mm: clean up __count_immobile_pages()
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
af7c4b0e
JW
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
e9f8974f
JW
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
106 MEM_CGROUP_EVENTS_NSTATS,
107};
af7c4b0e
JW
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
7a159cc9
JW
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 125 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
126 MEM_CGROUP_NTARGETS,
127};
a0db00fc
KS
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 131
d52aa412 132struct mem_cgroup_stat_cpu {
7a159cc9 133 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 135 unsigned long nr_page_events;
7a159cc9 136 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
137};
138
527a5ec9
JW
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
6d12e2d8
KH
146/*
147 * per-zone information in memory controller.
148 */
6d12e2d8 149struct mem_cgroup_per_zone {
6290df54 150 struct lruvec lruvec;
1eb49272 151 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 152
527a5ec9
JW
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
f64c3f54
BS
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
d79154bb 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 160 /* use container_of */
6d12e2d8 161};
6d12e2d8
KH
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
f64c3f54
BS
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
2e72b634
KS
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
9490ff27 196/* For threshold */
2e72b634 197struct mem_cgroup_threshold_ary {
748dad36 198 /* An array index points to threshold just below or equal to usage. */
5407a562 199 int current_threshold;
2e72b634
KS
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
2c488db2
KS
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
9490ff27
KH
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
2e72b634 222
c0ff4b85
R
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 225
8cdea7c0
BS
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
8cdea7c0
BS
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
59927fb9
HD
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
3afe36b1
GC
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
263 */
264 struct work_struct work_freeing;
265 };
266
78fb7466
PE
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
78fb7466 270 */
6d12e2d8 271 struct mem_cgroup_lru_info info;
889976db
YH
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
453a9bf3
KH
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
889976db 277#endif
18f59ea7
BS
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
79dfdacc
MH
282
283 bool oom_lock;
284 atomic_t under_oom;
285
8c7c6e34 286 atomic_t refcnt;
14797e23 287
1f4c025b 288 int swappiness;
3c11ecf4
KH
289 /* OOM-Killer disable */
290 int oom_kill_disable;
a7885eb8 291
22a668d7
KH
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
2e72b634
KS
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
2c488db2 299 struct mem_cgroup_thresholds thresholds;
907860ed 300
2e72b634 301 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 303
9490ff27
KH
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
185efc0f 306
7dc74be0
DN
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
619d094b
KH
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
312734c0
KH
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
d52aa412 318 /*
c62b1a3b 319 * percpu counter.
d52aa412 320 */
3a7951b4 321 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
8cdea7c0
BS
332};
333
7dc74be0
DN
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
4ffef5fe 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
342 NR_MOVE_TYPE,
343};
344
4ffef5fe
DN
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
b1dd693e 347 spinlock_t lock; /* for from, to */
4ffef5fe
DN
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
854ffa8d 351 unsigned long moved_charge;
483c30b5 352 unsigned long moved_swap;
8033b97c
DN
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
2bd9bb20 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
4ffef5fe 359
90254a65
DN
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
87946a72
DN
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
4e416953
BS
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
a0db00fc
KS
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 378
217bc319
KH
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 381 MEM_CGROUP_CHARGE_TYPE_ANON,
4f98a2fe 382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
d13d1443 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
385 NR_CHARGE_TYPE,
386};
387
8c7c6e34 388/* for encoding cft->private value on file */
65c64ce8
GC
389#define _MEM (0)
390#define _MEMSWAP (1)
391#define _OOM_TYPE (2)
a0db00fc
KS
392#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 394#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
395/* Used for OOM nofiier */
396#define OOM_CONTROL (0)
8c7c6e34 397
75822b44
BS
398/*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
c0ff4b85
R
406static void mem_cgroup_get(struct mem_cgroup *memcg);
407static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
408
409/* Writing them here to avoid exposing memcg's inner layout */
410#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 411#include <net/sock.h>
d1a4c0b3 412#include <net/ip.h>
e1aab161
GC
413
414static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
415void sock_update_memcg(struct sock *sk)
416{
376be5ff 417 if (mem_cgroup_sockets_enabled) {
e1aab161 418 struct mem_cgroup *memcg;
3f134619 419 struct cg_proto *cg_proto;
e1aab161
GC
420
421 BUG_ON(!sk->sk_prot->proto_cgroup);
422
f3f511e1
GC
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
427 *
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
430 */
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
435 }
436
e1aab161
GC
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
3f134619
GC
439 cg_proto = sk->sk_prot->proto_cgroup(memcg);
440 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 441 mem_cgroup_get(memcg);
3f134619 442 sk->sk_cgrp = cg_proto;
e1aab161
GC
443 }
444 rcu_read_unlock();
445 }
446}
447EXPORT_SYMBOL(sock_update_memcg);
448
449void sock_release_memcg(struct sock *sk)
450{
376be5ff 451 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
452 struct mem_cgroup *memcg;
453 WARN_ON(!sk->sk_cgrp->memcg);
454 memcg = sk->sk_cgrp->memcg;
455 mem_cgroup_put(memcg);
456 }
457}
d1a4c0b3 458
319d3b9c 459#ifdef CONFIG_INET
d1a4c0b3
GC
460struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
461{
462 if (!memcg || mem_cgroup_is_root(memcg))
463 return NULL;
464
465 return &memcg->tcp_mem.cg_proto;
466}
467EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
468#endif /* CONFIG_INET */
469#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
470
3f134619
GC
471#if defined(CONFIG_INET) && defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM)
472static void disarm_sock_keys(struct mem_cgroup *memcg)
473{
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled);
477}
478#else
479static void disarm_sock_keys(struct mem_cgroup *memcg)
480{
481}
482#endif
483
c0ff4b85 484static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 485
f64c3f54 486static struct mem_cgroup_per_zone *
c0ff4b85 487mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 488{
c0ff4b85 489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
490}
491
c0ff4b85 492struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 493{
c0ff4b85 494 return &memcg->css;
d324236b
WF
495}
496
f64c3f54 497static struct mem_cgroup_per_zone *
c0ff4b85 498page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 499{
97a6c37b
JW
500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page);
f64c3f54 502
c0ff4b85 503 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
504}
505
506static struct mem_cgroup_tree_per_zone *
507soft_limit_tree_node_zone(int nid, int zid)
508{
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
510}
511
512static struct mem_cgroup_tree_per_zone *
513soft_limit_tree_from_page(struct page *page)
514{
515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page);
517
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519}
520
521static void
c0ff4b85 522__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 523 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess)
f64c3f54
BS
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node;
530
531 if (mz->on_tree)
532 return;
533
ef8745c1
KH
534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess)
536 return;
f64c3f54
BS
537 while (*p) {
538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left;
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true;
4e416953
BS
553}
554
555static void
c0ff4b85 556__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz)
559{
560 if (!mz->on_tree)
561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false;
564}
565
f64c3f54 566static void
c0ff4b85 567mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz)
570{
571 spin_lock(&mctz->lock);
c0ff4b85 572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 spin_unlock(&mctz->lock);
574}
575
f64c3f54 576
c0ff4b85 577static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 578{
ef8745c1 579 unsigned long long excess;
f64c3f54
BS
580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page);
f64c3f54
BS
584 mctz = soft_limit_tree_from_page(page);
585
586 /*
4e649152
KH
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
f64c3f54 589 */
c0ff4b85
R
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
593 /*
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
596 */
ef8745c1 597 if (excess || mz->on_tree) {
4e649152
KH
598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */
600 if (mz->on_tree)
c0ff4b85 601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 602 /*
ef8745c1
KH
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
4e649152 605 */
c0ff4b85 606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
607 spin_unlock(&mctz->lock);
608 }
f64c3f54
BS
609 }
610}
611
c0ff4b85 612static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
613{
614 int node, zone;
615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz;
617
3ed28fa1 618 for_each_node(node) {
f64c3f54 619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 621 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
623 }
624 }
625}
626
4e416953
BS
627static struct mem_cgroup_per_zone *
628__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629{
630 struct rb_node *rightmost = NULL;
26251eaf 631 struct mem_cgroup_per_zone *mz;
4e416953
BS
632
633retry:
26251eaf 634 mz = NULL;
4e416953
BS
635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */
638
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
640 /*
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
644 */
d79154bb
HD
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css))
4e416953
BS
648 goto retry;
649done:
650 return mz;
651}
652
653static struct mem_cgroup_per_zone *
654mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
655{
656 struct mem_cgroup_per_zone *mz;
657
658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock);
661 return mz;
662}
663
711d3d2c
KH
664/*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
c0ff4b85 683static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 684 enum mem_cgroup_stat_index idx)
c62b1a3b 685{
7a159cc9 686 long val = 0;
c62b1a3b 687 int cpu;
c62b1a3b 688
711d3d2c
KH
689 get_online_cpus();
690 for_each_online_cpu(cpu)
c0ff4b85 691 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 692#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
696#endif
697 put_online_cpus();
c62b1a3b
KH
698 return val;
699}
700
c0ff4b85 701static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
702 bool charge)
703{
704 int val = (charge) ? 1 : -1;
bff6bb83 705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
706}
707
c0ff4b85 708static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
709 enum mem_cgroup_events_index idx)
710{
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
c0ff4b85 715 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 716#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
720#endif
721 return val;
722}
723
c0ff4b85 724static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 725 bool anon, int nr_pages)
d52aa412 726{
c62b1a3b
KH
727 preempt_disable();
728
b2402857
KH
729 /*
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
732 */
733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 735 nr_pages);
d52aa412 736 else
b2402857 737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 738 nr_pages);
55e462b0 739
e401f176
KH
740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0)
c0ff4b85 742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 743 else {
c0ff4b85 744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
745 nr_pages = -nr_pages; /* for event */
746 }
e401f176 747
13114716 748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 749
c62b1a3b 750 preempt_enable();
6d12e2d8
KH
751}
752
bb2a0de9 753unsigned long
4d7dcca2 754mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
755{
756 struct mem_cgroup_per_zone *mz;
757
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru];
760}
761
762static unsigned long
c0ff4b85 763mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 764 unsigned int lru_mask)
889976db
YH
765{
766 struct mem_cgroup_per_zone *mz;
f156ab93 767 enum lru_list lru;
bb2a0de9
KH
768 unsigned long ret = 0;
769
c0ff4b85 770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 771
f156ab93
HD
772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru];
bb2a0de9
KH
775 }
776 return ret;
777}
778
779static unsigned long
c0ff4b85 780mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
781 int nid, unsigned int lru_mask)
782{
889976db
YH
783 u64 total = 0;
784 int zid;
785
bb2a0de9 786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask);
bb2a0de9 789
889976db
YH
790 return total;
791}
bb2a0de9 792
c0ff4b85 793static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 794 unsigned int lru_mask)
6d12e2d8 795{
889976db 796 int nid;
6d12e2d8
KH
797 u64 total = 0;
798
bb2a0de9 799 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 801 return total;
d52aa412
KH
802}
803
f53d7ce3
JW
804static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target)
7a159cc9
JW
806{
807 unsigned long val, next;
808
13114716 809 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 810 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 811 /* from time_after() in jiffies.h */
f53d7ce3
JW
812 if ((long)next - (long)val < 0) {
813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET;
822 break;
823 default:
824 break;
825 }
826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true;
7a159cc9 828 }
f53d7ce3 829 return false;
d2265e6f
KH
830}
831
832/*
833 * Check events in order.
834 *
835 */
c0ff4b85 836static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 837{
4799401f 838 preempt_disable();
d2265e6f 839 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
842 bool do_softlimit;
843 bool do_numainfo __maybe_unused;
f53d7ce3
JW
844
845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT);
847#if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO);
850#endif
851 preempt_enable();
852
c0ff4b85 853 mem_cgroup_threshold(memcg);
f53d7ce3 854 if (unlikely(do_softlimit))
c0ff4b85 855 mem_cgroup_update_tree(memcg, page);
453a9bf3 856#if MAX_NUMNODES > 1
f53d7ce3 857 if (unlikely(do_numainfo))
c0ff4b85 858 atomic_inc(&memcg->numainfo_events);
453a9bf3 859#endif
f53d7ce3
JW
860 } else
861 preempt_enable();
d2265e6f
KH
862}
863
d1a4c0b3 864struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
865{
866 return container_of(cgroup_subsys_state(cont,
867 mem_cgroup_subsys_id), struct mem_cgroup,
868 css);
869}
870
cf475ad2 871struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 872{
31a78f23
BS
873 /*
874 * mm_update_next_owner() may clear mm->owner to NULL
875 * if it races with swapoff, page migration, etc.
876 * So this can be called with p == NULL.
877 */
878 if (unlikely(!p))
879 return NULL;
880
78fb7466
PE
881 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
882 struct mem_cgroup, css);
883}
884
a433658c 885struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 886{
c0ff4b85 887 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
888
889 if (!mm)
890 return NULL;
54595fe2
KH
891 /*
892 * Because we have no locks, mm->owner's may be being moved to other
893 * cgroup. We use css_tryget() here even if this looks
894 * pessimistic (rather than adding locks here).
895 */
896 rcu_read_lock();
897 do {
c0ff4b85
R
898 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
899 if (unlikely(!memcg))
54595fe2 900 break;
c0ff4b85 901 } while (!css_tryget(&memcg->css));
54595fe2 902 rcu_read_unlock();
c0ff4b85 903 return memcg;
54595fe2
KH
904}
905
5660048c
JW
906/**
907 * mem_cgroup_iter - iterate over memory cgroup hierarchy
908 * @root: hierarchy root
909 * @prev: previously returned memcg, NULL on first invocation
910 * @reclaim: cookie for shared reclaim walks, NULL for full walks
911 *
912 * Returns references to children of the hierarchy below @root, or
913 * @root itself, or %NULL after a full round-trip.
914 *
915 * Caller must pass the return value in @prev on subsequent
916 * invocations for reference counting, or use mem_cgroup_iter_break()
917 * to cancel a hierarchy walk before the round-trip is complete.
918 *
919 * Reclaimers can specify a zone and a priority level in @reclaim to
920 * divide up the memcgs in the hierarchy among all concurrent
921 * reclaimers operating on the same zone and priority.
922 */
923struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
924 struct mem_cgroup *prev,
925 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 926{
9f3a0d09
JW
927 struct mem_cgroup *memcg = NULL;
928 int id = 0;
711d3d2c 929
5660048c
JW
930 if (mem_cgroup_disabled())
931 return NULL;
932
9f3a0d09
JW
933 if (!root)
934 root = root_mem_cgroup;
7d74b06f 935
9f3a0d09
JW
936 if (prev && !reclaim)
937 id = css_id(&prev->css);
14067bb3 938
9f3a0d09
JW
939 if (prev && prev != root)
940 css_put(&prev->css);
14067bb3 941
9f3a0d09
JW
942 if (!root->use_hierarchy && root != root_mem_cgroup) {
943 if (prev)
944 return NULL;
945 return root;
946 }
14067bb3 947
9f3a0d09 948 while (!memcg) {
527a5ec9 949 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 950 struct cgroup_subsys_state *css;
711d3d2c 951
527a5ec9
JW
952 if (reclaim) {
953 int nid = zone_to_nid(reclaim->zone);
954 int zid = zone_idx(reclaim->zone);
955 struct mem_cgroup_per_zone *mz;
956
957 mz = mem_cgroup_zoneinfo(root, nid, zid);
958 iter = &mz->reclaim_iter[reclaim->priority];
959 if (prev && reclaim->generation != iter->generation)
960 return NULL;
961 id = iter->position;
962 }
7d74b06f 963
9f3a0d09
JW
964 rcu_read_lock();
965 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
966 if (css) {
967 if (css == &root->css || css_tryget(css))
968 memcg = container_of(css,
969 struct mem_cgroup, css);
970 } else
971 id = 0;
14067bb3 972 rcu_read_unlock();
14067bb3 973
527a5ec9
JW
974 if (reclaim) {
975 iter->position = id;
976 if (!css)
977 iter->generation++;
978 else if (!prev && memcg)
979 reclaim->generation = iter->generation;
980 }
9f3a0d09
JW
981
982 if (prev && !css)
983 return NULL;
984 }
985 return memcg;
14067bb3 986}
7d74b06f 987
5660048c
JW
988/**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
9f3a0d09
JW
995{
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000}
7d74b06f 1001
9f3a0d09
JW
1002/*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1009 iter != NULL; \
527a5ec9 1010 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1011
9f3a0d09 1012#define for_each_mem_cgroup(iter) \
527a5ec9 1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1014 iter != NULL; \
527a5ec9 1015 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1016
c0ff4b85 1017static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 1018{
c0ff4b85 1019 return (memcg == root_mem_cgroup);
4b3bde4c
BS
1020}
1021
456f998e
YH
1022void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1023{
c0ff4b85 1024 struct mem_cgroup *memcg;
456f998e
YH
1025
1026 if (!mm)
1027 return;
1028
1029 rcu_read_lock();
c0ff4b85
R
1030 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1031 if (unlikely(!memcg))
456f998e
YH
1032 goto out;
1033
1034 switch (idx) {
456f998e 1035 case PGFAULT:
0e574a93
JW
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1037 break;
1038 case PGMAJFAULT:
1039 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1040 break;
1041 default:
1042 BUG();
1043 }
1044out:
1045 rcu_read_unlock();
1046}
1047EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1048
925b7673
JW
1049/**
1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1051 * @zone: zone of the wanted lruvec
fa9add64 1052 * @memcg: memcg of the wanted lruvec
925b7673
JW
1053 *
1054 * Returns the lru list vector holding pages for the given @zone and
1055 * @mem. This can be the global zone lruvec, if the memory controller
1056 * is disabled.
1057 */
1058struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1059 struct mem_cgroup *memcg)
1060{
1061 struct mem_cgroup_per_zone *mz;
1062
1063 if (mem_cgroup_disabled())
1064 return &zone->lruvec;
1065
1066 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1067 return &mz->lruvec;
1068}
1069
08e552c6
KH
1070/*
1071 * Following LRU functions are allowed to be used without PCG_LOCK.
1072 * Operations are called by routine of global LRU independently from memcg.
1073 * What we have to take care of here is validness of pc->mem_cgroup.
1074 *
1075 * Changes to pc->mem_cgroup happens when
1076 * 1. charge
1077 * 2. moving account
1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1079 * It is added to LRU before charge.
1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1081 * When moving account, the page is not on LRU. It's isolated.
1082 */
4f98a2fe 1083
925b7673 1084/**
fa9add64 1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1086 * @page: the page
fa9add64 1087 * @zone: zone of the page
925b7673 1088 */
fa9add64 1089struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1090{
08e552c6 1091 struct mem_cgroup_per_zone *mz;
925b7673
JW
1092 struct mem_cgroup *memcg;
1093 struct page_cgroup *pc;
6d12e2d8 1094
f8d66542 1095 if (mem_cgroup_disabled())
925b7673
JW
1096 return &zone->lruvec;
1097
08e552c6 1098 pc = lookup_page_cgroup(page);
38c5d72f 1099 memcg = pc->mem_cgroup;
7512102c
HD
1100
1101 /*
fa9add64 1102 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1103 * an uncharged page off lru does nothing to secure
1104 * its former mem_cgroup from sudden removal.
1105 *
1106 * Our caller holds lru_lock, and PageCgroupUsed is updated
1107 * under page_cgroup lock: between them, they make all uses
1108 * of pc->mem_cgroup safe.
1109 */
fa9add64 1110 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1111 pc->mem_cgroup = memcg = root_mem_cgroup;
1112
925b7673 1113 mz = page_cgroup_zoneinfo(memcg, page);
925b7673 1114 return &mz->lruvec;
08e552c6 1115}
b69408e8 1116
925b7673 1117/**
fa9add64
HD
1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1119 * @lruvec: mem_cgroup per zone lru vector
1120 * @lru: index of lru list the page is sitting on
1121 * @nr_pages: positive when adding or negative when removing
925b7673 1122 *
fa9add64
HD
1123 * This function must be called when a page is added to or removed from an
1124 * lru list.
