mm/SPARC: use common help functions to free reserved pages
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
99 MEM_CGROUP_STAT_NSTATS,
100};
101
af7c4b0e
JW
102static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "mapped_file",
106 "swap",
107};
108
e9f8974f
JW
109enum mem_cgroup_events_index {
110 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
111 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
112 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
113 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
114 MEM_CGROUP_EVENTS_NSTATS,
115};
af7c4b0e
JW
116
117static const char * const mem_cgroup_events_names[] = {
118 "pgpgin",
119 "pgpgout",
120 "pgfault",
121 "pgmajfault",
122};
123
58cf188e
SZ
124static const char * const mem_cgroup_lru_names[] = {
125 "inactive_anon",
126 "active_anon",
127 "inactive_file",
128 "active_file",
129 "unevictable",
130};
131
7a159cc9
JW
132/*
133 * Per memcg event counter is incremented at every pagein/pageout. With THP,
134 * it will be incremated by the number of pages. This counter is used for
135 * for trigger some periodic events. This is straightforward and better
136 * than using jiffies etc. to handle periodic memcg event.
137 */
138enum mem_cgroup_events_target {
139 MEM_CGROUP_TARGET_THRESH,
140 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 141 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
142 MEM_CGROUP_NTARGETS,
143};
a0db00fc
KS
144#define THRESHOLDS_EVENTS_TARGET 128
145#define SOFTLIMIT_EVENTS_TARGET 1024
146#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 147
d52aa412 148struct mem_cgroup_stat_cpu {
7a159cc9 149 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 150 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 151 unsigned long nr_page_events;
7a159cc9 152 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
153};
154
527a5ec9 155struct mem_cgroup_reclaim_iter {
5f578161
MH
156 /*
157 * last scanned hierarchy member. Valid only if last_dead_count
158 * matches memcg->dead_count of the hierarchy root group.
159 */
542f85f9 160 struct mem_cgroup *last_visited;
5f578161
MH
161 unsigned long last_dead_count;
162
527a5ec9
JW
163 /* scan generation, increased every round-trip */
164 unsigned int generation;
165};
166
6d12e2d8
KH
167/*
168 * per-zone information in memory controller.
169 */
6d12e2d8 170struct mem_cgroup_per_zone {
6290df54 171 struct lruvec lruvec;
1eb49272 172 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 173
527a5ec9
JW
174 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
175
f64c3f54
BS
176 struct rb_node tree_node; /* RB tree node */
177 unsigned long long usage_in_excess;/* Set to the value by which */
178 /* the soft limit is exceeded*/
179 bool on_tree;
d79154bb 180 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 181 /* use container_of */
6d12e2d8 182};
6d12e2d8
KH
183
184struct mem_cgroup_per_node {
185 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
186};
187
188struct mem_cgroup_lru_info {
45cf7ebd 189 struct mem_cgroup_per_node *nodeinfo[0];
6d12e2d8
KH
190};
191
f64c3f54
BS
192/*
193 * Cgroups above their limits are maintained in a RB-Tree, independent of
194 * their hierarchy representation
195 */
196
197struct mem_cgroup_tree_per_zone {
198 struct rb_root rb_root;
199 spinlock_t lock;
200};
201
202struct mem_cgroup_tree_per_node {
203 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
204};
205
206struct mem_cgroup_tree {
207 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
208};
209
210static struct mem_cgroup_tree soft_limit_tree __read_mostly;
211
2e72b634
KS
212struct mem_cgroup_threshold {
213 struct eventfd_ctx *eventfd;
214 u64 threshold;
215};
216
9490ff27 217/* For threshold */
2e72b634 218struct mem_cgroup_threshold_ary {
748dad36 219 /* An array index points to threshold just below or equal to usage. */
5407a562 220 int current_threshold;
2e72b634
KS
221 /* Size of entries[] */
222 unsigned int size;
223 /* Array of thresholds */
224 struct mem_cgroup_threshold entries[0];
225};
2c488db2
KS
226
227struct mem_cgroup_thresholds {
228 /* Primary thresholds array */
229 struct mem_cgroup_threshold_ary *primary;
230 /*
231 * Spare threshold array.
232 * This is needed to make mem_cgroup_unregister_event() "never fail".
233 * It must be able to store at least primary->size - 1 entries.
234 */
235 struct mem_cgroup_threshold_ary *spare;
236};
237
9490ff27
KH
238/* for OOM */
239struct mem_cgroup_eventfd_list {
240 struct list_head list;
241 struct eventfd_ctx *eventfd;
242};
2e72b634 243
c0ff4b85
R
244static void mem_cgroup_threshold(struct mem_cgroup *memcg);
245static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 246
8cdea7c0
BS
247/*
248 * The memory controller data structure. The memory controller controls both
249 * page cache and RSS per cgroup. We would eventually like to provide
250 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
251 * to help the administrator determine what knobs to tune.
252 *
253 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
254 * we hit the water mark. May be even add a low water mark, such that
255 * no reclaim occurs from a cgroup at it's low water mark, this is
256 * a feature that will be implemented much later in the future.
8cdea7c0
BS
257 */
258struct mem_cgroup {
259 struct cgroup_subsys_state css;
260 /*
261 * the counter to account for memory usage
262 */
263 struct res_counter res;
59927fb9 264
70ddf637
AV
265 /* vmpressure notifications */
266 struct vmpressure vmpressure;
267
59927fb9
HD
268 union {
269 /*
270 * the counter to account for mem+swap usage.
271 */
272 struct res_counter memsw;
273
274 /*
275 * rcu_freeing is used only when freeing struct mem_cgroup,
276 * so put it into a union to avoid wasting more memory.
277 * It must be disjoint from the css field. It could be
278 * in a union with the res field, but res plays a much
279 * larger part in mem_cgroup life than memsw, and might
280 * be of interest, even at time of free, when debugging.
281 * So share rcu_head with the less interesting memsw.
282 */
283 struct rcu_head rcu_freeing;
284 /*
3afe36b1
GC
285 * We also need some space for a worker in deferred freeing.
286 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
287 */
288 struct work_struct work_freeing;
289 };
290
510fc4e1
GC
291 /*
292 * the counter to account for kernel memory usage.
293 */
294 struct res_counter kmem;
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
303
8c7c6e34 304 atomic_t refcnt;
14797e23 305
1f4c025b 306 int swappiness;
3c11ecf4
KH
307 /* OOM-Killer disable */
308 int oom_kill_disable;
a7885eb8 309
22a668d7
KH
310 /* set when res.limit == memsw.limit */
311 bool memsw_is_minimum;
312
2e72b634
KS
313 /* protect arrays of thresholds */
314 struct mutex thresholds_lock;
315
316 /* thresholds for memory usage. RCU-protected */
2c488db2 317 struct mem_cgroup_thresholds thresholds;
907860ed 318
2e72b634 319 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 320 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 321
9490ff27
KH
322 /* For oom notifier event fd */
323 struct list_head oom_notify;
185efc0f 324
7dc74be0
DN
325 /*
326 * Should we move charges of a task when a task is moved into this
327 * mem_cgroup ? And what type of charges should we move ?
328 */
329 unsigned long move_charge_at_immigrate;
619d094b
KH
330 /*
331 * set > 0 if pages under this cgroup are moving to other cgroup.
332 */
333 atomic_t moving_account;
312734c0
KH
334 /* taken only while moving_account > 0 */
335 spinlock_t move_lock;
d52aa412 336 /*
c62b1a3b 337 * percpu counter.
d52aa412 338 */
3a7951b4 339 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
340 /*
341 * used when a cpu is offlined or other synchronizations
342 * See mem_cgroup_read_stat().
343 */
344 struct mem_cgroup_stat_cpu nocpu_base;
345 spinlock_t pcp_counter_lock;
d1a4c0b3 346
5f578161 347 atomic_t dead_count;
4bd2c1ee 348#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
349 struct tcp_memcontrol tcp_mem;
350#endif
2633d7a0
GC
351#if defined(CONFIG_MEMCG_KMEM)
352 /* analogous to slab_common's slab_caches list. per-memcg */
353 struct list_head memcg_slab_caches;
354 /* Not a spinlock, we can take a lot of time walking the list */
355 struct mutex slab_caches_mutex;
356 /* Index in the kmem_cache->memcg_params->memcg_caches array */
357 int kmemcg_id;
358#endif
45cf7ebd
GC
359
360 int last_scanned_node;
361#if MAX_NUMNODES > 1
362 nodemask_t scan_nodes;
363 atomic_t numainfo_events;
364 atomic_t numainfo_updating;
365#endif
70ddf637 366
45cf7ebd
GC
367 /*
368 * Per cgroup active and inactive list, similar to the
369 * per zone LRU lists.
370 *
371 * WARNING: This has to be the last element of the struct. Don't
372 * add new fields after this point.
373 */
374 struct mem_cgroup_lru_info info;
8cdea7c0
BS
375};
376
45cf7ebd
GC
377static size_t memcg_size(void)
378{
379 return sizeof(struct mem_cgroup) +
380 nr_node_ids * sizeof(struct mem_cgroup_per_node);
381}
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
388};
389
a8964b9b
GC
390/* We account when limit is on, but only after call sites are patched */
391#define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
393
394#ifdef CONFIG_MEMCG_KMEM
395static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396{
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
7de37682
GC
399
400static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401{
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403}
404
a8964b9b
GC
405static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406{
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408}
409
55007d84
GC
410static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411{
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413}
414
7de37682
GC
415static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416{
417 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
418 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
419}
420
421static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
422{
423 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
424 &memcg->kmem_account_flags);
425}
510fc4e1
GC
426#endif
427
7dc74be0
DN
428/* Stuffs for move charges at task migration. */
429/*
ee5e8472
GC
430 * Types of charges to be moved. "move_charge_at_immitgrate" and
431 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
432 */
433enum move_type {
4ffef5fe 434 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 435 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
436 NR_MOVE_TYPE,
437};
438
4ffef5fe
DN
439/* "mc" and its members are protected by cgroup_mutex */
440static struct move_charge_struct {
b1dd693e 441 spinlock_t lock; /* for from, to */
4ffef5fe
DN
442 struct mem_cgroup *from;
443 struct mem_cgroup *to;
ee5e8472 444 unsigned long immigrate_flags;
4ffef5fe 445 unsigned long precharge;
854ffa8d 446 unsigned long moved_charge;
483c30b5 447 unsigned long moved_swap;
8033b97c
DN
448 struct task_struct *moving_task; /* a task moving charges */
449 wait_queue_head_t waitq; /* a waitq for other context */
450} mc = {
2bd9bb20 451 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
452 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
453};
4ffef5fe 454
90254a65
DN
455static bool move_anon(void)
456{
ee5e8472 457 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
458}
459
87946a72
DN
460static bool move_file(void)
461{
ee5e8472 462 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
463}
464
4e416953
BS
465/*
466 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
467 * limit reclaim to prevent infinite loops, if they ever occur.
468 */
a0db00fc
KS
469#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
470#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 471
217bc319
KH
472enum charge_type {
473 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 474 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 475 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 476 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
477 NR_CHARGE_TYPE,
478};
479
8c7c6e34 480/* for encoding cft->private value on file */
86ae53e1
GC
481enum res_type {
482 _MEM,
483 _MEMSWAP,
484 _OOM_TYPE,
510fc4e1 485 _KMEM,
86ae53e1
GC
486};
487
a0db00fc
KS
488#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
489#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 490#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
491/* Used for OOM nofiier */
492#define OOM_CONTROL (0)
8c7c6e34 493
75822b44
BS
494/*
495 * Reclaim flags for mem_cgroup_hierarchical_reclaim
496 */
497#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
498#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
499#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
500#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
501
0999821b
GC
502/*
503 * The memcg_create_mutex will be held whenever a new cgroup is created.
504 * As a consequence, any change that needs to protect against new child cgroups
505 * appearing has to hold it as well.
506 */
507static DEFINE_MUTEX(memcg_create_mutex);
508
c0ff4b85
R
509static void mem_cgroup_get(struct mem_cgroup *memcg);
510static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 511
b2145145
WL
512static inline
513struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
514{
515 return container_of(s, struct mem_cgroup, css);
516}
517
70ddf637
AV
518/* Some nice accessors for the vmpressure. */
519struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
520{
521 if (!memcg)
522 memcg = root_mem_cgroup;
523 return &memcg->vmpressure;
524}
525
526struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
527{
528 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
529}
530
531struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
532{
533 return &mem_cgroup_from_css(css)->vmpressure;
534}
535
7ffc0edc
MH
536static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
537{
538 return (memcg == root_mem_cgroup);
539}
540
e1aab161 541/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 542#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 543
e1aab161
GC
544void sock_update_memcg(struct sock *sk)
545{
376be5ff 546 if (mem_cgroup_sockets_enabled) {
e1aab161 547 struct mem_cgroup *memcg;
3f134619 548 struct cg_proto *cg_proto;
e1aab161
GC
549
550 BUG_ON(!sk->sk_prot->proto_cgroup);
551
f3f511e1
GC
552 /* Socket cloning can throw us here with sk_cgrp already
553 * filled. It won't however, necessarily happen from
554 * process context. So the test for root memcg given
555 * the current task's memcg won't help us in this case.
556 *
557 * Respecting the original socket's memcg is a better
558 * decision in this case.
559 */
560 if (sk->sk_cgrp) {
561 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
562 mem_cgroup_get(sk->sk_cgrp->memcg);
563 return;
564 }
565
e1aab161
GC
566 rcu_read_lock();
567 memcg = mem_cgroup_from_task(current);
3f134619
GC
568 cg_proto = sk->sk_prot->proto_cgroup(memcg);
569 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 570 mem_cgroup_get(memcg);
3f134619 571 sk->sk_cgrp = cg_proto;
e1aab161
GC
572 }
573 rcu_read_unlock();
574 }
575}
576EXPORT_SYMBOL(sock_update_memcg);
577
578void sock_release_memcg(struct sock *sk)
579{
376be5ff 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 mem_cgroup_put(memcg);
585 }
586}
d1a4c0b3
GC
587
588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589{
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem.cg_proto;
594}
595EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 596
3f134619
GC
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
599 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602}
603#else
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606}
607#endif
608
a8964b9b 609#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
610/*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * There are two main reasons for not using the css_id for this:
613 * 1) this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * 2) In order not to violate the cgroup API, we would like to do all memory
619 * allocation in ->create(). At that point, we haven't yet allocated the
620 * css_id. Having a separate index prevents us from messing with the cgroup
621 * core for this
622 *
623 * The current size of the caches array is stored in
624 * memcg_limited_groups_array_size. It will double each time we have to
625 * increase it.
626 */
627static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
628int memcg_limited_groups_array_size;
629
55007d84
GC
630/*
631 * MIN_SIZE is different than 1, because we would like to avoid going through
632 * the alloc/free process all the time. In a small machine, 4 kmem-limited
633 * cgroups is a reasonable guess. In the future, it could be a parameter or
634 * tunable, but that is strictly not necessary.
635 *
636 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
637 * this constant directly from cgroup, but it is understandable that this is
638 * better kept as an internal representation in cgroup.c. In any case, the
639 * css_id space is not getting any smaller, and we don't have to necessarily
640 * increase ours as well if it increases.
641 */
642#define MEMCG_CACHES_MIN_SIZE 4
643#define MEMCG_CACHES_MAX_SIZE 65535
644
d7f25f8a
GC
645/*
646 * A lot of the calls to the cache allocation functions are expected to be
647 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
648 * conditional to this static branch, we'll have to allow modules that does
649 * kmem_cache_alloc and the such to see this symbol as well
650 */
a8964b9b 651struct static_key memcg_kmem_enabled_key;
d7f25f8a 652EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
653
654static void disarm_kmem_keys(struct mem_cgroup *memcg)
655{
55007d84 656 if (memcg_kmem_is_active(memcg)) {
a8964b9b 657 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
658 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
659 }
bea207c8
GC
660 /*
661 * This check can't live in kmem destruction function,
662 * since the charges will outlive the cgroup
663 */
664 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
665}
666#else
667static void disarm_kmem_keys(struct mem_cgroup *memcg)
668{
669}
670#endif /* CONFIG_MEMCG_KMEM */
671
672static void disarm_static_keys(struct mem_cgroup *memcg)
673{
674 disarm_sock_keys(memcg);
675 disarm_kmem_keys(memcg);
676}
677
c0ff4b85 678static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 679
f64c3f54 680static struct mem_cgroup_per_zone *
c0ff4b85 681mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 682{
45cf7ebd 683 VM_BUG_ON((unsigned)nid >= nr_node_ids);
c0ff4b85 684 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
685}
686
c0ff4b85 687struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 688{
c0ff4b85 689 return &memcg->css;
d324236b
WF
690}
691
f64c3f54 692static struct mem_cgroup_per_zone *
c0ff4b85 693page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 694{
97a6c37b
JW
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
f64c3f54 697
c0ff4b85 698 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
699}
700
701static struct mem_cgroup_tree_per_zone *
702soft_limit_tree_node_zone(int nid, int zid)
703{
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705}
706
707static struct mem_cgroup_tree_per_zone *
708soft_limit_tree_from_page(struct page *page)
709{
710 int nid = page_to_nid(page);
711 int zid = page_zonenum(page);
712
713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
714}
715
716static void
c0ff4b85 717__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 718 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
719 struct mem_cgroup_tree_per_zone *mctz,
720 unsigned long long new_usage_in_excess)
f64c3f54
BS
721{
722 struct rb_node **p = &mctz->rb_root.rb_node;
723 struct rb_node *parent = NULL;
724 struct mem_cgroup_per_zone *mz_node;
725
726 if (mz->on_tree)
727 return;
728
ef8745c1
KH
729 mz->usage_in_excess = new_usage_in_excess;
730 if (!mz->usage_in_excess)
731 return;
f64c3f54
BS
732 while (*p) {
733 parent = *p;
734 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
735 tree_node);
736 if (mz->usage_in_excess < mz_node->usage_in_excess)
737 p = &(*p)->rb_left;
738 /*
739 * We can't avoid mem cgroups that are over their soft
740 * limit by the same amount
741 */
742 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
743 p = &(*p)->rb_right;
744 }
745 rb_link_node(&mz->tree_node, parent, p);
746 rb_insert_color(&mz->tree_node, &mctz->rb_root);
747 mz->on_tree = true;
4e416953
BS
748}
749
750static void
c0ff4b85 751__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
752 struct mem_cgroup_per_zone *mz,
753 struct mem_cgroup_tree_per_zone *mctz)
754{
755 if (!mz->on_tree)
756 return;
757 rb_erase(&mz->tree_node, &mctz->rb_root);
758 mz->on_tree = false;
759}
760
f64c3f54 761static void
c0ff4b85 762mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
763 struct mem_cgroup_per_zone *mz,
764 struct mem_cgroup_tree_per_zone *mctz)
765{
766 spin_lock(&mctz->lock);
c0ff4b85 767 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
768 spin_unlock(&mctz->lock);
769}
770
f64c3f54 771
c0ff4b85 772static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 773{
ef8745c1 774 unsigned long long excess;
f64c3f54
BS
775 struct mem_cgroup_per_zone *mz;
776 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
777 int nid = page_to_nid(page);
778 int zid = page_zonenum(page);
f64c3f54
BS
779 mctz = soft_limit_tree_from_page(page);
780
781 /*
4e649152
KH
782 * Necessary to update all ancestors when hierarchy is used.
783 * because their event counter is not touched.
f64c3f54 784 */
c0ff4b85
R
785 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
786 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
787 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
788 /*
789 * We have to update the tree if mz is on RB-tree or
790 * mem is over its softlimit.
791 */
ef8745c1 792 if (excess || mz->on_tree) {
4e649152
KH
793 spin_lock(&mctz->lock);
794 /* if on-tree, remove it */
795 if (mz->on_tree)
c0ff4b85 796 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 797 /*
ef8745c1
KH
798 * Insert again. mz->usage_in_excess will be updated.
799 * If excess is 0, no tree ops.
4e649152 800 */
c0ff4b85 801 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
802 spin_unlock(&mctz->lock);
803 }
f64c3f54
BS
804 }
805}
806
c0ff4b85 807static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
808{
809 int node, zone;
810 struct mem_cgroup_per_zone *mz;
811 struct mem_cgroup_tree_per_zone *mctz;
812
3ed28fa1 813 for_each_node(node) {
f64c3f54 814 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 815 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 816 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 817 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
818 }
819 }
820}
821
4e416953
BS
822static struct mem_cgroup_per_zone *
823__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
824{
825 struct rb_node *rightmost = NULL;
26251eaf 826 struct mem_cgroup_per_zone *mz;
4e416953
BS
827
828retry:
26251eaf 829 mz = NULL;
4e416953
BS
830 rightmost = rb_last(&mctz->rb_root);
831 if (!rightmost)
832 goto done; /* Nothing to reclaim from */
833
834 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
835 /*
836 * Remove the node now but someone else can add it back,
837 * we will to add it back at the end of reclaim to its correct
838 * position in the tree.
839 */
d79154bb
HD
840 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
841 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
842 !css_tryget(&mz->memcg->css))
4e416953
BS
843 goto retry;
844done:
845 return mz;
846}
847
848static struct mem_cgroup_per_zone *
849mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
850{
851 struct mem_cgroup_per_zone *mz;
852
853 spin_lock(&mctz->lock);
854 mz = __mem_cgroup_largest_soft_limit_node(mctz);
855 spin_unlock(&mctz->lock);
856 return mz;
857}
858
711d3d2c
KH
859/*
860 * Implementation Note: reading percpu statistics for memcg.
861 *
862 * Both of vmstat[] and percpu_counter has threshold and do periodic
863 * synchronization to implement "quick" read. There are trade-off between
864 * reading cost and precision of value. Then, we may have a chance to implement
865 * a periodic synchronizion of counter in memcg's counter.
866 *
867 * But this _read() function is used for user interface now. The user accounts
868 * memory usage by memory cgroup and he _always_ requires exact value because
869 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
870 * have to visit all online cpus and make sum. So, for now, unnecessary
871 * synchronization is not implemented. (just implemented for cpu hotplug)
872 *
873 * If there are kernel internal actions which can make use of some not-exact
874 * value, and reading all cpu value can be performance bottleneck in some
875 * common workload, threashold and synchonization as vmstat[] should be
876 * implemented.
877 */
c0ff4b85 878static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 879 enum mem_cgroup_stat_index idx)
c62b1a3b 880{
7a159cc9 881 long val = 0;
c62b1a3b 882 int cpu;
c62b1a3b 883
711d3d2c
KH
884 get_online_cpus();
885 for_each_online_cpu(cpu)
c0ff4b85 886 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 887#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
888 spin_lock(&memcg->pcp_counter_lock);
889 val += memcg->nocpu_base.count[idx];
890 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
891#endif
892 put_online_cpus();
c62b1a3b
KH
893 return val;
894}
895
c0ff4b85 896static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
897 bool charge)
898{
899 int val = (charge) ? 1 : -1;
bff6bb83 900 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
901}
902
c0ff4b85 903static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
904 enum mem_cgroup_events_index idx)
905{
906 unsigned long val = 0;
907 int cpu;
908
909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
915#endif
916 return val;
917}
918
c0ff4b85 919static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 920 bool anon, int nr_pages)
d52aa412 921{
c62b1a3b
KH
922 preempt_disable();
923
b2402857
KH
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 930 nr_pages);
d52aa412 931 else
b2402857 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 933 nr_pages);
55e462b0 934
e401f176
KH
935 /* pagein of a big page is an event. So, ignore page size */
936 if (nr_pages > 0)
c0ff4b85 937 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 938 else {
c0ff4b85 939 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
940 nr_pages = -nr_pages; /* for event */
941 }
e401f176 942
13114716 943 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 944
c62b1a3b 945 preempt_enable();
6d12e2d8
KH
946}
947
bb2a0de9 948unsigned long
4d7dcca2 949mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
950{
951 struct mem_cgroup_per_zone *mz;
952
953 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
954 return mz->lru_size[lru];
955}
956
957static unsigned long
c0ff4b85 958mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 959 unsigned int lru_mask)
889976db
YH
960{
961 struct mem_cgroup_per_zone *mz;
f156ab93 962 enum lru_list lru;
bb2a0de9
KH
963 unsigned long ret = 0;
964
c0ff4b85 965 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 966
f156ab93
HD
967 for_each_lru(lru) {
968 if (BIT(lru) & lru_mask)
969 ret += mz->lru_size[lru];
bb2a0de9
KH
970 }
971 return ret;
972}
973
974static unsigned long
c0ff4b85 975mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
976 int nid, unsigned int lru_mask)
977{
889976db
YH
978 u64 total = 0;
979 int zid;
980
bb2a0de9 981 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
982 total += mem_cgroup_zone_nr_lru_pages(memcg,
983 nid, zid, lru_mask);
bb2a0de9 984
889976db
YH
985 return total;
986}
bb2a0de9 987
c0ff4b85 988static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 989 unsigned int lru_mask)
6d12e2d8 990{
889976db 991 int nid;
6d12e2d8
KH
992 u64 total = 0;
993
31aaea4a 994 for_each_node_state(nid, N_MEMORY)
c0ff4b85 995 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 996 return total;
d52aa412
KH
997}
998
f53d7ce3
JW
999static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 enum mem_cgroup_events_target target)
7a159cc9
JW
1001{
1002 unsigned long val, next;
1003
13114716 1004 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1005 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1006 /* from time_after() in jiffies.h */
f53d7ce3
JW
1007 if ((long)next - (long)val < 0) {
1008 switch (target) {
1009 case MEM_CGROUP_TARGET_THRESH:
1010 next = val + THRESHOLDS_EVENTS_TARGET;
1011 break;
1012 case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 next = val + SOFTLIMIT_EVENTS_TARGET;
1014 break;
1015 case MEM_CGROUP_TARGET_NUMAINFO:
1016 next = val + NUMAINFO_EVENTS_TARGET;
1017 break;
1018 default:
1019 break;
1020 }
1021 __this_cpu_write(memcg->stat->targets[target], next);
1022 return true;
7a159cc9 1023 }
f53d7ce3 1024 return false;
d2265e6f
KH
1025}
1026
1027/*
1028 * Check events in order.
1029 *
1030 */
c0ff4b85 1031static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1032{
4799401f 1033 preempt_disable();
d2265e6f 1034 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1035 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1036 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1037 bool do_softlimit;
1038 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1039
1040 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1041 MEM_CGROUP_TARGET_SOFTLIMIT);
1042#if MAX_NUMNODES > 1
1043 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1044 MEM_CGROUP_TARGET_NUMAINFO);
1045#endif
1046 preempt_enable();
1047
c0ff4b85 1048 mem_cgroup_threshold(memcg);
f53d7ce3 1049 if (unlikely(do_softlimit))
c0ff4b85 1050 mem_cgroup_update_tree(memcg, page);
453a9bf3 1051#if MAX_NUMNODES > 1
f53d7ce3 1052 if (unlikely(do_numainfo))
c0ff4b85 1053 atomic_inc(&memcg->numainfo_events);
453a9bf3 1054#endif
f53d7ce3
JW
1055 } else
1056 preempt_enable();
d2265e6f
KH
1057}
1058
d1a4c0b3 1059struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1060{
b2145145
WL
1061 return mem_cgroup_from_css(
1062 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1063}
1064
cf475ad2 1065struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1066{
31a78f23
BS
1067 /*
1068 * mm_update_next_owner() may clear mm->owner to NULL
1069 * if it races with swapoff, page migration, etc.
