leds: add missing include of linux/module.h
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
76
d52aa412
KH
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
90 MEM_CGROUP_STAT_NSTATS,
91};
92
e9f8974f
JW
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
99 MEM_CGROUP_EVENTS_NSTATS,
100};
7a159cc9
JW
101/*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 110 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
111 MEM_CGROUP_NTARGETS,
112};
113#define THRESHOLDS_EVENTS_TARGET (128)
114#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 115#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 116
d52aa412 117struct mem_cgroup_stat_cpu {
7a159cc9 118 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 120 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
121};
122
6d12e2d8
KH
123/*
124 * per-zone information in memory controller.
125 */
6d12e2d8 126struct mem_cgroup_per_zone {
072c56c1
KH
127 /*
128 * spin_lock to protect the per cgroup LRU
129 */
b69408e8
CL
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
132
133 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
4e416953
BS
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
6d12e2d8
KH
140};
141/* Macro for accessing counter */
142#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143
144struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146};
147
148struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150};
151
f64c3f54
BS
152/*
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
155 */
156
157struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
160};
161
162struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164};
165
166struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168};
169
170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
2e72b634
KS
172struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
175};
176
9490ff27 177/* For threshold */
2e72b634
KS
178struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
5407a562 180 int current_threshold;
2e72b634
KS
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
185};
2c488db2
KS
186
187struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
190 /*
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
194 */
195 struct mem_cgroup_threshold_ary *spare;
196};
197
9490ff27
KH
198/* for OOM */
199struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
202};
2e72b634 203
2e72b634 204static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 206
82f9d486
KH
207enum {
208 SCAN_BY_LIMIT,
209 SCAN_BY_SYSTEM,
210 NR_SCAN_CONTEXT,
211 SCAN_BY_SHRINK, /* not recorded now */
212};
213
214enum {
215 SCAN,
216 SCAN_ANON,
217 SCAN_FILE,
218 ROTATE,
219 ROTATE_ANON,
220 ROTATE_FILE,
221 FREED,
222 FREED_ANON,
223 FREED_FILE,
224 ELAPSED,
225 NR_SCANSTATS,
226};
227
228struct scanstat {
229 spinlock_t lock;
230 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
231 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232};
233
234const char *scanstat_string[NR_SCANSTATS] = {
235 "scanned_pages",
236 "scanned_anon_pages",
237 "scanned_file_pages",
238 "rotated_pages",
239 "rotated_anon_pages",
240 "rotated_file_pages",
241 "freed_pages",
242 "freed_anon_pages",
243 "freed_file_pages",
244 "elapsed_ns",
245};
246#define SCANSTAT_WORD_LIMIT "_by_limit"
247#define SCANSTAT_WORD_SYSTEM "_by_system"
248#define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
249
250
8cdea7c0
BS
251/*
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
256 *
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
8cdea7c0
BS
261 */
262struct mem_cgroup {
263 struct cgroup_subsys_state css;
264 /*
265 * the counter to account for memory usage
266 */
267 struct res_counter res;
8c7c6e34
KH
268 /*
269 * the counter to account for mem+swap usage.
270 */
271 struct res_counter memsw;
78fb7466
PE
272 /*
273 * Per cgroup active and inactive list, similar to the
274 * per zone LRU lists.
78fb7466 275 */
6d12e2d8 276 struct mem_cgroup_lru_info info;
6d61ef40 277 /*
af901ca1 278 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 279 * reclaimed from.
6d61ef40 280 */
04046e1a 281 int last_scanned_child;
889976db
YH
282 int last_scanned_node;
283#if MAX_NUMNODES > 1
284 nodemask_t scan_nodes;
453a9bf3
KH
285 atomic_t numainfo_events;
286 atomic_t numainfo_updating;
889976db 287#endif
18f59ea7
BS
288 /*
289 * Should the accounting and control be hierarchical, per subtree?
290 */
291 bool use_hierarchy;
79dfdacc
MH
292
293 bool oom_lock;
294 atomic_t under_oom;
295
8c7c6e34 296 atomic_t refcnt;
14797e23 297
1f4c025b 298 int swappiness;
3c11ecf4
KH
299 /* OOM-Killer disable */
300 int oom_kill_disable;
a7885eb8 301
22a668d7
KH
302 /* set when res.limit == memsw.limit */
303 bool memsw_is_minimum;
304
2e72b634
KS
305 /* protect arrays of thresholds */
306 struct mutex thresholds_lock;
307
308 /* thresholds for memory usage. RCU-protected */
2c488db2 309 struct mem_cgroup_thresholds thresholds;
907860ed 310
2e72b634 311 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 312 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 313
9490ff27
KH
314 /* For oom notifier event fd */
315 struct list_head oom_notify;
82f9d486
KH
316 /* For recording LRU-scan statistics */
317 struct scanstat scanstat;
7dc74be0
DN
318 /*
319 * Should we move charges of a task when a task is moved into this
320 * mem_cgroup ? And what type of charges should we move ?
321 */
322 unsigned long move_charge_at_immigrate;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
c62b1a3b 326 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
327 /*
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
330 */
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
8cdea7c0
BS
333};
334
7dc74be0
DN
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
4ffef5fe 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
343 NR_MOVE_TYPE,
344};
345
4ffef5fe
DN
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
b1dd693e 348 spinlock_t lock; /* for from, to */
4ffef5fe
DN
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
854ffa8d 352 unsigned long moved_charge;
483c30b5 353 unsigned long moved_swap;
8033b97c
DN
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356} mc = {
2bd9bb20 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
4ffef5fe 360
90254a65
DN
361static bool move_anon(void)
362{
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365}
366
87946a72
DN
367static bool move_file(void)
368{
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371}
372
4e416953
BS
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
377#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
378#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
379
217bc319
KH
380enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 383 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 384 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
387 NR_CHARGE_TYPE,
388};
389
8c7c6e34
KH
390/* for encoding cft->private value on file */
391#define _MEM (0)
392#define _MEMSWAP (1)
9490ff27 393#define _OOM_TYPE (2)
8c7c6e34
KH
394#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
395#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
396#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
397/* Used for OOM nofiier */
398#define OOM_CONTROL (0)
8c7c6e34 399
75822b44
BS
400/*
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
402 */
403#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
404#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
406#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
407#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
408#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 409
8c7c6e34
KH
410static void mem_cgroup_get(struct mem_cgroup *mem);
411static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 412static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
26fe6168 413static void drain_all_stock_async(struct mem_cgroup *mem);
8c7c6e34 414
f64c3f54
BS
415static struct mem_cgroup_per_zone *
416mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
417{
418 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
419}
420
d324236b
WF
421struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
422{
423 return &mem->css;
424}
425
f64c3f54 426static struct mem_cgroup_per_zone *
97a6c37b 427page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 428{
97a6c37b
JW
429 int nid = page_to_nid(page);
430 int zid = page_zonenum(page);
f64c3f54 431
f64c3f54
BS
432 return mem_cgroup_zoneinfo(mem, nid, zid);
433}
434
435static struct mem_cgroup_tree_per_zone *
436soft_limit_tree_node_zone(int nid, int zid)
437{
438 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439}
440
441static struct mem_cgroup_tree_per_zone *
442soft_limit_tree_from_page(struct page *page)
443{
444 int nid = page_to_nid(page);
445 int zid = page_zonenum(page);
446
447 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
448}
449
450static void
4e416953 451__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 452 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
453 struct mem_cgroup_tree_per_zone *mctz,
454 unsigned long long new_usage_in_excess)
f64c3f54
BS
455{
456 struct rb_node **p = &mctz->rb_root.rb_node;
457 struct rb_node *parent = NULL;
458 struct mem_cgroup_per_zone *mz_node;
459
460 if (mz->on_tree)
461 return;
462
ef8745c1
KH
463 mz->usage_in_excess = new_usage_in_excess;
464 if (!mz->usage_in_excess)
465 return;
f64c3f54
BS
466 while (*p) {
467 parent = *p;
468 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
469 tree_node);
470 if (mz->usage_in_excess < mz_node->usage_in_excess)
471 p = &(*p)->rb_left;
472 /*
473 * We can't avoid mem cgroups that are over their soft
474 * limit by the same amount
475 */
476 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
477 p = &(*p)->rb_right;
478 }
479 rb_link_node(&mz->tree_node, parent, p);
480 rb_insert_color(&mz->tree_node, &mctz->rb_root);
481 mz->on_tree = true;
4e416953
BS
482}
483
484static void
485__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
486 struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
488{
489 if (!mz->on_tree)
490 return;
491 rb_erase(&mz->tree_node, &mctz->rb_root);
492 mz->on_tree = false;
493}
494
f64c3f54
BS
495static void
496mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
497 struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz)
499{
500 spin_lock(&mctz->lock);
4e416953 501 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
502 spin_unlock(&mctz->lock);
503}
504
f64c3f54
BS
505
506static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
507{
ef8745c1 508 unsigned long long excess;
f64c3f54
BS
509 struct mem_cgroup_per_zone *mz;
510 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
511 int nid = page_to_nid(page);
512 int zid = page_zonenum(page);
f64c3f54
BS
513 mctz = soft_limit_tree_from_page(page);
514
515 /*
4e649152
KH
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
f64c3f54 518 */
4e649152
KH
519 for (; mem; mem = parent_mem_cgroup(mem)) {
520 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 521 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
ef8745c1 526 if (excess || mz->on_tree) {
4e649152
KH
527 spin_lock(&mctz->lock);
528 /* if on-tree, remove it */
529 if (mz->on_tree)
530 __mem_cgroup_remove_exceeded(mem, mz, mctz);
531 /*
ef8745c1
KH
532 * Insert again. mz->usage_in_excess will be updated.
533 * If excess is 0, no tree ops.
4e649152 534 */
ef8745c1 535 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
536 spin_unlock(&mctz->lock);
537 }
f64c3f54
BS
538 }
539}
540
541static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
542{
543 int node, zone;
544 struct mem_cgroup_per_zone *mz;
545 struct mem_cgroup_tree_per_zone *mctz;
546
547 for_each_node_state(node, N_POSSIBLE) {
548 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
549 mz = mem_cgroup_zoneinfo(mem, node, zone);
550 mctz = soft_limit_tree_node_zone(node, zone);
551 mem_cgroup_remove_exceeded(mem, mz, mctz);
552 }
553 }
554}
555
4e416953
BS
556static struct mem_cgroup_per_zone *
557__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
558{
559 struct rb_node *rightmost = NULL;
26251eaf 560 struct mem_cgroup_per_zone *mz;
4e416953
BS
561
562retry:
26251eaf 563 mz = NULL;
4e416953
BS
564 rightmost = rb_last(&mctz->rb_root);
565 if (!rightmost)
566 goto done; /* Nothing to reclaim from */
567
568 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
569 /*
570 * Remove the node now but someone else can add it back,
571 * we will to add it back at the end of reclaim to its correct
572 * position in the tree.
573 */
574 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
575 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
576 !css_tryget(&mz->mem->css))
577 goto retry;
578done:
579 return mz;
580}
581
582static struct mem_cgroup_per_zone *
583mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584{
585 struct mem_cgroup_per_zone *mz;
586
587 spin_lock(&mctz->lock);
588 mz = __mem_cgroup_largest_soft_limit_node(mctz);
589 spin_unlock(&mctz->lock);
590 return mz;
591}
592
711d3d2c
KH
593/*
594 * Implementation Note: reading percpu statistics for memcg.
595 *
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
599 * a periodic synchronizion of counter in memcg's counter.
600 *
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
606 *
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
609 * common workload, threashold and synchonization as vmstat[] should be
610 * implemented.
611 */
7a159cc9
JW
612static long mem_cgroup_read_stat(struct mem_cgroup *mem,
613 enum mem_cgroup_stat_index idx)
c62b1a3b 614{
7a159cc9 615 long val = 0;
c62b1a3b 616 int cpu;
c62b1a3b 617
711d3d2c
KH
618 get_online_cpus();
619 for_each_online_cpu(cpu)
c62b1a3b 620 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
621#ifdef CONFIG_HOTPLUG_CPU
622 spin_lock(&mem->pcp_counter_lock);
623 val += mem->nocpu_base.count[idx];
624 spin_unlock(&mem->pcp_counter_lock);
625#endif
626 put_online_cpus();
c62b1a3b
KH
627 return val;
628}
629
0c3e73e8
BS
630static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
631 bool charge)
632{
633 int val = (charge) ? 1 : -1;
c62b1a3b 634 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
635}
636
456f998e
YH
637void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
638{
639 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
640}
641
642void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
643{
644 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
645}
646
e9f8974f
JW
647static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
648 enum mem_cgroup_events_index idx)
649{
650 unsigned long val = 0;
651 int cpu;
652
653 for_each_online_cpu(cpu)
654 val += per_cpu(mem->stat->events[idx], cpu);
655#ifdef CONFIG_HOTPLUG_CPU
656 spin_lock(&mem->pcp_counter_lock);
657 val += mem->nocpu_base.events[idx];
658 spin_unlock(&mem->pcp_counter_lock);
659#endif
660 return val;
661}
662
c05555b5 663static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 664 bool file, int nr_pages)
d52aa412 665{
c62b1a3b
KH
666 preempt_disable();
667
e401f176
KH
668 if (file)
669 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 670 else
e401f176 671 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 672
e401f176
KH
673 /* pagein of a big page is an event. So, ignore page size */
674 if (nr_pages > 0)
e9f8974f 675 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 676 else {
e9f8974f 677 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
678 nr_pages = -nr_pages; /* for event */
679 }
e401f176 680
e9f8974f 681 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 682
c62b1a3b 683 preempt_enable();
6d12e2d8
KH
684}
685
bb2a0de9
KH
686unsigned long
687mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
688 unsigned int lru_mask)
889976db
YH
689{
690 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
691 enum lru_list l;
692 unsigned long ret = 0;
693
694 mz = mem_cgroup_zoneinfo(mem, nid, zid);
695
696 for_each_lru(l) {
697 if (BIT(l) & lru_mask)
698 ret += MEM_CGROUP_ZSTAT(mz, l);
699 }
700 return ret;
701}
702
703static unsigned long
704mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
705 int nid, unsigned int lru_mask)
706{
889976db
YH
707 u64 total = 0;
708 int zid;
709
bb2a0de9
KH
710 for (zid = 0; zid < MAX_NR_ZONES; zid++)
711 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
712
889976db
YH
713 return total;
714}
bb2a0de9
KH
715
716static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
717 unsigned int lru_mask)
6d12e2d8 718{
889976db 719 int nid;
6d12e2d8
KH
720 u64 total = 0;
721
bb2a0de9
KH
722 for_each_node_state(nid, N_HIGH_MEMORY)
723 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
6d12e2d8 724 return total;
d52aa412
KH
725}
726
7a159cc9
JW
727static bool __memcg_event_check(struct mem_cgroup *mem, int target)
728{
729 unsigned long val, next;
730
731 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
732 next = this_cpu_read(mem->stat->targets[target]);
733 /* from time_after() in jiffies.h */
734 return ((long)next - (long)val < 0);
735}
736
737static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 738{
7a159cc9 739 unsigned long val, next;
d2265e6f 740
e9f8974f 741 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 742
7a159cc9
JW
743 switch (target) {
744 case MEM_CGROUP_TARGET_THRESH:
745 next = val + THRESHOLDS_EVENTS_TARGET;
746 break;
747 case MEM_CGROUP_TARGET_SOFTLIMIT:
748 next = val + SOFTLIMIT_EVENTS_TARGET;
749 break;
453a9bf3
KH
750 case MEM_CGROUP_TARGET_NUMAINFO:
751 next = val + NUMAINFO_EVENTS_TARGET;
752 break;
7a159cc9
JW
753 default:
754 return;
755 }
756
757 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
758}
759
760/*
761 * Check events in order.
762 *
763 */
764static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
765{
766 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 767 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 768 mem_cgroup_threshold(mem);
7a159cc9
JW
769 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
770 if (unlikely(__memcg_event_check(mem,
453a9bf3 771 MEM_CGROUP_TARGET_SOFTLIMIT))) {
d2265e6f 772 mem_cgroup_update_tree(mem, page);
7a159cc9 773 __mem_cgroup_target_update(mem,
453a9bf3
KH
774 MEM_CGROUP_TARGET_SOFTLIMIT);
775 }
776#if MAX_NUMNODES > 1
777 if (unlikely(__memcg_event_check(mem,
778 MEM_CGROUP_TARGET_NUMAINFO))) {
779 atomic_inc(&mem->numainfo_events);
780 __mem_cgroup_target_update(mem,
781 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 782 }
453a9bf3 783#endif
d2265e6f
KH
784 }
785}
786
d5b69e38 787static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
788{
789 return container_of(cgroup_subsys_state(cont,
790 mem_cgroup_subsys_id), struct mem_cgroup,
791 css);
792}
793
cf475ad2 794struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 795{
31a78f23
BS
796 /*
797 * mm_update_next_owner() may clear mm->owner to NULL
798 * if it races with swapoff, page migration, etc.
799 * So this can be called with p == NULL.
800 */
801 if (unlikely(!p))
802 return NULL;
803
78fb7466
PE
804 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
805 struct mem_cgroup, css);
806}
807
a433658c 808struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2
KH
809{
810 struct mem_cgroup *mem = NULL;
0b7f569e
KH
811
812 if (!mm)
813 return NULL;
54595fe2
KH
814 /*
815 * Because we have no locks, mm->owner's may be being moved to other
816 * cgroup. We use css_tryget() here even if this looks
817 * pessimistic (rather than adding locks here).
818 */
819 rcu_read_lock();
820 do {
821 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
822 if (unlikely(!mem))
823 break;
824 } while (!css_tryget(&mem->css));
825 rcu_read_unlock();
826 return mem;
827}
828
7d74b06f
KH
829/* The caller has to guarantee "mem" exists before calling this */
830static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 831{
711d3d2c
KH
832 struct cgroup_subsys_state *css;
833 int found;
834
835 if (!mem) /* ROOT cgroup has the smallest ID */
836 return root_mem_cgroup; /*css_put/get against root is ignored*/
837 if (!mem->use_hierarchy) {
838 if (css_tryget(&mem->css))
839 return mem;
840 return NULL;
841 }
842 rcu_read_lock();
843 /*
844 * searching a memory cgroup which has the smallest ID under given
845 * ROOT cgroup. (ID >= 1)
846 */
847 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
848 if (css && css_tryget(css))
849 mem = container_of(css, struct mem_cgroup, css);
850 else
851 mem = NULL;
852 rcu_read_unlock();
853 return mem;
7d74b06f
KH
854}
855
856static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
857 struct mem_cgroup *root,
858 bool cond)
859{
860 int nextid = css_id(&iter->css) + 1;
861 int found;
862 int hierarchy_used;
14067bb3 863 struct cgroup_subsys_state *css;
14067bb3 864
7d74b06f 865 hierarchy_used = iter->use_hierarchy;
14067bb3 866
7d74b06f 867 css_put(&iter->css);
711d3d2c
KH
868 /* If no ROOT, walk all, ignore hierarchy */
869 if (!cond || (root && !hierarchy_used))
7d74b06f 870 return NULL;
14067bb3 871
711d3d2c
KH
872 if (!root)
873 root = root_mem_cgroup;
874
7d74b06f
KH
875 do {
876 iter = NULL;
14067bb3 877 rcu_read_lock();
7d74b06f
KH
878
879 css = css_get_next(&mem_cgroup_subsys, nextid,
880 &root->css, &found);
14067bb3 881 if (css && css_tryget(css))
7d74b06f 882 iter = container_of(css, struct mem_cgroup, css);
14067bb3 883 rcu_read_unlock();
7d74b06f 884 /* If css is NULL, no more cgroups will be found */
14067bb3 885 nextid = found + 1;
7d74b06f 886 } while (css && !iter);
14067bb3 887
7d74b06f 888 return iter;
14067bb3 889}
7d74b06f
KH
890/*
891 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
892 * be careful that "break" loop is not allowed. We have reference count.
893 * Instead of that modify "cond" to be false and "continue" to exit the loop.
894 */
895#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
896 for (iter = mem_cgroup_start_loop(root);\
897 iter != NULL;\
898 iter = mem_cgroup_get_next(iter, root, cond))
899
900#define for_each_mem_cgroup_tree(iter, root) \
901 for_each_mem_cgroup_tree_cond(iter, root, true)
902
711d3d2c
KH
903#define for_each_mem_cgroup_all(iter) \
904 for_each_mem_cgroup_tree_cond(iter, NULL, true)
905
14067bb3 906
4b3bde4c
BS
907static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
908{
909 return (mem == root_mem_cgroup);
910}
911
456f998e
YH
912void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
913{
914 struct mem_cgroup *mem;
915
916 if (!mm)
917 return;
918
919 rcu_read_lock();
920 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
921 if (unlikely(!mem))
922 goto out;
923
924 switch (idx) {
925 case PGMAJFAULT:
926 mem_cgroup_pgmajfault(mem, 1);
927 break;
928 case PGFAULT:
929 mem_cgroup_pgfault(mem, 1);
930 break;
931 default:
932 BUG();
933 }
934out:
935 rcu_read_unlock();
936}
937EXPORT_SYMBOL(mem_cgroup_count_vm_event);
938
08e552c6
KH
939/*
940 * Following LRU functions are allowed to be used without PCG_LOCK.
941 * Operations are called by routine of global LRU independently from memcg.
942 * What we have to take care of here is validness of pc->mem_cgroup.
943 *
944 * Changes to pc->mem_cgroup happens when
945 * 1. charge
946 * 2. moving account
947 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
948 * It is added to LRU before charge.
949 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
950 * When moving account, the page is not on LRU. It's isolated.