3f58a829 1125 */
fa9add64
HD
1126void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1127 int nr_pages)
3f58a829
MK
1128{
1129 struct mem_cgroup_per_zone *mz;
fa9add64 1130 unsigned long *lru_size;
3f58a829
MK
1131
1132 if (mem_cgroup_disabled())
1133 return;
1134
fa9add64
HD
1135 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1136 lru_size = mz->lru_size + lru;
1137 *lru_size += nr_pages;
1138 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1139}
544122e5 1140
3e92041d 1141/*
c0ff4b85 1142 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1143 * hierarchy subtree
1144 */
c3ac9a8a
JW
1145bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg)
3e92041d 1147{
91c63734
JW
1148 if (root_memcg == memcg)
1149 return true;
3a981f48 1150 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1151 return false;
c3ac9a8a
JW
1152 return css_is_ancestor(&memcg->css, &root_memcg->css);
1153}
1154
1155static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
1157{
1158 bool ret;
1159
91c63734 1160 rcu_read_lock();
c3ac9a8a 1161 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1162 rcu_read_unlock();
1163 return ret;
3e92041d
MH
1164}
1165
c0ff4b85 1166int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1167{
1168 int ret;
0b7f569e 1169 struct mem_cgroup *curr = NULL;
158e0a2d 1170 struct task_struct *p;
4c4a2214 1171
158e0a2d 1172 p = find_lock_task_mm(task);
de077d22
DR
1173 if (p) {
1174 curr = try_get_mem_cgroup_from_mm(p->mm);
1175 task_unlock(p);
1176 } else {
1177 /*
1178 * All threads may have already detached their mm's, but the oom
1179 * killer still needs to detect if they have already been oom
1180 * killed to prevent needlessly killing additional tasks.
1181 */
1182 task_lock(task);
1183 curr = mem_cgroup_from_task(task);
1184 if (curr)
1185 css_get(&curr->css);
1186 task_unlock(task);
1187 }
0b7f569e
KH
1188 if (!curr)
1189 return 0;
d31f56db 1190 /*
c0ff4b85 1191 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1192 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1194 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1195 */
c0ff4b85 1196 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1197 css_put(&curr->css);
4c4a2214
DR
1198 return ret;
1199}
1200
c56d5c7d 1201int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1202{
9b272977 1203 unsigned long inactive_ratio;
14797e23 1204 unsigned long inactive;
9b272977 1205 unsigned long active;
c772be93 1206 unsigned long gb;
14797e23 1207
4d7dcca2
HD
1208 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1209 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1210
c772be93
KM
1211 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1212 if (gb)
1213 inactive_ratio = int_sqrt(10 * gb);
1214 else
1215 inactive_ratio = 1;
1216
9b272977 1217 return inactive * inactive_ratio < active;
14797e23
KM
1218}
1219
c56d5c7d 1220int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1221{
1222 unsigned long active;
1223 unsigned long inactive;
1224
4d7dcca2
HD
1225 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1226 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1227
1228 return (active > inactive);
1229}
1230
6d61ef40
BS
1231#define mem_cgroup_from_res_counter(counter, member) \
1232 container_of(counter, struct mem_cgroup, member)
1233
19942822 1234/**
9d11ea9f 1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1236 * @memcg: the memory cgroup
19942822 1237 *
9d11ea9f 1238 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1239 * pages.
19942822 1240 */
c0ff4b85 1241static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1242{
9d11ea9f
JW
1243 unsigned long long margin;
1244
c0ff4b85 1245 margin = res_counter_margin(&memcg->res);
9d11ea9f 1246 if (do_swap_account)
c0ff4b85 1247 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1248 return margin >> PAGE_SHIFT;
19942822
JW
1249}
1250
1f4c025b 1251int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1252{
1253 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1254
1255 /* root ? */
1256 if (cgrp->parent == NULL)
1257 return vm_swappiness;
1258
bf1ff263 1259 return memcg->swappiness;
a7885eb8
KM
1260}
1261
619d094b
KH
1262/*
1263 * memcg->moving_account is used for checking possibility that some thread is
1264 * calling move_account(). When a thread on CPU-A starts moving pages under
1265 * a memcg, other threads should check memcg->moving_account under
1266 * rcu_read_lock(), like this:
1267 *
1268 * CPU-A CPU-B
1269 * rcu_read_lock()
1270 * memcg->moving_account+1 if (memcg->mocing_account)
1271 * take heavy locks.
1272 * synchronize_rcu() update something.
1273 * rcu_read_unlock()
1274 * start move here.
1275 */
4331f7d3
KH
1276
1277/* for quick checking without looking up memcg */
1278atomic_t memcg_moving __read_mostly;
1279
c0ff4b85 1280static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1281{
4331f7d3 1282 atomic_inc(&memcg_moving);
619d094b 1283 atomic_inc(&memcg->moving_account);
32047e2a
KH
1284 synchronize_rcu();
1285}
1286
c0ff4b85 1287static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1288{
619d094b
KH
1289 /*
1290 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1291 * We check NULL in callee rather than caller.
1292 */
4331f7d3
KH
1293 if (memcg) {
1294 atomic_dec(&memcg_moving);
619d094b 1295 atomic_dec(&memcg->moving_account);
4331f7d3 1296 }
32047e2a 1297}
619d094b 1298
32047e2a
KH
1299/*
1300 * 2 routines for checking "mem" is under move_account() or not.
1301 *
13fd1dd9
AM
1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1303 * is used for avoiding races in accounting. If true,
32047e2a
KH
1304 * pc->mem_cgroup may be overwritten.
1305 *
1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1307 * under hierarchy of moving cgroups. This is for
1308 * waiting at hith-memory prressure caused by "move".
1309 */
1310
13fd1dd9 1311static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1312{
1313 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1314 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1315}
4b534334 1316
c0ff4b85 1317static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1318{
2bd9bb20
KH
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
4b534334 1321 bool ret = false;
2bd9bb20
KH
1322 /*
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 */
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
3e92041d 1331
c0ff4b85
R
1332 ret = mem_cgroup_same_or_subtree(memcg, from)
1333 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1334unlock:
1335 spin_unlock(&mc.lock);
4b534334
KH
1336 return ret;
1337}
1338
c0ff4b85 1339static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1340{
1341 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1342 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1350 }
1351 }
1352 return false;
1353}
1354
312734c0
KH
1355/*
1356 * Take this lock when
1357 * - a code tries to modify page's memcg while it's USED.
1358 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1359 * see mem_cgroup_stolen(), too.
312734c0
KH
1360 */
1361static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1362 unsigned long *flags)
1363{
1364 spin_lock_irqsave(&memcg->move_lock, *flags);
1365}
1366
1367static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1368 unsigned long *flags)
1369{
1370 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1371}
1372
e222432b 1373/**
6a6135b6 1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1377 *
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1380 */
1381void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382{
1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp;
1385 /*
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1389 */
1390 static char memcg_name[PATH_MAX];
1391 int ret;
1392
d31f56db 1393 if (!memcg || !p)
e222432b
BS
1394 return;
1395
e222432b
BS
1396 rcu_read_lock();
1397
1398 mem_cgrp = memcg->css.cgroup;
1399 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1400
1401 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) {
1403 /*
1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information
1406 */
1407 rcu_read_unlock();
1408 goto done;
1409 }
1410 rcu_read_unlock();
1411
1412 printk(KERN_INFO "Task in %s killed", memcg_name);
1413
1414 rcu_read_lock();
1415 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1416 if (ret < 0) {
1417 rcu_read_unlock();
1418 goto done;
1419 }
1420 rcu_read_unlock();
1421
1422 /*
1423 * Continues from above, so we don't need an KERN_ level
1424 */
1425 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1426done:
1427
1428 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1432 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1433 "failcnt %llu\n",
1434 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1437}
1438
81d39c20
KH
1439/*
1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children.
1442 */
c0ff4b85 1443static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1444{
1445 int num = 0;
7d74b06f
KH
1446 struct mem_cgroup *iter;
1447
c0ff4b85 1448 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1449 num++;
81d39c20
KH
1450 return num;
1451}
1452
a63d83f4
DR
1453/*
1454 * Return the memory (and swap, if configured) limit for a memcg.
1455 */
1456u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1457{
1458 u64 limit;
1459 u64 memsw;
1460
f3e8eb70
JW
1461 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1462 limit += total_swap_pages << PAGE_SHIFT;
1463
a63d83f4
DR
1464 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1465 /*
1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit.
1468 */
1469 return min(limit, memsw);
1470}
1471
5660048c
JW
1472static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1473 gfp_t gfp_mask,
1474 unsigned long flags)
1475{
1476 unsigned long total = 0;
1477 bool noswap = false;
1478 int loop;
1479
1480 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1481 noswap = true;
1482 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1483 noswap = true;
1484
1485 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1486 if (loop)
1487 drain_all_stock_async(memcg);
1488 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1489 /*
1490 * Allow limit shrinkers, which are triggered directly
1491 * by userspace, to catch signals and stop reclaim
1492 * after minimal progress, regardless of the margin.
1493 */
1494 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1495 break;
1496 if (mem_cgroup_margin(memcg))
1497 break;
1498 /*
1499 * If nothing was reclaimed after two attempts, there
1500 * may be no reclaimable pages in this hierarchy.
1501 */
1502 if (loop && !total)
1503 break;
1504 }
1505 return total;
1506}
1507
4d0c066d
KH
1508/**
1509 * test_mem_cgroup_node_reclaimable
dad7557e 1510 * @memcg: the target memcg
4d0c066d
KH
1511 * @nid: the node ID to be checked.
1512 * @noswap : specify true here if the user wants flle only information.
1513 *
1514 * This function returns whether the specified memcg contains any
1515 * reclaimable pages on a node. Returns true if there are any reclaimable
1516 * pages in the node.
1517 */
c0ff4b85 1518static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1519 int nid, bool noswap)
1520{
c0ff4b85 1521 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1522 return true;
1523 if (noswap || !total_swap_pages)
1524 return false;
c0ff4b85 1525 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1526 return true;
1527 return false;
1528
1529}
889976db
YH
1530#if MAX_NUMNODES > 1
1531
1532/*
1533 * Always updating the nodemask is not very good - even if we have an empty
1534 * list or the wrong list here, we can start from some node and traverse all
1535 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1536 *
1537 */
c0ff4b85 1538static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1539{
1540 int nid;
453a9bf3
KH
1541 /*
1542 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1543 * pagein/pageout changes since the last update.
1544 */
c0ff4b85 1545 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1546 return;
c0ff4b85 1547 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1548 return;
1549
889976db 1550 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1551 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1552
1553 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1554
c0ff4b85
R
1555 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1556 node_clear(nid, memcg->scan_nodes);
889976db 1557 }
453a9bf3 1558
c0ff4b85
R
1559 atomic_set(&memcg->numainfo_events, 0);
1560 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1561}
1562
1563/*
1564 * Selecting a node where we start reclaim from. Because what we need is just
1565 * reducing usage counter, start from anywhere is O,K. Considering
1566 * memory reclaim from current node, there are pros. and cons.
1567 *
1568 * Freeing memory from current node means freeing memory from a node which
1569 * we'll use or we've used. So, it may make LRU bad. And if several threads
1570 * hit limits, it will see a contention on a node. But freeing from remote
1571 * node means more costs for memory reclaim because of memory latency.
1572 *
1573 * Now, we use round-robin. Better algorithm is welcomed.
1574 */
c0ff4b85 1575int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1576{
1577 int node;
1578
c0ff4b85
R
1579 mem_cgroup_may_update_nodemask(memcg);
1580 node = memcg->last_scanned_node;
889976db 1581
c0ff4b85 1582 node = next_node(node, memcg->scan_nodes);
889976db 1583 if (node == MAX_NUMNODES)
c0ff4b85 1584 node = first_node(memcg->scan_nodes);
889976db
YH
1585 /*
1586 * We call this when we hit limit, not when pages are added to LRU.
1587 * No LRU may hold pages because all pages are UNEVICTABLE or
1588 * memcg is too small and all pages are not on LRU. In that case,
1589 * we use curret node.
1590 */
1591 if (unlikely(node == MAX_NUMNODES))
1592 node = numa_node_id();
1593
c0ff4b85 1594 memcg->last_scanned_node = node;
889976db
YH
1595 return node;
1596}
1597
4d0c066d
KH
1598/*
1599 * Check all nodes whether it contains reclaimable pages or not.
1600 * For quick scan, we make use of scan_nodes. This will allow us to skip
1601 * unused nodes. But scan_nodes is lazily updated and may not cotain
1602 * enough new information. We need to do double check.
1603 */
6bbda35c 1604static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1605{
1606 int nid;
1607
1608 /*
1609 * quick check...making use of scan_node.
1610 * We can skip unused nodes.
1611 */
c0ff4b85
R
1612 if (!nodes_empty(memcg->scan_nodes)) {
1613 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1614 nid < MAX_NUMNODES;
c0ff4b85 1615 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1616
c0ff4b85 1617 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1618 return true;
1619 }
1620 }
1621 /*
1622 * Check rest of nodes.
1623 */
1624 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1625 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1626 continue;
c0ff4b85 1627 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1628 return true;
1629 }
1630 return false;
1631}
1632
889976db 1633#else
c0ff4b85 1634int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1635{
1636 return 0;
1637}
4d0c066d 1638
6bbda35c 1639static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1640{
c0ff4b85 1641 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1642}
889976db
YH
1643#endif
1644
5660048c
JW
1645static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1646 struct zone *zone,
1647 gfp_t gfp_mask,
1648 unsigned long *total_scanned)
6d61ef40 1649{
9f3a0d09 1650 struct mem_cgroup *victim = NULL;
5660048c 1651 int total = 0;
04046e1a 1652 int loop = 0;
9d11ea9f 1653 unsigned long excess;
185efc0f 1654 unsigned long nr_scanned;
527a5ec9
JW
1655 struct mem_cgroup_reclaim_cookie reclaim = {
1656 .zone = zone,
1657 .priority = 0,
1658 };
9d11ea9f 1659
c0ff4b85 1660 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1661
4e416953 1662 while (1) {
527a5ec9 1663 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1664 if (!victim) {
04046e1a 1665 loop++;
4e416953
BS
1666 if (loop >= 2) {
1667 /*
1668 * If we have not been able to reclaim
1669 * anything, it might because there are
1670 * no reclaimable pages under this hierarchy
1671 */
5660048c 1672 if (!total)
4e416953 1673 break;
4e416953 1674 /*
25985edc 1675 * We want to do more targeted reclaim.
4e416953
BS
1676 * excess >> 2 is not to excessive so as to
1677 * reclaim too much, nor too less that we keep
1678 * coming back to reclaim from this cgroup
1679 */
1680 if (total >= (excess >> 2) ||
9f3a0d09 1681 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1682 break;
4e416953 1683 }
9f3a0d09 1684 continue;
4e416953 1685 }
5660048c 1686 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1687 continue;
5660048c
JW
1688 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1689 zone, &nr_scanned);
1690 *total_scanned += nr_scanned;
1691 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1692 break;
6d61ef40 1693 }
9f3a0d09 1694 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1695 return total;
6d61ef40
BS
1696}
1697
867578cb
KH
1698/*
1699 * Check OOM-Killer is already running under our hierarchy.
1700 * If someone is running, return false.
1af8efe9 1701 * Has to be called with memcg_oom_lock
867578cb 1702 */
c0ff4b85 1703static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1704{
79dfdacc 1705 struct mem_cgroup *iter, *failed = NULL;
a636b327 1706
9f3a0d09 1707 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1708 if (iter->oom_lock) {
79dfdacc
MH
1709 /*
1710 * this subtree of our hierarchy is already locked
1711 * so we cannot give a lock.
1712 */
79dfdacc 1713 failed = iter;
9f3a0d09
JW
1714 mem_cgroup_iter_break(memcg, iter);
1715 break;
23751be0
JW
1716 } else
1717 iter->oom_lock = true;
7d74b06f 1718 }
867578cb 1719
79dfdacc 1720 if (!failed)
23751be0 1721 return true;
79dfdacc
MH
1722
1723 /*
1724 * OK, we failed to lock the whole subtree so we have to clean up
1725 * what we set up to the failing subtree
1726 */
9f3a0d09 1727 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1728 if (iter == failed) {
9f3a0d09
JW
1729 mem_cgroup_iter_break(memcg, iter);
1730 break;
79dfdacc
MH
1731 }
1732 iter->oom_lock = false;
1733 }
23751be0 1734 return false;
a636b327 1735}
0b7f569e 1736
79dfdacc 1737/*
1af8efe9 1738 * Has to be called with memcg_oom_lock
79dfdacc 1739 */
c0ff4b85 1740static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1741{
7d74b06f
KH
1742 struct mem_cgroup *iter;
1743
c0ff4b85 1744 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1745 iter->oom_lock = false;
1746 return 0;
1747}
1748
c0ff4b85 1749static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1750{
1751 struct mem_cgroup *iter;
1752
c0ff4b85 1753 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1754 atomic_inc(&iter->under_oom);
1755}
1756
c0ff4b85 1757static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1758{
1759 struct mem_cgroup *iter;
1760
867578cb
KH
1761 /*
1762 * When a new child is created while the hierarchy is under oom,
1763 * mem_cgroup_oom_lock() may not be called. We have to use
1764 * atomic_add_unless() here.
1765 */
c0ff4b85 1766 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1767 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1768}
1769
1af8efe9 1770static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1771static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1772
dc98df5a 1773struct oom_wait_info {
d79154bb 1774 struct mem_cgroup *memcg;
dc98df5a
KH
1775 wait_queue_t wait;
1776};
1777
1778static int memcg_oom_wake_function(wait_queue_t *wait,
1779 unsigned mode, int sync, void *arg)
1780{
d79154bb
HD
1781 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1782 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1783 struct oom_wait_info *oom_wait_info;
1784
1785 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1786 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1787
dc98df5a 1788 /*
d79154bb 1789 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1790 * Then we can use css_is_ancestor without taking care of RCU.
1791 */
c0ff4b85
R
1792 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1793 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1794 return 0;
dc98df5a
KH
1795 return autoremove_wake_function(wait, mode, sync, arg);
1796}
1797
c0ff4b85 1798static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1799{
c0ff4b85
R
1800 /* for filtering, pass "memcg" as argument. */
1801 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1802}
1803
c0ff4b85 1804static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1805{
c0ff4b85
R
1806 if (memcg && atomic_read(&memcg->under_oom))
1807 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1808}
1809
867578cb
KH
1810/*
1811 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1812 */
6bbda35c
KS
1813static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1814 int order)
0b7f569e 1815{
dc98df5a 1816 struct oom_wait_info owait;
3c11ecf4 1817 bool locked, need_to_kill;
867578cb 1818
d79154bb 1819 owait.memcg = memcg;
dc98df5a
KH
1820 owait.wait.flags = 0;
1821 owait.wait.func = memcg_oom_wake_function;
1822 owait.wait.private = current;
1823 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1824 need_to_kill = true;
c0ff4b85 1825 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1826
c0ff4b85 1827 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1828 spin_lock(&memcg_oom_lock);
c0ff4b85 1829 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1830 /*
1831 * Even if signal_pending(), we can't quit charge() loop without
1832 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1833 * under OOM is always welcomed, use TASK_KILLABLE here.
1834 */
3c11ecf4 1835 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1836 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1837 need_to_kill = false;
1838 if (locked)
c0ff4b85 1839 mem_cgroup_oom_notify(memcg);
1af8efe9 1840 spin_unlock(&memcg_oom_lock);
867578cb 1841
3c11ecf4
KH
1842 if (need_to_kill) {
1843 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1844 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1845 } else {
867578cb 1846 schedule();
dc98df5a 1847 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1848 }
1af8efe9 1849 spin_lock(&memcg_oom_lock);
79dfdacc 1850 if (locked)
c0ff4b85
R
1851 mem_cgroup_oom_unlock(memcg);
1852 memcg_wakeup_oom(memcg);
1af8efe9 1853 spin_unlock(&memcg_oom_lock);
867578cb 1854
c0ff4b85 1855 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1856
867578cb
KH
1857 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1858 return false;
1859 /* Give chance to dying process */
715a5ee8 1860 schedule_timeout_uninterruptible(1);
867578cb 1861 return true;
0b7f569e
KH
1862}
1863
d69b042f
BS
1864/*
1865 * Currently used to update mapped file statistics, but the routine can be
1866 * generalized to update other statistics as well.