1070 * So this can be called with p == NULL.
1071 */
1072 if (unlikely(!p))
1073 return NULL;
1074
b2145145 1075 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1076}
1077
a433658c 1078struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1079{
c0ff4b85 1080 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1081
1082 if (!mm)
1083 return NULL;
54595fe2
KH
1084 /*
1085 * Because we have no locks, mm->owner's may be being moved to other
1086 * cgroup. We use css_tryget() here even if this looks
1087 * pessimistic (rather than adding locks here).
1088 */
1089 rcu_read_lock();
1090 do {
c0ff4b85
R
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (unlikely(!memcg))
54595fe2 1093 break;
c0ff4b85 1094 } while (!css_tryget(&memcg->css));
54595fe2 1095 rcu_read_unlock();
c0ff4b85 1096 return memcg;
54595fe2
KH
1097}
1098
16248d8f
MH
1099/*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106 struct mem_cgroup *last_visited)
1107{
1108 struct cgroup *prev_cgroup, *next_cgroup;
1109
1110 /*
1111 * Root is not visited by cgroup iterators so it needs an
1112 * explicit visit.
1113 */
1114 if (!last_visited)
1115 return root;
1116
1117 prev_cgroup = (last_visited == root) ? NULL
1118 : last_visited->css.cgroup;
1119skip_node:
1120 next_cgroup = cgroup_next_descendant_pre(
1121 prev_cgroup, root->css.cgroup);
1122
1123 /*
1124 * Even if we found a group we have to make sure it is
1125 * alive. css && !memcg means that the groups should be
1126 * skipped and we should continue the tree walk.
1127 * last_visited css is safe to use because it is
1128 * protected by css_get and the tree walk is rcu safe.
1129 */
1130 if (next_cgroup) {
1131 struct mem_cgroup *mem = mem_cgroup_from_cont(
1132 next_cgroup);
1133 if (css_tryget(&mem->css))
1134 return mem;
1135 else {
1136 prev_cgroup = next_cgroup;
1137 goto skip_node;
1138 }
1139 }
1140
1141 return NULL;
1142}
1143
5660048c
JW
1144/**
1145 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1146 * @root: hierarchy root
1147 * @prev: previously returned memcg, NULL on first invocation
1148 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1149 *
1150 * Returns references to children of the hierarchy below @root, or
1151 * @root itself, or %NULL after a full round-trip.
1152 *
1153 * Caller must pass the return value in @prev on subsequent
1154 * invocations for reference counting, or use mem_cgroup_iter_break()
1155 * to cancel a hierarchy walk before the round-trip is complete.
1156 *
1157 * Reclaimers can specify a zone and a priority level in @reclaim to
1158 * divide up the memcgs in the hierarchy among all concurrent
1159 * reclaimers operating on the same zone and priority.
1160 */
1161struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1162 struct mem_cgroup *prev,
1163 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1164{
9f3a0d09 1165 struct mem_cgroup *memcg = NULL;
542f85f9 1166 struct mem_cgroup *last_visited = NULL;
5f578161 1167 unsigned long uninitialized_var(dead_count);
711d3d2c 1168
5660048c
JW
1169 if (mem_cgroup_disabled())
1170 return NULL;
1171
9f3a0d09
JW
1172 if (!root)
1173 root = root_mem_cgroup;
7d74b06f 1174
9f3a0d09 1175 if (prev && !reclaim)
542f85f9 1176 last_visited = prev;
14067bb3 1177
9f3a0d09
JW
1178 if (!root->use_hierarchy && root != root_mem_cgroup) {
1179 if (prev)
c40046f3 1180 goto out_css_put;
9f3a0d09
JW
1181 return root;
1182 }
14067bb3 1183
542f85f9 1184 rcu_read_lock();
9f3a0d09 1185 while (!memcg) {
527a5ec9 1186 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
711d3d2c 1187
527a5ec9
JW
1188 if (reclaim) {
1189 int nid = zone_to_nid(reclaim->zone);
1190 int zid = zone_idx(reclaim->zone);
1191 struct mem_cgroup_per_zone *mz;
1192
1193 mz = mem_cgroup_zoneinfo(root, nid, zid);
1194 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9
MH
1195 last_visited = iter->last_visited;
1196 if (prev && reclaim->generation != iter->generation) {
5f578161 1197 iter->last_visited = NULL;
542f85f9
MH
1198 goto out_unlock;
1199 }
5f578161
MH
1200
1201 /*
1202 * If the dead_count mismatches, a destruction
1203 * has happened or is happening concurrently.
1204 * If the dead_count matches, a destruction
1205 * might still happen concurrently, but since
1206 * we checked under RCU, that destruction
1207 * won't free the object until we release the
1208 * RCU reader lock. Thus, the dead_count
1209 * check verifies the pointer is still valid,
1210 * css_tryget() verifies the cgroup pointed to
1211 * is alive.
1212 */
1213 dead_count = atomic_read(&root->dead_count);
1214 smp_rmb();
1215 last_visited = iter->last_visited;
1216 if (last_visited) {
1217 if ((dead_count != iter->last_dead_count) ||
1218 !css_tryget(&last_visited->css)) {
1219 last_visited = NULL;
1220 }
1221 }
527a5ec9 1222 }
7d74b06f 1223
16248d8f 1224 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1225
527a5ec9 1226 if (reclaim) {
542f85f9
MH
1227 if (last_visited)
1228 css_put(&last_visited->css);
1229
19f39402 1230 iter->last_visited = memcg;
5f578161
MH
1231 smp_wmb();
1232 iter->last_dead_count = dead_count;
542f85f9 1233
19f39402 1234 if (!memcg)
527a5ec9
JW
1235 iter->generation++;
1236 else if (!prev && memcg)
1237 reclaim->generation = iter->generation;
1238 }
9f3a0d09 1239
19f39402 1240 if (prev && !memcg)
542f85f9 1241 goto out_unlock;
9f3a0d09 1242 }
542f85f9
MH
1243out_unlock:
1244 rcu_read_unlock();
c40046f3
MH
1245out_css_put:
1246 if (prev && prev != root)
1247 css_put(&prev->css);
1248
9f3a0d09 1249 return memcg;
14067bb3 1250}
7d74b06f 1251
5660048c
JW
1252/**
1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1254 * @root: hierarchy root
1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256 */
1257void mem_cgroup_iter_break(struct mem_cgroup *root,
1258 struct mem_cgroup *prev)
9f3a0d09
JW
1259{
1260 if (!root)
1261 root = root_mem_cgroup;
1262 if (prev && prev != root)
1263 css_put(&prev->css);
1264}
7d74b06f 1265
9f3a0d09
JW
1266/*
1267 * Iteration constructs for visiting all cgroups (under a tree). If
1268 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1269 * be used for reference counting.
1270 */
1271#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1272 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1273 iter != NULL; \
527a5ec9 1274 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1275
9f3a0d09 1276#define for_each_mem_cgroup(iter) \
527a5ec9 1277 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1278 iter != NULL; \
527a5ec9 1279 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1280
68ae564b 1281void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1282{
c0ff4b85 1283 struct mem_cgroup *memcg;
456f998e 1284
456f998e 1285 rcu_read_lock();
c0ff4b85
R
1286 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1287 if (unlikely(!memcg))
456f998e
YH
1288 goto out;
1289
1290 switch (idx) {
456f998e 1291 case PGFAULT:
0e574a93
JW
1292 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1293 break;
1294 case PGMAJFAULT:
1295 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1296 break;
1297 default:
1298 BUG();
1299 }
1300out:
1301 rcu_read_unlock();
1302}
68ae564b 1303EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1304
925b7673
JW
1305/**
1306 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1307 * @zone: zone of the wanted lruvec
fa9add64 1308 * @memcg: memcg of the wanted lruvec
925b7673
JW
1309 *
1310 * Returns the lru list vector holding pages for the given @zone and
1311 * @mem. This can be the global zone lruvec, if the memory controller
1312 * is disabled.
1313 */
1314struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1315 struct mem_cgroup *memcg)
1316{
1317 struct mem_cgroup_per_zone *mz;
bea8c150 1318 struct lruvec *lruvec;
925b7673 1319
bea8c150
HD
1320 if (mem_cgroup_disabled()) {
1321 lruvec = &zone->lruvec;
1322 goto out;
1323 }
925b7673
JW
1324
1325 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1326 lruvec = &mz->lruvec;
1327out:
1328 /*
1329 * Since a node can be onlined after the mem_cgroup was created,
1330 * we have to be prepared to initialize lruvec->zone here;
1331 * and if offlined then reonlined, we need to reinitialize it.
1332 */
1333 if (unlikely(lruvec->zone != zone))
1334 lruvec->zone = zone;
1335 return lruvec;
925b7673
JW
1336}
1337
08e552c6
KH
1338/*
1339 * Following LRU functions are allowed to be used without PCG_LOCK.
1340 * Operations are called by routine of global LRU independently from memcg.
1341 * What we have to take care of here is validness of pc->mem_cgroup.
1342 *
1343 * Changes to pc->mem_cgroup happens when
1344 * 1. charge
1345 * 2. moving account
1346 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1347 * It is added to LRU before charge.
1348 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1349 * When moving account, the page is not on LRU. It's isolated.
1350 */
4f98a2fe 1351
925b7673 1352/**
fa9add64 1353 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1354 * @page: the page
fa9add64 1355 * @zone: zone of the page
925b7673 1356 */
fa9add64 1357struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1358{
08e552c6 1359 struct mem_cgroup_per_zone *mz;
925b7673
JW
1360 struct mem_cgroup *memcg;
1361 struct page_cgroup *pc;
bea8c150 1362 struct lruvec *lruvec;
6d12e2d8 1363
bea8c150
HD
1364 if (mem_cgroup_disabled()) {
1365 lruvec = &zone->lruvec;
1366 goto out;
1367 }
925b7673 1368
08e552c6 1369 pc = lookup_page_cgroup(page);
38c5d72f 1370 memcg = pc->mem_cgroup;
7512102c
HD
1371
1372 /*
fa9add64 1373 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1374 * an uncharged page off lru does nothing to secure
1375 * its former mem_cgroup from sudden removal.
1376 *
1377 * Our caller holds lru_lock, and PageCgroupUsed is updated
1378 * under page_cgroup lock: between them, they make all uses
1379 * of pc->mem_cgroup safe.
1380 */
fa9add64 1381 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1382 pc->mem_cgroup = memcg = root_mem_cgroup;
1383
925b7673 1384 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1385 lruvec = &mz->lruvec;
1386out:
1387 /*
1388 * Since a node can be onlined after the mem_cgroup was created,
1389 * we have to be prepared to initialize lruvec->zone here;
1390 * and if offlined then reonlined, we need to reinitialize it.
1391 */
1392 if (unlikely(lruvec->zone != zone))
1393 lruvec->zone = zone;
1394 return lruvec;
08e552c6 1395}
b69408e8 1396
925b7673 1397/**
fa9add64
HD
1398 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1399 * @lruvec: mem_cgroup per zone lru vector
1400 * @lru: index of lru list the page is sitting on
1401 * @nr_pages: positive when adding or negative when removing
925b7673 1402 *
fa9add64
HD
1403 * This function must be called when a page is added to or removed from an
1404 * lru list.
3f58a829 1405 */
fa9add64
HD
1406void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1407 int nr_pages)
3f58a829
MK
1408{
1409 struct mem_cgroup_per_zone *mz;
fa9add64 1410 unsigned long *lru_size;
3f58a829
MK
1411
1412 if (mem_cgroup_disabled())
1413 return;
1414
fa9add64
HD
1415 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1416 lru_size = mz->lru_size + lru;
1417 *lru_size += nr_pages;
1418 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1419}
544122e5 1420
3e92041d 1421/*
c0ff4b85 1422 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1423 * hierarchy subtree
1424 */
c3ac9a8a
JW
1425bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1426 struct mem_cgroup *memcg)
3e92041d 1427{
91c63734
JW
1428 if (root_memcg == memcg)
1429 return true;
3a981f48 1430 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1431 return false;
c3ac9a8a
JW
1432 return css_is_ancestor(&memcg->css, &root_memcg->css);
1433}
1434
1435static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1436 struct mem_cgroup *memcg)
1437{
1438 bool ret;
1439
91c63734 1440 rcu_read_lock();
c3ac9a8a 1441 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1442 rcu_read_unlock();
1443 return ret;
3e92041d
MH
1444}
1445
c0ff4b85 1446int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1447{
1448 int ret;
0b7f569e 1449 struct mem_cgroup *curr = NULL;
158e0a2d 1450 struct task_struct *p;
4c4a2214 1451
158e0a2d 1452 p = find_lock_task_mm(task);
de077d22
DR
1453 if (p) {
1454 curr = try_get_mem_cgroup_from_mm(p->mm);
1455 task_unlock(p);
1456 } else {
1457 /*
1458 * All threads may have already detached their mm's, but the oom
1459 * killer still needs to detect if they have already been oom
1460 * killed to prevent needlessly killing additional tasks.
1461 */
1462 task_lock(task);
1463 curr = mem_cgroup_from_task(task);
1464 if (curr)
1465 css_get(&curr->css);
1466 task_unlock(task);
1467 }
0b7f569e
KH
1468 if (!curr)
1469 return 0;
d31f56db 1470 /*
c0ff4b85 1471 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1472 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1473 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1474 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1475 */
c0ff4b85 1476 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1477 css_put(&curr->css);
4c4a2214
DR
1478 return ret;
1479}
1480
c56d5c7d 1481int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1482{
9b272977 1483 unsigned long inactive_ratio;
14797e23 1484 unsigned long inactive;
9b272977 1485 unsigned long active;
c772be93 1486 unsigned long gb;
14797e23 1487
4d7dcca2
HD
1488 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1489 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1490
c772be93
KM
1491 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1492 if (gb)
1493 inactive_ratio = int_sqrt(10 * gb);
1494 else
1495 inactive_ratio = 1;
1496
9b272977 1497 return inactive * inactive_ratio < active;
14797e23
KM
1498}
1499
6d61ef40
BS
1500#define mem_cgroup_from_res_counter(counter, member) \
1501 container_of(counter, struct mem_cgroup, member)
1502
19942822 1503/**
9d11ea9f 1504 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1505 * @memcg: the memory cgroup
19942822 1506 *
9d11ea9f 1507 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1508 * pages.
19942822 1509 */
c0ff4b85 1510static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1511{
9d11ea9f
JW
1512 unsigned long long margin;
1513
c0ff4b85 1514 margin = res_counter_margin(&memcg->res);
9d11ea9f 1515 if (do_swap_account)
c0ff4b85 1516 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1517 return margin >> PAGE_SHIFT;
19942822
JW
1518}
1519
1f4c025b 1520int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1521{
1522 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1523
1524 /* root ? */
1525 if (cgrp->parent == NULL)
1526 return vm_swappiness;
1527
bf1ff263 1528 return memcg->swappiness;
a7885eb8
KM
1529}
1530
619d094b
KH
1531/*
1532 * memcg->moving_account is used for checking possibility that some thread is
1533 * calling move_account(). When a thread on CPU-A starts moving pages under
1534 * a memcg, other threads should check memcg->moving_account under
1535 * rcu_read_lock(), like this:
1536 *
1537 * CPU-A CPU-B
1538 * rcu_read_lock()
1539 * memcg->moving_account+1 if (memcg->mocing_account)
1540 * take heavy locks.
1541 * synchronize_rcu() update something.
1542 * rcu_read_unlock()
1543 * start move here.
1544 */
4331f7d3
KH
1545
1546/* for quick checking without looking up memcg */
1547atomic_t memcg_moving __read_mostly;
1548
c0ff4b85 1549static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1550{
4331f7d3 1551 atomic_inc(&memcg_moving);
619d094b 1552 atomic_inc(&memcg->moving_account);
32047e2a
KH
1553 synchronize_rcu();
1554}
1555
c0ff4b85 1556static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1557{
619d094b
KH
1558 /*
1559 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1560 * We check NULL in callee rather than caller.
1561 */
4331f7d3
KH
1562 if (memcg) {
1563 atomic_dec(&memcg_moving);
619d094b 1564 atomic_dec(&memcg->moving_account);
4331f7d3 1565 }
32047e2a 1566}
619d094b 1567
32047e2a
KH
1568/*
1569 * 2 routines for checking "mem" is under move_account() or not.
1570 *
13fd1dd9
AM
1571 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1572 * is used for avoiding races in accounting. If true,
32047e2a
KH
1573 * pc->mem_cgroup may be overwritten.
1574 *
1575 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1576 * under hierarchy of moving cgroups. This is for
1577 * waiting at hith-memory prressure caused by "move".
1578 */
1579
13fd1dd9 1580static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1581{
1582 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1583 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1584}
4b534334 1585
c0ff4b85 1586static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1587{
2bd9bb20
KH
1588 struct mem_cgroup *from;
1589 struct mem_cgroup *to;
4b534334 1590 bool ret = false;
2bd9bb20
KH
1591 /*
1592 * Unlike task_move routines, we access mc.to, mc.from not under
1593 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1594 */
1595 spin_lock(&mc.lock);
1596 from = mc.from;
1597 to = mc.to;
1598 if (!from)
1599 goto unlock;
3e92041d 1600
c0ff4b85
R
1601 ret = mem_cgroup_same_or_subtree(memcg, from)
1602 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1603unlock:
1604 spin_unlock(&mc.lock);
4b534334
KH
1605 return ret;
1606}
1607
c0ff4b85 1608static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1609{
1610 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1611 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1612 DEFINE_WAIT(wait);
1613 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1614 /* moving charge context might have finished. */
1615 if (mc.moving_task)
1616 schedule();
1617 finish_wait(&mc.waitq, &wait);
1618 return true;
1619 }
1620 }
1621 return false;
1622}
1623
312734c0
KH
1624/*
1625 * Take this lock when
1626 * - a code tries to modify page's memcg while it's USED.
1627 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1628 * see mem_cgroup_stolen(), too.
312734c0
KH
1629 */
1630static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1631 unsigned long *flags)
1632{
1633 spin_lock_irqsave(&memcg->move_lock, *flags);
1634}
1635
1636static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638{
1639 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1640}
1641
58cf188e 1642#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1643/**
58cf188e 1644 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1645 * @memcg: The memory cgroup that went over limit
1646 * @p: Task that is going to be killed
1647 *
1648 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1649 * enabled
1650 */
1651void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1652{
1653 struct cgroup *task_cgrp;
1654 struct cgroup *mem_cgrp;
1655 /*
1656 * Need a buffer in BSS, can't rely on allocations. The code relies
1657 * on the assumption that OOM is serialized for memory controller.
1658 * If this assumption is broken, revisit this code.
1659 */
1660 static char memcg_name[PATH_MAX];
1661 int ret;
58cf188e
SZ
1662 struct mem_cgroup *iter;
1663 unsigned int i;
e222432b 1664
58cf188e 1665 if (!p)
e222432b
BS
1666 return;
1667
e222432b
BS
1668 rcu_read_lock();
1669
1670 mem_cgrp = memcg->css.cgroup;
1671 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1672
1673 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1674 if (ret < 0) {
1675 /*
1676 * Unfortunately, we are unable to convert to a useful name
1677 * But we'll still print out the usage information
1678 */
1679 rcu_read_unlock();
1680 goto done;
1681 }
1682 rcu_read_unlock();
1683
d045197f 1684 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1685
1686 rcu_read_lock();
1687 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1688 if (ret < 0) {
1689 rcu_read_unlock();
1690 goto done;
1691 }
1692 rcu_read_unlock();
1693
1694 /*
1695 * Continues from above, so we don't need an KERN_ level
1696 */
d045197f 1697 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1698done:
1699
d045197f 1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1701 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1704 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1705 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1706 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1709 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1710 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1712
1713 for_each_mem_cgroup_tree(iter, memcg) {
1714 pr_info("Memory cgroup stats");
1715
1716 rcu_read_lock();
1717 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1718 if (!ret)
1719 pr_cont(" for %s", memcg_name);
1720 rcu_read_unlock();
1721 pr_cont(":");
1722
1723 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1724 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1725 continue;
1726 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1727 K(mem_cgroup_read_stat(iter, i)));
1728 }
1729
1730 for (i = 0; i < NR_LRU_LISTS; i++)
1731 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1732 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1733
1734 pr_cont("\n");
1735 }
e222432b
BS
1736}
1737
81d39c20
KH
1738/*
1739 * This function returns the number of memcg under hierarchy tree. Returns
1740 * 1(self count) if no children.
1741 */
c0ff4b85 1742static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1743{
1744 int num = 0;
7d74b06f
KH
1745 struct mem_cgroup *iter;
1746
c0ff4b85 1747 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1748 num++;
81d39c20
KH
1749 return num;
1750}
1751
a63d83f4
DR
1752/*
1753 * Return the memory (and swap, if configured) limit for a memcg.
1754 */
9cbb78bb 1755static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1756{
1757 u64 limit;
a63d83f4 1758
f3e8eb70 1759 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1760
a63d83f4 1761 /*
9a5a8f19 1762 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1763 */
9a5a8f19
MH
1764 if (mem_cgroup_swappiness(memcg)) {
1765 u64 memsw;
1766
1767 limit += total_swap_pages << PAGE_SHIFT;
1768 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1769
1770 /*
1771 * If memsw is finite and limits the amount of swap space
1772 * available to this memcg, return that limit.
1773 */
1774 limit = min(limit, memsw);
1775 }
1776
1777 return limit;
a63d83f4
DR
1778}
1779
19965460
DR
1780static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1781 int order)
9cbb78bb
DR
1782{
1783 struct mem_cgroup *iter;
1784 unsigned long chosen_points = 0;
1785 unsigned long totalpages;
1786 unsigned int points = 0;
1787 struct task_struct *chosen = NULL;
1788
876aafbf 1789 /*
465adcf1
DR
1790 * If current has a pending SIGKILL or is exiting, then automatically
1791 * select it. The goal is to allow it to allocate so that it may
1792 * quickly exit and free its memory.
876aafbf 1793 */
465adcf1 1794 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1795 set_thread_flag(TIF_MEMDIE);
1796 return;
1797 }
1798
1799 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1800 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1801 for_each_mem_cgroup_tree(iter, memcg) {
1802 struct cgroup *cgroup = iter->css.cgroup;
1803 struct cgroup_iter it;
1804 struct task_struct *task;
1805
1806 cgroup_iter_start(cgroup, &it);
1807 while ((task = cgroup_iter_next(cgroup, &it))) {
1808 switch (oom_scan_process_thread(task, totalpages, NULL,
1809 false)) {
1810 case OOM_SCAN_SELECT:
1811 if (chosen)
1812 put_task_struct(chosen);
1813 chosen = task;
1814 chosen_points = ULONG_MAX;
1815 get_task_struct(chosen);
1816 /* fall through */
1817 case OOM_SCAN_CONTINUE:
1818 continue;
1819 case OOM_SCAN_ABORT:
1820 cgroup_iter_end(cgroup, &it);
1821 mem_cgroup_iter_break(memcg, iter);
1822 if (chosen)
1823 put_task_struct(chosen);
1824 return;
1825 case OOM_SCAN_OK:
1826 break;
1827 };
1828 points = oom_badness(task, memcg, NULL, totalpages);
1829 if (points > chosen_points) {
1830 if (chosen)
1831 put_task_struct(chosen);
1832 chosen = task;
1833 chosen_points = points;
1834 get_task_struct(chosen);
1835 }
1836 }
1837 cgroup_iter_end(cgroup, &it);
1838 }
1839
1840 if (!chosen)
1841 return;
1842 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1843 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1844 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1845}
1846
5660048c
JW
1847static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1848 gfp_t gfp_mask,
1849 unsigned long flags)
1850{
1851 unsigned long total = 0;
1852 bool noswap = false;
1853 int loop;
1854
1855 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1856 noswap = true;
1857 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1858 noswap = true;
1859
1860 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1861 if (loop)
1862 drain_all_stock_async(memcg);
1863 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 /*
1865 * Allow limit shrinkers, which are triggered directly
1866 * by userspace, to catch signals and stop reclaim
1867 * after minimal progress, regardless of the margin.
1868 */
1869 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1870 break;
1871 if (mem_cgroup_margin(memcg))
1872 break;
1873 /*
1874 * If nothing was reclaimed after two attempts, there
1875 * may be no reclaimable pages in this hierarchy.
1876 */
1877 if (loop && !total)
1878 break;
1879 }
1880 return total;
1881}
1882
4d0c066d
KH
1883/**
1884 * test_mem_cgroup_node_reclaimable
dad7557e 1885 * @memcg: the target memcg
4d0c066d
KH
1886 * @nid: the node ID to be checked.
1887 * @noswap : specify true here if the user wants flle only information.
1888 *
1889 * This function returns whether the specified memcg contains any
1890 * reclaimable pages on a node. Returns true if there are any reclaimable
1891 * pages in the node.
1892 */
c0ff4b85 1893static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1894 int nid, bool noswap)
1895{
c0ff4b85 1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1897 return true;
1898 if (noswap || !total_swap_pages)
1899 return false;
c0ff4b85 1900 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1901 return true;
1902 return false;
1903
1904}
889976db
YH
1905#if MAX_NUMNODES > 1
1906
1907/*
1908 * Always updating the nodemask is not very good - even if we have an empty
1909 * list or the wrong list here, we can start from some node and traverse all
1910 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1911 *
1912 */
c0ff4b85 1913static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1914{
1915 int nid;
453a9bf3
KH
1916 /*
1917 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1918 * pagein/pageout changes since the last update.
1919 */
c0ff4b85 1920 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1921 return;
c0ff4b85 1922 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1923 return;
1924
889976db 1925 /* make a nodemask where this memcg uses memory from */
31aaea4a 1926 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1927
31aaea4a 1928 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1929
c0ff4b85
R
1930 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1931 node_clear(nid, memcg->scan_nodes);
889976db 1932 }
453a9bf3 1933
c0ff4b85
R
1934 atomic_set(&memcg->numainfo_events, 0);
1935 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1936}
1937
1938/*
1939 * Selecting a node where we start reclaim from. Because what we need is just
1940 * reducing usage counter, start from anywhere is O,K. Considering
1941 * memory reclaim from current node, there are pros. and cons.
1942 *
1943 * Freeing memory from current node means freeing memory from a node which
1944 * we'll use or we've used. So, it may make LRU bad. And if several threads
1945 * hit limits, it will see a contention on a node. But freeing from remote
1946 * node means more costs for memory reclaim because of memory latency.
1947 *
1948 * Now, we use round-robin. Better algorithm is welcomed.
1949 */
c0ff4b85 1950int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1951{
1952 int node;
1953
c0ff4b85
R
1954 mem_cgroup_may_update_nodemask(memcg);
1955 node = memcg->last_scanned_node;
889976db 1956
c0ff4b85 1957 node = next_node(node, memcg->scan_nodes);
889976db 1958 if (node == MAX_NUMNODES)
c0ff4b85 1959 node = first_node(memcg->scan_nodes);
889976db
YH
1960 /*
1961 * We call this when we hit limit, not when pages are added to LRU.