951 */
4f98a2fe 952
08e552c6
KH
953void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
954{
955 struct page_cgroup *pc;
08e552c6 956 struct mem_cgroup_per_zone *mz;
6d12e2d8 957
f8d66542 958 if (mem_cgroup_disabled())
08e552c6
KH
959 return;
960 pc = lookup_page_cgroup(page);
961 /* can happen while we handle swapcache. */
4b3bde4c 962 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 963 return;
4b3bde4c 964 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
965 /*
966 * We don't check PCG_USED bit. It's cleared when the "page" is finally
967 * removed from global LRU.
968 */
97a6c37b 969 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
970 /* huge page split is done under lru_lock. so, we have no races. */
971 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
972 if (mem_cgroup_is_root(pc->mem_cgroup))
973 return;
974 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 975 list_del_init(&pc->lru);
6d12e2d8
KH
976}
977
08e552c6 978void mem_cgroup_del_lru(struct page *page)
6d12e2d8 979{
08e552c6
KH
980 mem_cgroup_del_lru_list(page, page_lru(page));
981}
b69408e8 982
3f58a829
MK
983/*
984 * Writeback is about to end against a page which has been marked for immediate
985 * reclaim. If it still appears to be reclaimable, move it to the tail of the
986 * inactive list.
987 */
988void mem_cgroup_rotate_reclaimable_page(struct page *page)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct page_cgroup *pc;
992 enum lru_list lru = page_lru(page);
993
994 if (mem_cgroup_disabled())
995 return;
996
997 pc = lookup_page_cgroup(page);
998 /* unused or root page is not rotated. */
999 if (!PageCgroupUsed(pc))
1000 return;
1001 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1002 smp_rmb();
1003 if (mem_cgroup_is_root(pc->mem_cgroup))
1004 return;
97a6c37b 1005 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1006 list_move_tail(&pc->lru, &mz->lists[lru]);
1007}
1008
08e552c6
KH
1009void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1010{
1011 struct mem_cgroup_per_zone *mz;
1012 struct page_cgroup *pc;
b69408e8 1013
f8d66542 1014 if (mem_cgroup_disabled())
08e552c6 1015 return;
6d12e2d8 1016
08e552c6 1017 pc = lookup_page_cgroup(page);
4b3bde4c 1018 /* unused or root page is not rotated. */
713735b4
JW
1019 if (!PageCgroupUsed(pc))
1020 return;
1021 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1022 smp_rmb();
1023 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 1024 return;
97a6c37b 1025 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1026 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1027}
1028
08e552c6 1029void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1030{
08e552c6
KH
1031 struct page_cgroup *pc;
1032 struct mem_cgroup_per_zone *mz;
6d12e2d8 1033
f8d66542 1034 if (mem_cgroup_disabled())
08e552c6
KH
1035 return;
1036 pc = lookup_page_cgroup(page);
4b3bde4c 1037 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 1038 if (!PageCgroupUsed(pc))
894bc310 1039 return;
713735b4
JW
1040 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1041 smp_rmb();
97a6c37b 1042 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1043 /* huge page split is done under lru_lock. so, we have no races. */
1044 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1045 SetPageCgroupAcctLRU(pc);
1046 if (mem_cgroup_is_root(pc->mem_cgroup))
1047 return;
08e552c6
KH
1048 list_add(&pc->lru, &mz->lists[lru]);
1049}
544122e5 1050
08e552c6 1051/*
5a6475a4
KH
1052 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1053 * while it's linked to lru because the page may be reused after it's fully
1054 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1055 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1056 */
5a6475a4 1057static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1058{
544122e5
KH
1059 unsigned long flags;
1060 struct zone *zone = page_zone(page);
1061 struct page_cgroup *pc = lookup_page_cgroup(page);
1062
5a6475a4
KH
1063 /*
1064 * Doing this check without taking ->lru_lock seems wrong but this
1065 * is safe. Because if page_cgroup's USED bit is unset, the page
1066 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1067 * set, the commit after this will fail, anyway.
1068 * This all charge/uncharge is done under some mutual execustion.
1069 * So, we don't need to taking care of changes in USED bit.
1070 */
1071 if (likely(!PageLRU(page)))
1072 return;
1073
544122e5
KH
1074 spin_lock_irqsave(&zone->lru_lock, flags);
1075 /*
1076 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1077 * is guarded by lock_page() because the page is SwapCache.
1078 */
1079 if (!PageCgroupUsed(pc))
1080 mem_cgroup_del_lru_list(page, page_lru(page));
1081 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1082}
1083
5a6475a4 1084static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1085{
1086 unsigned long flags;
1087 struct zone *zone = page_zone(page);
1088 struct page_cgroup *pc = lookup_page_cgroup(page);
1089
5a6475a4
KH
1090 /* taking care of that the page is added to LRU while we commit it */
1091 if (likely(!PageLRU(page)))
1092 return;
544122e5
KH
1093 spin_lock_irqsave(&zone->lru_lock, flags);
1094 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1095 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1096 mem_cgroup_add_lru_list(page, page_lru(page));
1097 spin_unlock_irqrestore(&zone->lru_lock, flags);
1098}
1099
1100
08e552c6
KH
1101void mem_cgroup_move_lists(struct page *page,
1102 enum lru_list from, enum lru_list to)
1103{
f8d66542 1104 if (mem_cgroup_disabled())
08e552c6
KH
1105 return;
1106 mem_cgroup_del_lru_list(page, from);
1107 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1108}
1109
3e92041d
MH
1110/*
1111 * Checks whether given mem is same or in the root_mem's
1112 * hierarchy subtree
1113 */
1114static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1115 struct mem_cgroup *mem)
1116{
1117 if (root_mem != mem) {
1118 return (root_mem->use_hierarchy &&
1119 css_is_ancestor(&mem->css, &root_mem->css));
1120 }
1121
1122 return true;
1123}
1124
4c4a2214
DR
1125int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1126{
1127 int ret;
0b7f569e 1128 struct mem_cgroup *curr = NULL;
158e0a2d 1129 struct task_struct *p;
4c4a2214 1130
158e0a2d
KH
1131 p = find_lock_task_mm(task);
1132 if (!p)
1133 return 0;
1134 curr = try_get_mem_cgroup_from_mm(p->mm);
1135 task_unlock(p);
0b7f569e
KH
1136 if (!curr)
1137 return 0;
d31f56db
DN
1138 /*
1139 * We should check use_hierarchy of "mem" not "curr". Because checking
1140 * use_hierarchy of "curr" here make this function true if hierarchy is
1141 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1142 * hierarchy(even if use_hierarchy is disabled in "mem").
1143 */
3e92041d 1144 ret = mem_cgroup_same_or_subtree(mem, curr);
0b7f569e 1145 css_put(&curr->css);
4c4a2214
DR
1146 return ret;
1147}
1148
c772be93 1149static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1150{
1151 unsigned long active;
1152 unsigned long inactive;
c772be93
KM
1153 unsigned long gb;
1154 unsigned long inactive_ratio;
14797e23 1155
bb2a0de9
KH
1156 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1157 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14797e23 1158
c772be93
KM
1159 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1160 if (gb)
1161 inactive_ratio = int_sqrt(10 * gb);
1162 else
1163 inactive_ratio = 1;
1164
1165 if (present_pages) {
1166 present_pages[0] = inactive;
1167 present_pages[1] = active;
1168 }
1169
1170 return inactive_ratio;
1171}
1172
1173int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1174{
1175 unsigned long active;
1176 unsigned long inactive;
1177 unsigned long present_pages[2];
1178 unsigned long inactive_ratio;
1179
1180 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1181
1182 inactive = present_pages[0];
1183 active = present_pages[1];
1184
1185 if (inactive * inactive_ratio < active)
14797e23
KM
1186 return 1;
1187
1188 return 0;
1189}
1190
56e49d21
RR
1191int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1192{
1193 unsigned long active;
1194 unsigned long inactive;
1195
bb2a0de9
KH
1196 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1197 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1198
1199 return (active > inactive);
1200}
1201
3e2f41f1
KM
1202struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1203 struct zone *zone)
1204{
13d7e3a2 1205 int nid = zone_to_nid(zone);
3e2f41f1
KM
1206 int zid = zone_idx(zone);
1207 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1208
1209 return &mz->reclaim_stat;
1210}
1211
1212struct zone_reclaim_stat *
1213mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1214{
1215 struct page_cgroup *pc;
1216 struct mem_cgroup_per_zone *mz;
1217
1218 if (mem_cgroup_disabled())
1219 return NULL;
1220
1221 pc = lookup_page_cgroup(page);
bd112db8
DN
1222 if (!PageCgroupUsed(pc))
1223 return NULL;
713735b4
JW
1224 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1225 smp_rmb();
97a6c37b 1226 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1227 return &mz->reclaim_stat;
1228}
1229
66e1707b
BS
1230unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1231 struct list_head *dst,
1232 unsigned long *scanned, int order,
1233 int mode, struct zone *z,
1234 struct mem_cgroup *mem_cont,
4f98a2fe 1235 int active, int file)
66e1707b
BS
1236{
1237 unsigned long nr_taken = 0;
1238 struct page *page;
1239 unsigned long scan;
1240 LIST_HEAD(pc_list);
1241 struct list_head *src;
ff7283fa 1242 struct page_cgroup *pc, *tmp;
13d7e3a2 1243 int nid = zone_to_nid(z);
1ecaab2b
KH
1244 int zid = zone_idx(z);
1245 struct mem_cgroup_per_zone *mz;
b7c46d15 1246 int lru = LRU_FILE * file + active;
2ffebca6 1247 int ret;
66e1707b 1248
cf475ad2 1249 BUG_ON(!mem_cont);
1ecaab2b 1250 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1251 src = &mz->lists[lru];
66e1707b 1252
ff7283fa
KH
1253 scan = 0;
1254 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1255 if (scan >= nr_to_scan)
ff7283fa 1256 break;
08e552c6 1257
52d4b9ac
KH
1258 if (unlikely(!PageCgroupUsed(pc)))
1259 continue;
5564e88b 1260
6b3ae58e 1261 page = lookup_cgroup_page(pc);
5564e88b 1262
436c6541 1263 if (unlikely(!PageLRU(page)))
ff7283fa 1264 continue;
ff7283fa 1265
436c6541 1266 scan++;
2ffebca6
KH
1267 ret = __isolate_lru_page(page, mode, file);
1268 switch (ret) {
1269 case 0:
66e1707b 1270 list_move(&page->lru, dst);
2ffebca6 1271 mem_cgroup_del_lru(page);
2c888cfb 1272 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1273 break;
1274 case -EBUSY:
1275 /* we don't affect global LRU but rotate in our LRU */
1276 mem_cgroup_rotate_lru_list(page, page_lru(page));
1277 break;
1278 default:
1279 break;
66e1707b
BS
1280 }
1281 }
1282
66e1707b 1283 *scanned = scan;
cc8e970c
KM
1284
1285 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1286 0, 0, 0, mode);
1287
66e1707b
BS
1288 return nr_taken;
1289}
1290
6d61ef40
BS
1291#define mem_cgroup_from_res_counter(counter, member) \
1292 container_of(counter, struct mem_cgroup, member)
1293
19942822 1294/**
9d11ea9f
JW
1295 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1296 * @mem: the memory cgroup
19942822 1297 *
9d11ea9f 1298 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1299 * pages.
19942822 1300 */
7ec99d62 1301static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1302{
9d11ea9f
JW
1303 unsigned long long margin;
1304
1305 margin = res_counter_margin(&mem->res);
1306 if (do_swap_account)
1307 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1308 return margin >> PAGE_SHIFT;
19942822
JW
1309}
1310
1f4c025b 1311int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1312{
1313 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1314
1315 /* root ? */
1316 if (cgrp->parent == NULL)
1317 return vm_swappiness;
1318
bf1ff263 1319 return memcg->swappiness;
a7885eb8
KM
1320}
1321
32047e2a
KH
1322static void mem_cgroup_start_move(struct mem_cgroup *mem)
1323{
1324 int cpu;
1489ebad
KH
1325
1326 get_online_cpus();
1327 spin_lock(&mem->pcp_counter_lock);
1328 for_each_online_cpu(cpu)
32047e2a 1329 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1330 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1331 spin_unlock(&mem->pcp_counter_lock);
1332 put_online_cpus();
32047e2a
KH
1333
1334 synchronize_rcu();
1335}
1336
1337static void mem_cgroup_end_move(struct mem_cgroup *mem)
1338{
1339 int cpu;
1340
1341 if (!mem)
1342 return;
1489ebad
KH
1343 get_online_cpus();
1344 spin_lock(&mem->pcp_counter_lock);
1345 for_each_online_cpu(cpu)
32047e2a 1346 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1347 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1348 spin_unlock(&mem->pcp_counter_lock);
1349 put_online_cpus();
32047e2a
KH
1350}
1351/*
1352 * 2 routines for checking "mem" is under move_account() or not.
1353 *
1354 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1355 * for avoiding race in accounting. If true,
1356 * pc->mem_cgroup may be overwritten.
1357 *
1358 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1359 * under hierarchy of moving cgroups. This is for
1360 * waiting at hith-memory prressure caused by "move".
1361 */
1362
1363static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1364{
1365 VM_BUG_ON(!rcu_read_lock_held());
1366 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1367}
4b534334
KH
1368
1369static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1370{
2bd9bb20
KH
1371 struct mem_cgroup *from;
1372 struct mem_cgroup *to;
4b534334 1373 bool ret = false;
2bd9bb20
KH
1374 /*
1375 * Unlike task_move routines, we access mc.to, mc.from not under
1376 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1377 */
1378 spin_lock(&mc.lock);
1379 from = mc.from;
1380 to = mc.to;
1381 if (!from)
1382 goto unlock;
3e92041d
MH
1383
1384 ret = mem_cgroup_same_or_subtree(mem, from)
1385 || mem_cgroup_same_or_subtree(mem, to);
2bd9bb20
KH
1386unlock:
1387 spin_unlock(&mc.lock);
4b534334
KH
1388 return ret;
1389}
1390
1391static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1392{
1393 if (mc.moving_task && current != mc.moving_task) {
1394 if (mem_cgroup_under_move(mem)) {
1395 DEFINE_WAIT(wait);
1396 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1397 /* moving charge context might have finished. */
1398 if (mc.moving_task)
1399 schedule();
1400 finish_wait(&mc.waitq, &wait);
1401 return true;
1402 }
1403 }
1404 return false;
1405}
1406
e222432b 1407/**
6a6135b6 1408 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1409 * @memcg: The memory cgroup that went over limit
1410 * @p: Task that is going to be killed
1411 *
1412 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1413 * enabled
1414 */
1415void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1416{
1417 struct cgroup *task_cgrp;
1418 struct cgroup *mem_cgrp;
1419 /*
1420 * Need a buffer in BSS, can't rely on allocations. The code relies
1421 * on the assumption that OOM is serialized for memory controller.
1422 * If this assumption is broken, revisit this code.
1423 */
1424 static char memcg_name[PATH_MAX];
1425 int ret;
1426
d31f56db 1427 if (!memcg || !p)
e222432b
BS
1428 return;
1429
1430
1431 rcu_read_lock();
1432
1433 mem_cgrp = memcg->css.cgroup;
1434 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1435
1436 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1437 if (ret < 0) {
1438 /*
1439 * Unfortunately, we are unable to convert to a useful name
1440 * But we'll still print out the usage information
1441 */
1442 rcu_read_unlock();
1443 goto done;
1444 }
1445 rcu_read_unlock();
1446
1447 printk(KERN_INFO "Task in %s killed", memcg_name);
1448
1449 rcu_read_lock();
1450 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1451 if (ret < 0) {
1452 rcu_read_unlock();
1453 goto done;
1454 }
1455 rcu_read_unlock();
1456
1457 /*
1458 * Continues from above, so we don't need an KERN_ level
1459 */
1460 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1461done:
1462
1463 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1464 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1465 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1466 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1467 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1468 "failcnt %llu\n",
1469 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1470 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1471 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1472}
1473
81d39c20
KH
1474/*
1475 * This function returns the number of memcg under hierarchy tree. Returns
1476 * 1(self count) if no children.
1477 */
1478static int mem_cgroup_count_children(struct mem_cgroup *mem)
1479{
1480 int num = 0;
7d74b06f
KH
1481 struct mem_cgroup *iter;
1482
1483 for_each_mem_cgroup_tree(iter, mem)
1484 num++;
81d39c20
KH
1485 return num;
1486}
1487
a63d83f4
DR
1488/*
1489 * Return the memory (and swap, if configured) limit for a memcg.
1490 */
1491u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1492{
1493 u64 limit;
1494 u64 memsw;
1495
f3e8eb70
JW
1496 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1497 limit += total_swap_pages << PAGE_SHIFT;
1498
a63d83f4
DR
1499 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1500 /*
1501 * If memsw is finite and limits the amount of swap space available
1502 * to this memcg, return that limit.
1503 */
1504 return min(limit, memsw);
1505}
1506
6d61ef40 1507/*
04046e1a
KH
1508 * Visit the first child (need not be the first child as per the ordering
1509 * of the cgroup list, since we track last_scanned_child) of @mem and use
1510 * that to reclaim free pages from.
1511 */
1512static struct mem_cgroup *
1513mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1514{
1515 struct mem_cgroup *ret = NULL;
1516 struct cgroup_subsys_state *css;
1517 int nextid, found;
1518
1519 if (!root_mem->use_hierarchy) {
1520 css_get(&root_mem->css);
1521 ret = root_mem;
1522 }
1523
1524 while (!ret) {
1525 rcu_read_lock();
1526 nextid = root_mem->last_scanned_child + 1;
1527 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1528 &found);
1529 if (css && css_tryget(css))
1530 ret = container_of(css, struct mem_cgroup, css);
1531
1532 rcu_read_unlock();
1533 /* Updates scanning parameter */
04046e1a
KH
1534 if (!css) {
1535 /* this means start scan from ID:1 */
1536 root_mem->last_scanned_child = 0;
1537 } else
1538 root_mem->last_scanned_child = found;
04046e1a
KH
1539 }
1540
1541 return ret;
1542}
1543
4d0c066d
KH
1544/**
1545 * test_mem_cgroup_node_reclaimable
1546 * @mem: the target memcg
1547 * @nid: the node ID to be checked.
1548 * @noswap : specify true here if the user wants flle only information.
1549 *
1550 * This function returns whether the specified memcg contains any
1551 * reclaimable pages on a node. Returns true if there are any reclaimable
1552 * pages in the node.
1553 */
1554static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1555 int nid, bool noswap)
1556{
bb2a0de9 1557 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
4d0c066d
KH
1558 return true;
1559 if (noswap || !total_swap_pages)
1560 return false;
bb2a0de9 1561 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
4d0c066d
KH
1562 return true;
1563 return false;
1564
1565}
889976db
YH
1566#if MAX_NUMNODES > 1
1567
1568/*
1569 * Always updating the nodemask is not very good - even if we have an empty
1570 * list or the wrong list here, we can start from some node and traverse all
1571 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1572 *
1573 */
1574static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1575{
1576 int nid;
453a9bf3
KH
1577 /*
1578 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1579 * pagein/pageout changes since the last update.
1580 */
1581 if (!atomic_read(&mem->numainfo_events))
1582 return;
1583 if (atomic_inc_return(&mem->numainfo_updating) > 1)
889976db
YH
1584 return;
1585
889976db
YH
1586 /* make a nodemask where this memcg uses memory from */
1587 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1588
1589 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1590
4d0c066d
KH
1591 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1592 node_clear(nid, mem->scan_nodes);
889976db 1593 }
453a9bf3
KH
1594
1595 atomic_set(&mem->numainfo_events, 0);
1596 atomic_set(&mem->numainfo_updating, 0);
889976db
YH
1597}
1598
1599/*
1600 * Selecting a node where we start reclaim from. Because what we need is just
1601 * reducing usage counter, start from anywhere is O,K. Considering
1602 * memory reclaim from current node, there are pros. and cons.
1603 *
1604 * Freeing memory from current node means freeing memory from a node which
1605 * we'll use or we've used. So, it may make LRU bad. And if several threads
1606 * hit limits, it will see a contention on a node. But freeing from remote
1607 * node means more costs for memory reclaim because of memory latency.
1608 *
1609 * Now, we use round-robin. Better algorithm is welcomed.
1610 */
1611int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1612{
1613 int node;
1614
1615 mem_cgroup_may_update_nodemask(mem);
1616 node = mem->last_scanned_node;
1617
1618 node = next_node(node, mem->scan_nodes);
1619 if (node == MAX_NUMNODES)
1620 node = first_node(mem->scan_nodes);
1621 /*
1622 * We call this when we hit limit, not when pages are added to LRU.
1623 * No LRU may hold pages because all pages are UNEVICTABLE or
1624 * memcg is too small and all pages are not on LRU. In that case,
1625 * we use curret node.
1626 */
1627 if (unlikely(node == MAX_NUMNODES))
1628 node = numa_node_id();
1629
1630 mem->last_scanned_node = node;
1631 return node;
1632}
1633
4d0c066d
KH
1634/*
1635 * Check all nodes whether it contains reclaimable pages or not.
1636 * For quick scan, we make use of scan_nodes. This will allow us to skip
1637 * unused nodes. But scan_nodes is lazily updated and may not cotain
1638 * enough new information. We need to do double check.
1639 */
1640bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1641{
1642 int nid;
1643
1644 /*
1645 * quick check...making use of scan_node.
1646 * We can skip unused nodes.
1647 */
1648 if (!nodes_empty(mem->scan_nodes)) {
1649 for (nid = first_node(mem->scan_nodes);
1650 nid < MAX_NUMNODES;
1651 nid = next_node(nid, mem->scan_nodes)) {
1652
1653 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654 return true;
1655 }
1656 }
1657 /*
1658 * Check rest of nodes.
