269 bool enlarge = false;
81d39c20 3270 int retry_count;
3e32cb2e 3271 int ret;
81d39c20
KH
3272
3273 /*
3274 * For keeping hierarchical_reclaim simple, how long we should retry
3275 * is depends on callers. We set our retry-count to be function
3276 * of # of children which we should visit in this loop.
3277 */
3e32cb2e
JW
3278 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3279 mem_cgroup_count_children(memcg);
81d39c20 3280
3e32cb2e 3281 oldusage = page_counter_read(&memcg->memory);
628f4235 3282
3e32cb2e 3283 do {
628f4235
KH
3284 if (signal_pending(current)) {
3285 ret = -EINTR;
3286 break;
3287 }
3e32cb2e
JW
3288
3289 mutex_lock(&memcg_limit_mutex);
3290 if (limit > memcg->memsw.limit) {
3291 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3292 ret = -EINVAL;
628f4235
KH
3293 break;
3294 }
3e32cb2e
JW
3295 if (limit > memcg->memory.limit)
3296 enlarge = true;
3297 ret = page_counter_limit(&memcg->memory, limit);
3298 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3299
3300 if (!ret)
3301 break;
3302
b70a2a21
JW
3303 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3304
3e32cb2e 3305 curusage = page_counter_read(&memcg->memory);
81d39c20 3306 /* Usage is reduced ? */
f894ffa8 3307 if (curusage >= oldusage)
81d39c20
KH
3308 retry_count--;
3309 else
3310 oldusage = curusage;
3e32cb2e
JW
3311 } while (retry_count);
3312
3c11ecf4
KH
3313 if (!ret && enlarge)
3314 memcg_oom_recover(memcg);
14797e23 3315
8c7c6e34
KH
3316 return ret;
3317}
3318
338c8431 3319static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3320 unsigned long limit)
8c7c6e34 3321{
3e32cb2e
JW
3322 unsigned long curusage;
3323 unsigned long oldusage;
3324 bool enlarge = false;
81d39c20 3325 int retry_count;
3e32cb2e 3326 int ret;
8c7c6e34 3327
81d39c20 3328 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3329 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3330 mem_cgroup_count_children(memcg);
3331
3332 oldusage = page_counter_read(&memcg->memsw);
3333
3334 do {
8c7c6e34
KH
3335 if (signal_pending(current)) {
3336 ret = -EINTR;
3337 break;
3338 }
3e32cb2e
JW
3339
3340 mutex_lock(&memcg_limit_mutex);
3341 if (limit < memcg->memory.limit) {
3342 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3343 ret = -EINVAL;
8c7c6e34
KH
3344 break;
3345 }
3e32cb2e
JW
3346 if (limit > memcg->memsw.limit)
3347 enlarge = true;
3348 ret = page_counter_limit(&memcg->memsw, limit);
3349 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3350
3351 if (!ret)
3352 break;
3353
b70a2a21
JW
3354 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3355
3e32cb2e 3356 curusage = page_counter_read(&memcg->memsw);
81d39c20 3357 /* Usage is reduced ? */
8c7c6e34 3358 if (curusage >= oldusage)
628f4235 3359 retry_count--;
81d39c20
KH
3360 else
3361 oldusage = curusage;
3e32cb2e
JW
3362 } while (retry_count);
3363
3c11ecf4
KH
3364 if (!ret && enlarge)
3365 memcg_oom_recover(memcg);
3e32cb2e 3366
628f4235
KH
3367 return ret;
3368}
3369
0608f43d
AM
3370unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3371 gfp_t gfp_mask,
3372 unsigned long *total_scanned)
3373{
3374 unsigned long nr_reclaimed = 0;
3375 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3376 unsigned long reclaimed;
3377 int loop = 0;
3378 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3379 unsigned long excess;
0608f43d
AM
3380 unsigned long nr_scanned;
3381
3382 if (order > 0)
3383 return 0;
3384
3385 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3386 /*
3387 * This loop can run a while, specially if mem_cgroup's continuously
3388 * keep exceeding their soft limit and putting the system under
3389 * pressure
3390 */
3391 do {
3392 if (next_mz)
3393 mz = next_mz;
3394 else
3395 mz = mem_cgroup_largest_soft_limit_node(mctz);
3396 if (!mz)
3397 break;
3398
3399 nr_scanned = 0;
3400 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3401 gfp_mask, &nr_scanned);
3402 nr_reclaimed += reclaimed;
3403 *total_scanned += nr_scanned;
0a31bc97 3404 spin_lock_irq(&mctz->lock);
bc2f2e7f 3405 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3406
3407 /*
3408 * If we failed to reclaim anything from this memory cgroup
3409 * it is time to move on to the next cgroup
3410 */
3411 next_mz = NULL;
bc2f2e7f
VD
3412 if (!reclaimed)
3413 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3414
3e32cb2e 3415 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3416 /*
3417 * One school of thought says that we should not add
3418 * back the node to the tree if reclaim returns 0.
3419 * But our reclaim could return 0, simply because due
3420 * to priority we are exposing a smaller subset of
3421 * memory to reclaim from. Consider this as a longer
3422 * term TODO.
3423 */
3424 /* If excess == 0, no tree ops */
cf2c8127 3425 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3426 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3427 css_put(&mz->memcg->css);
3428 loop++;
3429 /*
3430 * Could not reclaim anything and there are no more
3431 * mem cgroups to try or we seem to be looping without
3432 * reclaiming anything.
3433 */
3434 if (!nr_reclaimed &&
3435 (next_mz == NULL ||
3436 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3437 break;
3438 } while (!nr_reclaimed);
3439 if (next_mz)
3440 css_put(&next_mz->memcg->css);
3441 return nr_reclaimed;
3442}
3443
ea280e7b
TH
3444/*
3445 * Test whether @memcg has children, dead or alive. Note that this
3446 * function doesn't care whether @memcg has use_hierarchy enabled and
3447 * returns %true if there are child csses according to the cgroup
3448 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3449 */
b5f99b53
GC
3450static inline bool memcg_has_children(struct mem_cgroup *memcg)
3451{
ea280e7b
TH
3452 bool ret;
3453
696ac172 3454 /*
ea280e7b
TH
3455 * The lock does not prevent addition or deletion of children, but
3456 * it prevents a new child from being initialized based on this
3457 * parent in css_online(), so it's enough to decide whether
3458 * hierarchically inherited attributes can still be changed or not.
696ac172 3459 */
ea280e7b
TH
3460 lockdep_assert_held(&memcg_create_mutex);
3461
3462 rcu_read_lock();
3463 ret = css_next_child(NULL, &memcg->css);
3464 rcu_read_unlock();
3465 return ret;
b5f99b53
GC
3466}
3467
c26251f9
MH
3468/*
3469 * Reclaims as many pages from the given memcg as possible and moves
3470 * the rest to the parent.
3471 *
3472 * Caller is responsible for holding css reference for memcg.
3473 */
3474static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3475{
3476 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3477
c1e862c1
KH
3478 /* we call try-to-free pages for make this cgroup empty */
3479 lru_add_drain_all();
f817ed48 3480 /* try to free all pages in this cgroup */
3e32cb2e 3481 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3482 int progress;
c1e862c1 3483
c26251f9
MH
3484 if (signal_pending(current))
3485 return -EINTR;
3486
b70a2a21
JW
3487 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3488 GFP_KERNEL, true);
c1e862c1 3489 if (!progress) {
f817ed48 3490 nr_retries--;
c1e862c1 3491 /* maybe some writeback is necessary */
8aa7e847 3492 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3493 }
f817ed48
KH
3494
3495 }
ab5196c2
MH
3496
3497 return 0;
cc847582
KH
3498}
3499
6770c64e
TH
3500static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3501 char *buf, size_t nbytes,
3502 loff_t off)
c1e862c1 3503{
6770c64e 3504 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3505
d8423011
MH
3506 if (mem_cgroup_is_root(memcg))
3507 return -EINVAL;
6770c64e 3508 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3509}
3510
182446d0
TH
3511static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3512 struct cftype *cft)
18f59ea7 3513{
182446d0 3514 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3515}
3516
182446d0
TH
3517static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3518 struct cftype *cft, u64 val)
18f59ea7
BS
3519{
3520 int retval = 0;
182446d0 3521 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3522 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3523
0999821b 3524 mutex_lock(&memcg_create_mutex);
567fb435
GC
3525
3526 if (memcg->use_hierarchy == val)
3527 goto out;
3528
18f59ea7 3529 /*
af901ca1 3530 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3531 * in the child subtrees. If it is unset, then the change can
3532 * occur, provided the current cgroup has no children.
3533 *
3534 * For the root cgroup, parent_mem is NULL, we allow value to be
3535 * set if there are no children.
3536 */
c0ff4b85 3537 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3538 (val == 1 || val == 0)) {
ea280e7b 3539 if (!memcg_has_children(memcg))
c0ff4b85 3540 memcg->use_hierarchy = val;
18f59ea7
BS
3541 else
3542 retval = -EBUSY;
3543 } else
3544 retval = -EINVAL;
567fb435
GC
3545
3546out:
0999821b 3547 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3548
3549 return retval;
3550}
3551
3e32cb2e
JW
3552static unsigned long tree_stat(struct mem_cgroup *memcg,
3553 enum mem_cgroup_stat_index idx)
ce00a967
JW
3554{
3555 struct mem_cgroup *iter;
3556 long val = 0;
3557
3558 /* Per-cpu values can be negative, use a signed accumulator */
3559 for_each_mem_cgroup_tree(iter, memcg)
3560 val += mem_cgroup_read_stat(iter, idx);
3561
3562 if (val < 0) /* race ? */
3563 val = 0;
3564 return val;
3565}
3566
3567static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3568{
3569 u64 val;
3570
3e32cb2e
JW
3571 if (mem_cgroup_is_root(memcg)) {
3572 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3573 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3574 if (swap)
3575 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3576 } else {
ce00a967 3577 if (!swap)
3e32cb2e 3578 val = page_counter_read(&memcg->memory);
ce00a967 3579 else
3e32cb2e 3580 val = page_counter_read(&memcg->memsw);
ce00a967 3581 }
ce00a967
JW
3582 return val << PAGE_SHIFT;
3583}
3584
3e32cb2e
JW
3585enum {
3586 RES_USAGE,
3587 RES_LIMIT,
3588 RES_MAX_USAGE,
3589 RES_FAILCNT,
3590 RES_SOFT_LIMIT,
3591};
ce00a967 3592
791badbd 3593static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3594 struct cftype *cft)
8cdea7c0 3595{
182446d0 3596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3597 struct page_counter *counter;
af36f906 3598
3e32cb2e 3599 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3600 case _MEM:
3e32cb2e
JW
3601 counter = &memcg->memory;
3602 break;
8c7c6e34 3603 case _MEMSWAP:
3e32cb2e
JW
3604 counter = &memcg->memsw;
3605 break;
510fc4e1 3606 case _KMEM:
3e32cb2e 3607 counter = &memcg->kmem;
510fc4e1 3608 break;
8c7c6e34
KH
3609 default:
3610 BUG();
8c7c6e34 3611 }
3e32cb2e
JW
3612
3613 switch (MEMFILE_ATTR(cft->private)) {
3614 case RES_USAGE:
3615 if (counter == &memcg->memory)
3616 return mem_cgroup_usage(memcg, false);
3617 if (counter == &memcg->memsw)
3618 return mem_cgroup_usage(memcg, true);
3619 return (u64)page_counter_read(counter) * PAGE_SIZE;
3620 case RES_LIMIT:
3621 return (u64)counter->limit * PAGE_SIZE;
3622 case RES_MAX_USAGE:
3623 return (u64)counter->watermark * PAGE_SIZE;
3624 case RES_FAILCNT:
3625 return counter->failcnt;
3626 case RES_SOFT_LIMIT:
3627 return (u64)memcg->soft_limit * PAGE_SIZE;
3628 default:
3629 BUG();
3630 }
8cdea7c0 3631}
510fc4e1 3632
510fc4e1 3633#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3634static int memcg_activate_kmem(struct mem_cgroup *memcg,
3635 unsigned long nr_pages)
d6441637
VD
3636{
3637 int err = 0;
3638 int memcg_id;
3639
3640 if (memcg_kmem_is_active(memcg))
3641 return 0;
3642
3643 /*
3644 * We are going to allocate memory for data shared by all memory
3645 * cgroups so let's stop accounting here.