32047e2a
KH
1867 *
1868 * Notes: Race condition
1869 *
1870 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1871 * it tends to be costly. But considering some conditions, we doesn't need
1872 * to do so _always_.
1873 *
1874 * Considering "charge", lock_page_cgroup() is not required because all
1875 * file-stat operations happen after a page is attached to radix-tree. There
1876 * are no race with "charge".
1877 *
1878 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1879 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1880 * if there are race with "uncharge". Statistics itself is properly handled
1881 * by flags.
1882 *
1883 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1884 * small, we check mm->moving_account and detect there are possibility of race
1885 * If there is, we take a lock.
d69b042f 1886 */
26174efd 1887
89c06bd5
KH
1888void __mem_cgroup_begin_update_page_stat(struct page *page,
1889 bool *locked, unsigned long *flags)
1890{
1891 struct mem_cgroup *memcg;
1892 struct page_cgroup *pc;
1893
1894 pc = lookup_page_cgroup(page);
1895again:
1896 memcg = pc->mem_cgroup;
1897 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1898 return;
1899 /*
1900 * If this memory cgroup is not under account moving, we don't
1901 * need to take move_lock_page_cgroup(). Because we already hold
1902 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1903 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1904 */
13fd1dd9 1905 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1906 return;
1907
1908 move_lock_mem_cgroup(memcg, flags);
1909 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1910 move_unlock_mem_cgroup(memcg, flags);
1911 goto again;
1912 }
1913 *locked = true;
1914}
1915
1916void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1917{
1918 struct page_cgroup *pc = lookup_page_cgroup(page);
1919
1920 /*
1921 * It's guaranteed that pc->mem_cgroup never changes while
1922 * lock is held because a routine modifies pc->mem_cgroup
1923 * should take move_lock_page_cgroup().
1924 */
1925 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1926}
1927
2a7106f2
GT
1928void mem_cgroup_update_page_stat(struct page *page,
1929 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1930{
c0ff4b85 1931 struct mem_cgroup *memcg;
32047e2a 1932 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1933 unsigned long uninitialized_var(flags);
d69b042f 1934
cfa44946 1935 if (mem_cgroup_disabled())
d69b042f 1936 return;
89c06bd5 1937
c0ff4b85
R
1938 memcg = pc->mem_cgroup;
1939 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1940 return;
26174efd 1941
26174efd 1942 switch (idx) {
2a7106f2 1943 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1944 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1945 break;
1946 default:
1947 BUG();
8725d541 1948 }
d69b042f 1949
c0ff4b85 1950 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1951}
26174efd 1952
cdec2e42
KH
1953/*
1954 * size of first charge trial. "32" comes from vmscan.c's magic value.
1955 * TODO: maybe necessary to use big numbers in big irons.
1956 */
7ec99d62 1957#define CHARGE_BATCH 32U
cdec2e42
KH
1958struct memcg_stock_pcp {
1959 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1960 unsigned int nr_pages;
cdec2e42 1961 struct work_struct work;
26fe6168 1962 unsigned long flags;
a0db00fc 1963#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1964};
1965static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1966static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1967
1968/*
11c9ea4e 1969 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1970 * from local stock and true is returned. If the stock is 0 or charges from a
1971 * cgroup which is not current target, returns false. This stock will be
1972 * refilled.
1973 */
c0ff4b85 1974static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1975{
1976 struct memcg_stock_pcp *stock;
1977 bool ret = true;
1978
1979 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1980 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1981 stock->nr_pages--;
cdec2e42
KH
1982 else /* need to call res_counter_charge */
1983 ret = false;
1984 put_cpu_var(memcg_stock);
1985 return ret;
1986}
1987
1988/*
1989 * Returns stocks cached in percpu to res_counter and reset cached information.
1990 */
1991static void drain_stock(struct memcg_stock_pcp *stock)
1992{
1993 struct mem_cgroup *old = stock->cached;
1994
11c9ea4e
JW
1995 if (stock->nr_pages) {
1996 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1997
1998 res_counter_uncharge(&old->res, bytes);
cdec2e42 1999 if (do_swap_account)
11c9ea4e
JW
2000 res_counter_uncharge(&old->memsw, bytes);
2001 stock->nr_pages = 0;
cdec2e42
KH
2002 }
2003 stock->cached = NULL;
cdec2e42
KH
2004}
2005
2006/*
2007 * This must be called under preempt disabled or must be called by
2008 * a thread which is pinned to local cpu.
2009 */
2010static void drain_local_stock(struct work_struct *dummy)
2011{
2012 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2013 drain_stock(stock);
26fe6168 2014 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2015}
2016
2017/*
2018 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2019 * This will be consumed by consume_stock() function, later.
cdec2e42 2020 */
c0ff4b85 2021static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2022{
2023 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2024
c0ff4b85 2025 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2026 drain_stock(stock);
c0ff4b85 2027 stock->cached = memcg;
cdec2e42 2028 }
11c9ea4e 2029 stock->nr_pages += nr_pages;
cdec2e42
KH
2030 put_cpu_var(memcg_stock);
2031}
2032
2033/*
c0ff4b85 2034 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2035 * of the hierarchy under it. sync flag says whether we should block
2036 * until the work is done.
cdec2e42 2037 */
c0ff4b85 2038static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2039{
26fe6168 2040 int cpu, curcpu;
d38144b7 2041
cdec2e42 2042 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2043 get_online_cpus();
5af12d0e 2044 curcpu = get_cpu();
cdec2e42
KH
2045 for_each_online_cpu(cpu) {
2046 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2047 struct mem_cgroup *memcg;
26fe6168 2048
c0ff4b85
R
2049 memcg = stock->cached;
2050 if (!memcg || !stock->nr_pages)
26fe6168 2051 continue;
c0ff4b85 2052 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2053 continue;
d1a05b69
MH
2054 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2055 if (cpu == curcpu)
2056 drain_local_stock(&stock->work);
2057 else
2058 schedule_work_on(cpu, &stock->work);
2059 }
cdec2e42 2060 }
5af12d0e 2061 put_cpu();
d38144b7
MH
2062
2063 if (!sync)
2064 goto out;
2065
2066 for_each_online_cpu(cpu) {
2067 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2068 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2069 flush_work(&stock->work);
2070 }
2071out:
cdec2e42 2072 put_online_cpus();
d38144b7
MH
2073}
2074
2075/*
2076 * Tries to drain stocked charges in other cpus. This function is asynchronous
2077 * and just put a work per cpu for draining localy on each cpu. Caller can
2078 * expects some charges will be back to res_counter later but cannot wait for
2079 * it.
2080 */
c0ff4b85 2081static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2082{
9f50fad6
MH
2083 /*
2084 * If someone calls draining, avoid adding more kworker runs.
2085 */
2086 if (!mutex_trylock(&percpu_charge_mutex))
2087 return;
c0ff4b85 2088 drain_all_stock(root_memcg, false);
9f50fad6 2089 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2090}
2091
2092/* This is a synchronous drain interface. */
c0ff4b85 2093static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2094{
2095 /* called when force_empty is called */
9f50fad6 2096 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2097 drain_all_stock(root_memcg, true);
9f50fad6 2098 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2099}
2100
711d3d2c
KH
2101/*
2102 * This function drains percpu counter value from DEAD cpu and
2103 * move it to local cpu. Note that this function can be preempted.
2104 */
c0ff4b85 2105static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2106{
2107 int i;
2108
c0ff4b85 2109 spin_lock(&memcg->pcp_counter_lock);
6104621d 2110 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2111 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2112
c0ff4b85
R
2113 per_cpu(memcg->stat->count[i], cpu) = 0;
2114 memcg->nocpu_base.count[i] += x;
711d3d2c 2115 }
e9f8974f 2116 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2117 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2118
c0ff4b85
R
2119 per_cpu(memcg->stat->events[i], cpu) = 0;
2120 memcg->nocpu_base.events[i] += x;
e9f8974f 2121 }
c0ff4b85 2122 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2123}
2124
2125static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2126 unsigned long action,
2127 void *hcpu)
2128{
2129 int cpu = (unsigned long)hcpu;
2130 struct memcg_stock_pcp *stock;
711d3d2c 2131 struct mem_cgroup *iter;
cdec2e42 2132
619d094b 2133 if (action == CPU_ONLINE)
1489ebad 2134 return NOTIFY_OK;
1489ebad 2135
d833049b 2136 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2137 return NOTIFY_OK;
711d3d2c 2138
9f3a0d09 2139 for_each_mem_cgroup(iter)
711d3d2c
KH
2140 mem_cgroup_drain_pcp_counter(iter, cpu);
2141
cdec2e42
KH
2142 stock = &per_cpu(memcg_stock, cpu);
2143 drain_stock(stock);
2144 return NOTIFY_OK;
2145}
2146
4b534334
KH
2147
2148/* See __mem_cgroup_try_charge() for details */
2149enum {
2150 CHARGE_OK, /* success */
2151 CHARGE_RETRY, /* need to retry but retry is not bad */
2152 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2153 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2154 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2155};
2156
c0ff4b85 2157static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2158 unsigned int nr_pages, bool oom_check)
4b534334 2159{
7ec99d62 2160 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2161 struct mem_cgroup *mem_over_limit;
2162 struct res_counter *fail_res;
2163 unsigned long flags = 0;
2164 int ret;
2165
c0ff4b85 2166 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2167
2168 if (likely(!ret)) {
2169 if (!do_swap_account)
2170 return CHARGE_OK;
c0ff4b85 2171 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2172 if (likely(!ret))
2173 return CHARGE_OK;
2174
c0ff4b85 2175 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2176 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2177 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2178 } else
2179 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2180 /*
7ec99d62
JW
2181 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2182 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2183 *
2184 * Never reclaim on behalf of optional batching, retry with a
2185 * single page instead.
2186 */
7ec99d62 2187 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2188 return CHARGE_RETRY;
2189
2190 if (!(gfp_mask & __GFP_WAIT))
2191 return CHARGE_WOULDBLOCK;
2192
5660048c 2193 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2194 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2195 return CHARGE_RETRY;
4b534334 2196 /*
19942822
JW
2197 * Even though the limit is exceeded at this point, reclaim
2198 * may have been able to free some pages. Retry the charge
2199 * before killing the task.
2200 *
2201 * Only for regular pages, though: huge pages are rather
2202 * unlikely to succeed so close to the limit, and we fall back
2203 * to regular pages anyway in case of failure.
4b534334 2204 */
7ec99d62 2205 if (nr_pages == 1 && ret)
4b534334
KH
2206 return CHARGE_RETRY;
2207
2208 /*
2209 * At task move, charge accounts can be doubly counted. So, it's
2210 * better to wait until the end of task_move if something is going on.
2211 */
2212 if (mem_cgroup_wait_acct_move(mem_over_limit))
2213 return CHARGE_RETRY;
2214
2215 /* If we don't need to call oom-killer at el, return immediately */
2216 if (!oom_check)
2217 return CHARGE_NOMEM;
2218 /* check OOM */
e845e199 2219 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2220 return CHARGE_OOM_DIE;
2221
2222 return CHARGE_RETRY;
2223}
2224
f817ed48 2225/*
38c5d72f
KH
2226 * __mem_cgroup_try_charge() does
2227 * 1. detect memcg to be charged against from passed *mm and *ptr,
2228 * 2. update res_counter
2229 * 3. call memory reclaim if necessary.
2230 *
2231 * In some special case, if the task is fatal, fatal_signal_pending() or
2232 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2233 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2234 * as possible without any hazards. 2: all pages should have a valid
2235 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2236 * pointer, that is treated as a charge to root_mem_cgroup.
2237 *
2238 * So __mem_cgroup_try_charge() will return
2239 * 0 ... on success, filling *ptr with a valid memcg pointer.
2240 * -ENOMEM ... charge failure because of resource limits.
2241 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2242 *
2243 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2244 * the oom-killer can be invoked.
8a9f3ccd 2245 */
f817ed48 2246static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2247 gfp_t gfp_mask,
7ec99d62 2248 unsigned int nr_pages,
c0ff4b85 2249 struct mem_cgroup **ptr,
7ec99d62 2250 bool oom)
8a9f3ccd 2251{
7ec99d62 2252 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2253 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2254 struct mem_cgroup *memcg = NULL;
4b534334 2255 int ret;
a636b327 2256
867578cb
KH
2257 /*
2258 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2259 * in system level. So, allow to go ahead dying process in addition to
2260 * MEMDIE process.
2261 */
2262 if (unlikely(test_thread_flag(TIF_MEMDIE)
2263 || fatal_signal_pending(current)))
2264 goto bypass;
a636b327 2265
8a9f3ccd 2266 /*
3be91277
HD
2267 * We always charge the cgroup the mm_struct belongs to.
2268 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2269 * thread group leader migrates. It's possible that mm is not
2270 * set, if so charge the init_mm (happens for pagecache usage).
2271 */
c0ff4b85 2272 if (!*ptr && !mm)
38c5d72f 2273 *ptr = root_mem_cgroup;
f75ca962 2274again:
c0ff4b85
R
2275 if (*ptr) { /* css should be a valid one */
2276 memcg = *ptr;
2277 VM_BUG_ON(css_is_removed(&memcg->css));
2278 if (mem_cgroup_is_root(memcg))
f75ca962 2279 goto done;
c0ff4b85 2280 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2281 goto done;
c0ff4b85 2282 css_get(&memcg->css);
4b534334 2283 } else {
f75ca962 2284 struct task_struct *p;
54595fe2 2285
f75ca962
KH
2286 rcu_read_lock();
2287 p = rcu_dereference(mm->owner);
f75ca962 2288 /*
ebb76ce1 2289 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2290 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2291 * race with swapoff. Then, we have small risk of mis-accouning.
2292 * But such kind of mis-account by race always happens because
2293 * we don't have cgroup_mutex(). It's overkill and we allo that
2294 * small race, here.
2295 * (*) swapoff at el will charge against mm-struct not against
2296 * task-struct. So, mm->owner can be NULL.
f75ca962 2297 */
c0ff4b85 2298 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2299 if (!memcg)
2300 memcg = root_mem_cgroup;
2301 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2302 rcu_read_unlock();
2303 goto done;
2304 }
c0ff4b85 2305 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2306 /*
2307 * It seems dagerous to access memcg without css_get().
2308 * But considering how consume_stok works, it's not
2309 * necessary. If consume_stock success, some charges
2310 * from this memcg are cached on this cpu. So, we
2311 * don't need to call css_get()/css_tryget() before
2312 * calling consume_stock().
2313 */
2314 rcu_read_unlock();
2315 goto done;
2316 }
2317 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2318 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2319 rcu_read_unlock();
2320 goto again;
2321 }
2322 rcu_read_unlock();
2323 }
8a9f3ccd 2324
4b534334
KH
2325 do {
2326 bool oom_check;
7a81b88c 2327
4b534334 2328 /* If killed, bypass charge */
f75ca962 2329 if (fatal_signal_pending(current)) {
c0ff4b85 2330 css_put(&memcg->css);
4b534334 2331 goto bypass;
f75ca962 2332 }
6d61ef40 2333
4b534334
KH
2334 oom_check = false;
2335 if (oom && !nr_oom_retries) {
2336 oom_check = true;
2337 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2338 }
66e1707b 2339
c0ff4b85 2340 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2341 switch (ret) {
2342 case CHARGE_OK:
2343 break;
2344 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2345 batch = nr_pages;
c0ff4b85
R
2346 css_put(&memcg->css);
2347 memcg = NULL;
f75ca962 2348 goto again;
4b534334 2349 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2350 css_put(&memcg->css);
4b534334
KH
2351 goto nomem;
2352 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2353 if (!oom) {
c0ff4b85 2354 css_put(&memcg->css);
867578cb 2355 goto nomem;
f75ca962 2356 }
4b534334
KH
2357 /* If oom, we never return -ENOMEM */
2358 nr_oom_retries--;
2359 break;
2360 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2361 css_put(&memcg->css);
867578cb 2362 goto bypass;
66e1707b 2363 }
4b534334
KH
2364 } while (ret != CHARGE_OK);
2365
7ec99d62 2366 if (batch > nr_pages)
c0ff4b85
R
2367 refill_stock(memcg, batch - nr_pages);
2368 css_put(&memcg->css);
0c3e73e8 2369done:
c0ff4b85 2370 *ptr = memcg;
7a81b88c
KH
2371 return 0;
2372nomem:
c0ff4b85 2373 *ptr = NULL;
7a81b88c 2374 return -ENOMEM;
867578cb 2375bypass:
38c5d72f
KH
2376 *ptr = root_mem_cgroup;
2377 return -EINTR;
7a81b88c 2378}
8a9f3ccd 2379
a3032a2c
DN
2380/*
2381 * Somemtimes we have to undo a charge we got by try_charge().
2382 * This function is for that and do uncharge, put css's refcnt.
2383 * gotten by try_charge().
2384 */
c0ff4b85 2385static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2386 unsigned int nr_pages)
a3032a2c 2387{
c0ff4b85 2388 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2389 unsigned long bytes = nr_pages * PAGE_SIZE;
2390
c0ff4b85 2391 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2392 if (do_swap_account)
c0ff4b85 2393 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2394 }
854ffa8d
DN
2395}
2396
d01dd17f
KH
2397/*
2398 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2399 * This is useful when moving usage to parent cgroup.
2400 */
2401static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2402 unsigned int nr_pages)
2403{
2404 unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406 if (mem_cgroup_is_root(memcg))
2407 return;
2408
2409 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2410 if (do_swap_account)
2411 res_counter_uncharge_until(&memcg->memsw,
2412 memcg->memsw.parent, bytes);
2413}
2414
a3b2d692
KH
2415/*
2416 * A helper function to get mem_cgroup from ID. must be called under
2417 * rcu_read_lock(). The caller must check css_is_removed() or some if
2418 * it's concern. (dropping refcnt from swap can be called against removed
2419 * memcg.)
2420 */
2421static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2422{
2423 struct cgroup_subsys_state *css;
2424
2425 /* ID 0 is unused ID */
2426 if (!id)
2427 return NULL;
2428 css = css_lookup(&mem_cgroup_subsys, id);
2429 if (!css)
2430 return NULL;
2431 return container_of(css, struct mem_cgroup, css);
2432}
2433
e42d9d5d 2434struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2435{
c0ff4b85 2436 struct mem_cgroup *memcg = NULL;
3c776e64 2437 struct page_cgroup *pc;
a3b2d692 2438 unsigned short id;
b5a84319
KH
2439 swp_entry_t ent;
2440
3c776e64
DN
2441 VM_BUG_ON(!PageLocked(page));
2442
3c776e64 2443 pc = lookup_page_cgroup(page);
c0bd3f63 2444 lock_page_cgroup(pc);
a3b2d692 2445 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2446 memcg = pc->mem_cgroup;
2447 if (memcg && !css_tryget(&memcg->css))
2448 memcg = NULL;
e42d9d5d 2449 } else if (PageSwapCache(page)) {
3c776e64 2450 ent.val = page_private(page);
9fb4b7cc 2451 id = lookup_swap_cgroup_id(ent);
a3b2d692 2452 rcu_read_lock();
c0ff4b85
R
2453 memcg = mem_cgroup_lookup(id);
2454 if (memcg && !css_tryget(&memcg->css))
2455 memcg = NULL;
a3b2d692 2456 rcu_read_unlock();
3c776e64 2457 }
c0bd3f63 2458 unlock_page_cgroup(pc);
c0ff4b85 2459 return memcg;
b5a84319
KH
2460}
2461
c0ff4b85 2462static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2463 struct page *page,
7ec99d62 2464 unsigned int nr_pages,
9ce70c02
HD
2465 enum charge_type ctype,
2466 bool lrucare)
7a81b88c 2467{
ce587e65 2468 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2469 struct zone *uninitialized_var(zone);
fa9add64 2470 struct lruvec *lruvec;
9ce70c02 2471 bool was_on_lru = false;
b2402857 2472 bool anon;
9ce70c02 2473
ca3e0214
KH
2474 lock_page_cgroup(pc);
2475 if (unlikely(PageCgroupUsed(pc))) {
2476 unlock_page_cgroup(pc);
c0ff4b85 2477 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2478 return;
2479 }
2480 /*
2481 * we don't need page_cgroup_lock about tail pages, becase they are not
2482 * accessed by any other context at this point.