1659 */
1660 for_each_node_state(nid, N_HIGH_MEMORY) {
1661 if (node_isset(nid, mem->scan_nodes))
1662 continue;
1663 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1664 return true;
1665 }
1666 return false;
1667}
1668
889976db
YH
1669#else
1670int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1671{
1672 return 0;
1673}
4d0c066d
KH
1674
1675bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1676{
1677 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1678}
889976db
YH
1679#endif
1680
82f9d486
KH
1681static void __mem_cgroup_record_scanstat(unsigned long *stats,
1682 struct memcg_scanrecord *rec)
1683{
1684
1685 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1686 stats[SCAN_ANON] += rec->nr_scanned[0];
1687 stats[SCAN_FILE] += rec->nr_scanned[1];
1688
1689 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1690 stats[ROTATE_ANON] += rec->nr_rotated[0];
1691 stats[ROTATE_FILE] += rec->nr_rotated[1];
1692
1693 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1694 stats[FREED_ANON] += rec->nr_freed[0];
1695 stats[FREED_FILE] += rec->nr_freed[1];
1696
1697 stats[ELAPSED] += rec->elapsed;
1698}
1699
1700static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1701{
1702 struct mem_cgroup *mem;
1703 int context = rec->context;
1704
1705 if (context >= NR_SCAN_CONTEXT)
1706 return;
1707
1708 mem = rec->mem;
1709 spin_lock(&mem->scanstat.lock);
1710 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1711 spin_unlock(&mem->scanstat.lock);
1712
1713 mem = rec->root;
1714 spin_lock(&mem->scanstat.lock);
1715 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1716 spin_unlock(&mem->scanstat.lock);
1717}
1718
04046e1a
KH
1719/*
1720 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1721 * we reclaimed from, so that we don't end up penalizing one child extensively
1722 * based on its position in the children list.
6d61ef40
BS
1723 *
1724 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1725 *
1726 * We give up and return to the caller when we visit root_mem twice.
1727 * (other groups can be removed while we're walking....)
81d39c20
KH
1728 *
1729 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1730 */
1731static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1732 struct zone *zone,
75822b44 1733 gfp_t gfp_mask,
0ae5e89c
YH
1734 unsigned long reclaim_options,
1735 unsigned long *total_scanned)
6d61ef40 1736{
04046e1a
KH
1737 struct mem_cgroup *victim;
1738 int ret, total = 0;
1739 int loop = 0;
75822b44
BS
1740 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1741 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1742 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
82f9d486 1743 struct memcg_scanrecord rec;
9d11ea9f 1744 unsigned long excess;
82f9d486 1745 unsigned long scanned;
9d11ea9f
JW
1746
1747 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1748
22a668d7 1749 /* If memsw_is_minimum==1, swap-out is of-no-use. */
108b6a78 1750 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
22a668d7
KH
1751 noswap = true;
1752
82f9d486
KH
1753 if (shrink)
1754 rec.context = SCAN_BY_SHRINK;
1755 else if (check_soft)
1756 rec.context = SCAN_BY_SYSTEM;
1757 else
1758 rec.context = SCAN_BY_LIMIT;
1759
1760 rec.root = root_mem;
1761
4e416953 1762 while (1) {
04046e1a 1763 victim = mem_cgroup_select_victim(root_mem);
4e416953 1764 if (victim == root_mem) {
04046e1a 1765 loop++;
fbc29a25
KH
1766 /*
1767 * We are not draining per cpu cached charges during
1768 * soft limit reclaim because global reclaim doesn't
1769 * care about charges. It tries to free some memory and
1770 * charges will not give any.
1771 */
1772 if (!check_soft && loop >= 1)
26fe6168 1773 drain_all_stock_async(root_mem);
4e416953
BS
1774 if (loop >= 2) {
1775 /*
1776 * If we have not been able to reclaim
1777 * anything, it might because there are
1778 * no reclaimable pages under this hierarchy
1779 */
1780 if (!check_soft || !total) {
1781 css_put(&victim->css);
1782 break;
1783 }
1784 /*
25985edc 1785 * We want to do more targeted reclaim.
4e416953
BS
1786 * excess >> 2 is not to excessive so as to
1787 * reclaim too much, nor too less that we keep
1788 * coming back to reclaim from this cgroup
1789 */
1790 if (total >= (excess >> 2) ||
1791 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1792 css_put(&victim->css);
1793 break;
1794 }
1795 }
1796 }
4d0c066d 1797 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1798 /* this cgroup's local usage == 0 */
1799 css_put(&victim->css);
6d61ef40
BS
1800 continue;
1801 }
82f9d486
KH
1802 rec.mem = victim;
1803 rec.nr_scanned[0] = 0;
1804 rec.nr_scanned[1] = 0;
1805 rec.nr_rotated[0] = 0;
1806 rec.nr_rotated[1] = 0;
1807 rec.nr_freed[0] = 0;
1808 rec.nr_freed[1] = 0;
1809 rec.elapsed = 0;
04046e1a 1810 /* we use swappiness of local cgroup */
0ae5e89c 1811 if (check_soft) {
4e416953 1812 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
82f9d486
KH
1813 noswap, zone, &rec, &scanned);
1814 *total_scanned += scanned;
0ae5e89c 1815 } else
4e416953 1816 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
82f9d486
KH
1817 noswap, &rec);
1818 mem_cgroup_record_scanstat(&rec);
04046e1a 1819 css_put(&victim->css);
81d39c20
KH
1820 /*
1821 * At shrinking usage, we can't check we should stop here or
1822 * reclaim more. It's depends on callers. last_scanned_child
1823 * will work enough for keeping fairness under tree.
1824 */
1825 if (shrink)
1826 return ret;
04046e1a 1827 total += ret;
4e416953 1828 if (check_soft) {
9d11ea9f 1829 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1830 return total;
9d11ea9f 1831 } else if (mem_cgroup_margin(root_mem))
4fd14ebf 1832 return total;
6d61ef40 1833 }
04046e1a 1834 return total;
6d61ef40
BS
1835}
1836
867578cb
KH
1837/*
1838 * Check OOM-Killer is already running under our hierarchy.
1839 * If someone is running, return false.
1af8efe9 1840 * Has to be called with memcg_oom_lock
867578cb
KH
1841 */
1842static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1843{
79dfdacc
MH
1844 int lock_count = -1;
1845 struct mem_cgroup *iter, *failed = NULL;
1846 bool cond = true;
a636b327 1847
79dfdacc
MH
1848 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1849 bool locked = iter->oom_lock;
1850
1851 iter->oom_lock = true;
1852 if (lock_count == -1)
1853 lock_count = iter->oom_lock;
1854 else if (lock_count != locked) {
1855 /*
1856 * this subtree of our hierarchy is already locked
1857 * so we cannot give a lock.
1858 */
1859 lock_count = 0;
1860 failed = iter;
1861 cond = false;
1862 }
7d74b06f 1863 }
867578cb 1864
79dfdacc
MH
1865 if (!failed)
1866 goto done;
1867
1868 /*
1869 * OK, we failed to lock the whole subtree so we have to clean up
1870 * what we set up to the failing subtree
1871 */
1872 cond = true;
1873 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1874 if (iter == failed) {
1875 cond = false;
1876 continue;
1877 }
1878 iter->oom_lock = false;
1879 }
1880done:
1881 return lock_count;
a636b327 1882}
0b7f569e 1883
79dfdacc 1884/*
1af8efe9 1885 * Has to be called with memcg_oom_lock
79dfdacc 1886 */
7d74b06f 1887static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1888{
7d74b06f
KH
1889 struct mem_cgroup *iter;
1890
79dfdacc
MH
1891 for_each_mem_cgroup_tree(iter, mem)
1892 iter->oom_lock = false;
1893 return 0;
1894}
1895
1896static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1897{
1898 struct mem_cgroup *iter;
1899
1900 for_each_mem_cgroup_tree(iter, mem)
1901 atomic_inc(&iter->under_oom);
1902}
1903
1904static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1905{
1906 struct mem_cgroup *iter;
1907
867578cb
KH
1908 /*
1909 * When a new child is created while the hierarchy is under oom,
1910 * mem_cgroup_oom_lock() may not be called. We have to use
1911 * atomic_add_unless() here.
1912 */
7d74b06f 1913 for_each_mem_cgroup_tree(iter, mem)
79dfdacc 1914 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1915}
1916
1af8efe9 1917static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1918static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1919
dc98df5a
KH
1920struct oom_wait_info {
1921 struct mem_cgroup *mem;
1922 wait_queue_t wait;
1923};
1924
1925static int memcg_oom_wake_function(wait_queue_t *wait,
1926 unsigned mode, int sync, void *arg)
1927{
3e92041d
MH
1928 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1929 *oom_wait_mem;
dc98df5a
KH
1930 struct oom_wait_info *oom_wait_info;
1931
1932 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
3e92041d 1933 oom_wait_mem = oom_wait_info->mem;
dc98df5a 1934
dc98df5a
KH
1935 /*
1936 * Both of oom_wait_info->mem and wake_mem are stable under us.
1937 * Then we can use css_is_ancestor without taking care of RCU.
1938 */
3e92041d
MH
1939 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1940 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
dc98df5a 1941 return 0;
dc98df5a
KH
1942 return autoremove_wake_function(wait, mode, sync, arg);
1943}
1944
1945static void memcg_wakeup_oom(struct mem_cgroup *mem)
1946{
1947 /* for filtering, pass "mem" as argument. */
1948 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1949}
1950
3c11ecf4
KH
1951static void memcg_oom_recover(struct mem_cgroup *mem)
1952{
79dfdacc 1953 if (mem && atomic_read(&mem->under_oom))
3c11ecf4
KH
1954 memcg_wakeup_oom(mem);
1955}
1956
867578cb
KH
1957/*
1958 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1959 */
1960bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1961{
dc98df5a 1962 struct oom_wait_info owait;
3c11ecf4 1963 bool locked, need_to_kill;
867578cb 1964
dc98df5a
KH
1965 owait.mem = mem;
1966 owait.wait.flags = 0;
1967 owait.wait.func = memcg_oom_wake_function;
1968 owait.wait.private = current;
1969 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1970 need_to_kill = true;
79dfdacc
MH
1971 mem_cgroup_mark_under_oom(mem);
1972
867578cb 1973 /* At first, try to OOM lock hierarchy under mem.*/
1af8efe9 1974 spin_lock(&memcg_oom_lock);
867578cb
KH
1975 locked = mem_cgroup_oom_lock(mem);
1976 /*
1977 * Even if signal_pending(), we can't quit charge() loop without
1978 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1979 * under OOM is always welcomed, use TASK_KILLABLE here.
1980 */
3c11ecf4
KH
1981 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1982 if (!locked || mem->oom_kill_disable)
1983 need_to_kill = false;
1984 if (locked)
9490ff27 1985 mem_cgroup_oom_notify(mem);
1af8efe9 1986 spin_unlock(&memcg_oom_lock);
867578cb 1987
3c11ecf4
KH
1988 if (need_to_kill) {
1989 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1990 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1991 } else {
867578cb 1992 schedule();
dc98df5a 1993 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1994 }
1af8efe9 1995 spin_lock(&memcg_oom_lock);
79dfdacc
MH
1996 if (locked)
1997 mem_cgroup_oom_unlock(mem);
dc98df5a 1998 memcg_wakeup_oom(mem);
1af8efe9 1999 spin_unlock(&memcg_oom_lock);
867578cb 2000
79dfdacc
MH
2001 mem_cgroup_unmark_under_oom(mem);
2002
867578cb
KH
2003 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2004 return false;
2005 /* Give chance to dying process */
2006 schedule_timeout(1);
2007 return true;
0b7f569e
KH
2008}
2009
d69b042f
BS
2010/*
2011 * Currently used to update mapped file statistics, but the routine can be
2012 * generalized to update other statistics as well.
32047e2a
KH
2013 *
2014 * Notes: Race condition
2015 *
2016 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2017 * it tends to be costly. But considering some conditions, we doesn't need
2018 * to do so _always_.
2019 *
2020 * Considering "charge", lock_page_cgroup() is not required because all
2021 * file-stat operations happen after a page is attached to radix-tree. There
2022 * are no race with "charge".
2023 *
2024 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2025 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2026 * if there are race with "uncharge". Statistics itself is properly handled
2027 * by flags.
2028 *
2029 * Considering "move", this is an only case we see a race. To make the race
2030 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2031 * possibility of race condition. If there is, we take a lock.
d69b042f 2032 */
26174efd 2033
2a7106f2
GT
2034void mem_cgroup_update_page_stat(struct page *page,
2035 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
2036{
2037 struct mem_cgroup *mem;
32047e2a
KH
2038 struct page_cgroup *pc = lookup_page_cgroup(page);
2039 bool need_unlock = false;
dbd4ea78 2040 unsigned long uninitialized_var(flags);
d69b042f 2041
d69b042f
BS
2042 if (unlikely(!pc))
2043 return;
2044
32047e2a 2045 rcu_read_lock();
d69b042f 2046 mem = pc->mem_cgroup;
32047e2a
KH
2047 if (unlikely(!mem || !PageCgroupUsed(pc)))
2048 goto out;
2049 /* pc->mem_cgroup is unstable ? */
ca3e0214 2050 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 2051 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 2052 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
2053 need_unlock = true;
2054 mem = pc->mem_cgroup;
2055 if (!mem || !PageCgroupUsed(pc))
2056 goto out;
2057 }
26174efd 2058
26174efd 2059 switch (idx) {
2a7106f2 2060 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2061 if (val > 0)
2062 SetPageCgroupFileMapped(pc);
2063 else if (!page_mapped(page))
0c270f8f 2064 ClearPageCgroupFileMapped(pc);
2a7106f2 2065 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2066 break;
2067 default:
2068 BUG();
8725d541 2069 }
d69b042f 2070
2a7106f2
GT
2071 this_cpu_add(mem->stat->count[idx], val);
2072
32047e2a
KH
2073out:
2074 if (unlikely(need_unlock))
dbd4ea78 2075 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2076 rcu_read_unlock();
2077 return;
d69b042f 2078}
2a7106f2 2079EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2080
cdec2e42
KH
2081/*
2082 * size of first charge trial. "32" comes from vmscan.c's magic value.
2083 * TODO: maybe necessary to use big numbers in big irons.
2084 */
7ec99d62 2085#define CHARGE_BATCH 32U
cdec2e42
KH
2086struct memcg_stock_pcp {
2087 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2088 unsigned int nr_pages;
cdec2e42 2089 struct work_struct work;
26fe6168
KH
2090 unsigned long flags;
2091#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2092};
2093static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2094static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2095
2096/*
11c9ea4e 2097 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2098 * from local stock and true is returned. If the stock is 0 or charges from a
2099 * cgroup which is not current target, returns false. This stock will be
2100 * refilled.
2101 */
2102static bool consume_stock(struct mem_cgroup *mem)
2103{
2104 struct memcg_stock_pcp *stock;
2105 bool ret = true;
2106
2107 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
2108 if (mem == stock->cached && stock->nr_pages)
2109 stock->nr_pages--;
cdec2e42
KH
2110 else /* need to call res_counter_charge */
2111 ret = false;
2112 put_cpu_var(memcg_stock);
2113 return ret;
2114}
2115
2116/*
2117 * Returns stocks cached in percpu to res_counter and reset cached information.
2118 */
2119static void drain_stock(struct memcg_stock_pcp *stock)
2120{
2121 struct mem_cgroup *old = stock->cached;
2122
11c9ea4e
JW
2123 if (stock->nr_pages) {
2124 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2125
2126 res_counter_uncharge(&old->res, bytes);
cdec2e42 2127 if (do_swap_account)
11c9ea4e
JW
2128 res_counter_uncharge(&old->memsw, bytes);
2129 stock->nr_pages = 0;
cdec2e42
KH
2130 }
2131 stock->cached = NULL;
cdec2e42
KH
2132}
2133
2134/*
2135 * This must be called under preempt disabled or must be called by
2136 * a thread which is pinned to local cpu.
2137 */
2138static void drain_local_stock(struct work_struct *dummy)
2139{
2140 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2141 drain_stock(stock);
26fe6168 2142 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2143}
2144
2145/*
2146 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2147 * This will be consumed by consume_stock() function, later.
cdec2e42 2148 */
11c9ea4e 2149static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
2150{
2151 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2152
2153 if (stock->cached != mem) { /* reset if necessary */
2154 drain_stock(stock);
2155 stock->cached = mem;
2156 }
11c9ea4e 2157 stock->nr_pages += nr_pages;
cdec2e42
KH
2158 put_cpu_var(memcg_stock);
2159}
2160
2161/*
d38144b7
MH
2162 * Drains all per-CPU charge caches for given root_mem resp. subtree
2163 * of the hierarchy under it. sync flag says whether we should block
2164 * until the work is done.
cdec2e42 2165 */
d38144b7 2166static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
cdec2e42 2167{
26fe6168 2168 int cpu, curcpu;
d38144b7 2169
cdec2e42 2170 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2171 get_online_cpus();
5af12d0e 2172 curcpu = get_cpu();
cdec2e42
KH
2173 for_each_online_cpu(cpu) {
2174 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
26fe6168
KH
2175 struct mem_cgroup *mem;
2176
26fe6168 2177 mem = stock->cached;
d1a05b69 2178 if (!mem || !stock->nr_pages)
26fe6168 2179 continue;
3e92041d
MH
2180 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2181 continue;
d1a05b69
MH
2182 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2183 if (cpu == curcpu)
2184 drain_local_stock(&stock->work);
2185 else
2186 schedule_work_on(cpu, &stock->work);
2187 }
cdec2e42 2188 }
5af12d0e 2189 put_cpu();
d38144b7
MH
2190
2191 if (!sync)
2192 goto out;
2193
2194 for_each_online_cpu(cpu) {
2195 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2196 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2197 flush_work(&stock->work);
2198 }
2199out:
cdec2e42 2200 put_online_cpus();
d38144b7
MH
2201}
2202
2203/*
2204 * Tries to drain stocked charges in other cpus. This function is asynchronous
2205 * and just put a work per cpu for draining localy on each cpu. Caller can
2206 * expects some charges will be back to res_counter later but cannot wait for
2207 * it.
2208 */
2209static void drain_all_stock_async(struct mem_cgroup *root_mem)
2210{
9f50fad6
MH
2211 /*
2212 * If someone calls draining, avoid adding more kworker runs.
2213 */
2214 if (!mutex_trylock(&percpu_charge_mutex))
2215 return;
d38144b7 2216 drain_all_stock(root_mem, false);
9f50fad6 2217 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2218}
2219
2220/* This is a synchronous drain interface. */
d38144b7 2221static void drain_all_stock_sync(struct mem_cgroup *root_mem)
cdec2e42
KH
2222{
2223 /* called when force_empty is called */
9f50fad6 2224 mutex_lock(&percpu_charge_mutex);
d38144b7 2225 drain_all_stock(root_mem, true);
9f50fad6 2226 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2227}
2228
711d3d2c
KH
2229/*
2230 * This function drains percpu counter value from DEAD cpu and
2231 * move it to local cpu. Note that this function can be preempted.
2232 */
2233static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2234{
2235 int i;
2236
2237 spin_lock(&mem->pcp_counter_lock);
2238 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 2239 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
2240
2241 per_cpu(mem->stat->count[i], cpu) = 0;
2242 mem->nocpu_base.count[i] += x;
2243 }
e9f8974f
JW
2244 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2245 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2246
2247 per_cpu(mem->stat->events[i], cpu) = 0;
2248 mem->nocpu_base.events[i] += x;
2249 }
1489ebad
KH
2250 /* need to clear ON_MOVE value, works as a kind of lock. */
2251 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2252 spin_unlock(&mem->pcp_counter_lock);
2253}
2254
2255static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2256{
2257 int idx = MEM_CGROUP_ON_MOVE;
2258
2259 spin_lock(&mem->pcp_counter_lock);
2260 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
2261 spin_unlock(&mem->pcp_counter_lock);
2262}
2263
2264static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2265 unsigned long action,
2266 void *hcpu)
2267{
2268 int cpu = (unsigned long)hcpu;
2269 struct memcg_stock_pcp *stock;
711d3d2c 2270 struct mem_cgroup *iter;
cdec2e42 2271
1489ebad
KH
2272 if ((action == CPU_ONLINE)) {
2273 for_each_mem_cgroup_all(iter)
2274 synchronize_mem_cgroup_on_move(iter, cpu);
2275 return NOTIFY_OK;
2276 }
2277
711d3d2c 2278 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2279 return NOTIFY_OK;
711d3d2c
KH
2280
2281 for_each_mem_cgroup_all(iter)
2282 mem_cgroup_drain_pcp_counter(iter, cpu);
2283
cdec2e42
KH
2284 stock = &per_cpu(memcg_stock, cpu);
2285 drain_stock(stock);
2286 return NOTIFY_OK;
2287}
2288
4b534334
KH
2289
2290/* See __mem_cgroup_try_charge() for details */
2291enum {
2292 CHARGE_OK, /* success */
2293 CHARGE_RETRY, /* need to retry but retry is not bad */
2294 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2295 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2296 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2297};
2298
7ec99d62
JW
2299static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2300 unsigned int nr_pages, bool oom_check)
4b534334 2301{
7ec99d62 2302 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2303 struct mem_cgroup *mem_over_limit;
2304 struct res_counter *fail_res;
2305 unsigned long flags = 0;
2306 int ret;
2307
2308 ret = res_counter_charge(&mem->res, csize, &fail_res);
2309
2310 if (likely(!ret)) {
2311 if (!do_swap_account)
2312 return CHARGE_OK;
2313 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2314 if (likely(!ret))
2315 return CHARGE_OK;
2316
01c88e2d 2317 res_counter_uncharge(&mem->res, csize);
4b534334
KH
2318 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2319 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2320 } else
2321 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2322 /*
7ec99d62
JW
2323 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2324 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2325 *
2326 * Never reclaim on behalf of optional batching, retry with a
2327 * single page instead.