3646 */
3647 memcg_stop_kmem_account();
3648
510fc4e1
GC
3649 /*
3650 * For simplicity, we won't allow this to be disabled. It also can't
3651 * be changed if the cgroup has children already, or if tasks had
3652 * already joined.
3653 *
3654 * If tasks join before we set the limit, a person looking at
3655 * kmem.usage_in_bytes will have no way to determine when it took
3656 * place, which makes the value quite meaningless.
3657 *
3658 * After it first became limited, changes in the value of the limit are
3659 * of course permitted.
510fc4e1 3660 */
0999821b 3661 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3662 if (cgroup_has_tasks(memcg->css.cgroup) ||
3663 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3664 err = -EBUSY;
3665 mutex_unlock(&memcg_create_mutex);
3666 if (err)
3667 goto out;
510fc4e1 3668
f3bb3043 3669 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3670 if (memcg_id < 0) {
3671 err = memcg_id;
3672 goto out;
3673 }
3674
d6441637
VD
3675 memcg->kmemcg_id = memcg_id;
3676 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3677
3678 /*
3679 * We couldn't have accounted to this cgroup, because it hasn't got the
3680 * active bit set yet, so this should succeed.
3681 */
3e32cb2e 3682 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3683 VM_BUG_ON(err);
3684
3685 static_key_slow_inc(&memcg_kmem_enabled_key);
3686 /*
3687 * Setting the active bit after enabling static branching will
3688 * guarantee no one starts accounting before all call sites are
3689 * patched.
3690 */
3691 memcg_kmem_set_active(memcg);
510fc4e1 3692out:
d6441637
VD
3693 memcg_resume_kmem_account();
3694 return err;
d6441637
VD
3695}
3696
d6441637 3697static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3698 unsigned long limit)
d6441637
VD
3699{
3700 int ret;
3701
3e32cb2e 3702 mutex_lock(&memcg_limit_mutex);
d6441637 3703 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3704 ret = memcg_activate_kmem(memcg, limit);
d6441637 3705 else
3e32cb2e
JW
3706 ret = page_counter_limit(&memcg->kmem, limit);
3707 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3708 return ret;
3709}
3710
55007d84 3711static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3712{
55007d84 3713 int ret = 0;
510fc4e1 3714 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3715
d6441637
VD
3716 if (!parent)
3717 return 0;
55007d84 3718
8c0145b6 3719 mutex_lock(&memcg_limit_mutex);
55007d84 3720 /*
d6441637
VD
3721 * If the parent cgroup is not kmem-active now, it cannot be activated
3722 * after this point, because it has at least one child already.
55007d84 3723 */
d6441637 3724 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3725 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3726 mutex_unlock(&memcg_limit_mutex);
55007d84 3727 return ret;
510fc4e1 3728}
d6441637
VD
3729#else
3730static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3731 unsigned long limit)
d6441637
VD
3732{
3733 return -EINVAL;
3734}
6d043990 3735#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3736
628f4235
KH
3737/*
3738 * The user of this function is...
3739 * RES_LIMIT.
3740 */
451af504
TH
3741static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3742 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3743{
451af504 3744 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3745 unsigned long nr_pages;
628f4235
KH
3746 int ret;
3747
451af504 3748 buf = strstrip(buf);
3e32cb2e
JW
3749 ret = page_counter_memparse(buf, &nr_pages);
3750 if (ret)
3751 return ret;
af36f906 3752
3e32cb2e 3753 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3754 case RES_LIMIT:
4b3bde4c
BS
3755 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3756 ret = -EINVAL;
3757 break;
3758 }
3e32cb2e
JW
3759 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3760 case _MEM:
3761 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3762 break;
3e32cb2e
JW
3763 case _MEMSWAP:
3764 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3765 break;
3e32cb2e
JW
3766 case _KMEM:
3767 ret = memcg_update_kmem_limit(memcg, nr_pages);
3768 break;
3769 }
296c81d8 3770 break;
3e32cb2e
JW
3771 case RES_SOFT_LIMIT:
3772 memcg->soft_limit = nr_pages;
3773 ret = 0;
628f4235
KH
3774 break;
3775 }
451af504 3776 return ret ?: nbytes;
8cdea7c0
BS
3777}
3778
6770c64e
TH
3779static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3780 size_t nbytes, loff_t off)
c84872e1 3781{
6770c64e 3782 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3783 struct page_counter *counter;
c84872e1 3784
3e32cb2e
JW
3785 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3786 case _MEM:
3787 counter = &memcg->memory;
3788 break;
3789 case _MEMSWAP:
3790 counter = &memcg->memsw;
3791 break;
3792 case _KMEM:
3793 counter = &memcg->kmem;
3794 break;
3795 default:
3796 BUG();
3797 }
af36f906 3798
3e32cb2e 3799 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3800 case RES_MAX_USAGE:
3e32cb2e 3801 page_counter_reset_watermark(counter);
29f2a4da
PE
3802 break;
3803 case RES_FAILCNT:
3e32cb2e 3804 counter->failcnt = 0;
29f2a4da 3805 break;
3e32cb2e
JW
3806 default:
3807 BUG();
29f2a4da 3808 }
f64c3f54 3809
6770c64e 3810 return nbytes;
c84872e1
PE
3811}
3812
182446d0 3813static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3814 struct cftype *cft)
3815{
182446d0 3816 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3817}
3818
02491447 3819#ifdef CONFIG_MMU
182446d0 3820static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3821 struct cftype *cft, u64 val)
3822{
182446d0 3823 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3824
3825 if (val >= (1 << NR_MOVE_TYPE))
3826 return -EINVAL;
ee5e8472 3827
7dc74be0 3828 /*
ee5e8472
GC
3829 * No kind of locking is needed in here, because ->can_attach() will
3830 * check this value once in the beginning of the process, and then carry
3831 * on with stale data. This means that changes to this value will only
3832 * affect task migrations starting after the change.
7dc74be0 3833 */
c0ff4b85 3834 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3835 return 0;
3836}
02491447 3837#else
182446d0 3838static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3839 struct cftype *cft, u64 val)
3840{
3841 return -ENOSYS;
3842}
3843#endif
7dc74be0 3844
406eb0c9 3845#ifdef CONFIG_NUMA
2da8ca82 3846static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3847{
25485de6
GT
3848 struct numa_stat {
3849 const char *name;
3850 unsigned int lru_mask;
3851 };
3852
3853 static const struct numa_stat stats[] = {
3854 { "total", LRU_ALL },
3855 { "file", LRU_ALL_FILE },
3856 { "anon", LRU_ALL_ANON },
3857 { "unevictable", BIT(LRU_UNEVICTABLE) },
3858 };
3859 const struct numa_stat *stat;
406eb0c9 3860 int nid;
25485de6 3861 unsigned long nr;
2da8ca82 3862 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3863
25485de6
GT
3864 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3865 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3866 seq_printf(m, "%s=%lu", stat->name, nr);
3867 for_each_node_state(nid, N_MEMORY) {
3868 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3869 stat->lru_mask);
3870 seq_printf(m, " N%d=%lu", nid, nr);
3871 }
3872 seq_putc(m, '\n');
406eb0c9 3873 }
406eb0c9 3874
071aee13
YH
3875 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3876 struct mem_cgroup *iter;
3877
3878 nr = 0;
3879 for_each_mem_cgroup_tree(iter, memcg)
3880 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3881 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3882 for_each_node_state(nid, N_MEMORY) {
3883 nr = 0;
3884 for_each_mem_cgroup_tree(iter, memcg)
3885 nr += mem_cgroup_node_nr_lru_pages(
3886 iter, nid, stat->lru_mask);
3887 seq_printf(m, " N%d=%lu", nid, nr);
3888 }
3889 seq_putc(m, '\n');
406eb0c9 3890 }
406eb0c9 3891
406eb0c9
YH
3892 return 0;
3893}
3894#endif /* CONFIG_NUMA */
3895
af7c4b0e
JW
3896static inline void mem_cgroup_lru_names_not_uptodate(void)
3897{
3898 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3899}
3900
2da8ca82 3901static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3902{
2da8ca82 3903 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3904 unsigned long memory, memsw;
af7c4b0e
JW
3905 struct mem_cgroup *mi;
3906 unsigned int i;
406eb0c9 3907
af7c4b0e 3908 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3909 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3910 continue;
af7c4b0e
JW
3911 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3912 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3913 }
7b854121 3914
af7c4b0e
JW
3915 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3916 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3917 mem_cgroup_read_events(memcg, i));
3918
3919 for (i = 0; i < NR_LRU_LISTS; i++)
3920 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3921 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3922
14067bb3 3923 /* Hierarchical information */
3e32cb2e
JW
3924 memory = memsw = PAGE_COUNTER_MAX;
3925 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3926 memory = min(memory, mi->memory.limit);
3927 memsw = min(memsw, mi->memsw.limit);
fee7b548 3928 }
3e32cb2e
JW
3929 seq_printf(m, "hierarchical_memory_limit %llu\n",
3930 (u64)memory * PAGE_SIZE);
3931 if (do_swap_account)
3932 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3933 (u64)memsw * PAGE_SIZE);
7f016ee8 3934
af7c4b0e
JW
3935 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3936 long long val = 0;
3937
bff6bb83 3938 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3939 continue;
af7c4b0e
JW
3940 for_each_mem_cgroup_tree(mi, memcg)
3941 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3942 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3943 }
3944
3945 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3946 unsigned long long val = 0;
3947
3948 for_each_mem_cgroup_tree(mi, memcg)
3949 val += mem_cgroup_read_events(mi, i);
3950 seq_printf(m, "total_%s %llu\n",
3951 mem_cgroup_events_names[i], val);
3952 }
3953
3954 for (i = 0; i < NR_LRU_LISTS; i++) {
3955 unsigned long long val = 0;
3956
3957 for_each_mem_cgroup_tree(mi, memcg)
3958 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3959 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3960 }
14067bb3 3961
7f016ee8 3962#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3963 {
3964 int nid, zid;
3965 struct mem_cgroup_per_zone *mz;
89abfab1 3966 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3967 unsigned long recent_rotated[2] = {0, 0};
3968 unsigned long recent_scanned[2] = {0, 0};
3969
3970 for_each_online_node(nid)
3971 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3972 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3973 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3974
89abfab1
HD
3975 recent_rotated[0] += rstat->recent_rotated[0];
3976 recent_rotated[1] += rstat->recent_rotated[1];
3977 recent_scanned[0] += rstat->recent_scanned[0];
3978 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3979 }
78ccf5b5
JW
3980 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3981 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3982 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3983 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3984 }
3985#endif
3986
d2ceb9b7
KH
3987 return 0;
3988}
3989
182446d0
TH
3990static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3991 struct cftype *cft)
a7885eb8 3992{
182446d0 3993 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3994
1f4c025b 3995 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3996}
3997
182446d0
TH
3998static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3999 struct cftype *cft, u64 val)
a7885eb8 4000{
182446d0 4001 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4002
3dae7fec 4003 if (val > 100)
a7885eb8
KM
4004 return -EINVAL;
4005
14208b0e 4006 if (css->parent)
3dae7fec
JW
4007 memcg->swappiness = val;
4008 else
4009 vm_swappiness = val;
068b38c1 4010
a7885eb8
KM
4011 return 0;
4012}
4013
2e72b634
KS
4014static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4015{
4016 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4017 unsigned long usage;
2e72b634
KS
4018 int i;
4019
4020 rcu_read_lock();
4021 if (!swap)
2c488db2 4022 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4023 else
2c488db2 4024 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4025
4026 if (!t)
4027 goto unlock;
4028
ce00a967 4029 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4030
4031 /*
748dad36 4032 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4033 * If it's not true, a threshold was crossed after last
4034 * call of __mem_cgroup_threshold().