2483 */
9ce70c02
HD
2484
2485 /*
2486 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2487 * may already be on some other mem_cgroup's LRU. Take care of it.
2488 */
2489 if (lrucare) {
2490 zone = page_zone(page);
2491 spin_lock_irq(&zone->lru_lock);
2492 if (PageLRU(page)) {
fa9add64 2493 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2494 ClearPageLRU(page);
fa9add64 2495 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2496 was_on_lru = true;
2497 }
2498 }
2499
c0ff4b85 2500 pc->mem_cgroup = memcg;
261fb61a
KH
2501 /*
2502 * We access a page_cgroup asynchronously without lock_page_cgroup().
2503 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2504 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2505 * before USED bit, we need memory barrier here.
2506 * See mem_cgroup_add_lru_list(), etc.
2507 */
08e552c6 2508 smp_wmb();
b2402857 2509 SetPageCgroupUsed(pc);
3be91277 2510
9ce70c02
HD
2511 if (lrucare) {
2512 if (was_on_lru) {
fa9add64 2513 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2514 VM_BUG_ON(PageLRU(page));
2515 SetPageLRU(page);
fa9add64 2516 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2517 }
2518 spin_unlock_irq(&zone->lru_lock);
2519 }
2520
41326c17 2521 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2522 anon = true;
2523 else
2524 anon = false;
2525
2526 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2527 unlock_page_cgroup(pc);
9ce70c02 2528
430e4863
KH
2529 /*
2530 * "charge_statistics" updated event counter. Then, check it.
2531 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2532 * if they exceeds softlimit.
2533 */
c0ff4b85 2534 memcg_check_events(memcg, page);
7a81b88c 2535}
66e1707b 2536
ca3e0214
KH
2537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2538
a0db00fc 2539#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2540/*
2541 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2542 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2543 * charge/uncharge will be never happen and move_account() is done under
2544 * compound_lock(), so we don't have to take care of races.
ca3e0214 2545 */
e94c8a9c 2546void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2547{
2548 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2549 struct page_cgroup *pc;
2550 int i;
ca3e0214 2551
3d37c4a9
KH
2552 if (mem_cgroup_disabled())
2553 return;
e94c8a9c
KH
2554 for (i = 1; i < HPAGE_PMD_NR; i++) {
2555 pc = head_pc + i;
2556 pc->mem_cgroup = head_pc->mem_cgroup;
2557 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2558 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2559 }
ca3e0214 2560}
12d27107 2561#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2562
f817ed48 2563/**
de3638d9 2564 * mem_cgroup_move_account - move account of the page
5564e88b 2565 * @page: the page
7ec99d62 2566 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2567 * @pc: page_cgroup of the page.
2568 * @from: mem_cgroup which the page is moved from.
2569 * @to: mem_cgroup which the page is moved to. @from != @to.
2570 *
2571 * The caller must confirm following.
08e552c6 2572 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2573 * - compound_lock is held when nr_pages > 1
f817ed48 2574 *
2f3479b1
KH
2575 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2576 * from old cgroup.
f817ed48 2577 */
7ec99d62
JW
2578static int mem_cgroup_move_account(struct page *page,
2579 unsigned int nr_pages,
2580 struct page_cgroup *pc,
2581 struct mem_cgroup *from,
2f3479b1 2582 struct mem_cgroup *to)
f817ed48 2583{
de3638d9
JW
2584 unsigned long flags;
2585 int ret;
b2402857 2586 bool anon = PageAnon(page);
987eba66 2587
f817ed48 2588 VM_BUG_ON(from == to);
5564e88b 2589 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2590 /*
2591 * The page is isolated from LRU. So, collapse function
2592 * will not handle this page. But page splitting can happen.
2593 * Do this check under compound_page_lock(). The caller should
2594 * hold it.
2595 */
2596 ret = -EBUSY;
7ec99d62 2597 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2598 goto out;
2599
2600 lock_page_cgroup(pc);
2601
2602 ret = -EINVAL;
2603 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2604 goto unlock;
2605
312734c0 2606 move_lock_mem_cgroup(from, &flags);
f817ed48 2607
2ff76f11 2608 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2609 /* Update mapped_file data for mem_cgroup */
2610 preempt_disable();
2611 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2612 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2613 preempt_enable();
d69b042f 2614 }
b2402857 2615 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2616
854ffa8d 2617 /* caller should have done css_get */
08e552c6 2618 pc->mem_cgroup = to;
b2402857 2619 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2620 /*
2621 * We charges against "to" which may not have any tasks. Then, "to"
2622 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2623 * this function is just force_empty() and move charge, so it's
25985edc 2624 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2625 * status here.
88703267 2626 */
312734c0 2627 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2628 ret = 0;
2629unlock:
57f9fd7d 2630 unlock_page_cgroup(pc);
d2265e6f
KH
2631 /*
2632 * check events
2633 */
5564e88b
JW
2634 memcg_check_events(to, page);
2635 memcg_check_events(from, page);
de3638d9 2636out:
f817ed48
KH
2637 return ret;
2638}
2639
2640/*
2641 * move charges to its parent.
2642 */
2643
5564e88b
JW
2644static int mem_cgroup_move_parent(struct page *page,
2645 struct page_cgroup *pc,
6068bf01 2646 struct mem_cgroup *child)
f817ed48 2647{
f817ed48 2648 struct mem_cgroup *parent;
7ec99d62 2649 unsigned int nr_pages;
4be4489f 2650 unsigned long uninitialized_var(flags);
f817ed48
KH
2651 int ret;
2652
2653 /* Is ROOT ? */
cc926f78 2654 if (mem_cgroup_is_root(child))
f817ed48
KH
2655 return -EINVAL;
2656
57f9fd7d
DN
2657 ret = -EBUSY;
2658 if (!get_page_unless_zero(page))
2659 goto out;
2660 if (isolate_lru_page(page))
2661 goto put;
52dbb905 2662
7ec99d62 2663 nr_pages = hpage_nr_pages(page);
08e552c6 2664
cc926f78
KH
2665 parent = parent_mem_cgroup(child);
2666 /*
2667 * If no parent, move charges to root cgroup.
2668 */
2669 if (!parent)
2670 parent = root_mem_cgroup;
f817ed48 2671
7ec99d62 2672 if (nr_pages > 1)
987eba66
KH
2673 flags = compound_lock_irqsave(page);
2674
cc926f78 2675 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2676 pc, child, parent);
cc926f78
KH
2677 if (!ret)
2678 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2679
7ec99d62 2680 if (nr_pages > 1)
987eba66 2681 compound_unlock_irqrestore(page, flags);
08e552c6 2682 putback_lru_page(page);
57f9fd7d 2683put:
40d58138 2684 put_page(page);
57f9fd7d 2685out:
f817ed48
KH
2686 return ret;
2687}
2688
7a81b88c
KH
2689/*
2690 * Charge the memory controller for page usage.
2691 * Return
2692 * 0 if the charge was successful
2693 * < 0 if the cgroup is over its limit
2694 */
2695static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2696 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2697{
c0ff4b85 2698 struct mem_cgroup *memcg = NULL;
7ec99d62 2699 unsigned int nr_pages = 1;
8493ae43 2700 bool oom = true;
7a81b88c 2701 int ret;
ec168510 2702
37c2ac78 2703 if (PageTransHuge(page)) {
7ec99d62 2704 nr_pages <<= compound_order(page);
37c2ac78 2705 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2706 /*
2707 * Never OOM-kill a process for a huge page. The
2708 * fault handler will fall back to regular pages.
2709 */
2710 oom = false;
37c2ac78 2711 }
7a81b88c 2712
c0ff4b85 2713 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2714 if (ret == -ENOMEM)
7a81b88c 2715 return ret;
ce587e65 2716 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2717 return 0;
8a9f3ccd
BS
2718}
2719
7a81b88c
KH
2720int mem_cgroup_newpage_charge(struct page *page,
2721 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2722{
f8d66542 2723 if (mem_cgroup_disabled())
cede86ac 2724 return 0;
7a0524cf
JW
2725 VM_BUG_ON(page_mapped(page));
2726 VM_BUG_ON(page->mapping && !PageAnon(page));
2727 VM_BUG_ON(!mm);
217bc319 2728 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2729 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2730}
2731
83aae4c7
DN
2732static void
2733__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2734 enum charge_type ctype);
2735
e1a1cd59
BS
2736int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2737 gfp_t gfp_mask)
8697d331 2738{
c0ff4b85 2739 struct mem_cgroup *memcg = NULL;
dc67d504 2740 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2741 int ret;
2742
f8d66542 2743 if (mem_cgroup_disabled())
cede86ac 2744 return 0;
52d4b9ac
KH
2745 if (PageCompound(page))
2746 return 0;
accf163e 2747
73045c47 2748 if (unlikely(!mm))
8697d331 2749 mm = &init_mm;
dc67d504
KH
2750 if (!page_is_file_cache(page))
2751 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2752
38c5d72f 2753 if (!PageSwapCache(page))
dc67d504 2754 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2755 else { /* page is swapcache/shmem */
c0ff4b85 2756 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2757 if (!ret)
dc67d504
KH
2758 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2759 }
b5a84319 2760 return ret;
e8589cc1
KH
2761}
2762
54595fe2
KH
2763/*
2764 * While swap-in, try_charge -> commit or cancel, the page is locked.
2765 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2766 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2767 * "commit()" or removed by "cancel()"
2768 */
8c7c6e34
KH
2769int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2770 struct page *page,
72835c86 2771 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2772{
c0ff4b85 2773 struct mem_cgroup *memcg;
54595fe2 2774 int ret;
8c7c6e34 2775
72835c86 2776 *memcgp = NULL;
56039efa 2777
f8d66542 2778 if (mem_cgroup_disabled())
8c7c6e34
KH
2779 return 0;
2780
2781 if (!do_swap_account)
2782 goto charge_cur_mm;
8c7c6e34
KH
2783 /*
2784 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2785 * the pte, and even removed page from swap cache: in those cases
2786 * do_swap_page()'s pte_same() test will fail; but there's also a
2787 * KSM case which does need to charge the page.
8c7c6e34
KH
2788 */
2789 if (!PageSwapCache(page))
407f9c8b 2790 goto charge_cur_mm;
c0ff4b85
R
2791 memcg = try_get_mem_cgroup_from_page(page);
2792 if (!memcg)
54595fe2 2793 goto charge_cur_mm;
72835c86
JW
2794 *memcgp = memcg;
2795 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2796 css_put(&memcg->css);
38c5d72f
KH
2797 if (ret == -EINTR)
2798 ret = 0;
54595fe2 2799 return ret;
8c7c6e34
KH
2800charge_cur_mm:
2801 if (unlikely(!mm))
2802 mm = &init_mm;
38c5d72f
KH
2803 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2804 if (ret == -EINTR)
2805 ret = 0;
2806 return ret;
8c7c6e34
KH
2807}
2808
83aae4c7 2809static void
72835c86 2810__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2811 enum charge_type ctype)
7a81b88c 2812{
f8d66542 2813 if (mem_cgroup_disabled())
7a81b88c 2814 return;
72835c86 2815 if (!memcg)
7a81b88c 2816 return;
72835c86 2817 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2818
ce587e65 2819 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2820 /*
2821 * Now swap is on-memory. This means this page may be
2822 * counted both as mem and swap....double count.
03f3c433
KH
2823 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2824 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2825 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2826 */
03f3c433 2827 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2828 swp_entry_t ent = {.val = page_private(page)};
86493009 2829 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2830 }
88703267
KH
2831 /*
2832 * At swapin, we may charge account against cgroup which has no tasks.
2833 * So, rmdir()->pre_destroy() can be called while we do this charge.
2834 * In that case, we need to call pre_destroy() again. check it here.
2835 */
72835c86 2836 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2837}
2838
72835c86
JW
2839void mem_cgroup_commit_charge_swapin(struct page *page,
2840 struct mem_cgroup *memcg)
83aae4c7 2841{
72835c86 2842 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2843 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2844}
2845
c0ff4b85 2846void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2847{
f8d66542 2848 if (mem_cgroup_disabled())
7a81b88c 2849 return;
c0ff4b85 2850 if (!memcg)
7a81b88c 2851 return;
c0ff4b85 2852 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2853}
2854
c0ff4b85 2855static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2856 unsigned int nr_pages,
2857 const enum charge_type ctype)
569b846d
KH
2858{
2859 struct memcg_batch_info *batch = NULL;
2860 bool uncharge_memsw = true;
7ec99d62 2861
569b846d
KH
2862 /* If swapout, usage of swap doesn't decrease */
2863 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2864 uncharge_memsw = false;
569b846d
KH
2865
2866 batch = &current->memcg_batch;
2867 /*
2868 * In usual, we do css_get() when we remember memcg pointer.
2869 * But in this case, we keep res->usage until end of a series of
2870 * uncharges. Then, it's ok to ignore memcg's refcnt.
2871 */
2872 if (!batch->memcg)
c0ff4b85 2873 batch->memcg = memcg;
3c11ecf4
KH
2874 /*
2875 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2876 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2877 * the same cgroup and we have chance to coalesce uncharges.
2878 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2879 * because we want to do uncharge as soon as possible.
2880 */
2881
2882 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2883 goto direct_uncharge;
2884
7ec99d62 2885 if (nr_pages > 1)
ec168510
AA
2886 goto direct_uncharge;
2887
569b846d
KH
2888 /*
2889 * In typical case, batch->memcg == mem. This means we can
2890 * merge a series of uncharges to an uncharge of res_counter.
2891 * If not, we uncharge res_counter ony by one.
2892 */
c0ff4b85 2893 if (batch->memcg != memcg)
569b846d
KH
2894 goto direct_uncharge;
2895 /* remember freed charge and uncharge it later */
7ffd4ca7 2896 batch->nr_pages++;
569b846d 2897 if (uncharge_memsw)
7ffd4ca7 2898 batch->memsw_nr_pages++;
569b846d
KH
2899 return;
2900direct_uncharge:
c0ff4b85 2901 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2902 if (uncharge_memsw)
c0ff4b85
R
2903 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2904 if (unlikely(batch->memcg != memcg))
2905 memcg_oom_recover(memcg);
569b846d 2906}
7a81b88c 2907
8a9f3ccd 2908/*
69029cd5 2909 * uncharge if !page_mapped(page)
8a9f3ccd 2910 */
8c7c6e34 2911static struct mem_cgroup *
69029cd5 2912__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2913{
c0ff4b85 2914 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2915 unsigned int nr_pages = 1;
2916 struct page_cgroup *pc;
b2402857 2917 bool anon;
8a9f3ccd 2918
f8d66542 2919 if (mem_cgroup_disabled())
8c7c6e34 2920 return NULL;
4077960e 2921
d13d1443 2922 if (PageSwapCache(page))
8c7c6e34 2923 return NULL;
d13d1443 2924
37c2ac78 2925 if (PageTransHuge(page)) {
7ec99d62 2926 nr_pages <<= compound_order(page);
37c2ac78
AA
2927 VM_BUG_ON(!PageTransHuge(page));
2928 }
8697d331 2929 /*
3c541e14 2930 * Check if our page_cgroup is valid
8697d331 2931 */
52d4b9ac 2932 pc = lookup_page_cgroup(page);
cfa44946 2933 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2934 return NULL;
b9c565d5 2935
52d4b9ac 2936 lock_page_cgroup(pc);
d13d1443 2937
c0ff4b85 2938 memcg = pc->mem_cgroup;
8c7c6e34 2939
d13d1443
KH
2940 if (!PageCgroupUsed(pc))
2941 goto unlock_out;
2942
b2402857
KH
2943 anon = PageAnon(page);
2944
d13d1443 2945 switch (ctype) {
41326c17 2946 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
2947 /*
2948 * Generally PageAnon tells if it's the anon statistics to be
2949 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2950 * used before page reached the stage of being marked PageAnon.
2951 */
b2402857
KH
2952 anon = true;
2953 /* fallthrough */
8a9478ca 2954 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2955 /* See mem_cgroup_prepare_migration() */
2956 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2957 goto unlock_out;
2958 break;
2959 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2960 if (!PageAnon(page)) { /* Shared memory */
2961 if (page->mapping && !page_is_file_cache(page))
2962 goto unlock_out;
2963 } else if (page_mapped(page)) /* Anon */
2964 goto unlock_out;
2965 break;
2966 default:
2967 break;
52d4b9ac 2968 }
d13d1443 2969
b2402857 2970 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 2971
52d4b9ac 2972 ClearPageCgroupUsed(pc);
544122e5
KH
2973 /*
2974 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2975 * freed from LRU. This is safe because uncharged page is expected not
2976 * to be reused (freed soon). Exception is SwapCache, it's handled by
2977 * special functions.
2978 */
b9c565d5 2979
52d4b9ac 2980 unlock_page_cgroup(pc);
f75ca962 2981 /*
c0ff4b85 2982 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2983 * will never be freed.
2984 */
c0ff4b85 2985 memcg_check_events(memcg, page);
f75ca962 2986 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2987 mem_cgroup_swap_statistics(memcg, true);
2988 mem_cgroup_get(memcg);
f75ca962 2989 }
c0ff4b85
R
2990 if (!mem_cgroup_is_root(memcg))
2991 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2992
c0ff4b85 2993 return memcg;
d13d1443
KH
2994
2995unlock_out:
2996 unlock_page_cgroup(pc);
8c7c6e34 2997 return NULL;
3c541e14
BS
2998}
2999
69029cd5
KH
3000void mem_cgroup_uncharge_page(struct page *page)
3001{
52d4b9ac
KH
3002 /* early check. */
3003 if (page_mapped(page))
3004 return;
40f23a21 3005 VM_BUG_ON(page->mapping && !PageAnon(page));
41326c17 3006 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON);
69029cd5
KH
3007}
3008
3009void mem_cgroup_uncharge_cache_page(struct page *page)
3010{
3011 VM_BUG_ON(page_mapped(page));
b7abea96 3012 VM_BUG_ON(page->mapping);
69029cd5
KH
3013 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3014}
3015
569b846d
KH
3016/*
3017 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3018 * In that cases, pages are freed continuously and we can expect pages
3019 * are in the same memcg. All these calls itself limits the number of
3020 * pages freed at once, then uncharge_start/end() is called properly.
3021 * This may be called prural(2) times in a context,
3022 */
3023
3024void mem_cgroup_uncharge_start(void)
3025{
3026 current->memcg_batch.do_batch++;
3027 /* We can do nest. */
3028 if (current->memcg_batch.do_batch == 1) {
3029 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3030 current->memcg_batch.nr_pages = 0;
3031 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3032 }
3033}
3034
3035void mem_cgroup_uncharge_end(void)
3036{
3037 struct memcg_batch_info *batch = &current->memcg_batch;
3038
3039 if (!batch->do_batch)
3040 return;
3041
3042 batch->do_batch--;
3043 if (batch->do_batch) /* If stacked, do nothing. */
3044 return;
3045
3046 if (!batch->memcg)
3047 return;
3048 /*
3049 * This "batch->memcg" is valid without any css_get/put etc...
3050 * bacause we hide charges behind us.
3051 */
7ffd4ca7
JW
3052 if (batch->nr_pages)
3053 res_counter_uncharge(&batch->memcg->res,
3054 batch->nr_pages * PAGE_SIZE);
3055 if (batch->memsw_nr_pages)
3056 res_counter_uncharge(&batch->memcg->memsw,
3057 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3058 memcg_oom_recover(batch->memcg);
569b846d
KH
3059 /* forget this pointer (for sanity check) */
3060 batch->memcg = NULL;
3061}
3062
e767e056 3063#ifdef CONFIG_SWAP
8c7c6e34 3064/*
e767e056 3065 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3066 * memcg information is recorded to swap_cgroup of "ent"
3067 */
8a9478ca
KH
3068void
3069mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3070{
3071 struct mem_cgroup *memcg;
8a9478ca
KH
3072 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3073
3074 if (!swapout) /* this was a swap cache but the swap is unused ! */
3075 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3076
3077 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3078
f75ca962
KH
3079 /*
3080 * record memcg information, if swapout && memcg != NULL,
3081 * mem_cgroup_get() was called in uncharge().