2328 */
7ec99d62 2329 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2330 return CHARGE_RETRY;
2331
2332 if (!(gfp_mask & __GFP_WAIT))
2333 return CHARGE_WOULDBLOCK;
2334
2335 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2336 gfp_mask, flags, NULL);
7ec99d62 2337 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2338 return CHARGE_RETRY;
4b534334 2339 /*
19942822
JW
2340 * Even though the limit is exceeded at this point, reclaim
2341 * may have been able to free some pages. Retry the charge
2342 * before killing the task.
2343 *
2344 * Only for regular pages, though: huge pages are rather
2345 * unlikely to succeed so close to the limit, and we fall back
2346 * to regular pages anyway in case of failure.
4b534334 2347 */
7ec99d62 2348 if (nr_pages == 1 && ret)
4b534334
KH
2349 return CHARGE_RETRY;
2350
2351 /*
2352 * At task move, charge accounts can be doubly counted. So, it's
2353 * better to wait until the end of task_move if something is going on.
2354 */
2355 if (mem_cgroup_wait_acct_move(mem_over_limit))
2356 return CHARGE_RETRY;
2357
2358 /* If we don't need to call oom-killer at el, return immediately */
2359 if (!oom_check)
2360 return CHARGE_NOMEM;
2361 /* check OOM */
2362 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2363 return CHARGE_OOM_DIE;
2364
2365 return CHARGE_RETRY;
2366}
2367
f817ed48
KH
2368/*
2369 * Unlike exported interface, "oom" parameter is added. if oom==true,
2370 * oom-killer can be invoked.
8a9f3ccd 2371 */
f817ed48 2372static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2373 gfp_t gfp_mask,
7ec99d62
JW
2374 unsigned int nr_pages,
2375 struct mem_cgroup **memcg,
2376 bool oom)
8a9f3ccd 2377{
7ec99d62 2378 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
2379 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2380 struct mem_cgroup *mem = NULL;
2381 int ret;
a636b327 2382
867578cb
KH
2383 /*
2384 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2385 * in system level. So, allow to go ahead dying process in addition to
2386 * MEMDIE process.
2387 */
2388 if (unlikely(test_thread_flag(TIF_MEMDIE)
2389 || fatal_signal_pending(current)))
2390 goto bypass;
a636b327 2391
8a9f3ccd 2392 /*
3be91277
HD
2393 * We always charge the cgroup the mm_struct belongs to.
2394 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2395 * thread group leader migrates. It's possible that mm is not
2396 * set, if so charge the init_mm (happens for pagecache usage).
2397 */
f75ca962
KH
2398 if (!*memcg && !mm)
2399 goto bypass;
2400again:
2401 if (*memcg) { /* css should be a valid one */
4b534334 2402 mem = *memcg;
f75ca962
KH
2403 VM_BUG_ON(css_is_removed(&mem->css));
2404 if (mem_cgroup_is_root(mem))
2405 goto done;
7ec99d62 2406 if (nr_pages == 1 && consume_stock(mem))
f75ca962 2407 goto done;
4b534334
KH
2408 css_get(&mem->css);
2409 } else {
f75ca962 2410 struct task_struct *p;
54595fe2 2411
f75ca962
KH
2412 rcu_read_lock();
2413 p = rcu_dereference(mm->owner);
f75ca962 2414 /*
ebb76ce1
KH
2415 * Because we don't have task_lock(), "p" can exit.
2416 * In that case, "mem" can point to root or p can be NULL with
2417 * race with swapoff. Then, we have small risk of mis-accouning.
2418 * But such kind of mis-account by race always happens because
2419 * we don't have cgroup_mutex(). It's overkill and we allo that
2420 * small race, here.
2421 * (*) swapoff at el will charge against mm-struct not against
2422 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2423 */
2424 mem = mem_cgroup_from_task(p);
ebb76ce1 2425 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2426 rcu_read_unlock();
2427 goto done;
2428 }
7ec99d62 2429 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2430 /*
2431 * It seems dagerous to access memcg without css_get().
2432 * But considering how consume_stok works, it's not
2433 * necessary. If consume_stock success, some charges
2434 * from this memcg are cached on this cpu. So, we
2435 * don't need to call css_get()/css_tryget() before
2436 * calling consume_stock().
2437 */
2438 rcu_read_unlock();
2439 goto done;
2440 }
2441 /* after here, we may be blocked. we need to get refcnt */
2442 if (!css_tryget(&mem->css)) {
2443 rcu_read_unlock();
2444 goto again;
2445 }
2446 rcu_read_unlock();
2447 }
8a9f3ccd 2448
4b534334
KH
2449 do {
2450 bool oom_check;
7a81b88c 2451
4b534334 2452 /* If killed, bypass charge */
f75ca962
KH
2453 if (fatal_signal_pending(current)) {
2454 css_put(&mem->css);
4b534334 2455 goto bypass;
f75ca962 2456 }
6d61ef40 2457
4b534334
KH
2458 oom_check = false;
2459 if (oom && !nr_oom_retries) {
2460 oom_check = true;
2461 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2462 }
66e1707b 2463
7ec99d62 2464 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2465 switch (ret) {
2466 case CHARGE_OK:
2467 break;
2468 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2469 batch = nr_pages;
f75ca962
KH
2470 css_put(&mem->css);
2471 mem = NULL;
2472 goto again;
4b534334 2473 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2474 css_put(&mem->css);
4b534334
KH
2475 goto nomem;
2476 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2477 if (!oom) {
2478 css_put(&mem->css);
867578cb 2479 goto nomem;
f75ca962 2480 }
4b534334
KH
2481 /* If oom, we never return -ENOMEM */
2482 nr_oom_retries--;
2483 break;
2484 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2485 css_put(&mem->css);
867578cb 2486 goto bypass;
66e1707b 2487 }
4b534334
KH
2488 } while (ret != CHARGE_OK);
2489
7ec99d62
JW
2490 if (batch > nr_pages)
2491 refill_stock(mem, batch - nr_pages);
f75ca962 2492 css_put(&mem->css);
0c3e73e8 2493done:
f75ca962 2494 *memcg = mem;
7a81b88c
KH
2495 return 0;
2496nomem:
f75ca962 2497 *memcg = NULL;
7a81b88c 2498 return -ENOMEM;
867578cb
KH
2499bypass:
2500 *memcg = NULL;
2501 return 0;
7a81b88c 2502}
8a9f3ccd 2503
a3032a2c
DN
2504/*
2505 * Somemtimes we have to undo a charge we got by try_charge().
2506 * This function is for that and do uncharge, put css's refcnt.
2507 * gotten by try_charge().
2508 */
854ffa8d 2509static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2510 unsigned int nr_pages)
a3032a2c
DN
2511{
2512 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2513 unsigned long bytes = nr_pages * PAGE_SIZE;
2514
2515 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2516 if (do_swap_account)
e7018b8d 2517 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2518 }
854ffa8d
DN
2519}
2520
a3b2d692
KH
2521/*
2522 * A helper function to get mem_cgroup from ID. must be called under
2523 * rcu_read_lock(). The caller must check css_is_removed() or some if
2524 * it's concern. (dropping refcnt from swap can be called against removed
2525 * memcg.)
2526 */
2527static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2528{
2529 struct cgroup_subsys_state *css;
2530
2531 /* ID 0 is unused ID */
2532 if (!id)
2533 return NULL;
2534 css = css_lookup(&mem_cgroup_subsys, id);
2535 if (!css)
2536 return NULL;
2537 return container_of(css, struct mem_cgroup, css);
2538}
2539
e42d9d5d 2540struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2541{
e42d9d5d 2542 struct mem_cgroup *mem = NULL;
3c776e64 2543 struct page_cgroup *pc;
a3b2d692 2544 unsigned short id;
b5a84319
KH
2545 swp_entry_t ent;
2546
3c776e64
DN
2547 VM_BUG_ON(!PageLocked(page));
2548
3c776e64 2549 pc = lookup_page_cgroup(page);
c0bd3f63 2550 lock_page_cgroup(pc);
a3b2d692 2551 if (PageCgroupUsed(pc)) {
3c776e64 2552 mem = pc->mem_cgroup;
a3b2d692
KH
2553 if (mem && !css_tryget(&mem->css))
2554 mem = NULL;
e42d9d5d 2555 } else if (PageSwapCache(page)) {
3c776e64 2556 ent.val = page_private(page);
a3b2d692
KH
2557 id = lookup_swap_cgroup(ent);
2558 rcu_read_lock();
2559 mem = mem_cgroup_lookup(id);
2560 if (mem && !css_tryget(&mem->css))
2561 mem = NULL;
2562 rcu_read_unlock();
3c776e64 2563 }
c0bd3f63 2564 unlock_page_cgroup(pc);
b5a84319
KH
2565 return mem;
2566}
2567
ca3e0214 2568static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2569 struct page *page,
7ec99d62 2570 unsigned int nr_pages,
ca3e0214 2571 struct page_cgroup *pc,
7ec99d62 2572 enum charge_type ctype)
7a81b88c 2573{
ca3e0214
KH
2574 lock_page_cgroup(pc);
2575 if (unlikely(PageCgroupUsed(pc))) {
2576 unlock_page_cgroup(pc);
e7018b8d 2577 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2578 return;
2579 }
2580 /*
2581 * we don't need page_cgroup_lock about tail pages, becase they are not
2582 * accessed by any other context at this point.
2583 */
8a9f3ccd 2584 pc->mem_cgroup = mem;
261fb61a
KH
2585 /*
2586 * We access a page_cgroup asynchronously without lock_page_cgroup().
2587 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2588 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2589 * before USED bit, we need memory barrier here.
2590 * See mem_cgroup_add_lru_list(), etc.
2591 */
08e552c6 2592 smp_wmb();
4b3bde4c
BS
2593 switch (ctype) {
2594 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2595 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2596 SetPageCgroupCache(pc);
2597 SetPageCgroupUsed(pc);
2598 break;
2599 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2600 ClearPageCgroupCache(pc);
2601 SetPageCgroupUsed(pc);
2602 break;
2603 default:
2604 break;
2605 }
3be91277 2606
ca3e0214 2607 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2608 unlock_page_cgroup(pc);
430e4863
KH
2609 /*
2610 * "charge_statistics" updated event counter. Then, check it.
2611 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2612 * if they exceeds softlimit.
2613 */
5564e88b 2614 memcg_check_events(mem, page);
7a81b88c 2615}
66e1707b 2616
ca3e0214
KH
2617#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2618
2619#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2620 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2621/*
2622 * Because tail pages are not marked as "used", set it. We're under
2623 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2624 */
2625void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2626{
2627 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2628 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2629 unsigned long flags;
2630
3d37c4a9
KH
2631 if (mem_cgroup_disabled())
2632 return;
ca3e0214 2633 /*
ece35ca8 2634 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2635 * page state accounting.
2636 */
2637 move_lock_page_cgroup(head_pc, &flags);
2638
2639 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2640 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2641 if (PageCgroupAcctLRU(head_pc)) {
2642 enum lru_list lru;
2643 struct mem_cgroup_per_zone *mz;
2644
2645 /*
2646 * LRU flags cannot be copied because we need to add tail
2647 *.page to LRU by generic call and our hook will be called.
2648 * We hold lru_lock, then, reduce counter directly.
2649 */
2650 lru = page_lru(head);
97a6c37b 2651 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2652 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2653 }
ca3e0214
KH
2654 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2655 move_unlock_page_cgroup(head_pc, &flags);
2656}
2657#endif
2658
f817ed48 2659/**
de3638d9 2660 * mem_cgroup_move_account - move account of the page
5564e88b 2661 * @page: the page
7ec99d62 2662 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2663 * @pc: page_cgroup of the page.
2664 * @from: mem_cgroup which the page is moved from.
2665 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2666 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2667 *
2668 * The caller must confirm following.
08e552c6 2669 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2670 * - compound_lock is held when nr_pages > 1
f817ed48 2671 *
854ffa8d 2672 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2673 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2674 * true, this function does "uncharge" from old cgroup, but it doesn't if
2675 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2676 */
7ec99d62
JW
2677static int mem_cgroup_move_account(struct page *page,
2678 unsigned int nr_pages,
2679 struct page_cgroup *pc,
2680 struct mem_cgroup *from,
2681 struct mem_cgroup *to,
2682 bool uncharge)
f817ed48 2683{
de3638d9
JW
2684 unsigned long flags;
2685 int ret;
987eba66 2686
f817ed48 2687 VM_BUG_ON(from == to);
5564e88b 2688 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2689 /*
2690 * The page is isolated from LRU. So, collapse function
2691 * will not handle this page. But page splitting can happen.
2692 * Do this check under compound_page_lock(). The caller should
2693 * hold it.
2694 */
2695 ret = -EBUSY;
7ec99d62 2696 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2697 goto out;
2698
2699 lock_page_cgroup(pc);
2700
2701 ret = -EINVAL;
2702 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2703 goto unlock;
2704
2705 move_lock_page_cgroup(pc, &flags);
f817ed48 2706
8725d541 2707 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2708 /* Update mapped_file data for mem_cgroup */
2709 preempt_disable();
2710 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2711 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2712 preempt_enable();
d69b042f 2713 }
987eba66 2714 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2715 if (uncharge)
2716 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2717 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2718
854ffa8d 2719 /* caller should have done css_get */
08e552c6 2720 pc->mem_cgroup = to;
987eba66 2721 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2722 /*
2723 * We charges against "to" which may not have any tasks. Then, "to"
2724 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2725 * this function is just force_empty() and move charge, so it's
25985edc 2726 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2727 * status here.
88703267 2728 */
de3638d9
JW
2729 move_unlock_page_cgroup(pc, &flags);
2730 ret = 0;
2731unlock:
57f9fd7d 2732 unlock_page_cgroup(pc);
d2265e6f
KH
2733 /*
2734 * check events
2735 */
5564e88b
JW
2736 memcg_check_events(to, page);
2737 memcg_check_events(from, page);
de3638d9 2738out:
f817ed48
KH
2739 return ret;
2740}
2741
2742/*
2743 * move charges to its parent.
2744 */
2745
5564e88b
JW
2746static int mem_cgroup_move_parent(struct page *page,
2747 struct page_cgroup *pc,
f817ed48
KH
2748 struct mem_cgroup *child,
2749 gfp_t gfp_mask)
2750{
2751 struct cgroup *cg = child->css.cgroup;
2752 struct cgroup *pcg = cg->parent;
2753 struct mem_cgroup *parent;
7ec99d62 2754 unsigned int nr_pages;
4be4489f 2755 unsigned long uninitialized_var(flags);
f817ed48
KH
2756 int ret;
2757
2758 /* Is ROOT ? */
2759 if (!pcg)
2760 return -EINVAL;
2761
57f9fd7d
DN
2762 ret = -EBUSY;
2763 if (!get_page_unless_zero(page))
2764 goto out;
2765 if (isolate_lru_page(page))
2766 goto put;
52dbb905 2767
7ec99d62 2768 nr_pages = hpage_nr_pages(page);
08e552c6 2769
f817ed48 2770 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2771 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2772 if (ret || !parent)
57f9fd7d 2773 goto put_back;
f817ed48 2774
7ec99d62 2775 if (nr_pages > 1)
987eba66
KH
2776 flags = compound_lock_irqsave(page);
2777
7ec99d62 2778 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2779 if (ret)
7ec99d62 2780 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2781
7ec99d62 2782 if (nr_pages > 1)
987eba66 2783 compound_unlock_irqrestore(page, flags);
8dba474f 2784put_back:
08e552c6 2785 putback_lru_page(page);
57f9fd7d 2786put:
40d58138 2787 put_page(page);
57f9fd7d 2788out:
f817ed48
KH
2789 return ret;
2790}
2791
7a81b88c
KH
2792/*
2793 * Charge the memory controller for page usage.
2794 * Return
2795 * 0 if the charge was successful
2796 * < 0 if the cgroup is over its limit
2797 */
2798static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2799 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2800{
73045c47 2801 struct mem_cgroup *mem = NULL;
7ec99d62 2802 unsigned int nr_pages = 1;
7a81b88c 2803 struct page_cgroup *pc;
8493ae43 2804 bool oom = true;
7a81b88c 2805 int ret;
ec168510 2806
37c2ac78 2807 if (PageTransHuge(page)) {
7ec99d62 2808 nr_pages <<= compound_order(page);
37c2ac78 2809 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2810 /*
2811 * Never OOM-kill a process for a huge page. The
2812 * fault handler will fall back to regular pages.
2813 */
2814 oom = false;
37c2ac78 2815 }
7a81b88c
KH
2816
2817 pc = lookup_page_cgroup(page);
af4a6621 2818 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2819
7ec99d62 2820 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2821 if (ret || !mem)
7a81b88c
KH
2822 return ret;
2823
7ec99d62 2824 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2825 return 0;
8a9f3ccd
BS
2826}
2827
7a81b88c
KH
2828int mem_cgroup_newpage_charge(struct page *page,
2829 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2830{
f8d66542 2831 if (mem_cgroup_disabled())
cede86ac 2832 return 0;
69029cd5
KH
2833 /*
2834 * If already mapped, we don't have to account.
2835 * If page cache, page->mapping has address_space.
2836 * But page->mapping may have out-of-use anon_vma pointer,
2837 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2838 * is NULL.
2839 */
2840 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2841 return 0;
2842 if (unlikely(!mm))
2843 mm = &init_mm;
217bc319 2844 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2845 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2846}
2847
83aae4c7
DN
2848static void
2849__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2850 enum charge_type ctype);
2851
5a6475a4
KH
2852static void
2853__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2854 enum charge_type ctype)
2855{
2856 struct page_cgroup *pc = lookup_page_cgroup(page);
2857 /*
2858 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2859 * is already on LRU. It means the page may on some other page_cgroup's
2860 * LRU. Take care of it.
2861 */
2862 mem_cgroup_lru_del_before_commit(page);
2863 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2864 mem_cgroup_lru_add_after_commit(page);
2865 return;
2866}
2867
e1a1cd59
BS
2868int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2869 gfp_t gfp_mask)
8697d331 2870{
5a6475a4 2871 struct mem_cgroup *mem = NULL;
b5a84319
KH
2872 int ret;
2873
f8d66542 2874 if (mem_cgroup_disabled())
cede86ac 2875 return 0;
52d4b9ac
KH
2876 if (PageCompound(page))
2877 return 0;
accf163e 2878
73045c47 2879 if (unlikely(!mm))
8697d331 2880 mm = &init_mm;
accf163e 2881
5a6475a4
KH
2882 if (page_is_file_cache(page)) {
2883 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2884 if (ret || !mem)
2885 return ret;
b5a84319 2886
5a6475a4
KH
2887 /*
2888 * FUSE reuses pages without going through the final
2889 * put that would remove them from the LRU list, make
2890 * sure that they get relinked properly.
2891 */
2892 __mem_cgroup_commit_charge_lrucare(page, mem,
2893 MEM_CGROUP_CHARGE_TYPE_CACHE);
2894 return ret;
2895 }
83aae4c7
DN
2896 /* shmem */
2897 if (PageSwapCache(page)) {
2898 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2899 if (!ret)
2900 __mem_cgroup_commit_charge_swapin(page, mem,
2901 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2902 } else
2903 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2904 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2905
b5a84319 2906 return ret;
e8589cc1
KH
2907}
2908
54595fe2
KH
2909/*
2910 * While swap-in, try_charge -> commit or cancel, the page is locked.
2911 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2912 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2913 * "commit()" or removed by "cancel()"
2914 */
8c7c6e34
KH
2915int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2916 struct page *page,
2917 gfp_t mask, struct mem_cgroup **ptr)
2918{
2919 struct mem_cgroup *mem;
54595fe2 2920 int ret;
8c7c6e34 2921
56039efa
KH
2922 *ptr = NULL;
2923
f8d66542 2924 if (mem_cgroup_disabled())
8c7c6e34
KH
2925 return 0;
2926
2927 if (!do_swap_account)
2928 goto charge_cur_mm;
8c7c6e34
KH
2929 /*
2930 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2931 * the pte, and even removed page from swap cache: in those cases
2932 * do_swap_page()'s pte_same() test will fail; but there's also a
2933 * KSM case which does need to charge the page.
8c7c6e34
KH
2934 */
2935 if (!PageSwapCache(page))
407f9c8b 2936 goto charge_cur_mm;
e42d9d5d 2937 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2938 if (!mem)
2939 goto charge_cur_mm;
8c7c6e34 2940 *ptr = mem;
7ec99d62 2941 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2942 css_put(&mem->css);
2943 return ret;
8c7c6e34
KH
2944charge_cur_mm:
2945 if (unlikely(!mm))
2946 mm = &init_mm;
7ec99d62 2947 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2948}
2949
83aae4c7
DN
2950static void
2951__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2952 enum charge_type ctype)
7a81b88c 2953{
f8d66542 2954 if (mem_cgroup_disabled())
7a81b88c
KH
2955 return;
2956 if (!ptr)
2957 return;
88703267 2958 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2959
2960 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2961 /*
2962 * Now swap is on-memory. This means this page may be
2963 * counted both as mem and swap....double count.
03f3c433
KH
2964 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2965 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2966 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2967 */
03f3c433 2968 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2969 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2970 unsigned short id;
8c7c6e34 2971 struct mem_cgroup *memcg;
a3b2d692
KH
2972
2973 id = swap_cgroup_record(ent, 0);
2974 rcu_read_lock();
2975 memcg = mem_cgroup_lookup(id);
8c7c6e34 2976 if (memcg) {
a3b2d692
KH
2977 /*
2978 * This recorded memcg can be obsolete one. So, avoid
2979 * calling css_tryget
2980 */
0c3e73e8 2981 if (!mem_cgroup_is_root(memcg))
4e649152 2982 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2983 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2984 mem_cgroup_put(memcg);
2985 }
a3b2d692 2986 rcu_read_unlock();
8c7c6e34 2987 }
88703267
KH
2988 /*
2989 * At swapin, we may charge account against cgroup which has no tasks.
