memcg: always create memsw files if CONFIG_CGROUP_MEM_RES_CTLR_SWAP
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
115#define THRESHOLDS_EVENTS_TARGET (128)
116#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 117#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
3e2f41f1 141 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
d79154bb 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 147 /* use container_of */
6d12e2d8 148};
6d12e2d8
KH
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
f64c3f54
BS
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
2e72b634
KS
178struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181};
182
9490ff27 183/* For threshold */
2e72b634
KS
184struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
5407a562 186 int current_threshold;
2e72b634
KS
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191};
2c488db2
KS
192
193struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202};
203
9490ff27
KH
204/* for OOM */
205struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208};
2e72b634 209
c0ff4b85
R
210static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 212
8cdea7c0
BS
213/*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
8cdea7c0
BS
223 */
224struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
59927fb9
HD
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
78fb7466
PE
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
78fb7466 257 */
6d12e2d8 258 struct mem_cgroup_lru_info info;
889976db
YH
259 int last_scanned_node;
260#if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
453a9bf3
KH
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
889976db 264#endif
18f59ea7
BS
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
79dfdacc
MH
269
270 bool oom_lock;
271 atomic_t under_oom;
272
8c7c6e34 273 atomic_t refcnt;
14797e23 274
1f4c025b 275 int swappiness;
3c11ecf4
KH
276 /* OOM-Killer disable */
277 int oom_kill_disable;
a7885eb8 278
22a668d7
KH
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
2e72b634
KS
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
2c488db2 286 struct mem_cgroup_thresholds thresholds;
907860ed 287
2e72b634 288 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 289 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 290
9490ff27
KH
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
185efc0f 293
7dc74be0
DN
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
619d094b
KH
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
312734c0
KH
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
d52aa412 305 /*
c62b1a3b 306 * percpu counter.
d52aa412 307 */
c62b1a3b 308 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
315
316#ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318#endif
8cdea7c0
BS
319};
320
7dc74be0
DN
321/* Stuffs for move charges at task migration. */
322/*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326enum move_type {
4ffef5fe 327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
329 NR_MOVE_TYPE,
330};
331
4ffef5fe
DN
332/* "mc" and its members are protected by cgroup_mutex */
333static struct move_charge_struct {
b1dd693e 334 spinlock_t lock; /* for from, to */
4ffef5fe
DN
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
854ffa8d 338 unsigned long moved_charge;
483c30b5 339 unsigned long moved_swap;
8033b97c
DN
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342} mc = {
2bd9bb20 343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345};
4ffef5fe 346
90254a65
DN
347static bool move_anon(void)
348{
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351}
352
87946a72
DN
353static bool move_file(void)
354{
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357}
358
4e416953
BS
359/*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
217bc319
KH
366enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
373 NR_CHARGE_TYPE,
374};
375
8c7c6e34 376/* for encoding cft->private value on file */
65c64ce8
GC
377#define _MEM (0)
378#define _MEMSWAP (1)
379#define _OOM_TYPE (2)
8c7c6e34
KH
380#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
383/* Used for OOM nofiier */
384#define OOM_CONTROL (0)
8c7c6e34 385
75822b44
BS
386/*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
c0ff4b85
R
394static void mem_cgroup_get(struct mem_cgroup *memcg);
395static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
396
397/* Writing them here to avoid exposing memcg's inner layout */
398#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 399#include <net/sock.h>
d1a4c0b3 400#include <net/ip.h>
e1aab161
GC
401
402static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403void sock_update_memcg(struct sock *sk)
404{
376be5ff 405 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
f3f511e1
GC
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
e1aab161
GC
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432}
433EXPORT_SYMBOL(sock_update_memcg);
434
435void sock_release_memcg(struct sock *sk)
436{
376be5ff 437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443}
d1a4c0b3 444
319d3b9c 445#ifdef CONFIG_INET
d1a4c0b3
GC
446struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447{
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452}
453EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
454#endif /* CONFIG_INET */
455#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
c0ff4b85 457static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 458
f64c3f54 459static struct mem_cgroup_per_zone *
c0ff4b85 460mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 461{
c0ff4b85 462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
463}
464
c0ff4b85 465struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 466{
c0ff4b85 467 return &memcg->css;
d324236b
WF
468}
469
f64c3f54 470static struct mem_cgroup_per_zone *
c0ff4b85 471page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 472{
97a6c37b
JW
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
f64c3f54 475
c0ff4b85 476 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
477}
478
479static struct mem_cgroup_tree_per_zone *
480soft_limit_tree_node_zone(int nid, int zid)
481{
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483}
484
485static struct mem_cgroup_tree_per_zone *
486soft_limit_tree_from_page(struct page *page)
487{
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492}
493
494static void
c0ff4b85 495__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 496 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
f64c3f54
BS
499{
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
ef8745c1
KH
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
f64c3f54
BS
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
4e416953
BS
526}
527
528static void
c0ff4b85 529__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532{
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537}
538
f64c3f54 539static void
c0ff4b85 540mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543{
544 spin_lock(&mctz->lock);
c0ff4b85 545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
546 spin_unlock(&mctz->lock);
547}
548
f64c3f54 549
c0ff4b85 550static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 551{
ef8745c1 552 unsigned long long excess;
f64c3f54
BS
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
f64c3f54
BS
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
4e649152
KH
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
f64c3f54 562 */
c0ff4b85
R
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
ef8745c1 570 if (excess || mz->on_tree) {
4e649152
KH
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
c0ff4b85 574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 575 /*
ef8745c1
KH
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
4e649152 578 */
c0ff4b85 579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
580 spin_unlock(&mctz->lock);
581 }
f64c3f54
BS
582 }
583}
584
c0ff4b85 585static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
586{
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
3ed28fa1 591 for_each_node(node) {
f64c3f54 592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 594 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
596 }
597 }
598}
599
4e416953
BS
600static struct mem_cgroup_per_zone *
601__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602{
603 struct rb_node *rightmost = NULL;
26251eaf 604 struct mem_cgroup_per_zone *mz;
4e416953
BS
605
606retry:
26251eaf 607 mz = NULL;
4e416953
BS
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
d79154bb
HD
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
4e416953
BS
621 goto retry;
622done:
623 return mz;
624}
625
626static struct mem_cgroup_per_zone *
627mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635}
636
711d3d2c
KH
637/*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
c0ff4b85 656static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 657 enum mem_cgroup_stat_index idx)
c62b1a3b 658{
7a159cc9 659 long val = 0;
c62b1a3b 660 int cpu;
c62b1a3b 661
711d3d2c
KH
662 get_online_cpus();
663 for_each_online_cpu(cpu)
c0ff4b85 664 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 665#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
669#endif
670 put_online_cpus();
c62b1a3b
KH
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
675 bool charge)
676{
677 int val = (charge) ? 1 : -1;
c0ff4b85 678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
679}
680
c0ff4b85 681static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
682 enum mem_cgroup_events_index idx)
683{
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
c0ff4b85 688 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 689#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
693#endif
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 698 bool anon, int nr_pages)
d52aa412 699{
c62b1a3b
KH
700 preempt_disable();
701
b2402857
KH
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 708 nr_pages);
d52aa412 709 else
b2402857 710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 711 nr_pages);
55e462b0 712
e401f176
KH
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
c0ff4b85 715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 716 else {
c0ff4b85 717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
718 nr_pages = -nr_pages; /* for event */
719 }
e401f176 720
c0ff4b85 721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 722
c62b1a3b 723 preempt_enable();
6d12e2d8
KH
724}
725
bb2a0de9 726unsigned long
c0ff4b85 727mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 728 unsigned int lru_mask)
889976db
YH
729{
730 struct mem_cgroup_per_zone *mz;
f156ab93 731 enum lru_list lru;
bb2a0de9
KH
732 unsigned long ret = 0;
733
c0ff4b85 734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 735
f156ab93
HD
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
bb2a0de9
KH
739 }
740 return ret;
741}
742
743static unsigned long
c0ff4b85 744mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
745 int nid, unsigned int lru_mask)
746{
889976db
YH
747 u64 total = 0;
748 int zid;
749
bb2a0de9 750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
bb2a0de9 753
889976db
YH
754 return total;
755}
bb2a0de9 756
c0ff4b85 757static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 758 unsigned int lru_mask)
6d12e2d8 759{
889976db 760 int nid;
6d12e2d8
KH
761 u64 total = 0;
762
bb2a0de9 763 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 765 return total;
d52aa412
KH
766}
767
f53d7ce3
JW
768static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
7a159cc9
JW
770{
771 unsigned long val, next;
772
4799401f
SR
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 775 /* from time_after() in jiffies.h */
f53d7ce3
JW
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
7a159cc9 792 }
f53d7ce3 793 return false;
d2265e6f
KH
794}
795
796/*
797 * Check events in order.