1962 * No LRU may hold pages because all pages are UNEVICTABLE or
1963 * memcg is too small and all pages are not on LRU. In that case,
1964 * we use curret node.
1965 */
1966 if (unlikely(node == MAX_NUMNODES))
1967 node = numa_node_id();
1968
c0ff4b85 1969 memcg->last_scanned_node = node;
889976db
YH
1970 return node;
1971}
1972
4d0c066d
KH
1973/*
1974 * Check all nodes whether it contains reclaimable pages or not.
1975 * For quick scan, we make use of scan_nodes. This will allow us to skip
1976 * unused nodes. But scan_nodes is lazily updated and may not cotain
1977 * enough new information. We need to do double check.
1978 */
6bbda35c 1979static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1980{
1981 int nid;
1982
1983 /*
1984 * quick check...making use of scan_node.
1985 * We can skip unused nodes.
1986 */
c0ff4b85
R
1987 if (!nodes_empty(memcg->scan_nodes)) {
1988 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1989 nid < MAX_NUMNODES;
c0ff4b85 1990 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1991
c0ff4b85 1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1993 return true;
1994 }
1995 }
1996 /*
1997 * Check rest of nodes.
1998 */
31aaea4a 1999 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2000 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2001 continue;
c0ff4b85 2002 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2003 return true;
2004 }
2005 return false;
2006}
2007
889976db 2008#else
c0ff4b85 2009int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2010{
2011 return 0;
2012}
4d0c066d 2013
6bbda35c 2014static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2015{
c0ff4b85 2016 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2017}
889976db
YH
2018#endif
2019
5660048c
JW
2020static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2021 struct zone *zone,
2022 gfp_t gfp_mask,
2023 unsigned long *total_scanned)
6d61ef40 2024{
9f3a0d09 2025 struct mem_cgroup *victim = NULL;
5660048c 2026 int total = 0;
04046e1a 2027 int loop = 0;
9d11ea9f 2028 unsigned long excess;
185efc0f 2029 unsigned long nr_scanned;
527a5ec9
JW
2030 struct mem_cgroup_reclaim_cookie reclaim = {
2031 .zone = zone,
2032 .priority = 0,
2033 };
9d11ea9f 2034
c0ff4b85 2035 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2036
4e416953 2037 while (1) {
527a5ec9 2038 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2039 if (!victim) {
04046e1a 2040 loop++;
4e416953
BS
2041 if (loop >= 2) {
2042 /*
2043 * If we have not been able to reclaim
2044 * anything, it might because there are
2045 * no reclaimable pages under this hierarchy
2046 */
5660048c 2047 if (!total)
4e416953 2048 break;
4e416953 2049 /*
25985edc 2050 * We want to do more targeted reclaim.
4e416953
BS
2051 * excess >> 2 is not to excessive so as to
2052 * reclaim too much, nor too less that we keep
2053 * coming back to reclaim from this cgroup
2054 */
2055 if (total >= (excess >> 2) ||
9f3a0d09 2056 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2057 break;
4e416953 2058 }
9f3a0d09 2059 continue;
4e416953 2060 }
5660048c 2061 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2062 continue;
5660048c
JW
2063 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2064 zone, &nr_scanned);
2065 *total_scanned += nr_scanned;
2066 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2067 break;
6d61ef40 2068 }
9f3a0d09 2069 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2070 return total;
6d61ef40
BS
2071}
2072
867578cb
KH
2073/*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
1af8efe9 2076 * Has to be called with memcg_oom_lock
867578cb 2077 */
c0ff4b85 2078static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2079{
79dfdacc 2080 struct mem_cgroup *iter, *failed = NULL;
a636b327 2081
9f3a0d09 2082 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2083 if (iter->oom_lock) {
79dfdacc
MH
2084 /*
2085 * this subtree of our hierarchy is already locked
2086 * so we cannot give a lock.
2087 */
79dfdacc 2088 failed = iter;
9f3a0d09
JW
2089 mem_cgroup_iter_break(memcg, iter);
2090 break;
23751be0
JW
2091 } else
2092 iter->oom_lock = true;
7d74b06f 2093 }
867578cb 2094
79dfdacc 2095 if (!failed)
23751be0 2096 return true;
79dfdacc
MH
2097
2098 /*
2099 * OK, we failed to lock the whole subtree so we have to clean up
2100 * what we set up to the failing subtree
2101 */
9f3a0d09 2102 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2103 if (iter == failed) {
9f3a0d09
JW
2104 mem_cgroup_iter_break(memcg, iter);
2105 break;
79dfdacc
MH
2106 }
2107 iter->oom_lock = false;
2108 }
23751be0 2109 return false;
a636b327 2110}
0b7f569e 2111
79dfdacc 2112/*
1af8efe9 2113 * Has to be called with memcg_oom_lock
79dfdacc 2114 */
c0ff4b85 2115static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2116{
7d74b06f
KH
2117 struct mem_cgroup *iter;
2118
c0ff4b85 2119 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2120 iter->oom_lock = false;
2121 return 0;
2122}
2123
c0ff4b85 2124static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2125{
2126 struct mem_cgroup *iter;
2127
c0ff4b85 2128 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2129 atomic_inc(&iter->under_oom);
2130}
2131
c0ff4b85 2132static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2133{
2134 struct mem_cgroup *iter;
2135
867578cb
KH
2136 /*
2137 * When a new child is created while the hierarchy is under oom,
2138 * mem_cgroup_oom_lock() may not be called. We have to use
2139 * atomic_add_unless() here.
2140 */
c0ff4b85 2141 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2142 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2143}
2144
1af8efe9 2145static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2146static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2147
dc98df5a 2148struct oom_wait_info {
d79154bb 2149 struct mem_cgroup *memcg;
dc98df5a
KH
2150 wait_queue_t wait;
2151};
2152
2153static int memcg_oom_wake_function(wait_queue_t *wait,
2154 unsigned mode, int sync, void *arg)
2155{
d79154bb
HD
2156 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2157 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2158 struct oom_wait_info *oom_wait_info;
2159
2160 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2161 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2162
dc98df5a 2163 /*
d79154bb 2164 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2165 * Then we can use css_is_ancestor without taking care of RCU.
2166 */
c0ff4b85
R
2167 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2168 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2169 return 0;
dc98df5a
KH
2170 return autoremove_wake_function(wait, mode, sync, arg);
2171}
2172
c0ff4b85 2173static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2174{
c0ff4b85
R
2175 /* for filtering, pass "memcg" as argument. */
2176 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2177}
2178
c0ff4b85 2179static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2180{
c0ff4b85
R
2181 if (memcg && atomic_read(&memcg->under_oom))
2182 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2183}
2184
867578cb
KH
2185/*
2186 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2187 */
6bbda35c
KS
2188static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2189 int order)
0b7f569e 2190{
dc98df5a 2191 struct oom_wait_info owait;
3c11ecf4 2192 bool locked, need_to_kill;
867578cb 2193
d79154bb 2194 owait.memcg = memcg;
dc98df5a
KH
2195 owait.wait.flags = 0;
2196 owait.wait.func = memcg_oom_wake_function;
2197 owait.wait.private = current;
2198 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2199 need_to_kill = true;
c0ff4b85 2200 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2201
c0ff4b85 2202 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2203 spin_lock(&memcg_oom_lock);
c0ff4b85 2204 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2205 /*
2206 * Even if signal_pending(), we can't quit charge() loop without
2207 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2208 * under OOM is always welcomed, use TASK_KILLABLE here.
2209 */
3c11ecf4 2210 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2211 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2212 need_to_kill = false;
2213 if (locked)
c0ff4b85 2214 mem_cgroup_oom_notify(memcg);
1af8efe9 2215 spin_unlock(&memcg_oom_lock);
867578cb 2216
3c11ecf4
KH
2217 if (need_to_kill) {
2218 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2219 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2220 } else {
867578cb 2221 schedule();
dc98df5a 2222 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2223 }
1af8efe9 2224 spin_lock(&memcg_oom_lock);
79dfdacc 2225 if (locked)
c0ff4b85
R
2226 mem_cgroup_oom_unlock(memcg);
2227 memcg_wakeup_oom(memcg);
1af8efe9 2228 spin_unlock(&memcg_oom_lock);
867578cb 2229
c0ff4b85 2230 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2231
867578cb
KH
2232 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2233 return false;
2234 /* Give chance to dying process */
715a5ee8 2235 schedule_timeout_uninterruptible(1);
867578cb 2236 return true;
0b7f569e
KH
2237}
2238
d69b042f
BS
2239/*
2240 * Currently used to update mapped file statistics, but the routine can be
2241 * generalized to update other statistics as well.
32047e2a
KH
2242 *
2243 * Notes: Race condition
2244 *
2245 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2246 * it tends to be costly. But considering some conditions, we doesn't need
2247 * to do so _always_.
2248 *
2249 * Considering "charge", lock_page_cgroup() is not required because all
2250 * file-stat operations happen after a page is attached to radix-tree. There
2251 * are no race with "charge".
2252 *
2253 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2254 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2255 * if there are race with "uncharge". Statistics itself is properly handled
2256 * by flags.
2257 *
2258 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2259 * small, we check mm->moving_account and detect there are possibility of race
2260 * If there is, we take a lock.
d69b042f 2261 */
26174efd 2262
89c06bd5
KH
2263void __mem_cgroup_begin_update_page_stat(struct page *page,
2264 bool *locked, unsigned long *flags)
2265{
2266 struct mem_cgroup *memcg;
2267 struct page_cgroup *pc;
2268
2269 pc = lookup_page_cgroup(page);
2270again:
2271 memcg = pc->mem_cgroup;
2272 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2273 return;
2274 /*
2275 * If this memory cgroup is not under account moving, we don't
da92c47d 2276 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2277 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2278 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2279 */
13fd1dd9 2280 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2281 return;
2282
2283 move_lock_mem_cgroup(memcg, flags);
2284 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2285 move_unlock_mem_cgroup(memcg, flags);
2286 goto again;
2287 }
2288 *locked = true;
2289}
2290
2291void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2292{
2293 struct page_cgroup *pc = lookup_page_cgroup(page);
2294
2295 /*
2296 * It's guaranteed that pc->mem_cgroup never changes while
2297 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2298 * should take move_lock_mem_cgroup().
89c06bd5
KH
2299 */
2300 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2301}
2302
2a7106f2
GT
2303void mem_cgroup_update_page_stat(struct page *page,
2304 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2305{
c0ff4b85 2306 struct mem_cgroup *memcg;
32047e2a 2307 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2308 unsigned long uninitialized_var(flags);
d69b042f 2309
cfa44946 2310 if (mem_cgroup_disabled())
d69b042f 2311 return;
89c06bd5 2312
c0ff4b85
R
2313 memcg = pc->mem_cgroup;
2314 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2315 return;
26174efd 2316
26174efd 2317 switch (idx) {
2a7106f2 2318 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2319 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2320 break;
2321 default:
2322 BUG();
8725d541 2323 }
d69b042f 2324
c0ff4b85 2325 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2326}
26174efd 2327
cdec2e42
KH
2328/*
2329 * size of first charge trial. "32" comes from vmscan.c's magic value.
2330 * TODO: maybe necessary to use big numbers in big irons.
2331 */
7ec99d62 2332#define CHARGE_BATCH 32U
cdec2e42
KH
2333struct memcg_stock_pcp {
2334 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2335 unsigned int nr_pages;
cdec2e42 2336 struct work_struct work;
26fe6168 2337 unsigned long flags;
a0db00fc 2338#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2339};
2340static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2341static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2342
a0956d54
SS
2343/**
2344 * consume_stock: Try to consume stocked charge on this cpu.
2345 * @memcg: memcg to consume from.
2346 * @nr_pages: how many pages to charge.
2347 *
2348 * The charges will only happen if @memcg matches the current cpu's memcg
2349 * stock, and at least @nr_pages are available in that stock. Failure to
2350 * service an allocation will refill the stock.
2351 *
2352 * returns true if successful, false otherwise.
cdec2e42 2353 */
a0956d54 2354static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2355{
2356 struct memcg_stock_pcp *stock;
2357 bool ret = true;
2358
a0956d54
SS
2359 if (nr_pages > CHARGE_BATCH)
2360 return false;
2361
cdec2e42 2362 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2363 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2364 stock->nr_pages -= nr_pages;
cdec2e42
KH
2365 else /* need to call res_counter_charge */
2366 ret = false;
2367 put_cpu_var(memcg_stock);
2368 return ret;
2369}
2370
2371/*
2372 * Returns stocks cached in percpu to res_counter and reset cached information.
2373 */
2374static void drain_stock(struct memcg_stock_pcp *stock)
2375{
2376 struct mem_cgroup *old = stock->cached;
2377
11c9ea4e
JW
2378 if (stock->nr_pages) {
2379 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2380
2381 res_counter_uncharge(&old->res, bytes);
cdec2e42 2382 if (do_swap_account)
11c9ea4e
JW
2383 res_counter_uncharge(&old->memsw, bytes);
2384 stock->nr_pages = 0;
cdec2e42
KH
2385 }
2386 stock->cached = NULL;
cdec2e42
KH
2387}
2388
2389/*
2390 * This must be called under preempt disabled or must be called by
2391 * a thread which is pinned to local cpu.
2392 */
2393static void drain_local_stock(struct work_struct *dummy)
2394{
2395 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2396 drain_stock(stock);
26fe6168 2397 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2398}
2399
e4777496
MH
2400static void __init memcg_stock_init(void)
2401{
2402 int cpu;
2403
2404 for_each_possible_cpu(cpu) {
2405 struct memcg_stock_pcp *stock =
2406 &per_cpu(memcg_stock, cpu);
2407 INIT_WORK(&stock->work, drain_local_stock);
2408 }
2409}
2410
cdec2e42
KH
2411/*
2412 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2413 * This will be consumed by consume_stock() function, later.
cdec2e42 2414 */
c0ff4b85 2415static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2416{
2417 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2418
c0ff4b85 2419 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2420 drain_stock(stock);
c0ff4b85 2421 stock->cached = memcg;
cdec2e42 2422 }
11c9ea4e 2423 stock->nr_pages += nr_pages;
cdec2e42
KH
2424 put_cpu_var(memcg_stock);
2425}
2426
2427/*
c0ff4b85 2428 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2429 * of the hierarchy under it. sync flag says whether we should block
2430 * until the work is done.
cdec2e42 2431 */
c0ff4b85 2432static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2433{
26fe6168 2434 int cpu, curcpu;
d38144b7 2435
cdec2e42 2436 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2437 get_online_cpus();
5af12d0e 2438 curcpu = get_cpu();
cdec2e42
KH
2439 for_each_online_cpu(cpu) {
2440 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2441 struct mem_cgroup *memcg;
26fe6168 2442
c0ff4b85
R
2443 memcg = stock->cached;
2444 if (!memcg || !stock->nr_pages)
26fe6168 2445 continue;
c0ff4b85 2446 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2447 continue;
d1a05b69
MH
2448 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2449 if (cpu == curcpu)
2450 drain_local_stock(&stock->work);
2451 else
2452 schedule_work_on(cpu, &stock->work);
2453 }
cdec2e42 2454 }
5af12d0e 2455 put_cpu();
d38144b7
MH
2456
2457 if (!sync)
2458 goto out;
2459
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2462 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2463 flush_work(&stock->work);
2464 }
2465out:
cdec2e42 2466 put_online_cpus();
d38144b7
MH
2467}
2468
2469/*
2470 * Tries to drain stocked charges in other cpus. This function is asynchronous
2471 * and just put a work per cpu for draining localy on each cpu. Caller can
2472 * expects some charges will be back to res_counter later but cannot wait for
2473 * it.
2474 */
c0ff4b85 2475static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2476{
9f50fad6
MH
2477 /*
2478 * If someone calls draining, avoid adding more kworker runs.
2479 */
2480 if (!mutex_trylock(&percpu_charge_mutex))
2481 return;
c0ff4b85 2482 drain_all_stock(root_memcg, false);
9f50fad6 2483 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2484}
2485
2486/* This is a synchronous drain interface. */
c0ff4b85 2487static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2488{
2489 /* called when force_empty is called */
9f50fad6 2490 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2491 drain_all_stock(root_memcg, true);
9f50fad6 2492 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2493}
2494
711d3d2c
KH
2495/*
2496 * This function drains percpu counter value from DEAD cpu and
2497 * move it to local cpu. Note that this function can be preempted.
2498 */
c0ff4b85 2499static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2500{
2501 int i;
2502
c0ff4b85 2503 spin_lock(&memcg->pcp_counter_lock);
6104621d 2504 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2505 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2506
c0ff4b85
R
2507 per_cpu(memcg->stat->count[i], cpu) = 0;
2508 memcg->nocpu_base.count[i] += x;
711d3d2c 2509 }
e9f8974f 2510 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2511 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2512
c0ff4b85
R
2513 per_cpu(memcg->stat->events[i], cpu) = 0;
2514 memcg->nocpu_base.events[i] += x;
e9f8974f 2515 }
c0ff4b85 2516 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2517}
2518
2519static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2520 unsigned long action,
2521 void *hcpu)
2522{
2523 int cpu = (unsigned long)hcpu;
2524 struct memcg_stock_pcp *stock;
711d3d2c 2525 struct mem_cgroup *iter;
cdec2e42 2526
619d094b 2527 if (action == CPU_ONLINE)
1489ebad 2528 return NOTIFY_OK;
1489ebad 2529
d833049b 2530 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2531 return NOTIFY_OK;
711d3d2c 2532
9f3a0d09 2533 for_each_mem_cgroup(iter)
711d3d2c
KH
2534 mem_cgroup_drain_pcp_counter(iter, cpu);
2535
cdec2e42
KH
2536 stock = &per_cpu(memcg_stock, cpu);
2537 drain_stock(stock);
2538 return NOTIFY_OK;
2539}
2540
4b534334
KH
2541
2542/* See __mem_cgroup_try_charge() for details */
2543enum {
2544 CHARGE_OK, /* success */
2545 CHARGE_RETRY, /* need to retry but retry is not bad */
2546 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2547 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2548 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2549};
2550
c0ff4b85 2551static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2552 unsigned int nr_pages, unsigned int min_pages,
2553 bool oom_check)
4b534334 2554{
7ec99d62 2555 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2556 struct mem_cgroup *mem_over_limit;
2557 struct res_counter *fail_res;
2558 unsigned long flags = 0;
2559 int ret;
2560
c0ff4b85 2561 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2562
2563 if (likely(!ret)) {
2564 if (!do_swap_account)
2565 return CHARGE_OK;
c0ff4b85 2566 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2567 if (likely(!ret))
2568 return CHARGE_OK;
2569
c0ff4b85 2570 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2571 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2572 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2573 } else
2574 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2575 /*
9221edb7
JW
2576 * Never reclaim on behalf of optional batching, retry with a
2577 * single page instead.
2578 */
4c9c5359 2579 if (nr_pages > min_pages)
4b534334
KH
2580 return CHARGE_RETRY;
2581
2582 if (!(gfp_mask & __GFP_WAIT))
2583 return CHARGE_WOULDBLOCK;
2584
4c9c5359
SS
2585 if (gfp_mask & __GFP_NORETRY)
2586 return CHARGE_NOMEM;
2587
5660048c 2588 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2589 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2590 return CHARGE_RETRY;
4b534334 2591 /*
19942822
JW
2592 * Even though the limit is exceeded at this point, reclaim
2593 * may have been able to free some pages. Retry the charge
2594 * before killing the task.
2595 *
2596 * Only for regular pages, though: huge pages are rather
2597 * unlikely to succeed so close to the limit, and we fall back
2598 * to regular pages anyway in case of failure.
4b534334 2599 */
4c9c5359 2600 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2601 return CHARGE_RETRY;
2602
2603 /*
2604 * At task move, charge accounts can be doubly counted. So, it's
2605 * better to wait until the end of task_move if something is going on.
2606 */
2607 if (mem_cgroup_wait_acct_move(mem_over_limit))
2608 return CHARGE_RETRY;
2609
2610 /* If we don't need to call oom-killer at el, return immediately */
2611 if (!oom_check)
2612 return CHARGE_NOMEM;
2613 /* check OOM */
e845e199 2614 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2615 return CHARGE_OOM_DIE;
2616
2617 return CHARGE_RETRY;
2618}
2619
f817ed48 2620/*
38c5d72f
KH
2621 * __mem_cgroup_try_charge() does
2622 * 1. detect memcg to be charged against from passed *mm and *ptr,
2623 * 2. update res_counter
2624 * 3. call memory reclaim if necessary.
2625 *
2626 * In some special case, if the task is fatal, fatal_signal_pending() or
2627 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2628 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2629 * as possible without any hazards. 2: all pages should have a valid
2630 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2631 * pointer, that is treated as a charge to root_mem_cgroup.
2632 *
2633 * So __mem_cgroup_try_charge() will return
2634 * 0 ... on success, filling *ptr with a valid memcg pointer.
2635 * -ENOMEM ... charge failure because of resource limits.
2636 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2637 *
2638 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2639 * the oom-killer can be invoked.
8a9f3ccd 2640 */
f817ed48 2641static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2642 gfp_t gfp_mask,
7ec99d62 2643 unsigned int nr_pages,
c0ff4b85 2644 struct mem_cgroup **ptr,
7ec99d62 2645 bool oom)
8a9f3ccd 2646{
7ec99d62 2647 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2648 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2649 struct mem_cgroup *memcg = NULL;
4b534334 2650 int ret;
a636b327 2651
867578cb
KH
2652 /*
2653 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2654 * in system level. So, allow to go ahead dying process in addition to
2655 * MEMDIE process.
2656 */
2657 if (unlikely(test_thread_flag(TIF_MEMDIE)
2658 || fatal_signal_pending(current)))
2659 goto bypass;
a636b327 2660
8a9f3ccd 2661 /*
3be91277
HD
2662 * We always charge the cgroup the mm_struct belongs to.
2663 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2664 * thread group leader migrates. It's possible that mm is not
24467cac 2665 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2666 */
c0ff4b85 2667 if (!*ptr && !mm)
38c5d72f 2668 *ptr = root_mem_cgroup;
f75ca962 2669again:
c0ff4b85
R
2670 if (*ptr) { /* css should be a valid one */
2671 memcg = *ptr;
c0ff4b85 2672 if (mem_cgroup_is_root(memcg))
f75ca962 2673 goto done;
a0956d54 2674 if (consume_stock(memcg, nr_pages))
f75ca962 2675 goto done;
c0ff4b85 2676 css_get(&memcg->css);
4b534334 2677 } else {
f75ca962 2678 struct task_struct *p;
54595fe2 2679
f75ca962
KH
2680 rcu_read_lock();
2681 p = rcu_dereference(mm->owner);
f75ca962 2682 /*
ebb76ce1 2683 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2684 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2685 * race with swapoff. Then, we have small risk of mis-accouning.
2686 * But such kind of mis-account by race always happens because
2687 * we don't have cgroup_mutex(). It's overkill and we allo that
2688 * small race, here.
2689 * (*) swapoff at el will charge against mm-struct not against
2690 * task-struct. So, mm->owner can be NULL.
f75ca962 2691 */
c0ff4b85 2692 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2693 if (!memcg)
2694 memcg = root_mem_cgroup;
2695 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2696 rcu_read_unlock();
2697 goto done;
2698 }
a0956d54 2699 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2700 /*
2701 * It seems dagerous to access memcg without css_get().
2702 * But considering how consume_stok works, it's not
2703 * necessary. If consume_stock success, some charges
2704 * from this memcg are cached on this cpu. So, we
2705 * don't need to call css_get()/css_tryget() before
2706 * calling consume_stock().
2707 */
2708 rcu_read_unlock();
2709 goto done;
2710 }
2711 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2712 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2713 rcu_read_unlock();
2714 goto again;
2715 }
2716 rcu_read_unlock();
2717 }
8a9f3ccd 2718
4b534334
KH
2719 do {
2720 bool oom_check;
7a81b88c 2721
4b534334 2722 /* If killed, bypass charge */
f75ca962 2723 if (fatal_signal_pending(current)) {
c0ff4b85 2724 css_put(&memcg->css);
4b534334 2725 goto bypass;
f75ca962 2726 }
6d61ef40 2727
4b534334
KH
2728 oom_check = false;
2729 if (oom && !nr_oom_retries) {
2730 oom_check = true;
2731 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2732 }
66e1707b 2733
4c9c5359
SS
2734 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2735 oom_check);
4b534334
KH
2736 switch (ret) {
2737 case CHARGE_OK:
2738 break;
2739 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2740 batch = nr_pages;
c0ff4b85
R
2741 css_put(&memcg->css);
2742 memcg = NULL;
f75ca962 2743 goto again;
4b534334 2744 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2745 css_put(&memcg->css);
4b534334
KH
2746 goto nomem;
2747 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2748 if (!oom) {
c0ff4b85 2749 css_put(&memcg->css);
867578cb 2750 goto nomem;
f75ca962 2751 }
4b534334
KH
2752 /* If oom, we never return -ENOMEM */
2753 nr_oom_retries--;
2754 break;
2755 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2756 css_put(&memcg->css);
867578cb 2757 goto bypass;
66e1707b 2758 }
4b534334
KH
2759 } while (ret != CHARGE_OK);
2760
7ec99d62 2761 if (batch > nr_pages)
c0ff4b85
R
2762 refill_stock(memcg, batch - nr_pages);
2763 css_put(&memcg->css);
0c3e73e8 2764done:
c0ff4b85 2765 *ptr = memcg;
7a81b88c
KH
2766 return 0;
2767nomem:
c0ff4b85 2768 *ptr = NULL;
7a81b88c 2769 return -ENOMEM;
867578cb 2770bypass:
38c5d72f
KH
2771 *ptr = root_mem_cgroup;
2772 return -EINTR;
7a81b88c 2773}
8a9f3ccd 2774
a3032a2c
DN
2775/*
2776 * Somemtimes we have to undo a charge we got by try_charge().
2777 * This function is for that and do uncharge, put css's refcnt.
2778 * gotten by try_charge().
2779 */
c0ff4b85 2780static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2781 unsigned int nr_pages)
a3032a2c 2782{
c0ff4b85 2783 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2784 unsigned long bytes = nr_pages * PAGE_SIZE;
2785
c0ff4b85 2786 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2787 if (do_swap_account)
c0ff4b85 2788 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2789 }
854ffa8d
DN
2790}
2791
d01dd17f
KH
2792/*
2793 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2794 * This is useful when moving usage to parent cgroup.