2990 * So, rmdir()->pre_destroy() can be called while we do this charge.
2991 * In that case, we need to call pre_destroy() again. check it here.
2992 */
2993 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2994}
2995
83aae4c7
DN
2996void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2997{
2998 __mem_cgroup_commit_charge_swapin(page, ptr,
2999 MEM_CGROUP_CHARGE_TYPE_MAPPED);
3000}
3001
7a81b88c
KH
3002void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3003{
f8d66542 3004 if (mem_cgroup_disabled())
7a81b88c
KH
3005 return;
3006 if (!mem)
3007 return;
e7018b8d 3008 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
3009}
3010
7ec99d62
JW
3011static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3012 unsigned int nr_pages,
3013 const enum charge_type ctype)
569b846d
KH
3014{
3015 struct memcg_batch_info *batch = NULL;
3016 bool uncharge_memsw = true;
7ec99d62 3017
569b846d
KH
3018 /* If swapout, usage of swap doesn't decrease */
3019 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3020 uncharge_memsw = false;
569b846d
KH
3021
3022 batch = &current->memcg_batch;
3023 /*
3024 * In usual, we do css_get() when we remember memcg pointer.
3025 * But in this case, we keep res->usage until end of a series of
3026 * uncharges. Then, it's ok to ignore memcg's refcnt.
3027 */
3028 if (!batch->memcg)
3029 batch->memcg = mem;
3c11ecf4
KH
3030 /*
3031 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3032 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3033 * the same cgroup and we have chance to coalesce uncharges.
3034 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3035 * because we want to do uncharge as soon as possible.
3036 */
3037
3038 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3039 goto direct_uncharge;
3040
7ec99d62 3041 if (nr_pages > 1)
ec168510
AA
3042 goto direct_uncharge;
3043
569b846d
KH
3044 /*
3045 * In typical case, batch->memcg == mem. This means we can
3046 * merge a series of uncharges to an uncharge of res_counter.
3047 * If not, we uncharge res_counter ony by one.
3048 */
3049 if (batch->memcg != mem)
3050 goto direct_uncharge;
3051 /* remember freed charge and uncharge it later */
7ffd4ca7 3052 batch->nr_pages++;
569b846d 3053 if (uncharge_memsw)
7ffd4ca7 3054 batch->memsw_nr_pages++;
569b846d
KH
3055 return;
3056direct_uncharge:
7ec99d62 3057 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 3058 if (uncharge_memsw)
7ec99d62 3059 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
3060 if (unlikely(batch->memcg != mem))
3061 memcg_oom_recover(mem);
569b846d
KH
3062 return;
3063}
7a81b88c 3064
8a9f3ccd 3065/*
69029cd5 3066 * uncharge if !page_mapped(page)
8a9f3ccd 3067 */
8c7c6e34 3068static struct mem_cgroup *
69029cd5 3069__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3070{
8c7c6e34 3071 struct mem_cgroup *mem = NULL;
7ec99d62
JW
3072 unsigned int nr_pages = 1;
3073 struct page_cgroup *pc;
8a9f3ccd 3074
f8d66542 3075 if (mem_cgroup_disabled())
8c7c6e34 3076 return NULL;
4077960e 3077
d13d1443 3078 if (PageSwapCache(page))
8c7c6e34 3079 return NULL;
d13d1443 3080
37c2ac78 3081 if (PageTransHuge(page)) {
7ec99d62 3082 nr_pages <<= compound_order(page);
37c2ac78
AA
3083 VM_BUG_ON(!PageTransHuge(page));
3084 }
8697d331 3085 /*
3c541e14 3086 * Check if our page_cgroup is valid
8697d331 3087 */
52d4b9ac
KH
3088 pc = lookup_page_cgroup(page);
3089 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3090 return NULL;
b9c565d5 3091
52d4b9ac 3092 lock_page_cgroup(pc);
d13d1443 3093
8c7c6e34
KH
3094 mem = pc->mem_cgroup;
3095
d13d1443
KH
3096 if (!PageCgroupUsed(pc))
3097 goto unlock_out;
3098
3099 switch (ctype) {
3100 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3101 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3102 /* See mem_cgroup_prepare_migration() */
3103 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3104 goto unlock_out;
3105 break;
3106 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3107 if (!PageAnon(page)) { /* Shared memory */
3108 if (page->mapping && !page_is_file_cache(page))
3109 goto unlock_out;
3110 } else if (page_mapped(page)) /* Anon */
3111 goto unlock_out;
3112 break;
3113 default:
3114 break;
52d4b9ac 3115 }
d13d1443 3116
7ec99d62 3117 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 3118
52d4b9ac 3119 ClearPageCgroupUsed(pc);
544122e5
KH
3120 /*
3121 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3122 * freed from LRU. This is safe because uncharged page is expected not
3123 * to be reused (freed soon). Exception is SwapCache, it's handled by
3124 * special functions.
3125 */
b9c565d5 3126
52d4b9ac 3127 unlock_page_cgroup(pc);
f75ca962
KH
3128 /*
3129 * even after unlock, we have mem->res.usage here and this memcg
3130 * will never be freed.
3131 */
d2265e6f 3132 memcg_check_events(mem, page);
f75ca962
KH
3133 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3134 mem_cgroup_swap_statistics(mem, true);
3135 mem_cgroup_get(mem);
3136 }
3137 if (!mem_cgroup_is_root(mem))
7ec99d62 3138 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 3139
8c7c6e34 3140 return mem;
d13d1443
KH
3141
3142unlock_out:
3143 unlock_page_cgroup(pc);
8c7c6e34 3144 return NULL;
3c541e14
BS
3145}
3146
69029cd5
KH
3147void mem_cgroup_uncharge_page(struct page *page)
3148{
52d4b9ac
KH
3149 /* early check. */
3150 if (page_mapped(page))
3151 return;
3152 if (page->mapping && !PageAnon(page))
3153 return;
69029cd5
KH
3154 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3155}
3156
3157void mem_cgroup_uncharge_cache_page(struct page *page)
3158{
3159 VM_BUG_ON(page_mapped(page));
b7abea96 3160 VM_BUG_ON(page->mapping);
69029cd5
KH
3161 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3162}
3163
569b846d
KH
3164/*
3165 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3166 * In that cases, pages are freed continuously and we can expect pages
3167 * are in the same memcg. All these calls itself limits the number of
3168 * pages freed at once, then uncharge_start/end() is called properly.
3169 * This may be called prural(2) times in a context,
3170 */
3171
3172void mem_cgroup_uncharge_start(void)
3173{
3174 current->memcg_batch.do_batch++;
3175 /* We can do nest. */
3176 if (current->memcg_batch.do_batch == 1) {
3177 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3178 current->memcg_batch.nr_pages = 0;
3179 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3180 }
3181}
3182
3183void mem_cgroup_uncharge_end(void)
3184{
3185 struct memcg_batch_info *batch = &current->memcg_batch;
3186
3187 if (!batch->do_batch)
3188 return;
3189
3190 batch->do_batch--;
3191 if (batch->do_batch) /* If stacked, do nothing. */
3192 return;
3193
3194 if (!batch->memcg)
3195 return;
3196 /*
3197 * This "batch->memcg" is valid without any css_get/put etc...
3198 * bacause we hide charges behind us.
3199 */
7ffd4ca7
JW
3200 if (batch->nr_pages)
3201 res_counter_uncharge(&batch->memcg->res,
3202 batch->nr_pages * PAGE_SIZE);
3203 if (batch->memsw_nr_pages)
3204 res_counter_uncharge(&batch->memcg->memsw,
3205 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3206 memcg_oom_recover(batch->memcg);
569b846d
KH
3207 /* forget this pointer (for sanity check) */
3208 batch->memcg = NULL;
3209}
3210
e767e056 3211#ifdef CONFIG_SWAP
8c7c6e34 3212/*
e767e056 3213 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3214 * memcg information is recorded to swap_cgroup of "ent"
3215 */
8a9478ca
KH
3216void
3217mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3218{
3219 struct mem_cgroup *memcg;
8a9478ca
KH
3220 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3221
3222 if (!swapout) /* this was a swap cache but the swap is unused ! */
3223 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3224
3225 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3226
f75ca962
KH
3227 /*
3228 * record memcg information, if swapout && memcg != NULL,
3229 * mem_cgroup_get() was called in uncharge().
3230 */
3231 if (do_swap_account && swapout && memcg)
a3b2d692 3232 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3233}
e767e056 3234#endif
8c7c6e34
KH
3235
3236#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3237/*
3238 * called from swap_entry_free(). remove record in swap_cgroup and
3239 * uncharge "memsw" account.
3240 */
3241void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3242{
8c7c6e34 3243 struct mem_cgroup *memcg;
a3b2d692 3244 unsigned short id;
8c7c6e34
KH
3245
3246 if (!do_swap_account)
3247 return;
3248
a3b2d692
KH
3249 id = swap_cgroup_record(ent, 0);
3250 rcu_read_lock();
3251 memcg = mem_cgroup_lookup(id);
8c7c6e34 3252 if (memcg) {
a3b2d692
KH
3253 /*
3254 * We uncharge this because swap is freed.
3255 * This memcg can be obsolete one. We avoid calling css_tryget
3256 */
0c3e73e8 3257 if (!mem_cgroup_is_root(memcg))
4e649152 3258 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3259 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3260 mem_cgroup_put(memcg);
3261 }
a3b2d692 3262 rcu_read_unlock();
d13d1443 3263}
02491447
DN
3264
3265/**
3266 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3267 * @entry: swap entry to be moved
3268 * @from: mem_cgroup which the entry is moved from
3269 * @to: mem_cgroup which the entry is moved to
483c30b5 3270 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3271 *
3272 * It succeeds only when the swap_cgroup's record for this entry is the same
3273 * as the mem_cgroup's id of @from.
3274 *
3275 * Returns 0 on success, -EINVAL on failure.
3276 *
3277 * The caller must have charged to @to, IOW, called res_counter_charge() about
3278 * both res and memsw, and called css_get().
3279 */
3280static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3281 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3282{
3283 unsigned short old_id, new_id;
3284
3285 old_id = css_id(&from->css);
3286 new_id = css_id(&to->css);
3287
3288 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3289 mem_cgroup_swap_statistics(from, false);
483c30b5 3290 mem_cgroup_swap_statistics(to, true);
02491447 3291 /*
483c30b5
DN
3292 * This function is only called from task migration context now.
3293 * It postpones res_counter and refcount handling till the end
3294 * of task migration(mem_cgroup_clear_mc()) for performance
3295 * improvement. But we cannot postpone mem_cgroup_get(to)
3296 * because if the process that has been moved to @to does
3297 * swap-in, the refcount of @to might be decreased to 0.
02491447 3298 */
02491447 3299 mem_cgroup_get(to);
483c30b5
DN
3300 if (need_fixup) {
3301 if (!mem_cgroup_is_root(from))
3302 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3303 mem_cgroup_put(from);
3304 /*
3305 * we charged both to->res and to->memsw, so we should
3306 * uncharge to->res.
3307 */
3308 if (!mem_cgroup_is_root(to))
3309 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3310 }
02491447
DN
3311 return 0;
3312 }
3313 return -EINVAL;
3314}
3315#else
3316static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3317 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3318{
3319 return -EINVAL;
3320}
8c7c6e34 3321#endif
d13d1443 3322
ae41be37 3323/*
01b1ae63
KH
3324 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3325 * page belongs to.
ae41be37 3326 */
ac39cf8c 3327int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3328 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3329{
e8589cc1 3330 struct mem_cgroup *mem = NULL;
7ec99d62 3331 struct page_cgroup *pc;
ac39cf8c 3332 enum charge_type ctype;
e8589cc1 3333 int ret = 0;
8869b8f6 3334
56039efa
KH
3335 *ptr = NULL;
3336
ec168510 3337 VM_BUG_ON(PageTransHuge(page));
f8d66542 3338 if (mem_cgroup_disabled())
4077960e
BS
3339 return 0;
3340
52d4b9ac
KH
3341 pc = lookup_page_cgroup(page);
3342 lock_page_cgroup(pc);
3343 if (PageCgroupUsed(pc)) {
e8589cc1
KH
3344 mem = pc->mem_cgroup;
3345 css_get(&mem->css);
ac39cf8c 3346 /*
3347 * At migrating an anonymous page, its mapcount goes down
3348 * to 0 and uncharge() will be called. But, even if it's fully
3349 * unmapped, migration may fail and this page has to be
3350 * charged again. We set MIGRATION flag here and delay uncharge
3351 * until end_migration() is called
3352 *
3353 * Corner Case Thinking
3354 * A)
3355 * When the old page was mapped as Anon and it's unmap-and-freed
3356 * while migration was ongoing.
3357 * If unmap finds the old page, uncharge() of it will be delayed
3358 * until end_migration(). If unmap finds a new page, it's
3359 * uncharged when it make mapcount to be 1->0. If unmap code
3360 * finds swap_migration_entry, the new page will not be mapped
3361 * and end_migration() will find it(mapcount==0).
3362 *
3363 * B)
3364 * When the old page was mapped but migraion fails, the kernel
3365 * remaps it. A charge for it is kept by MIGRATION flag even
3366 * if mapcount goes down to 0. We can do remap successfully
3367 * without charging it again.
3368 *
3369 * C)
3370 * The "old" page is under lock_page() until the end of
3371 * migration, so, the old page itself will not be swapped-out.
3372 * If the new page is swapped out before end_migraton, our
3373 * hook to usual swap-out path will catch the event.
3374 */
3375 if (PageAnon(page))
3376 SetPageCgroupMigration(pc);
e8589cc1 3377 }
52d4b9ac 3378 unlock_page_cgroup(pc);
ac39cf8c 3379 /*
3380 * If the page is not charged at this point,
3381 * we return here.
3382 */
3383 if (!mem)
3384 return 0;
01b1ae63 3385
93d5c9be 3386 *ptr = mem;
7ec99d62 3387 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c 3388 css_put(&mem->css);/* drop extra refcnt */
3389 if (ret || *ptr == NULL) {
3390 if (PageAnon(page)) {
3391 lock_page_cgroup(pc);
3392 ClearPageCgroupMigration(pc);
3393 unlock_page_cgroup(pc);
3394 /*
3395 * The old page may be fully unmapped while we kept it.
3396 */
3397 mem_cgroup_uncharge_page(page);
3398 }
3399 return -ENOMEM;
e8589cc1 3400 }
ac39cf8c 3401 /*
3402 * We charge new page before it's used/mapped. So, even if unlock_page()
3403 * is called before end_migration, we can catch all events on this new
3404 * page. In the case new page is migrated but not remapped, new page's
3405 * mapcount will be finally 0 and we call uncharge in end_migration().
3406 */
3407 pc = lookup_page_cgroup(newpage);
3408 if (PageAnon(page))
3409 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3410 else if (page_is_file_cache(page))
3411 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3412 else
3413 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 3414 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3415 return ret;
ae41be37 3416}
8869b8f6 3417
69029cd5 3418/* remove redundant charge if migration failed*/
01b1ae63 3419void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3420 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3421{
ac39cf8c 3422 struct page *used, *unused;
01b1ae63 3423 struct page_cgroup *pc;
01b1ae63
KH
3424
3425 if (!mem)
3426 return;
ac39cf8c 3427 /* blocks rmdir() */
88703267 3428 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3429 if (!migration_ok) {
ac39cf8c 3430 used = oldpage;
3431 unused = newpage;
01b1ae63 3432 } else {
ac39cf8c 3433 used = newpage;
01b1ae63
KH
3434 unused = oldpage;
3435 }
69029cd5 3436 /*
ac39cf8c 3437 * We disallowed uncharge of pages under migration because mapcount
3438 * of the page goes down to zero, temporarly.
3439 * Clear the flag and check the page should be charged.
01b1ae63 3440 */
ac39cf8c 3441 pc = lookup_page_cgroup(oldpage);
3442 lock_page_cgroup(pc);
3443 ClearPageCgroupMigration(pc);
3444 unlock_page_cgroup(pc);
01b1ae63 3445
ac39cf8c 3446 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3447
01b1ae63 3448 /*
ac39cf8c 3449 * If a page is a file cache, radix-tree replacement is very atomic
3450 * and we can skip this check. When it was an Anon page, its mapcount
3451 * goes down to 0. But because we added MIGRATION flage, it's not
3452 * uncharged yet. There are several case but page->mapcount check
3453 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3454 * check. (see prepare_charge() also)
69029cd5 3455 */
ac39cf8c 3456 if (PageAnon(used))
3457 mem_cgroup_uncharge_page(used);
88703267 3458 /*
ac39cf8c 3459 * At migration, we may charge account against cgroup which has no
3460 * tasks.
88703267
KH
3461 * So, rmdir()->pre_destroy() can be called while we do this charge.
3462 * In that case, we need to call pre_destroy() again. check it here.
3463 */
3464 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3465}
78fb7466 3466
f212ad7c
DN
3467#ifdef CONFIG_DEBUG_VM
3468static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3469{
3470 struct page_cgroup *pc;
3471
3472 pc = lookup_page_cgroup(page);
3473 if (likely(pc) && PageCgroupUsed(pc))
3474 return pc;
3475 return NULL;
3476}
3477
3478bool mem_cgroup_bad_page_check(struct page *page)
3479{
3480 if (mem_cgroup_disabled())
3481 return false;
3482
3483 return lookup_page_cgroup_used(page) != NULL;
3484}
3485
3486void mem_cgroup_print_bad_page(struct page *page)
3487{
3488 struct page_cgroup *pc;
3489
3490 pc = lookup_page_cgroup_used(page);
3491 if (pc) {
3492 int ret = -1;
3493 char *path;
3494
3495 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3496 pc, pc->flags, pc->mem_cgroup);
3497
3498 path = kmalloc(PATH_MAX, GFP_KERNEL);
3499 if (path) {
3500 rcu_read_lock();
3501 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3502 path, PATH_MAX);
3503 rcu_read_unlock();
3504 }
3505
3506 printk(KERN_CONT "(%s)\n",
3507 (ret < 0) ? "cannot get the path" : path);
3508 kfree(path);
3509 }
3510}
3511#endif
3512
8c7c6e34
KH
3513static DEFINE_MUTEX(set_limit_mutex);
3514
d38d2a75 3515static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3516 unsigned long long val)
628f4235 3517{
81d39c20 3518 int retry_count;
3c11ecf4 3519 u64 memswlimit, memlimit;
628f4235 3520 int ret = 0;
81d39c20
KH
3521 int children = mem_cgroup_count_children(memcg);
3522 u64 curusage, oldusage;
3c11ecf4 3523 int enlarge;
81d39c20
KH
3524
3525 /*
3526 * For keeping hierarchical_reclaim simple, how long we should retry
3527 * is depends on callers. We set our retry-count to be function
3528 * of # of children which we should visit in this loop.
3529 */
3530 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3531
3532 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3533
3c11ecf4 3534 enlarge = 0;
8c7c6e34 3535 while (retry_count) {
628f4235
KH
3536 if (signal_pending(current)) {
3537 ret = -EINTR;
3538 break;
3539 }
8c7c6e34
KH
3540 /*
3541 * Rather than hide all in some function, I do this in
3542 * open coded manner. You see what this really does.
3543 * We have to guarantee mem->res.limit < mem->memsw.limit.
3544 */
3545 mutex_lock(&set_limit_mutex);
3546 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3547 if (memswlimit < val) {
3548 ret = -EINVAL;
3549 mutex_unlock(&set_limit_mutex);
628f4235
KH
3550 break;
3551 }
3c11ecf4
KH
3552
3553 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3554 if (memlimit < val)
3555 enlarge = 1;
3556
8c7c6e34 3557 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3558 if (!ret) {
3559 if (memswlimit == val)
3560 memcg->memsw_is_minimum = true;
3561 else
3562 memcg->memsw_is_minimum = false;
3563 }
8c7c6e34
KH
3564 mutex_unlock(&set_limit_mutex);
3565
3566 if (!ret)
3567 break;
3568
aa20d489 3569 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3570 MEM_CGROUP_RECLAIM_SHRINK,
3571 NULL);
81d39c20
KH
3572 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3573 /* Usage is reduced ? */
3574 if (curusage >= oldusage)
3575 retry_count--;
3576 else
3577 oldusage = curusage;
8c7c6e34 3578 }
3c11ecf4
KH
3579 if (!ret && enlarge)
3580 memcg_oom_recover(memcg);
14797e23 3581
8c7c6e34
KH
3582 return ret;
3583}
3584
338c8431
LZ
3585static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3586 unsigned long long val)
8c7c6e34 3587{
81d39c20 3588 int retry_count;
3c11ecf4 3589 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3590 int children = mem_cgroup_count_children(memcg);
3591 int ret = -EBUSY;
3c11ecf4 3592 int enlarge = 0;
8c7c6e34 3593
81d39c20
KH
3594 /* see mem_cgroup_resize_res_limit */
3595 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3596 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3597 while (retry_count) {
3598 if (signal_pending(current)) {
3599 ret = -EINTR;
3600 break;
3601 }
3602 /*
3603 * Rather than hide all in some function, I do this in
3604 * open coded manner. You see what this really does.
3605 * We have to guarantee mem->res.limit < mem->memsw.limit.