798 *
799 */
c0ff4b85 800static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 801{
4799401f 802 preempt_disable();
d2265e6f 803 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
f53d7ce3
JW
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811#if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814#endif
815 preempt_enable();
816
c0ff4b85 817 mem_cgroup_threshold(memcg);
f53d7ce3 818 if (unlikely(do_softlimit))
c0ff4b85 819 mem_cgroup_update_tree(memcg, page);
453a9bf3 820#if MAX_NUMNODES > 1
f53d7ce3 821 if (unlikely(do_numainfo))
c0ff4b85 822 atomic_inc(&memcg->numainfo_events);
453a9bf3 823#endif
f53d7ce3
JW
824 } else
825 preempt_enable();
d2265e6f
KH
826}
827
d1a4c0b3 828struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
829{
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833}
834
cf475ad2 835struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 836{
31a78f23
BS
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
78fb7466
PE
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847}
848
a433658c 849struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 850{
c0ff4b85 851 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
852
853 if (!mm)
854 return NULL;
54595fe2
KH
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
c0ff4b85
R
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
54595fe2 864 break;
c0ff4b85 865 } while (!css_tryget(&memcg->css));
54595fe2 866 rcu_read_unlock();
c0ff4b85 867 return memcg;
54595fe2
KH
868}
869
5660048c
JW
870/**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 890{
9f3a0d09
JW
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
711d3d2c 893
5660048c
JW
894 if (mem_cgroup_disabled())
895 return NULL;
896
9f3a0d09
JW
897 if (!root)
898 root = root_mem_cgroup;
7d74b06f 899
9f3a0d09
JW
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
14067bb3 902
9f3a0d09
JW
903 if (prev && prev != root)
904 css_put(&prev->css);
14067bb3 905
9f3a0d09
JW
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
14067bb3 911
9f3a0d09 912 while (!memcg) {
527a5ec9 913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 914 struct cgroup_subsys_state *css;
711d3d2c 915
527a5ec9
JW
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
7d74b06f 927
9f3a0d09
JW
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
14067bb3 936 rcu_read_unlock();
14067bb3 937
527a5ec9
JW
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
9f3a0d09
JW
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
14067bb3 950}
7d74b06f 951
5660048c
JW
952/**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
9f3a0d09
JW
959{
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964}
7d74b06f 965
9f3a0d09
JW
966/*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 973 iter != NULL; \
527a5ec9 974 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 975
9f3a0d09 976#define for_each_mem_cgroup(iter) \
527a5ec9 977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 978 iter != NULL; \
527a5ec9 979 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 980
c0ff4b85 981static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 982{
c0ff4b85 983 return (memcg == root_mem_cgroup);
4b3bde4c
BS
984}
985
456f998e
YH
986void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987{
c0ff4b85 988 struct mem_cgroup *memcg;
456f998e
YH
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
c0ff4b85
R
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
456f998e
YH
996 goto out;
997
998 switch (idx) {
456f998e 999 case PGFAULT:
0e574a93
JW
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1004 break;
1005 default:
1006 BUG();
1007 }
1008out:
1009 rcu_read_unlock();
1010}
1011EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
925b7673
JW
1013/**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024{
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032}
1033
08e552c6
KH
1034/*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
4f98a2fe 1047
925b7673
JW
1048/**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
08e552c6 1062{
08e552c6 1063 struct mem_cgroup_per_zone *mz;
925b7673
JW
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
6d12e2d8 1066
f8d66542 1067 if (mem_cgroup_disabled())
925b7673
JW
1068 return &zone->lruvec;
1069
08e552c6 1070 pc = lookup_page_cgroup(page);
38c5d72f 1071 memcg = pc->mem_cgroup;
7512102c
HD
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
925b7673
JW
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1eb49272 1087 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1088 return &mz->lruvec;
08e552c6 1089}
b69408e8 1090
925b7673
JW
1091/**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
3f58a829 1100 */
925b7673 1101void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1102{
1103 struct mem_cgroup_per_zone *mz;
925b7673 1104 struct mem_cgroup *memcg;
3f58a829 1105 struct page_cgroup *pc;
3f58a829
MK
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
38c5d72f
KH
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
925b7673
JW
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1117}
1118
925b7673 1119void mem_cgroup_lru_del(struct page *page)
08e552c6 1120{
925b7673 1121 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1122}
1123
925b7673
JW
1124/**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
66e1707b 1142{
925b7673
JW
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1146}
544122e5 1147
3e92041d 1148/*
c0ff4b85 1149 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1150 * hierarchy subtree
1151 */
c0ff4b85
R
1152static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
3e92041d 1154{
c0ff4b85
R
1155 if (root_memcg != memcg) {
1156 return (root_memcg->use_hierarchy &&
1157 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1158 }
1159
1160 return true;
1161}
1162
c0ff4b85 1163int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1164{
1165 int ret;
0b7f569e 1166 struct mem_cgroup *curr = NULL;
158e0a2d 1167 struct task_struct *p;
4c4a2214 1168
158e0a2d 1169 p = find_lock_task_mm(task);
de077d22
DR
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
0b7f569e
KH
1185 if (!curr)
1186 return 0;
d31f56db 1187 /*
c0ff4b85 1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1189 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1192 */
c0ff4b85 1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1194 css_put(&curr->css);
4c4a2214
DR
1195 return ret;
1196}
1197
9b272977 1198int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1199{
9b272977
JW
1200 unsigned long inactive_ratio;
1201 int nid = zone_to_nid(zone);
1202 int zid = zone_idx(zone);
14797e23 1203 unsigned long inactive;
9b272977 1204 unsigned long active;
c772be93 1205 unsigned long gb;
14797e23 1206
9b272977
JW
1207 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 BIT(LRU_INACTIVE_ANON));
1209 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 BIT(LRU_ACTIVE_ANON));
14797e23 1211
c772be93
KM
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
9b272977 1218 return inactive * inactive_ratio < active;
14797e23
KM
1219}
1220
9b272977 1221int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1222{
1223 unsigned long active;
1224 unsigned long inactive;
9b272977
JW
1225 int zid = zone_idx(zone);
1226 int nid = zone_to_nid(zone);
56e49d21 1227
9b272977
JW
1228 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 BIT(LRU_INACTIVE_FILE));
1230 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1232
1233 return (active > inactive);
1234}
1235
3e2f41f1
KM
1236struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 struct zone *zone)
1238{
13d7e3a2 1239 int nid = zone_to_nid(zone);
3e2f41f1
KM
1240 int zid = zone_idx(zone);
1241 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242
1243 return &mz->reclaim_stat;
1244}
1245
1246struct zone_reclaim_stat *
1247mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248{
1249 struct page_cgroup *pc;
1250 struct mem_cgroup_per_zone *mz;
1251
1252 if (mem_cgroup_disabled())
1253 return NULL;
1254
1255 pc = lookup_page_cgroup(page);
bd112db8
DN
1256 if (!PageCgroupUsed(pc))
1257 return NULL;
713735b4
JW
1258 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 smp_rmb();
97a6c37b 1260 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1261 return &mz->reclaim_stat;
1262}
1263
6d61ef40
BS
1264#define mem_cgroup_from_res_counter(counter, member) \
1265 container_of(counter, struct mem_cgroup, member)
1266
19942822 1267/**
9d11ea9f
JW
1268 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269 * @mem: the memory cgroup
19942822 1270 *
9d11ea9f 1271 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1272 * pages.
19942822 1273 */
c0ff4b85 1274static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1275{
9d11ea9f
JW
1276 unsigned long long margin;
1277
c0ff4b85 1278 margin = res_counter_margin(&memcg->res);
9d11ea9f 1279 if (do_swap_account)
c0ff4b85 1280 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1281 return margin >> PAGE_SHIFT;
19942822
JW
1282}
1283
1f4c025b 1284int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1285{
1286 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1287
1288 /* root ? */
1289 if (cgrp->parent == NULL)
1290 return vm_swappiness;
1291
bf1ff263 1292 return memcg->swappiness;
a7885eb8
KM
1293}
1294
619d094b
KH
1295/*
1296 * memcg->moving_account is used for checking possibility that some thread is
1297 * calling move_account(). When a thread on CPU-A starts moving pages under
1298 * a memcg, other threads should check memcg->moving_account under
1299 * rcu_read_lock(), like this:
1300 *
1301 * CPU-A CPU-B
1302 * rcu_read_lock()
1303 * memcg->moving_account+1 if (memcg->mocing_account)
1304 * take heavy locks.
1305 * synchronize_rcu() update something.
1306 * rcu_read_unlock()
1307 * start move here.
1308 */
4331f7d3
KH
1309
1310/* for quick checking without looking up memcg */
1311atomic_t memcg_moving __read_mostly;
1312
c0ff4b85 1313static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1314{
4331f7d3 1315 atomic_inc(&memcg_moving);
619d094b 1316 atomic_inc(&memcg->moving_account);
32047e2a
KH
1317 synchronize_rcu();
1318}
1319
c0ff4b85 1320static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1321{
619d094b
KH
1322 /*
1323 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1324 * We check NULL in callee rather than caller.
1325 */
4331f7d3
KH
1326 if (memcg) {
1327 atomic_dec(&memcg_moving);
619d094b 1328 atomic_dec(&memcg->moving_account);
4331f7d3 1329 }
32047e2a 1330}
619d094b 1331
32047e2a
KH
1332/*
1333 * 2 routines for checking "mem" is under move_account() or not.
1334 *
13fd1dd9
AM
1335 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1336 * is used for avoiding races in accounting. If true,
32047e2a
KH
1337 * pc->mem_cgroup may be overwritten.
1338 *
1339 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1340 * under hierarchy of moving cgroups. This is for
1341 * waiting at hith-memory prressure caused by "move".
1342 */
1343
13fd1dd9 1344static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1345{
1346 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1347 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1348}
4b534334 1349
c0ff4b85 1350static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1351{
2bd9bb20
KH
1352 struct mem_cgroup *from;
1353 struct mem_cgroup *to;
4b534334 1354 bool ret = false;
2bd9bb20
KH
1355 /*
1356 * Unlike task_move routines, we access mc.to, mc.from not under
1357 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1358 */
1359 spin_lock(&mc.lock);
1360 from = mc.from;
1361 to = mc.to;
1362 if (!from)
1363 goto unlock;
3e92041d 1364
c0ff4b85
R
1365 ret = mem_cgroup_same_or_subtree(memcg, from)
1366 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1367unlock:
1368 spin_unlock(&mc.lock);
4b534334
KH
1369 return ret;
1370}
1371
c0ff4b85 1372static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1373{
1374 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1375 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1376 DEFINE_WAIT(wait);
1377 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1378 /* moving charge context might have finished. */
1379 if (mc.moving_task)
1380 schedule();
1381 finish_wait(&mc.waitq, &wait);
1382 return true;
1383 }
1384 }
1385 return false;
1386}
1387
312734c0
KH
1388/*
1389 * Take this lock when
1390 * - a code tries to modify page's memcg while it's USED.
1391 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1392 * see mem_cgroup_stolen(), too.
312734c0
KH
1393 */
1394static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1396{
1397 spin_lock_irqsave(&memcg->move_lock, *flags);
1398}
1399
1400static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1401 unsigned long *flags)
1402{
1403 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1404}
1405
e222432b 1406/**
6a6135b6 1407 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1408 * @memcg: The memory cgroup that went over limit
1409 * @p: Task that is going to be killed
1410 *
1411 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1412 * enabled
1413 */
1414void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1415{
1416 struct cgroup *task_cgrp;
1417 struct cgroup *mem_cgrp;
1418 /*
1419 * Need a buffer in BSS, can't rely on allocations. The code relies
1420 * on the assumption that OOM is serialized for memory controller.
1421 * If this assumption is broken, revisit this code.
1422 */
1423 static char memcg_name[PATH_MAX];
1424 int ret;
1425
d31f56db 1426 if (!memcg || !p)
e222432b
BS
1427 return;
1428
e222432b
BS
1429 rcu_read_lock();
1430
1431 mem_cgrp = memcg->css.cgroup;
1432 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1433
1434 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1435 if (ret < 0) {
1436 /*
1437 * Unfortunately, we are unable to convert to a useful name
1438 * But we'll still print out the usage information
1439 */
1440 rcu_read_unlock();
1441 goto done;
1442 }
1443 rcu_read_unlock();
1444
1445 printk(KERN_INFO "Task in %s killed", memcg_name);
1446
1447 rcu_read_lock();
1448 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1449 if (ret < 0) {
1450 rcu_read_unlock();
1451 goto done;
1452 }
1453 rcu_read_unlock();
1454
1455 /*
1456 * Continues from above, so we don't need an KERN_ level
1457 */
1458 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1459done:
1460
1461 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1462 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1465 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1466 "failcnt %llu\n",
1467 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1468 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1469 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1470}
1471
81d39c20
KH
1472/*
1473 * This function returns the number of memcg under hierarchy tree. Returns
1474 * 1(self count) if no children.