4035 */
5407a562 4036 i = t->current_threshold;
2e72b634
KS
4037
4038 /*
4039 * Iterate backward over array of thresholds starting from
4040 * current_threshold and check if a threshold is crossed.
4041 * If none of thresholds below usage is crossed, we read
4042 * only one element of the array here.
4043 */
4044 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4045 eventfd_signal(t->entries[i].eventfd, 1);
4046
4047 /* i = current_threshold + 1 */
4048 i++;
4049
4050 /*
4051 * Iterate forward over array of thresholds starting from
4052 * current_threshold+1 and check if a threshold is crossed.
4053 * If none of thresholds above usage is crossed, we read
4054 * only one element of the array here.
4055 */
4056 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4057 eventfd_signal(t->entries[i].eventfd, 1);
4058
4059 /* Update current_threshold */
5407a562 4060 t->current_threshold = i - 1;
2e72b634
KS
4061unlock:
4062 rcu_read_unlock();
4063}
4064
4065static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4066{
ad4ca5f4
KS
4067 while (memcg) {
4068 __mem_cgroup_threshold(memcg, false);
4069 if (do_swap_account)
4070 __mem_cgroup_threshold(memcg, true);
4071
4072 memcg = parent_mem_cgroup(memcg);
4073 }
2e72b634
KS
4074}
4075
4076static int compare_thresholds(const void *a, const void *b)
4077{
4078 const struct mem_cgroup_threshold *_a = a;
4079 const struct mem_cgroup_threshold *_b = b;
4080
2bff24a3
GT
4081 if (_a->threshold > _b->threshold)
4082 return 1;
4083
4084 if (_a->threshold < _b->threshold)
4085 return -1;
4086
4087 return 0;
2e72b634
KS
4088}
4089
c0ff4b85 4090static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4091{
4092 struct mem_cgroup_eventfd_list *ev;
4093
2bcf2e92
MH
4094 spin_lock(&memcg_oom_lock);
4095
c0ff4b85 4096 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4097 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4098
4099 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4100 return 0;
4101}
4102
c0ff4b85 4103static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4104{
7d74b06f
KH
4105 struct mem_cgroup *iter;
4106
c0ff4b85 4107 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4108 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4109}
4110
59b6f873 4111static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4112 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4113{
2c488db2
KS
4114 struct mem_cgroup_thresholds *thresholds;
4115 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4116 unsigned long threshold;
4117 unsigned long usage;
2c488db2 4118 int i, size, ret;
2e72b634 4119
3e32cb2e 4120 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4121 if (ret)
4122 return ret;
4123
4124 mutex_lock(&memcg->thresholds_lock);
2c488db2 4125
05b84301 4126 if (type == _MEM) {
2c488db2 4127 thresholds = &memcg->thresholds;
ce00a967 4128 usage = mem_cgroup_usage(memcg, false);
05b84301 4129 } else if (type == _MEMSWAP) {
2c488db2 4130 thresholds = &memcg->memsw_thresholds;
ce00a967 4131 usage = mem_cgroup_usage(memcg, true);
05b84301 4132 } else
2e72b634
KS
4133 BUG();
4134
2e72b634 4135 /* Check if a threshold crossed before adding a new one */
2c488db2 4136 if (thresholds->primary)
2e72b634
KS
4137 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4138
2c488db2 4139 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4140
4141 /* Allocate memory for new array of thresholds */
2c488db2 4142 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4143 GFP_KERNEL);
2c488db2 4144 if (!new) {
2e72b634
KS
4145 ret = -ENOMEM;
4146 goto unlock;
4147 }
2c488db2 4148 new->size = size;
2e72b634
KS
4149
4150 /* Copy thresholds (if any) to new array */
2c488db2
KS
4151 if (thresholds->primary) {
4152 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4153 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4154 }
4155
2e72b634 4156 /* Add new threshold */
2c488db2
KS
4157 new->entries[size - 1].eventfd = eventfd;
4158 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4159
4160 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4161 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4162 compare_thresholds, NULL);
4163
4164 /* Find current threshold */
2c488db2 4165 new->current_threshold = -1;
2e72b634 4166 for (i = 0; i < size; i++) {
748dad36 4167 if (new->entries[i].threshold <= usage) {
2e72b634 4168 /*
2c488db2
KS
4169 * new->current_threshold will not be used until
4170 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4171 * it here.
4172 */
2c488db2 4173 ++new->current_threshold;
748dad36
SZ
4174 } else
4175 break;
2e72b634
KS
4176 }
4177
2c488db2
KS
4178 /* Free old spare buffer and save old primary buffer as spare */
4179 kfree(thresholds->spare);
4180 thresholds->spare = thresholds->primary;
4181
4182 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4183
907860ed 4184 /* To be sure that nobody uses thresholds */
2e72b634
KS
4185 synchronize_rcu();
4186
2e72b634
KS
4187unlock:
4188 mutex_unlock(&memcg->thresholds_lock);
4189
4190 return ret;
4191}
4192
59b6f873 4193static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4194 struct eventfd_ctx *eventfd, const char *args)
4195{
59b6f873 4196 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4197}
4198
59b6f873 4199static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4200 struct eventfd_ctx *eventfd, const char *args)
4201{
59b6f873 4202 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4203}
4204
59b6f873 4205static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4206 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4207{
2c488db2
KS
4208 struct mem_cgroup_thresholds *thresholds;
4209 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4210 unsigned long usage;
2c488db2 4211 int i, j, size;
2e72b634
KS
4212
4213 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4214
4215 if (type == _MEM) {
2c488db2 4216 thresholds = &memcg->thresholds;
ce00a967 4217 usage = mem_cgroup_usage(memcg, false);
05b84301 4218 } else if (type == _MEMSWAP) {
2c488db2 4219 thresholds = &memcg->memsw_thresholds;
ce00a967 4220 usage = mem_cgroup_usage(memcg, true);
05b84301 4221 } else
2e72b634
KS
4222 BUG();
4223
371528ca
AV
4224 if (!thresholds->primary)
4225 goto unlock;
4226
2e72b634
KS
4227 /* Check if a threshold crossed before removing */
4228 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4229
4230 /* Calculate new number of threshold */
2c488db2
KS
4231 size = 0;
4232 for (i = 0; i < thresholds->primary->size; i++) {
4233 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4234 size++;
4235 }
4236
2c488db2 4237 new = thresholds->spare;
907860ed 4238
2e72b634
KS
4239 /* Set thresholds array to NULL if we don't have thresholds */
4240 if (!size) {
2c488db2
KS
4241 kfree(new);
4242 new = NULL;
907860ed 4243 goto swap_buffers;
2e72b634
KS
4244 }
4245
2c488db2 4246 new->size = size;
2e72b634
KS
4247
4248 /* Copy thresholds and find current threshold */
2c488db2
KS
4249 new->current_threshold = -1;
4250 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4251 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4252 continue;
4253
2c488db2 4254 new->entries[j] = thresholds->primary->entries[i];
748dad36 4255 if (new->entries[j].threshold <= usage) {
2e72b634 4256 /*
2c488db2 4257 * new->current_threshold will not be used
2e72b634
KS
4258 * until rcu_assign_pointer(), so it's safe to increment
4259 * it here.
4260 */
2c488db2 4261 ++new->current_threshold;
2e72b634
KS
4262 }
4263 j++;
4264 }
4265
907860ed 4266swap_buffers:
2c488db2
KS
4267 /* Swap primary and spare array */
4268 thresholds->spare = thresholds->primary;
8c757763
SZ
4269 /* If all events are unregistered, free the spare array */
4270 if (!new) {
4271 kfree(thresholds->spare);
4272 thresholds->spare = NULL;
4273 }
4274
2c488db2 4275 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4276
907860ed 4277 /* To be sure that nobody uses thresholds */
2e72b634 4278 synchronize_rcu();
371528ca 4279unlock:
2e72b634 4280 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4281}
c1e862c1 4282
59b6f873 4283static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4284 struct eventfd_ctx *eventfd)
4285{
59b6f873 4286 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4287}
4288
59b6f873 4289static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4290 struct eventfd_ctx *eventfd)
4291{
59b6f873 4292 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4293}
4294
59b6f873 4295static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4296 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4297{
9490ff27 4298 struct mem_cgroup_eventfd_list *event;
9490ff27 4299
9490ff27
KH
4300 event = kmalloc(sizeof(*event), GFP_KERNEL);
4301 if (!event)
4302 return -ENOMEM;
4303
1af8efe9 4304 spin_lock(&memcg_oom_lock);
9490ff27
KH
4305
4306 event->eventfd = eventfd;
4307 list_add(&event->list, &memcg->oom_notify);
4308
4309 /* already in OOM ? */
79dfdacc 4310 if (atomic_read(&memcg->under_oom))
9490ff27 4311 eventfd_signal(eventfd, 1);
1af8efe9 4312 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4313
4314 return 0;
4315}
4316
59b6f873 4317static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4318 struct eventfd_ctx *eventfd)
9490ff27 4319{
9490ff27 4320 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4321
1af8efe9 4322 spin_lock(&memcg_oom_lock);
9490ff27 4323
c0ff4b85 4324 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4325 if (ev->eventfd == eventfd) {
4326 list_del(&ev->list);
4327 kfree(ev);
4328 }
4329 }
4330
1af8efe9 4331 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4332}
4333
2da8ca82 4334static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4335{
2da8ca82 4336 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4337
791badbd
TH
4338 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4339 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4340 return 0;
4341}
4342
182446d0 4343static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4344 struct cftype *cft, u64 val)
4345{
182446d0 4346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4347
4348 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4349 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4350 return -EINVAL;
4351
c0ff4b85 4352 memcg->oom_kill_disable = val;
4d845ebf 4353 if (!val)
c0ff4b85 4354 memcg_oom_recover(memcg);
3dae7fec 4355
3c11ecf4
KH
4356 return 0;
4357}
4358
c255a458 4359#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4360static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4361{
55007d84
GC
4362 int ret;
4363
2633d7a0 4364 memcg->kmemcg_id = -1;
55007d84
GC
4365 ret = memcg_propagate_kmem(memcg);
4366 if (ret)
4367 return ret;
2633d7a0 4368
1d62e436 4369 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4370}
e5671dfa 4371
10d5ebf4 4372static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4373{
1d62e436 4374 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4375}
e5671dfa 4376#else
cbe128e3 4377static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4378{
4379 return 0;
4380}
d1a4c0b3 4381
10d5ebf4
LZ
4382static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4383{
4384}
e5671dfa
GC
4385#endif
4386
3bc942f3
TH
4387/*
4388 * DO NOT USE IN NEW FILES.