3606 */
3607 mutex_lock(&set_limit_mutex);
3608 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3609 if (memlimit > val) {
3610 ret = -EINVAL;
3611 mutex_unlock(&set_limit_mutex);
3612 break;
3613 }
3c11ecf4
KH
3614 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3615 if (memswlimit < val)
3616 enlarge = 1;
8c7c6e34 3617 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3618 if (!ret) {
3619 if (memlimit == val)
3620 memcg->memsw_is_minimum = true;
3621 else
3622 memcg->memsw_is_minimum = false;
3623 }
8c7c6e34
KH
3624 mutex_unlock(&set_limit_mutex);
3625
3626 if (!ret)
3627 break;
3628
4e416953 3629 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3630 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3631 MEM_CGROUP_RECLAIM_SHRINK,
3632 NULL);
8c7c6e34 3633 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3634 /* Usage is reduced ? */
8c7c6e34 3635 if (curusage >= oldusage)
628f4235 3636 retry_count--;
81d39c20
KH
3637 else
3638 oldusage = curusage;
628f4235 3639 }
3c11ecf4
KH
3640 if (!ret && enlarge)
3641 memcg_oom_recover(memcg);
628f4235
KH
3642 return ret;
3643}
3644
4e416953 3645unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3646 gfp_t gfp_mask,
3647 unsigned long *total_scanned)
4e416953
BS
3648{
3649 unsigned long nr_reclaimed = 0;
3650 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3651 unsigned long reclaimed;
3652 int loop = 0;
3653 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3654 unsigned long long excess;
0ae5e89c 3655 unsigned long nr_scanned;
4e416953
BS
3656
3657 if (order > 0)
3658 return 0;
3659
00918b6a 3660 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3661 /*
3662 * This loop can run a while, specially if mem_cgroup's continuously
3663 * keep exceeding their soft limit and putting the system under
3664 * pressure
3665 */
3666 do {
3667 if (next_mz)
3668 mz = next_mz;
3669 else
3670 mz = mem_cgroup_largest_soft_limit_node(mctz);
3671 if (!mz)
3672 break;
3673
0ae5e89c 3674 nr_scanned = 0;
4e416953
BS
3675 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3676 gfp_mask,
0ae5e89c
YH
3677 MEM_CGROUP_RECLAIM_SOFT,
3678 &nr_scanned);
4e416953 3679 nr_reclaimed += reclaimed;
0ae5e89c 3680 *total_scanned += nr_scanned;
4e416953
BS
3681 spin_lock(&mctz->lock);
3682
3683 /*
3684 * If we failed to reclaim anything from this memory cgroup
3685 * it is time to move on to the next cgroup
3686 */
3687 next_mz = NULL;
3688 if (!reclaimed) {
3689 do {
3690 /*
3691 * Loop until we find yet another one.
3692 *
3693 * By the time we get the soft_limit lock
3694 * again, someone might have aded the
3695 * group back on the RB tree. Iterate to
3696 * make sure we get a different mem.
3697 * mem_cgroup_largest_soft_limit_node returns
3698 * NULL if no other cgroup is present on
3699 * the tree
3700 */
3701 next_mz =
3702 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3703 if (next_mz == mz)
4e416953 3704 css_put(&next_mz->mem->css);
39cc98f1 3705 else /* next_mz == NULL or other memcg */
4e416953
BS
3706 break;
3707 } while (1);
3708 }
4e416953 3709 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3710 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3711 /*
3712 * One school of thought says that we should not add
3713 * back the node to the tree if reclaim returns 0.
3714 * But our reclaim could return 0, simply because due
3715 * to priority we are exposing a smaller subset of
3716 * memory to reclaim from. Consider this as a longer
3717 * term TODO.
3718 */
ef8745c1
KH
3719 /* If excess == 0, no tree ops */
3720 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3721 spin_unlock(&mctz->lock);
3722 css_put(&mz->mem->css);
3723 loop++;
3724 /*
3725 * Could not reclaim anything and there are no more
3726 * mem cgroups to try or we seem to be looping without
3727 * reclaiming anything.
3728 */
3729 if (!nr_reclaimed &&
3730 (next_mz == NULL ||
3731 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3732 break;
3733 } while (!nr_reclaimed);
3734 if (next_mz)
3735 css_put(&next_mz->mem->css);
3736 return nr_reclaimed;
3737}
3738
cc847582
KH
3739/*
3740 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3741 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3742 */
f817ed48 3743static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3744 int node, int zid, enum lru_list lru)
cc847582 3745{
08e552c6
KH
3746 struct zone *zone;
3747 struct mem_cgroup_per_zone *mz;
f817ed48 3748 struct page_cgroup *pc, *busy;
08e552c6 3749 unsigned long flags, loop;
072c56c1 3750 struct list_head *list;
f817ed48 3751 int ret = 0;
072c56c1 3752
08e552c6
KH
3753 zone = &NODE_DATA(node)->node_zones[zid];
3754 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3755 list = &mz->lists[lru];
cc847582 3756
f817ed48
KH
3757 loop = MEM_CGROUP_ZSTAT(mz, lru);
3758 /* give some margin against EBUSY etc...*/
3759 loop += 256;
3760 busy = NULL;
3761 while (loop--) {
5564e88b
JW
3762 struct page *page;
3763
f817ed48 3764 ret = 0;
08e552c6 3765 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3766 if (list_empty(list)) {
08e552c6 3767 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3768 break;
f817ed48
KH
3769 }
3770 pc = list_entry(list->prev, struct page_cgroup, lru);
3771 if (busy == pc) {
3772 list_move(&pc->lru, list);
648bcc77 3773 busy = NULL;
08e552c6 3774 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3775 continue;
3776 }
08e552c6 3777 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3778
6b3ae58e 3779 page = lookup_cgroup_page(pc);
5564e88b
JW
3780
3781 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3782 if (ret == -ENOMEM)
52d4b9ac 3783 break;
f817ed48
KH
3784
3785 if (ret == -EBUSY || ret == -EINVAL) {
3786 /* found lock contention or "pc" is obsolete. */
3787 busy = pc;
3788 cond_resched();
3789 } else
3790 busy = NULL;
cc847582 3791 }
08e552c6 3792
f817ed48
KH
3793 if (!ret && !list_empty(list))
3794 return -EBUSY;
3795 return ret;
cc847582
KH
3796}
3797
3798/*
3799 * make mem_cgroup's charge to be 0 if there is no task.
3800 * This enables deleting this mem_cgroup.
3801 */
c1e862c1 3802static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3803{
f817ed48
KH
3804 int ret;
3805 int node, zid, shrink;
3806 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3807 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3808
cc847582 3809 css_get(&mem->css);
f817ed48
KH
3810
3811 shrink = 0;
c1e862c1
KH
3812 /* should free all ? */
3813 if (free_all)
3814 goto try_to_free;
f817ed48 3815move_account:
fce66477 3816 do {
f817ed48 3817 ret = -EBUSY;
c1e862c1
KH
3818 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3819 goto out;
3820 ret = -EINTR;
3821 if (signal_pending(current))
cc847582 3822 goto out;
52d4b9ac
KH
3823 /* This is for making all *used* pages to be on LRU. */
3824 lru_add_drain_all();
d38144b7 3825 drain_all_stock_sync(mem);
f817ed48 3826 ret = 0;
32047e2a 3827 mem_cgroup_start_move(mem);
299b4eaa 3828 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3829 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3830 enum lru_list l;
f817ed48
KH
3831 for_each_lru(l) {
3832 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3833 node, zid, l);
f817ed48
KH
3834 if (ret)
3835 break;
3836 }
1ecaab2b 3837 }
f817ed48
KH
3838 if (ret)
3839 break;
3840 }
32047e2a 3841 mem_cgroup_end_move(mem);
3c11ecf4 3842 memcg_oom_recover(mem);
f817ed48
KH
3843 /* it seems parent cgroup doesn't have enough mem */
3844 if (ret == -ENOMEM)
3845 goto try_to_free;
52d4b9ac 3846 cond_resched();
fce66477
DN
3847 /* "ret" should also be checked to ensure all lists are empty. */
3848 } while (mem->res.usage > 0 || ret);
cc847582
KH
3849out:
3850 css_put(&mem->css);
3851 return ret;
f817ed48
KH
3852
3853try_to_free:
c1e862c1
KH
3854 /* returns EBUSY if there is a task or if we come here twice. */
3855 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3856 ret = -EBUSY;
3857 goto out;
3858 }
c1e862c1
KH
3859 /* we call try-to-free pages for make this cgroup empty */
3860 lru_add_drain_all();
f817ed48
KH
3861 /* try to free all pages in this cgroup */
3862 shrink = 1;
3863 while (nr_retries && mem->res.usage > 0) {
82f9d486 3864 struct memcg_scanrecord rec;
f817ed48 3865 int progress;
c1e862c1
KH
3866
3867 if (signal_pending(current)) {
3868 ret = -EINTR;
3869 goto out;
3870 }
82f9d486
KH
3871 rec.context = SCAN_BY_SHRINK;
3872 rec.mem = mem;
3873 rec.root = mem;
a7885eb8 3874 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
82f9d486 3875 false, &rec);
c1e862c1 3876 if (!progress) {
f817ed48 3877 nr_retries--;
c1e862c1 3878 /* maybe some writeback is necessary */
8aa7e847 3879 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3880 }
f817ed48
KH
3881
3882 }
08e552c6 3883 lru_add_drain();
f817ed48 3884 /* try move_account...there may be some *locked* pages. */
fce66477 3885 goto move_account;
cc847582
KH
3886}
3887
c1e862c1
KH
3888int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3889{
3890 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3891}
3892
3893
18f59ea7
BS
3894static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3895{
3896 return mem_cgroup_from_cont(cont)->use_hierarchy;
3897}
3898
3899static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3900 u64 val)
3901{
3902 int retval = 0;
3903 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3904 struct cgroup *parent = cont->parent;
3905 struct mem_cgroup *parent_mem = NULL;
3906
3907 if (parent)
3908 parent_mem = mem_cgroup_from_cont(parent);
3909
3910 cgroup_lock();
3911 /*
af901ca1 3912 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3913 * in the child subtrees. If it is unset, then the change can
3914 * occur, provided the current cgroup has no children.
3915 *
3916 * For the root cgroup, parent_mem is NULL, we allow value to be
3917 * set if there are no children.
3918 */
3919 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3920 (val == 1 || val == 0)) {
3921 if (list_empty(&cont->children))
3922 mem->use_hierarchy = val;
3923 else
3924 retval = -EBUSY;
3925 } else
3926 retval = -EINVAL;
3927 cgroup_unlock();
3928
3929 return retval;
3930}
3931
0c3e73e8 3932
7a159cc9
JW
3933static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3934 enum mem_cgroup_stat_index idx)
0c3e73e8 3935{
7d74b06f 3936 struct mem_cgroup *iter;
7a159cc9 3937 long val = 0;
0c3e73e8 3938
7a159cc9 3939 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3940 for_each_mem_cgroup_tree(iter, mem)
3941 val += mem_cgroup_read_stat(iter, idx);
3942
3943 if (val < 0) /* race ? */
3944 val = 0;
3945 return val;
0c3e73e8
BS
3946}
3947
104f3928
KS
3948static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3949{
7d74b06f 3950 u64 val;
104f3928
KS
3951
3952 if (!mem_cgroup_is_root(mem)) {
3953 if (!swap)
3954 return res_counter_read_u64(&mem->res, RES_USAGE);
3955 else
3956 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3957 }
3958
7a159cc9
JW
3959 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3960 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3961
7d74b06f 3962 if (swap)
7a159cc9 3963 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3964
3965 return val << PAGE_SHIFT;
3966}
3967
2c3daa72 3968static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3969{
8c7c6e34 3970 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3971 u64 val;
8c7c6e34
KH
3972 int type, name;
3973
3974 type = MEMFILE_TYPE(cft->private);
3975 name = MEMFILE_ATTR(cft->private);
3976 switch (type) {
3977 case _MEM:
104f3928
KS
3978 if (name == RES_USAGE)
3979 val = mem_cgroup_usage(mem, false);
3980 else
0c3e73e8 3981 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3982 break;
3983 case _MEMSWAP:
104f3928
KS
3984 if (name == RES_USAGE)
3985 val = mem_cgroup_usage(mem, true);
3986 else
0c3e73e8 3987 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3988 break;
3989 default:
3990 BUG();
3991 break;
3992 }
3993 return val;
8cdea7c0 3994}
628f4235
KH
3995/*
3996 * The user of this function is...
3997 * RES_LIMIT.
3998 */
856c13aa
PM
3999static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4000 const char *buffer)
8cdea7c0 4001{
628f4235 4002 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4003 int type, name;
628f4235
KH
4004 unsigned long long val;
4005 int ret;
4006
8c7c6e34
KH
4007 type = MEMFILE_TYPE(cft->private);
4008 name = MEMFILE_ATTR(cft->private);
4009 switch (name) {
628f4235 4010 case RES_LIMIT:
4b3bde4c
BS
4011 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4012 ret = -EINVAL;
4013 break;
4014 }
628f4235
KH
4015 /* This function does all necessary parse...reuse it */
4016 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4017 if (ret)
4018 break;
4019 if (type == _MEM)
628f4235 4020 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4021 else
4022 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4023 break;
296c81d8
BS
4024 case RES_SOFT_LIMIT:
4025 ret = res_counter_memparse_write_strategy(buffer, &val);
4026 if (ret)
4027 break;
4028 /*
4029 * For memsw, soft limits are hard to implement in terms
4030 * of semantics, for now, we support soft limits for
4031 * control without swap
4032 */
4033 if (type == _MEM)
4034 ret = res_counter_set_soft_limit(&memcg->res, val);
4035 else
4036 ret = -EINVAL;
4037 break;
628f4235
KH
4038 default:
4039 ret = -EINVAL; /* should be BUG() ? */
4040 break;
4041 }
4042 return ret;
8cdea7c0
BS
4043}
4044
fee7b548
KH
4045static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4046 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4047{
4048 struct cgroup *cgroup;
4049 unsigned long long min_limit, min_memsw_limit, tmp;
4050
4051 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4052 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4053 cgroup = memcg->css.cgroup;
4054 if (!memcg->use_hierarchy)
4055 goto out;
4056
4057 while (cgroup->parent) {
4058 cgroup = cgroup->parent;
4059 memcg = mem_cgroup_from_cont(cgroup);
4060 if (!memcg->use_hierarchy)
4061 break;
4062 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4063 min_limit = min(min_limit, tmp);
4064 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4065 min_memsw_limit = min(min_memsw_limit, tmp);
4066 }
4067out:
4068 *mem_limit = min_limit;
4069 *memsw_limit = min_memsw_limit;
4070 return;
4071}
4072
29f2a4da 4073static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
4074{
4075 struct mem_cgroup *mem;
8c7c6e34 4076 int type, name;
c84872e1
PE
4077
4078 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4079 type = MEMFILE_TYPE(event);
4080 name = MEMFILE_ATTR(event);
4081 switch (name) {
29f2a4da 4082 case RES_MAX_USAGE:
8c7c6e34
KH
4083 if (type == _MEM)
4084 res_counter_reset_max(&mem->res);
4085 else
4086 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
4087 break;
4088 case RES_FAILCNT:
8c7c6e34
KH
4089 if (type == _MEM)
4090 res_counter_reset_failcnt(&mem->res);
4091 else
4092 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
4093 break;
4094 }
f64c3f54 4095
85cc59db 4096 return 0;
c84872e1
PE
4097}
4098
7dc74be0
DN
4099static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4100 struct cftype *cft)
4101{
4102 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4103}
4104
02491447 4105#ifdef CONFIG_MMU
7dc74be0
DN
4106static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4107 struct cftype *cft, u64 val)
4108{
4109 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4110
4111 if (val >= (1 << NR_MOVE_TYPE))
4112 return -EINVAL;
4113 /*
4114 * We check this value several times in both in can_attach() and
4115 * attach(), so we need cgroup lock to prevent this value from being
4116 * inconsistent.
4117 */
4118 cgroup_lock();
4119 mem->move_charge_at_immigrate = val;
4120 cgroup_unlock();
4121
4122 return 0;
4123}
02491447
DN
4124#else
4125static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4126 struct cftype *cft, u64 val)
4127{
4128 return -ENOSYS;
4129}
4130#endif
7dc74be0 4131
14067bb3
KH
4132
4133/* For read statistics */
4134enum {
4135 MCS_CACHE,
4136 MCS_RSS,
d8046582 4137 MCS_FILE_MAPPED,
14067bb3
KH
4138 MCS_PGPGIN,
4139 MCS_PGPGOUT,
1dd3a273 4140 MCS_SWAP,
456f998e
YH
4141 MCS_PGFAULT,
4142 MCS_PGMAJFAULT,
14067bb3
KH
4143 MCS_INACTIVE_ANON,
4144 MCS_ACTIVE_ANON,
4145 MCS_INACTIVE_FILE,
4146 MCS_ACTIVE_FILE,
4147 MCS_UNEVICTABLE,
4148 NR_MCS_STAT,
4149};
4150
4151struct mcs_total_stat {
4152 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4153};
4154
14067bb3
KH
4155struct {
4156 char *local_name;
4157 char *total_name;
4158} memcg_stat_strings[NR_MCS_STAT] = {
4159 {"cache", "total_cache"},
4160 {"rss", "total_rss"},
d69b042f 4161 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4162 {"pgpgin", "total_pgpgin"},
4163 {"pgpgout", "total_pgpgout"},
1dd3a273 4164 {"swap", "total_swap"},
456f998e
YH
4165 {"pgfault", "total_pgfault"},
4166 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4167 {"inactive_anon", "total_inactive_anon"},
4168 {"active_anon", "total_active_anon"},
4169 {"inactive_file", "total_inactive_file"},
4170 {"active_file", "total_active_file"},
4171 {"unevictable", "total_unevictable"}
4172};
4173
4174
7d74b06f
KH
4175static void
4176mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 4177{
14067bb3
KH
4178 s64 val;
4179
4180 /* per cpu stat */
c62b1a3b 4181 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 4182 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 4183 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 4184 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 4185 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4186 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 4187 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4188 s->stat[MCS_PGPGIN] += val;
e9f8974f 4189 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4190 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4191 if (do_swap_account) {
c62b1a3b 4192 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4193 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4194 }
456f998e
YH
4195 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4196 s->stat[MCS_PGFAULT] += val;
4197 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4198 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4199
4200 /* per zone stat */
bb2a0de9 4201 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
14067bb3 4202 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4203 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
14067bb3 4204 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4205 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
14067bb3 4206 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4207 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
14067bb3 4208 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4209 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
14067bb3 4210 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4211}
4212
4213static void
4214mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4215{
7d74b06f
KH
4216 struct mem_cgroup *iter;
4217
4218 for_each_mem_cgroup_tree(iter, mem)
4219 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4220}
4221
406eb0c9
YH
4222#ifdef CONFIG_NUMA
4223static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4224{
4225 int nid;
4226 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4227 unsigned long node_nr;
4228 struct cgroup *cont = m->private;
4229 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4230
bb2a0de9 4231 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4232 seq_printf(m, "total=%lu", total_nr);
4233 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4234 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4235 seq_printf(m, " N%d=%lu", nid, node_nr);
4236 }
4237 seq_putc(m, '\n');
4238
bb2a0de9 4239 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4240 seq_printf(m, "file=%lu", file_nr);
4241 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4242 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4243 LRU_ALL_FILE);
406eb0c9
YH
4244 seq_printf(m, " N%d=%lu", nid, node_nr);
4245 }
4246 seq_putc(m, '\n');
4247
bb2a0de9 4248 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4249 seq_printf(m, "anon=%lu", anon_nr);
4250 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4251 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4252 LRU_ALL_ANON);
406eb0c9
YH
4253 seq_printf(m, " N%d=%lu", nid, node_nr);
4254 }
4255 seq_putc(m, '\n');
4256
bb2a0de9 4257 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4258 seq_printf(m, "unevictable=%lu", unevictable_nr);
4259 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4260 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4261 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4262 seq_printf(m, " N%d=%lu", nid, node_nr);
4263 }
4264 seq_putc(m, '\n');
4265 return 0;
4266}
4267#endif /* CONFIG_NUMA */
4268
c64745cf
PM
4269static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4270 struct cgroup_map_cb *cb)
d2ceb9b7 4271{
d2ceb9b7 4272 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4273 struct mcs_total_stat mystat;
d2ceb9b7
KH
4274 int i;
4275
14067bb3
KH
4276 memset(&mystat, 0, sizeof(mystat));
4277 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4278
406eb0c9 4279
1dd3a273
DN
4280 for (i = 0; i < NR_MCS_STAT; i++) {
4281 if (i == MCS_SWAP && !do_swap_account)
4282 continue;
14067bb3 4283 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4284 }
7b854121 4285
14067bb3 4286 /* Hierarchical information */
fee7b548
KH
4287 {
4288 unsigned long long limit, memsw_limit;
4289 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4290 cb->fill(cb, "hierarchical_memory_limit", limit);
4291 if (do_swap_account)
4292 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4293 }
7f016ee8 4294
14067bb3
KH
4295 memset(&mystat, 0, sizeof(mystat));
4296 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4297 for (i = 0; i < NR_MCS_STAT; i++) {
4298 if (i == MCS_SWAP && !do_swap_account)
4299 continue;
14067bb3 4300 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4301 }
14067bb3 4302
7f016ee8 4303#ifdef CONFIG_DEBUG_VM
c772be93 4304 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
4305
4306 {
4307 int nid, zid;
4308 struct mem_cgroup_per_zone *mz;
4309 unsigned long recent_rotated[2] = {0, 0};
4310 unsigned long recent_scanned[2] = {0, 0};
4311
4312 for_each_online_node(nid)
4313 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4314 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4315
4316 recent_rotated[0] +=
4317 mz->reclaim_stat.recent_rotated[0];
4318 recent_rotated[1] +=
4319 mz->reclaim_stat.recent_rotated[1];
4320 recent_scanned[0] +=
4321 mz->reclaim_stat.recent_scanned[0];
4322 recent_scanned[1] +=
4323 mz->reclaim_stat.recent_scanned[1];
4324 }
4325 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4326 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4327 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4328 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4329 }
4330#endif
4331
d2ceb9b7
KH
4332 return 0;
4333}
4334
a7885eb8
KM
4335static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4336{
4337 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4338
1f4c025b 4339 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4340}
4341
4342static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4343 u64 val)
4344{
4345 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4346 struct mem_cgroup *parent;
068b38c1 4347
a7885eb8
KM
4348 if (val > 100)
4349 return -EINVAL;
4350
4351 if (cgrp->parent == NULL)
4352 return -EINVAL;
4353
4354 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4355
4356 cgroup_lock();
4357
a7885eb8
KM
4358 /* If under hierarchy, only empty-root can set this value */
4359 if ((parent->use_hierarchy) ||
068b38c1
LZ
4360 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4361 cgroup_unlock();
a7885eb8 4362 return -EINVAL;
068b38c1 4363 }
a7885eb8 4364
a7885eb8 4365 memcg->swappiness = val;
a7885eb8 4366
068b38c1
LZ
4367 cgroup_unlock();
4368
a7885eb8
KM
4369 return 0;
4370}
4371
2e72b634
KS
4372static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4373{
4374 struct mem_cgroup_threshold_ary *t;
4375 u64 usage;
4376 int i;
4377
4378 rcu_read_lock();
4379 if (!swap)
2c488db2 4380 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4381 else
2c488db2 4382 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4383
4384 if (!t)
4385 goto unlock;
4386
4387 usage = mem_cgroup_usage(memcg, swap);
4388
4389 /*
4390 * current_threshold points to threshold just below usage.