1475 */
c0ff4b85 1476static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1477{
1478 int num = 0;
7d74b06f
KH
1479 struct mem_cgroup *iter;
1480
c0ff4b85 1481 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1482 num++;
81d39c20
KH
1483 return num;
1484}
1485
a63d83f4
DR
1486/*
1487 * Return the memory (and swap, if configured) limit for a memcg.
1488 */
1489u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1490{
1491 u64 limit;
1492 u64 memsw;
1493
f3e8eb70
JW
1494 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1495 limit += total_swap_pages << PAGE_SHIFT;
1496
a63d83f4
DR
1497 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1498 /*
1499 * If memsw is finite and limits the amount of swap space available
1500 * to this memcg, return that limit.
1501 */
1502 return min(limit, memsw);
1503}
1504
5660048c
JW
1505static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1506 gfp_t gfp_mask,
1507 unsigned long flags)
1508{
1509 unsigned long total = 0;
1510 bool noswap = false;
1511 int loop;
1512
1513 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1514 noswap = true;
1515 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1516 noswap = true;
1517
1518 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1519 if (loop)
1520 drain_all_stock_async(memcg);
1521 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1522 /*
1523 * Allow limit shrinkers, which are triggered directly
1524 * by userspace, to catch signals and stop reclaim
1525 * after minimal progress, regardless of the margin.
1526 */
1527 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1528 break;
1529 if (mem_cgroup_margin(memcg))
1530 break;
1531 /*
1532 * If nothing was reclaimed after two attempts, there
1533 * may be no reclaimable pages in this hierarchy.
1534 */
1535 if (loop && !total)
1536 break;
1537 }
1538 return total;
1539}
1540
4d0c066d
KH
1541/**
1542 * test_mem_cgroup_node_reclaimable
1543 * @mem: the target memcg
1544 * @nid: the node ID to be checked.
1545 * @noswap : specify true here if the user wants flle only information.
1546 *
1547 * This function returns whether the specified memcg contains any
1548 * reclaimable pages on a node. Returns true if there are any reclaimable
1549 * pages in the node.
1550 */
c0ff4b85 1551static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1552 int nid, bool noswap)
1553{
c0ff4b85 1554 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1555 return true;
1556 if (noswap || !total_swap_pages)
1557 return false;
c0ff4b85 1558 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1559 return true;
1560 return false;
1561
1562}
889976db
YH
1563#if MAX_NUMNODES > 1
1564
1565/*
1566 * Always updating the nodemask is not very good - even if we have an empty
1567 * list or the wrong list here, we can start from some node and traverse all
1568 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1569 *
1570 */
c0ff4b85 1571static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1572{
1573 int nid;
453a9bf3
KH
1574 /*
1575 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1576 * pagein/pageout changes since the last update.
1577 */
c0ff4b85 1578 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1579 return;
c0ff4b85 1580 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1581 return;
1582
889976db 1583 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1584 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1585
1586 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1587
c0ff4b85
R
1588 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1589 node_clear(nid, memcg->scan_nodes);
889976db 1590 }
453a9bf3 1591
c0ff4b85
R
1592 atomic_set(&memcg->numainfo_events, 0);
1593 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1594}
1595
1596/*
1597 * Selecting a node where we start reclaim from. Because what we need is just
1598 * reducing usage counter, start from anywhere is O,K. Considering
1599 * memory reclaim from current node, there are pros. and cons.
1600 *
1601 * Freeing memory from current node means freeing memory from a node which
1602 * we'll use or we've used. So, it may make LRU bad. And if several threads
1603 * hit limits, it will see a contention on a node. But freeing from remote
1604 * node means more costs for memory reclaim because of memory latency.
1605 *
1606 * Now, we use round-robin. Better algorithm is welcomed.
1607 */
c0ff4b85 1608int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1609{
1610 int node;
1611
c0ff4b85
R
1612 mem_cgroup_may_update_nodemask(memcg);
1613 node = memcg->last_scanned_node;
889976db 1614
c0ff4b85 1615 node = next_node(node, memcg->scan_nodes);
889976db 1616 if (node == MAX_NUMNODES)
c0ff4b85 1617 node = first_node(memcg->scan_nodes);
889976db
YH
1618 /*
1619 * We call this when we hit limit, not when pages are added to LRU.
1620 * No LRU may hold pages because all pages are UNEVICTABLE or
1621 * memcg is too small and all pages are not on LRU. In that case,
1622 * we use curret node.
1623 */
1624 if (unlikely(node == MAX_NUMNODES))
1625 node = numa_node_id();
1626
c0ff4b85 1627 memcg->last_scanned_node = node;
889976db
YH
1628 return node;
1629}
1630
4d0c066d
KH
1631/*
1632 * Check all nodes whether it contains reclaimable pages or not.
1633 * For quick scan, we make use of scan_nodes. This will allow us to skip
1634 * unused nodes. But scan_nodes is lazily updated and may not cotain
1635 * enough new information. We need to do double check.
1636 */
c0ff4b85 1637bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1638{
1639 int nid;
1640
1641 /*
1642 * quick check...making use of scan_node.
1643 * We can skip unused nodes.
1644 */
c0ff4b85
R
1645 if (!nodes_empty(memcg->scan_nodes)) {
1646 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1647 nid < MAX_NUMNODES;
c0ff4b85 1648 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1649
c0ff4b85 1650 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1651 return true;
1652 }
1653 }
1654 /*
1655 * Check rest of nodes.
1656 */
1657 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1658 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1659 continue;
c0ff4b85 1660 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1661 return true;
1662 }
1663 return false;
1664}
1665
889976db 1666#else
c0ff4b85 1667int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1668{
1669 return 0;
1670}
4d0c066d 1671
c0ff4b85 1672bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1673{
c0ff4b85 1674 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1675}
889976db
YH
1676#endif
1677
5660048c
JW
1678static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1679 struct zone *zone,
1680 gfp_t gfp_mask,
1681 unsigned long *total_scanned)
6d61ef40 1682{
9f3a0d09 1683 struct mem_cgroup *victim = NULL;
5660048c 1684 int total = 0;
04046e1a 1685 int loop = 0;
9d11ea9f 1686 unsigned long excess;
185efc0f 1687 unsigned long nr_scanned;
527a5ec9
JW
1688 struct mem_cgroup_reclaim_cookie reclaim = {
1689 .zone = zone,
1690 .priority = 0,
1691 };
9d11ea9f 1692
c0ff4b85 1693 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1694
4e416953 1695 while (1) {
527a5ec9 1696 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1697 if (!victim) {
04046e1a 1698 loop++;
4e416953
BS
1699 if (loop >= 2) {
1700 /*
1701 * If we have not been able to reclaim
1702 * anything, it might because there are
1703 * no reclaimable pages under this hierarchy
1704 */
5660048c 1705 if (!total)
4e416953 1706 break;
4e416953 1707 /*
25985edc 1708 * We want to do more targeted reclaim.
4e416953
BS
1709 * excess >> 2 is not to excessive so as to
1710 * reclaim too much, nor too less that we keep
1711 * coming back to reclaim from this cgroup
1712 */
1713 if (total >= (excess >> 2) ||
9f3a0d09 1714 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1715 break;
4e416953 1716 }
9f3a0d09 1717 continue;
4e416953 1718 }
5660048c 1719 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1720 continue;
5660048c
JW
1721 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1722 zone, &nr_scanned);
1723 *total_scanned += nr_scanned;
1724 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1725 break;
6d61ef40 1726 }
9f3a0d09 1727 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1728 return total;
6d61ef40
BS
1729}
1730
867578cb
KH
1731/*
1732 * Check OOM-Killer is already running under our hierarchy.
1733 * If someone is running, return false.
1af8efe9 1734 * Has to be called with memcg_oom_lock
867578cb 1735 */
c0ff4b85 1736static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1737{
79dfdacc 1738 struct mem_cgroup *iter, *failed = NULL;
a636b327 1739
9f3a0d09 1740 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1741 if (iter->oom_lock) {
79dfdacc
MH
1742 /*
1743 * this subtree of our hierarchy is already locked
1744 * so we cannot give a lock.
1745 */
79dfdacc 1746 failed = iter;
9f3a0d09
JW
1747 mem_cgroup_iter_break(memcg, iter);
1748 break;
23751be0
JW
1749 } else
1750 iter->oom_lock = true;
7d74b06f 1751 }
867578cb 1752
79dfdacc 1753 if (!failed)
23751be0 1754 return true;
79dfdacc
MH
1755
1756 /*
1757 * OK, we failed to lock the whole subtree so we have to clean up
1758 * what we set up to the failing subtree
1759 */
9f3a0d09 1760 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1761 if (iter == failed) {
9f3a0d09
JW
1762 mem_cgroup_iter_break(memcg, iter);
1763 break;
79dfdacc
MH
1764 }
1765 iter->oom_lock = false;
1766 }
23751be0 1767 return false;
a636b327 1768}
0b7f569e 1769
79dfdacc 1770/*
1af8efe9 1771 * Has to be called with memcg_oom_lock
79dfdacc 1772 */
c0ff4b85 1773static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1774{
7d74b06f
KH
1775 struct mem_cgroup *iter;
1776
c0ff4b85 1777 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1778 iter->oom_lock = false;
1779 return 0;
1780}
1781
c0ff4b85 1782static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1783{
1784 struct mem_cgroup *iter;
1785
c0ff4b85 1786 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1787 atomic_inc(&iter->under_oom);
1788}
1789
c0ff4b85 1790static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1791{
1792 struct mem_cgroup *iter;
1793
867578cb
KH
1794 /*
1795 * When a new child is created while the hierarchy is under oom,
1796 * mem_cgroup_oom_lock() may not be called. We have to use
1797 * atomic_add_unless() here.