2795 */
2796static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2797 unsigned int nr_pages)
2798{
2799 unsigned long bytes = nr_pages * PAGE_SIZE;
2800
2801 if (mem_cgroup_is_root(memcg))
2802 return;
2803
2804 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2805 if (do_swap_account)
2806 res_counter_uncharge_until(&memcg->memsw,
2807 memcg->memsw.parent, bytes);
2808}
2809
a3b2d692
KH
2810/*
2811 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2812 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2813 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2814 * called against removed memcg.)
a3b2d692
KH
2815 */
2816static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2817{
2818 struct cgroup_subsys_state *css;
2819
2820 /* ID 0 is unused ID */
2821 if (!id)
2822 return NULL;
2823 css = css_lookup(&mem_cgroup_subsys, id);
2824 if (!css)
2825 return NULL;
b2145145 2826 return mem_cgroup_from_css(css);
a3b2d692
KH
2827}
2828
e42d9d5d 2829struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2830{
c0ff4b85 2831 struct mem_cgroup *memcg = NULL;
3c776e64 2832 struct page_cgroup *pc;
a3b2d692 2833 unsigned short id;
b5a84319
KH
2834 swp_entry_t ent;
2835
3c776e64
DN
2836 VM_BUG_ON(!PageLocked(page));
2837
3c776e64 2838 pc = lookup_page_cgroup(page);
c0bd3f63 2839 lock_page_cgroup(pc);
a3b2d692 2840 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2841 memcg = pc->mem_cgroup;
2842 if (memcg && !css_tryget(&memcg->css))
2843 memcg = NULL;
e42d9d5d 2844 } else if (PageSwapCache(page)) {
3c776e64 2845 ent.val = page_private(page);
9fb4b7cc 2846 id = lookup_swap_cgroup_id(ent);
a3b2d692 2847 rcu_read_lock();
c0ff4b85
R
2848 memcg = mem_cgroup_lookup(id);
2849 if (memcg && !css_tryget(&memcg->css))
2850 memcg = NULL;
a3b2d692 2851 rcu_read_unlock();
3c776e64 2852 }
c0bd3f63 2853 unlock_page_cgroup(pc);
c0ff4b85 2854 return memcg;
b5a84319
KH
2855}
2856
c0ff4b85 2857static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2858 struct page *page,
7ec99d62 2859 unsigned int nr_pages,
9ce70c02
HD
2860 enum charge_type ctype,
2861 bool lrucare)
7a81b88c 2862{
ce587e65 2863 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2864 struct zone *uninitialized_var(zone);
fa9add64 2865 struct lruvec *lruvec;
9ce70c02 2866 bool was_on_lru = false;
b2402857 2867 bool anon;
9ce70c02 2868
ca3e0214 2869 lock_page_cgroup(pc);
90deb788 2870 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2871 /*
2872 * we don't need page_cgroup_lock about tail pages, becase they are not
2873 * accessed by any other context at this point.
2874 */
9ce70c02
HD
2875
2876 /*
2877 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2878 * may already be on some other mem_cgroup's LRU. Take care of it.
2879 */
2880 if (lrucare) {
2881 zone = page_zone(page);
2882 spin_lock_irq(&zone->lru_lock);
2883 if (PageLRU(page)) {
fa9add64 2884 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2885 ClearPageLRU(page);
fa9add64 2886 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2887 was_on_lru = true;
2888 }
2889 }
2890
c0ff4b85 2891 pc->mem_cgroup = memcg;
261fb61a
KH
2892 /*
2893 * We access a page_cgroup asynchronously without lock_page_cgroup().
2894 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2895 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2896 * before USED bit, we need memory barrier here.
2897 * See mem_cgroup_add_lru_list(), etc.
2898 */
08e552c6 2899 smp_wmb();
b2402857 2900 SetPageCgroupUsed(pc);
3be91277 2901
9ce70c02
HD
2902 if (lrucare) {
2903 if (was_on_lru) {
fa9add64 2904 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2905 VM_BUG_ON(PageLRU(page));
2906 SetPageLRU(page);
fa9add64 2907 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2908 }
2909 spin_unlock_irq(&zone->lru_lock);
2910 }
2911
41326c17 2912 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2913 anon = true;
2914 else
2915 anon = false;
2916
2917 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2918 unlock_page_cgroup(pc);
9ce70c02 2919
430e4863
KH
2920 /*
2921 * "charge_statistics" updated event counter. Then, check it.
2922 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2923 * if they exceeds softlimit.
2924 */
c0ff4b85 2925 memcg_check_events(memcg, page);
7a81b88c 2926}
66e1707b 2927
7cf27982
GC
2928static DEFINE_MUTEX(set_limit_mutex);
2929
7ae1e1d0
GC
2930#ifdef CONFIG_MEMCG_KMEM
2931static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2932{
2933 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2934 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2935}
2936
1f458cbf
GC
2937/*
2938 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2939 * in the memcg_cache_params struct.
2940 */
2941static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2942{
2943 struct kmem_cache *cachep;
2944
2945 VM_BUG_ON(p->is_root_cache);
2946 cachep = p->root_cache;
2947 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2948}
2949
749c5415
GC
2950#ifdef CONFIG_SLABINFO
2951static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2952 struct seq_file *m)
2953{
2954 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2955 struct memcg_cache_params *params;
2956
2957 if (!memcg_can_account_kmem(memcg))
2958 return -EIO;
2959
2960 print_slabinfo_header(m);
2961
2962 mutex_lock(&memcg->slab_caches_mutex);
2963 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2964 cache_show(memcg_params_to_cache(params), m);
2965 mutex_unlock(&memcg->slab_caches_mutex);
2966
2967 return 0;
2968}
2969#endif
2970
7ae1e1d0
GC
2971static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2972{
2973 struct res_counter *fail_res;
2974 struct mem_cgroup *_memcg;
2975 int ret = 0;
2976 bool may_oom;
2977
2978 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2979 if (ret)
2980 return ret;
2981
2982 /*
2983 * Conditions under which we can wait for the oom_killer. Those are
2984 * the same conditions tested by the core page allocator
2985 */
2986 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2987
2988 _memcg = memcg;
2989 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2990 &_memcg, may_oom);
2991
2992 if (ret == -EINTR) {
2993 /*
2994 * __mem_cgroup_try_charge() chosed to bypass to root due to
2995 * OOM kill or fatal signal. Since our only options are to
2996 * either fail the allocation or charge it to this cgroup, do
2997 * it as a temporary condition. But we can't fail. From a
2998 * kmem/slab perspective, the cache has already been selected,
2999 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3000 * our minds.
3001 *
3002 * This condition will only trigger if the task entered
3003 * memcg_charge_kmem in a sane state, but was OOM-killed during
3004 * __mem_cgroup_try_charge() above. Tasks that were already
3005 * dying when the allocation triggers should have been already
3006 * directed to the root cgroup in memcontrol.h
3007 */
3008 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3009 if (do_swap_account)
3010 res_counter_charge_nofail(&memcg->memsw, size,
3011 &fail_res);
3012 ret = 0;
3013 } else if (ret)
3014 res_counter_uncharge(&memcg->kmem, size);
3015
3016 return ret;
3017}
3018
3019static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3020{
7ae1e1d0
GC
3021 res_counter_uncharge(&memcg->res, size);
3022 if (do_swap_account)
3023 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3024
3025 /* Not down to 0 */
3026 if (res_counter_uncharge(&memcg->kmem, size))
3027 return;
3028
3029 if (memcg_kmem_test_and_clear_dead(memcg))
3030 mem_cgroup_put(memcg);
7ae1e1d0
GC
3031}
3032
2633d7a0
GC
3033void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3034{
3035 if (!memcg)
3036 return;
3037
3038 mutex_lock(&memcg->slab_caches_mutex);
3039 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3040 mutex_unlock(&memcg->slab_caches_mutex);
3041}
3042
3043/*
3044 * helper for acessing a memcg's index. It will be used as an index in the
3045 * child cache array in kmem_cache, and also to derive its name. This function
3046 * will return -1 when this is not a kmem-limited memcg.
3047 */
3048int memcg_cache_id(struct mem_cgroup *memcg)
3049{
3050 return memcg ? memcg->kmemcg_id : -1;
3051}
3052
55007d84
GC
3053/*
3054 * This ends up being protected by the set_limit mutex, during normal
3055 * operation, because that is its main call site.
3056 *
3057 * But when we create a new cache, we can call this as well if its parent
3058 * is kmem-limited. That will have to hold set_limit_mutex as well.
3059 */
3060int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3061{
3062 int num, ret;
3063
3064 num = ida_simple_get(&kmem_limited_groups,
3065 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3066 if (num < 0)
3067 return num;
3068 /*
3069 * After this point, kmem_accounted (that we test atomically in
3070 * the beginning of this conditional), is no longer 0. This
3071 * guarantees only one process will set the following boolean
3072 * to true. We don't need test_and_set because we're protected
3073 * by the set_limit_mutex anyway.
3074 */
3075 memcg_kmem_set_activated(memcg);
3076
3077 ret = memcg_update_all_caches(num+1);
3078 if (ret) {
3079 ida_simple_remove(&kmem_limited_groups, num);
3080 memcg_kmem_clear_activated(memcg);
3081 return ret;
3082 }
3083
3084 memcg->kmemcg_id = num;
3085 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3086 mutex_init(&memcg->slab_caches_mutex);
3087 return 0;
3088}
3089
3090static size_t memcg_caches_array_size(int num_groups)
3091{
3092 ssize_t size;
3093 if (num_groups <= 0)
3094 return 0;
3095
3096 size = 2 * num_groups;
3097 if (size < MEMCG_CACHES_MIN_SIZE)
3098 size = MEMCG_CACHES_MIN_SIZE;
3099 else if (size > MEMCG_CACHES_MAX_SIZE)
3100 size = MEMCG_CACHES_MAX_SIZE;
3101
3102 return size;
3103}
3104
3105/*
3106 * We should update the current array size iff all caches updates succeed. This
3107 * can only be done from the slab side. The slab mutex needs to be held when
3108 * calling this.
3109 */
3110void memcg_update_array_size(int num)
3111{
3112 if (num > memcg_limited_groups_array_size)
3113 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3114}
3115
15cf17d2
KK
3116static void kmem_cache_destroy_work_func(struct work_struct *w);
3117
55007d84
GC
3118int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3119{
3120 struct memcg_cache_params *cur_params = s->memcg_params;
3121
3122 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3123
3124 if (num_groups > memcg_limited_groups_array_size) {
3125 int i;
3126 ssize_t size = memcg_caches_array_size(num_groups);
3127
3128 size *= sizeof(void *);
3129 size += sizeof(struct memcg_cache_params);
3130
3131 s->memcg_params = kzalloc(size, GFP_KERNEL);
3132 if (!s->memcg_params) {
3133 s->memcg_params = cur_params;
3134 return -ENOMEM;
3135 }
3136
15cf17d2
KK
3137 INIT_WORK(&s->memcg_params->destroy,
3138 kmem_cache_destroy_work_func);
55007d84
GC
3139 s->memcg_params->is_root_cache = true;
3140
3141 /*
3142 * There is the chance it will be bigger than
3143 * memcg_limited_groups_array_size, if we failed an allocation
3144 * in a cache, in which case all caches updated before it, will
3145 * have a bigger array.
3146 *
3147 * But if that is the case, the data after
3148 * memcg_limited_groups_array_size is certainly unused
3149 */
3150 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3151 if (!cur_params->memcg_caches[i])
3152 continue;
3153 s->memcg_params->memcg_caches[i] =
3154 cur_params->memcg_caches[i];
3155 }
3156
3157 /*
3158 * Ideally, we would wait until all caches succeed, and only
3159 * then free the old one. But this is not worth the extra
3160 * pointer per-cache we'd have to have for this.
3161 *
3162 * It is not a big deal if some caches are left with a size
3163 * bigger than the others. And all updates will reset this
3164 * anyway.
3165 */
3166 kfree(cur_params);
3167 }
3168 return 0;
3169}
3170
943a451a
GC
3171int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3172 struct kmem_cache *root_cache)
2633d7a0
GC
3173{
3174 size_t size = sizeof(struct memcg_cache_params);
3175
3176 if (!memcg_kmem_enabled())
3177 return 0;
3178
55007d84
GC
3179 if (!memcg)
3180 size += memcg_limited_groups_array_size * sizeof(void *);
3181
2633d7a0
GC
3182 s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 if (!s->memcg_params)
3184 return -ENOMEM;
3185
15cf17d2
KK
3186 INIT_WORK(&s->memcg_params->destroy,
3187 kmem_cache_destroy_work_func);
943a451a 3188 if (memcg) {
2633d7a0 3189 s->memcg_params->memcg = memcg;
943a451a 3190 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3191 } else
3192 s->memcg_params->is_root_cache = true;
3193
2633d7a0
GC
3194 return 0;
3195}
3196
3197void memcg_release_cache(struct kmem_cache *s)
3198{
d7f25f8a
GC
3199 struct kmem_cache *root;
3200 struct mem_cgroup *memcg;
3201 int id;
3202
3203 /*
3204 * This happens, for instance, when a root cache goes away before we
3205 * add any memcg.
3206 */
3207 if (!s->memcg_params)
3208 return;
3209
3210 if (s->memcg_params->is_root_cache)
3211 goto out;
3212
3213 memcg = s->memcg_params->memcg;
3214 id = memcg_cache_id(memcg);
3215
3216 root = s->memcg_params->root_cache;
3217 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3218
3219 mutex_lock(&memcg->slab_caches_mutex);
3220 list_del(&s->memcg_params->list);
3221 mutex_unlock(&memcg->slab_caches_mutex);
3222
fd0ccaf2 3223 mem_cgroup_put(memcg);
d7f25f8a 3224out:
2633d7a0
GC
3225 kfree(s->memcg_params);
3226}
3227
0e9d92f2
GC
3228/*
3229 * During the creation a new cache, we need to disable our accounting mechanism
3230 * altogether. This is true even if we are not creating, but rather just
3231 * enqueing new caches to be created.
3232 *
3233 * This is because that process will trigger allocations; some visible, like
3234 * explicit kmallocs to auxiliary data structures, name strings and internal
3235 * cache structures; some well concealed, like INIT_WORK() that can allocate
3236 * objects during debug.
3237 *
3238 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3239 * to it. This may not be a bounded recursion: since the first cache creation
3240 * failed to complete (waiting on the allocation), we'll just try to create the
3241 * cache again, failing at the same point.
3242 *
3243 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3244 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3245 * inside the following two functions.
3246 */
3247static inline void memcg_stop_kmem_account(void)
3248{
3249 VM_BUG_ON(!current->mm);
3250 current->memcg_kmem_skip_account++;
3251}
3252
3253static inline void memcg_resume_kmem_account(void)
3254{
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account--;
3257}
3258
1f458cbf
GC
3259static void kmem_cache_destroy_work_func(struct work_struct *w)
3260{
3261 struct kmem_cache *cachep;
3262 struct memcg_cache_params *p;
3263
3264 p = container_of(w, struct memcg_cache_params, destroy);
3265
3266 cachep = memcg_params_to_cache(p);
3267
22933152
GC
3268 /*
3269 * If we get down to 0 after shrink, we could delete right away.
3270 * However, memcg_release_pages() already puts us back in the workqueue
3271 * in that case. If we proceed deleting, we'll get a dangling
3272 * reference, and removing the object from the workqueue in that case
3273 * is unnecessary complication. We are not a fast path.
3274 *
3275 * Note that this case is fundamentally different from racing with
3276 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3277 * kmem_cache_shrink, not only we would be reinserting a dead cache
3278 * into the queue, but doing so from inside the worker racing to
3279 * destroy it.
3280 *
3281 * So if we aren't down to zero, we'll just schedule a worker and try
3282 * again
3283 */
3284 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3285 kmem_cache_shrink(cachep);
3286 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3287 return;
3288 } else
1f458cbf
GC
3289 kmem_cache_destroy(cachep);
3290}
3291
3292void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3293{
3294 if (!cachep->memcg_params->dead)
3295 return;
3296
22933152
GC
3297 /*
3298 * There are many ways in which we can get here.
3299 *
3300 * We can get to a memory-pressure situation while the delayed work is
3301 * still pending to run. The vmscan shrinkers can then release all
3302 * cache memory and get us to destruction. If this is the case, we'll
3303 * be executed twice, which is a bug (the second time will execute over
3304 * bogus data). In this case, cancelling the work should be fine.
3305 *
3306 * But we can also get here from the worker itself, if
3307 * kmem_cache_shrink is enough to shake all the remaining objects and
3308 * get the page count to 0. In this case, we'll deadlock if we try to
3309 * cancel the work (the worker runs with an internal lock held, which
3310 * is the same lock we would hold for cancel_work_sync().)
3311 *
3312 * Since we can't possibly know who got us here, just refrain from
3313 * running if there is already work pending
3314 */
3315 if (work_pending(&cachep->memcg_params->destroy))
3316 return;
1f458cbf
GC
3317 /*
3318 * We have to defer the actual destroying to a workqueue, because
3319 * we might currently be in a context that cannot sleep.
3320 */
3321 schedule_work(&cachep->memcg_params->destroy);
3322}
3323
d9c10ddd
MH
3324/*
3325 * This lock protects updaters, not readers. We want readers to be as fast as
3326 * they can, and they will either see NULL or a valid cache value. Our model
3327 * allow them to see NULL, in which case the root memcg will be selected.
3328 *
3329 * We need this lock because multiple allocations to the same cache from a non
3330 * will span more than one worker. Only one of them can create the cache.
3331 */
3332static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3333
d9c10ddd
MH
3334/*
3335 * Called with memcg_cache_mutex held
3336 */
d7f25f8a
GC
3337static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3338 struct kmem_cache *s)
3339{
d7f25f8a 3340 struct kmem_cache *new;
d9c10ddd 3341 static char *tmp_name = NULL;
d7f25f8a 3342
d9c10ddd
MH
3343 lockdep_assert_held(&memcg_cache_mutex);
3344
3345 /*
3346 * kmem_cache_create_memcg duplicates the given name and
3347 * cgroup_name for this name requires RCU context.
3348 * This static temporary buffer is used to prevent from
3349 * pointless shortliving allocation.
3350 */
3351 if (!tmp_name) {
3352 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3353 if (!tmp_name)
3354 return NULL;
3355 }
3356
3357 rcu_read_lock();
3358 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3359 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3360 rcu_read_unlock();
d7f25f8a 3361
d9c10ddd 3362 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3363 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3364
d79923fa
GC
3365 if (new)
3366 new->allocflags |= __GFP_KMEMCG;
3367
d7f25f8a
GC
3368 return new;
3369}
3370
d7f25f8a
GC
3371static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3372 struct kmem_cache *cachep)
3373{
3374 struct kmem_cache *new_cachep;
3375 int idx;
3376
3377 BUG_ON(!memcg_can_account_kmem(memcg));
3378
3379 idx = memcg_cache_id(memcg);
3380
3381 mutex_lock(&memcg_cache_mutex);
3382 new_cachep = cachep->memcg_params->memcg_caches[idx];
3383 if (new_cachep)
3384 goto out;
3385
3386 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3387 if (new_cachep == NULL) {
3388 new_cachep = cachep;
3389 goto out;
3390 }
3391
3392 mem_cgroup_get(memcg);
1f458cbf 3393 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3394
3395 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3396 /*
3397 * the readers won't lock, make sure everybody sees the updated value,
3398 * so they won't put stuff in the queue again for no reason
3399 */
3400 wmb();
3401out:
3402 mutex_unlock(&memcg_cache_mutex);
3403 return new_cachep;
3404}
3405
7cf27982
GC
3406void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3407{
3408 struct kmem_cache *c;
3409 int i;
3410
3411 if (!s->memcg_params)
3412 return;
3413 if (!s->memcg_params->is_root_cache)
3414 return;
3415
3416 /*
3417 * If the cache is being destroyed, we trust that there is no one else
3418 * requesting objects from it. Even if there are, the sanity checks in
3419 * kmem_cache_destroy should caught this ill-case.
3420 *
3421 * Still, we don't want anyone else freeing memcg_caches under our
3422 * noses, which can happen if a new memcg comes to life. As usual,
3423 * we'll take the set_limit_mutex to protect ourselves against this.
3424 */
3425 mutex_lock(&set_limit_mutex);
3426 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3427 c = s->memcg_params->memcg_caches[i];
3428 if (!c)
3429 continue;
3430
3431 /*
3432 * We will now manually delete the caches, so to avoid races
3433 * we need to cancel all pending destruction workers and
3434 * proceed with destruction ourselves.
3435 *
3436 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3437 * and that could spawn the workers again: it is likely that
3438 * the cache still have active pages until this very moment.
3439 * This would lead us back to mem_cgroup_destroy_cache.
3440 *
3441 * But that will not execute at all if the "dead" flag is not
3442 * set, so flip it down to guarantee we are in control.
3443 */
3444 c->memcg_params->dead = false;
22933152 3445 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3446 kmem_cache_destroy(c);
3447 }
3448 mutex_unlock(&set_limit_mutex);
3449}
3450
d7f25f8a
GC
3451struct create_work {
3452 struct mem_cgroup *memcg;
3453 struct kmem_cache *cachep;
3454 struct work_struct work;
3455};
3456
1f458cbf
GC
3457static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3458{
3459 struct kmem_cache *cachep;
3460 struct memcg_cache_params *params;
3461
3462 if (!memcg_kmem_is_active(memcg))
3463 return;
3464
3465 mutex_lock(&memcg->slab_caches_mutex);
3466 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3467 cachep = memcg_params_to_cache(params);
3468 cachep->memcg_params->dead = true;
1f458cbf
GC
3469 schedule_work(&cachep->memcg_params->destroy);
3470 }
3471 mutex_unlock(&memcg->slab_caches_mutex);
3472}
3473
d7f25f8a
GC
3474static void memcg_create_cache_work_func(struct work_struct *w)
3475{
3476 struct create_work *cw;
3477
3478 cw = container_of(w, struct create_work, work);
3479 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3480 /* Drop the reference gotten when we enqueued. */
3481 css_put(&cw->memcg->css);
3482 kfree(cw);
3483}
3484
3485/*
3486 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3487 */
0e9d92f2
GC
3488static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3489 struct kmem_cache *cachep)
d7f25f8a
GC
3490{
3491 struct create_work *cw;
3492
3493 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3494 if (cw == NULL) {
3495 css_put(&memcg->css);
d7f25f8a
GC
3496 return;
3497 }
3498
3499 cw->memcg = memcg;
3500 cw->cachep = cachep;
3501
3502 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3503 schedule_work(&cw->work);
3504}
3505
0e9d92f2
GC
3506static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3507 struct kmem_cache *cachep)
3508{
3509 /*
3510 * We need to stop accounting when we kmalloc, because if the
3511 * corresponding kmalloc cache is not yet created, the first allocation
3512 * in __memcg_create_cache_enqueue will recurse.
3513 *
3514 * However, it is better to enclose the whole function. Depending on
3515 * the debugging options enabled, INIT_WORK(), for instance, can
3516 * trigger an allocation. This too, will make us recurse. Because at
3517 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3518 * the safest choice is to do it like this, wrapping the whole function.
3519 */
3520 memcg_stop_kmem_account();
3521 __memcg_create_cache_enqueue(memcg, cachep);
3522 memcg_resume_kmem_account();
3523}
d7f25f8a
GC
3524/*
3525 * Return the kmem_cache we're supposed to use for a slab allocation.
3526 * We try to use the current memcg's version of the cache.
3527 *
3528 * If the cache does not exist yet, if we are the first user of it,
3529 * we either create it immediately, if possible, or create it asynchronously
3530 * in a workqueue.
3531 * In the latter case, we will let the current allocation go through with
3532 * the original cache.
3533 *
3534 * Can't be called in interrupt context or from kernel threads.
3535 * This function needs to be called with rcu_read_lock() held.
3536 */
3537struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3538 gfp_t gfp)
3539{
3540 struct mem_cgroup *memcg;
3541 int idx;
3542
3543 VM_BUG_ON(!cachep->memcg_params);
3544 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3545
0e9d92f2
GC
3546 if (!current->mm || current->memcg_kmem_skip_account)
3547 return cachep;
3548
d7f25f8a
GC
3549 rcu_read_lock();
3550 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3551
3552 if (!memcg_can_account_kmem(memcg))
ca0dde97 3553 goto out;
d7f25f8a
GC
3554
3555 idx = memcg_cache_id(memcg);
3556
3557 /*
3558 * barrier to mare sure we're always seeing the up to date value. The
3559 * code updating memcg_caches will issue a write barrier to match this.
3560 */
3561 read_barrier_depends();
ca0dde97
LZ
3562 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3563 cachep = cachep->memcg_params->memcg_caches[idx];
3564 goto out;
d7f25f8a
GC
3565 }
3566
ca0dde97
LZ
3567 /* The corresponding put will be done in the workqueue. */
3568 if (!css_tryget(&memcg->css))
3569 goto out;
3570 rcu_read_unlock();
3571
3572 /*
3573 * If we are in a safe context (can wait, and not in interrupt
3574 * context), we could be be predictable and return right away.
3575 * This would guarantee that the allocation being performed
3576 * already belongs in the new cache.
3577 *
3578 * However, there are some clashes that can arrive from locking.
3579 * For instance, because we acquire the slab_mutex while doing
3580 * kmem_cache_dup, this means no further allocation could happen
3581 * with the slab_mutex held.
3582 *
3583 * Also, because cache creation issue get_online_cpus(), this
3584 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3585 * that ends up reversed during cpu hotplug. (cpuset allocates
3586 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3587 * better to defer everything.
3588 */
3589 memcg_create_cache_enqueue(memcg, cachep);
3590 return cachep;
3591out:
3592 rcu_read_unlock();
3593 return cachep;
d7f25f8a
GC
3594}
3595EXPORT_SYMBOL(__memcg_kmem_get_cache);
3596
7ae1e1d0
GC
3597/*
3598 * We need to verify if the allocation against current->mm->owner's memcg is
3599 * possible for the given order. But the page is not allocated yet, so we'll
3600 * need a further commit step to do the final arrangements.
3601 *
3602 * It is possible for the task to switch cgroups in this mean time, so at
3603 * commit time, we can't rely on task conversion any longer. We'll then use
3604 * the handle argument to return to the caller which cgroup we should commit
3605 * against. We could also return the memcg directly and avoid the pointer
3606 * passing, but a boolean return value gives better semantics considering
3607 * the compiled-out case as well.
3608 *
3609 * Returning true means the allocation is possible.
3610 */
3611bool
3612__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3613{
3614 struct mem_cgroup *memcg;
3615 int ret;
3616
3617 *_memcg = NULL;
3618 memcg = try_get_mem_cgroup_from_mm(current->mm);
3619
3620 /*
3621 * very rare case described in mem_cgroup_from_task. Unfortunately there
3622 * isn't much we can do without complicating this too much, and it would
3623 * be gfp-dependent anyway. Just let it go
3624 */
3625 if (unlikely(!memcg))
3626 return true;
3627
3628 if (!memcg_can_account_kmem(memcg)) {
3629 css_put(&memcg->css);
3630 return true;
3631 }
3632
7ae1e1d0
GC
3633 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3634 if (!ret)
3635 *_memcg = memcg;
7ae1e1d0
GC
3636
3637 css_put(&memcg->css);
3638 return (ret == 0);
3639}
3640
3641void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3642 int order)
3643{
3644 struct page_cgroup *pc;
3645
3646 VM_BUG_ON(mem_cgroup_is_root(memcg));
3647
3648 /* The page allocation failed. Revert */
3649 if (!page) {
3650 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3651 return;
3652 }
3653
3654 pc = lookup_page_cgroup(page);
3655 lock_page_cgroup(pc);
3656 pc->mem_cgroup = memcg;
3657 SetPageCgroupUsed(pc);
3658 unlock_page_cgroup(pc);
3659}
3660
3661void __memcg_kmem_uncharge_pages(struct page *page, int order)
3662{
3663 struct mem_cgroup *memcg = NULL;
3664 struct page_cgroup *pc;
3665
3666
3667 pc = lookup_page_cgroup(page);
3668 /*
3669 * Fast unlocked return. Theoretically might have changed, have to
3670 * check again after locking.