4391 * If it's not true, a threshold was crossed after last
4392 * call of __mem_cgroup_threshold().
4393 */
5407a562 4394 i = t->current_threshold;
2e72b634
KS
4395
4396 /*
4397 * Iterate backward over array of thresholds starting from
4398 * current_threshold and check if a threshold is crossed.
4399 * If none of thresholds below usage is crossed, we read
4400 * only one element of the array here.
4401 */
4402 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4403 eventfd_signal(t->entries[i].eventfd, 1);
4404
4405 /* i = current_threshold + 1 */
4406 i++;
4407
4408 /*
4409 * Iterate forward over array of thresholds starting from
4410 * current_threshold+1 and check if a threshold is crossed.
4411 * If none of thresholds above usage is crossed, we read
4412 * only one element of the array here.
4413 */
4414 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4415 eventfd_signal(t->entries[i].eventfd, 1);
4416
4417 /* Update current_threshold */
5407a562 4418 t->current_threshold = i - 1;
2e72b634
KS
4419unlock:
4420 rcu_read_unlock();
4421}
4422
4423static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4424{
ad4ca5f4
KS
4425 while (memcg) {
4426 __mem_cgroup_threshold(memcg, false);
4427 if (do_swap_account)
4428 __mem_cgroup_threshold(memcg, true);
4429
4430 memcg = parent_mem_cgroup(memcg);
4431 }
2e72b634
KS
4432}
4433
4434static int compare_thresholds(const void *a, const void *b)
4435{
4436 const struct mem_cgroup_threshold *_a = a;
4437 const struct mem_cgroup_threshold *_b = b;
4438
4439 return _a->threshold - _b->threshold;
4440}
4441
7d74b06f 4442static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
4443{
4444 struct mem_cgroup_eventfd_list *ev;
4445
4446 list_for_each_entry(ev, &mem->oom_notify, list)
4447 eventfd_signal(ev->eventfd, 1);
4448 return 0;
4449}
4450
4451static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4452{
7d74b06f
KH
4453 struct mem_cgroup *iter;
4454
4455 for_each_mem_cgroup_tree(iter, mem)
4456 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4457}
4458
4459static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4460 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4461{
4462 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4463 struct mem_cgroup_thresholds *thresholds;
4464 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4465 int type = MEMFILE_TYPE(cft->private);
4466 u64 threshold, usage;
2c488db2 4467 int i, size, ret;
2e72b634
KS
4468
4469 ret = res_counter_memparse_write_strategy(args, &threshold);
4470 if (ret)
4471 return ret;
4472
4473 mutex_lock(&memcg->thresholds_lock);
2c488db2 4474
2e72b634 4475 if (type == _MEM)
2c488db2 4476 thresholds = &memcg->thresholds;
2e72b634 4477 else if (type == _MEMSWAP)
2c488db2 4478 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4479 else
4480 BUG();
4481
4482 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4483
4484 /* Check if a threshold crossed before adding a new one */
2c488db2 4485 if (thresholds->primary)
2e72b634
KS
4486 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4487
2c488db2 4488 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4489
4490 /* Allocate memory for new array of thresholds */
2c488db2 4491 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4492 GFP_KERNEL);
2c488db2 4493 if (!new) {
2e72b634
KS
4494 ret = -ENOMEM;
4495 goto unlock;
4496 }
2c488db2 4497 new->size = size;
2e72b634
KS
4498
4499 /* Copy thresholds (if any) to new array */
2c488db2
KS
4500 if (thresholds->primary) {
4501 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4502 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4503 }
4504
2e72b634 4505 /* Add new threshold */
2c488db2
KS
4506 new->entries[size - 1].eventfd = eventfd;
4507 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4508
4509 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4510 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4511 compare_thresholds, NULL);
4512
4513 /* Find current threshold */
2c488db2 4514 new->current_threshold = -1;
2e72b634 4515 for (i = 0; i < size; i++) {
2c488db2 4516 if (new->entries[i].threshold < usage) {
2e72b634 4517 /*
2c488db2
KS
4518 * new->current_threshold will not be used until
4519 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4520 * it here.
4521 */
2c488db2 4522 ++new->current_threshold;
2e72b634
KS
4523 }
4524 }
4525
2c488db2
KS
4526 /* Free old spare buffer and save old primary buffer as spare */
4527 kfree(thresholds->spare);
4528 thresholds->spare = thresholds->primary;
4529
4530 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4531
907860ed 4532 /* To be sure that nobody uses thresholds */
2e72b634
KS
4533 synchronize_rcu();
4534
2e72b634
KS
4535unlock:
4536 mutex_unlock(&memcg->thresholds_lock);
4537
4538 return ret;
4539}
4540
907860ed 4541static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4542 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4543{
4544 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4545 struct mem_cgroup_thresholds *thresholds;
4546 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4547 int type = MEMFILE_TYPE(cft->private);
4548 u64 usage;
2c488db2 4549 int i, j, size;
2e72b634
KS
4550
4551 mutex_lock(&memcg->thresholds_lock);
4552 if (type == _MEM)
2c488db2 4553 thresholds = &memcg->thresholds;
2e72b634 4554 else if (type == _MEMSWAP)
2c488db2 4555 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4556 else
4557 BUG();
4558
4559 /*
4560 * Something went wrong if we trying to unregister a threshold
4561 * if we don't have thresholds
4562 */
4563 BUG_ON(!thresholds);
4564
4565 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4566
4567 /* Check if a threshold crossed before removing */
4568 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4569
4570 /* Calculate new number of threshold */
2c488db2
KS
4571 size = 0;
4572 for (i = 0; i < thresholds->primary->size; i++) {
4573 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4574 size++;
4575 }
4576
2c488db2 4577 new = thresholds->spare;
907860ed 4578
2e72b634
KS
4579 /* Set thresholds array to NULL if we don't have thresholds */
4580 if (!size) {
2c488db2
KS
4581 kfree(new);
4582 new = NULL;
907860ed 4583 goto swap_buffers;
2e72b634
KS
4584 }
4585
2c488db2 4586 new->size = size;
2e72b634
KS
4587
4588 /* Copy thresholds and find current threshold */
2c488db2
KS
4589 new->current_threshold = -1;
4590 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4591 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4592 continue;
4593
2c488db2
KS
4594 new->entries[j] = thresholds->primary->entries[i];
4595 if (new->entries[j].threshold < usage) {
2e72b634 4596 /*
2c488db2 4597 * new->current_threshold will not be used
2e72b634
KS
4598 * until rcu_assign_pointer(), so it's safe to increment
4599 * it here.
4600 */
2c488db2 4601 ++new->current_threshold;
2e72b634
KS
4602 }
4603 j++;
4604 }
4605
907860ed 4606swap_buffers:
2c488db2
KS
4607 /* Swap primary and spare array */
4608 thresholds->spare = thresholds->primary;
4609 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4610
907860ed 4611 /* To be sure that nobody uses thresholds */
2e72b634
KS
4612 synchronize_rcu();
4613
2e72b634 4614 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4615}
c1e862c1 4616
9490ff27
KH
4617static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4618 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4619{
4620 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4621 struct mem_cgroup_eventfd_list *event;
4622 int type = MEMFILE_TYPE(cft->private);
4623
4624 BUG_ON(type != _OOM_TYPE);
4625 event = kmalloc(sizeof(*event), GFP_KERNEL);
4626 if (!event)
4627 return -ENOMEM;
4628
1af8efe9 4629 spin_lock(&memcg_oom_lock);
9490ff27
KH
4630
4631 event->eventfd = eventfd;
4632 list_add(&event->list, &memcg->oom_notify);
4633
4634 /* already in OOM ? */
79dfdacc 4635 if (atomic_read(&memcg->under_oom))
9490ff27 4636 eventfd_signal(eventfd, 1);
1af8efe9 4637 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4638
4639 return 0;
4640}
4641
907860ed 4642static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4643 struct cftype *cft, struct eventfd_ctx *eventfd)
4644{
4645 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4646 struct mem_cgroup_eventfd_list *ev, *tmp;
4647 int type = MEMFILE_TYPE(cft->private);
4648
4649 BUG_ON(type != _OOM_TYPE);
4650
1af8efe9 4651 spin_lock(&memcg_oom_lock);
9490ff27
KH
4652
4653 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4654 if (ev->eventfd == eventfd) {
4655 list_del(&ev->list);
4656 kfree(ev);
4657 }
4658 }
4659
1af8efe9 4660 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4661}
4662
3c11ecf4
KH
4663static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4664 struct cftype *cft, struct cgroup_map_cb *cb)
4665{
4666 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4667
4668 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4669
79dfdacc 4670 if (atomic_read(&mem->under_oom))
3c11ecf4
KH
4671 cb->fill(cb, "under_oom", 1);
4672 else
4673 cb->fill(cb, "under_oom", 0);
4674 return 0;
4675}
4676
3c11ecf4
KH
4677static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4678 struct cftype *cft, u64 val)
4679{
4680 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4681 struct mem_cgroup *parent;
4682
4683 /* cannot set to root cgroup and only 0 and 1 are allowed */
4684 if (!cgrp->parent || !((val == 0) || (val == 1)))
4685 return -EINVAL;
4686
4687 parent = mem_cgroup_from_cont(cgrp->parent);
4688
4689 cgroup_lock();
4690 /* oom-kill-disable is a flag for subhierarchy. */
4691 if ((parent->use_hierarchy) ||
4692 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4693 cgroup_unlock();
4694 return -EINVAL;
4695 }
4696 mem->oom_kill_disable = val;
4d845ebf
KH
4697 if (!val)
4698 memcg_oom_recover(mem);
3c11ecf4
KH
4699 cgroup_unlock();
4700 return 0;
4701}
4702
406eb0c9
YH
4703#ifdef CONFIG_NUMA
4704static const struct file_operations mem_control_numa_stat_file_operations = {
4705 .read = seq_read,
4706 .llseek = seq_lseek,
4707 .release = single_release,
4708};
4709
4710static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4711{
4712 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4713
4714 file->f_op = &mem_control_numa_stat_file_operations;
4715 return single_open(file, mem_control_numa_stat_show, cont);
4716}
4717#endif /* CONFIG_NUMA */
4718
82f9d486
KH
4719static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4720 struct cftype *cft,
4721 struct cgroup_map_cb *cb)
4722{
4723 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4724 char string[64];
4725 int i;
4726
4727 for (i = 0; i < NR_SCANSTATS; i++) {
4728 strcpy(string, scanstat_string[i]);
4729 strcat(string, SCANSTAT_WORD_LIMIT);
4730 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4731 }
4732
4733 for (i = 0; i < NR_SCANSTATS; i++) {
4734 strcpy(string, scanstat_string[i]);
4735 strcat(string, SCANSTAT_WORD_SYSTEM);
4736 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4737 }
4738
4739 for (i = 0; i < NR_SCANSTATS; i++) {
4740 strcpy(string, scanstat_string[i]);
4741 strcat(string, SCANSTAT_WORD_LIMIT);
4742 strcat(string, SCANSTAT_WORD_HIERARCHY);
4743 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4744 }
4745 for (i = 0; i < NR_SCANSTATS; i++) {
4746 strcpy(string, scanstat_string[i]);
4747 strcat(string, SCANSTAT_WORD_SYSTEM);
4748 strcat(string, SCANSTAT_WORD_HIERARCHY);
4749 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4750 }
4751 return 0;
4752}
4753
4754static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4755 unsigned int event)
4756{
4757 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4758
4759 spin_lock(&mem->scanstat.lock);
4760 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4761 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4762 spin_unlock(&mem->scanstat.lock);
4763 return 0;
4764}
4765
4766
8cdea7c0
BS
4767static struct cftype mem_cgroup_files[] = {
4768 {
0eea1030 4769 .name = "usage_in_bytes",
8c7c6e34 4770 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4771 .read_u64 = mem_cgroup_read,
9490ff27
KH
4772 .register_event = mem_cgroup_usage_register_event,
4773 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4774 },
c84872e1
PE
4775 {
4776 .name = "max_usage_in_bytes",
8c7c6e34 4777 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4778 .trigger = mem_cgroup_reset,
c84872e1
PE
4779 .read_u64 = mem_cgroup_read,
4780 },
8cdea7c0 4781 {
0eea1030 4782 .name = "limit_in_bytes",
8c7c6e34 4783 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4784 .write_string = mem_cgroup_write,
2c3daa72 4785 .read_u64 = mem_cgroup_read,
8cdea7c0 4786 },
296c81d8
BS
4787 {
4788 .name = "soft_limit_in_bytes",
4789 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4790 .write_string = mem_cgroup_write,
4791 .read_u64 = mem_cgroup_read,
4792 },
8cdea7c0
BS
4793 {
4794 .name = "failcnt",
8c7c6e34 4795 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4796 .trigger = mem_cgroup_reset,
2c3daa72 4797 .read_u64 = mem_cgroup_read,
8cdea7c0 4798 },
d2ceb9b7
KH
4799 {
4800 .name = "stat",
c64745cf 4801 .read_map = mem_control_stat_show,
d2ceb9b7 4802 },
c1e862c1
KH
4803 {
4804 .name = "force_empty",
4805 .trigger = mem_cgroup_force_empty_write,
4806 },
18f59ea7
BS
4807 {
4808 .name = "use_hierarchy",
4809 .write_u64 = mem_cgroup_hierarchy_write,
4810 .read_u64 = mem_cgroup_hierarchy_read,
4811 },
a7885eb8
KM
4812 {
4813 .name = "swappiness",
4814 .read_u64 = mem_cgroup_swappiness_read,
4815 .write_u64 = mem_cgroup_swappiness_write,
4816 },
7dc74be0
DN
4817 {
4818 .name = "move_charge_at_immigrate",
4819 .read_u64 = mem_cgroup_move_charge_read,
4820 .write_u64 = mem_cgroup_move_charge_write,
4821 },
9490ff27
KH
4822 {
4823 .name = "oom_control",
3c11ecf4
KH
4824 .read_map = mem_cgroup_oom_control_read,
4825 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4826 .register_event = mem_cgroup_oom_register_event,
4827 .unregister_event = mem_cgroup_oom_unregister_event,
4828 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4829 },
406eb0c9
YH
4830#ifdef CONFIG_NUMA
4831 {
4832 .name = "numa_stat",
4833 .open = mem_control_numa_stat_open,
89577127 4834 .mode = S_IRUGO,
406eb0c9
YH
4835 },
4836#endif
82f9d486
KH
4837 {
4838 .name = "vmscan_stat",
4839 .read_map = mem_cgroup_vmscan_stat_read,
4840 .trigger = mem_cgroup_reset_vmscan_stat,
4841 },
8cdea7c0
BS
4842};
4843
8c7c6e34
KH
4844#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845static struct cftype memsw_cgroup_files[] = {
4846 {
4847 .name = "memsw.usage_in_bytes",
4848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4849 .read_u64 = mem_cgroup_read,
9490ff27
KH
4850 .register_event = mem_cgroup_usage_register_event,
4851 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4852 },
4853 {
4854 .name = "memsw.max_usage_in_bytes",
4855 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4856 .trigger = mem_cgroup_reset,
4857 .read_u64 = mem_cgroup_read,
4858 },
4859 {
4860 .name = "memsw.limit_in_bytes",
4861 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4862 .write_string = mem_cgroup_write,
4863 .read_u64 = mem_cgroup_read,
4864 },
4865 {
4866 .name = "memsw.failcnt",
4867 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4868 .trigger = mem_cgroup_reset,
4869 .read_u64 = mem_cgroup_read,
4870 },
4871};
4872
4873static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4874{
4875 if (!do_swap_account)
4876 return 0;
4877 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4878 ARRAY_SIZE(memsw_cgroup_files));
4879};
4880#else
4881static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4882{
4883 return 0;
4884}
4885#endif
4886
6d12e2d8
KH
4887static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4888{
4889 struct mem_cgroup_per_node *pn;
1ecaab2b 4890 struct mem_cgroup_per_zone *mz;
b69408e8 4891 enum lru_list l;
41e3355d 4892 int zone, tmp = node;
1ecaab2b
KH
4893 /*
4894 * This routine is called against possible nodes.
4895 * But it's BUG to call kmalloc() against offline node.
4896 *
4897 * TODO: this routine can waste much memory for nodes which will
4898 * never be onlined. It's better to use memory hotplug callback
4899 * function.
4900 */
41e3355d
KH
4901 if (!node_state(node, N_NORMAL_MEMORY))
4902 tmp = -1;
17295c88 4903 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4904 if (!pn)
4905 return 1;
1ecaab2b 4906
6d12e2d8 4907 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4908 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4909 mz = &pn->zoneinfo[zone];
b69408e8
CL
4910 for_each_lru(l)
4911 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4912 mz->usage_in_excess = 0;
4e416953
BS
4913 mz->on_tree = false;
4914 mz->mem = mem;
1ecaab2b 4915 }
6d12e2d8
KH
4916 return 0;
4917}
4918
1ecaab2b
KH
4919static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4920{
4921 kfree(mem->info.nodeinfo[node]);
4922}
4923
33327948
KH
4924static struct mem_cgroup *mem_cgroup_alloc(void)
4925{
4926 struct mem_cgroup *mem;
c62b1a3b 4927 int size = sizeof(struct mem_cgroup);
33327948 4928
c62b1a3b 4929 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4930 if (size < PAGE_SIZE)
17295c88 4931 mem = kzalloc(size, GFP_KERNEL);
33327948 4932 else
17295c88 4933 mem = vzalloc(size);
33327948 4934
e7bbcdf3
DC
4935 if (!mem)
4936 return NULL;
4937
c62b1a3b 4938 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4939 if (!mem->stat)
4940 goto out_free;
711d3d2c 4941 spin_lock_init(&mem->pcp_counter_lock);
33327948 4942 return mem;
d2e61b8d
DC
4943
4944out_free:
4945 if (size < PAGE_SIZE)
4946 kfree(mem);
4947 else
4948 vfree(mem);
4949 return NULL;
33327948
KH
4950}
4951
8c7c6e34
KH
4952/*
4953 * At destroying mem_cgroup, references from swap_cgroup can remain.
4954 * (scanning all at force_empty is too costly...)
4955 *
4956 * Instead of clearing all references at force_empty, we remember
4957 * the number of reference from swap_cgroup and free mem_cgroup when
4958 * it goes down to 0.
4959 *
8c7c6e34
KH
4960 * Removal of cgroup itself succeeds regardless of refs from swap.
4961 */
4962
a7ba0eef 4963static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4964{
08e552c6
KH
4965 int node;
4966
f64c3f54 4967 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4968 free_css_id(&mem_cgroup_subsys, &mem->css);
4969
08e552c6
KH
4970 for_each_node_state(node, N_POSSIBLE)
4971 free_mem_cgroup_per_zone_info(mem, node);
4972
c62b1a3b
KH
4973 free_percpu(mem->stat);
4974 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4975 kfree(mem);
4976 else
4977 vfree(mem);
4978}
4979
8c7c6e34
KH
4980static void mem_cgroup_get(struct mem_cgroup *mem)
4981{
4982 atomic_inc(&mem->refcnt);
4983}
4984
483c30b5 4985static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4986{
483c30b5 4987 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4988 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4989 __mem_cgroup_free(mem);
7bcc1bb1
DN
4990 if (parent)
4991 mem_cgroup_put(parent);
4992 }
8c7c6e34
KH
4993}
4994
483c30b5
DN
4995static void mem_cgroup_put(struct mem_cgroup *mem)
4996{
4997 __mem_cgroup_put(mem, 1);
4998}
4999
7bcc1bb1
DN
5000/*
5001 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5002 */
5003static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5004{
5005 if (!mem->res.parent)
5006 return NULL;
5007 return mem_cgroup_from_res_counter(mem->res.parent, res);
5008}
33327948 5009
c077719b
KH
5010#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5011static void __init enable_swap_cgroup(void)
5012{
f8d66542 5013 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
5014 do_swap_account = 1;
5015}
5016#else
5017static void __init enable_swap_cgroup(void)
5018{
5019}
5020#endif
5021
f64c3f54
BS
5022static int mem_cgroup_soft_limit_tree_init(void)
5023{
5024 struct mem_cgroup_tree_per_node *rtpn;
5025 struct mem_cgroup_tree_per_zone *rtpz;
5026 int tmp, node, zone;
5027
5028 for_each_node_state(node, N_POSSIBLE) {
5029 tmp = node;
5030 if (!node_state(node, N_NORMAL_MEMORY))
5031 tmp = -1;
5032 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5033 if (!rtpn)
5034 return 1;
5035
5036 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5037
5038 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5039 rtpz = &rtpn->rb_tree_per_zone[zone];
5040 rtpz->rb_root = RB_ROOT;
5041 spin_lock_init(&rtpz->lock);
5042 }
5043 }
5044 return 0;
5045}
5046
0eb253e2 5047static struct cgroup_subsys_state * __ref
8cdea7c0
BS
5048mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5049{
28dbc4b6 5050 struct mem_cgroup *mem, *parent;
04046e1a 5051 long error = -ENOMEM;
6d12e2d8 5052 int node;
8cdea7c0 5053
c8dad2bb
JB
5054 mem = mem_cgroup_alloc();
5055 if (!mem)
04046e1a 5056 return ERR_PTR(error);
78fb7466 5057
6d12e2d8
KH
5058 for_each_node_state(node, N_POSSIBLE)
5059 if (alloc_mem_cgroup_per_zone_info(mem, node))
5060 goto free_out;
f64c3f54 5061
c077719b 5062 /* root ? */
28dbc4b6 5063 if (cont->parent == NULL) {
cdec2e42 5064 int cpu;
c077719b 5065 enable_swap_cgroup();
28dbc4b6 5066 parent = NULL;
4b3bde4c 5067 root_mem_cgroup = mem;
f64c3f54
BS
5068 if (mem_cgroup_soft_limit_tree_init())
5069 goto free_out;
cdec2e42
KH
5070 for_each_possible_cpu(cpu) {
5071 struct memcg_stock_pcp *stock =
5072 &per_cpu(memcg_stock, cpu);
5073 INIT_WORK(&stock->work, drain_local_stock);
5074 }
711d3d2c 5075 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5076 } else {
28dbc4b6 5077 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 5078 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 5079 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5080 }
28dbc4b6 5081
18f59ea7
BS
5082 if (parent && parent->use_hierarchy) {
5083 res_counter_init(&mem->res, &parent->res);
5084 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
5085 /*
5086 * We increment refcnt of the parent to ensure that we can
5087 * safely access it on res_counter_charge/uncharge.