1798 */
c0ff4b85 1799 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1800 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1801}
1802
1af8efe9 1803static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1804static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1805
dc98df5a 1806struct oom_wait_info {
d79154bb 1807 struct mem_cgroup *memcg;
dc98df5a
KH
1808 wait_queue_t wait;
1809};
1810
1811static int memcg_oom_wake_function(wait_queue_t *wait,
1812 unsigned mode, int sync, void *arg)
1813{
d79154bb
HD
1814 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1815 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1816 struct oom_wait_info *oom_wait_info;
1817
1818 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1819 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1820
dc98df5a 1821 /*
d79154bb 1822 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1823 * Then we can use css_is_ancestor without taking care of RCU.
1824 */
c0ff4b85
R
1825 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1826 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1827 return 0;
dc98df5a
KH
1828 return autoremove_wake_function(wait, mode, sync, arg);
1829}
1830
c0ff4b85 1831static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1832{
c0ff4b85
R
1833 /* for filtering, pass "memcg" as argument. */
1834 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1835}
1836
c0ff4b85 1837static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1838{
c0ff4b85
R
1839 if (memcg && atomic_read(&memcg->under_oom))
1840 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1841}
1842
867578cb
KH
1843/*
1844 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1845 */
e845e199 1846bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1847{
dc98df5a 1848 struct oom_wait_info owait;
3c11ecf4 1849 bool locked, need_to_kill;
867578cb 1850
d79154bb 1851 owait.memcg = memcg;
dc98df5a
KH
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
1855 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1856 need_to_kill = true;
c0ff4b85 1857 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1858
c0ff4b85 1859 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1860 spin_lock(&memcg_oom_lock);
c0ff4b85 1861 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1862 /*
1863 * Even if signal_pending(), we can't quit charge() loop without
1864 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1865 * under OOM is always welcomed, use TASK_KILLABLE here.
1866 */
3c11ecf4 1867 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1868 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1869 need_to_kill = false;
1870 if (locked)
c0ff4b85 1871 mem_cgroup_oom_notify(memcg);
1af8efe9 1872 spin_unlock(&memcg_oom_lock);
867578cb 1873
3c11ecf4
KH
1874 if (need_to_kill) {
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1876 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1877 } else {
867578cb 1878 schedule();
dc98df5a 1879 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1880 }
1af8efe9 1881 spin_lock(&memcg_oom_lock);
79dfdacc 1882 if (locked)
c0ff4b85
R
1883 mem_cgroup_oom_unlock(memcg);
1884 memcg_wakeup_oom(memcg);
1af8efe9 1885 spin_unlock(&memcg_oom_lock);
867578cb 1886
c0ff4b85 1887 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1888
867578cb
KH
1889 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1890 return false;
1891 /* Give chance to dying process */
715a5ee8 1892 schedule_timeout_uninterruptible(1);
867578cb 1893 return true;
0b7f569e
KH
1894}
1895
d69b042f
BS
1896/*
1897 * Currently used to update mapped file statistics, but the routine can be
1898 * generalized to update other statistics as well.
32047e2a
KH
1899 *
1900 * Notes: Race condition
1901 *
1902 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1903 * it tends to be costly. But considering some conditions, we doesn't need
1904 * to do so _always_.
1905 *
1906 * Considering "charge", lock_page_cgroup() is not required because all
1907 * file-stat operations happen after a page is attached to radix-tree. There
1908 * are no race with "charge".
1909 *
1910 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1911 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1912 * if there are race with "uncharge". Statistics itself is properly handled
1913 * by flags.
1914 *
1915 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1916 * small, we check mm->moving_account and detect there are possibility of race
1917 * If there is, we take a lock.
d69b042f 1918 */
26174efd 1919
89c06bd5
KH
1920void __mem_cgroup_begin_update_page_stat(struct page *page,
1921 bool *locked, unsigned long *flags)
1922{
1923 struct mem_cgroup *memcg;
1924 struct page_cgroup *pc;
1925
1926 pc = lookup_page_cgroup(page);
1927again:
1928 memcg = pc->mem_cgroup;
1929 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1930 return;
1931 /*
1932 * If this memory cgroup is not under account moving, we don't
1933 * need to take move_lock_page_cgroup(). Because we already hold
1934 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1935 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1936 */
13fd1dd9 1937 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1938 return;
1939
1940 move_lock_mem_cgroup(memcg, flags);
1941 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1942 move_unlock_mem_cgroup(memcg, flags);
1943 goto again;
1944 }
1945 *locked = true;
1946}
1947
1948void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1949{
1950 struct page_cgroup *pc = lookup_page_cgroup(page);
1951
1952 /*
1953 * It's guaranteed that pc->mem_cgroup never changes while
1954 * lock is held because a routine modifies pc->mem_cgroup
1955 * should take move_lock_page_cgroup().
1956 */
1957 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1958}
1959
2a7106f2
GT
1960void mem_cgroup_update_page_stat(struct page *page,
1961 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1962{
c0ff4b85 1963 struct mem_cgroup *memcg;
32047e2a 1964 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1965 unsigned long uninitialized_var(flags);
d69b042f 1966
cfa44946 1967 if (mem_cgroup_disabled())
d69b042f 1968 return;
89c06bd5 1969
c0ff4b85
R
1970 memcg = pc->mem_cgroup;
1971 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1972 return;
26174efd 1973
26174efd 1974 switch (idx) {
2a7106f2 1975 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1976 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1977 break;
1978 default:
1979 BUG();
8725d541 1980 }
d69b042f 1981
c0ff4b85 1982 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1983}
26174efd 1984
cdec2e42
KH
1985/*
1986 * size of first charge trial. "32" comes from vmscan.c's magic value.
1987 * TODO: maybe necessary to use big numbers in big irons.
1988 */
7ec99d62 1989#define CHARGE_BATCH 32U
cdec2e42
KH
1990struct memcg_stock_pcp {
1991 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1992 unsigned int nr_pages;
cdec2e42 1993 struct work_struct work;
26fe6168
KH
1994 unsigned long flags;
1995#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1996};
1997static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1998static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1999
2000/*
11c9ea4e 2001 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2002 * from local stock and true is returned. If the stock is 0 or charges from a
2003 * cgroup which is not current target, returns false. This stock will be
2004 * refilled.
2005 */
c0ff4b85 2006static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2007{
2008 struct memcg_stock_pcp *stock;
2009 bool ret = true;
2010
2011 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2012 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2013 stock->nr_pages--;
cdec2e42
KH
2014 else /* need to call res_counter_charge */
2015 ret = false;
2016 put_cpu_var(memcg_stock);
2017 return ret;
2018}
2019
2020/*
2021 * Returns stocks cached in percpu to res_counter and reset cached information.
2022 */
2023static void drain_stock(struct memcg_stock_pcp *stock)
2024{
2025 struct mem_cgroup *old = stock->cached;
2026
11c9ea4e
JW
2027 if (stock->nr_pages) {
2028 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2029
2030 res_counter_uncharge(&old->res, bytes);
cdec2e42 2031 if (do_swap_account)
11c9ea4e
JW
2032 res_counter_uncharge(&old->memsw, bytes);
2033 stock->nr_pages = 0;
cdec2e42
KH
2034 }
2035 stock->cached = NULL;
cdec2e42
KH
2036}
2037
2038/*
2039 * This must be called under preempt disabled or must be called by
2040 * a thread which is pinned to local cpu.
2041 */
2042static void drain_local_stock(struct work_struct *dummy)
2043{
2044 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2045 drain_stock(stock);
26fe6168 2046 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2047}
2048
2049/*
2050 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2051 * This will be consumed by consume_stock() function, later.
cdec2e42 2052 */
c0ff4b85 2053static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2054{
2055 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2056
c0ff4b85 2057 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2058 drain_stock(stock);
c0ff4b85 2059 stock->cached = memcg;
cdec2e42 2060 }
11c9ea4e 2061 stock->nr_pages += nr_pages;
cdec2e42
KH
2062 put_cpu_var(memcg_stock);
2063}
2064
2065/*
c0ff4b85 2066 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2067 * of the hierarchy under it. sync flag says whether we should block
2068 * until the work is done.
cdec2e42 2069 */
c0ff4b85 2070static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2071{
26fe6168 2072 int cpu, curcpu;
d38144b7 2073
cdec2e42 2074 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2075 get_online_cpus();
5af12d0e 2076 curcpu = get_cpu();
cdec2e42
KH
2077 for_each_online_cpu(cpu) {
2078 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2079 struct mem_cgroup *memcg;
26fe6168 2080
c0ff4b85
R
2081 memcg = stock->cached;
2082 if (!memcg || !stock->nr_pages)
26fe6168 2083 continue;
c0ff4b85 2084 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2085 continue;
d1a05b69
MH
2086 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2087 if (cpu == curcpu)
2088 drain_local_stock(&stock->work);
2089 else
2090 schedule_work_on(cpu, &stock->work);
2091 }
cdec2e42 2092 }
5af12d0e 2093 put_cpu();
d38144b7
MH
2094
2095 if (!sync)
2096 goto out;
2097
2098 for_each_online_cpu(cpu) {
2099 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2100 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2101 flush_work(&stock->work);
2102 }
2103out:
cdec2e42 2104 put_online_cpus();
d38144b7
MH
2105}
2106
2107/*
2108 * Tries to drain stocked charges in other cpus. This function is asynchronous
2109 * and just put a work per cpu for draining localy on each cpu. Caller can
2110 * expects some charges will be back to res_counter later but cannot wait for
2111 * it.
2112 */
c0ff4b85 2113static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2114{
9f50fad6
MH
2115 /*
2116 * If someone calls draining, avoid adding more kworker runs.
2117 */
2118 if (!mutex_trylock(&percpu_charge_mutex))
2119 return;
c0ff4b85 2120 drain_all_stock(root_memcg, false);
9f50fad6 2121 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2122}
2123
2124/* This is a synchronous drain interface. */
c0ff4b85 2125static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2126{
2127 /* called when force_empty is called */
9f50fad6 2128 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2129 drain_all_stock(root_memcg, true);
9f50fad6 2130 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2131}
2132
711d3d2c
KH
2133/*
2134 * This function drains percpu counter value from DEAD cpu and
2135 * move it to local cpu. Note that this function can be preempted.