3082 */
3083 if (do_swap_account && swapout && memcg)
a3b2d692 3084 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3085}
e767e056 3086#endif
8c7c6e34
KH
3087
3088#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3089/*
3090 * called from swap_entry_free(). remove record in swap_cgroup and
3091 * uncharge "memsw" account.
3092 */
3093void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3094{
8c7c6e34 3095 struct mem_cgroup *memcg;
a3b2d692 3096 unsigned short id;
8c7c6e34
KH
3097
3098 if (!do_swap_account)
3099 return;
3100
a3b2d692
KH
3101 id = swap_cgroup_record(ent, 0);
3102 rcu_read_lock();
3103 memcg = mem_cgroup_lookup(id);
8c7c6e34 3104 if (memcg) {
a3b2d692
KH
3105 /*
3106 * We uncharge this because swap is freed.
3107 * This memcg can be obsolete one. We avoid calling css_tryget
3108 */
0c3e73e8 3109 if (!mem_cgroup_is_root(memcg))
4e649152 3110 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3111 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3112 mem_cgroup_put(memcg);
3113 }
a3b2d692 3114 rcu_read_unlock();
d13d1443 3115}
02491447
DN
3116
3117/**
3118 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3119 * @entry: swap entry to be moved
3120 * @from: mem_cgroup which the entry is moved from
3121 * @to: mem_cgroup which the entry is moved to
3122 *
3123 * It succeeds only when the swap_cgroup's record for this entry is the same
3124 * as the mem_cgroup's id of @from.
3125 *
3126 * Returns 0 on success, -EINVAL on failure.
3127 *
3128 * The caller must have charged to @to, IOW, called res_counter_charge() about
3129 * both res and memsw, and called css_get().
3130 */
3131static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3132 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3133{
3134 unsigned short old_id, new_id;
3135
3136 old_id = css_id(&from->css);
3137 new_id = css_id(&to->css);
3138
3139 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3140 mem_cgroup_swap_statistics(from, false);
483c30b5 3141 mem_cgroup_swap_statistics(to, true);
02491447 3142 /*
483c30b5
DN
3143 * This function is only called from task migration context now.
3144 * It postpones res_counter and refcount handling till the end
3145 * of task migration(mem_cgroup_clear_mc()) for performance
3146 * improvement. But we cannot postpone mem_cgroup_get(to)
3147 * because if the process that has been moved to @to does
3148 * swap-in, the refcount of @to might be decreased to 0.
02491447 3149 */
02491447 3150 mem_cgroup_get(to);
02491447
DN
3151 return 0;
3152 }
3153 return -EINVAL;
3154}
3155#else
3156static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3157 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3158{
3159 return -EINVAL;
3160}
8c7c6e34 3161#endif
d13d1443 3162
ae41be37 3163/*
01b1ae63
KH
3164 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3165 * page belongs to.
ae41be37 3166 */
ac39cf8c 3167int mem_cgroup_prepare_migration(struct page *page,
72835c86 3168 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3169{
c0ff4b85 3170 struct mem_cgroup *memcg = NULL;
7ec99d62 3171 struct page_cgroup *pc;
ac39cf8c 3172 enum charge_type ctype;
e8589cc1 3173 int ret = 0;
8869b8f6 3174
72835c86 3175 *memcgp = NULL;
56039efa 3176
ec168510 3177 VM_BUG_ON(PageTransHuge(page));
f8d66542 3178 if (mem_cgroup_disabled())
4077960e
BS
3179 return 0;
3180
52d4b9ac
KH
3181 pc = lookup_page_cgroup(page);
3182 lock_page_cgroup(pc);
3183 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3184 memcg = pc->mem_cgroup;
3185 css_get(&memcg->css);
ac39cf8c 3186 /*
3187 * At migrating an anonymous page, its mapcount goes down
3188 * to 0 and uncharge() will be called. But, even if it's fully
3189 * unmapped, migration may fail and this page has to be
3190 * charged again. We set MIGRATION flag here and delay uncharge
3191 * until end_migration() is called
3192 *
3193 * Corner Case Thinking
3194 * A)
3195 * When the old page was mapped as Anon and it's unmap-and-freed
3196 * while migration was ongoing.
3197 * If unmap finds the old page, uncharge() of it will be delayed
3198 * until end_migration(). If unmap finds a new page, it's
3199 * uncharged when it make mapcount to be 1->0. If unmap code
3200 * finds swap_migration_entry, the new page will not be mapped
3201 * and end_migration() will find it(mapcount==0).
3202 *
3203 * B)
3204 * When the old page was mapped but migraion fails, the kernel
3205 * remaps it. A charge for it is kept by MIGRATION flag even
3206 * if mapcount goes down to 0. We can do remap successfully
3207 * without charging it again.
3208 *
3209 * C)
3210 * The "old" page is under lock_page() until the end of
3211 * migration, so, the old page itself will not be swapped-out.
3212 * If the new page is swapped out before end_migraton, our
3213 * hook to usual swap-out path will catch the event.
3214 */
3215 if (PageAnon(page))
3216 SetPageCgroupMigration(pc);
e8589cc1 3217 }
52d4b9ac 3218 unlock_page_cgroup(pc);
ac39cf8c 3219 /*
3220 * If the page is not charged at this point,
3221 * we return here.
3222 */
c0ff4b85 3223 if (!memcg)
ac39cf8c 3224 return 0;
01b1ae63 3225
72835c86
JW
3226 *memcgp = memcg;
3227 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3228 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3229 if (ret) {
ac39cf8c 3230 if (PageAnon(page)) {
3231 lock_page_cgroup(pc);
3232 ClearPageCgroupMigration(pc);
3233 unlock_page_cgroup(pc);
3234 /*
3235 * The old page may be fully unmapped while we kept it.
3236 */
3237 mem_cgroup_uncharge_page(page);
3238 }
38c5d72f 3239 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3240 return -ENOMEM;
e8589cc1 3241 }
ac39cf8c 3242 /*
3243 * We charge new page before it's used/mapped. So, even if unlock_page()
3244 * is called before end_migration, we can catch all events on this new
3245 * page. In the case new page is migrated but not remapped, new page's
3246 * mapcount will be finally 0 and we call uncharge in end_migration().
3247 */
ac39cf8c 3248 if (PageAnon(page))
41326c17 3249 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3250 else if (page_is_file_cache(page))
3251 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3252 else
3253 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3254 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3255 return ret;
ae41be37 3256}
8869b8f6 3257
69029cd5 3258/* remove redundant charge if migration failed*/
c0ff4b85 3259void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3260 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3261{
ac39cf8c 3262 struct page *used, *unused;
01b1ae63 3263 struct page_cgroup *pc;
b2402857 3264 bool anon;
01b1ae63 3265
c0ff4b85 3266 if (!memcg)
01b1ae63 3267 return;
ac39cf8c 3268 /* blocks rmdir() */
c0ff4b85 3269 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3270 if (!migration_ok) {
ac39cf8c 3271 used = oldpage;
3272 unused = newpage;
01b1ae63 3273 } else {
ac39cf8c 3274 used = newpage;
01b1ae63
KH
3275 unused = oldpage;
3276 }
69029cd5 3277 /*
ac39cf8c 3278 * We disallowed uncharge of pages under migration because mapcount
3279 * of the page goes down to zero, temporarly.
3280 * Clear the flag and check the page should be charged.
01b1ae63 3281 */
ac39cf8c 3282 pc = lookup_page_cgroup(oldpage);
3283 lock_page_cgroup(pc);
3284 ClearPageCgroupMigration(pc);
3285 unlock_page_cgroup(pc);
b2402857
KH
3286 anon = PageAnon(used);
3287 __mem_cgroup_uncharge_common(unused,
41326c17 3288 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
b2402857 3289 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3290
01b1ae63 3291 /*
ac39cf8c 3292 * If a page is a file cache, radix-tree replacement is very atomic
3293 * and we can skip this check. When it was an Anon page, its mapcount
3294 * goes down to 0. But because we added MIGRATION flage, it's not
3295 * uncharged yet. There are several case but page->mapcount check
3296 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3297 * check. (see prepare_charge() also)
69029cd5 3298 */
b2402857 3299 if (anon)
ac39cf8c 3300 mem_cgroup_uncharge_page(used);
88703267 3301 /*
ac39cf8c 3302 * At migration, we may charge account against cgroup which has no
3303 * tasks.
88703267
KH
3304 * So, rmdir()->pre_destroy() can be called while we do this charge.
3305 * In that case, we need to call pre_destroy() again. check it here.
3306 */
c0ff4b85 3307 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3308}
78fb7466 3309
ab936cbc
KH
3310/*
3311 * At replace page cache, newpage is not under any memcg but it's on
3312 * LRU. So, this function doesn't touch res_counter but handles LRU
3313 * in correct way. Both pages are locked so we cannot race with uncharge.
3314 */
3315void mem_cgroup_replace_page_cache(struct page *oldpage,
3316 struct page *newpage)
3317{
bde05d1c 3318 struct mem_cgroup *memcg = NULL;
ab936cbc 3319 struct page_cgroup *pc;
ab936cbc 3320 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3321
3322 if (mem_cgroup_disabled())
3323 return;
3324
3325 pc = lookup_page_cgroup(oldpage);
3326 /* fix accounting on old pages */
3327 lock_page_cgroup(pc);
bde05d1c
HD
3328 if (PageCgroupUsed(pc)) {
3329 memcg = pc->mem_cgroup;
3330 mem_cgroup_charge_statistics(memcg, false, -1);
3331 ClearPageCgroupUsed(pc);
3332 }
ab936cbc
KH
3333 unlock_page_cgroup(pc);
3334
bde05d1c
HD
3335 /*
3336 * When called from shmem_replace_page(), in some cases the
3337 * oldpage has already been charged, and in some cases not.
3338 */
3339 if (!memcg)
3340 return;
3341
ab936cbc
KH
3342 if (PageSwapBacked(oldpage))
3343 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3344
ab936cbc
KH
3345 /*
3346 * Even if newpage->mapping was NULL before starting replacement,
3347 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3348 * LRU while we overwrite pc->mem_cgroup.
3349 */
ce587e65 3350 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3351}
3352
f212ad7c
DN
3353#ifdef CONFIG_DEBUG_VM
3354static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3355{
3356 struct page_cgroup *pc;
3357
3358 pc = lookup_page_cgroup(page);
cfa44946
JW
3359 /*
3360 * Can be NULL while feeding pages into the page allocator for
3361 * the first time, i.e. during boot or memory hotplug;
3362 * or when mem_cgroup_disabled().
3363 */
f212ad7c
DN
3364 if (likely(pc) && PageCgroupUsed(pc))
3365 return pc;
3366 return NULL;
3367}
3368
3369bool mem_cgroup_bad_page_check(struct page *page)
3370{
3371 if (mem_cgroup_disabled())
3372 return false;
3373
3374 return lookup_page_cgroup_used(page) != NULL;
3375}
3376
3377void mem_cgroup_print_bad_page(struct page *page)
3378{
3379 struct page_cgroup *pc;
3380
3381 pc = lookup_page_cgroup_used(page);
3382 if (pc) {
90b3feae 3383 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3384 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3385 }
3386}
3387#endif
3388
8c7c6e34
KH
3389static DEFINE_MUTEX(set_limit_mutex);
3390
d38d2a75 3391static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3392 unsigned long long val)
628f4235 3393{
81d39c20 3394 int retry_count;
3c11ecf4 3395 u64 memswlimit, memlimit;
628f4235 3396 int ret = 0;
81d39c20
KH
3397 int children = mem_cgroup_count_children(memcg);
3398 u64 curusage, oldusage;
3c11ecf4 3399 int enlarge;
81d39c20
KH
3400
3401 /*
3402 * For keeping hierarchical_reclaim simple, how long we should retry
3403 * is depends on callers. We set our retry-count to be function
3404 * of # of children which we should visit in this loop.
3405 */
3406 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3407
3408 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3409
3c11ecf4 3410 enlarge = 0;
8c7c6e34 3411 while (retry_count) {
628f4235
KH
3412 if (signal_pending(current)) {
3413 ret = -EINTR;
3414 break;
3415 }
8c7c6e34
KH
3416 /*
3417 * Rather than hide all in some function, I do this in
3418 * open coded manner. You see what this really does.
c0ff4b85 3419 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3420 */
3421 mutex_lock(&set_limit_mutex);
3422 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3423 if (memswlimit < val) {
3424 ret = -EINVAL;
3425 mutex_unlock(&set_limit_mutex);
628f4235
KH
3426 break;
3427 }
3c11ecf4
KH
3428
3429 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3430 if (memlimit < val)
3431 enlarge = 1;
3432
8c7c6e34 3433 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3434 if (!ret) {
3435 if (memswlimit == val)
3436 memcg->memsw_is_minimum = true;
3437 else
3438 memcg->memsw_is_minimum = false;
3439 }
8c7c6e34
KH
3440 mutex_unlock(&set_limit_mutex);
3441
3442 if (!ret)
3443 break;
3444
5660048c
JW
3445 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3446 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3447 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3448 /* Usage is reduced ? */
3449 if (curusage >= oldusage)
3450 retry_count--;
3451 else
3452 oldusage = curusage;
8c7c6e34 3453 }
3c11ecf4
KH
3454 if (!ret && enlarge)
3455 memcg_oom_recover(memcg);
14797e23 3456
8c7c6e34
KH
3457 return ret;
3458}
3459
338c8431
LZ
3460static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3461 unsigned long long val)
8c7c6e34 3462{
81d39c20 3463 int retry_count;
3c11ecf4 3464 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3465 int children = mem_cgroup_count_children(memcg);
3466 int ret = -EBUSY;
3c11ecf4 3467 int enlarge = 0;
8c7c6e34 3468
81d39c20
KH
3469 /* see mem_cgroup_resize_res_limit */
3470 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3471 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3472 while (retry_count) {
3473 if (signal_pending(current)) {
3474 ret = -EINTR;
3475 break;
3476 }
3477 /*
3478 * Rather than hide all in some function, I do this in
3479 * open coded manner. You see what this really does.
c0ff4b85 3480 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3481 */
3482 mutex_lock(&set_limit_mutex);
3483 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3484 if (memlimit > val) {
3485 ret = -EINVAL;
3486 mutex_unlock(&set_limit_mutex);
3487 break;
3488 }
3c11ecf4
KH
3489 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3490 if (memswlimit < val)
3491 enlarge = 1;
8c7c6e34 3492 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3493 if (!ret) {
3494 if (memlimit == val)
3495 memcg->memsw_is_minimum = true;
3496 else
3497 memcg->memsw_is_minimum = false;
3498 }
8c7c6e34
KH
3499 mutex_unlock(&set_limit_mutex);
3500
3501 if (!ret)
3502 break;
3503
5660048c
JW
3504 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3505 MEM_CGROUP_RECLAIM_NOSWAP |
3506 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3507 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3508 /* Usage is reduced ? */
8c7c6e34 3509 if (curusage >= oldusage)
628f4235 3510 retry_count--;
81d39c20
KH
3511 else
3512 oldusage = curusage;
628f4235 3513 }
3c11ecf4
KH
3514 if (!ret && enlarge)
3515 memcg_oom_recover(memcg);
628f4235
KH
3516 return ret;
3517}
3518
4e416953 3519unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3520 gfp_t gfp_mask,
3521 unsigned long *total_scanned)
4e416953
BS
3522{
3523 unsigned long nr_reclaimed = 0;
3524 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3525 unsigned long reclaimed;
3526 int loop = 0;
3527 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3528 unsigned long long excess;
0ae5e89c 3529 unsigned long nr_scanned;
4e416953
BS
3530
3531 if (order > 0)
3532 return 0;
3533
00918b6a 3534 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3535 /*
3536 * This loop can run a while, specially if mem_cgroup's continuously
3537 * keep exceeding their soft limit and putting the system under
3538 * pressure
3539 */
3540 do {
3541 if (next_mz)
3542 mz = next_mz;
3543 else
3544 mz = mem_cgroup_largest_soft_limit_node(mctz);
3545 if (!mz)
3546 break;
3547
0ae5e89c 3548 nr_scanned = 0;
d79154bb 3549 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3550 gfp_mask, &nr_scanned);
4e416953 3551 nr_reclaimed += reclaimed;
0ae5e89c 3552 *total_scanned += nr_scanned;
4e416953
BS
3553 spin_lock(&mctz->lock);
3554
3555 /*
3556 * If we failed to reclaim anything from this memory cgroup
3557 * it is time to move on to the next cgroup
3558 */
3559 next_mz = NULL;
3560 if (!reclaimed) {
3561 do {
3562 /*
3563 * Loop until we find yet another one.
3564 *
3565 * By the time we get the soft_limit lock
3566 * again, someone might have aded the
3567 * group back on the RB tree. Iterate to
3568 * make sure we get a different mem.
3569 * mem_cgroup_largest_soft_limit_node returns
3570 * NULL if no other cgroup is present on
3571 * the tree
3572 */
3573 next_mz =
3574 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3575 if (next_mz == mz)
d79154bb 3576 css_put(&next_mz->memcg->css);
39cc98f1 3577 else /* next_mz == NULL or other memcg */
4e416953
BS
3578 break;
3579 } while (1);
3580 }
d79154bb
HD
3581 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3582 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3583 /*
3584 * One school of thought says that we should not add
3585 * back the node to the tree if reclaim returns 0.
3586 * But our reclaim could return 0, simply because due
3587 * to priority we are exposing a smaller subset of
3588 * memory to reclaim from. Consider this as a longer
3589 * term TODO.
3590 */
ef8745c1 3591 /* If excess == 0, no tree ops */
d79154bb 3592 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3593 spin_unlock(&mctz->lock);
d79154bb 3594 css_put(&mz->memcg->css);
4e416953
BS
3595 loop++;
3596 /*
3597 * Could not reclaim anything and there are no more
3598 * mem cgroups to try or we seem to be looping without
3599 * reclaiming anything.
3600 */
3601 if (!nr_reclaimed &&
3602 (next_mz == NULL ||
3603 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3604 break;
3605 } while (!nr_reclaimed);
3606 if (next_mz)
d79154bb 3607 css_put(&next_mz->memcg->css);
4e416953
BS
3608 return nr_reclaimed;
3609}
3610
cc847582 3611/*
3c935d18
KH
3612 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3613 * reclaim the pages page themselves - it just removes the page_cgroups.
3614 * Returns true if some page_cgroups were not freed, indicating that the caller
3615 * must retry this operation.
cc847582 3616 */
3c935d18 3617static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3618 int node, int zid, enum lru_list lru)
cc847582 3619{
08e552c6 3620 struct mem_cgroup_per_zone *mz;
08e552c6 3621 unsigned long flags, loop;
072c56c1 3622 struct list_head *list;
925b7673
JW
3623 struct page *busy;
3624 struct zone *zone;
072c56c1 3625
08e552c6 3626 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3627 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3628 list = &mz->lruvec.lists[lru];
cc847582 3629
1eb49272 3630 loop = mz->lru_size[lru];
f817ed48
KH
3631 /* give some margin against EBUSY etc...*/
3632 loop += 256;
3633 busy = NULL;
3634 while (loop--) {
925b7673 3635 struct page_cgroup *pc;
5564e88b
JW
3636 struct page *page;
3637
08e552c6 3638 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3639 if (list_empty(list)) {
08e552c6 3640 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3641 break;
f817ed48 3642 }
925b7673
JW
3643 page = list_entry(list->prev, struct page, lru);
3644 if (busy == page) {
3645 list_move(&page->lru, list);
648bcc77 3646 busy = NULL;
08e552c6 3647 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3648 continue;
3649 }
08e552c6 3650 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3651
925b7673 3652 pc = lookup_page_cgroup(page);
5564e88b 3653
3c935d18 3654 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3655 /* found lock contention or "pc" is obsolete. */
925b7673 3656 busy = page;
f817ed48
KH
3657 cond_resched();
3658 } else
3659 busy = NULL;
cc847582 3660 }
3c935d18 3661 return !list_empty(list);
cc847582
KH
3662}
3663
3664/*
3665 * make mem_cgroup's charge to be 0 if there is no task.