5088 * This refcnt will be decremented when freeing this
5089 * mem_cgroup(see mem_cgroup_put).
5090 */
5091 mem_cgroup_get(parent);
18f59ea7
BS
5092 } else {
5093 res_counter_init(&mem->res, NULL);
5094 res_counter_init(&mem->memsw, NULL);
5095 }
04046e1a 5096 mem->last_scanned_child = 0;
889976db 5097 mem->last_scanned_node = MAX_NUMNODES;
9490ff27 5098 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 5099
a7885eb8 5100 if (parent)
1f4c025b 5101 mem->swappiness = mem_cgroup_swappiness(parent);
a7ba0eef 5102 atomic_set(&mem->refcnt, 1);
7dc74be0 5103 mem->move_charge_at_immigrate = 0;
2e72b634 5104 mutex_init(&mem->thresholds_lock);
82f9d486 5105 spin_lock_init(&mem->scanstat.lock);
8cdea7c0 5106 return &mem->css;
6d12e2d8 5107free_out:
a7ba0eef 5108 __mem_cgroup_free(mem);
4b3bde4c 5109 root_mem_cgroup = NULL;
04046e1a 5110 return ERR_PTR(error);
8cdea7c0
BS
5111}
5112
ec64f515 5113static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5114 struct cgroup *cont)
5115{
5116 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
5117
5118 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
5119}
5120
8cdea7c0
BS
5121static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5122 struct cgroup *cont)
5123{
c268e994 5124 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 5125
c268e994 5126 mem_cgroup_put(mem);
8cdea7c0
BS
5127}
5128
5129static int mem_cgroup_populate(struct cgroup_subsys *ss,
5130 struct cgroup *cont)
5131{
8c7c6e34
KH
5132 int ret;
5133
5134 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5135 ARRAY_SIZE(mem_cgroup_files));
5136
5137 if (!ret)
5138 ret = register_memsw_files(cont, ss);
5139 return ret;
8cdea7c0
BS
5140}
5141
02491447 5142#ifdef CONFIG_MMU
7dc74be0 5143/* Handlers for move charge at task migration. */
854ffa8d
DN
5144#define PRECHARGE_COUNT_AT_ONCE 256
5145static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5146{
854ffa8d
DN
5147 int ret = 0;
5148 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
5149 struct mem_cgroup *mem = mc.to;
5150
854ffa8d
DN
5151 if (mem_cgroup_is_root(mem)) {
5152 mc.precharge += count;
5153 /* we don't need css_get for root */
5154 return ret;
5155 }
5156 /* try to charge at once */
5157 if (count > 1) {
5158 struct res_counter *dummy;
5159 /*
5160 * "mem" cannot be under rmdir() because we've already checked
5161 * by cgroup_lock_live_cgroup() that it is not removed and we
5162 * are still under the same cgroup_mutex. So we can postpone
5163 * css_get().
5164 */
5165 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5166 goto one_by_one;
5167 if (do_swap_account && res_counter_charge(&mem->memsw,
5168 PAGE_SIZE * count, &dummy)) {
5169 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5170 goto one_by_one;
5171 }
5172 mc.precharge += count;
854ffa8d
DN
5173 return ret;
5174 }
5175one_by_one:
5176 /* fall back to one by one charge */
5177 while (count--) {
5178 if (signal_pending(current)) {
5179 ret = -EINTR;
5180 break;
5181 }
5182 if (!batch_count--) {
5183 batch_count = PRECHARGE_COUNT_AT_ONCE;
5184 cond_resched();
5185 }
7ec99d62 5186 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
5187 if (ret || !mem)
5188 /* mem_cgroup_clear_mc() will do uncharge later */
5189 return -ENOMEM;
5190 mc.precharge++;
5191 }
4ffef5fe
DN
5192 return ret;
5193}
5194
5195/**
5196 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5197 * @vma: the vma the pte to be checked belongs
5198 * @addr: the address corresponding to the pte to be checked
5199 * @ptent: the pte to be checked
02491447 5200 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5201 *
5202 * Returns
5203 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5204 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5205 * move charge. if @target is not NULL, the page is stored in target->page
5206 * with extra refcnt got(Callers should handle it).
02491447
DN
5207 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5208 * target for charge migration. if @target is not NULL, the entry is stored
5209 * in target->ent.
4ffef5fe
DN
5210 *
5211 * Called with pte lock held.
5212 */
4ffef5fe
DN
5213union mc_target {
5214 struct page *page;
02491447 5215 swp_entry_t ent;
4ffef5fe
DN
5216};
5217
4ffef5fe
DN
5218enum mc_target_type {
5219 MC_TARGET_NONE, /* not used */
5220 MC_TARGET_PAGE,
02491447 5221 MC_TARGET_SWAP,
4ffef5fe
DN
5222};
5223
90254a65
DN
5224static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5225 unsigned long addr, pte_t ptent)
4ffef5fe 5226{
90254a65 5227 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5228
90254a65
DN
5229 if (!page || !page_mapped(page))
5230 return NULL;
5231 if (PageAnon(page)) {
5232 /* we don't move shared anon */
5233 if (!move_anon() || page_mapcount(page) > 2)
5234 return NULL;
87946a72
DN
5235 } else if (!move_file())
5236 /* we ignore mapcount for file pages */
90254a65
DN
5237 return NULL;
5238 if (!get_page_unless_zero(page))
5239 return NULL;
5240
5241 return page;
5242}
5243
5244static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5245 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5246{
5247 int usage_count;
5248 struct page *page = NULL;
5249 swp_entry_t ent = pte_to_swp_entry(ptent);
5250
5251 if (!move_anon() || non_swap_entry(ent))
5252 return NULL;
5253 usage_count = mem_cgroup_count_swap_user(ent, &page);
5254 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5255 if (page)
5256 put_page(page);
90254a65 5257 return NULL;
02491447 5258 }
90254a65
DN
5259 if (do_swap_account)
5260 entry->val = ent.val;
5261
5262 return page;
5263}
5264
87946a72
DN
5265static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5266 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5267{
5268 struct page *page = NULL;
5269 struct inode *inode;
5270 struct address_space *mapping;
5271 pgoff_t pgoff;
5272
5273 if (!vma->vm_file) /* anonymous vma */
5274 return NULL;
5275 if (!move_file())
5276 return NULL;
5277
5278 inode = vma->vm_file->f_path.dentry->d_inode;
5279 mapping = vma->vm_file->f_mapping;
5280 if (pte_none(ptent))
5281 pgoff = linear_page_index(vma, addr);
5282 else /* pte_file(ptent) is true */
5283 pgoff = pte_to_pgoff(ptent);
5284
5285 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5286 page = find_get_page(mapping, pgoff);
5287
5288#ifdef CONFIG_SWAP
5289 /* shmem/tmpfs may report page out on swap: account for that too. */
5290 if (radix_tree_exceptional_entry(page)) {
5291 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5292 if (do_swap_account)
aa3b1895
HD
5293 *entry = swap;
5294 page = find_get_page(&swapper_space, swap.val);
87946a72 5295 }
aa3b1895 5296#endif
87946a72
DN
5297 return page;
5298}
5299
90254a65
DN
5300static int is_target_pte_for_mc(struct vm_area_struct *vma,
5301 unsigned long addr, pte_t ptent, union mc_target *target)
5302{
5303 struct page *page = NULL;
5304 struct page_cgroup *pc;
5305 int ret = 0;
5306 swp_entry_t ent = { .val = 0 };
5307
5308 if (pte_present(ptent))
5309 page = mc_handle_present_pte(vma, addr, ptent);
5310 else if (is_swap_pte(ptent))
5311 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5312 else if (pte_none(ptent) || pte_file(ptent))
5313 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5314
5315 if (!page && !ent.val)
5316 return 0;
02491447
DN
5317 if (page) {
5318 pc = lookup_page_cgroup(page);
5319 /*
5320 * Do only loose check w/o page_cgroup lock.
5321 * mem_cgroup_move_account() checks the pc is valid or not under
5322 * the lock.
5323 */
5324 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5325 ret = MC_TARGET_PAGE;
5326 if (target)
5327 target->page = page;
5328 }
5329 if (!ret || !target)
5330 put_page(page);
5331 }
90254a65
DN
5332 /* There is a swap entry and a page doesn't exist or isn't charged */
5333 if (ent.val && !ret &&
7f0f1546
KH
5334 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5335 ret = MC_TARGET_SWAP;
5336 if (target)
5337 target->ent = ent;
4ffef5fe 5338 }
4ffef5fe
DN
5339 return ret;
5340}
5341
5342static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5343 unsigned long addr, unsigned long end,
5344 struct mm_walk *walk)
5345{
5346 struct vm_area_struct *vma = walk->private;
5347 pte_t *pte;
5348 spinlock_t *ptl;
5349
03319327
DH
5350 split_huge_page_pmd(walk->mm, pmd);
5351
4ffef5fe
DN
5352 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5353 for (; addr != end; pte++, addr += PAGE_SIZE)
5354 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5355 mc.precharge++; /* increment precharge temporarily */
5356 pte_unmap_unlock(pte - 1, ptl);
5357 cond_resched();
5358
7dc74be0
DN
5359 return 0;
5360}
5361
4ffef5fe
DN
5362static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5363{
5364 unsigned long precharge;
5365 struct vm_area_struct *vma;
5366
dfe076b0 5367 down_read(&mm->mmap_sem);
4ffef5fe
DN
5368 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5369 struct mm_walk mem_cgroup_count_precharge_walk = {
5370 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5371 .mm = mm,
5372 .private = vma,
5373 };
5374 if (is_vm_hugetlb_page(vma))
5375 continue;
4ffef5fe
DN
5376 walk_page_range(vma->vm_start, vma->vm_end,
5377 &mem_cgroup_count_precharge_walk);
5378 }
dfe076b0 5379 up_read(&mm->mmap_sem);
4ffef5fe
DN
5380
5381 precharge = mc.precharge;
5382 mc.precharge = 0;
5383
5384 return precharge;
5385}
5386
4ffef5fe
DN
5387static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5388{
dfe076b0
DN
5389 unsigned long precharge = mem_cgroup_count_precharge(mm);
5390
5391 VM_BUG_ON(mc.moving_task);
5392 mc.moving_task = current;
5393 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5394}
5395
dfe076b0
DN
5396/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5397static void __mem_cgroup_clear_mc(void)
4ffef5fe 5398{
2bd9bb20
KH
5399 struct mem_cgroup *from = mc.from;
5400 struct mem_cgroup *to = mc.to;
5401
4ffef5fe 5402 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5403 if (mc.precharge) {
5404 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5405 mc.precharge = 0;
5406 }
5407 /*
5408 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5409 * we must uncharge here.
5410 */
5411 if (mc.moved_charge) {
5412 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5413 mc.moved_charge = 0;
4ffef5fe 5414 }
483c30b5
DN
5415 /* we must fixup refcnts and charges */
5416 if (mc.moved_swap) {
483c30b5
DN
5417 /* uncharge swap account from the old cgroup */
5418 if (!mem_cgroup_is_root(mc.from))
5419 res_counter_uncharge(&mc.from->memsw,
5420 PAGE_SIZE * mc.moved_swap);
5421 __mem_cgroup_put(mc.from, mc.moved_swap);
5422
5423 if (!mem_cgroup_is_root(mc.to)) {
5424 /*
5425 * we charged both to->res and to->memsw, so we should
5426 * uncharge to->res.
5427 */
5428 res_counter_uncharge(&mc.to->res,
5429 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5430 }
5431 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5432 mc.moved_swap = 0;
5433 }
dfe076b0
DN
5434 memcg_oom_recover(from);
5435 memcg_oom_recover(to);
5436 wake_up_all(&mc.waitq);
5437}
5438
5439static void mem_cgroup_clear_mc(void)
5440{
5441 struct mem_cgroup *from = mc.from;
5442
5443 /*
5444 * we must clear moving_task before waking up waiters at the end of
5445 * task migration.
5446 */
5447 mc.moving_task = NULL;
5448 __mem_cgroup_clear_mc();
2bd9bb20 5449 spin_lock(&mc.lock);
4ffef5fe
DN
5450 mc.from = NULL;
5451 mc.to = NULL;
2bd9bb20 5452 spin_unlock(&mc.lock);
32047e2a 5453 mem_cgroup_end_move(from);
4ffef5fe
DN
5454}
5455
7dc74be0
DN
5456static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5457 struct cgroup *cgroup,
f780bdb7 5458 struct task_struct *p)
7dc74be0
DN
5459{
5460 int ret = 0;
5461 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5462
5463 if (mem->move_charge_at_immigrate) {
5464 struct mm_struct *mm;
5465 struct mem_cgroup *from = mem_cgroup_from_task(p);
5466
5467 VM_BUG_ON(from == mem);
5468
5469 mm = get_task_mm(p);
5470 if (!mm)
5471 return 0;
7dc74be0 5472 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5473 if (mm->owner == p) {
5474 VM_BUG_ON(mc.from);
5475 VM_BUG_ON(mc.to);
5476 VM_BUG_ON(mc.precharge);
854ffa8d 5477 VM_BUG_ON(mc.moved_charge);
483c30b5 5478 VM_BUG_ON(mc.moved_swap);
32047e2a 5479 mem_cgroup_start_move(from);
2bd9bb20 5480 spin_lock(&mc.lock);
4ffef5fe
DN
5481 mc.from = from;
5482 mc.to = mem;
2bd9bb20 5483 spin_unlock(&mc.lock);
dfe076b0 5484 /* We set mc.moving_task later */
4ffef5fe
DN
5485
5486 ret = mem_cgroup_precharge_mc(mm);
5487 if (ret)
5488 mem_cgroup_clear_mc();
dfe076b0
DN
5489 }
5490 mmput(mm);
7dc74be0
DN
5491 }
5492 return ret;
5493}
5494
5495static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5496 struct cgroup *cgroup,
f780bdb7 5497 struct task_struct *p)
7dc74be0 5498{
4ffef5fe 5499 mem_cgroup_clear_mc();
7dc74be0
DN
5500}
5501
4ffef5fe
DN
5502static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5503 unsigned long addr, unsigned long end,
5504 struct mm_walk *walk)
7dc74be0 5505{
4ffef5fe
DN
5506 int ret = 0;
5507 struct vm_area_struct *vma = walk->private;
5508 pte_t *pte;
5509 spinlock_t *ptl;
5510
03319327 5511 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5512retry:
5513 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5514 for (; addr != end; addr += PAGE_SIZE) {
5515 pte_t ptent = *(pte++);
5516 union mc_target target;
5517 int type;
5518 struct page *page;
5519 struct page_cgroup *pc;
02491447 5520 swp_entry_t ent;
4ffef5fe
DN
5521
5522 if (!mc.precharge)
5523 break;
5524
5525 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5526 switch (type) {
5527 case MC_TARGET_PAGE:
5528 page = target.page;
5529 if (isolate_lru_page(page))
5530 goto put;
5531 pc = lookup_page_cgroup(page);
7ec99d62
JW
5532 if (!mem_cgroup_move_account(page, 1, pc,
5533 mc.from, mc.to, false)) {
4ffef5fe 5534 mc.precharge--;
854ffa8d
DN
5535 /* we uncharge from mc.from later. */
5536 mc.moved_charge++;
4ffef5fe
DN
5537 }
5538 putback_lru_page(page);
5539put: /* is_target_pte_for_mc() gets the page */
5540 put_page(page);
5541 break;
02491447
DN
5542 case MC_TARGET_SWAP:
5543 ent = target.ent;
483c30b5
DN
5544 if (!mem_cgroup_move_swap_account(ent,
5545 mc.from, mc.to, false)) {
02491447 5546 mc.precharge--;
483c30b5
DN
5547 /* we fixup refcnts and charges later. */
5548 mc.moved_swap++;
5549 }
02491447 5550 break;
4ffef5fe
DN
5551 default:
5552 break;
5553 }
5554 }
5555 pte_unmap_unlock(pte - 1, ptl);
5556 cond_resched();
5557
5558 if (addr != end) {
5559 /*
5560 * We have consumed all precharges we got in can_attach().
5561 * We try charge one by one, but don't do any additional
5562 * charges to mc.to if we have failed in charge once in attach()
5563 * phase.
5564 */
854ffa8d 5565 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5566 if (!ret)
5567 goto retry;
5568 }
5569
5570 return ret;
5571}
5572
5573static void mem_cgroup_move_charge(struct mm_struct *mm)
5574{
5575 struct vm_area_struct *vma;
5576
5577 lru_add_drain_all();
dfe076b0
DN
5578retry:
5579 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5580 /*
5581 * Someone who are holding the mmap_sem might be waiting in
5582 * waitq. So we cancel all extra charges, wake up all waiters,
5583 * and retry. Because we cancel precharges, we might not be able
5584 * to move enough charges, but moving charge is a best-effort
5585 * feature anyway, so it wouldn't be a big problem.
5586 */
5587 __mem_cgroup_clear_mc();
5588 cond_resched();
5589 goto retry;
5590 }
4ffef5fe
DN
5591 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5592 int ret;
5593 struct mm_walk mem_cgroup_move_charge_walk = {
5594 .pmd_entry = mem_cgroup_move_charge_pte_range,
5595 .mm = mm,
5596 .private = vma,
5597 };
5598 if (is_vm_hugetlb_page(vma))
5599 continue;
4ffef5fe
DN
5600 ret = walk_page_range(vma->vm_start, vma->vm_end,
5601 &mem_cgroup_move_charge_walk);
5602 if (ret)
5603 /*
5604 * means we have consumed all precharges and failed in
5605 * doing additional charge. Just abandon here.
5606 */
5607 break;
5608 }
dfe076b0 5609 up_read(&mm->mmap_sem);
7dc74be0
DN
5610}
5611
67e465a7
BS
5612static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5613 struct cgroup *cont,
5614 struct cgroup *old_cont,
f780bdb7 5615 struct task_struct *p)
67e465a7 5616{
a433658c 5617 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5618
dfe076b0 5619 if (mm) {
a433658c
KM
5620 if (mc.to)
5621 mem_cgroup_move_charge(mm);
5622 put_swap_token(mm);
dfe076b0
DN
5623 mmput(mm);
5624 }
a433658c
KM
5625 if (mc.to)
5626 mem_cgroup_clear_mc();
67e465a7 5627}
5cfb80a7
DN
5628#else /* !CONFIG_MMU */
5629static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5630 struct cgroup *cgroup,
f780bdb7 5631 struct task_struct *p)
5cfb80a7
DN
5632{
5633 return 0;
5634}
5635static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5636 struct cgroup *cgroup,
f780bdb7 5637 struct task_struct *p)
5cfb80a7
DN
5638{
5639}
5640static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5641 struct cgroup *cont,
5642 struct cgroup *old_cont,
f780bdb7 5643 struct task_struct *p)
5cfb80a7
DN
5644{
5645}
5646#endif
67e465a7 5647
8cdea7c0
BS
5648struct cgroup_subsys mem_cgroup_subsys = {
5649 .name = "memory",
5650 .subsys_id = mem_cgroup_subsys_id,
5651 .create = mem_cgroup_create,
df878fb0 5652 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5653 .destroy = mem_cgroup_destroy,
5654 .populate = mem_cgroup_populate,
7dc74be0
DN
5655 .can_attach = mem_cgroup_can_attach,
5656 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5657 .attach = mem_cgroup_move_task,
6d12e2d8 5658 .early_init = 0,
04046e1a 5659 .use_id = 1,
8cdea7c0 5660};
c077719b
KH
5661
5662#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5663static int __init enable_swap_account(char *s)
5664{
5665 /* consider enabled if no parameter or 1 is given */
a2c8990a 5666 if (!strcmp(s, "1"))
a42c390c 5667 really_do_swap_account = 1;
a2c8990a 5668 else if (!strcmp(s, "0"))
a42c390c
MH
5669 really_do_swap_account = 0;
5670 return 1;
5671}
a2c8990a 5672__setup("swapaccount=", enable_swap_account);
c077719b 5673
c077719b 5674#endif
This page took 0.756409 seconds and 5 git commands to generate.