2136 */
c0ff4b85 2137static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2138{
2139 int i;
2140
c0ff4b85 2141 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2142 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2143 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2144
c0ff4b85
R
2145 per_cpu(memcg->stat->count[i], cpu) = 0;
2146 memcg->nocpu_base.count[i] += x;
711d3d2c 2147 }
e9f8974f 2148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2149 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2150
c0ff4b85
R
2151 per_cpu(memcg->stat->events[i], cpu) = 0;
2152 memcg->nocpu_base.events[i] += x;
e9f8974f 2153 }
c0ff4b85 2154 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2155}
2156
2157static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2158 unsigned long action,
2159 void *hcpu)
2160{
2161 int cpu = (unsigned long)hcpu;
2162 struct memcg_stock_pcp *stock;
711d3d2c 2163 struct mem_cgroup *iter;
cdec2e42 2164
619d094b 2165 if (action == CPU_ONLINE)
1489ebad 2166 return NOTIFY_OK;
1489ebad 2167
711d3d2c 2168 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2169 return NOTIFY_OK;
711d3d2c 2170
9f3a0d09 2171 for_each_mem_cgroup(iter)
711d3d2c
KH
2172 mem_cgroup_drain_pcp_counter(iter, cpu);
2173
cdec2e42
KH
2174 stock = &per_cpu(memcg_stock, cpu);
2175 drain_stock(stock);
2176 return NOTIFY_OK;
2177}
2178
4b534334
KH
2179
2180/* See __mem_cgroup_try_charge() for details */
2181enum {
2182 CHARGE_OK, /* success */
2183 CHARGE_RETRY, /* need to retry but retry is not bad */
2184 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2185 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2186 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2187};
2188
c0ff4b85 2189static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2190 unsigned int nr_pages, bool oom_check)
4b534334 2191{
7ec99d62 2192 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2193 struct mem_cgroup *mem_over_limit;
2194 struct res_counter *fail_res;
2195 unsigned long flags = 0;
2196 int ret;
2197
c0ff4b85 2198 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2199
2200 if (likely(!ret)) {
2201 if (!do_swap_account)
2202 return CHARGE_OK;
c0ff4b85 2203 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2204 if (likely(!ret))
2205 return CHARGE_OK;
2206
c0ff4b85 2207 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2208 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2209 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2210 } else
2211 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2212 /*
7ec99d62
JW
2213 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2214 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2215 *
2216 * Never reclaim on behalf of optional batching, retry with a
2217 * single page instead.
2218 */
7ec99d62 2219 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2220 return CHARGE_RETRY;
2221
2222 if (!(gfp_mask & __GFP_WAIT))
2223 return CHARGE_WOULDBLOCK;
2224
5660048c 2225 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2226 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2227 return CHARGE_RETRY;
4b534334 2228 /*
19942822
JW
2229 * Even though the limit is exceeded at this point, reclaim
2230 * may have been able to free some pages. Retry the charge
2231 * before killing the task.
2232 *
2233 * Only for regular pages, though: huge pages are rather
2234 * unlikely to succeed so close to the limit, and we fall back
2235 * to regular pages anyway in case of failure.
4b534334 2236 */
7ec99d62 2237 if (nr_pages == 1 && ret)
4b534334
KH
2238 return CHARGE_RETRY;
2239
2240 /*
2241 * At task move, charge accounts can be doubly counted. So, it's
2242 * better to wait until the end of task_move if something is going on.
2243 */
2244 if (mem_cgroup_wait_acct_move(mem_over_limit))
2245 return CHARGE_RETRY;
2246
2247 /* If we don't need to call oom-killer at el, return immediately */
2248 if (!oom_check)
2249 return CHARGE_NOMEM;
2250 /* check OOM */
e845e199 2251 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2252 return CHARGE_OOM_DIE;
2253
2254 return CHARGE_RETRY;
2255}
2256
f817ed48 2257/*
38c5d72f
KH
2258 * __mem_cgroup_try_charge() does
2259 * 1. detect memcg to be charged against from passed *mm and *ptr,
2260 * 2. update res_counter
2261 * 3. call memory reclaim if necessary.
2262 *
2263 * In some special case, if the task is fatal, fatal_signal_pending() or
2264 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2265 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2266 * as possible without any hazards. 2: all pages should have a valid
2267 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2268 * pointer, that is treated as a charge to root_mem_cgroup.
2269 *
2270 * So __mem_cgroup_try_charge() will return
2271 * 0 ... on success, filling *ptr with a valid memcg pointer.
2272 * -ENOMEM ... charge failure because of resource limits.
2273 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2274 *
2275 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2276 * the oom-killer can be invoked.
8a9f3ccd 2277 */
f817ed48 2278static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2279 gfp_t gfp_mask,
7ec99d62 2280 unsigned int nr_pages,
c0ff4b85 2281 struct mem_cgroup **ptr,
7ec99d62 2282 bool oom)
8a9f3ccd 2283{
7ec99d62 2284 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2285 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2286 struct mem_cgroup *memcg = NULL;
4b534334 2287 int ret;
a636b327 2288
867578cb
KH
2289 /*
2290 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2291 * in system level. So, allow to go ahead dying process in addition to
2292 * MEMDIE process.
2293 */
2294 if (unlikely(test_thread_flag(TIF_MEMDIE)
2295 || fatal_signal_pending(current)))
2296 goto bypass;
a636b327 2297
8a9f3ccd 2298 /*
3be91277
HD
2299 * We always charge the cgroup the mm_struct belongs to.
2300 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2301 * thread group leader migrates. It's possible that mm is not
2302 * set, if so charge the init_mm (happens for pagecache usage).
2303 */
c0ff4b85 2304 if (!*ptr && !mm)
38c5d72f 2305 *ptr = root_mem_cgroup;
f75ca962 2306again:
c0ff4b85
R
2307 if (*ptr) { /* css should be a valid one */
2308 memcg = *ptr;
2309 VM_BUG_ON(css_is_removed(&memcg->css));
2310 if (mem_cgroup_is_root(memcg))
f75ca962 2311 goto done;
c0ff4b85 2312 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2313 goto done;
c0ff4b85 2314 css_get(&memcg->css);
4b534334 2315 } else {
f75ca962 2316 struct task_struct *p;
54595fe2 2317
f75ca962
KH
2318 rcu_read_lock();
2319 p = rcu_dereference(mm->owner);
f75ca962 2320 /*
ebb76ce1 2321 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2322 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2323 * race with swapoff. Then, we have small risk of mis-accouning.
2324 * But such kind of mis-account by race always happens because
2325 * we don't have cgroup_mutex(). It's overkill and we allo that
2326 * small race, here.
2327 * (*) swapoff at el will charge against mm-struct not against
2328 * task-struct. So, mm->owner can be NULL.
f75ca962 2329 */
c0ff4b85 2330 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2331 if (!memcg)
2332 memcg = root_mem_cgroup;
2333 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2334 rcu_read_unlock();
2335 goto done;
2336 }
c0ff4b85 2337 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2338 /*
2339 * It seems dagerous to access memcg without css_get().
2340 * But considering how consume_stok works, it's not
2341 * necessary. If consume_stock success, some charges
2342 * from this memcg are cached on this cpu. So, we
2343 * don't need to call css_get()/css_tryget() before
2344 * calling consume_stock().
2345 */
2346 rcu_read_unlock();
2347 goto done;
2348 }
2349 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2350 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2351 rcu_read_unlock();
2352 goto again;
2353 }
2354 rcu_read_unlock();
2355 }
8a9f3ccd 2356
4b534334
KH
2357 do {
2358 bool oom_check;
7a81b88c 2359
4b534334 2360 /* If killed, bypass charge */
f75ca962 2361 if (fatal_signal_pending(current)) {
c0ff4b85 2362 css_put(&memcg->css);
4b534334 2363 goto bypass;
f75ca962 2364 }
6d61ef40 2365
4b534334
KH
2366 oom_check = false;
2367 if (oom && !nr_oom_retries) {
2368 oom_check = true;
2369 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2370 }
66e1707b 2371
c0ff4b85 2372 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2373 switch (ret) {
2374 case CHARGE_OK:
2375 break;
2376 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2377 batch = nr_pages;
c0ff4b85
R
2378 css_put(&memcg->css);
2379 memcg = NULL;
f75ca962 2380 goto again;
4b534334 2381 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2382 css_put(&memcg->css);
4b534334
KH
2383 goto nomem;
2384 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2385 if (!oom) {
c0ff4b85 2386 css_put(&memcg->css);
867578cb 2387 goto nomem;
f75ca962 2388 }
4b534334
KH
2389 /* If oom, we never return -ENOMEM */
2390 nr_oom_retries--;
2391 break;
2392 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2393 css_put(&memcg->css);
867578cb 2394 goto bypass;
66e1707b 2395 }
4b534334
KH
2396 } while (ret != CHARGE_OK);
2397
7ec99d62 2398 if (batch > nr_pages)
c0ff4b85
R
2399 refill_stock(memcg, batch - nr_pages);
2400 css_put(&memcg->css);
0c3e73e8 2401done:
c0ff4b85 2402 *ptr = memcg;
7a81b88c
KH
2403 return 0;
2404nomem:
c0ff4b85 2405 *ptr = NULL;
7a81b88c 2406 return -ENOMEM;
867578cb 2407bypass:
38c5d72f
KH
2408 *ptr = root_mem_cgroup;
2409 return -EINTR;
7a81b88c 2410}
8a9f3ccd 2411
a3032a2c
DN
2412/*
2413 * Somemtimes we have to undo a charge we got by try_charge().
2414 * This function is for that and do uncharge, put css's refcnt.
2415 * gotten by try_charge().
2416 */
c0ff4b85 2417static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2418 unsigned int nr_pages)
a3032a2c 2419{
c0ff4b85 2420 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2421 unsigned long bytes = nr_pages * PAGE_SIZE;
2422
c0ff4b85 2423 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2424 if (do_swap_account)
c0ff4b85 2425 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2426 }
854ffa8d
DN
2427}
2428
a3b2d692
KH
2429/*
2430 * A helper function to get mem_cgroup from ID. must be called under
2431 * rcu_read_lock(). The caller must check css_is_removed() or some if
2432 * it's concern. (dropping refcnt from swap can be called against removed
2433 * memcg.)