3666 * This enables deleting this mem_cgroup.
3667 */
c0ff4b85 3668static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3669{
f817ed48
KH
3670 int ret;
3671 int node, zid, shrink;
3672 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3673 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3674
c0ff4b85 3675 css_get(&memcg->css);
f817ed48
KH
3676
3677 shrink = 0;
c1e862c1
KH
3678 /* should free all ? */
3679 if (free_all)
3680 goto try_to_free;
f817ed48 3681move_account:
fce66477 3682 do {
f817ed48 3683 ret = -EBUSY;
c1e862c1
KH
3684 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3685 goto out;
52d4b9ac
KH
3686 /* This is for making all *used* pages to be on LRU. */
3687 lru_add_drain_all();
c0ff4b85 3688 drain_all_stock_sync(memcg);
f817ed48 3689 ret = 0;
c0ff4b85 3690 mem_cgroup_start_move(memcg);
299b4eaa 3691 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3692 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3693 enum lru_list lru;
3694 for_each_lru(lru) {
c0ff4b85 3695 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3696 node, zid, lru);
f817ed48
KH
3697 if (ret)
3698 break;
3699 }
1ecaab2b 3700 }
f817ed48
KH
3701 if (ret)
3702 break;
3703 }
c0ff4b85
R
3704 mem_cgroup_end_move(memcg);
3705 memcg_oom_recover(memcg);
52d4b9ac 3706 cond_resched();
fce66477 3707 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3708 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3709out:
c0ff4b85 3710 css_put(&memcg->css);
cc847582 3711 return ret;
f817ed48
KH
3712
3713try_to_free:
c1e862c1
KH
3714 /* returns EBUSY if there is a task or if we come here twice. */
3715 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3716 ret = -EBUSY;
3717 goto out;
3718 }
c1e862c1
KH
3719 /* we call try-to-free pages for make this cgroup empty */
3720 lru_add_drain_all();
f817ed48
KH
3721 /* try to free all pages in this cgroup */
3722 shrink = 1;
569530fb 3723 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3724 int progress;
c1e862c1
KH
3725
3726 if (signal_pending(current)) {
3727 ret = -EINTR;
3728 goto out;
3729 }
c0ff4b85 3730 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3731 false);
c1e862c1 3732 if (!progress) {
f817ed48 3733 nr_retries--;
c1e862c1 3734 /* maybe some writeback is necessary */
8aa7e847 3735 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3736 }
f817ed48
KH
3737
3738 }
08e552c6 3739 lru_add_drain();
f817ed48 3740 /* try move_account...there may be some *locked* pages. */
fce66477 3741 goto move_account;
cc847582
KH
3742}
3743
6bbda35c 3744static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3745{
3746 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3747}
3748
3749
18f59ea7
BS
3750static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3751{
3752 return mem_cgroup_from_cont(cont)->use_hierarchy;
3753}
3754
3755static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3756 u64 val)
3757{
3758 int retval = 0;
c0ff4b85 3759 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3760 struct cgroup *parent = cont->parent;
c0ff4b85 3761 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3762
3763 if (parent)
c0ff4b85 3764 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3765
3766 cgroup_lock();
3767 /*
af901ca1 3768 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3769 * in the child subtrees. If it is unset, then the change can
3770 * occur, provided the current cgroup has no children.
3771 *
3772 * For the root cgroup, parent_mem is NULL, we allow value to be
3773 * set if there are no children.
3774 */
c0ff4b85 3775 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3776 (val == 1 || val == 0)) {
3777 if (list_empty(&cont->children))
c0ff4b85 3778 memcg->use_hierarchy = val;
18f59ea7
BS
3779 else
3780 retval = -EBUSY;
3781 } else
3782 retval = -EINVAL;
3783 cgroup_unlock();
3784
3785 return retval;
3786}
3787
0c3e73e8 3788
c0ff4b85 3789static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3790 enum mem_cgroup_stat_index idx)
0c3e73e8 3791{
7d74b06f 3792 struct mem_cgroup *iter;
7a159cc9 3793 long val = 0;
0c3e73e8 3794
7a159cc9 3795 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3796 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3797 val += mem_cgroup_read_stat(iter, idx);
3798
3799 if (val < 0) /* race ? */
3800 val = 0;
3801 return val;
0c3e73e8
BS
3802}
3803
c0ff4b85 3804static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3805{
7d74b06f 3806 u64 val;
104f3928 3807
c0ff4b85 3808 if (!mem_cgroup_is_root(memcg)) {
104f3928 3809 if (!swap)
65c64ce8 3810 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3811 else
65c64ce8 3812 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3813 }
3814
c0ff4b85
R
3815 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3816 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3817
7d74b06f 3818 if (swap)
bff6bb83 3819 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3820
3821 return val << PAGE_SHIFT;
3822}
3823
af36f906
TH
3824static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3825 struct file *file, char __user *buf,
3826 size_t nbytes, loff_t *ppos)
8cdea7c0 3827{
c0ff4b85 3828 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3829 char str[64];
104f3928 3830 u64 val;
af36f906 3831 int type, name, len;
8c7c6e34
KH
3832
3833 type = MEMFILE_TYPE(cft->private);
3834 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3835
3836 if (!do_swap_account && type == _MEMSWAP)
3837 return -EOPNOTSUPP;
3838
8c7c6e34
KH
3839 switch (type) {
3840 case _MEM:
104f3928 3841 if (name == RES_USAGE)
c0ff4b85 3842 val = mem_cgroup_usage(memcg, false);
104f3928 3843 else
c0ff4b85 3844 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3845 break;
3846 case _MEMSWAP:
104f3928 3847 if (name == RES_USAGE)
c0ff4b85 3848 val = mem_cgroup_usage(memcg, true);
104f3928 3849 else
c0ff4b85 3850 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3851 break;
3852 default:
3853 BUG();
8c7c6e34 3854 }
af36f906
TH
3855
3856 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3857 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3858}
628f4235
KH
3859/*
3860 * The user of this function is...
3861 * RES_LIMIT.
3862 */
856c13aa
PM
3863static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3864 const char *buffer)
8cdea7c0 3865{
628f4235 3866 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3867 int type, name;
628f4235
KH
3868 unsigned long long val;
3869 int ret;
3870
8c7c6e34
KH
3871 type = MEMFILE_TYPE(cft->private);
3872 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3873
3874 if (!do_swap_account && type == _MEMSWAP)
3875 return -EOPNOTSUPP;
3876
8c7c6e34 3877 switch (name) {
628f4235 3878 case RES_LIMIT:
4b3bde4c
BS
3879 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3880 ret = -EINVAL;
3881 break;
3882 }
628f4235
KH
3883 /* This function does all necessary parse...reuse it */
3884 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3885 if (ret)
3886 break;
3887 if (type == _MEM)
628f4235 3888 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3889 else
3890 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3891 break;
296c81d8
BS
3892 case RES_SOFT_LIMIT:
3893 ret = res_counter_memparse_write_strategy(buffer, &val);
3894 if (ret)
3895 break;
3896 /*
3897 * For memsw, soft limits are hard to implement in terms
3898 * of semantics, for now, we support soft limits for
3899 * control without swap
3900 */
3901 if (type == _MEM)
3902 ret = res_counter_set_soft_limit(&memcg->res, val);
3903 else
3904 ret = -EINVAL;
3905 break;
628f4235
KH
3906 default:
3907 ret = -EINVAL; /* should be BUG() ? */
3908 break;
3909 }
3910 return ret;
8cdea7c0
BS
3911}
3912
fee7b548
KH
3913static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3914 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3915{
3916 struct cgroup *cgroup;
3917 unsigned long long min_limit, min_memsw_limit, tmp;
3918
3919 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3920 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3921 cgroup = memcg->css.cgroup;
3922 if (!memcg->use_hierarchy)
3923 goto out;
3924
3925 while (cgroup->parent) {
3926 cgroup = cgroup->parent;
3927 memcg = mem_cgroup_from_cont(cgroup);
3928 if (!memcg->use_hierarchy)
3929 break;
3930 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3931 min_limit = min(min_limit, tmp);
3932 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3933 min_memsw_limit = min(min_memsw_limit, tmp);
3934 }
3935out:
3936 *mem_limit = min_limit;
3937 *memsw_limit = min_memsw_limit;
fee7b548
KH
3938}
3939
29f2a4da 3940static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3941{
af36f906 3942 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3943 int type, name;
c84872e1 3944
8c7c6e34
KH
3945 type = MEMFILE_TYPE(event);
3946 name = MEMFILE_ATTR(event);
af36f906
TH
3947
3948 if (!do_swap_account && type == _MEMSWAP)
3949 return -EOPNOTSUPP;
3950
8c7c6e34 3951 switch (name) {
29f2a4da 3952 case RES_MAX_USAGE:
8c7c6e34 3953 if (type == _MEM)
c0ff4b85 3954 res_counter_reset_max(&memcg->res);
8c7c6e34 3955 else
c0ff4b85 3956 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3957 break;
3958 case RES_FAILCNT:
8c7c6e34 3959 if (type == _MEM)
c0ff4b85 3960 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3961 else
c0ff4b85 3962 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3963 break;
3964 }
f64c3f54 3965
85cc59db 3966 return 0;
c84872e1
PE
3967}
3968
7dc74be0
DN
3969static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3970 struct cftype *cft)
3971{
3972 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3973}
3974
02491447 3975#ifdef CONFIG_MMU
7dc74be0
DN
3976static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3977 struct cftype *cft, u64 val)
3978{
c0ff4b85 3979 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
3980
3981 if (val >= (1 << NR_MOVE_TYPE))
3982 return -EINVAL;
3983 /*
3984 * We check this value several times in both in can_attach() and
3985 * attach(), so we need cgroup lock to prevent this value from being
3986 * inconsistent.
3987 */
3988 cgroup_lock();
c0ff4b85 3989 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3990 cgroup_unlock();
3991
3992 return 0;
3993}
02491447
DN
3994#else
3995static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3996 struct cftype *cft, u64 val)
3997{
3998 return -ENOSYS;
3999}
4000#endif
7dc74be0 4001
406eb0c9 4002#ifdef CONFIG_NUMA
fada52ca
JW
4003static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4004 struct seq_file *m)
406eb0c9
YH
4005{
4006 int nid;
4007 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4008 unsigned long node_nr;
d79154bb 4009 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4010
d79154bb 4011 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4012 seq_printf(m, "total=%lu", total_nr);
4013 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4014 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4015 seq_printf(m, " N%d=%lu", nid, node_nr);
4016 }
4017 seq_putc(m, '\n');
4018
d79154bb 4019 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4020 seq_printf(m, "file=%lu", file_nr);
4021 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4022 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4023 LRU_ALL_FILE);
406eb0c9
YH
4024 seq_printf(m, " N%d=%lu", nid, node_nr);
4025 }
4026 seq_putc(m, '\n');
4027
d79154bb 4028 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4029 seq_printf(m, "anon=%lu", anon_nr);
4030 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4031 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4032 LRU_ALL_ANON);
406eb0c9
YH
4033 seq_printf(m, " N%d=%lu", nid, node_nr);
4034 }
4035 seq_putc(m, '\n');
4036
d79154bb 4037 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4038 seq_printf(m, "unevictable=%lu", unevictable_nr);
4039 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4040 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4041 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4042 seq_printf(m, " N%d=%lu", nid, node_nr);
4043 }
4044 seq_putc(m, '\n');
4045 return 0;
4046}
4047#endif /* CONFIG_NUMA */
4048
af7c4b0e
JW
4049static const char * const mem_cgroup_lru_names[] = {
4050 "inactive_anon",
4051 "active_anon",
4052 "inactive_file",
4053 "active_file",
4054 "unevictable",
4055};
4056
4057static inline void mem_cgroup_lru_names_not_uptodate(void)
4058{
4059 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4060}
4061
c64745cf 4062static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4063 struct seq_file *m)
d2ceb9b7 4064{
d79154bb 4065 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4066 struct mem_cgroup *mi;
4067 unsigned int i;
406eb0c9 4068
af7c4b0e 4069 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4070 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4071 continue;
af7c4b0e
JW
4072 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4073 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4074 }
7b854121 4075
af7c4b0e
JW
4076 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4077 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4078 mem_cgroup_read_events(memcg, i));
4079
4080 for (i = 0; i < NR_LRU_LISTS; i++)
4081 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4082 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4083
14067bb3 4084 /* Hierarchical information */
fee7b548
KH
4085 {
4086 unsigned long long limit, memsw_limit;
d79154bb 4087 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4088 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4089 if (do_swap_account)
78ccf5b5
JW
4090 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4091 memsw_limit);
fee7b548 4092 }
7f016ee8 4093
af7c4b0e
JW
4094 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4095 long long val = 0;
4096
bff6bb83 4097 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4098 continue;
af7c4b0e
JW
4099 for_each_mem_cgroup_tree(mi, memcg)
4100 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4101 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4102 }
4103
4104 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4105 unsigned long long val = 0;
4106
4107 for_each_mem_cgroup_tree(mi, memcg)
4108 val += mem_cgroup_read_events(mi, i);
4109 seq_printf(m, "total_%s %llu\n",
4110 mem_cgroup_events_names[i], val);
4111 }
4112
4113 for (i = 0; i < NR_LRU_LISTS; i++) {
4114 unsigned long long val = 0;
4115
4116 for_each_mem_cgroup_tree(mi, memcg)
4117 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4118 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4119 }
14067bb3 4120
7f016ee8 4121#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4122 {
4123 int nid, zid;
4124 struct mem_cgroup_per_zone *mz;
89abfab1 4125 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4126 unsigned long recent_rotated[2] = {0, 0};
4127 unsigned long recent_scanned[2] = {0, 0};
4128
4129 for_each_online_node(nid)
4130 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4131 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4132 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4133
89abfab1
HD
4134 recent_rotated[0] += rstat->recent_rotated[0];
4135 recent_rotated[1] += rstat->recent_rotated[1];
4136 recent_scanned[0] += rstat->recent_scanned[0];
4137 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4138 }
78ccf5b5
JW
4139 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4140 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4141 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4142 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4143 }
4144#endif
4145
d2ceb9b7
KH
4146 return 0;
4147}
4148
a7885eb8
KM
4149static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4150{
4151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4152
1f4c025b 4153 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4154}
4155
4156static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4157 u64 val)
4158{
4159 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4160 struct mem_cgroup *parent;
068b38c1 4161
a7885eb8
KM
4162 if (val > 100)
4163 return -EINVAL;
4164
4165 if (cgrp->parent == NULL)
4166 return -EINVAL;
4167
4168 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4169
4170 cgroup_lock();
4171
a7885eb8
KM
4172 /* If under hierarchy, only empty-root can set this value */
4173 if ((parent->use_hierarchy) ||
068b38c1
LZ
4174 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4175 cgroup_unlock();
a7885eb8 4176 return -EINVAL;
068b38c1 4177 }
a7885eb8 4178
a7885eb8 4179 memcg->swappiness = val;
a7885eb8 4180
068b38c1
LZ
4181 cgroup_unlock();
4182
a7885eb8
KM
4183 return 0;
4184}
4185
2e72b634
KS
4186static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4187{
4188 struct mem_cgroup_threshold_ary *t;
4189 u64 usage;
4190 int i;
4191
4192 rcu_read_lock();
4193 if (!swap)
2c488db2 4194 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4195 else
2c488db2 4196 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4197
4198 if (!t)
4199 goto unlock;
4200
4201 usage = mem_cgroup_usage(memcg, swap);
4202
4203 /*
748dad36 4204 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4205 * If it's not true, a threshold was crossed after last
4206 * call of __mem_cgroup_threshold().
4207 */
5407a562 4208 i = t->current_threshold;
2e72b634
KS
4209
4210 /*
4211 * Iterate backward over array of thresholds starting from
4212 * current_threshold and check if a threshold is crossed.
4213 * If none of thresholds below usage is crossed, we read
4214 * only one element of the array here.
4215 */
4216 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4217 eventfd_signal(t->entries[i].eventfd, 1);
4218
4219 /* i = current_threshold + 1 */
4220 i++;
4221
4222 /*
4223 * Iterate forward over array of thresholds starting from
4224 * current_threshold+1 and check if a threshold is crossed.
4225 * If none of thresholds above usage is crossed, we read
4226 * only one element of the array here.
4227 */
4228 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4229 eventfd_signal(t->entries[i].eventfd, 1);
4230
4231 /* Update current_threshold */
5407a562 4232 t->current_threshold = i - 1;
2e72b634
KS
4233unlock:
4234 rcu_read_unlock();
4235}
4236
4237static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4238{
ad4ca5f4
KS
4239 while (memcg) {
4240 __mem_cgroup_threshold(memcg, false);
4241 if (do_swap_account)
4242 __mem_cgroup_threshold(memcg, true);
4243
4244 memcg = parent_mem_cgroup(memcg);
4245 }
2e72b634
KS
4246}
4247
4248static int compare_thresholds(const void *a, const void *b)
4249{
4250 const struct mem_cgroup_threshold *_a = a;
4251 const struct mem_cgroup_threshold *_b = b;
4252
4253 return _a->threshold - _b->threshold;
4254}
4255
c0ff4b85 4256static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4257{
4258 struct mem_cgroup_eventfd_list *ev;
4259
c0ff4b85 4260 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4261 eventfd_signal(ev->eventfd, 1);
4262 return 0;
4263}
4264
c0ff4b85 4265static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4266{
7d74b06f
KH
4267 struct mem_cgroup *iter;
4268
c0ff4b85 4269 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4270 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4271}
4272
4273static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4274 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4275{
4276 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4277 struct mem_cgroup_thresholds *thresholds;
4278 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4279 int type = MEMFILE_TYPE(cft->private);
4280 u64 threshold, usage;
2c488db2 4281 int i, size, ret;
2e72b634
KS
4282
4283 ret = res_counter_memparse_write_strategy(args, &threshold);
4284 if (ret)
4285 return ret;
4286
4287 mutex_lock(&memcg->thresholds_lock);
2c488db2 4288
2e72b634 4289 if (type == _MEM)
2c488db2 4290 thresholds = &memcg->thresholds;
2e72b634 4291 else if (type == _MEMSWAP)
2c488db2 4292 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4293 else
4294 BUG();
4295
4296 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4297
4298 /* Check if a threshold crossed before adding a new one */
2c488db2 4299 if (thresholds->primary)
2e72b634
KS
4300 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4301
2c488db2 4302 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4303
4304 /* Allocate memory for new array of thresholds */
2c488db2 4305 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4306 GFP_KERNEL);
2c488db2 4307 if (!new) {
2e72b634
KS
4308 ret = -ENOMEM;
4309 goto unlock;
4310 }
2c488db2 4311 new->size = size;
2e72b634
KS
4312
4313 /* Copy thresholds (if any) to new array */
2c488db2
KS
4314 if (thresholds->primary) {
4315 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4316 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4317 }
4318
2e72b634 4319 /* Add new threshold */
2c488db2
KS
4320 new->entries[size - 1].eventfd = eventfd;
4321 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4322
4323 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4324 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4325 compare_thresholds, NULL);
4326
4327 /* Find current threshold */
2c488db2 4328 new->current_threshold = -1;
2e72b634 4329 for (i = 0; i < size; i++) {
748dad36 4330 if (new->entries[i].threshold <= usage) {
2e72b634 4331 /*
2c488db2
KS
4332 * new->current_threshold will not be used until
4333 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4334 * it here.