3671 */
3672 if (!PageCgroupUsed(pc))
3673 return;
3674
3675 lock_page_cgroup(pc);
3676 if (PageCgroupUsed(pc)) {
3677 memcg = pc->mem_cgroup;
3678 ClearPageCgroupUsed(pc);
3679 }
3680 unlock_page_cgroup(pc);
3681
3682 /*
3683 * We trust that only if there is a memcg associated with the page, it
3684 * is a valid allocation
3685 */
3686 if (!memcg)
3687 return;
3688
3689 VM_BUG_ON(mem_cgroup_is_root(memcg));
3690 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3691}
1f458cbf
GC
3692#else
3693static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3694{
3695}
7ae1e1d0
GC
3696#endif /* CONFIG_MEMCG_KMEM */
3697
ca3e0214
KH
3698#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3699
a0db00fc 3700#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3701/*
3702 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3703 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3704 * charge/uncharge will be never happen and move_account() is done under
3705 * compound_lock(), so we don't have to take care of races.
ca3e0214 3706 */
e94c8a9c 3707void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3708{
3709 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
3710 struct page_cgroup *pc;
3711 int i;
ca3e0214 3712
3d37c4a9
KH
3713 if (mem_cgroup_disabled())
3714 return;
e94c8a9c
KH
3715 for (i = 1; i < HPAGE_PMD_NR; i++) {
3716 pc = head_pc + i;
3717 pc->mem_cgroup = head_pc->mem_cgroup;
3718 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3719 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3720 }
ca3e0214 3721}
12d27107 3722#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3723
f817ed48 3724/**
de3638d9 3725 * mem_cgroup_move_account - move account of the page
5564e88b 3726 * @page: the page
7ec99d62 3727 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3728 * @pc: page_cgroup of the page.
3729 * @from: mem_cgroup which the page is moved from.
3730 * @to: mem_cgroup which the page is moved to. @from != @to.
3731 *
3732 * The caller must confirm following.
08e552c6 3733 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3734 * - compound_lock is held when nr_pages > 1
f817ed48 3735 *
2f3479b1
KH
3736 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3737 * from old cgroup.
f817ed48 3738 */
7ec99d62
JW
3739static int mem_cgroup_move_account(struct page *page,
3740 unsigned int nr_pages,
3741 struct page_cgroup *pc,
3742 struct mem_cgroup *from,
2f3479b1 3743 struct mem_cgroup *to)
f817ed48 3744{
de3638d9
JW
3745 unsigned long flags;
3746 int ret;
b2402857 3747 bool anon = PageAnon(page);
987eba66 3748
f817ed48 3749 VM_BUG_ON(from == to);
5564e88b 3750 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3751 /*
3752 * The page is isolated from LRU. So, collapse function
3753 * will not handle this page. But page splitting can happen.
3754 * Do this check under compound_page_lock(). The caller should
3755 * hold it.
3756 */
3757 ret = -EBUSY;
7ec99d62 3758 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3759 goto out;
3760
3761 lock_page_cgroup(pc);
3762
3763 ret = -EINVAL;
3764 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3765 goto unlock;
3766
312734c0 3767 move_lock_mem_cgroup(from, &flags);
f817ed48 3768
2ff76f11 3769 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3770 /* Update mapped_file data for mem_cgroup */
3771 preempt_disable();
3772 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3773 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3774 preempt_enable();
d69b042f 3775 }
b2402857 3776 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 3777
854ffa8d 3778 /* caller should have done css_get */
08e552c6 3779 pc->mem_cgroup = to;
b2402857 3780 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 3781 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3782 ret = 0;
3783unlock:
57f9fd7d 3784 unlock_page_cgroup(pc);
d2265e6f
KH
3785 /*
3786 * check events
3787 */
5564e88b
JW
3788 memcg_check_events(to, page);
3789 memcg_check_events(from, page);
de3638d9 3790out:
f817ed48
KH
3791 return ret;
3792}
3793
2ef37d3f
MH
3794/**
3795 * mem_cgroup_move_parent - moves page to the parent group
3796 * @page: the page to move
3797 * @pc: page_cgroup of the page
3798 * @child: page's cgroup
3799 *
3800 * move charges to its parent or the root cgroup if the group has no
3801 * parent (aka use_hierarchy==0).
3802 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3803 * mem_cgroup_move_account fails) the failure is always temporary and
3804 * it signals a race with a page removal/uncharge or migration. In the
3805 * first case the page is on the way out and it will vanish from the LRU
3806 * on the next attempt and the call should be retried later.
3807 * Isolation from the LRU fails only if page has been isolated from
3808 * the LRU since we looked at it and that usually means either global
3809 * reclaim or migration going on. The page will either get back to the
3810 * LRU or vanish.
3811 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3812 * (!PageCgroupUsed) or moved to a different group. The page will
3813 * disappear in the next attempt.
f817ed48 3814 */
5564e88b
JW
3815static int mem_cgroup_move_parent(struct page *page,
3816 struct page_cgroup *pc,
6068bf01 3817 struct mem_cgroup *child)
f817ed48 3818{
f817ed48 3819 struct mem_cgroup *parent;
7ec99d62 3820 unsigned int nr_pages;
4be4489f 3821 unsigned long uninitialized_var(flags);
f817ed48
KH
3822 int ret;
3823
d8423011 3824 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3825
57f9fd7d
DN
3826 ret = -EBUSY;
3827 if (!get_page_unless_zero(page))
3828 goto out;
3829 if (isolate_lru_page(page))
3830 goto put;
52dbb905 3831
7ec99d62 3832 nr_pages = hpage_nr_pages(page);
08e552c6 3833
cc926f78
KH
3834 parent = parent_mem_cgroup(child);
3835 /*
3836 * If no parent, move charges to root cgroup.
3837 */
3838 if (!parent)
3839 parent = root_mem_cgroup;
f817ed48 3840
2ef37d3f
MH
3841 if (nr_pages > 1) {
3842 VM_BUG_ON(!PageTransHuge(page));
987eba66 3843 flags = compound_lock_irqsave(page);
2ef37d3f 3844 }
987eba66 3845
cc926f78 3846 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3847 pc, child, parent);
cc926f78
KH
3848 if (!ret)
3849 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3850
7ec99d62 3851 if (nr_pages > 1)
987eba66 3852 compound_unlock_irqrestore(page, flags);
08e552c6 3853 putback_lru_page(page);
57f9fd7d 3854put:
40d58138 3855 put_page(page);
57f9fd7d 3856out:
f817ed48
KH
3857 return ret;
3858}
3859
7a81b88c
KH
3860/*
3861 * Charge the memory controller for page usage.
3862 * Return
3863 * 0 if the charge was successful
3864 * < 0 if the cgroup is over its limit
3865 */
3866static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3867 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3868{
c0ff4b85 3869 struct mem_cgroup *memcg = NULL;
7ec99d62 3870 unsigned int nr_pages = 1;
8493ae43 3871 bool oom = true;
7a81b88c 3872 int ret;
ec168510 3873
37c2ac78 3874 if (PageTransHuge(page)) {
7ec99d62 3875 nr_pages <<= compound_order(page);
37c2ac78 3876 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3877 /*
3878 * Never OOM-kill a process for a huge page. The
3879 * fault handler will fall back to regular pages.
3880 */
3881 oom = false;
37c2ac78 3882 }
7a81b88c 3883
c0ff4b85 3884 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3885 if (ret == -ENOMEM)
7a81b88c 3886 return ret;
ce587e65 3887 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3888 return 0;
8a9f3ccd
BS
3889}
3890
7a81b88c
KH
3891int mem_cgroup_newpage_charge(struct page *page,
3892 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3893{
f8d66542 3894 if (mem_cgroup_disabled())
cede86ac 3895 return 0;
7a0524cf
JW
3896 VM_BUG_ON(page_mapped(page));
3897 VM_BUG_ON(page->mapping && !PageAnon(page));
3898 VM_BUG_ON(!mm);
217bc319 3899 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3900 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3901}
3902
54595fe2
KH
3903/*
3904 * While swap-in, try_charge -> commit or cancel, the page is locked.
3905 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3906 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3907 * "commit()" or removed by "cancel()"
3908 */
0435a2fd
JW
3909static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3910 struct page *page,
3911 gfp_t mask,
3912 struct mem_cgroup **memcgp)
8c7c6e34 3913{
c0ff4b85 3914 struct mem_cgroup *memcg;
90deb788 3915 struct page_cgroup *pc;
54595fe2 3916 int ret;
8c7c6e34 3917
90deb788
JW
3918 pc = lookup_page_cgroup(page);
3919 /*
3920 * Every swap fault against a single page tries to charge the
3921 * page, bail as early as possible. shmem_unuse() encounters
3922 * already charged pages, too. The USED bit is protected by
3923 * the page lock, which serializes swap cache removal, which
3924 * in turn serializes uncharging.
3925 */
3926 if (PageCgroupUsed(pc))
3927 return 0;
8c7c6e34
KH
3928 if (!do_swap_account)
3929 goto charge_cur_mm;
c0ff4b85
R
3930 memcg = try_get_mem_cgroup_from_page(page);
3931 if (!memcg)
54595fe2 3932 goto charge_cur_mm;
72835c86
JW
3933 *memcgp = memcg;
3934 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3935 css_put(&memcg->css);
38c5d72f
KH
3936 if (ret == -EINTR)
3937 ret = 0;
54595fe2 3938 return ret;
8c7c6e34 3939charge_cur_mm:
38c5d72f
KH
3940 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3941 if (ret == -EINTR)
3942 ret = 0;
3943 return ret;
8c7c6e34
KH
3944}
3945
0435a2fd
JW
3946int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3947 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3948{
3949 *memcgp = NULL;
3950 if (mem_cgroup_disabled())
3951 return 0;
bdf4f4d2
JW
3952 /*
3953 * A racing thread's fault, or swapoff, may have already
3954 * updated the pte, and even removed page from swap cache: in
3955 * those cases unuse_pte()'s pte_same() test will fail; but
3956 * there's also a KSM case which does need to charge the page.
3957 */
3958 if (!PageSwapCache(page)) {
3959 int ret;
3960
3961 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3962 if (ret == -EINTR)
3963 ret = 0;
3964 return ret;
3965 }
0435a2fd
JW
3966 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3967}
3968
827a03d2
JW
3969void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3970{
3971 if (mem_cgroup_disabled())
3972 return;
3973 if (!memcg)
3974 return;
3975 __mem_cgroup_cancel_charge(memcg, 1);
3976}
3977
83aae4c7 3978static void
72835c86 3979__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3980 enum charge_type ctype)
7a81b88c 3981{
f8d66542 3982 if (mem_cgroup_disabled())
7a81b88c 3983 return;
72835c86 3984 if (!memcg)
7a81b88c 3985 return;
5a6475a4 3986
ce587e65 3987 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3988 /*
3989 * Now swap is on-memory. This means this page may be
3990 * counted both as mem and swap....double count.
03f3c433
KH
3991 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3992 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3993 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3994 */
03f3c433 3995 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3996 swp_entry_t ent = {.val = page_private(page)};
86493009 3997 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3998 }
7a81b88c
KH
3999}
4000
72835c86
JW
4001void mem_cgroup_commit_charge_swapin(struct page *page,
4002 struct mem_cgroup *memcg)
83aae4c7 4003{
72835c86 4004 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4005 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4006}
4007
827a03d2
JW
4008int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4009 gfp_t gfp_mask)
7a81b88c 4010{
827a03d2
JW
4011 struct mem_cgroup *memcg = NULL;
4012 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4013 int ret;
4014
f8d66542 4015 if (mem_cgroup_disabled())
827a03d2
JW
4016 return 0;
4017 if (PageCompound(page))
4018 return 0;
4019
827a03d2
JW
4020 if (!PageSwapCache(page))
4021 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4022 else { /* page is swapcache/shmem */
0435a2fd
JW
4023 ret = __mem_cgroup_try_charge_swapin(mm, page,
4024 gfp_mask, &memcg);
827a03d2
JW
4025 if (!ret)
4026 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4027 }
4028 return ret;
7a81b88c
KH
4029}
4030
c0ff4b85 4031static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4032 unsigned int nr_pages,
4033 const enum charge_type ctype)
569b846d
KH
4034{
4035 struct memcg_batch_info *batch = NULL;
4036 bool uncharge_memsw = true;
7ec99d62 4037
569b846d
KH
4038 /* If swapout, usage of swap doesn't decrease */
4039 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4040 uncharge_memsw = false;
569b846d
KH
4041
4042 batch = &current->memcg_batch;
4043 /*
4044 * In usual, we do css_get() when we remember memcg pointer.
4045 * But in this case, we keep res->usage until end of a series of
4046 * uncharges. Then, it's ok to ignore memcg's refcnt.
4047 */
4048 if (!batch->memcg)
c0ff4b85 4049 batch->memcg = memcg;
3c11ecf4
KH
4050 /*
4051 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4052 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4053 * the same cgroup and we have chance to coalesce uncharges.
4054 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4055 * because we want to do uncharge as soon as possible.
4056 */
4057
4058 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4059 goto direct_uncharge;
4060
7ec99d62 4061 if (nr_pages > 1)
ec168510
AA
4062 goto direct_uncharge;
4063
569b846d
KH
4064 /*
4065 * In typical case, batch->memcg == mem. This means we can
4066 * merge a series of uncharges to an uncharge of res_counter.
4067 * If not, we uncharge res_counter ony by one.
4068 */
c0ff4b85 4069 if (batch->memcg != memcg)
569b846d
KH
4070 goto direct_uncharge;
4071 /* remember freed charge and uncharge it later */
7ffd4ca7 4072 batch->nr_pages++;
569b846d 4073 if (uncharge_memsw)
7ffd4ca7 4074 batch->memsw_nr_pages++;
569b846d
KH
4075 return;
4076direct_uncharge:
c0ff4b85 4077 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4078 if (uncharge_memsw)
c0ff4b85
R
4079 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4080 if (unlikely(batch->memcg != memcg))
4081 memcg_oom_recover(memcg);
569b846d 4082}
7a81b88c 4083
8a9f3ccd 4084/*
69029cd5 4085 * uncharge if !page_mapped(page)
8a9f3ccd 4086 */
8c7c6e34 4087static struct mem_cgroup *
0030f535
JW
4088__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4089 bool end_migration)
8a9f3ccd 4090{
c0ff4b85 4091 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4092 unsigned int nr_pages = 1;
4093 struct page_cgroup *pc;
b2402857 4094 bool anon;
8a9f3ccd 4095
f8d66542 4096 if (mem_cgroup_disabled())
8c7c6e34 4097 return NULL;
4077960e 4098
0c59b89c 4099 VM_BUG_ON(PageSwapCache(page));
d13d1443 4100
37c2ac78 4101 if (PageTransHuge(page)) {
7ec99d62 4102 nr_pages <<= compound_order(page);
37c2ac78
AA
4103 VM_BUG_ON(!PageTransHuge(page));
4104 }
8697d331 4105 /*
3c541e14 4106 * Check if our page_cgroup is valid
8697d331 4107 */
52d4b9ac 4108 pc = lookup_page_cgroup(page);
cfa44946 4109 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4110 return NULL;
b9c565d5 4111
52d4b9ac 4112 lock_page_cgroup(pc);
d13d1443 4113
c0ff4b85 4114 memcg = pc->mem_cgroup;
8c7c6e34 4115
d13d1443
KH
4116 if (!PageCgroupUsed(pc))
4117 goto unlock_out;
4118
b2402857
KH
4119 anon = PageAnon(page);
4120
d13d1443 4121 switch (ctype) {
41326c17 4122 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4123 /*
4124 * Generally PageAnon tells if it's the anon statistics to be
4125 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4126 * used before page reached the stage of being marked PageAnon.
4127 */
b2402857
KH
4128 anon = true;
4129 /* fallthrough */
8a9478ca 4130 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4131 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4132 if (page_mapped(page))
4133 goto unlock_out;
4134 /*
4135 * Pages under migration may not be uncharged. But
4136 * end_migration() /must/ be the one uncharging the
4137 * unused post-migration page and so it has to call
4138 * here with the migration bit still set. See the
4139 * res_counter handling below.
4140 */
4141 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4142 goto unlock_out;
4143 break;
4144 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4145 if (!PageAnon(page)) { /* Shared memory */
4146 if (page->mapping && !page_is_file_cache(page))
4147 goto unlock_out;
4148 } else if (page_mapped(page)) /* Anon */
4149 goto unlock_out;
4150 break;
4151 default:
4152 break;
52d4b9ac 4153 }
d13d1443 4154
b2402857 4155 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 4156
52d4b9ac 4157 ClearPageCgroupUsed(pc);
544122e5
KH
4158 /*
4159 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4160 * freed from LRU. This is safe because uncharged page is expected not
4161 * to be reused (freed soon). Exception is SwapCache, it's handled by
4162 * special functions.
4163 */
b9c565d5 4164
52d4b9ac 4165 unlock_page_cgroup(pc);
f75ca962 4166 /*
c0ff4b85 4167 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4168 * will never be freed.
4169 */
c0ff4b85 4170 memcg_check_events(memcg, page);
f75ca962 4171 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4172 mem_cgroup_swap_statistics(memcg, true);
4173 mem_cgroup_get(memcg);
f75ca962 4174 }
0030f535
JW
4175 /*
4176 * Migration does not charge the res_counter for the
4177 * replacement page, so leave it alone when phasing out the
4178 * page that is unused after the migration.
4179 */
4180 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4181 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4182
c0ff4b85 4183 return memcg;
d13d1443
KH
4184
4185unlock_out:
4186 unlock_page_cgroup(pc);
8c7c6e34 4187 return NULL;
3c541e14
BS
4188}
4189
69029cd5
KH
4190void mem_cgroup_uncharge_page(struct page *page)
4191{
52d4b9ac
KH
4192 /* early check. */
4193 if (page_mapped(page))
4194 return;
40f23a21 4195 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
4196 if (PageSwapCache(page))
4197 return;
0030f535 4198 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4199}
4200
4201void mem_cgroup_uncharge_cache_page(struct page *page)
4202{
4203 VM_BUG_ON(page_mapped(page));
b7abea96 4204 VM_BUG_ON(page->mapping);
0030f535 4205 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4206}
4207
569b846d
KH
4208/*
4209 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4210 * In that cases, pages are freed continuously and we can expect pages
4211 * are in the same memcg. All these calls itself limits the number of
4212 * pages freed at once, then uncharge_start/end() is called properly.
4213 * This may be called prural(2) times in a context,
4214 */
4215
4216void mem_cgroup_uncharge_start(void)
4217{
4218 current->memcg_batch.do_batch++;
4219 /* We can do nest. */
4220 if (current->memcg_batch.do_batch == 1) {
4221 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4222 current->memcg_batch.nr_pages = 0;
4223 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4224 }
4225}
4226
4227void mem_cgroup_uncharge_end(void)
4228{
4229 struct memcg_batch_info *batch = &current->memcg_batch;
4230
4231 if (!batch->do_batch)
4232 return;
4233
4234 batch->do_batch--;
4235 if (batch->do_batch) /* If stacked, do nothing. */
4236 return;
4237
4238 if (!batch->memcg)
4239 return;
4240 /*
4241 * This "batch->memcg" is valid without any css_get/put etc...
4242 * bacause we hide charges behind us.
4243 */
7ffd4ca7
JW
4244 if (batch->nr_pages)
4245 res_counter_uncharge(&batch->memcg->res,
4246 batch->nr_pages * PAGE_SIZE);
4247 if (batch->memsw_nr_pages)
4248 res_counter_uncharge(&batch->memcg->memsw,
4249 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4250 memcg_oom_recover(batch->memcg);
569b846d
KH
4251 /* forget this pointer (for sanity check) */
4252 batch->memcg = NULL;
4253}
4254
e767e056 4255#ifdef CONFIG_SWAP
8c7c6e34 4256/*
e767e056 4257 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4258 * memcg information is recorded to swap_cgroup of "ent"
4259 */
8a9478ca
KH
4260void
4261mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4262{
4263 struct mem_cgroup *memcg;
8a9478ca
KH
4264 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4265
4266 if (!swapout) /* this was a swap cache but the swap is unused ! */
4267 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4268
0030f535 4269 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4270
f75ca962
KH
4271 /*
4272 * record memcg information, if swapout && memcg != NULL,
4273 * mem_cgroup_get() was called in uncharge().
4274 */
4275 if (do_swap_account && swapout && memcg)
a3b2d692 4276 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4277}
e767e056 4278#endif
8c7c6e34 4279
c255a458 4280#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4281/*
4282 * called from swap_entry_free(). remove record in swap_cgroup and
4283 * uncharge "memsw" account.
4284 */
4285void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4286{
8c7c6e34 4287 struct mem_cgroup *memcg;
a3b2d692 4288 unsigned short id;
8c7c6e34
KH
4289
4290 if (!do_swap_account)
4291 return;
4292
a3b2d692
KH
4293 id = swap_cgroup_record(ent, 0);
4294 rcu_read_lock();
4295 memcg = mem_cgroup_lookup(id);
8c7c6e34 4296 if (memcg) {
a3b2d692
KH
4297 /*
4298 * We uncharge this because swap is freed.
4299 * This memcg can be obsolete one. We avoid calling css_tryget
4300 */
0c3e73e8 4301 if (!mem_cgroup_is_root(memcg))
4e649152 4302 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4303 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4304 mem_cgroup_put(memcg);
4305 }
a3b2d692 4306 rcu_read_unlock();
d13d1443 4307}
02491447
DN
4308
4309/**
4310 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4311 * @entry: swap entry to be moved
4312 * @from: mem_cgroup which the entry is moved from
4313 * @to: mem_cgroup which the entry is moved to
4314 *
4315 * It succeeds only when the swap_cgroup's record for this entry is the same
4316 * as the mem_cgroup's id of @from.
4317 *
4318 * Returns 0 on success, -EINVAL on failure.
4319 *
4320 * The caller must have charged to @to, IOW, called res_counter_charge() about
4321 * both res and memsw, and called css_get().
4322 */
4323static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4324 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4325{
4326 unsigned short old_id, new_id;
4327
4328 old_id = css_id(&from->css);
4329 new_id = css_id(&to->css);
4330
4331 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4332 mem_cgroup_swap_statistics(from, false);
483c30b5 4333 mem_cgroup_swap_statistics(to, true);
02491447 4334 /*
483c30b5
DN
4335 * This function is only called from task migration context now.
4336 * It postpones res_counter and refcount handling till the end
4337 * of task migration(mem_cgroup_clear_mc()) for performance
4338 * improvement. But we cannot postpone mem_cgroup_get(to)
4339 * because if the process that has been moved to @to does
4340 * swap-in, the refcount of @to might be decreased to 0.
02491447 4341 */
02491447 4342 mem_cgroup_get(to);
02491447
DN
4343 return 0;
4344 }
4345 return -EINVAL;
4346}
4347#else
4348static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4349 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4350{
4351 return -EINVAL;
4352}
8c7c6e34 4353#endif
d13d1443 4354
ae41be37 4355/*
01b1ae63
KH
4356 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4357 * page belongs to.
ae41be37 4358 */
0030f535
JW
4359void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4360 struct mem_cgroup **memcgp)
ae41be37 4361{
c0ff4b85 4362 struct mem_cgroup *memcg = NULL;
b32967ff 4363 unsigned int nr_pages = 1;
7ec99d62 4364 struct page_cgroup *pc;
ac39cf8c 4365 enum charge_type ctype;
8869b8f6 4366
72835c86 4367 *memcgp = NULL;
56039efa 4368
f8d66542 4369 if (mem_cgroup_disabled())
0030f535 4370 return;
4077960e 4371
b32967ff
MG
4372 if (PageTransHuge(page))
4373 nr_pages <<= compound_order(page);
4374
52d4b9ac
KH
4375 pc = lookup_page_cgroup(page);
4376 lock_page_cgroup(pc);
4377 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4378 memcg = pc->mem_cgroup;
4379 css_get(&memcg->css);
ac39cf8c 4380 /*
4381 * At migrating an anonymous page, its mapcount goes down
4382 * to 0 and uncharge() will be called. But, even if it's fully
4383 * unmapped, migration may fail and this page has to be
4384 * charged again. We set MIGRATION flag here and delay uncharge
4385 * until end_migration() is called
4386 *
4387 * Corner Case Thinking
4388 * A)
4389 * When the old page was mapped as Anon and it's unmap-and-freed
4390 * while migration was ongoing.
4391 * If unmap finds the old page, uncharge() of it will be delayed
4392 * until end_migration(). If unmap finds a new page, it's
4393 * uncharged when it make mapcount to be 1->0. If unmap code
4394 * finds swap_migration_entry, the new page will not be mapped
4395 * and end_migration() will find it(mapcount==0).
4396 *
4397 * B)
4398 * When the old page was mapped but migraion fails, the kernel
4399 * remaps it. A charge for it is kept by MIGRATION flag even
4400 * if mapcount goes down to 0. We can do remap successfully
4401 * without charging it again.
4402 *
4403 * C)
4404 * The "old" page is under lock_page() until the end of
4405 * migration, so, the old page itself will not be swapped-out.
4406 * If the new page is swapped out before end_migraton, our
4407 * hook to usual swap-out path will catch the event.
4408 */
4409 if (PageAnon(page))
4410 SetPageCgroupMigration(pc);
e8589cc1 4411 }
52d4b9ac 4412 unlock_page_cgroup(pc);
ac39cf8c 4413 /*
4414 * If the page is not charged at this point,
4415 * we return here.
4416 */
c0ff4b85 4417 if (!memcg)
0030f535 4418 return;
01b1ae63 4419
72835c86 4420 *memcgp = memcg;
ac39cf8c 4421 /*
4422 * We charge new page before it's used/mapped. So, even if unlock_page()
4423 * is called before end_migration, we can catch all events on this new
4424 * page. In the case new page is migrated but not remapped, new page's
4425 * mapcount will be finally 0 and we call uncharge in end_migration().
4426 */
ac39cf8c 4427 if (PageAnon(page))
41326c17 4428 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4429 else
62ba7442 4430 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4431 /*
4432 * The page is committed to the memcg, but it's not actually
4433 * charged to the res_counter since we plan on replacing the
4434 * old one and only one page is going to be left afterwards.
4435 */
b32967ff 4436 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4437}
8869b8f6 4438
69029cd5 4439/* remove redundant charge if migration failed*/
c0ff4b85 4440void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4441 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4442{
ac39cf8c 4443 struct page *used, *unused;
01b1ae63 4444 struct page_cgroup *pc;
b2402857 4445 bool anon;
01b1ae63 4446
c0ff4b85 4447 if (!memcg)
01b1ae63 4448 return;
b25ed609 4449
50de1dd9 4450 if (!migration_ok) {
ac39cf8c 4451 used = oldpage;
4452 unused = newpage;
01b1ae63 4453 } else {
ac39cf8c 4454 used = newpage;
01b1ae63
KH
4455 unused = oldpage;
4456 }
0030f535 4457 anon = PageAnon(used);
7d188958
JW
4458 __mem_cgroup_uncharge_common(unused,
4459 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4460 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4461 true);
0030f535 4462 css_put(&memcg->css);
69029cd5 4463 /*
ac39cf8c 4464 * We disallowed uncharge of pages under migration because mapcount
4465 * of the page goes down to zero, temporarly.