4389 *
4390 * "cgroup.event_control" implementation.
4391 *
4392 * This is way over-engineered. It tries to support fully configurable
4393 * events for each user. Such level of flexibility is completely
4394 * unnecessary especially in the light of the planned unified hierarchy.
4395 *
4396 * Please deprecate this and replace with something simpler if at all
4397 * possible.
4398 */
4399
79bd9814
TH
4400/*
4401 * Unregister event and free resources.
4402 *
4403 * Gets called from workqueue.
4404 */
3bc942f3 4405static void memcg_event_remove(struct work_struct *work)
79bd9814 4406{
3bc942f3
TH
4407 struct mem_cgroup_event *event =
4408 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4409 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4410
4411 remove_wait_queue(event->wqh, &event->wait);
4412
59b6f873 4413 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4414
4415 /* Notify userspace the event is going away. */
4416 eventfd_signal(event->eventfd, 1);
4417
4418 eventfd_ctx_put(event->eventfd);
4419 kfree(event);
59b6f873 4420 css_put(&memcg->css);
79bd9814
TH
4421}
4422
4423/*
4424 * Gets called on POLLHUP on eventfd when user closes it.
4425 *
4426 * Called with wqh->lock held and interrupts disabled.
4427 */
3bc942f3
TH
4428static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4429 int sync, void *key)
79bd9814 4430{
3bc942f3
TH
4431 struct mem_cgroup_event *event =
4432 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4433 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4434 unsigned long flags = (unsigned long)key;
4435
4436 if (flags & POLLHUP) {
4437 /*
4438 * If the event has been detached at cgroup removal, we
4439 * can simply return knowing the other side will cleanup
4440 * for us.
4441 *
4442 * We can't race against event freeing since the other
4443 * side will require wqh->lock via remove_wait_queue(),
4444 * which we hold.
4445 */
fba94807 4446 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4447 if (!list_empty(&event->list)) {
4448 list_del_init(&event->list);
4449 /*
4450 * We are in atomic context, but cgroup_event_remove()
4451 * may sleep, so we have to call it in workqueue.
4452 */
4453 schedule_work(&event->remove);
4454 }
fba94807 4455 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4456 }
4457
4458 return 0;
4459}
4460
3bc942f3 4461static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4462 wait_queue_head_t *wqh, poll_table *pt)
4463{
3bc942f3
TH
4464 struct mem_cgroup_event *event =
4465 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4466
4467 event->wqh = wqh;
4468 add_wait_queue(wqh, &event->wait);
4469}
4470
4471/*
3bc942f3
TH
4472 * DO NOT USE IN NEW FILES.
4473 *
79bd9814
TH
4474 * Parse input and register new cgroup event handler.
4475 *
4476 * Input must be in format '<event_fd> <control_fd> <args>'.
4477 * Interpretation of args is defined by control file implementation.
4478 */
451af504
TH
4479static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4480 char *buf, size_t nbytes, loff_t off)
79bd9814 4481{
451af504 4482 struct cgroup_subsys_state *css = of_css(of);
fba94807 4483 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4484 struct mem_cgroup_event *event;
79bd9814
TH
4485 struct cgroup_subsys_state *cfile_css;
4486 unsigned int efd, cfd;
4487 struct fd efile;
4488 struct fd cfile;
fba94807 4489 const char *name;
79bd9814
TH
4490 char *endp;
4491 int ret;
4492
451af504
TH
4493 buf = strstrip(buf);
4494
4495 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4496 if (*endp != ' ')
4497 return -EINVAL;
451af504 4498 buf = endp + 1;
79bd9814 4499
451af504 4500 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4501 if ((*endp != ' ') && (*endp != '\0'))
4502 return -EINVAL;
451af504 4503 buf = endp + 1;
79bd9814
TH
4504
4505 event = kzalloc(sizeof(*event), GFP_KERNEL);
4506 if (!event)
4507 return -ENOMEM;
4508
59b6f873 4509 event->memcg = memcg;
79bd9814 4510 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4511 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4512 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4513 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4514
4515 efile = fdget(efd);
4516 if (!efile.file) {
4517 ret = -EBADF;
4518 goto out_kfree;
4519 }
4520
4521 event->eventfd = eventfd_ctx_fileget(efile.file);
4522 if (IS_ERR(event->eventfd)) {
4523 ret = PTR_ERR(event->eventfd);
4524 goto out_put_efile;
4525 }
4526
4527 cfile = fdget(cfd);
4528 if (!cfile.file) {
4529 ret = -EBADF;
4530 goto out_put_eventfd;
4531 }
4532
4533 /* the process need read permission on control file */
4534 /* AV: shouldn't we check that it's been opened for read instead? */
4535 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4536 if (ret < 0)
4537 goto out_put_cfile;
4538
fba94807
TH
4539 /*
4540 * Determine the event callbacks and set them in @event. This used
4541 * to be done via struct cftype but cgroup core no longer knows
4542 * about these events. The following is crude but the whole thing
4543 * is for compatibility anyway.
3bc942f3
TH
4544 *
4545 * DO NOT ADD NEW FILES.
fba94807
TH
4546 */
4547 name = cfile.file->f_dentry->d_name.name;
4548
4549 if (!strcmp(name, "memory.usage_in_bytes")) {
4550 event->register_event = mem_cgroup_usage_register_event;
4551 event->unregister_event = mem_cgroup_usage_unregister_event;
4552 } else if (!strcmp(name, "memory.oom_control")) {
4553 event->register_event = mem_cgroup_oom_register_event;
4554 event->unregister_event = mem_cgroup_oom_unregister_event;
4555 } else if (!strcmp(name, "memory.pressure_level")) {
4556 event->register_event = vmpressure_register_event;
4557 event->unregister_event = vmpressure_unregister_event;
4558 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4559 event->register_event = memsw_cgroup_usage_register_event;
4560 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4561 } else {
4562 ret = -EINVAL;
4563 goto out_put_cfile;
4564 }
4565
79bd9814 4566 /*
b5557c4c
TH
4567 * Verify @cfile should belong to @css. Also, remaining events are
4568 * automatically removed on cgroup destruction but the removal is
4569 * asynchronous, so take an extra ref on @css.
79bd9814 4570 */
ec903c0c
TH
4571 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4572 &memory_cgrp_subsys);
79bd9814 4573 ret = -EINVAL;
5a17f543 4574 if (IS_ERR(cfile_css))
79bd9814 4575 goto out_put_cfile;
5a17f543
TH
4576 if (cfile_css != css) {
4577 css_put(cfile_css);
79bd9814 4578 goto out_put_cfile;
5a17f543 4579 }
79bd9814 4580
451af504 4581 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4582 if (ret)
4583 goto out_put_css;
4584
4585 efile.file->f_op->poll(efile.file, &event->pt);
4586
fba94807
TH
4587 spin_lock(&memcg->event_list_lock);
4588 list_add(&event->list, &memcg->event_list);
4589 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4590
4591 fdput(cfile);
4592 fdput(efile);
4593
451af504 4594 return nbytes;
79bd9814
TH
4595
4596out_put_css:
b5557c4c 4597 css_put(css);
79bd9814
TH
4598out_put_cfile:
4599 fdput(cfile);
4600out_put_eventfd:
4601 eventfd_ctx_put(event->eventfd);
4602out_put_efile:
4603 fdput(efile);
4604out_kfree:
4605 kfree(event);
4606
4607 return ret;
4608}
4609
8cdea7c0
BS
4610static struct cftype mem_cgroup_files[] = {
4611 {
0eea1030 4612 .name = "usage_in_bytes",
8c7c6e34 4613 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4614 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4615 },
c84872e1
PE
4616 {
4617 .name = "max_usage_in_bytes",
8c7c6e34 4618 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4619 .write = mem_cgroup_reset,
791badbd 4620 .read_u64 = mem_cgroup_read_u64,
c84872e1 4621 },
8cdea7c0 4622 {
0eea1030 4623 .name = "limit_in_bytes",
8c7c6e34 4624 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4625 .write = mem_cgroup_write,
791badbd 4626 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4627 },
296c81d8
BS
4628 {
4629 .name = "soft_limit_in_bytes",
4630 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4631 .write = mem_cgroup_write,
791badbd 4632 .read_u64 = mem_cgroup_read_u64,
296c81d8 4633 },
8cdea7c0
BS
4634 {
4635 .name = "failcnt",
8c7c6e34 4636 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4637 .write = mem_cgroup_reset,
791badbd 4638 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4639 },
d2ceb9b7
KH
4640 {
4641 .name = "stat",
2da8ca82 4642 .seq_show = memcg_stat_show,
d2ceb9b7 4643 },
c1e862c1
KH
4644 {
4645 .name = "force_empty",
6770c64e 4646 .write = mem_cgroup_force_empty_write,
c1e862c1 4647 },
18f59ea7
BS
4648 {
4649 .name = "use_hierarchy",
4650 .write_u64 = mem_cgroup_hierarchy_write,
4651 .read_u64 = mem_cgroup_hierarchy_read,
4652 },
79bd9814 4653 {
3bc942f3 4654 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4655 .write = memcg_write_event_control,
79bd9814
TH
4656 .flags = CFTYPE_NO_PREFIX,
4657 .mode = S_IWUGO,
4658 },
a7885eb8
KM
4659 {
4660 .name = "swappiness",
4661 .read_u64 = mem_cgroup_swappiness_read,
4662 .write_u64 = mem_cgroup_swappiness_write,
4663 },
7dc74be0
DN
4664 {
4665 .name = "move_charge_at_immigrate",
4666 .read_u64 = mem_cgroup_move_charge_read,
4667 .write_u64 = mem_cgroup_move_charge_write,
4668 },
9490ff27
KH
4669 {
4670 .name = "oom_control",
2da8ca82 4671 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4672 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4673 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4674 },
70ddf637
AV
4675 {
4676 .name = "pressure_level",
70ddf637 4677 },
406eb0c9
YH
4678#ifdef CONFIG_NUMA
4679 {
4680 .name = "numa_stat",
2da8ca82 4681 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4682 },
4683#endif
510fc4e1
GC
4684#ifdef CONFIG_MEMCG_KMEM
4685 {
4686 .name = "kmem.limit_in_bytes",
4687 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4688 .write = mem_cgroup_write,
791badbd 4689 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4690 },
4691 {
4692 .name = "kmem.usage_in_bytes",
4693 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4694 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4695 },
4696 {
4697 .name = "kmem.failcnt",
4698 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4699 .write = mem_cgroup_reset,
791badbd 4700 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4701 },
4702 {
4703 .name = "kmem.max_usage_in_bytes",
4704 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4705 .write = mem_cgroup_reset,
791badbd 4706 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4707 },
749c5415
GC
4708#ifdef CONFIG_SLABINFO
4709 {
4710 .name = "kmem.slabinfo",
2da8ca82 4711 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
4712 },
4713#endif
8c7c6e34 4714#endif
6bc10349 4715 { }, /* terminate */
af36f906 4716};
8c7c6e34 4717
2d11085e
MH
4718#ifdef CONFIG_MEMCG_SWAP
4719static struct cftype memsw_cgroup_files[] = {
4720 {
4721 .name = "memsw.usage_in_bytes",
4722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4723 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4724 },
4725 {
4726 .name = "memsw.max_usage_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4728 .write = mem_cgroup_reset,
791badbd 4729 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4730 },
4731 {
4732 .name = "memsw.limit_in_bytes",
4733 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4734 .write = mem_cgroup_write,
791badbd 4735 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4736 },
4737 {
4738 .name = "memsw.failcnt",
4739 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4740 .write = mem_cgroup_reset,
791badbd 4741 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4742 },
4743 { }, /* terminate */
4744};
4745#endif
c0ff4b85 4746static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4747{
4748 struct mem_cgroup_per_node *pn;
1ecaab2b 4749 struct mem_cgroup_per_zone *mz;
41e3355d 4750 int zone, tmp = node;
1ecaab2b
KH
4751 /*
4752 * This routine is called against possible nodes.