2434 */
2435static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2436{
2437 struct cgroup_subsys_state *css;
2438
2439 /* ID 0 is unused ID */
2440 if (!id)
2441 return NULL;
2442 css = css_lookup(&mem_cgroup_subsys, id);
2443 if (!css)
2444 return NULL;
2445 return container_of(css, struct mem_cgroup, css);
2446}
2447
e42d9d5d 2448struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2449{
c0ff4b85 2450 struct mem_cgroup *memcg = NULL;
3c776e64 2451 struct page_cgroup *pc;
a3b2d692 2452 unsigned short id;
b5a84319
KH
2453 swp_entry_t ent;
2454
3c776e64
DN
2455 VM_BUG_ON(!PageLocked(page));
2456
3c776e64 2457 pc = lookup_page_cgroup(page);
c0bd3f63 2458 lock_page_cgroup(pc);
a3b2d692 2459 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2460 memcg = pc->mem_cgroup;
2461 if (memcg && !css_tryget(&memcg->css))
2462 memcg = NULL;
e42d9d5d 2463 } else if (PageSwapCache(page)) {
3c776e64 2464 ent.val = page_private(page);
9fb4b7cc 2465 id = lookup_swap_cgroup_id(ent);
a3b2d692 2466 rcu_read_lock();
c0ff4b85
R
2467 memcg = mem_cgroup_lookup(id);
2468 if (memcg && !css_tryget(&memcg->css))
2469 memcg = NULL;
a3b2d692 2470 rcu_read_unlock();
3c776e64 2471 }
c0bd3f63 2472 unlock_page_cgroup(pc);
c0ff4b85 2473 return memcg;
b5a84319
KH
2474}
2475
c0ff4b85 2476static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2477 struct page *page,
7ec99d62 2478 unsigned int nr_pages,
ca3e0214 2479 struct page_cgroup *pc,
9ce70c02
HD
2480 enum charge_type ctype,
2481 bool lrucare)
7a81b88c 2482{
9ce70c02
HD
2483 struct zone *uninitialized_var(zone);
2484 bool was_on_lru = false;
b2402857 2485 bool anon;
9ce70c02 2486
ca3e0214
KH
2487 lock_page_cgroup(pc);
2488 if (unlikely(PageCgroupUsed(pc))) {
2489 unlock_page_cgroup(pc);
c0ff4b85 2490 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2491 return;
2492 }
2493 /*
2494 * we don't need page_cgroup_lock about tail pages, becase they are not
2495 * accessed by any other context at this point.
2496 */
9ce70c02
HD
2497
2498 /*
2499 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2500 * may already be on some other mem_cgroup's LRU. Take care of it.
2501 */
2502 if (lrucare) {
2503 zone = page_zone(page);
2504 spin_lock_irq(&zone->lru_lock);
2505 if (PageLRU(page)) {
2506 ClearPageLRU(page);
2507 del_page_from_lru_list(zone, page, page_lru(page));
2508 was_on_lru = true;
2509 }
2510 }
2511
c0ff4b85 2512 pc->mem_cgroup = memcg;
261fb61a
KH
2513 /*
2514 * We access a page_cgroup asynchronously without lock_page_cgroup().
2515 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2516 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2517 * before USED bit, we need memory barrier here.
2518 * See mem_cgroup_add_lru_list(), etc.
2519 */
08e552c6 2520 smp_wmb();
b2402857 2521 SetPageCgroupUsed(pc);
3be91277 2522
9ce70c02
HD
2523 if (lrucare) {
2524 if (was_on_lru) {
2525 VM_BUG_ON(PageLRU(page));
2526 SetPageLRU(page);
2527 add_page_to_lru_list(zone, page, page_lru(page));
2528 }
2529 spin_unlock_irq(&zone->lru_lock);
2530 }
2531
b2402857
KH
2532 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2533 anon = true;
2534 else
2535 anon = false;
2536
2537 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2538 unlock_page_cgroup(pc);
9ce70c02 2539
430e4863
KH
2540 /*
2541 * "charge_statistics" updated event counter. Then, check it.
2542 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2543 * if they exceeds softlimit.
2544 */
c0ff4b85 2545 memcg_check_events(memcg, page);
7a81b88c 2546}
66e1707b 2547
ca3e0214
KH
2548#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2549
312734c0 2550#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
ca3e0214
KH
2551/*
2552 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2553 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2554 * charge/uncharge will be never happen and move_account() is done under
2555 * compound_lock(), so we don't have to take care of races.
ca3e0214 2556 */
e94c8a9c 2557void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2558{
2559 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2560 struct page_cgroup *pc;
2561 int i;
ca3e0214 2562
3d37c4a9
KH
2563 if (mem_cgroup_disabled())
2564 return;
e94c8a9c
KH
2565 for (i = 1; i < HPAGE_PMD_NR; i++) {
2566 pc = head_pc + i;
2567 pc->mem_cgroup = head_pc->mem_cgroup;
2568 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2569 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2570 }
ca3e0214 2571}
12d27107 2572#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2573
f817ed48 2574/**
de3638d9 2575 * mem_cgroup_move_account - move account of the page
5564e88b 2576 * @page: the page
7ec99d62 2577 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2578 * @pc: page_cgroup of the page.
2579 * @from: mem_cgroup which the page is moved from.
2580 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2581 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2582 *
2583 * The caller must confirm following.
08e552c6 2584 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2585 * - compound_lock is held when nr_pages > 1
f817ed48 2586 *
854ffa8d 2587 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2588 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2589 * true, this function does "uncharge" from old cgroup, but it doesn't if
2590 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2591 */
7ec99d62
JW
2592static int mem_cgroup_move_account(struct page *page,
2593 unsigned int nr_pages,
2594 struct page_cgroup *pc,
2595 struct mem_cgroup *from,
2596 struct mem_cgroup *to,
2597 bool uncharge)
f817ed48 2598{
de3638d9
JW
2599 unsigned long flags;
2600 int ret;
b2402857 2601 bool anon = PageAnon(page);
987eba66 2602
f817ed48 2603 VM_BUG_ON(from == to);
5564e88b 2604 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2605 /*
2606 * The page is isolated from LRU. So, collapse function
2607 * will not handle this page. But page splitting can happen.
2608 * Do this check under compound_page_lock(). The caller should
2609 * hold it.
2610 */
2611 ret = -EBUSY;
7ec99d62 2612 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2613 goto out;
2614
2615 lock_page_cgroup(pc);
2616
2617 ret = -EINVAL;
2618 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2619 goto unlock;
2620
312734c0 2621 move_lock_mem_cgroup(from, &flags);
f817ed48 2622
2ff76f11 2623 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2624 /* Update mapped_file data for mem_cgroup */
2625 preempt_disable();
2626 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2627 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2628 preempt_enable();
d69b042f 2629 }
b2402857 2630 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2631 if (uncharge)
2632 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2633 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2634
854ffa8d 2635 /* caller should have done css_get */
08e552c6 2636 pc->mem_cgroup = to;
b2402857 2637 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2638 /*
2639 * We charges against "to" which may not have any tasks. Then, "to"
2640 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2641 * this function is just force_empty() and move charge, so it's
25985edc 2642 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2643 * status here.
88703267 2644 */
312734c0 2645 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2646 ret = 0;
2647unlock:
57f9fd7d 2648 unlock_page_cgroup(pc);
d2265e6f
KH
2649 /*
2650 * check events
2651 */
5564e88b
JW
2652 memcg_check_events(to, page);
2653 memcg_check_events(from, page);
de3638d9 2654out:
f817ed48
KH
2655 return ret;
2656}
2657
2658/*
2659 * move charges to its parent.
2660 */
2661
5564e88b
JW
2662static int mem_cgroup_move_parent(struct page *page,
2663 struct page_cgroup *pc,
f817ed48
KH
2664 struct mem_cgroup *child,
2665 gfp_t gfp_mask)
2666{
2667 struct cgroup *cg = child->css.cgroup;
2668 struct cgroup *pcg = cg->parent;
2669 struct mem_cgroup *parent;
7ec99d62 2670 unsigned int nr_pages;
4be4489f 2671 unsigned long uninitialized_var(flags);
f817ed48
KH
2672 int ret;
2673
2674 /* Is ROOT ? */
2675 if (!pcg)
2676 return -EINVAL;
2677
57f9fd7d
DN
2678 ret = -EBUSY;
2679 if (!get_page_unless_zero(page))
2680 goto out;
2681 if (isolate_lru_page(page))
2682 goto put;
52dbb905 2683
7ec99d62 2684 nr_pages = hpage_nr_pages(page);
08e552c6 2685
f817ed48 2686 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2687 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2688 if (ret)
57f9fd7d 2689 goto put_back;
f817ed48 2690
7ec99d62 2691 if (nr_pages > 1)
987eba66
KH
2692 flags = compound_lock_irqsave(page);
2693
7ec99d62 2694 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2695 if (ret)
7ec99d62 2696 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2697
7ec99d62 2698 if (nr_pages > 1)
987eba66 2699 compound_unlock_irqrestore(page, flags);
8dba474f 2700put_back:
08e552c6 2701 putback_lru_page(page);
57f9fd7d 2702put:
40d58138 2703 put_page(page);
57f9fd7d 2704out:
f817ed48
KH
2705 return ret;
2706}
2707
7a81b88c
KH
2708/*
2709 * Charge the memory controller for page usage.
2710 * Return
2711 * 0 if the charge was successful
2712 * < 0 if the cgroup is over its limit
2713 */
2714static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2715 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2716{
c0ff4b85 2717 struct mem_cgroup *memcg = NULL;
7ec99d62 2718 unsigned int nr_pages = 1;
7a81b88c 2719 struct page_cgroup *pc;
8493ae43 2720 bool oom = true;
7a81b88c 2721 int ret;
ec168510 2722
37c2ac78 2723 if (PageTransHuge(page)) {
7ec99d62 2724 nr_pages <<= compound_order(page);
37c2ac78 2725 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2726 /*
2727 * Never OOM-kill a process for a huge page. The
2728 * fault handler will fall back to regular pages.
2729 */
2730 oom = false;
37c2ac78 2731 }
7a81b88c
KH
2732
2733 pc = lookup_page_cgroup(page);
c0ff4b85 2734 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2735 if (ret == -ENOMEM)
7a81b88c 2736 return ret;
9ce70c02 2737 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
8a9f3ccd 2738 return 0;
8a9f3ccd
BS
2739}
2740
7a81b88c
KH
2741int mem_cgroup_newpage_charge(struct page *page,
2742 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2743{
f8d66542 2744 if (mem_cgroup_disabled())
cede86ac 2745 return 0;
7a0524cf
JW
2746 VM_BUG_ON(page_mapped(page));
2747 VM_BUG_ON(page->mapping && !PageAnon(page));
2748 VM_BUG_ON(!mm);
217bc319 2749 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2750 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2751}
2752
83aae4c7
DN
2753static void
2754__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2755 enum charge_type ctype);
2756
e1a1cd59
BS
2757int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2758 gfp_t gfp_mask)
8697d331 2759{
c0ff4b85 2760 struct mem_cgroup *memcg = NULL;
dc67d504 2761 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2762 int ret;
2763
f8d66542 2764 if (mem_cgroup_disabled())
cede86ac 2765 return 0;
52d4b9ac
KH
2766 if (PageCompound(page))
2767 return 0;
accf163e 2768
73045c47 2769 if (unlikely(!mm))
8697d331 2770 mm = &init_mm;
dc67d504
KH
2771 if (!page_is_file_cache(page))
2772 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2773
38c5d72f 2774 if (!PageSwapCache(page))
dc67d504 2775 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2776 else { /* page is swapcache/shmem */
c0ff4b85 2777 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2778 if (!ret)
dc67d504
KH
2779 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2780 }
b5a84319 2781 return ret;
e8589cc1
KH
2782}
2783
54595fe2
KH
2784/*
2785 * While swap-in, try_charge -> commit or cancel, the page is locked.