4466 * Clear the flag and check the page should be charged.
01b1ae63 4467 */
ac39cf8c 4468 pc = lookup_page_cgroup(oldpage);
4469 lock_page_cgroup(pc);
4470 ClearPageCgroupMigration(pc);
4471 unlock_page_cgroup(pc);
ac39cf8c 4472
01b1ae63 4473 /*
ac39cf8c 4474 * If a page is a file cache, radix-tree replacement is very atomic
4475 * and we can skip this check. When it was an Anon page, its mapcount
4476 * goes down to 0. But because we added MIGRATION flage, it's not
4477 * uncharged yet. There are several case but page->mapcount check
4478 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4479 * check. (see prepare_charge() also)
69029cd5 4480 */
b2402857 4481 if (anon)
ac39cf8c 4482 mem_cgroup_uncharge_page(used);
ae41be37 4483}
78fb7466 4484
ab936cbc
KH
4485/*
4486 * At replace page cache, newpage is not under any memcg but it's on
4487 * LRU. So, this function doesn't touch res_counter but handles LRU
4488 * in correct way. Both pages are locked so we cannot race with uncharge.
4489 */
4490void mem_cgroup_replace_page_cache(struct page *oldpage,
4491 struct page *newpage)
4492{
bde05d1c 4493 struct mem_cgroup *memcg = NULL;
ab936cbc 4494 struct page_cgroup *pc;
ab936cbc 4495 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4496
4497 if (mem_cgroup_disabled())
4498 return;
4499
4500 pc = lookup_page_cgroup(oldpage);
4501 /* fix accounting on old pages */
4502 lock_page_cgroup(pc);
bde05d1c
HD
4503 if (PageCgroupUsed(pc)) {
4504 memcg = pc->mem_cgroup;
4505 mem_cgroup_charge_statistics(memcg, false, -1);
4506 ClearPageCgroupUsed(pc);
4507 }
ab936cbc
KH
4508 unlock_page_cgroup(pc);
4509
bde05d1c
HD
4510 /*
4511 * When called from shmem_replace_page(), in some cases the
4512 * oldpage has already been charged, and in some cases not.
4513 */
4514 if (!memcg)
4515 return;
ab936cbc
KH
4516 /*
4517 * Even if newpage->mapping was NULL before starting replacement,
4518 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4519 * LRU while we overwrite pc->mem_cgroup.
4520 */
ce587e65 4521 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4522}
4523
f212ad7c
DN
4524#ifdef CONFIG_DEBUG_VM
4525static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4526{
4527 struct page_cgroup *pc;
4528
4529 pc = lookup_page_cgroup(page);
cfa44946
JW
4530 /*
4531 * Can be NULL while feeding pages into the page allocator for
4532 * the first time, i.e. during boot or memory hotplug;
4533 * or when mem_cgroup_disabled().
4534 */
f212ad7c
DN
4535 if (likely(pc) && PageCgroupUsed(pc))
4536 return pc;
4537 return NULL;
4538}
4539
4540bool mem_cgroup_bad_page_check(struct page *page)
4541{
4542 if (mem_cgroup_disabled())
4543 return false;
4544
4545 return lookup_page_cgroup_used(page) != NULL;
4546}
4547
4548void mem_cgroup_print_bad_page(struct page *page)
4549{
4550 struct page_cgroup *pc;
4551
4552 pc = lookup_page_cgroup_used(page);
4553 if (pc) {
d045197f
AM
4554 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4555 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4556 }
4557}
4558#endif
4559
d38d2a75 4560static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4561 unsigned long long val)
628f4235 4562{
81d39c20 4563 int retry_count;
3c11ecf4 4564 u64 memswlimit, memlimit;
628f4235 4565 int ret = 0;
81d39c20
KH
4566 int children = mem_cgroup_count_children(memcg);
4567 u64 curusage, oldusage;
3c11ecf4 4568 int enlarge;
81d39c20
KH
4569
4570 /*
4571 * For keeping hierarchical_reclaim simple, how long we should retry
4572 * is depends on callers. We set our retry-count to be function
4573 * of # of children which we should visit in this loop.
4574 */
4575 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4576
4577 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4578
3c11ecf4 4579 enlarge = 0;
8c7c6e34 4580 while (retry_count) {
628f4235
KH
4581 if (signal_pending(current)) {
4582 ret = -EINTR;
4583 break;
4584 }
8c7c6e34
KH
4585 /*
4586 * Rather than hide all in some function, I do this in
4587 * open coded manner. You see what this really does.
aaad153e 4588 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4589 */
4590 mutex_lock(&set_limit_mutex);
4591 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4592 if (memswlimit < val) {
4593 ret = -EINVAL;
4594 mutex_unlock(&set_limit_mutex);
628f4235
KH
4595 break;
4596 }
3c11ecf4
KH
4597
4598 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4599 if (memlimit < val)
4600 enlarge = 1;
4601
8c7c6e34 4602 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4603 if (!ret) {
4604 if (memswlimit == val)
4605 memcg->memsw_is_minimum = true;
4606 else
4607 memcg->memsw_is_minimum = false;
4608 }
8c7c6e34
KH
4609 mutex_unlock(&set_limit_mutex);
4610
4611 if (!ret)
4612 break;
4613
5660048c
JW
4614 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4615 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4616 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4617 /* Usage is reduced ? */
4618 if (curusage >= oldusage)
4619 retry_count--;
4620 else
4621 oldusage = curusage;
8c7c6e34 4622 }
3c11ecf4
KH
4623 if (!ret && enlarge)
4624 memcg_oom_recover(memcg);
14797e23 4625
8c7c6e34
KH
4626 return ret;
4627}
4628
338c8431
LZ
4629static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4630 unsigned long long val)
8c7c6e34 4631{
81d39c20 4632 int retry_count;
3c11ecf4 4633 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4634 int children = mem_cgroup_count_children(memcg);
4635 int ret = -EBUSY;
3c11ecf4 4636 int enlarge = 0;
8c7c6e34 4637
81d39c20
KH
4638 /* see mem_cgroup_resize_res_limit */
4639 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4640 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4641 while (retry_count) {
4642 if (signal_pending(current)) {
4643 ret = -EINTR;
4644 break;
4645 }
4646 /*
4647 * Rather than hide all in some function, I do this in
4648 * open coded manner. You see what this really does.
aaad153e 4649 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4650 */
4651 mutex_lock(&set_limit_mutex);
4652 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4653 if (memlimit > val) {
4654 ret = -EINVAL;
4655 mutex_unlock(&set_limit_mutex);
4656 break;
4657 }
3c11ecf4
KH
4658 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4659 if (memswlimit < val)
4660 enlarge = 1;
8c7c6e34 4661 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4662 if (!ret) {
4663 if (memlimit == val)
4664 memcg->memsw_is_minimum = true;
4665 else
4666 memcg->memsw_is_minimum = false;
4667 }
8c7c6e34
KH
4668 mutex_unlock(&set_limit_mutex);
4669
4670 if (!ret)
4671 break;
4672
5660048c
JW
4673 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4674 MEM_CGROUP_RECLAIM_NOSWAP |
4675 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4676 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4677 /* Usage is reduced ? */
8c7c6e34 4678 if (curusage >= oldusage)
628f4235 4679 retry_count--;
81d39c20
KH
4680 else
4681 oldusage = curusage;
628f4235 4682 }
3c11ecf4
KH
4683 if (!ret && enlarge)
4684 memcg_oom_recover(memcg);
628f4235
KH
4685 return ret;
4686}
4687
4e416953 4688unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4689 gfp_t gfp_mask,
4690 unsigned long *total_scanned)
4e416953
BS
4691{
4692 unsigned long nr_reclaimed = 0;
4693 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4694 unsigned long reclaimed;
4695 int loop = 0;
4696 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4697 unsigned long long excess;
0ae5e89c 4698 unsigned long nr_scanned;
4e416953
BS
4699
4700 if (order > 0)
4701 return 0;
4702
00918b6a 4703 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4704 /*
4705 * This loop can run a while, specially if mem_cgroup's continuously
4706 * keep exceeding their soft limit and putting the system under
4707 * pressure
4708 */
4709 do {
4710 if (next_mz)
4711 mz = next_mz;
4712 else
4713 mz = mem_cgroup_largest_soft_limit_node(mctz);
4714 if (!mz)
4715 break;
4716
0ae5e89c 4717 nr_scanned = 0;
d79154bb 4718 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4719 gfp_mask, &nr_scanned);
4e416953 4720 nr_reclaimed += reclaimed;
0ae5e89c 4721 *total_scanned += nr_scanned;
4e416953
BS
4722 spin_lock(&mctz->lock);
4723
4724 /*
4725 * If we failed to reclaim anything from this memory cgroup
4726 * it is time to move on to the next cgroup
4727 */
4728 next_mz = NULL;
4729 if (!reclaimed) {
4730 do {
4731 /*
4732 * Loop until we find yet another one.
4733 *
4734 * By the time we get the soft_limit lock
4735 * again, someone might have aded the
4736 * group back on the RB tree. Iterate to
4737 * make sure we get a different mem.
4738 * mem_cgroup_largest_soft_limit_node returns
4739 * NULL if no other cgroup is present on
4740 * the tree
4741 */
4742 next_mz =
4743 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4744 if (next_mz == mz)
d79154bb 4745 css_put(&next_mz->memcg->css);
39cc98f1 4746 else /* next_mz == NULL or other memcg */
4e416953
BS
4747 break;
4748 } while (1);
4749 }
d79154bb
HD
4750 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4751 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4752 /*
4753 * One school of thought says that we should not add
4754 * back the node to the tree if reclaim returns 0.
4755 * But our reclaim could return 0, simply because due
4756 * to priority we are exposing a smaller subset of
4757 * memory to reclaim from. Consider this as a longer
4758 * term TODO.
4759 */
ef8745c1 4760 /* If excess == 0, no tree ops */
d79154bb 4761 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4762 spin_unlock(&mctz->lock);
d79154bb 4763 css_put(&mz->memcg->css);
4e416953
BS
4764 loop++;
4765 /*
4766 * Could not reclaim anything and there are no more
4767 * mem cgroups to try or we seem to be looping without
4768 * reclaiming anything.
4769 */
4770 if (!nr_reclaimed &&
4771 (next_mz == NULL ||
4772 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4773 break;
4774 } while (!nr_reclaimed);
4775 if (next_mz)
d79154bb 4776 css_put(&next_mz->memcg->css);
4e416953
BS
4777 return nr_reclaimed;
4778}
4779
2ef37d3f
MH
4780/**
4781 * mem_cgroup_force_empty_list - clears LRU of a group
4782 * @memcg: group to clear
4783 * @node: NUMA node
4784 * @zid: zone id
4785 * @lru: lru to to clear
4786 *
3c935d18 4787 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4788 * reclaim the pages page themselves - pages are moved to the parent (or root)
4789 * group.
cc847582 4790 */
2ef37d3f 4791static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4792 int node, int zid, enum lru_list lru)
cc847582 4793{
bea8c150 4794 struct lruvec *lruvec;
2ef37d3f 4795 unsigned long flags;
072c56c1 4796 struct list_head *list;
925b7673
JW
4797 struct page *busy;
4798 struct zone *zone;
072c56c1 4799
08e552c6 4800 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4801 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4802 list = &lruvec->lists[lru];
cc847582 4803
f817ed48 4804 busy = NULL;
2ef37d3f 4805 do {
925b7673 4806 struct page_cgroup *pc;
5564e88b
JW
4807 struct page *page;
4808
08e552c6 4809 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4810 if (list_empty(list)) {
08e552c6 4811 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4812 break;
f817ed48 4813 }
925b7673
JW
4814 page = list_entry(list->prev, struct page, lru);
4815 if (busy == page) {
4816 list_move(&page->lru, list);
648bcc77 4817 busy = NULL;
08e552c6 4818 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4819 continue;
4820 }
08e552c6 4821 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4822
925b7673 4823 pc = lookup_page_cgroup(page);
5564e88b 4824
3c935d18 4825 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4826 /* found lock contention or "pc" is obsolete. */
925b7673 4827 busy = page;
f817ed48
KH
4828 cond_resched();
4829 } else
4830 busy = NULL;
2ef37d3f 4831 } while (!list_empty(list));
cc847582
KH
4832}
4833
4834/*
c26251f9
MH
4835 * make mem_cgroup's charge to be 0 if there is no task by moving
4836 * all the charges and pages to the parent.
cc847582 4837 * This enables deleting this mem_cgroup.
c26251f9
MH
4838 *
4839 * Caller is responsible for holding css reference on the memcg.
cc847582 4840 */
ab5196c2 4841static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4842{
c26251f9 4843 int node, zid;
bea207c8 4844 u64 usage;
f817ed48 4845
fce66477 4846 do {
52d4b9ac
KH
4847 /* This is for making all *used* pages to be on LRU. */
4848 lru_add_drain_all();
c0ff4b85 4849 drain_all_stock_sync(memcg);
c0ff4b85 4850 mem_cgroup_start_move(memcg);
31aaea4a 4851 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4852 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4853 enum lru_list lru;
4854 for_each_lru(lru) {
2ef37d3f 4855 mem_cgroup_force_empty_list(memcg,
f156ab93 4856 node, zid, lru);
f817ed48 4857 }
1ecaab2b 4858 }
f817ed48 4859 }
c0ff4b85
R
4860 mem_cgroup_end_move(memcg);
4861 memcg_oom_recover(memcg);
52d4b9ac 4862 cond_resched();
f817ed48 4863
2ef37d3f 4864 /*
bea207c8
GC
4865 * Kernel memory may not necessarily be trackable to a specific
4866 * process. So they are not migrated, and therefore we can't
4867 * expect their value to drop to 0 here.
4868 * Having res filled up with kmem only is enough.
4869 *
2ef37d3f
MH
4870 * This is a safety check because mem_cgroup_force_empty_list
4871 * could have raced with mem_cgroup_replace_page_cache callers
4872 * so the lru seemed empty but the page could have been added
4873 * right after the check. RES_USAGE should be safe as we always
4874 * charge before adding to the LRU.
4875 */
bea207c8
GC
4876 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4877 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4878 } while (usage > 0);
c26251f9
MH
4879}
4880
b5f99b53
GC
4881/*
4882 * This mainly exists for tests during the setting of set of use_hierarchy.
4883 * Since this is the very setting we are changing, the current hierarchy value
4884 * is meaningless
4885 */
4886static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4887{
4888 struct cgroup *pos;
4889
4890 /* bounce at first found */
4891 cgroup_for_each_child(pos, memcg->css.cgroup)
4892 return true;
4893 return false;
4894}
4895
4896/*
0999821b
GC
4897 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4898 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4899 * from mem_cgroup_count_children(), in the sense that we don't really care how
4900 * many children we have; we only need to know if we have any. It also counts
4901 * any memcg without hierarchy as infertile.
4902 */
4903static inline bool memcg_has_children(struct mem_cgroup *memcg)
4904{
4905 return memcg->use_hierarchy && __memcg_has_children(memcg);
4906}
4907
c26251f9
MH
4908/*
4909 * Reclaims as many pages from the given memcg as possible and moves
4910 * the rest to the parent.
4911 *
4912 * Caller is responsible for holding css reference for memcg.
4913 */
4914static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4915{
4916 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4917 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4918
c1e862c1 4919 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4920 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4921 return -EBUSY;
4922
c1e862c1
KH
4923 /* we call try-to-free pages for make this cgroup empty */
4924 lru_add_drain_all();
f817ed48 4925 /* try to free all pages in this cgroup */
569530fb 4926 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4927 int progress;
c1e862c1 4928
c26251f9
MH
4929 if (signal_pending(current))
4930 return -EINTR;
4931
c0ff4b85 4932 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4933 false);
c1e862c1 4934 if (!progress) {
f817ed48 4935 nr_retries--;
c1e862c1 4936 /* maybe some writeback is necessary */
8aa7e847 4937 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4938 }
f817ed48
KH
4939
4940 }
08e552c6 4941 lru_add_drain();
ab5196c2
MH
4942 mem_cgroup_reparent_charges(memcg);
4943
4944 return 0;
cc847582
KH
4945}
4946
6bbda35c 4947static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4948{
c26251f9
MH
4949 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4950 int ret;
4951
d8423011
MH
4952 if (mem_cgroup_is_root(memcg))
4953 return -EINVAL;
c26251f9
MH
4954 css_get(&memcg->css);
4955 ret = mem_cgroup_force_empty(memcg);
4956 css_put(&memcg->css);
4957
4958 return ret;
c1e862c1
KH
4959}
4960
4961
18f59ea7
BS
4962static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4963{
4964 return mem_cgroup_from_cont(cont)->use_hierarchy;
4965}
4966
4967static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4968 u64 val)
4969{
4970 int retval = 0;
c0ff4b85 4971 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4972 struct cgroup *parent = cont->parent;
c0ff4b85 4973 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4974
4975 if (parent)
c0ff4b85 4976 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 4977
0999821b 4978 mutex_lock(&memcg_create_mutex);
567fb435
GC
4979
4980 if (memcg->use_hierarchy == val)
4981 goto out;
4982
18f59ea7 4983 /*
af901ca1 4984 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4985 * in the child subtrees. If it is unset, then the change can
4986 * occur, provided the current cgroup has no children.
4987 *
4988 * For the root cgroup, parent_mem is NULL, we allow value to be
4989 * set if there are no children.
4990 */
c0ff4b85 4991 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4992 (val == 1 || val == 0)) {
b5f99b53 4993 if (!__memcg_has_children(memcg))
c0ff4b85 4994 memcg->use_hierarchy = val;
18f59ea7
BS
4995 else
4996 retval = -EBUSY;
4997 } else
4998 retval = -EINVAL;
567fb435
GC
4999
5000out:
0999821b 5001 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5002
5003 return retval;
5004}
5005
0c3e73e8 5006
c0ff4b85 5007static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5008 enum mem_cgroup_stat_index idx)
0c3e73e8 5009{
7d74b06f 5010 struct mem_cgroup *iter;
7a159cc9 5011 long val = 0;
0c3e73e8 5012
7a159cc9 5013 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5014 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5015 val += mem_cgroup_read_stat(iter, idx);
5016
5017 if (val < 0) /* race ? */
5018 val = 0;
5019 return val;
0c3e73e8
BS
5020}
5021
c0ff4b85 5022static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5023{
7d74b06f 5024 u64 val;
104f3928 5025
c0ff4b85 5026 if (!mem_cgroup_is_root(memcg)) {
104f3928 5027 if (!swap)
65c64ce8 5028 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5029 else
65c64ce8 5030 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5031 }
5032
c0ff4b85
R
5033 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5034 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5035
7d74b06f 5036 if (swap)
bff6bb83 5037 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5038
5039 return val << PAGE_SHIFT;
5040}
5041
af36f906
TH
5042static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5043 struct file *file, char __user *buf,
5044 size_t nbytes, loff_t *ppos)
8cdea7c0 5045{
c0ff4b85 5046 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5047 char str[64];
104f3928 5048 u64 val;
86ae53e1
GC
5049 int name, len;
5050 enum res_type type;
8c7c6e34
KH
5051
5052 type = MEMFILE_TYPE(cft->private);
5053 name = MEMFILE_ATTR(cft->private);
af36f906 5054
8c7c6e34
KH
5055 switch (type) {
5056 case _MEM:
104f3928 5057 if (name == RES_USAGE)
c0ff4b85 5058 val = mem_cgroup_usage(memcg, false);
104f3928 5059 else
c0ff4b85 5060 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5061 break;
5062 case _MEMSWAP:
104f3928 5063 if (name == RES_USAGE)
c0ff4b85 5064 val = mem_cgroup_usage(memcg, true);
104f3928 5065 else
c0ff4b85 5066 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5067 break;
510fc4e1
GC
5068 case _KMEM:
5069 val = res_counter_read_u64(&memcg->kmem, name);
5070 break;
8c7c6e34
KH
5071 default:
5072 BUG();
8c7c6e34 5073 }
af36f906
TH
5074
5075 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5076 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5077}
510fc4e1
GC
5078
5079static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5080{
5081 int ret = -EINVAL;
5082#ifdef CONFIG_MEMCG_KMEM
5083 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5084 /*
5085 * For simplicity, we won't allow this to be disabled. It also can't
5086 * be changed if the cgroup has children already, or if tasks had
5087 * already joined.
5088 *
5089 * If tasks join before we set the limit, a person looking at
5090 * kmem.usage_in_bytes will have no way to determine when it took
5091 * place, which makes the value quite meaningless.
5092 *
5093 * After it first became limited, changes in the value of the limit are
5094 * of course permitted.
510fc4e1 5095 */
0999821b 5096 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5097 mutex_lock(&set_limit_mutex);
5098 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5099 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5100 ret = -EBUSY;
5101 goto out;
5102 }
5103 ret = res_counter_set_limit(&memcg->kmem, val);
5104 VM_BUG_ON(ret);
5105
55007d84
GC
5106 ret = memcg_update_cache_sizes(memcg);
5107 if (ret) {
5108 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5109 goto out;
5110 }
692e89ab
GC
5111 static_key_slow_inc(&memcg_kmem_enabled_key);
5112 /*
5113 * setting the active bit after the inc will guarantee no one
5114 * starts accounting before all call sites are patched
5115 */
5116 memcg_kmem_set_active(memcg);
5117
7de37682
GC
5118 /*
5119 * kmem charges can outlive the cgroup. In the case of slab
5120 * pages, for instance, a page contain objects from various
5121 * processes, so it is unfeasible to migrate them away. We
5122 * need to reference count the memcg because of that.
5123 */
5124 mem_cgroup_get(memcg);
510fc4e1
GC
5125 } else
5126 ret = res_counter_set_limit(&memcg->kmem, val);
5127out:
5128 mutex_unlock(&set_limit_mutex);
0999821b 5129 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5130#endif
5131 return ret;
5132}
5133
6d043990 5134#ifdef CONFIG_MEMCG_KMEM
55007d84 5135static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5136{
55007d84 5137 int ret = 0;
510fc4e1
GC
5138 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5139 if (!parent)
55007d84
GC
5140 goto out;
5141
510fc4e1 5142 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5143 /*
5144 * When that happen, we need to disable the static branch only on those
5145 * memcgs that enabled it. To achieve this, we would be forced to
5146 * complicate the code by keeping track of which memcgs were the ones
5147 * that actually enabled limits, and which ones got it from its
5148 * parents.
5149 *
5150 * It is a lot simpler just to do static_key_slow_inc() on every child
5151 * that is accounted.
5152 */
55007d84
GC
5153 if (!memcg_kmem_is_active(memcg))
5154 goto out;
5155
5156 /*
5157 * destroy(), called if we fail, will issue static_key_slow_inc() and
5158 * mem_cgroup_put() if kmem is enabled. We have to either call them
5159 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5160 * this more consistent, since it always leads to the same destroy path
5161 */
5162 mem_cgroup_get(memcg);
5163 static_key_slow_inc(&memcg_kmem_enabled_key);
5164
5165 mutex_lock(&set_limit_mutex);
5166 ret = memcg_update_cache_sizes(memcg);
5167 mutex_unlock(&set_limit_mutex);
55007d84
GC
5168out:
5169 return ret;
510fc4e1 5170}
6d043990 5171#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5172
628f4235
KH
5173/*
5174 * The user of this function is...
5175 * RES_LIMIT.
5176 */
856c13aa
PM
5177static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5178 const char *buffer)
8cdea7c0 5179{
628f4235 5180 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5181 enum res_type type;
5182 int name;
628f4235
KH
5183 unsigned long long val;
5184 int ret;
5185
8c7c6e34
KH
5186 type = MEMFILE_TYPE(cft->private);
5187 name = MEMFILE_ATTR(cft->private);
af36f906 5188
8c7c6e34 5189 switch (name) {
628f4235 5190 case RES_LIMIT:
4b3bde4c
BS
5191 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5192 ret = -EINVAL;
5193 break;
5194 }
628f4235
KH
5195 /* This function does all necessary parse...reuse it */
5196 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5197 if (ret)
5198 break;
5199 if (type == _MEM)
628f4235 5200 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5201 else if (type == _MEMSWAP)
8c7c6e34 5202 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5203 else if (type == _KMEM)
5204 ret = memcg_update_kmem_limit(cont, val);
5205 else
5206 return -EINVAL;
628f4235 5207 break;
296c81d8
BS
5208 case RES_SOFT_LIMIT:
5209 ret = res_counter_memparse_write_strategy(buffer, &val);
5210 if (ret)
5211 break;
5212 /*
5213 * For memsw, soft limits are hard to implement in terms
5214 * of semantics, for now, we support soft limits for
5215 * control without swap
5216 */
5217 if (type == _MEM)
5218 ret = res_counter_set_soft_limit(&memcg->res, val);
5219 else
5220 ret = -EINVAL;
5221 break;
628f4235
KH
5222 default:
5223 ret = -EINVAL; /* should be BUG() ? */
5224 break;
5225 }
5226 return ret;
8cdea7c0
BS
5227}
5228
fee7b548
KH
5229static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5230 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5231{
5232 struct cgroup *cgroup;
5233 unsigned long long min_limit, min_memsw_limit, tmp;
5234
5235 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5236 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5237 cgroup = memcg->css.cgroup;
5238 if (!memcg->use_hierarchy)
5239 goto out;
5240
5241 while (cgroup->parent) {
5242 cgroup = cgroup->parent;
5243 memcg = mem_cgroup_from_cont(cgroup);
5244 if (!memcg->use_hierarchy)
5245 break;
5246 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5247 min_limit = min(min_limit, tmp);
5248 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5249 min_memsw_limit = min(min_memsw_limit, tmp);
5250 }
5251out:
5252 *mem_limit = min_limit;
5253 *memsw_limit = min_memsw_limit;
fee7b548
KH
5254}
5255
29f2a4da 5256static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5257{
af36f906 5258 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5259 int name;
5260 enum res_type type;
c84872e1 5261
8c7c6e34
KH
5262 type = MEMFILE_TYPE(event);
5263 name = MEMFILE_ATTR(event);
af36f906 5264
8c7c6e34 5265 switch (name) {
29f2a4da 5266 case RES_MAX_USAGE:
8c7c6e34 5267 if (type == _MEM)
c0ff4b85 5268 res_counter_reset_max(&memcg->res);
510fc4e1 5269 else if (type == _MEMSWAP)
c0ff4b85 5270 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5271 else if (type == _KMEM)
5272 res_counter_reset_max(&memcg->kmem);
5273 else
5274 return -EINVAL;
29f2a4da
PE
5275 break;
5276 case RES_FAILCNT:
8c7c6e34 5277 if (type == _MEM)
c0ff4b85 5278 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5279 else if (type == _MEMSWAP)
c0ff4b85 5280 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5281 else if (type == _KMEM)
5282 res_counter_reset_failcnt(&memcg->kmem);
5283 else
5284 return -EINVAL;
29f2a4da
PE
5285 break;
5286 }
f64c3f54 5287
85cc59db 5288 return 0;
c84872e1
PE
5289}
5290
7dc74be0
DN
5291static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5292 struct cftype *cft)
5293{
5294 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5295}
5296
02491447 5297#ifdef CONFIG_MMU
7dc74be0
DN
5298static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5299 struct cftype *cft, u64 val)
5300{
c0ff4b85 5301 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5302
5303 if (val >= (1 << NR_MOVE_TYPE))
5304 return -EINVAL;
ee5e8472 5305
7dc74be0 5306 /*
ee5e8472
GC
5307 * No kind of locking is needed in here, because ->can_attach() will
5308 * check this value once in the beginning of the process, and then carry
5309 * on with stale data. This means that changes to this value will only
5310 * affect task migrations starting after the change.