4753 * But it's BUG to call kmalloc() against offline node.
4754 *
4755 * TODO: this routine can waste much memory for nodes which will
4756 * never be onlined. It's better to use memory hotplug callback
4757 * function.
4758 */
41e3355d
KH
4759 if (!node_state(node, N_NORMAL_MEMORY))
4760 tmp = -1;
17295c88 4761 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4762 if (!pn)
4763 return 1;
1ecaab2b 4764
1ecaab2b
KH
4765 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4766 mz = &pn->zoneinfo[zone];
bea8c150 4767 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4768 mz->usage_in_excess = 0;
4769 mz->on_tree = false;
d79154bb 4770 mz->memcg = memcg;
1ecaab2b 4771 }
54f72fe0 4772 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4773 return 0;
4774}
4775
c0ff4b85 4776static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4777{
54f72fe0 4778 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4779}
4780
33327948
KH
4781static struct mem_cgroup *mem_cgroup_alloc(void)
4782{
d79154bb 4783 struct mem_cgroup *memcg;
8ff69e2c 4784 size_t size;
33327948 4785
8ff69e2c
VD
4786 size = sizeof(struct mem_cgroup);
4787 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4788
8ff69e2c 4789 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4790 if (!memcg)
e7bbcdf3
DC
4791 return NULL;
4792
d79154bb
HD
4793 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4794 if (!memcg->stat)
d2e61b8d 4795 goto out_free;
d79154bb
HD
4796 spin_lock_init(&memcg->pcp_counter_lock);
4797 return memcg;
d2e61b8d
DC
4798
4799out_free:
8ff69e2c 4800 kfree(memcg);
d2e61b8d 4801 return NULL;
33327948
KH
4802}
4803
59927fb9 4804/*
c8b2a36f
GC
4805 * At destroying mem_cgroup, references from swap_cgroup can remain.
4806 * (scanning all at force_empty is too costly...)
4807 *
4808 * Instead of clearing all references at force_empty, we remember
4809 * the number of reference from swap_cgroup and free mem_cgroup when
4810 * it goes down to 0.
4811 *
4812 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4813 */
c8b2a36f
GC
4814
4815static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4816{
c8b2a36f 4817 int node;
59927fb9 4818
bb4cc1a8 4819 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4820
4821 for_each_node(node)
4822 free_mem_cgroup_per_zone_info(memcg, node);
4823
4824 free_percpu(memcg->stat);
4825
3f134619
GC
4826 /*
4827 * We need to make sure that (at least for now), the jump label
4828 * destruction code runs outside of the cgroup lock. This is because
4829 * get_online_cpus(), which is called from the static_branch update,
4830 * can't be called inside the cgroup_lock. cpusets are the ones
4831 * enforcing this dependency, so if they ever change, we might as well.
4832 *
4833 * schedule_work() will guarantee this happens. Be careful if you need
4834 * to move this code around, and make sure it is outside
4835 * the cgroup_lock.
4836 */
a8964b9b 4837 disarm_static_keys(memcg);
8ff69e2c 4838 kfree(memcg);
59927fb9 4839}
3afe36b1 4840
7bcc1bb1
DN
4841/*
4842 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4843 */
e1aab161 4844struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4845{
3e32cb2e 4846 if (!memcg->memory.parent)
7bcc1bb1 4847 return NULL;
3e32cb2e 4848 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4849}
e1aab161 4850EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4851
bb4cc1a8
AM
4852static void __init mem_cgroup_soft_limit_tree_init(void)
4853{
4854 struct mem_cgroup_tree_per_node *rtpn;
4855 struct mem_cgroup_tree_per_zone *rtpz;
4856 int tmp, node, zone;
4857
4858 for_each_node(node) {
4859 tmp = node;
4860 if (!node_state(node, N_NORMAL_MEMORY))
4861 tmp = -1;
4862 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4863 BUG_ON(!rtpn);
4864
4865 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4866
4867 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4868 rtpz = &rtpn->rb_tree_per_zone[zone];
4869 rtpz->rb_root = RB_ROOT;
4870 spin_lock_init(&rtpz->lock);
4871 }
4872 }
4873}
4874
0eb253e2 4875static struct cgroup_subsys_state * __ref
eb95419b 4876mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4877{
d142e3e6 4878 struct mem_cgroup *memcg;
04046e1a 4879 long error = -ENOMEM;
6d12e2d8 4880 int node;
8cdea7c0 4881
c0ff4b85
R
4882 memcg = mem_cgroup_alloc();
4883 if (!memcg)
04046e1a 4884 return ERR_PTR(error);
78fb7466 4885
3ed28fa1 4886 for_each_node(node)
c0ff4b85 4887 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4888 goto free_out;
f64c3f54 4889
c077719b 4890 /* root ? */
eb95419b 4891 if (parent_css == NULL) {
a41c58a6 4892 root_mem_cgroup = memcg;
3e32cb2e
JW
4893 page_counter_init(&memcg->memory, NULL);
4894 page_counter_init(&memcg->memsw, NULL);
4895 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4896 }
28dbc4b6 4897
d142e3e6
GC
4898 memcg->last_scanned_node = MAX_NUMNODES;
4899 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4900 memcg->move_charge_at_immigrate = 0;
4901 mutex_init(&memcg->thresholds_lock);
4902 spin_lock_init(&memcg->move_lock);
70ddf637 4903 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4904 INIT_LIST_HEAD(&memcg->event_list);
4905 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
4906
4907 return &memcg->css;
4908
4909free_out:
4910 __mem_cgroup_free(memcg);
4911 return ERR_PTR(error);
4912}
4913
4914static int
eb95419b 4915mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4916{
eb95419b 4917 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4918 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4919 int ret;
d142e3e6 4920
15a4c835 4921 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4922 return -ENOSPC;
4923
63876986 4924 if (!parent)
d142e3e6
GC
4925 return 0;
4926
0999821b 4927 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4928
4929 memcg->use_hierarchy = parent->use_hierarchy;
4930 memcg->oom_kill_disable = parent->oom_kill_disable;
4931 memcg->swappiness = mem_cgroup_swappiness(parent);
4932
4933 if (parent->use_hierarchy) {
3e32cb2e
JW
4934 page_counter_init(&memcg->memory, &parent->memory);
4935 page_counter_init(&memcg->memsw, &parent->memsw);
4936 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4937
7bcc1bb1 4938 /*
8d76a979
LZ
4939 * No need to take a reference to the parent because cgroup
4940 * core guarantees its existence.
7bcc1bb1 4941 */
18f59ea7 4942 } else {
3e32cb2e
JW
4943 page_counter_init(&memcg->memory, NULL);
4944 page_counter_init(&memcg->memsw, NULL);
4945 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4946 /*
4947 * Deeper hierachy with use_hierarchy == false doesn't make
4948 * much sense so let cgroup subsystem know about this
4949 * unfortunate state in our controller.
4950 */
d142e3e6 4951 if (parent != root_mem_cgroup)
073219e9 4952 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4953 }
0999821b 4954 mutex_unlock(&memcg_create_mutex);
d6441637 4955
2f7dd7a4
JW
4956 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4957 if (ret)
4958 return ret;
4959
4960 /*
4961 * Make sure the memcg is initialized: mem_cgroup_iter()
4962 * orders reading memcg->initialized against its callers
4963 * reading the memcg members.
4964 */
4965 smp_store_release(&memcg->initialized, 1);
4966
4967 return 0;
8cdea7c0
BS
4968}
4969
eb95419b 4970static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4971{
eb95419b 4972 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4973 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4974
4975 /*
4976 * Unregister events and notify userspace.
4977 * Notify userspace about cgroup removing only after rmdir of cgroup
4978 * directory to avoid race between userspace and kernelspace.
4979 */
fba94807
TH
4980 spin_lock(&memcg->event_list_lock);
4981 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4982 list_del_init(&event->list);
4983 schedule_work(&event->remove);
4984 }
fba94807 4985 spin_unlock(&memcg->event_list_lock);
ec64f515 4986
776ed0f0 4987 memcg_unregister_all_caches(memcg);
33cb876e 4988 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4989}
4990
eb95419b 4991static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4992{
eb95419b 4993 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4994
10d5ebf4 4995 memcg_destroy_kmem(memcg);
465939a1 4996 __mem_cgroup_free(memcg);
8cdea7c0
BS
4997}
4998
1ced953b
TH
4999/**
5000 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5001 * @css: the target css
5002 *
5003 * Reset the states of the mem_cgroup associated with @css. This is
5004 * invoked when the userland requests disabling on the default hierarchy
5005 * but the memcg is pinned through dependency. The memcg should stop
5006 * applying policies and should revert to the vanilla state as it may be
5007 * made visible again.
5008 *
5009 * The current implementation only resets the essential configurations.
5010 * This needs to be expanded to cover all the visible parts.
5011 */
5012static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5013{
5014 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5015
3e32cb2e
JW
5016 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5017 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5018 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5019 memcg->soft_limit = 0;
1ced953b
TH
5020}
5021
02491447 5022#ifdef CONFIG_MMU
7dc74be0 5023/* Handlers for move charge at task migration. */
854ffa8d 5024static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5025{
05b84301 5026 int ret;
9476db97
JW
5027
5028 /* Try a single bulk charge without reclaim first */
00501b53 5029 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5030 if (!ret) {
854ffa8d 5031 mc.precharge += count;
854ffa8d
DN
5032 return ret;
5033 }
692e7c45 5034 if (ret == -EINTR) {
00501b53 5035 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5036 return ret;
5037 }
9476db97
JW
5038
5039 /* Try charges one by one with reclaim */
854ffa8d 5040 while (count--) {
00501b53 5041 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5042 /*
5043 * In case of failure, any residual charges against
5044 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5045 * later on. However, cancel any charges that are
5046 * bypassed to root right away or they'll be lost.