2786 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2787 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2788 * "commit()" or removed by "cancel()"
2789 */
8c7c6e34
KH
2790int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2791 struct page *page,
72835c86 2792 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2793{
c0ff4b85 2794 struct mem_cgroup *memcg;
54595fe2 2795 int ret;
8c7c6e34 2796
72835c86 2797 *memcgp = NULL;
56039efa 2798
f8d66542 2799 if (mem_cgroup_disabled())
8c7c6e34
KH
2800 return 0;
2801
2802 if (!do_swap_account)
2803 goto charge_cur_mm;
8c7c6e34
KH
2804 /*
2805 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2806 * the pte, and even removed page from swap cache: in those cases
2807 * do_swap_page()'s pte_same() test will fail; but there's also a
2808 * KSM case which does need to charge the page.
8c7c6e34
KH
2809 */
2810 if (!PageSwapCache(page))
407f9c8b 2811 goto charge_cur_mm;
c0ff4b85
R
2812 memcg = try_get_mem_cgroup_from_page(page);
2813 if (!memcg)
54595fe2 2814 goto charge_cur_mm;
72835c86
JW
2815 *memcgp = memcg;
2816 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2817 css_put(&memcg->css);
38c5d72f
KH
2818 if (ret == -EINTR)
2819 ret = 0;
54595fe2 2820 return ret;
8c7c6e34
KH
2821charge_cur_mm:
2822 if (unlikely(!mm))
2823 mm = &init_mm;
38c5d72f
KH
2824 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2825 if (ret == -EINTR)
2826 ret = 0;
2827 return ret;
8c7c6e34
KH
2828}
2829
83aae4c7 2830static void
72835c86 2831__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2832 enum charge_type ctype)
7a81b88c 2833{
9ce70c02
HD
2834 struct page_cgroup *pc;
2835
f8d66542 2836 if (mem_cgroup_disabled())
7a81b88c 2837 return;
72835c86 2838 if (!memcg)
7a81b88c 2839 return;
72835c86 2840 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2841
9ce70c02
HD
2842 pc = lookup_page_cgroup(page);
2843 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
8c7c6e34
KH
2844 /*
2845 * Now swap is on-memory. This means this page may be
2846 * counted both as mem and swap....double count.
03f3c433
KH
2847 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2848 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2849 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2850 */
03f3c433 2851 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2852 swp_entry_t ent = {.val = page_private(page)};
72835c86 2853 struct mem_cgroup *swap_memcg;
a3b2d692 2854 unsigned short id;
a3b2d692
KH
2855
2856 id = swap_cgroup_record(ent, 0);
2857 rcu_read_lock();
72835c86
JW
2858 swap_memcg = mem_cgroup_lookup(id);
2859 if (swap_memcg) {
a3b2d692
KH
2860 /*
2861 * This recorded memcg can be obsolete one. So, avoid
2862 * calling css_tryget
2863 */
72835c86
JW
2864 if (!mem_cgroup_is_root(swap_memcg))
2865 res_counter_uncharge(&swap_memcg->memsw,
2866 PAGE_SIZE);
2867 mem_cgroup_swap_statistics(swap_memcg, false);
2868 mem_cgroup_put(swap_memcg);
8c7c6e34 2869 }
a3b2d692 2870 rcu_read_unlock();
8c7c6e34 2871 }
88703267
KH
2872 /*
2873 * At swapin, we may charge account against cgroup which has no tasks.
2874 * So, rmdir()->pre_destroy() can be called while we do this charge.
2875 * In that case, we need to call pre_destroy() again. check it here.
2876 */
72835c86 2877 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2878}
2879
72835c86
JW
2880void mem_cgroup_commit_charge_swapin(struct page *page,
2881 struct mem_cgroup *memcg)
83aae4c7 2882{
72835c86
JW
2883 __mem_cgroup_commit_charge_swapin(page, memcg,
2884 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2885}
2886
c0ff4b85 2887void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2888{
f8d66542 2889 if (mem_cgroup_disabled())
7a81b88c 2890 return;
c0ff4b85 2891 if (!memcg)
7a81b88c 2892 return;
c0ff4b85 2893 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2894}
2895
c0ff4b85 2896static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2897 unsigned int nr_pages,
2898 const enum charge_type ctype)
569b846d
KH
2899{
2900 struct memcg_batch_info *batch = NULL;
2901 bool uncharge_memsw = true;
7ec99d62 2902
569b846d
KH
2903 /* If swapout, usage of swap doesn't decrease */
2904 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2905 uncharge_memsw = false;
569b846d
KH
2906
2907 batch = &current->memcg_batch;
2908 /*
2909 * In usual, we do css_get() when we remember memcg pointer.
2910 * But in this case, we keep res->usage until end of a series of
2911 * uncharges. Then, it's ok to ignore memcg's refcnt.
2912 */
2913 if (!batch->memcg)
c0ff4b85 2914 batch->memcg = memcg;
3c11ecf4
KH
2915 /*
2916 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2917 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2918 * the same cgroup and we have chance to coalesce uncharges.
2919 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2920 * because we want to do uncharge as soon as possible.
2921 */
2922
2923 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2924 goto direct_uncharge;
2925
7ec99d62 2926 if (nr_pages > 1)
ec168510
AA
2927 goto direct_uncharge;
2928
569b846d
KH
2929 /*
2930 * In typical case, batch->memcg == mem. This means we can
2931 * merge a series of uncharges to an uncharge of res_counter.
2932 * If not, we uncharge res_counter ony by one.
2933 */
c0ff4b85 2934 if (batch->memcg != memcg)
569b846d
KH
2935 goto direct_uncharge;
2936 /* remember freed charge and uncharge it later */
7ffd4ca7 2937 batch->nr_pages++;
569b846d 2938 if (uncharge_memsw)
7ffd4ca7 2939 batch->memsw_nr_pages++;
569b846d
KH
2940 return;
2941direct_uncharge:
c0ff4b85 2942 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2943 if (uncharge_memsw)
c0ff4b85
R
2944 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2945 if (unlikely(batch->memcg != memcg))
2946 memcg_oom_recover(memcg);
569b846d 2947}
7a81b88c 2948
8a9f3ccd 2949/*
69029cd5 2950 * uncharge if !page_mapped(page)
8a9f3ccd 2951 */
8c7c6e34 2952static struct mem_cgroup *
69029cd5 2953__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2954{
c0ff4b85 2955 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2956 unsigned int nr_pages = 1;
2957 struct page_cgroup *pc;
b2402857 2958 bool anon;
8a9f3ccd 2959
f8d66542 2960 if (mem_cgroup_disabled())
8c7c6e34 2961 return NULL;
4077960e 2962
d13d1443 2963 if (PageSwapCache(page))
8c7c6e34 2964 return NULL;
d13d1443 2965
37c2ac78 2966 if (PageTransHuge(page)) {
7ec99d62 2967 nr_pages <<= compound_order(page);
37c2ac78
AA
2968 VM_BUG_ON(!PageTransHuge(page));
2969 }
8697d331 2970 /*
3c541e14 2971 * Check if our page_cgroup is valid
8697d331 2972 */
52d4b9ac 2973 pc = lookup_page_cgroup(page);
cfa44946 2974 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2975 return NULL;
b9c565d5 2976
52d4b9ac 2977 lock_page_cgroup(pc);
d13d1443 2978
c0ff4b85 2979 memcg = pc->mem_cgroup;
8c7c6e34 2980
d13d1443
KH
2981 if (!PageCgroupUsed(pc))
2982 goto unlock_out;
2983
b2402857
KH
2984 anon = PageAnon(page);
2985
d13d1443
KH
2986 switch (ctype) {
2987 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2988 /*
2989 * Generally PageAnon tells if it's the anon statistics to be
2990 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2991 * used before page reached the stage of being marked PageAnon.
2992 */
b2402857
KH
2993 anon = true;
2994 /* fallthrough */
8a9478ca 2995 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2996 /* See mem_cgroup_prepare_migration() */
2997 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2998 goto unlock_out;
2999 break;
3000 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3001 if (!PageAnon(page)) { /* Shared memory */
3002 if (page->mapping && !page_is_file_cache(page))
3003 goto unlock_out;
3004 } else if (page_mapped(page)) /* Anon */
3005 goto unlock_out;
3006 break;
3007 default:
3008 break;
52d4b9ac 3009 }
d13d1443 3010
b2402857 3011 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3012
52d4b9ac 3013 ClearPageCgroupUsed(pc);
544122e5
KH
3014 /*
3015 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3016 * freed from LRU. This is safe because uncharged page is expected not
3017 * to be reused (freed soon). Exception is SwapCache, it's handled by
3018 * special functions.
3019 */
b9c565d5 3020
52d4b9ac 3021 unlock_page_cgroup(pc);
f75ca962 3022 /*
c0ff4b85 3023 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3024 * will never be freed.
3025 */
c0ff4b85 3026 memcg_check_events(memcg, page);
f75ca962 3027 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3028 mem_cgroup_swap_statistics(memcg, true);
3029 mem_cgroup_get(memcg);
f75ca962 3030 }
c0ff4b85
R
3031 if (!mem_cgroup_is_root(memcg))
3032 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3033
c0ff4b85 3034 return memcg;
d13d1443
KH
3035
3036unlock_out:
3037 unlock_page_cgroup(pc);
8c7c6e34 3038 return NULL;
3c541e14
BS
3039}
3040
69029cd5
KH
3041void mem_cgroup_uncharge_page(struct page *page)
3042{
52d4b9ac
KH
3043 /* early check. */
3044 if (page_mapped(page))
3045 return;
40f23a21 3046 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3047 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3048}
3049
3050void mem_cgroup_uncharge_cache_page(struct page *page)
3051{
3052 VM_BUG_ON(page_mapped(page));
b7abea96 3053 VM_BUG_ON(page->mapping);
69029cd5
KH
3054 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3055}
3056
569b846d
KH
3057/*
3058 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3059 * In that cases, pages are freed continuously and we can expect pages
3060 * are in the same memcg. All these calls itself limits the number of
3061 * pages freed at once, then uncharge_start/end() is called properly.