7dc74be0 5311 */
c0ff4b85 5312 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5313 return 0;
5314}
02491447
DN
5315#else
5316static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5317 struct cftype *cft, u64 val)
5318{
5319 return -ENOSYS;
5320}
5321#endif
7dc74be0 5322
406eb0c9 5323#ifdef CONFIG_NUMA
ab215884 5324static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5325 struct seq_file *m)
406eb0c9
YH
5326{
5327 int nid;
5328 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5329 unsigned long node_nr;
d79154bb 5330 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5331
d79154bb 5332 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5333 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5334 for_each_node_state(nid, N_MEMORY) {
d79154bb 5335 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5336 seq_printf(m, " N%d=%lu", nid, node_nr);
5337 }
5338 seq_putc(m, '\n');
5339
d79154bb 5340 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5341 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5342 for_each_node_state(nid, N_MEMORY) {
d79154bb 5343 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5344 LRU_ALL_FILE);
406eb0c9
YH
5345 seq_printf(m, " N%d=%lu", nid, node_nr);
5346 }
5347 seq_putc(m, '\n');
5348
d79154bb 5349 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5350 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5351 for_each_node_state(nid, N_MEMORY) {
d79154bb 5352 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5353 LRU_ALL_ANON);
406eb0c9
YH
5354 seq_printf(m, " N%d=%lu", nid, node_nr);
5355 }
5356 seq_putc(m, '\n');
5357
d79154bb 5358 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5359 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5360 for_each_node_state(nid, N_MEMORY) {
d79154bb 5361 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5362 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5363 seq_printf(m, " N%d=%lu", nid, node_nr);
5364 }
5365 seq_putc(m, '\n');
5366 return 0;
5367}
5368#endif /* CONFIG_NUMA */
5369
af7c4b0e
JW
5370static inline void mem_cgroup_lru_names_not_uptodate(void)
5371{
5372 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5373}
5374
ab215884 5375static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5376 struct seq_file *m)
d2ceb9b7 5377{
d79154bb 5378 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5379 struct mem_cgroup *mi;
5380 unsigned int i;
406eb0c9 5381
af7c4b0e 5382 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5383 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5384 continue;
af7c4b0e
JW
5385 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5386 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5387 }
7b854121 5388
af7c4b0e
JW
5389 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5390 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5391 mem_cgroup_read_events(memcg, i));
5392
5393 for (i = 0; i < NR_LRU_LISTS; i++)
5394 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5395 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5396
14067bb3 5397 /* Hierarchical information */
fee7b548
KH
5398 {
5399 unsigned long long limit, memsw_limit;
d79154bb 5400 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5401 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5402 if (do_swap_account)
78ccf5b5
JW
5403 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5404 memsw_limit);
fee7b548 5405 }
7f016ee8 5406
af7c4b0e
JW
5407 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5408 long long val = 0;
5409
bff6bb83 5410 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5411 continue;
af7c4b0e
JW
5412 for_each_mem_cgroup_tree(mi, memcg)
5413 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5414 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5415 }
5416
5417 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5418 unsigned long long val = 0;
5419
5420 for_each_mem_cgroup_tree(mi, memcg)
5421 val += mem_cgroup_read_events(mi, i);
5422 seq_printf(m, "total_%s %llu\n",
5423 mem_cgroup_events_names[i], val);
5424 }
5425
5426 for (i = 0; i < NR_LRU_LISTS; i++) {
5427 unsigned long long val = 0;
5428
5429 for_each_mem_cgroup_tree(mi, memcg)
5430 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5431 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5432 }
14067bb3 5433
7f016ee8 5434#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5435 {
5436 int nid, zid;
5437 struct mem_cgroup_per_zone *mz;
89abfab1 5438 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5439 unsigned long recent_rotated[2] = {0, 0};
5440 unsigned long recent_scanned[2] = {0, 0};
5441
5442 for_each_online_node(nid)
5443 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5444 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5445 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5446
89abfab1
HD
5447 recent_rotated[0] += rstat->recent_rotated[0];
5448 recent_rotated[1] += rstat->recent_rotated[1];
5449 recent_scanned[0] += rstat->recent_scanned[0];
5450 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5451 }
78ccf5b5
JW
5452 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5453 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5454 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5455 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5456 }
5457#endif
5458
d2ceb9b7
KH
5459 return 0;
5460}
5461
a7885eb8
KM
5462static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5463{
5464 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5465
1f4c025b 5466 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5467}
5468
5469static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5470 u64 val)
5471{
5472 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5473 struct mem_cgroup *parent;
068b38c1 5474
a7885eb8
KM
5475 if (val > 100)
5476 return -EINVAL;
5477
5478 if (cgrp->parent == NULL)
5479 return -EINVAL;
5480
5481 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5482
0999821b 5483 mutex_lock(&memcg_create_mutex);
068b38c1 5484
a7885eb8 5485 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5486 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5487 mutex_unlock(&memcg_create_mutex);
a7885eb8 5488 return -EINVAL;
068b38c1 5489 }
a7885eb8 5490
a7885eb8 5491 memcg->swappiness = val;
a7885eb8 5492
0999821b 5493 mutex_unlock(&memcg_create_mutex);
068b38c1 5494
a7885eb8
KM
5495 return 0;
5496}
5497
2e72b634
KS
5498static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5499{
5500 struct mem_cgroup_threshold_ary *t;
5501 u64 usage;
5502 int i;
5503
5504 rcu_read_lock();
5505 if (!swap)
2c488db2 5506 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5507 else
2c488db2 5508 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5509
5510 if (!t)
5511 goto unlock;
5512
5513 usage = mem_cgroup_usage(memcg, swap);
5514
5515 /*
748dad36 5516 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5517 * If it's not true, a threshold was crossed after last
5518 * call of __mem_cgroup_threshold().
5519 */
5407a562 5520 i = t->current_threshold;
2e72b634
KS
5521
5522 /*
5523 * Iterate backward over array of thresholds starting from
5524 * current_threshold and check if a threshold is crossed.
5525 * If none of thresholds below usage is crossed, we read
5526 * only one element of the array here.
5527 */
5528 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5529 eventfd_signal(t->entries[i].eventfd, 1);
5530
5531 /* i = current_threshold + 1 */
5532 i++;
5533
5534 /*
5535 * Iterate forward over array of thresholds starting from
5536 * current_threshold+1 and check if a threshold is crossed.
5537 * If none of thresholds above usage is crossed, we read
5538 * only one element of the array here.
5539 */
5540 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5541 eventfd_signal(t->entries[i].eventfd, 1);
5542
5543 /* Update current_threshold */
5407a562 5544 t->current_threshold = i - 1;
2e72b634
KS
5545unlock:
5546 rcu_read_unlock();
5547}
5548
5549static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5550{
ad4ca5f4
KS
5551 while (memcg) {
5552 __mem_cgroup_threshold(memcg, false);
5553 if (do_swap_account)
5554 __mem_cgroup_threshold(memcg, true);
5555
5556 memcg = parent_mem_cgroup(memcg);
5557 }
2e72b634
KS
5558}
5559
5560static int compare_thresholds(const void *a, const void *b)
5561{
5562 const struct mem_cgroup_threshold *_a = a;
5563 const struct mem_cgroup_threshold *_b = b;
5564
5565 return _a->threshold - _b->threshold;
5566}
5567
c0ff4b85 5568static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5569{
5570 struct mem_cgroup_eventfd_list *ev;
5571
c0ff4b85 5572 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5573 eventfd_signal(ev->eventfd, 1);
5574 return 0;
5575}
5576
c0ff4b85 5577static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5578{
7d74b06f
KH
5579 struct mem_cgroup *iter;
5580
c0ff4b85 5581 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5582 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5583}
5584
5585static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5586 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5587{
5588 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5589 struct mem_cgroup_thresholds *thresholds;
5590 struct mem_cgroup_threshold_ary *new;
86ae53e1 5591 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5592 u64 threshold, usage;
2c488db2 5593 int i, size, ret;
2e72b634
KS
5594
5595 ret = res_counter_memparse_write_strategy(args, &threshold);
5596 if (ret)
5597 return ret;
5598
5599 mutex_lock(&memcg->thresholds_lock);
2c488db2 5600
2e72b634 5601 if (type == _MEM)
2c488db2 5602 thresholds = &memcg->thresholds;
2e72b634 5603 else if (type == _MEMSWAP)
2c488db2 5604 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5605 else
5606 BUG();
5607
5608 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5609
5610 /* Check if a threshold crossed before adding a new one */
2c488db2 5611 if (thresholds->primary)
2e72b634
KS
5612 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5613
2c488db2 5614 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5615
5616 /* Allocate memory for new array of thresholds */
2c488db2 5617 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5618 GFP_KERNEL);
2c488db2 5619 if (!new) {
2e72b634
KS
5620 ret = -ENOMEM;
5621 goto unlock;
5622 }
2c488db2 5623 new->size = size;
2e72b634
KS
5624
5625 /* Copy thresholds (if any) to new array */
2c488db2
KS
5626 if (thresholds->primary) {
5627 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5628 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5629 }
5630
2e72b634 5631 /* Add new threshold */
2c488db2
KS
5632 new->entries[size - 1].eventfd = eventfd;
5633 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5634
5635 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5636 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5637 compare_thresholds, NULL);
5638
5639 /* Find current threshold */
2c488db2 5640 new->current_threshold = -1;
2e72b634 5641 for (i = 0; i < size; i++) {
748dad36 5642 if (new->entries[i].threshold <= usage) {
2e72b634 5643 /*
2c488db2
KS
5644 * new->current_threshold will not be used until
5645 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5646 * it here.
5647 */
2c488db2 5648 ++new->current_threshold;
748dad36
SZ
5649 } else
5650 break;
2e72b634
KS
5651 }
5652
2c488db2
KS
5653 /* Free old spare buffer and save old primary buffer as spare */
5654 kfree(thresholds->spare);
5655 thresholds->spare = thresholds->primary;
5656
5657 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5658
907860ed 5659 /* To be sure that nobody uses thresholds */
2e72b634
KS
5660 synchronize_rcu();
5661
2e72b634
KS
5662unlock:
5663 mutex_unlock(&memcg->thresholds_lock);
5664
5665 return ret;
5666}
5667
907860ed 5668static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5669 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5670{
5671 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5672 struct mem_cgroup_thresholds *thresholds;
5673 struct mem_cgroup_threshold_ary *new;
86ae53e1 5674 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5675 u64 usage;
2c488db2 5676 int i, j, size;
2e72b634
KS
5677
5678 mutex_lock(&memcg->thresholds_lock);
5679 if (type == _MEM)
2c488db2 5680 thresholds = &memcg->thresholds;
2e72b634 5681 else if (type == _MEMSWAP)
2c488db2 5682 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5683 else
5684 BUG();
5685
371528ca
AV
5686 if (!thresholds->primary)
5687 goto unlock;
5688
2e72b634
KS
5689 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5690
5691 /* Check if a threshold crossed before removing */
5692 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5693
5694 /* Calculate new number of threshold */
2c488db2
KS
5695 size = 0;
5696 for (i = 0; i < thresholds->primary->size; i++) {
5697 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5698 size++;
5699 }
5700
2c488db2 5701 new = thresholds->spare;
907860ed 5702
2e72b634
KS
5703 /* Set thresholds array to NULL if we don't have thresholds */
5704 if (!size) {
2c488db2
KS
5705 kfree(new);
5706 new = NULL;
907860ed 5707 goto swap_buffers;
2e72b634
KS
5708 }
5709
2c488db2 5710 new->size = size;
2e72b634
KS
5711
5712 /* Copy thresholds and find current threshold */
2c488db2
KS
5713 new->current_threshold = -1;
5714 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5715 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5716 continue;
5717
2c488db2 5718 new->entries[j] = thresholds->primary->entries[i];
748dad36 5719 if (new->entries[j].threshold <= usage) {
2e72b634 5720 /*
2c488db2 5721 * new->current_threshold will not be used
2e72b634
KS
5722 * until rcu_assign_pointer(), so it's safe to increment
5723 * it here.
5724 */
2c488db2 5725 ++new->current_threshold;
2e72b634
KS
5726 }
5727 j++;
5728 }
5729
907860ed 5730swap_buffers:
2c488db2
KS
5731 /* Swap primary and spare array */
5732 thresholds->spare = thresholds->primary;
8c757763
SZ
5733 /* If all events are unregistered, free the spare array */
5734 if (!new) {
5735 kfree(thresholds->spare);
5736 thresholds->spare = NULL;
5737 }
5738
2c488db2 5739 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5740
907860ed 5741 /* To be sure that nobody uses thresholds */
2e72b634 5742 synchronize_rcu();
371528ca 5743unlock:
2e72b634 5744 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5745}
c1e862c1 5746
9490ff27
KH
5747static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5748 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5749{
5750 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5751 struct mem_cgroup_eventfd_list *event;
86ae53e1 5752 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5753
5754 BUG_ON(type != _OOM_TYPE);
5755 event = kmalloc(sizeof(*event), GFP_KERNEL);
5756 if (!event)
5757 return -ENOMEM;
5758
1af8efe9 5759 spin_lock(&memcg_oom_lock);
9490ff27
KH
5760
5761 event->eventfd = eventfd;
5762 list_add(&event->list, &memcg->oom_notify);
5763
5764 /* already in OOM ? */
79dfdacc 5765 if (atomic_read(&memcg->under_oom))
9490ff27 5766 eventfd_signal(eventfd, 1);
1af8efe9 5767 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5768
5769 return 0;
5770}
5771
907860ed 5772static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5773 struct cftype *cft, struct eventfd_ctx *eventfd)
5774{
c0ff4b85 5775 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5776 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5777 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5778
5779 BUG_ON(type != _OOM_TYPE);
5780
1af8efe9 5781 spin_lock(&memcg_oom_lock);
9490ff27 5782
c0ff4b85 5783 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5784 if (ev->eventfd == eventfd) {
5785 list_del(&ev->list);
5786 kfree(ev);
5787 }
5788 }
5789
1af8efe9 5790 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5791}
5792
3c11ecf4
KH
5793static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5794 struct cftype *cft, struct cgroup_map_cb *cb)
5795{
c0ff4b85 5796 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5797
c0ff4b85 5798 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5799
c0ff4b85 5800 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5801 cb->fill(cb, "under_oom", 1);
5802 else
5803 cb->fill(cb, "under_oom", 0);
5804 return 0;
5805}
5806
3c11ecf4
KH
5807static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5808 struct cftype *cft, u64 val)
5809{
c0ff4b85 5810 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5811 struct mem_cgroup *parent;
5812
5813 /* cannot set to root cgroup and only 0 and 1 are allowed */
5814 if (!cgrp->parent || !((val == 0) || (val == 1)))
5815 return -EINVAL;
5816
5817 parent = mem_cgroup_from_cont(cgrp->parent);
5818
0999821b 5819 mutex_lock(&memcg_create_mutex);
3c11ecf4 5820 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5821 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5822 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5823 return -EINVAL;
5824 }
c0ff4b85 5825 memcg->oom_kill_disable = val;
4d845ebf 5826 if (!val)
c0ff4b85 5827 memcg_oom_recover(memcg);
0999821b 5828 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5829 return 0;
5830}
5831
c255a458 5832#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5833static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5834{
55007d84
GC
5835 int ret;
5836
2633d7a0 5837 memcg->kmemcg_id = -1;
55007d84
GC
5838 ret = memcg_propagate_kmem(memcg);
5839 if (ret)
5840 return ret;
2633d7a0 5841
1d62e436 5842 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5843}
e5671dfa 5844
1d62e436 5845static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5846{
1d62e436 5847 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5848
5849 memcg_kmem_mark_dead(memcg);
5850
5851 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5852 return;
5853
5854 /*
5855 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5856 * path here, being careful not to race with memcg_uncharge_kmem: it is
5857 * possible that the charges went down to 0 between mark_dead and the
5858 * res_counter read, so in that case, we don't need the put
5859 */
5860 if (memcg_kmem_test_and_clear_dead(memcg))
5861 mem_cgroup_put(memcg);
d1a4c0b3 5862}
e5671dfa 5863#else
cbe128e3 5864static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5865{
5866 return 0;
5867}
d1a4c0b3 5868
1d62e436 5869static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5870{
5871}
e5671dfa
GC
5872#endif
5873
8cdea7c0
BS
5874static struct cftype mem_cgroup_files[] = {
5875 {
0eea1030 5876 .name = "usage_in_bytes",
8c7c6e34 5877 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5878 .read = mem_cgroup_read,
9490ff27
KH
5879 .register_event = mem_cgroup_usage_register_event,
5880 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5881 },
c84872e1
PE
5882 {
5883 .name = "max_usage_in_bytes",
8c7c6e34 5884 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5885 .trigger = mem_cgroup_reset,
af36f906 5886 .read = mem_cgroup_read,
c84872e1 5887 },
8cdea7c0 5888 {
0eea1030 5889 .name = "limit_in_bytes",
8c7c6e34 5890 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5891 .write_string = mem_cgroup_write,
af36f906 5892 .read = mem_cgroup_read,
8cdea7c0 5893 },
296c81d8
BS
5894 {
5895 .name = "soft_limit_in_bytes",
5896 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5897 .write_string = mem_cgroup_write,
af36f906 5898 .read = mem_cgroup_read,
296c81d8 5899 },
8cdea7c0
BS
5900 {
5901 .name = "failcnt",
8c7c6e34 5902 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5903 .trigger = mem_cgroup_reset,
af36f906 5904 .read = mem_cgroup_read,
8cdea7c0 5905 },
d2ceb9b7
KH
5906 {
5907 .name = "stat",
ab215884 5908 .read_seq_string = memcg_stat_show,
d2ceb9b7 5909 },
c1e862c1
KH
5910 {
5911 .name = "force_empty",
5912 .trigger = mem_cgroup_force_empty_write,
5913 },
18f59ea7
BS
5914 {
5915 .name = "use_hierarchy",
f00baae7 5916 .flags = CFTYPE_INSANE,
18f59ea7
BS
5917 .write_u64 = mem_cgroup_hierarchy_write,
5918 .read_u64 = mem_cgroup_hierarchy_read,
5919 },
a7885eb8
KM
5920 {
5921 .name = "swappiness",
5922 .read_u64 = mem_cgroup_swappiness_read,
5923 .write_u64 = mem_cgroup_swappiness_write,
5924 },
7dc74be0
DN
5925 {
5926 .name = "move_charge_at_immigrate",
5927 .read_u64 = mem_cgroup_move_charge_read,
5928 .write_u64 = mem_cgroup_move_charge_write,
5929 },
9490ff27
KH
5930 {
5931 .name = "oom_control",
3c11ecf4
KH
5932 .read_map = mem_cgroup_oom_control_read,
5933 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5934 .register_event = mem_cgroup_oom_register_event,
5935 .unregister_event = mem_cgroup_oom_unregister_event,
5936 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5937 },
70ddf637
AV
5938 {
5939 .name = "pressure_level",
5940 .register_event = vmpressure_register_event,
5941 .unregister_event = vmpressure_unregister_event,
5942 },
406eb0c9
YH
5943#ifdef CONFIG_NUMA
5944 {
5945 .name = "numa_stat",
ab215884 5946 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5947 },
5948#endif
510fc4e1
GC
5949#ifdef CONFIG_MEMCG_KMEM
5950 {
5951 .name = "kmem.limit_in_bytes",
5952 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5953 .write_string = mem_cgroup_write,
5954 .read = mem_cgroup_read,
5955 },
5956 {
5957 .name = "kmem.usage_in_bytes",
5958 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5959 .read = mem_cgroup_read,
5960 },
5961 {
5962 .name = "kmem.failcnt",
5963 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5964 .trigger = mem_cgroup_reset,
5965 .read = mem_cgroup_read,
5966 },
5967 {
5968 .name = "kmem.max_usage_in_bytes",
5969 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5970 .trigger = mem_cgroup_reset,
5971 .read = mem_cgroup_read,
5972 },
749c5415
GC
5973#ifdef CONFIG_SLABINFO
5974 {
5975 .name = "kmem.slabinfo",
5976 .read_seq_string = mem_cgroup_slabinfo_read,
5977 },
5978#endif
8c7c6e34 5979#endif
6bc10349 5980 { }, /* terminate */
af36f906 5981};
8c7c6e34 5982
2d11085e
MH
5983#ifdef CONFIG_MEMCG_SWAP
5984static struct cftype memsw_cgroup_files[] = {
5985 {
5986 .name = "memsw.usage_in_bytes",
5987 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5988 .read = mem_cgroup_read,
5989 .register_event = mem_cgroup_usage_register_event,
5990 .unregister_event = mem_cgroup_usage_unregister_event,
5991 },
5992 {
5993 .name = "memsw.max_usage_in_bytes",
5994 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5995 .trigger = mem_cgroup_reset,
5996 .read = mem_cgroup_read,
5997 },
5998 {
5999 .name = "memsw.limit_in_bytes",
6000 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6001 .write_string = mem_cgroup_write,
6002 .read = mem_cgroup_read,
6003 },
6004 {
6005 .name = "memsw.failcnt",
6006 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6007 .trigger = mem_cgroup_reset,
6008 .read = mem_cgroup_read,
6009 },
6010 { }, /* terminate */
6011};
6012#endif
c0ff4b85 6013static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6014{
6015 struct mem_cgroup_per_node *pn;
1ecaab2b 6016 struct mem_cgroup_per_zone *mz;
41e3355d 6017 int zone, tmp = node;
1ecaab2b
KH
6018 /*
6019 * This routine is called against possible nodes.
6020 * But it's BUG to call kmalloc() against offline node.
6021 *
6022 * TODO: this routine can waste much memory for nodes which will
6023 * never be onlined. It's better to use memory hotplug callback
6024 * function.
6025 */
41e3355d
KH
6026 if (!node_state(node, N_NORMAL_MEMORY))
6027 tmp = -1;
17295c88 6028 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6029 if (!pn)
6030 return 1;
1ecaab2b 6031
1ecaab2b
KH
6032 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6033 mz = &pn->zoneinfo[zone];
bea8c150 6034 lruvec_init(&mz->lruvec);
f64c3f54 6035 mz->usage_in_excess = 0;
4e416953 6036 mz->on_tree = false;
d79154bb 6037 mz->memcg = memcg;
1ecaab2b 6038 }
0a619e58 6039 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
6040 return 0;
6041}
6042
c0ff4b85 6043static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6044{
c0ff4b85 6045 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
6046}
6047
33327948
KH
6048static struct mem_cgroup *mem_cgroup_alloc(void)
6049{
d79154bb 6050 struct mem_cgroup *memcg;
45cf7ebd 6051 size_t size = memcg_size();
33327948 6052
45cf7ebd 6053 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6054 if (size < PAGE_SIZE)
d79154bb 6055 memcg = kzalloc(size, GFP_KERNEL);
33327948 6056 else
d79154bb 6057 memcg = vzalloc(size);
33327948 6058
d79154bb 6059 if (!memcg)
e7bbcdf3
DC
6060 return NULL;
6061
d79154bb
HD
6062 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6063 if (!memcg->stat)
d2e61b8d 6064 goto out_free;
d79154bb
HD
6065 spin_lock_init(&memcg->pcp_counter_lock);
6066 return memcg;
d2e61b8d
DC
6067
6068out_free:
6069 if (size < PAGE_SIZE)
d79154bb 6070 kfree(memcg);
d2e61b8d 6071 else
d79154bb 6072 vfree(memcg);
d2e61b8d 6073 return NULL;
33327948
KH
6074}
6075
59927fb9 6076/*
c8b2a36f
GC
6077 * At destroying mem_cgroup, references from swap_cgroup can remain.
6078 * (scanning all at force_empty is too costly...)
6079 *
6080 * Instead of clearing all references at force_empty, we remember
6081 * the number of reference from swap_cgroup and free mem_cgroup when
6082 * it goes down to 0.
6083 *
6084 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6085 */
c8b2a36f
GC
6086
6087static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6088{
c8b2a36f 6089 int node;
45cf7ebd 6090 size_t size = memcg_size();
59927fb9 6091
c8b2a36f
GC
6092 mem_cgroup_remove_from_trees(memcg);
6093 free_css_id(&mem_cgroup_subsys, &memcg->css);
6094
6095 for_each_node(node)
6096 free_mem_cgroup_per_zone_info(memcg, node);
6097
6098 free_percpu(memcg->stat);
6099
3f134619
GC
6100 /*
6101 * We need to make sure that (at least for now), the jump label
6102 * destruction code runs outside of the cgroup lock. This is because
6103 * get_online_cpus(), which is called from the static_branch update,
6104 * can't be called inside the cgroup_lock. cpusets are the ones
6105 * enforcing this dependency, so if they ever change, we might as well.
6106 *
6107 * schedule_work() will guarantee this happens. Be careful if you need
6108 * to move this code around, and make sure it is outside
6109 * the cgroup_lock.