9476db97 5047 */
692e7c45 5048 if (ret == -EINTR)
00501b53 5049 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5050 if (ret)
38c5d72f 5051 return ret;
854ffa8d 5052 mc.precharge++;
9476db97 5053 cond_resched();
854ffa8d 5054 }
9476db97 5055 return 0;
4ffef5fe
DN
5056}
5057
5058/**
8d32ff84 5059 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5060 * @vma: the vma the pte to be checked belongs
5061 * @addr: the address corresponding to the pte to be checked
5062 * @ptent: the pte to be checked
02491447 5063 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5064 *
5065 * Returns
5066 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5067 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5068 * move charge. if @target is not NULL, the page is stored in target->page
5069 * with extra refcnt got(Callers should handle it).
02491447
DN
5070 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5071 * target for charge migration. if @target is not NULL, the entry is stored
5072 * in target->ent.
4ffef5fe
DN
5073 *
5074 * Called with pte lock held.
5075 */
4ffef5fe
DN
5076union mc_target {
5077 struct page *page;
02491447 5078 swp_entry_t ent;
4ffef5fe
DN
5079};
5080
4ffef5fe 5081enum mc_target_type {
8d32ff84 5082 MC_TARGET_NONE = 0,
4ffef5fe 5083 MC_TARGET_PAGE,
02491447 5084 MC_TARGET_SWAP,
4ffef5fe
DN
5085};
5086
90254a65
DN
5087static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5088 unsigned long addr, pte_t ptent)
4ffef5fe 5089{
90254a65 5090 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5091
90254a65
DN
5092 if (!page || !page_mapped(page))
5093 return NULL;
5094 if (PageAnon(page)) {
5095 /* we don't move shared anon */
4b91355e 5096 if (!move_anon())
90254a65 5097 return NULL;
87946a72
DN
5098 } else if (!move_file())
5099 /* we ignore mapcount for file pages */
90254a65
DN
5100 return NULL;
5101 if (!get_page_unless_zero(page))
5102 return NULL;
5103
5104 return page;
5105}
5106
4b91355e 5107#ifdef CONFIG_SWAP
90254a65
DN
5108static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5109 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5110{
90254a65
DN
5111 struct page *page = NULL;
5112 swp_entry_t ent = pte_to_swp_entry(ptent);
5113
5114 if (!move_anon() || non_swap_entry(ent))
5115 return NULL;
4b91355e
KH
5116 /*
5117 * Because lookup_swap_cache() updates some statistics counter,
5118 * we call find_get_page() with swapper_space directly.
5119 */
33806f06 5120 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5121 if (do_swap_account)
5122 entry->val = ent.val;
5123
5124 return page;
5125}
4b91355e
KH
5126#else
5127static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5128 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5129{
5130 return NULL;
5131}
5132#endif
90254a65 5133
87946a72
DN
5134static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5135 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5136{
5137 struct page *page = NULL;
87946a72
DN
5138 struct address_space *mapping;
5139 pgoff_t pgoff;
5140
5141 if (!vma->vm_file) /* anonymous vma */
5142 return NULL;
5143 if (!move_file())
5144 return NULL;
5145
87946a72
DN
5146 mapping = vma->vm_file->f_mapping;
5147 if (pte_none(ptent))
5148 pgoff = linear_page_index(vma, addr);
5149 else /* pte_file(ptent) is true */
5150 pgoff = pte_to_pgoff(ptent);
5151
5152 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5153#ifdef CONFIG_SWAP
5154 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5155 if (shmem_mapping(mapping)) {
5156 page = find_get_entry(mapping, pgoff);
5157 if (radix_tree_exceptional_entry(page)) {
5158 swp_entry_t swp = radix_to_swp_entry(page);
5159 if (do_swap_account)
5160 *entry = swp;
5161 page = find_get_page(swap_address_space(swp), swp.val);
5162 }
5163 } else
5164 page = find_get_page(mapping, pgoff);
5165#else
5166 page = find_get_page(mapping, pgoff);
aa3b1895 5167#endif
87946a72
DN
5168 return page;
5169}
5170
8d32ff84 5171static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5172 unsigned long addr, pte_t ptent, union mc_target *target)
5173{
5174 struct page *page = NULL;
5175 struct page_cgroup *pc;
8d32ff84 5176 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5177 swp_entry_t ent = { .val = 0 };
5178
5179 if (pte_present(ptent))
5180 page = mc_handle_present_pte(vma, addr, ptent);
5181 else if (is_swap_pte(ptent))
5182 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5183 else if (pte_none(ptent) || pte_file(ptent))
5184 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5185
5186 if (!page && !ent.val)
8d32ff84 5187 return ret;
02491447
DN
5188 if (page) {
5189 pc = lookup_page_cgroup(page);
5190 /*
0a31bc97
JW
5191 * Do only loose check w/o serialization.
5192 * mem_cgroup_move_account() checks the pc is valid or
5193 * not under LRU exclusion.
02491447 5194 */
29833315 5195 if (pc->mem_cgroup == mc.from) {
02491447
DN
5196 ret = MC_TARGET_PAGE;
5197 if (target)
5198 target->page = page;
5199 }
5200 if (!ret || !target)
5201 put_page(page);
5202 }
90254a65
DN
5203 /* There is a swap entry and a page doesn't exist or isn't charged */
5204 if (ent.val && !ret &&
34c00c31 5205 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5206 ret = MC_TARGET_SWAP;
5207 if (target)
5208 target->ent = ent;
4ffef5fe 5209 }
4ffef5fe
DN
5210 return ret;
5211}
5212
12724850
NH
5213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5214/*
5215 * We don't consider swapping or file mapped pages because THP does not
5216 * support them for now.
5217 * Caller should make sure that pmd_trans_huge(pmd) is true.
5218 */
5219static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5220 unsigned long addr, pmd_t pmd, union mc_target *target)
5221{
5222 struct page *page = NULL;
5223 struct page_cgroup *pc;
5224 enum mc_target_type ret = MC_TARGET_NONE;
5225
5226 page = pmd_page(pmd);
309381fe 5227 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5228 if (!move_anon())
5229 return ret;
5230 pc = lookup_page_cgroup(page);
29833315 5231 if (pc->mem_cgroup == mc.from) {
12724850
NH
5232 ret = MC_TARGET_PAGE;
5233 if (target) {
5234 get_page(page);
5235 target->page = page;
5236 }
5237 }
5238 return ret;
5239}
5240#else
5241static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5242 unsigned long addr, pmd_t pmd, union mc_target *target)
5243{
5244 return MC_TARGET_NONE;
5245}
5246#endif
5247
4ffef5fe
DN
5248static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5249 unsigned long addr, unsigned long end,
5250 struct mm_walk *walk)
5251{
5252 struct vm_area_struct *vma = walk->private;
5253 pte_t *pte;
5254 spinlock_t *ptl;
5255
bf929152 5256 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5257 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5258 mc.precharge += HPAGE_PMD_NR;
bf929152 5259 spin_unlock(ptl);
1a5a9906 5260 return 0;
12724850 5261 }
03319327 5262
45f83cef
AA
5263 if (pmd_trans_unstable(pmd))
5264 return 0;
4ffef5fe
DN
5265 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5266 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5267 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5268 mc.precharge++; /* increment precharge temporarily */
5269 pte_unmap_unlock(pte - 1, ptl);
5270 cond_resched();
5271
7dc74be0
DN
5272 return 0;
5273}
5274
4ffef5fe
DN
5275static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5276{
5277 unsigned long precharge;
5278 struct vm_area_struct *vma;
5279
dfe076b0 5280 down_read(&mm->mmap_sem);
4ffef5fe
DN
5281 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5282 struct mm_walk mem_cgroup_count_precharge_walk = {
5283 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5284 .mm = mm,
5285 .private = vma,
5286 };
5287 if (is_vm_hugetlb_page(vma))
5288 continue;
4ffef5fe
DN
5289 walk_page_range(vma->vm_start, vma->vm_end,
5290 &mem_cgroup_count_precharge_walk);
5291 }
dfe076b0 5292 up_read(&mm->mmap_sem);
4ffef5fe
DN
5293
5294 precharge = mc.precharge;
5295 mc.precharge = 0;
5296
5297 return precharge;
5298}
5299
4ffef5fe
DN
5300static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5301{
dfe076b0
DN
5302 unsigned long precharge = mem_cgroup_count_precharge(mm);
5303
5304 VM_BUG_ON(mc.moving_task);
5305 mc.moving_task = current;
5306 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5307}
5308
dfe076b0
DN
5309/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5310static void __mem_cgroup_clear_mc(void)
4ffef5fe 5311{
2bd9bb20
KH
5312 struct mem_cgroup *from = mc.from;
5313 struct mem_cgroup *to = mc.to;
5314
4ffef5fe 5315 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5316 if (mc.precharge) {
00501b53 5317 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5318 mc.precharge = 0;
5319 }
5320 /*
5321 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5322 * we must uncharge here.
5323 */
5324 if (mc.moved_charge) {
00501b53 5325 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5326 mc.moved_charge = 0;
4ffef5fe 5327 }
483c30b5
DN
5328 /* we must fixup refcnts and charges */
5329 if (mc.moved_swap) {
483c30b5 5330 /* uncharge swap account from the old cgroup */
ce00a967 5331 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5332 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5333
05b84301 5334 /*
3e32cb2e
JW
5335 * we charged both to->memory and to->memsw, so we
5336 * should uncharge to->memory.
05b84301 5337 */
ce00a967 5338 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5339 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5340
e8ea14cc 5341 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5342
4050377b 5343 /* we've already done css_get(mc.to) */
483c30b5
DN
5344 mc.moved_swap = 0;
5345 }
dfe076b0
DN
5346 memcg_oom_recover(from);
5347 memcg_oom_recover(to);
5348 wake_up_all(&mc.waitq);
5349}
5350
5351static void mem_cgroup_clear_mc(void)
5352{
5353 struct mem_cgroup *from = mc.from;
5354
5355 /*
5356 * we must clear moving_task before waking up waiters at the end of
5357 * task migration.
5358 */
5359 mc.moving_task = NULL;
5360 __mem_cgroup_clear_mc();
2bd9bb20 5361 spin_lock(&mc.lock);
4ffef5fe
DN
5362 mc.from = NULL;
5363 mc.to = NULL;
2bd9bb20 5364 spin_unlock(&mc.lock);
247b1447
JW
5365
5366 atomic_dec(&from->moving_account);
4ffef5fe
DN
5367}
5368
eb95419b 5369static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5370 struct cgroup_taskset *tset)
7dc74be0 5371{
2f7ee569 5372 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5373 int ret = 0;
eb95419b 5374 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5375 unsigned long move_charge_at_immigrate;
7dc74be0 5376
ee5e8472
GC
5377 /*
5378 * We are now commited to this value whatever it is. Changes in this
5379 * tunable will only affect upcoming migrations, not the current one.
5380 * So we need to save it, and keep it going.
5381 */
5382 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5383 if (move_charge_at_immigrate) {
7dc74be0
DN
5384 struct mm_struct *mm;
5385 struct mem_cgroup *from = mem_cgroup_from_task(p);
5386
c0ff4b85 5387 VM_BUG_ON(from == memcg);
7dc74be0
DN
5388
5389 mm = get_task_mm(p);
5390 if (!mm)
5391 return 0;
7dc74be0 5392 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5393 if (mm->owner == p) {
5394 VM_BUG_ON(mc.from);
5395 VM_BUG_ON(mc.to);
5396 VM_BUG_ON(mc.precharge);
854ffa8d 5397 VM_BUG_ON(mc.moved_charge);
483c30b5 5398 VM_BUG_ON(mc.moved_swap);
247b1447
JW
5399
5400 /*
5401 * Signal mem_cgroup_begin_page_stat() to take
5402 * the memcg's move_lock while we're moving
5403 * its pages to another memcg. Then wait for
5404 * already started RCU-only updates to finish.