4335 */
2c488db2 4336 ++new->current_threshold;
748dad36
SZ
4337 } else
4338 break;
2e72b634
KS
4339 }
4340
2c488db2
KS
4341 /* Free old spare buffer and save old primary buffer as spare */
4342 kfree(thresholds->spare);
4343 thresholds->spare = thresholds->primary;
4344
4345 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4346
907860ed 4347 /* To be sure that nobody uses thresholds */
2e72b634
KS
4348 synchronize_rcu();
4349
2e72b634
KS
4350unlock:
4351 mutex_unlock(&memcg->thresholds_lock);
4352
4353 return ret;
4354}
4355
907860ed 4356static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4357 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4358{
4359 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4360 struct mem_cgroup_thresholds *thresholds;
4361 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4362 int type = MEMFILE_TYPE(cft->private);
4363 u64 usage;
2c488db2 4364 int i, j, size;
2e72b634
KS
4365
4366 mutex_lock(&memcg->thresholds_lock);
4367 if (type == _MEM)
2c488db2 4368 thresholds = &memcg->thresholds;
2e72b634 4369 else if (type == _MEMSWAP)
2c488db2 4370 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4371 else
4372 BUG();
4373
371528ca
AV
4374 if (!thresholds->primary)
4375 goto unlock;
4376
2e72b634
KS
4377 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4378
4379 /* Check if a threshold crossed before removing */
4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4381
4382 /* Calculate new number of threshold */
2c488db2
KS
4383 size = 0;
4384 for (i = 0; i < thresholds->primary->size; i++) {
4385 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4386 size++;
4387 }
4388
2c488db2 4389 new = thresholds->spare;
907860ed 4390
2e72b634
KS
4391 /* Set thresholds array to NULL if we don't have thresholds */
4392 if (!size) {
2c488db2
KS
4393 kfree(new);
4394 new = NULL;
907860ed 4395 goto swap_buffers;
2e72b634
KS
4396 }
4397
2c488db2 4398 new->size = size;
2e72b634
KS
4399
4400 /* Copy thresholds and find current threshold */
2c488db2
KS
4401 new->current_threshold = -1;
4402 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4403 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4404 continue;
4405
2c488db2 4406 new->entries[j] = thresholds->primary->entries[i];
748dad36 4407 if (new->entries[j].threshold <= usage) {
2e72b634 4408 /*
2c488db2 4409 * new->current_threshold will not be used
2e72b634
KS
4410 * until rcu_assign_pointer(), so it's safe to increment
4411 * it here.
4412 */
2c488db2 4413 ++new->current_threshold;
2e72b634
KS
4414 }
4415 j++;
4416 }
4417
907860ed 4418swap_buffers:
2c488db2
KS
4419 /* Swap primary and spare array */
4420 thresholds->spare = thresholds->primary;
8c757763
SZ
4421 /* If all events are unregistered, free the spare array */
4422 if (!new) {
4423 kfree(thresholds->spare);
4424 thresholds->spare = NULL;
4425 }
4426
2c488db2 4427 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4428
907860ed 4429 /* To be sure that nobody uses thresholds */
2e72b634 4430 synchronize_rcu();
371528ca 4431unlock:
2e72b634 4432 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4433}
c1e862c1 4434
9490ff27
KH
4435static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4436 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4437{
4438 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4439 struct mem_cgroup_eventfd_list *event;
4440 int type = MEMFILE_TYPE(cft->private);
4441
4442 BUG_ON(type != _OOM_TYPE);
4443 event = kmalloc(sizeof(*event), GFP_KERNEL);
4444 if (!event)
4445 return -ENOMEM;
4446
1af8efe9 4447 spin_lock(&memcg_oom_lock);
9490ff27
KH
4448
4449 event->eventfd = eventfd;
4450 list_add(&event->list, &memcg->oom_notify);
4451
4452 /* already in OOM ? */
79dfdacc 4453 if (atomic_read(&memcg->under_oom))
9490ff27 4454 eventfd_signal(eventfd, 1);
1af8efe9 4455 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4456
4457 return 0;
4458}
4459
907860ed 4460static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4461 struct cftype *cft, struct eventfd_ctx *eventfd)
4462{
c0ff4b85 4463 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4464 struct mem_cgroup_eventfd_list *ev, *tmp;
4465 int type = MEMFILE_TYPE(cft->private);
4466
4467 BUG_ON(type != _OOM_TYPE);
4468
1af8efe9 4469 spin_lock(&memcg_oom_lock);
9490ff27 4470
c0ff4b85 4471 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4472 if (ev->eventfd == eventfd) {
4473 list_del(&ev->list);
4474 kfree(ev);
4475 }
4476 }
4477
1af8efe9 4478 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4479}
4480
3c11ecf4
KH
4481static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4482 struct cftype *cft, struct cgroup_map_cb *cb)
4483{
c0ff4b85 4484 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4485
c0ff4b85 4486 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4487
c0ff4b85 4488 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4489 cb->fill(cb, "under_oom", 1);
4490 else
4491 cb->fill(cb, "under_oom", 0);
4492 return 0;
4493}
4494
3c11ecf4
KH
4495static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4496 struct cftype *cft, u64 val)
4497{
c0ff4b85 4498 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4499 struct mem_cgroup *parent;
4500
4501 /* cannot set to root cgroup and only 0 and 1 are allowed */
4502 if (!cgrp->parent || !((val == 0) || (val == 1)))
4503 return -EINVAL;
4504
4505 parent = mem_cgroup_from_cont(cgrp->parent);
4506
4507 cgroup_lock();
4508 /* oom-kill-disable is a flag for subhierarchy. */
4509 if ((parent->use_hierarchy) ||
c0ff4b85 4510 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4511 cgroup_unlock();
4512 return -EINVAL;
4513 }
c0ff4b85 4514 memcg->oom_kill_disable = val;
4d845ebf 4515 if (!val)
c0ff4b85 4516 memcg_oom_recover(memcg);
3c11ecf4
KH
4517 cgroup_unlock();
4518 return 0;
4519}
4520
e5671dfa 4521#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4522static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4523{
1d62e436 4524 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4525};
4526
1d62e436 4527static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4528{
1d62e436 4529 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4530}
e5671dfa 4531#else
cbe128e3 4532static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4533{
4534 return 0;
4535}
d1a4c0b3 4536
1d62e436 4537static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4538{
4539}
e5671dfa
GC
4540#endif
4541
8cdea7c0
BS
4542static struct cftype mem_cgroup_files[] = {
4543 {
0eea1030 4544 .name = "usage_in_bytes",
8c7c6e34 4545 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4546 .read = mem_cgroup_read,
9490ff27
KH
4547 .register_event = mem_cgroup_usage_register_event,
4548 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4549 },
c84872e1
PE
4550 {
4551 .name = "max_usage_in_bytes",
8c7c6e34 4552 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4553 .trigger = mem_cgroup_reset,
af36f906 4554 .read = mem_cgroup_read,
c84872e1 4555 },
8cdea7c0 4556 {
0eea1030 4557 .name = "limit_in_bytes",
8c7c6e34 4558 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4559 .write_string = mem_cgroup_write,
af36f906 4560 .read = mem_cgroup_read,
8cdea7c0 4561 },
296c81d8
BS
4562 {
4563 .name = "soft_limit_in_bytes",
4564 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4565 .write_string = mem_cgroup_write,
af36f906 4566 .read = mem_cgroup_read,
296c81d8 4567 },
8cdea7c0
BS
4568 {
4569 .name = "failcnt",
8c7c6e34 4570 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4571 .trigger = mem_cgroup_reset,
af36f906 4572 .read = mem_cgroup_read,
8cdea7c0 4573 },
d2ceb9b7
KH
4574 {
4575 .name = "stat",
78ccf5b5 4576 .read_seq_string = mem_control_stat_show,
d2ceb9b7 4577 },
c1e862c1
KH
4578 {
4579 .name = "force_empty",
4580 .trigger = mem_cgroup_force_empty_write,
4581 },
18f59ea7
BS
4582 {
4583 .name = "use_hierarchy",
4584 .write_u64 = mem_cgroup_hierarchy_write,
4585 .read_u64 = mem_cgroup_hierarchy_read,
4586 },
a7885eb8
KM
4587 {
4588 .name = "swappiness",
4589 .read_u64 = mem_cgroup_swappiness_read,
4590 .write_u64 = mem_cgroup_swappiness_write,
4591 },
7dc74be0
DN
4592 {
4593 .name = "move_charge_at_immigrate",
4594 .read_u64 = mem_cgroup_move_charge_read,
4595 .write_u64 = mem_cgroup_move_charge_write,
4596 },
9490ff27
KH
4597 {
4598 .name = "oom_control",
3c11ecf4
KH
4599 .read_map = mem_cgroup_oom_control_read,
4600 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4601 .register_event = mem_cgroup_oom_register_event,
4602 .unregister_event = mem_cgroup_oom_unregister_event,
4603 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4604 },
406eb0c9
YH
4605#ifdef CONFIG_NUMA
4606 {
4607 .name = "numa_stat",
fada52ca 4608 .read_seq_string = mem_control_numa_stat_show,
406eb0c9
YH
4609 },
4610#endif
8c7c6e34 4611#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4612 {
4613 .name = "memsw.usage_in_bytes",
4614 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4615 .read = mem_cgroup_read,
9490ff27
KH
4616 .register_event = mem_cgroup_usage_register_event,
4617 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4618 },
4619 {
4620 .name = "memsw.max_usage_in_bytes",
4621 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4622 .trigger = mem_cgroup_reset,
af36f906 4623 .read = mem_cgroup_read,
8c7c6e34
KH
4624 },
4625 {
4626 .name = "memsw.limit_in_bytes",
4627 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4628 .write_string = mem_cgroup_write,
af36f906 4629 .read = mem_cgroup_read,
8c7c6e34
KH
4630 },
4631 {
4632 .name = "memsw.failcnt",
4633 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4634 .trigger = mem_cgroup_reset,
af36f906 4635 .read = mem_cgroup_read,
8c7c6e34 4636 },
8c7c6e34 4637#endif
6bc10349 4638 { }, /* terminate */
af36f906 4639};
8c7c6e34 4640
c0ff4b85 4641static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4642{
4643 struct mem_cgroup_per_node *pn;
1ecaab2b 4644 struct mem_cgroup_per_zone *mz;
41e3355d 4645 int zone, tmp = node;
1ecaab2b
KH
4646 /*
4647 * This routine is called against possible nodes.
4648 * But it's BUG to call kmalloc() against offline node.
4649 *
4650 * TODO: this routine can waste much memory for nodes which will
4651 * never be onlined. It's better to use memory hotplug callback
4652 * function.
4653 */
41e3355d
KH
4654 if (!node_state(node, N_NORMAL_MEMORY))
4655 tmp = -1;
17295c88 4656 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4657 if (!pn)
4658 return 1;
1ecaab2b 4659
1ecaab2b
KH
4660 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4661 mz = &pn->zoneinfo[zone];
7f5e86c2 4662 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4663 mz->usage_in_excess = 0;
4e416953 4664 mz->on_tree = false;
d79154bb 4665 mz->memcg = memcg;
1ecaab2b 4666 }
0a619e58 4667 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4668 return 0;
4669}
4670
c0ff4b85 4671static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4672{
c0ff4b85 4673 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4674}
4675
33327948
KH
4676static struct mem_cgroup *mem_cgroup_alloc(void)
4677{
d79154bb 4678 struct mem_cgroup *memcg;
c62b1a3b 4679 int size = sizeof(struct mem_cgroup);
33327948 4680
c62b1a3b 4681 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4682 if (size < PAGE_SIZE)
d79154bb 4683 memcg = kzalloc(size, GFP_KERNEL);
33327948 4684 else
d79154bb 4685 memcg = vzalloc(size);
33327948 4686
d79154bb 4687 if (!memcg)
e7bbcdf3
DC
4688 return NULL;
4689
d79154bb
HD
4690 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4691 if (!memcg->stat)
d2e61b8d 4692 goto out_free;
d79154bb
HD
4693 spin_lock_init(&memcg->pcp_counter_lock);
4694 return memcg;
d2e61b8d
DC
4695
4696out_free:
4697 if (size < PAGE_SIZE)
d79154bb 4698 kfree(memcg);
d2e61b8d 4699 else
d79154bb 4700 vfree(memcg);
d2e61b8d 4701 return NULL;
33327948
KH
4702}
4703
59927fb9 4704/*
3afe36b1 4705 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4706 * but in process context. The work_freeing structure is overlaid
4707 * on the rcu_freeing structure, which itself is overlaid on memsw.
4708 */
3afe36b1 4709static void free_work(struct work_struct *work)
59927fb9
HD
4710{
4711 struct mem_cgroup *memcg;
3afe36b1 4712 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4713
4714 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4715 /*
4716 * We need to make sure that (at least for now), the jump label
4717 * destruction code runs outside of the cgroup lock. This is because
4718 * get_online_cpus(), which is called from the static_branch update,
4719 * can't be called inside the cgroup_lock. cpusets are the ones
4720 * enforcing this dependency, so if they ever change, we might as well.
4721 *
4722 * schedule_work() will guarantee this happens. Be careful if you need
4723 * to move this code around, and make sure it is outside
4724 * the cgroup_lock.
4725 */
4726 disarm_sock_keys(memcg);
3afe36b1
GC
4727 if (size < PAGE_SIZE)
4728 kfree(memcg);
4729 else
4730 vfree(memcg);
59927fb9 4731}
3afe36b1
GC
4732
4733static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4734{
4735 struct mem_cgroup *memcg;
4736
4737 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4738 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4739 schedule_work(&memcg->work_freeing);
4740}
4741
8c7c6e34
KH
4742/*
4743 * At destroying mem_cgroup, references from swap_cgroup can remain.
4744 * (scanning all at force_empty is too costly...)
4745 *
4746 * Instead of clearing all references at force_empty, we remember
4747 * the number of reference from swap_cgroup and free mem_cgroup when
4748 * it goes down to 0.
4749 *
8c7c6e34
KH
4750 * Removal of cgroup itself succeeds regardless of refs from swap.
4751 */
4752
c0ff4b85 4753static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4754{
08e552c6
KH
4755 int node;
4756
c0ff4b85
R
4757 mem_cgroup_remove_from_trees(memcg);
4758 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4759
3ed28fa1 4760 for_each_node(node)
c0ff4b85 4761 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4762
c0ff4b85 4763 free_percpu(memcg->stat);
3afe36b1 4764 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4765}
4766
c0ff4b85 4767static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4768{
c0ff4b85 4769 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4770}
4771
c0ff4b85 4772static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4773{
c0ff4b85
R
4774 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4775 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4776 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4777 if (parent)
4778 mem_cgroup_put(parent);
4779 }
8c7c6e34
KH
4780}
4781
c0ff4b85 4782static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4783{
c0ff4b85 4784 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4785}
4786
7bcc1bb1
DN
4787/*
4788 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4789 */
e1aab161 4790struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4791{
c0ff4b85 4792 if (!memcg->res.parent)
7bcc1bb1 4793 return NULL;
c0ff4b85 4794 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4795}
e1aab161 4796EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4797
c077719b
KH
4798#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4799static void __init enable_swap_cgroup(void)
4800{
f8d66542 4801 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4802 do_swap_account = 1;
4803}
4804#else
4805static void __init enable_swap_cgroup(void)
4806{
4807}
4808#endif
4809
f64c3f54
BS
4810static int mem_cgroup_soft_limit_tree_init(void)
4811{
4812 struct mem_cgroup_tree_per_node *rtpn;
4813 struct mem_cgroup_tree_per_zone *rtpz;
4814 int tmp, node, zone;
4815
3ed28fa1 4816 for_each_node(node) {
f64c3f54
BS
4817 tmp = node;
4818 if (!node_state(node, N_NORMAL_MEMORY))
4819 tmp = -1;
4820 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4821 if (!rtpn)
c3cecc68 4822 goto err_cleanup;
f64c3f54
BS
4823
4824 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4825
4826 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4827 rtpz = &rtpn->rb_tree_per_zone[zone];
4828 rtpz->rb_root = RB_ROOT;
4829 spin_lock_init(&rtpz->lock);
4830 }
4831 }
4832 return 0;
c3cecc68
MH
4833
4834err_cleanup:
3ed28fa1 4835 for_each_node(node) {
c3cecc68
MH
4836 if (!soft_limit_tree.rb_tree_per_node[node])
4837 break;
4838 kfree(soft_limit_tree.rb_tree_per_node[node]);
4839 soft_limit_tree.rb_tree_per_node[node] = NULL;
4840 }
4841 return 1;
4842
f64c3f54
BS
4843}
4844
0eb253e2 4845static struct cgroup_subsys_state * __ref
761b3ef5 4846mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4847{
c0ff4b85 4848 struct mem_cgroup *memcg, *parent;
04046e1a 4849 long error = -ENOMEM;
6d12e2d8 4850 int node;
8cdea7c0 4851
c0ff4b85
R
4852 memcg = mem_cgroup_alloc();
4853 if (!memcg)
04046e1a 4854 return ERR_PTR(error);
78fb7466 4855
3ed28fa1 4856 for_each_node(node)
c0ff4b85 4857 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4858 goto free_out;
f64c3f54 4859
c077719b 4860 /* root ? */
28dbc4b6 4861 if (cont->parent == NULL) {
cdec2e42 4862 int cpu;
c077719b 4863 enable_swap_cgroup();
28dbc4b6 4864 parent = NULL;
f64c3f54
BS
4865 if (mem_cgroup_soft_limit_tree_init())
4866 goto free_out;
a41c58a6 4867 root_mem_cgroup = memcg;
cdec2e42
KH
4868 for_each_possible_cpu(cpu) {
4869 struct memcg_stock_pcp *stock =
4870 &per_cpu(memcg_stock, cpu);
4871 INIT_WORK(&stock->work, drain_local_stock);
4872 }
711d3d2c 4873 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4874 } else {
28dbc4b6 4875 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4876 memcg->use_hierarchy = parent->use_hierarchy;
4877 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4878 }
28dbc4b6 4879
18f59ea7 4880 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4881 res_counter_init(&memcg->res, &parent->res);
4882 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4883 /*
4884 * We increment refcnt of the parent to ensure that we can
4885 * safely access it on res_counter_charge/uncharge.
4886 * This refcnt will be decremented when freeing this
4887 * mem_cgroup(see mem_cgroup_put).
4888 */
4889 mem_cgroup_get(parent);
18f59ea7 4890 } else {
c0ff4b85
R
4891 res_counter_init(&memcg->res, NULL);
4892 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4893 }
c0ff4b85
R
4894 memcg->last_scanned_node = MAX_NUMNODES;
4895 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4896
a7885eb8 4897 if (parent)
c0ff4b85
R
4898 memcg->swappiness = mem_cgroup_swappiness(parent);
4899 atomic_set(&memcg->refcnt, 1);
4900 memcg->move_charge_at_immigrate = 0;
4901 mutex_init(&memcg->thresholds_lock);
312734c0 4902 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4903
4904 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4905 if (error) {
4906 /*
4907 * We call put now because our (and parent's) refcnts
4908 * are already in place. mem_cgroup_put() will internally
4909 * call __mem_cgroup_free, so return directly
4910 */
4911 mem_cgroup_put(memcg);
4912 return ERR_PTR(error);
4913 }
c0ff4b85 4914 return &memcg->css;
6d12e2d8 4915free_out:
c0ff4b85 4916 __mem_cgroup_free(memcg);
04046e1a 4917 return ERR_PTR(error);
8cdea7c0
BS
4918}
4919
761b3ef5 4920static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4921{
c0ff4b85 4922 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4923
c0ff4b85 4924 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4925}
4926
761b3ef5 4927static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 4928{
c0ff4b85 4929 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4930
1d62e436 4931 kmem_cgroup_destroy(memcg);
d1a4c0b3 4932
c0ff4b85 4933 mem_cgroup_put(memcg);
8cdea7c0
BS
4934}
4935
02491447 4936#ifdef CONFIG_MMU
7dc74be0 4937/* Handlers for move charge at task migration. */
854ffa8d
DN
4938#define PRECHARGE_COUNT_AT_ONCE 256
4939static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4940{
854ffa8d
DN
4941 int ret = 0;
4942 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 4943 struct mem_cgroup *memcg = mc.to;
4ffef5fe 4944
c0ff4b85 4945 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
4946 mc.precharge += count;
4947 /* we don't need css_get for root */
4948 return ret;
4949 }
4950 /* try to charge at once */
4951 if (count > 1) {
4952 struct res_counter *dummy;
4953 /*
c0ff4b85 4954 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
4955 * by cgroup_lock_live_cgroup() that it is not removed and we
4956 * are still under the same cgroup_mutex. So we can postpone
4957 * css_get().