6110 */
a8964b9b 6111 disarm_static_keys(memcg);
3afe36b1
GC
6112 if (size < PAGE_SIZE)
6113 kfree(memcg);
6114 else
6115 vfree(memcg);
59927fb9 6116}
3afe36b1 6117
59927fb9 6118
8c7c6e34 6119/*
c8b2a36f
GC
6120 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6121 * but in process context. The work_freeing structure is overlaid
6122 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6123 */
c8b2a36f 6124static void free_work(struct work_struct *work)
33327948 6125{
c8b2a36f 6126 struct mem_cgroup *memcg;
08e552c6 6127
c8b2a36f
GC
6128 memcg = container_of(work, struct mem_cgroup, work_freeing);
6129 __mem_cgroup_free(memcg);
6130}
04046e1a 6131
c8b2a36f
GC
6132static void free_rcu(struct rcu_head *rcu_head)
6133{
6134 struct mem_cgroup *memcg;
08e552c6 6135
c8b2a36f
GC
6136 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6137 INIT_WORK(&memcg->work_freeing, free_work);
6138 schedule_work(&memcg->work_freeing);
33327948
KH
6139}
6140
c0ff4b85 6141static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6142{
c0ff4b85 6143 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6144}
6145
c0ff4b85 6146static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6147{
c0ff4b85
R
6148 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6149 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6150 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6151 if (parent)
6152 mem_cgroup_put(parent);
6153 }
8c7c6e34
KH
6154}
6155
c0ff4b85 6156static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6157{
c0ff4b85 6158 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6159}
6160
7bcc1bb1
DN
6161/*
6162 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6163 */
e1aab161 6164struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6165{
c0ff4b85 6166 if (!memcg->res.parent)
7bcc1bb1 6167 return NULL;
c0ff4b85 6168 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6169}
e1aab161 6170EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6171
8787a1df 6172static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6173{
6174 struct mem_cgroup_tree_per_node *rtpn;
6175 struct mem_cgroup_tree_per_zone *rtpz;
6176 int tmp, node, zone;
6177
3ed28fa1 6178 for_each_node(node) {
f64c3f54
BS
6179 tmp = node;
6180 if (!node_state(node, N_NORMAL_MEMORY))
6181 tmp = -1;
6182 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6183 BUG_ON(!rtpn);
f64c3f54
BS
6184
6185 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6186
6187 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6188 rtpz = &rtpn->rb_tree_per_zone[zone];
6189 rtpz->rb_root = RB_ROOT;
6190 spin_lock_init(&rtpz->lock);
6191 }
6192 }
f64c3f54
BS
6193}
6194
0eb253e2 6195static struct cgroup_subsys_state * __ref
92fb9748 6196mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6197{
d142e3e6 6198 struct mem_cgroup *memcg;
04046e1a 6199 long error = -ENOMEM;
6d12e2d8 6200 int node;
8cdea7c0 6201
c0ff4b85
R
6202 memcg = mem_cgroup_alloc();
6203 if (!memcg)
04046e1a 6204 return ERR_PTR(error);
78fb7466 6205
3ed28fa1 6206 for_each_node(node)
c0ff4b85 6207 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6208 goto free_out;
f64c3f54 6209
c077719b 6210 /* root ? */
28dbc4b6 6211 if (cont->parent == NULL) {
a41c58a6 6212 root_mem_cgroup = memcg;
d142e3e6
GC
6213 res_counter_init(&memcg->res, NULL);
6214 res_counter_init(&memcg->memsw, NULL);
6215 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6216 }
28dbc4b6 6217
d142e3e6
GC
6218 memcg->last_scanned_node = MAX_NUMNODES;
6219 INIT_LIST_HEAD(&memcg->oom_notify);
6220 atomic_set(&memcg->refcnt, 1);
6221 memcg->move_charge_at_immigrate = 0;
6222 mutex_init(&memcg->thresholds_lock);
6223 spin_lock_init(&memcg->move_lock);
70ddf637 6224 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6225
6226 return &memcg->css;
6227
6228free_out:
6229 __mem_cgroup_free(memcg);
6230 return ERR_PTR(error);
6231}
6232
6233static int
6234mem_cgroup_css_online(struct cgroup *cont)
6235{
6236 struct mem_cgroup *memcg, *parent;
6237 int error = 0;
6238
6239 if (!cont->parent)
6240 return 0;
6241
0999821b 6242 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6243 memcg = mem_cgroup_from_cont(cont);
6244 parent = mem_cgroup_from_cont(cont->parent);
6245
6246 memcg->use_hierarchy = parent->use_hierarchy;
6247 memcg->oom_kill_disable = parent->oom_kill_disable;
6248 memcg->swappiness = mem_cgroup_swappiness(parent);
6249
6250 if (parent->use_hierarchy) {
c0ff4b85
R
6251 res_counter_init(&memcg->res, &parent->res);
6252 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6253 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6254
7bcc1bb1
DN
6255 /*
6256 * We increment refcnt of the parent to ensure that we can
6257 * safely access it on res_counter_charge/uncharge.
6258 * This refcnt will be decremented when freeing this
6259 * mem_cgroup(see mem_cgroup_put).
6260 */
6261 mem_cgroup_get(parent);
18f59ea7 6262 } else {
c0ff4b85
R
6263 res_counter_init(&memcg->res, NULL);
6264 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6265 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6266 /*
6267 * Deeper hierachy with use_hierarchy == false doesn't make
6268 * much sense so let cgroup subsystem know about this
6269 * unfortunate state in our controller.
6270 */
d142e3e6 6271 if (parent != root_mem_cgroup)
8c7f6edb 6272 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6273 }
cbe128e3
GC
6274
6275 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6276 mutex_unlock(&memcg_create_mutex);
cbe128e3
GC
6277 if (error) {
6278 /*
6279 * We call put now because our (and parent's) refcnts
6280 * are already in place. mem_cgroup_put() will internally
6281 * call __mem_cgroup_free, so return directly
6282 */
6283 mem_cgroup_put(memcg);
e4715f01
GC
6284 if (parent->use_hierarchy)
6285 mem_cgroup_put(parent);
cbe128e3 6286 }
d142e3e6 6287 return error;
8cdea7c0
BS
6288}
6289
5f578161
MH
6290/*
6291 * Announce all parents that a group from their hierarchy is gone.
6292 */
6293static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6294{
6295 struct mem_cgroup *parent = memcg;
6296
6297 while ((parent = parent_mem_cgroup(parent)))
6298 atomic_inc(&parent->dead_count);
6299
6300 /*
6301 * if the root memcg is not hierarchical we have to check it
6302 * explicitely.
6303 */
6304 if (!root_mem_cgroup->use_hierarchy)
6305 atomic_inc(&root_mem_cgroup->dead_count);
6306}
6307
92fb9748 6308static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6309{
c0ff4b85 6310 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6311
5f578161 6312 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6313 mem_cgroup_reparent_charges(memcg);
1f458cbf 6314 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6315}
6316
92fb9748 6317static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6318{
c0ff4b85 6319 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6320
1d62e436 6321 kmem_cgroup_destroy(memcg);
d1a4c0b3 6322
c0ff4b85 6323 mem_cgroup_put(memcg);
8cdea7c0
BS
6324}
6325
02491447 6326#ifdef CONFIG_MMU
7dc74be0 6327/* Handlers for move charge at task migration. */
854ffa8d
DN
6328#define PRECHARGE_COUNT_AT_ONCE 256
6329static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6330{
854ffa8d
DN
6331 int ret = 0;
6332 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6333 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6334
c0ff4b85 6335 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6336 mc.precharge += count;
6337 /* we don't need css_get for root */
6338 return ret;
6339 }
6340 /* try to charge at once */
6341 if (count > 1) {
6342 struct res_counter *dummy;
6343 /*
c0ff4b85 6344 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6345 * by cgroup_lock_live_cgroup() that it is not removed and we
6346 * are still under the same cgroup_mutex. So we can postpone
6347 * css_get().
6348 */
c0ff4b85 6349 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6350 goto one_by_one;
c0ff4b85 6351 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6352 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6353 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6354 goto one_by_one;
6355 }
6356 mc.precharge += count;
854ffa8d
DN
6357 return ret;
6358 }
6359one_by_one:
6360 /* fall back to one by one charge */
6361 while (count--) {
6362 if (signal_pending(current)) {
6363 ret = -EINTR;
6364 break;
6365 }
6366 if (!batch_count--) {
6367 batch_count = PRECHARGE_COUNT_AT_ONCE;
6368 cond_resched();
6369 }
c0ff4b85
R
6370 ret = __mem_cgroup_try_charge(NULL,
6371 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6372 if (ret)
854ffa8d 6373 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6374 return ret;
854ffa8d
DN
6375 mc.precharge++;
6376 }
4ffef5fe
DN
6377 return ret;
6378}
6379
6380/**
8d32ff84 6381 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6382 * @vma: the vma the pte to be checked belongs
6383 * @addr: the address corresponding to the pte to be checked
6384 * @ptent: the pte to be checked
02491447 6385 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6386 *
6387 * Returns
6388 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6389 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6390 * move charge. if @target is not NULL, the page is stored in target->page
6391 * with extra refcnt got(Callers should handle it).
02491447
DN
6392 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6393 * target for charge migration. if @target is not NULL, the entry is stored
6394 * in target->ent.
4ffef5fe
DN
6395 *
6396 * Called with pte lock held.
6397 */
4ffef5fe
DN
6398union mc_target {
6399 struct page *page;
02491447 6400 swp_entry_t ent;
4ffef5fe
DN
6401};
6402
4ffef5fe 6403enum mc_target_type {
8d32ff84 6404 MC_TARGET_NONE = 0,
4ffef5fe 6405 MC_TARGET_PAGE,
02491447 6406 MC_TARGET_SWAP,
4ffef5fe
DN
6407};
6408
90254a65
DN
6409static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6410 unsigned long addr, pte_t ptent)
4ffef5fe 6411{
90254a65 6412 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6413
90254a65
DN
6414 if (!page || !page_mapped(page))
6415 return NULL;
6416 if (PageAnon(page)) {
6417 /* we don't move shared anon */
4b91355e 6418 if (!move_anon())
90254a65 6419 return NULL;
87946a72
DN
6420 } else if (!move_file())
6421 /* we ignore mapcount for file pages */
90254a65
DN
6422 return NULL;
6423 if (!get_page_unless_zero(page))
6424 return NULL;
6425
6426 return page;
6427}
6428
4b91355e 6429#ifdef CONFIG_SWAP
90254a65
DN
6430static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6431 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6432{
90254a65
DN
6433 struct page *page = NULL;
6434 swp_entry_t ent = pte_to_swp_entry(ptent);
6435
6436 if (!move_anon() || non_swap_entry(ent))
6437 return NULL;
4b91355e
KH
6438 /*
6439 * Because lookup_swap_cache() updates some statistics counter,
6440 * we call find_get_page() with swapper_space directly.
6441 */
33806f06 6442 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6443 if (do_swap_account)
6444 entry->val = ent.val;
6445
6446 return page;
6447}
4b91355e
KH
6448#else
6449static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6450 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6451{
6452 return NULL;
6453}
6454#endif
90254a65 6455
87946a72
DN
6456static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6457 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6458{
6459 struct page *page = NULL;
87946a72
DN
6460 struct address_space *mapping;
6461 pgoff_t pgoff;
6462
6463 if (!vma->vm_file) /* anonymous vma */
6464 return NULL;
6465 if (!move_file())
6466 return NULL;
6467
87946a72
DN
6468 mapping = vma->vm_file->f_mapping;
6469 if (pte_none(ptent))
6470 pgoff = linear_page_index(vma, addr);
6471 else /* pte_file(ptent) is true */
6472 pgoff = pte_to_pgoff(ptent);
6473
6474 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6475 page = find_get_page(mapping, pgoff);
6476
6477#ifdef CONFIG_SWAP
6478 /* shmem/tmpfs may report page out on swap: account for that too. */
6479 if (radix_tree_exceptional_entry(page)) {
6480 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6481 if (do_swap_account)
aa3b1895 6482 *entry = swap;
33806f06 6483 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6484 }
aa3b1895 6485#endif
87946a72
DN
6486 return page;
6487}
6488
8d32ff84 6489static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6490 unsigned long addr, pte_t ptent, union mc_target *target)
6491{
6492 struct page *page = NULL;
6493 struct page_cgroup *pc;
8d32ff84 6494 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6495 swp_entry_t ent = { .val = 0 };
6496
6497 if (pte_present(ptent))
6498 page = mc_handle_present_pte(vma, addr, ptent);
6499 else if (is_swap_pte(ptent))
6500 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6501 else if (pte_none(ptent) || pte_file(ptent))
6502 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6503
6504 if (!page && !ent.val)
8d32ff84 6505 return ret;
02491447
DN
6506 if (page) {
6507 pc = lookup_page_cgroup(page);
6508 /*
6509 * Do only loose check w/o page_cgroup lock.
6510 * mem_cgroup_move_account() checks the pc is valid or not under
6511 * the lock.
6512 */
6513 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6514 ret = MC_TARGET_PAGE;
6515 if (target)
6516 target->page = page;
6517 }
6518 if (!ret || !target)
6519 put_page(page);
6520 }
90254a65
DN
6521 /* There is a swap entry and a page doesn't exist or isn't charged */
6522 if (ent.val && !ret &&
9fb4b7cc 6523 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6524 ret = MC_TARGET_SWAP;
6525 if (target)
6526 target->ent = ent;
4ffef5fe 6527 }
4ffef5fe
DN
6528 return ret;
6529}
6530
12724850
NH
6531#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6532/*
6533 * We don't consider swapping or file mapped pages because THP does not
6534 * support them for now.
6535 * Caller should make sure that pmd_trans_huge(pmd) is true.
6536 */
6537static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6538 unsigned long addr, pmd_t pmd, union mc_target *target)
6539{
6540 struct page *page = NULL;
6541 struct page_cgroup *pc;
6542 enum mc_target_type ret = MC_TARGET_NONE;
6543
6544 page = pmd_page(pmd);
6545 VM_BUG_ON(!page || !PageHead(page));
6546 if (!move_anon())
6547 return ret;
6548 pc = lookup_page_cgroup(page);
6549 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6550 ret = MC_TARGET_PAGE;
6551 if (target) {
6552 get_page(page);
6553 target->page = page;
6554 }
6555 }
6556 return ret;
6557}
6558#else
6559static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6560 unsigned long addr, pmd_t pmd, union mc_target *target)
6561{
6562 return MC_TARGET_NONE;
6563}
6564#endif
6565
4ffef5fe
DN
6566static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6567 unsigned long addr, unsigned long end,
6568 struct mm_walk *walk)
6569{
6570 struct vm_area_struct *vma = walk->private;
6571 pte_t *pte;
6572 spinlock_t *ptl;
6573
12724850
NH
6574 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6575 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6576 mc.precharge += HPAGE_PMD_NR;
6577 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6578 return 0;
12724850 6579 }
03319327 6580
45f83cef
AA
6581 if (pmd_trans_unstable(pmd))
6582 return 0;
4ffef5fe
DN
6583 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6584 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6585 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6586 mc.precharge++; /* increment precharge temporarily */
6587 pte_unmap_unlock(pte - 1, ptl);
6588 cond_resched();
6589
7dc74be0
DN
6590 return 0;
6591}
6592
4ffef5fe
DN
6593static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6594{
6595 unsigned long precharge;
6596 struct vm_area_struct *vma;
6597
dfe076b0 6598 down_read(&mm->mmap_sem);
4ffef5fe
DN
6599 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6600 struct mm_walk mem_cgroup_count_precharge_walk = {
6601 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6602 .mm = mm,
6603 .private = vma,
6604 };
6605 if (is_vm_hugetlb_page(vma))
6606 continue;
4ffef5fe
DN
6607 walk_page_range(vma->vm_start, vma->vm_end,
6608 &mem_cgroup_count_precharge_walk);
6609 }
dfe076b0 6610 up_read(&mm->mmap_sem);
4ffef5fe
DN
6611
6612 precharge = mc.precharge;
6613 mc.precharge = 0;
6614
6615 return precharge;
6616}
6617
4ffef5fe
DN
6618static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6619{
dfe076b0
DN
6620 unsigned long precharge = mem_cgroup_count_precharge(mm);
6621
6622 VM_BUG_ON(mc.moving_task);
6623 mc.moving_task = current;
6624 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6625}
6626
dfe076b0
DN
6627/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6628static void __mem_cgroup_clear_mc(void)
4ffef5fe 6629{
2bd9bb20
KH
6630 struct mem_cgroup *from = mc.from;
6631 struct mem_cgroup *to = mc.to;
6632
4ffef5fe 6633 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6634 if (mc.precharge) {
6635 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6636 mc.precharge = 0;
6637 }
6638 /*
6639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6640 * we must uncharge here.
6641 */
6642 if (mc.moved_charge) {
6643 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6644 mc.moved_charge = 0;
4ffef5fe 6645 }
483c30b5
DN
6646 /* we must fixup refcnts and charges */
6647 if (mc.moved_swap) {
483c30b5
DN
6648 /* uncharge swap account from the old cgroup */
6649 if (!mem_cgroup_is_root(mc.from))
6650 res_counter_uncharge(&mc.from->memsw,
6651 PAGE_SIZE * mc.moved_swap);
6652 __mem_cgroup_put(mc.from, mc.moved_swap);
6653
6654 if (!mem_cgroup_is_root(mc.to)) {
6655 /*
6656 * we charged both to->res and to->memsw, so we should
6657 * uncharge to->res.
6658 */
6659 res_counter_uncharge(&mc.to->res,
6660 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6661 }
6662 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6663 mc.moved_swap = 0;
6664 }
dfe076b0
DN
6665 memcg_oom_recover(from);
6666 memcg_oom_recover(to);
6667 wake_up_all(&mc.waitq);
6668}
6669
6670static void mem_cgroup_clear_mc(void)
6671{
6672 struct mem_cgroup *from = mc.from;
6673
6674 /*
6675 * we must clear moving_task before waking up waiters at the end of
6676 * task migration.
6677 */
6678 mc.moving_task = NULL;
6679 __mem_cgroup_clear_mc();
2bd9bb20 6680 spin_lock(&mc.lock);
4ffef5fe
DN
6681 mc.from = NULL;
6682 mc.to = NULL;
2bd9bb20 6683 spin_unlock(&mc.lock);
32047e2a 6684 mem_cgroup_end_move(from);
4ffef5fe
DN
6685}
6686
761b3ef5
LZ
6687static int mem_cgroup_can_attach(struct cgroup *cgroup,
6688 struct cgroup_taskset *tset)
7dc74be0 6689{
2f7ee569 6690 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6691 int ret = 0;
c0ff4b85 6692 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6693 unsigned long move_charge_at_immigrate;
7dc74be0 6694
ee5e8472
GC
6695 /*
6696 * We are now commited to this value whatever it is. Changes in this
6697 * tunable will only affect upcoming migrations, not the current one.
6698 * So we need to save it, and keep it going.
6699 */
6700 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6701 if (move_charge_at_immigrate) {
7dc74be0
DN
6702 struct mm_struct *mm;
6703 struct mem_cgroup *from = mem_cgroup_from_task(p);
6704
c0ff4b85 6705 VM_BUG_ON(from == memcg);
7dc74be0
DN
6706
6707 mm = get_task_mm(p);
6708 if (!mm)
6709 return 0;
7dc74be0 6710 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6711 if (mm->owner == p) {
6712 VM_BUG_ON(mc.from);
6713 VM_BUG_ON(mc.to);
6714 VM_BUG_ON(mc.precharge);
854ffa8d 6715 VM_BUG_ON(mc.moved_charge);
483c30b5 6716 VM_BUG_ON(mc.moved_swap);
32047e2a 6717 mem_cgroup_start_move(from);
2bd9bb20 6718 spin_lock(&mc.lock);
4ffef5fe 6719 mc.from = from;
c0ff4b85 6720 mc.to = memcg;
ee5e8472 6721 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6722 spin_unlock(&mc.lock);
dfe076b0 6723 /* We set mc.moving_task later */
4ffef5fe
DN
6724
6725 ret = mem_cgroup_precharge_mc(mm);
6726 if (ret)
6727 mem_cgroup_clear_mc();
dfe076b0
DN
6728 }
6729 mmput(mm);
7dc74be0
DN
6730 }
6731 return ret;
6732}
6733
761b3ef5
LZ
6734static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6735 struct cgroup_taskset *tset)
7dc74be0 6736{
4ffef5fe 6737 mem_cgroup_clear_mc();
7dc74be0
DN
6738}
6739
4ffef5fe
DN
6740static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6741 unsigned long addr, unsigned long end,
6742 struct mm_walk *walk)
7dc74be0 6743{
4ffef5fe
DN
6744 int ret = 0;
6745 struct vm_area_struct *vma = walk->private;
6746 pte_t *pte;
6747 spinlock_t *ptl;
12724850
NH
6748 enum mc_target_type target_type;
6749 union mc_target target;
6750 struct page *page;
6751 struct page_cgroup *pc;
4ffef5fe 6752
12724850
NH
6753 /*
6754 * We don't take compound_lock() here but no race with splitting thp
6755 * happens because:
6756 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6757 * under splitting, which means there's no concurrent thp split,
6758 * - if another thread runs into split_huge_page() just after we
6759 * entered this if-block, the thread must wait for page table lock
6760 * to be unlocked in __split_huge_page_splitting(), where the main
6761 * part of thp split is not executed yet.
6762 */
6763 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6764 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6765 spin_unlock(&vma->vm_mm->page_table_lock);
6766 return 0;
6767 }
6768 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6769 if (target_type == MC_TARGET_PAGE) {
6770 page = target.page;
6771 if (!isolate_lru_page(page)) {
6772 pc = lookup_page_cgroup(page);
6773 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6774 pc, mc.from, mc.to)) {
12724850
NH
6775 mc.precharge -= HPAGE_PMD_NR;
6776 mc.moved_charge += HPAGE_PMD_NR;
6777 }
6778 putback_lru_page(page);
6779 }
6780 put_page(page);
6781 }
6782 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6783 return 0;
12724850
NH
6784 }
6785
45f83cef
AA
6786 if (pmd_trans_unstable(pmd))
6787 return 0;
4ffef5fe
DN
6788retry:
6789 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6790 for (; addr != end; addr += PAGE_SIZE) {
6791 pte_t ptent = *(pte++);
02491447 6792 swp_entry_t ent;
4ffef5fe
DN
6793
6794 if (!mc.precharge)
6795 break;
6796
8d32ff84 6797 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6798 case MC_TARGET_PAGE:
6799 page = target.page;
6800 if (isolate_lru_page(page))
6801 goto put;
6802 pc = lookup_page_cgroup(page);
7ec99d62 6803 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6804 mc.from, mc.to)) {
4ffef5fe 6805 mc.precharge--;
854ffa8d
DN
6806 /* we uncharge from mc.from later. */
6807 mc.moved_charge++;
4ffef5fe
DN
6808 }
6809 putback_lru_page(page);
8d32ff84 6810put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6811 put_page(page);
6812 break;
02491447
DN
6813 case MC_TARGET_SWAP:
6814 ent = target.ent;
e91cbb42 6815 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6816 mc.precharge--;
483c30b5
DN
6817 /* we fixup refcnts and charges later. */
6818 mc.moved_swap++;
6819 }
02491447 6820 break;
4ffef5fe
DN
6821 default:
6822 break;
6823 }
6824 }
6825 pte_unmap_unlock(pte - 1, ptl);
6826 cond_resched();
6827
6828 if (addr != end) {
6829 /*
6830 * We have consumed all precharges we got in can_attach().
6831 * We try charge one by one, but don't do any additional
6832 * charges to mc.to if we have failed in charge once in attach()
6833 * phase.
6834 */
854ffa8d 6835 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6836 if (!ret)
6837 goto retry;
6838 }
6839
6840 return ret;
6841}
6842
6843static void mem_cgroup_move_charge(struct mm_struct *mm)
6844{
6845 struct vm_area_struct *vma;
6846
6847 lru_add_drain_all();
dfe076b0
DN
6848retry:
6849 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6850 /*
6851 * Someone who are holding the mmap_sem might be waiting in
6852 * waitq. So we cancel all extra charges, wake up all waiters,
6853 * and retry. Because we cancel precharges, we might not be able
6854 * to move enough charges, but moving charge is a best-effort
6855 * feature anyway, so it wouldn't be a big problem.
6856 */
6857 __mem_cgroup_clear_mc();
6858 cond_resched();
6859 goto retry;
6860 }
4ffef5fe
DN
6861 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6862 int ret;
6863 struct mm_walk mem_cgroup_move_charge_walk = {
6864 .pmd_entry = mem_cgroup_move_charge_pte_range,
6865 .mm = mm,
6866 .private = vma,
6867 };
6868 if (is_vm_hugetlb_page(vma))
6869 continue;
4ffef5fe
DN
6870 ret = walk_page_range(vma->vm_start, vma->vm_end,
6871 &mem_cgroup_move_charge_walk);
6872 if (ret)
6873 /*
6874 * means we have consumed all precharges and failed in
6875 * doing additional charge. Just abandon here.
6876 */
6877 break;
6878 }
dfe076b0 6879 up_read(&mm->mmap_sem);
7dc74be0
DN
6880}
6881
761b3ef5
LZ
6882static void mem_cgroup_move_task(struct cgroup *cont,
6883 struct cgroup_taskset *tset)
67e465a7 6884{
2f7ee569 6885 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6886 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6887
dfe076b0 6888 if (mm) {
a433658c
KM
6889 if (mc.to)
6890 mem_cgroup_move_charge(mm);
dfe076b0
DN
6891 mmput(mm);
6892 }
a433658c
KM
6893 if (mc.to)
6894 mem_cgroup_clear_mc();
67e465a7 6895}
5cfb80a7 6896#else /* !CONFIG_MMU */
761b3ef5
LZ
6897static int mem_cgroup_can_attach(struct cgroup *cgroup,
6898 struct cgroup_taskset *tset)
5cfb80a7
DN
6899{
6900 return 0;
6901}
761b3ef5
LZ
6902static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6903 struct cgroup_taskset *tset)
5cfb80a7
DN
6904{
6905}
761b3ef5
LZ
6906static void mem_cgroup_move_task(struct cgroup *cont,
6907 struct cgroup_taskset *tset)
5cfb80a7
DN
6908{
6909}
6910#endif
67e465a7 6911
f00baae7
TH
6912/*
6913 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6914 * to verify sane_behavior flag on each mount attempt.
6915 */
6916static void mem_cgroup_bind(struct cgroup *root)
6917{
6918 /*
6919 * use_hierarchy is forced with sane_behavior. cgroup core
6920 * guarantees that @root doesn't have any children, so turning it
6921 * on for the root memcg is enough.
6922 */
6923 if (cgroup_sane_behavior(root))
6924 mem_cgroup_from_cont(root)->use_hierarchy = true;
6925}
6926
8cdea7c0
BS
6927struct cgroup_subsys mem_cgroup_subsys = {
6928 .name = "memory",
6929 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6930 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6931 .css_online = mem_cgroup_css_online,
92fb9748
TH
6932 .css_offline = mem_cgroup_css_offline,
6933 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6934 .can_attach = mem_cgroup_can_attach,
6935 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6936 .attach = mem_cgroup_move_task,
f00baae7 6937 .bind = mem_cgroup_bind,
6bc10349 6938 .base_cftypes = mem_cgroup_files,
6d12e2d8 6939 .early_init = 0,
04046e1a 6940 .use_id = 1,
8cdea7c0 6941};
c077719b 6942
c255a458 6943#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6944static int __init enable_swap_account(char *s)
6945{
6946 /* consider enabled if no parameter or 1 is given */
a2c8990a 6947 if (!strcmp(s, "1"))
a42c390c 6948 really_do_swap_account = 1;
a2c8990a 6949 else if (!strcmp(s, "0"))
a42c390c
MH
6950 really_do_swap_account = 0;
6951 return 1;
6952}
a2c8990a 6953__setup("swapaccount=", enable_swap_account);
c077719b 6954
2d11085e
MH
6955static void __init memsw_file_init(void)
6956{
6acc8b02
MH
6957 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6958}
6959
6960static void __init enable_swap_cgroup(void)
6961{
6962 if (!mem_cgroup_disabled() && really_do_swap_account) {
6963 do_swap_account = 1;
6964 memsw_file_init();
6965 }
2d11085e 6966}
6acc8b02 6967
2d11085e 6968#else
6acc8b02 6969static void __init enable_swap_cgroup(void)
2d11085e
MH
6970{
6971}
c077719b 6972#endif
2d11085e
MH
6973
6974/*
1081312f
MH
6975 * subsys_initcall() for memory controller.
6976 *
6977 * Some parts like hotcpu_notifier() have to be initialized from this context
6978 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6979 * everything that doesn't depend on a specific mem_cgroup structure should
6980 * be initialized from here.
2d11085e
MH
6981 */
6982static int __init mem_cgroup_init(void)
6983{
6984 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6985 enable_swap_cgroup();
8787a1df 6986 mem_cgroup_soft_limit_tree_init();
e4777496 6987 memcg_stock_init();
2d11085e
MH
6988 return 0;
6989}
6990subsys_initcall(mem_cgroup_init);
This page took 0.93194 seconds and 5 git commands to generate.