5405 */
5406 atomic_inc(&from->moving_account);
5407 synchronize_rcu();
5408
2bd9bb20 5409 spin_lock(&mc.lock);
4ffef5fe 5410 mc.from = from;
c0ff4b85 5411 mc.to = memcg;
ee5e8472 5412 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5413 spin_unlock(&mc.lock);
dfe076b0 5414 /* We set mc.moving_task later */
4ffef5fe
DN
5415
5416 ret = mem_cgroup_precharge_mc(mm);
5417 if (ret)
5418 mem_cgroup_clear_mc();
dfe076b0
DN
5419 }
5420 mmput(mm);
7dc74be0
DN
5421 }
5422 return ret;
5423}
5424
eb95419b 5425static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5426 struct cgroup_taskset *tset)
7dc74be0 5427{
4e2f245d
JW
5428 if (mc.to)
5429 mem_cgroup_clear_mc();
7dc74be0
DN
5430}
5431
4ffef5fe
DN
5432static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5433 unsigned long addr, unsigned long end,
5434 struct mm_walk *walk)
7dc74be0 5435{
4ffef5fe
DN
5436 int ret = 0;
5437 struct vm_area_struct *vma = walk->private;
5438 pte_t *pte;
5439 spinlock_t *ptl;
12724850
NH
5440 enum mc_target_type target_type;
5441 union mc_target target;
5442 struct page *page;
5443 struct page_cgroup *pc;
4ffef5fe 5444
12724850
NH
5445 /*
5446 * We don't take compound_lock() here but no race with splitting thp
5447 * happens because:
5448 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5449 * under splitting, which means there's no concurrent thp split,
5450 * - if another thread runs into split_huge_page() just after we
5451 * entered this if-block, the thread must wait for page table lock
5452 * to be unlocked in __split_huge_page_splitting(), where the main
5453 * part of thp split is not executed yet.
5454 */
bf929152 5455 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5456 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5457 spin_unlock(ptl);
12724850
NH
5458 return 0;
5459 }
5460 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5461 if (target_type == MC_TARGET_PAGE) {
5462 page = target.page;
5463 if (!isolate_lru_page(page)) {
5464 pc = lookup_page_cgroup(page);
5465 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5466 pc, mc.from, mc.to)) {
12724850
NH
5467 mc.precharge -= HPAGE_PMD_NR;
5468 mc.moved_charge += HPAGE_PMD_NR;
5469 }
5470 putback_lru_page(page);
5471 }
5472 put_page(page);
5473 }
bf929152 5474 spin_unlock(ptl);
1a5a9906 5475 return 0;
12724850
NH
5476 }
5477
45f83cef
AA
5478 if (pmd_trans_unstable(pmd))
5479 return 0;
4ffef5fe
DN
5480retry:
5481 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5482 for (; addr != end; addr += PAGE_SIZE) {
5483 pte_t ptent = *(pte++);
02491447 5484 swp_entry_t ent;
4ffef5fe
DN
5485
5486 if (!mc.precharge)
5487 break;
5488
8d32ff84 5489 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5490 case MC_TARGET_PAGE:
5491 page = target.page;
5492 if (isolate_lru_page(page))
5493 goto put;
5494 pc = lookup_page_cgroup(page);
7ec99d62 5495 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5496 mc.from, mc.to)) {
4ffef5fe 5497 mc.precharge--;
854ffa8d
DN
5498 /* we uncharge from mc.from later. */
5499 mc.moved_charge++;
4ffef5fe
DN
5500 }
5501 putback_lru_page(page);
8d32ff84 5502put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5503 put_page(page);
5504 break;
02491447
DN
5505 case MC_TARGET_SWAP:
5506 ent = target.ent;
e91cbb42 5507 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5508 mc.precharge--;
483c30b5
DN
5509 /* we fixup refcnts and charges later. */
5510 mc.moved_swap++;
5511 }
02491447 5512 break;
4ffef5fe
DN
5513 default:
5514 break;
5515 }
5516 }
5517 pte_unmap_unlock(pte - 1, ptl);
5518 cond_resched();
5519
5520 if (addr != end) {
5521 /*
5522 * We have consumed all precharges we got in can_attach().
5523 * We try charge one by one, but don't do any additional
5524 * charges to mc.to if we have failed in charge once in attach()
5525 * phase.
5526 */
854ffa8d 5527 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5528 if (!ret)
5529 goto retry;
5530 }
5531
5532 return ret;
5533}
5534
5535static void mem_cgroup_move_charge(struct mm_struct *mm)
5536{
5537 struct vm_area_struct *vma;
5538
5539 lru_add_drain_all();
dfe076b0
DN
5540retry:
5541 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5542 /*
5543 * Someone who are holding the mmap_sem might be waiting in
5544 * waitq. So we cancel all extra charges, wake up all waiters,
5545 * and retry. Because we cancel precharges, we might not be able
5546 * to move enough charges, but moving charge is a best-effort
5547 * feature anyway, so it wouldn't be a big problem.
5548 */
5549 __mem_cgroup_clear_mc();
5550 cond_resched();
5551 goto retry;
5552 }
4ffef5fe
DN
5553 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5554 int ret;
5555 struct mm_walk mem_cgroup_move_charge_walk = {
5556 .pmd_entry = mem_cgroup_move_charge_pte_range,
5557 .mm = mm,
5558 .private = vma,
5559 };
5560 if (is_vm_hugetlb_page(vma))
5561 continue;
4ffef5fe
DN
5562 ret = walk_page_range(vma->vm_start, vma->vm_end,
5563 &mem_cgroup_move_charge_walk);
5564 if (ret)
5565 /*
5566 * means we have consumed all precharges and failed in
5567 * doing additional charge. Just abandon here.
5568 */
5569 break;
5570 }
dfe076b0 5571 up_read(&mm->mmap_sem);
7dc74be0
DN
5572}
5573
eb95419b 5574static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5575 struct cgroup_taskset *tset)
67e465a7 5576{
2f7ee569 5577 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5578 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5579
dfe076b0 5580 if (mm) {
a433658c
KM
5581 if (mc.to)
5582 mem_cgroup_move_charge(mm);
dfe076b0
DN
5583 mmput(mm);
5584 }
a433658c
KM
5585 if (mc.to)
5586 mem_cgroup_clear_mc();
67e465a7 5587}
5cfb80a7 5588#else /* !CONFIG_MMU */
eb95419b 5589static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5590 struct cgroup_taskset *tset)
5cfb80a7
DN
5591{
5592 return 0;
5593}
eb95419b 5594static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5595 struct cgroup_taskset *tset)
5cfb80a7
DN
5596{
5597}
eb95419b 5598static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5599 struct cgroup_taskset *tset)
5cfb80a7
DN
5600{
5601}
5602#endif
67e465a7 5603
f00baae7
TH
5604/*
5605 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5606 * to verify whether we're attached to the default hierarchy on each mount
5607 * attempt.
f00baae7 5608 */
eb95419b 5609static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5610{
5611 /*
aa6ec29b 5612 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5613 * guarantees that @root doesn't have any children, so turning it
5614 * on for the root memcg is enough.
5615 */
aa6ec29b 5616 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5617 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5618}
5619
073219e9 5620struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5621 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5622 .css_online = mem_cgroup_css_online,
92fb9748
TH
5623 .css_offline = mem_cgroup_css_offline,
5624 .css_free = mem_cgroup_css_free,
1ced953b 5625 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5626 .can_attach = mem_cgroup_can_attach,
5627 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5628 .attach = mem_cgroup_move_task,
f00baae7 5629 .bind = mem_cgroup_bind,
5577964e 5630 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5631 .early_init = 0,
8cdea7c0 5632};
c077719b 5633
c255a458 5634#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5635static int __init enable_swap_account(char *s)
5636{
a2c8990a 5637 if (!strcmp(s, "1"))
a42c390c 5638 really_do_swap_account = 1;
a2c8990a 5639 else if (!strcmp(s, "0"))
a42c390c
MH
5640 really_do_swap_account = 0;
5641 return 1;
5642}
a2c8990a 5643__setup("swapaccount=", enable_swap_account);
c077719b 5644
2d11085e
MH
5645static void __init memsw_file_init(void)
5646{
2cf669a5
TH
5647 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5648 memsw_cgroup_files));
6acc8b02
MH
5649}
5650
5651static void __init enable_swap_cgroup(void)
5652{
5653 if (!mem_cgroup_disabled() && really_do_swap_account) {
5654 do_swap_account = 1;
5655 memsw_file_init();
5656 }
2d11085e 5657}
6acc8b02 5658
2d11085e 5659#else
6acc8b02 5660static void __init enable_swap_cgroup(void)
2d11085e
MH
5661{
5662}
c077719b 5663#endif
2d11085e 5664
0a31bc97
JW
5665#ifdef CONFIG_MEMCG_SWAP
5666/**
5667 * mem_cgroup_swapout - transfer a memsw charge to swap
5668 * @page: page whose memsw charge to transfer
5669 * @entry: swap entry to move the charge to
5670 *
5671 * Transfer the memsw charge of @page to @entry.
5672 */
5673void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5674{
7bdd143c 5675 struct mem_cgroup *memcg;
0a31bc97
JW
5676 struct page_cgroup *pc;
5677 unsigned short oldid;
5678
5679 VM_BUG_ON_PAGE(PageLRU(page), page);
5680 VM_BUG_ON_PAGE(page_count(page), page);
5681
5682 if (!do_swap_account)
5683 return;
5684
5685 pc = lookup_page_cgroup(page);
29833315 5686 memcg = pc->mem_cgroup;
0a31bc97
JW
5687
5688 /* Readahead page, never charged */
29833315 5689 if (!memcg)
0a31bc97
JW
5690 return;
5691
7bdd143c 5692 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5693 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5694 mem_cgroup_swap_statistics(memcg, true);
5695
29833315 5696 pc->mem_cgroup = NULL;
7bdd143c
JW
5697
5698 if (!mem_cgroup_is_root(memcg))
5699 page_counter_uncharge(&memcg->memory, 1);
5700
5701 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5702 VM_BUG_ON(!irqs_disabled());
0a31bc97 5703
7bdd143c
JW
5704 mem_cgroup_charge_statistics(memcg, page, -1);
5705 memcg_check_events(memcg, page);
0a31bc97
JW
5706}
5707
5708/**
5709 * mem_cgroup_uncharge_swap - uncharge a swap entry
5710 * @entry: swap entry to uncharge
5711 *
5712 * Drop the memsw charge associated with @entry.