4958 */
c0ff4b85 4959 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 4960 goto one_by_one;
c0ff4b85 4961 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 4962 PAGE_SIZE * count, &dummy)) {
c0ff4b85 4963 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
4964 goto one_by_one;
4965 }
4966 mc.precharge += count;
854ffa8d
DN
4967 return ret;
4968 }
4969one_by_one:
4970 /* fall back to one by one charge */
4971 while (count--) {
4972 if (signal_pending(current)) {
4973 ret = -EINTR;
4974 break;
4975 }
4976 if (!batch_count--) {
4977 batch_count = PRECHARGE_COUNT_AT_ONCE;
4978 cond_resched();
4979 }
c0ff4b85
R
4980 ret = __mem_cgroup_try_charge(NULL,
4981 GFP_KERNEL, 1, &memcg, false);
38c5d72f 4982 if (ret)
854ffa8d 4983 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 4984 return ret;
854ffa8d
DN
4985 mc.precharge++;
4986 }
4ffef5fe
DN
4987 return ret;
4988}
4989
4990/**
8d32ff84 4991 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4992 * @vma: the vma the pte to be checked belongs
4993 * @addr: the address corresponding to the pte to be checked
4994 * @ptent: the pte to be checked
02491447 4995 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4996 *
4997 * Returns
4998 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4999 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5000 * move charge. if @target is not NULL, the page is stored in target->page
5001 * with extra refcnt got(Callers should handle it).
02491447
DN
5002 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5003 * target for charge migration. if @target is not NULL, the entry is stored
5004 * in target->ent.
4ffef5fe
DN
5005 *
5006 * Called with pte lock held.
5007 */
4ffef5fe
DN
5008union mc_target {
5009 struct page *page;
02491447 5010 swp_entry_t ent;
4ffef5fe
DN
5011};
5012
4ffef5fe 5013enum mc_target_type {
8d32ff84 5014 MC_TARGET_NONE = 0,
4ffef5fe 5015 MC_TARGET_PAGE,
02491447 5016 MC_TARGET_SWAP,
4ffef5fe
DN
5017};
5018
90254a65
DN
5019static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5020 unsigned long addr, pte_t ptent)
4ffef5fe 5021{
90254a65 5022 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5023
90254a65
DN
5024 if (!page || !page_mapped(page))
5025 return NULL;
5026 if (PageAnon(page)) {
5027 /* we don't move shared anon */
4b91355e 5028 if (!move_anon())
90254a65 5029 return NULL;
87946a72
DN
5030 } else if (!move_file())
5031 /* we ignore mapcount for file pages */
90254a65
DN
5032 return NULL;
5033 if (!get_page_unless_zero(page))
5034 return NULL;
5035
5036 return page;
5037}
5038
4b91355e 5039#ifdef CONFIG_SWAP
90254a65
DN
5040static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5041 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5042{
90254a65
DN
5043 struct page *page = NULL;
5044 swp_entry_t ent = pte_to_swp_entry(ptent);
5045
5046 if (!move_anon() || non_swap_entry(ent))
5047 return NULL;
4b91355e
KH
5048 /*
5049 * Because lookup_swap_cache() updates some statistics counter,
5050 * we call find_get_page() with swapper_space directly.
5051 */
5052 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5053 if (do_swap_account)
5054 entry->val = ent.val;
5055
5056 return page;
5057}
4b91355e
KH
5058#else
5059static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5060 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5061{
5062 return NULL;
5063}
5064#endif
90254a65 5065
87946a72
DN
5066static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5067 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5068{
5069 struct page *page = NULL;
87946a72
DN
5070 struct address_space *mapping;
5071 pgoff_t pgoff;
5072
5073 if (!vma->vm_file) /* anonymous vma */
5074 return NULL;
5075 if (!move_file())
5076 return NULL;
5077
87946a72
DN
5078 mapping = vma->vm_file->f_mapping;
5079 if (pte_none(ptent))
5080 pgoff = linear_page_index(vma, addr);
5081 else /* pte_file(ptent) is true */
5082 pgoff = pte_to_pgoff(ptent);
5083
5084 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5085 page = find_get_page(mapping, pgoff);
5086
5087#ifdef CONFIG_SWAP
5088 /* shmem/tmpfs may report page out on swap: account for that too. */
5089 if (radix_tree_exceptional_entry(page)) {
5090 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5091 if (do_swap_account)
aa3b1895
HD
5092 *entry = swap;
5093 page = find_get_page(&swapper_space, swap.val);
87946a72 5094 }
aa3b1895 5095#endif
87946a72
DN
5096 return page;
5097}
5098
8d32ff84 5099static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5100 unsigned long addr, pte_t ptent, union mc_target *target)
5101{
5102 struct page *page = NULL;
5103 struct page_cgroup *pc;
8d32ff84 5104 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5105 swp_entry_t ent = { .val = 0 };
5106
5107 if (pte_present(ptent))
5108 page = mc_handle_present_pte(vma, addr, ptent);
5109 else if (is_swap_pte(ptent))
5110 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5111 else if (pte_none(ptent) || pte_file(ptent))
5112 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5113
5114 if (!page && !ent.val)
8d32ff84 5115 return ret;
02491447
DN
5116 if (page) {
5117 pc = lookup_page_cgroup(page);
5118 /*
5119 * Do only loose check w/o page_cgroup lock.
5120 * mem_cgroup_move_account() checks the pc is valid or not under
5121 * the lock.
5122 */
5123 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5124 ret = MC_TARGET_PAGE;
5125 if (target)
5126 target->page = page;
5127 }
5128 if (!ret || !target)
5129 put_page(page);
5130 }
90254a65
DN
5131 /* There is a swap entry and a page doesn't exist or isn't charged */
5132 if (ent.val && !ret &&
9fb4b7cc 5133 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5134 ret = MC_TARGET_SWAP;
5135 if (target)
5136 target->ent = ent;
4ffef5fe 5137 }
4ffef5fe
DN
5138 return ret;
5139}
5140
12724850
NH
5141#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5142/*
5143 * We don't consider swapping or file mapped pages because THP does not
5144 * support them for now.
5145 * Caller should make sure that pmd_trans_huge(pmd) is true.
5146 */
5147static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5148 unsigned long addr, pmd_t pmd, union mc_target *target)
5149{
5150 struct page *page = NULL;
5151 struct page_cgroup *pc;
5152 enum mc_target_type ret = MC_TARGET_NONE;
5153
5154 page = pmd_page(pmd);
5155 VM_BUG_ON(!page || !PageHead(page));
5156 if (!move_anon())
5157 return ret;
5158 pc = lookup_page_cgroup(page);
5159 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5160 ret = MC_TARGET_PAGE;
5161 if (target) {
5162 get_page(page);
5163 target->page = page;
5164 }
5165 }
5166 return ret;
5167}
5168#else
5169static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5170 unsigned long addr, pmd_t pmd, union mc_target *target)
5171{
5172 return MC_TARGET_NONE;
5173}
5174#endif
5175
4ffef5fe
DN
5176static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5177 unsigned long addr, unsigned long end,
5178 struct mm_walk *walk)
5179{
5180 struct vm_area_struct *vma = walk->private;
5181 pte_t *pte;
5182 spinlock_t *ptl;
5183
12724850
NH
5184 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5185 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5186 mc.precharge += HPAGE_PMD_NR;
5187 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5188 return 0;
12724850 5189 }
03319327 5190
45f83cef
AA
5191 if (pmd_trans_unstable(pmd))
5192 return 0;
4ffef5fe
DN
5193 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5194 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5195 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5196 mc.precharge++; /* increment precharge temporarily */
5197 pte_unmap_unlock(pte - 1, ptl);
5198 cond_resched();
5199
7dc74be0
DN
5200 return 0;
5201}
5202
4ffef5fe
DN
5203static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5204{
5205 unsigned long precharge;
5206 struct vm_area_struct *vma;
5207
dfe076b0 5208 down_read(&mm->mmap_sem);
4ffef5fe
DN
5209 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5210 struct mm_walk mem_cgroup_count_precharge_walk = {
5211 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5212 .mm = mm,
5213 .private = vma,
5214 };
5215 if (is_vm_hugetlb_page(vma))
5216 continue;
4ffef5fe
DN
5217 walk_page_range(vma->vm_start, vma->vm_end,
5218 &mem_cgroup_count_precharge_walk);
5219 }
dfe076b0 5220 up_read(&mm->mmap_sem);
4ffef5fe
DN
5221
5222 precharge = mc.precharge;
5223 mc.precharge = 0;
5224
5225 return precharge;
5226}
5227
4ffef5fe
DN
5228static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5229{
dfe076b0
DN
5230 unsigned long precharge = mem_cgroup_count_precharge(mm);
5231
5232 VM_BUG_ON(mc.moving_task);
5233 mc.moving_task = current;
5234 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5235}
5236
dfe076b0
DN
5237/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5238static void __mem_cgroup_clear_mc(void)
4ffef5fe 5239{
2bd9bb20
KH
5240 struct mem_cgroup *from = mc.from;
5241 struct mem_cgroup *to = mc.to;
5242
4ffef5fe 5243 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5244 if (mc.precharge) {
5245 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5246 mc.precharge = 0;
5247 }
5248 /*
5249 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5250 * we must uncharge here.
5251 */
5252 if (mc.moved_charge) {
5253 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5254 mc.moved_charge = 0;
4ffef5fe 5255 }
483c30b5
DN
5256 /* we must fixup refcnts and charges */
5257 if (mc.moved_swap) {
483c30b5
DN
5258 /* uncharge swap account from the old cgroup */
5259 if (!mem_cgroup_is_root(mc.from))
5260 res_counter_uncharge(&mc.from->memsw,
5261 PAGE_SIZE * mc.moved_swap);
5262 __mem_cgroup_put(mc.from, mc.moved_swap);
5263
5264 if (!mem_cgroup_is_root(mc.to)) {
5265 /*
5266 * we charged both to->res and to->memsw, so we should
5267 * uncharge to->res.
5268 */
5269 res_counter_uncharge(&mc.to->res,
5270 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5271 }
5272 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5273 mc.moved_swap = 0;
5274 }
dfe076b0
DN
5275 memcg_oom_recover(from);
5276 memcg_oom_recover(to);
5277 wake_up_all(&mc.waitq);
5278}
5279
5280static void mem_cgroup_clear_mc(void)
5281{
5282 struct mem_cgroup *from = mc.from;
5283
5284 /*
5285 * we must clear moving_task before waking up waiters at the end of
5286 * task migration.
5287 */
5288 mc.moving_task = NULL;
5289 __mem_cgroup_clear_mc();
2bd9bb20 5290 spin_lock(&mc.lock);
4ffef5fe
DN
5291 mc.from = NULL;
5292 mc.to = NULL;
2bd9bb20 5293 spin_unlock(&mc.lock);
32047e2a 5294 mem_cgroup_end_move(from);
4ffef5fe
DN
5295}
5296
761b3ef5
LZ
5297static int mem_cgroup_can_attach(struct cgroup *cgroup,
5298 struct cgroup_taskset *tset)
7dc74be0 5299{
2f7ee569 5300 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5301 int ret = 0;
c0ff4b85 5302 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5303
c0ff4b85 5304 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5305 struct mm_struct *mm;
5306 struct mem_cgroup *from = mem_cgroup_from_task(p);
5307
c0ff4b85 5308 VM_BUG_ON(from == memcg);
7dc74be0
DN
5309
5310 mm = get_task_mm(p);
5311 if (!mm)
5312 return 0;
7dc74be0 5313 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5314 if (mm->owner == p) {
5315 VM_BUG_ON(mc.from);
5316 VM_BUG_ON(mc.to);
5317 VM_BUG_ON(mc.precharge);
854ffa8d 5318 VM_BUG_ON(mc.moved_charge);
483c30b5 5319 VM_BUG_ON(mc.moved_swap);
32047e2a 5320 mem_cgroup_start_move(from);
2bd9bb20 5321 spin_lock(&mc.lock);
4ffef5fe 5322 mc.from = from;
c0ff4b85 5323 mc.to = memcg;
2bd9bb20 5324 spin_unlock(&mc.lock);
dfe076b0 5325 /* We set mc.moving_task later */
4ffef5fe
DN
5326
5327 ret = mem_cgroup_precharge_mc(mm);
5328 if (ret)
5329 mem_cgroup_clear_mc();
dfe076b0
DN
5330 }
5331 mmput(mm);
7dc74be0
DN
5332 }
5333 return ret;
5334}
5335
761b3ef5
LZ
5336static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5337 struct cgroup_taskset *tset)
7dc74be0 5338{
4ffef5fe 5339 mem_cgroup_clear_mc();
7dc74be0
DN
5340}
5341
4ffef5fe
DN
5342static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5343 unsigned long addr, unsigned long end,
5344 struct mm_walk *walk)
7dc74be0 5345{
4ffef5fe
DN
5346 int ret = 0;
5347 struct vm_area_struct *vma = walk->private;
5348 pte_t *pte;
5349 spinlock_t *ptl;
12724850
NH
5350 enum mc_target_type target_type;
5351 union mc_target target;
5352 struct page *page;
5353 struct page_cgroup *pc;
4ffef5fe 5354
12724850
NH
5355 /*
5356 * We don't take compound_lock() here but no race with splitting thp
5357 * happens because:
5358 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5359 * under splitting, which means there's no concurrent thp split,
5360 * - if another thread runs into split_huge_page() just after we
5361 * entered this if-block, the thread must wait for page table lock
5362 * to be unlocked in __split_huge_page_splitting(), where the main
5363 * part of thp split is not executed yet.
5364 */
5365 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5366 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5367 spin_unlock(&vma->vm_mm->page_table_lock);
5368 return 0;
5369 }
5370 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5371 if (target_type == MC_TARGET_PAGE) {
5372 page = target.page;
5373 if (!isolate_lru_page(page)) {
5374 pc = lookup_page_cgroup(page);
5375 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5376 pc, mc.from, mc.to)) {
12724850
NH
5377 mc.precharge -= HPAGE_PMD_NR;
5378 mc.moved_charge += HPAGE_PMD_NR;
5379 }
5380 putback_lru_page(page);
5381 }
5382 put_page(page);
5383 }
5384 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5385 return 0;
12724850
NH
5386 }
5387
45f83cef
AA
5388 if (pmd_trans_unstable(pmd))
5389 return 0;
4ffef5fe
DN
5390retry:
5391 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5392 for (; addr != end; addr += PAGE_SIZE) {
5393 pte_t ptent = *(pte++);
02491447 5394 swp_entry_t ent;
4ffef5fe
DN
5395
5396 if (!mc.precharge)
5397 break;
5398
8d32ff84 5399 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5400 case MC_TARGET_PAGE:
5401 page = target.page;
5402 if (isolate_lru_page(page))
5403 goto put;
5404 pc = lookup_page_cgroup(page);
7ec99d62 5405 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5406 mc.from, mc.to)) {
4ffef5fe 5407 mc.precharge--;
854ffa8d
DN
5408 /* we uncharge from mc.from later. */
5409 mc.moved_charge++;
4ffef5fe
DN
5410 }
5411 putback_lru_page(page);
8d32ff84 5412put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5413 put_page(page);
5414 break;
02491447
DN
5415 case MC_TARGET_SWAP:
5416 ent = target.ent;
e91cbb42 5417 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5418 mc.precharge--;
483c30b5
DN
5419 /* we fixup refcnts and charges later. */
5420 mc.moved_swap++;
5421 }
02491447 5422 break;
4ffef5fe
DN
5423 default:
5424 break;
5425 }
5426 }
5427 pte_unmap_unlock(pte - 1, ptl);
5428 cond_resched();
5429
5430 if (addr != end) {
5431 /*
5432 * We have consumed all precharges we got in can_attach().
5433 * We try charge one by one, but don't do any additional
5434 * charges to mc.to if we have failed in charge once in attach()
5435 * phase.
5436 */
854ffa8d 5437 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5438 if (!ret)
5439 goto retry;
5440 }
5441
5442 return ret;
5443}
5444
5445static void mem_cgroup_move_charge(struct mm_struct *mm)
5446{
5447 struct vm_area_struct *vma;
5448
5449 lru_add_drain_all();
dfe076b0
DN
5450retry:
5451 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5452 /*
5453 * Someone who are holding the mmap_sem might be waiting in
5454 * waitq. So we cancel all extra charges, wake up all waiters,
5455 * and retry. Because we cancel precharges, we might not be able
5456 * to move enough charges, but moving charge is a best-effort
5457 * feature anyway, so it wouldn't be a big problem.
5458 */
5459 __mem_cgroup_clear_mc();
5460 cond_resched();
5461 goto retry;
5462 }
4ffef5fe
DN
5463 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5464 int ret;
5465 struct mm_walk mem_cgroup_move_charge_walk = {
5466 .pmd_entry = mem_cgroup_move_charge_pte_range,
5467 .mm = mm,
5468 .private = vma,
5469 };
5470 if (is_vm_hugetlb_page(vma))
5471 continue;
4ffef5fe
DN
5472 ret = walk_page_range(vma->vm_start, vma->vm_end,
5473 &mem_cgroup_move_charge_walk);
5474 if (ret)
5475 /*
5476 * means we have consumed all precharges and failed in
5477 * doing additional charge. Just abandon here.
5478 */
5479 break;
5480 }
dfe076b0 5481 up_read(&mm->mmap_sem);
7dc74be0
DN
5482}
5483
761b3ef5
LZ
5484static void mem_cgroup_move_task(struct cgroup *cont,
5485 struct cgroup_taskset *tset)
67e465a7 5486{
2f7ee569 5487 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5488 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5489
dfe076b0 5490 if (mm) {
a433658c
KM
5491 if (mc.to)
5492 mem_cgroup_move_charge(mm);
dfe076b0
DN
5493 mmput(mm);
5494 }
a433658c
KM
5495 if (mc.to)
5496 mem_cgroup_clear_mc();
67e465a7 5497}
5cfb80a7 5498#else /* !CONFIG_MMU */
761b3ef5
LZ
5499static int mem_cgroup_can_attach(struct cgroup *cgroup,
5500 struct cgroup_taskset *tset)
5cfb80a7
DN
5501{
5502 return 0;
5503}
761b3ef5
LZ
5504static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5505 struct cgroup_taskset *tset)
5cfb80a7
DN
5506{
5507}
761b3ef5
LZ
5508static void mem_cgroup_move_task(struct cgroup *cont,
5509 struct cgroup_taskset *tset)
5cfb80a7
DN
5510{
5511}
5512#endif
67e465a7 5513
8cdea7c0
BS
5514struct cgroup_subsys mem_cgroup_subsys = {
5515 .name = "memory",
5516 .subsys_id = mem_cgroup_subsys_id,
5517 .create = mem_cgroup_create,
df878fb0 5518 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5519 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5520 .can_attach = mem_cgroup_can_attach,
5521 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5522 .attach = mem_cgroup_move_task,
6bc10349 5523 .base_cftypes = mem_cgroup_files,
6d12e2d8 5524 .early_init = 0,
04046e1a 5525 .use_id = 1,
48ddbe19 5526 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5527};
c077719b
KH
5528
5529#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5530static int __init enable_swap_account(char *s)
5531{
5532 /* consider enabled if no parameter or 1 is given */
a2c8990a 5533 if (!strcmp(s, "1"))
a42c390c 5534 really_do_swap_account = 1;
a2c8990a 5535 else if (!strcmp(s, "0"))
a42c390c
MH
5536 really_do_swap_account = 0;
5537 return 1;
5538}
a2c8990a 5539__setup("swapaccount=", enable_swap_account);
c077719b 5540
c077719b 5541#endif
This page took 0.827791 seconds and 5 git commands to generate.