5713 */
5714void mem_cgroup_uncharge_swap(swp_entry_t entry)
5715{
5716 struct mem_cgroup *memcg;
5717 unsigned short id;
5718
5719 if (!do_swap_account)
5720 return;
5721
5722 id = swap_cgroup_record(entry, 0);
5723 rcu_read_lock();
5724 memcg = mem_cgroup_lookup(id);
5725 if (memcg) {
ce00a967 5726 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5727 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5728 mem_cgroup_swap_statistics(memcg, false);
5729 css_put(&memcg->css);
5730 }
5731 rcu_read_unlock();
5732}
5733#endif
5734
00501b53
JW
5735/**
5736 * mem_cgroup_try_charge - try charging a page
5737 * @page: page to charge
5738 * @mm: mm context of the victim
5739 * @gfp_mask: reclaim mode
5740 * @memcgp: charged memcg return
5741 *
5742 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5743 * pages according to @gfp_mask if necessary.
5744 *
5745 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5746 * Otherwise, an error code is returned.
5747 *
5748 * After page->mapping has been set up, the caller must finalize the
5749 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5750 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5751 */
5752int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5753 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5754{
5755 struct mem_cgroup *memcg = NULL;
5756 unsigned int nr_pages = 1;
5757 int ret = 0;
5758
5759 if (mem_cgroup_disabled())
5760 goto out;
5761
5762 if (PageSwapCache(page)) {
5763 struct page_cgroup *pc = lookup_page_cgroup(page);
5764 /*
5765 * Every swap fault against a single page tries to charge the
5766 * page, bail as early as possible. shmem_unuse() encounters
5767 * already charged pages, too. The USED bit is protected by
5768 * the page lock, which serializes swap cache removal, which
5769 * in turn serializes uncharging.
5770 */
29833315 5771 if (pc->mem_cgroup)
00501b53
JW
5772 goto out;
5773 }
5774
5775 if (PageTransHuge(page)) {
5776 nr_pages <<= compound_order(page);
5777 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5778 }
5779
5780 if (do_swap_account && PageSwapCache(page))
5781 memcg = try_get_mem_cgroup_from_page(page);
5782 if (!memcg)
5783 memcg = get_mem_cgroup_from_mm(mm);
5784
5785 ret = try_charge(memcg, gfp_mask, nr_pages);
5786
5787 css_put(&memcg->css);
5788
5789 if (ret == -EINTR) {
5790 memcg = root_mem_cgroup;
5791 ret = 0;
5792 }
5793out:
5794 *memcgp = memcg;
5795 return ret;
5796}
5797
5798/**
5799 * mem_cgroup_commit_charge - commit a page charge
5800 * @page: page to charge
5801 * @memcg: memcg to charge the page to
5802 * @lrucare: page might be on LRU already
5803 *
5804 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5805 * after page->mapping has been set up. This must happen atomically
5806 * as part of the page instantiation, i.e. under the page table lock
5807 * for anonymous pages, under the page lock for page and swap cache.
5808 *
5809 * In addition, the page must not be on the LRU during the commit, to
5810 * prevent racing with task migration. If it might be, use @lrucare.
5811 *
5812 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5813 */
5814void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5815 bool lrucare)
5816{
5817 unsigned int nr_pages = 1;
5818
5819 VM_BUG_ON_PAGE(!page->mapping, page);
5820 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5821
5822 if (mem_cgroup_disabled())
5823 return;
5824 /*
5825 * Swap faults will attempt to charge the same page multiple
5826 * times. But reuse_swap_page() might have removed the page
5827 * from swapcache already, so we can't check PageSwapCache().
5828 */
5829 if (!memcg)
5830 return;
5831
6abb5a86
JW
5832 commit_charge(page, memcg, lrucare);
5833
00501b53
JW
5834 if (PageTransHuge(page)) {
5835 nr_pages <<= compound_order(page);
5836 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5837 }
5838
6abb5a86
JW
5839 local_irq_disable();
5840 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5841 memcg_check_events(memcg, page);
5842 local_irq_enable();
00501b53
JW
5843
5844 if (do_swap_account && PageSwapCache(page)) {
5845 swp_entry_t entry = { .val = page_private(page) };
5846 /*
5847 * The swap entry might not get freed for a long time,
5848 * let's not wait for it. The page already received a
5849 * memory+swap charge, drop the swap entry duplicate.
5850 */
5851 mem_cgroup_uncharge_swap(entry);
5852 }
5853}
5854
5855/**
5856 * mem_cgroup_cancel_charge - cancel a page charge
5857 * @page: page to charge
5858 * @memcg: memcg to charge the page to
5859 *
5860 * Cancel a charge transaction started by mem_cgroup_try_charge().
5861 */
5862void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5863{
5864 unsigned int nr_pages = 1;
5865
5866 if (mem_cgroup_disabled())
5867 return;
5868 /*
5869 * Swap faults will attempt to charge the same page multiple
5870 * times. But reuse_swap_page() might have removed the page
5871 * from swapcache already, so we can't check PageSwapCache().
5872 */
5873 if (!memcg)
5874 return;
5875
5876 if (PageTransHuge(page)) {
5877 nr_pages <<= compound_order(page);
5878 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5879 }
5880
5881 cancel_charge(memcg, nr_pages);
5882}
5883
747db954 5884static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5885 unsigned long nr_anon, unsigned long nr_file,
5886 unsigned long nr_huge, struct page *dummy_page)
5887{
18eca2e6 5888 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5889 unsigned long flags;
5890
ce00a967 5891 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5892 page_counter_uncharge(&memcg->memory, nr_pages);
5893 if (do_swap_account)
5894 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5895 memcg_oom_recover(memcg);
5896 }
747db954
JW
5897
5898 local_irq_save(flags);
5899 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5900 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5901 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5902 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5903 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5904 memcg_check_events(memcg, dummy_page);
5905 local_irq_restore(flags);
e8ea14cc
JW
5906
5907 if (!mem_cgroup_is_root(memcg))
18eca2e6 5908 css_put_many(&memcg->css, nr_pages);
747db954
JW
5909}
5910
5911static void uncharge_list(struct list_head *page_list)
5912{
5913 struct mem_cgroup *memcg = NULL;
747db954
JW
5914 unsigned long nr_anon = 0;
5915 unsigned long nr_file = 0;
5916 unsigned long nr_huge = 0;
5917 unsigned long pgpgout = 0;
747db954
JW
5918 struct list_head *next;
5919 struct page *page;
5920
5921 next = page_list->next;
5922 do {
5923 unsigned int nr_pages = 1;
5924 struct page_cgroup *pc;
5925
5926 page = list_entry(next, struct page, lru);
5927 next = page->lru.next;
5928
5929 VM_BUG_ON_PAGE(PageLRU(page), page);
5930 VM_BUG_ON_PAGE(page_count(page), page);
5931
5932 pc = lookup_page_cgroup(page);
29833315 5933 if (!pc->mem_cgroup)
747db954
JW
5934 continue;
5935
5936 /*
5937 * Nobody should be changing or seriously looking at
29833315
JW
5938 * pc->mem_cgroup at this point, we have fully
5939 * exclusive access to the page.
747db954
JW
5940 */
5941
5942 if (memcg != pc->mem_cgroup) {
5943 if (memcg) {
18eca2e6
JW
5944 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5945 nr_huge, page);
5946 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954
JW
5947 }
5948 memcg = pc->mem_cgroup;
5949 }
5950
5951 if (PageTransHuge(page)) {
5952 nr_pages <<= compound_order(page);
5953 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5954 nr_huge += nr_pages;
5955 }
5956
5957 if (PageAnon(page))
5958 nr_anon += nr_pages;
5959 else
5960 nr_file += nr_pages;
5961
29833315 5962 pc->mem_cgroup = NULL;
747db954
JW
5963
5964 pgpgout++;
5965 } while (next != page_list);
5966
5967 if (memcg)
18eca2e6
JW
5968 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5969 nr_huge, page);
747db954
JW
5970}
5971
0a31bc97
JW
5972/**
5973 * mem_cgroup_uncharge - uncharge a page
5974 * @page: page to uncharge
5975 *
5976 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5977 * mem_cgroup_commit_charge().
5978 */
5979void mem_cgroup_uncharge(struct page *page)
5980{
0a31bc97 5981 struct page_cgroup *pc;
0a31bc97
JW
5982
5983 if (mem_cgroup_disabled())
5984 return;
5985
747db954 5986 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 5987 pc = lookup_page_cgroup(page);
29833315 5988 if (!pc->mem_cgroup)
0a31bc97
JW
5989 return;
5990
747db954
JW
5991 INIT_LIST_HEAD(&page->lru);
5992 uncharge_list(&page->lru);
5993}
0a31bc97 5994
747db954
JW
5995/**
5996 * mem_cgroup_uncharge_list - uncharge a list of page
5997 * @page_list: list of pages to uncharge
5998 *
5999 * Uncharge a list of pages previously charged with
6000 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6001 */
6002void mem_cgroup_uncharge_list(struct list_head *page_list)
6003{
6004 if (mem_cgroup_disabled())
6005 return;
0a31bc97 6006
747db954
JW
6007 if (!list_empty(page_list))
6008 uncharge_list(page_list);
0a31bc97
JW
6009}
6010
6011/**
6012 * mem_cgroup_migrate - migrate a charge to another page
6013 * @oldpage: currently charged page
6014 * @newpage: page to transfer the charge to
6015 * @lrucare: both pages might be on the LRU already
6016 *
6017 * Migrate the charge from @oldpage to @newpage.
6018 *
6019 * Both pages must be locked, @newpage->mapping must be set up.
6020 */
6021void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6022 bool lrucare)
6023{
29833315 6024 struct mem_cgroup *memcg;
0a31bc97
JW
6025 struct page_cgroup *pc;
6026 int isolated;
6027
6028 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6029 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6030 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6031 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6032 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6033 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6034 newpage);
0a31bc97
JW
6035
6036 if (mem_cgroup_disabled())
6037 return;
6038
6039 /* Page cache replacement: new page already charged? */
6040 pc = lookup_page_cgroup(newpage);
29833315 6041 if (pc->mem_cgroup)
0a31bc97
JW
6042 return;
6043
7d5e3245
JW
6044 /*
6045 * Swapcache readahead pages can get migrated before being
6046 * charged, and migration from compaction can happen to an
6047 * uncharged page when the PFN walker finds a page that
6048 * reclaim just put back on the LRU but has not released yet.
6049 */
0a31bc97 6050 pc = lookup_page_cgroup(oldpage);
29833315
JW
6051 memcg = pc->mem_cgroup;
6052 if (!memcg)
0a31bc97
JW
6053 return;
6054
0a31bc97
JW
6055 if (lrucare)
6056 lock_page_lru(oldpage, &isolated);
6057
29833315 6058 pc->mem_cgroup = NULL;
0a31bc97
JW
6059
6060 if (lrucare)
6061 unlock_page_lru(oldpage, isolated);
6062
29833315 6063 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
6064}
6065
2d11085e 6066/*
1081312f
MH
6067 * subsys_initcall() for memory controller.
6068 *
6069 * Some parts like hotcpu_notifier() have to be initialized from this context
6070 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6071 * everything that doesn't depend on a specific mem_cgroup structure should
6072 * be initialized from here.
2d11085e
MH
6073 */
6074static int __init mem_cgroup_init(void)
6075{
6076 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6077 enable_swap_cgroup();
bb4cc1a8 6078 mem_cgroup_soft_limit_tree_init();
e4777496 6079 memcg_stock_init();
2d11085e
MH
6080 return 0;
6081}
6082subsys_initcall(mem_cgroup_init);
This page took 1.2009 seconds and 5 git commands to generate.