3062 * This may be called prural(2) times in a context,
3063 */
3064
3065void mem_cgroup_uncharge_start(void)
3066{
3067 current->memcg_batch.do_batch++;
3068 /* We can do nest. */
3069 if (current->memcg_batch.do_batch == 1) {
3070 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3071 current->memcg_batch.nr_pages = 0;
3072 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3073 }
3074}
3075
3076void mem_cgroup_uncharge_end(void)
3077{
3078 struct memcg_batch_info *batch = &current->memcg_batch;
3079
3080 if (!batch->do_batch)
3081 return;
3082
3083 batch->do_batch--;
3084 if (batch->do_batch) /* If stacked, do nothing. */
3085 return;
3086
3087 if (!batch->memcg)
3088 return;
3089 /*
3090 * This "batch->memcg" is valid without any css_get/put etc...
3091 * bacause we hide charges behind us.
3092 */
7ffd4ca7
JW
3093 if (batch->nr_pages)
3094 res_counter_uncharge(&batch->memcg->res,
3095 batch->nr_pages * PAGE_SIZE);
3096 if (batch->memsw_nr_pages)
3097 res_counter_uncharge(&batch->memcg->memsw,
3098 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3099 memcg_oom_recover(batch->memcg);
569b846d
KH
3100 /* forget this pointer (for sanity check) */
3101 batch->memcg = NULL;
3102}
3103
e767e056 3104#ifdef CONFIG_SWAP
8c7c6e34 3105/*
e767e056 3106 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3107 * memcg information is recorded to swap_cgroup of "ent"
3108 */
8a9478ca
KH
3109void
3110mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3111{
3112 struct mem_cgroup *memcg;
8a9478ca
KH
3113 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3114
3115 if (!swapout) /* this was a swap cache but the swap is unused ! */
3116 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3117
3118 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3119
f75ca962
KH
3120 /*
3121 * record memcg information, if swapout && memcg != NULL,
3122 * mem_cgroup_get() was called in uncharge().
3123 */
3124 if (do_swap_account && swapout && memcg)
a3b2d692 3125 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3126}
e767e056 3127#endif
8c7c6e34
KH
3128
3129#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3130/*
3131 * called from swap_entry_free(). remove record in swap_cgroup and
3132 * uncharge "memsw" account.
3133 */
3134void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3135{
8c7c6e34 3136 struct mem_cgroup *memcg;
a3b2d692 3137 unsigned short id;
8c7c6e34
KH
3138
3139 if (!do_swap_account)
3140 return;
3141
a3b2d692
KH
3142 id = swap_cgroup_record(ent, 0);
3143 rcu_read_lock();
3144 memcg = mem_cgroup_lookup(id);
8c7c6e34 3145 if (memcg) {
a3b2d692
KH
3146 /*
3147 * We uncharge this because swap is freed.
3148 * This memcg can be obsolete one. We avoid calling css_tryget
3149 */
0c3e73e8 3150 if (!mem_cgroup_is_root(memcg))
4e649152 3151 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3152 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3153 mem_cgroup_put(memcg);
3154 }
a3b2d692 3155 rcu_read_unlock();
d13d1443 3156}
02491447
DN
3157
3158/**
3159 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3160 * @entry: swap entry to be moved
3161 * @from: mem_cgroup which the entry is moved from
3162 * @to: mem_cgroup which the entry is moved to
483c30b5 3163 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3164 *
3165 * It succeeds only when the swap_cgroup's record for this entry is the same
3166 * as the mem_cgroup's id of @from.
3167 *
3168 * Returns 0 on success, -EINVAL on failure.
3169 *
3170 * The caller must have charged to @to, IOW, called res_counter_charge() about
3171 * both res and memsw, and called css_get().
3172 */
3173static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3174 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3175{
3176 unsigned short old_id, new_id;
3177
3178 old_id = css_id(&from->css);
3179 new_id = css_id(&to->css);
3180
3181 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3182 mem_cgroup_swap_statistics(from, false);
483c30b5 3183 mem_cgroup_swap_statistics(to, true);
02491447 3184 /*
483c30b5
DN
3185 * This function is only called from task migration context now.
3186 * It postpones res_counter and refcount handling till the end
3187 * of task migration(mem_cgroup_clear_mc()) for performance
3188 * improvement. But we cannot postpone mem_cgroup_get(to)
3189 * because if the process that has been moved to @to does
3190 * swap-in, the refcount of @to might be decreased to 0.
02491447 3191 */
02491447 3192 mem_cgroup_get(to);
483c30b5
DN
3193 if (need_fixup) {
3194 if (!mem_cgroup_is_root(from))
3195 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3196 mem_cgroup_put(from);
3197 /*
3198 * we charged both to->res and to->memsw, so we should
3199 * uncharge to->res.
3200 */
3201 if (!mem_cgroup_is_root(to))
3202 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3203 }
02491447
DN
3204 return 0;
3205 }
3206 return -EINVAL;
3207}
3208#else
3209static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3210 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3211{
3212 return -EINVAL;
3213}
8c7c6e34 3214#endif
d13d1443 3215
ae41be37 3216/*
01b1ae63
KH
3217 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3218 * page belongs to.
ae41be37 3219 */
ac39cf8c 3220int mem_cgroup_prepare_migration(struct page *page,
72835c86 3221 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3222{
c0ff4b85 3223 struct mem_cgroup *memcg = NULL;
7ec99d62 3224 struct page_cgroup *pc;
ac39cf8c 3225 enum charge_type ctype;
e8589cc1 3226 int ret = 0;
8869b8f6 3227
72835c86 3228 *memcgp = NULL;
56039efa 3229
ec168510 3230 VM_BUG_ON(PageTransHuge(page));
f8d66542 3231 if (mem_cgroup_disabled())
4077960e
BS
3232 return 0;
3233
52d4b9ac
KH
3234 pc = lookup_page_cgroup(page);
3235 lock_page_cgroup(pc);
3236 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3237 memcg = pc->mem_cgroup;
3238 css_get(&memcg->css);
ac39cf8c 3239 /*
3240 * At migrating an anonymous page, its mapcount goes down
3241 * to 0 and uncharge() will be called. But, even if it's fully
3242 * unmapped, migration may fail and this page has to be
3243 * charged again. We set MIGRATION flag here and delay uncharge
3244 * until end_migration() is called
3245 *
3246 * Corner Case Thinking
3247 * A)
3248 * When the old page was mapped as Anon and it's unmap-and-freed
3249 * while migration was ongoing.
3250 * If unmap finds the old page, uncharge() of it will be delayed
3251 * until end_migration(). If unmap finds a new page, it's
3252 * uncharged when it make mapcount to be 1->0. If unmap code
3253 * finds swap_migration_entry, the new page will not be mapped
3254 * and end_migration() will find it(mapcount==0).
3255 *
3256 * B)
3257 * When the old page was mapped but migraion fails, the kernel
3258 * remaps it. A charge for it is kept by MIGRATION flag even
3259 * if mapcount goes down to 0. We can do remap successfully
3260 * without charging it again.
3261 *
3262 * C)
3263 * The "old" page is under lock_page() until the end of
3264 * migration, so, the old page itself will not be swapped-out.
3265 * If the new page is swapped out before end_migraton, our
3266 * hook to usual swap-out path will catch the event.
3267 */
3268 if (PageAnon(page))
3269 SetPageCgroupMigration(pc);
e8589cc1 3270 }
52d4b9ac 3271 unlock_page_cgroup(pc);
ac39cf8c 3272 /*
3273 * If the page is not charged at this point,
3274 * we return here.
3275 */
c0ff4b85 3276 if (!memcg)
ac39cf8c 3277 return 0;
01b1ae63 3278
72835c86
JW
3279 *memcgp = memcg;
3280 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3281 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3282 if (ret) {
ac39cf8c 3283 if (PageAnon(page)) {
3284 lock_page_cgroup(pc);
3285 ClearPageCgroupMigration(pc);
3286 unlock_page_cgroup(pc);
3287 /*
3288 * The old page may be fully unmapped while we kept it.
3289 */
3290 mem_cgroup_uncharge_page(page);
3291 }
38c5d72f 3292 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3293 return -ENOMEM;
e8589cc1 3294 }
ac39cf8c 3295 /*
3296 * We charge new page before it's used/mapped. So, even if unlock_page()
3297 * is called before end_migration, we can catch all events on this new
3298 * page. In the case new page is migrated but not remapped, new page's
3299 * mapcount will be finally 0 and we call uncharge in end_migration().
3300 */
3301 pc = lookup_page_cgroup(newpage);
3302 if (PageAnon(page))
3303 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3304 else if (page_is_file_cache(page))
3305 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3306 else
3307 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
9ce70c02 3308 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
e8589cc1 3309 return ret;
ae41be37 3310}
8869b8f6 3311
69029cd5 3312/* remove redundant charge if migration failed*/
c0ff4b85 3313void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3314 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3315{
ac39cf8c 3316 struct page *used, *unused;
01b1ae63 3317 struct page_cgroup *pc;
b2402857 3318 bool anon;
01b1ae63 3319
c0ff4b85 3320 if (!memcg)
01b1ae63 3321 return;
ac39cf8c 3322 /* blocks rmdir() */
c0ff4b85 3323 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3324 if (!migration_ok) {
ac39cf8c 3325 used = oldpage;
3326 unused = newpage;
01b1ae63 3327 } else {
ac39cf8c 3328 used = newpage;
01b1ae63
KH
3329 unused = oldpage;
3330 }
69029cd5 3331 /*
ac39cf8c 3332 * We disallowed uncharge of pages under migration because mapcount
3333 * of the page goes down to zero, temporarly.
3334 * Clear the flag and check the page should be charged.
01b1ae63 3335 */
ac39cf8c 3336 pc = lookup_page_cgroup(oldpage);
3337 lock_page_cgroup(pc);
3338 ClearPageCgroupMigration(pc);
3339 unlock_page_cgroup(pc);
b2402857
KH
3340 anon = PageAnon(used);
3341 __mem_cgroup_uncharge_common(unused,
3342 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3343 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3344
01b1ae63 3345 /*
ac39cf8c 3346 * If a page is a file cache, radix-tree replacement is very atomic
3347 * and we can skip this check. When it was an Anon page, its mapcount
3348 * goes down to 0. But because we added MIGRATION flage, it's not
3349 * uncharged yet. There are several case but page->mapcount check
3350 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3351 * check. (see prepare_charge() also)
69029cd5 3352 */
b2402857 3353 if (anon)
ac39cf8c 3354 mem_cgroup_uncharge_page(used);
88703267 3355 /*
ac39cf8c 3356 * At migration, we may charge account against cgroup which has no
3357 * tasks.
88703267
KH
3358 * So, rmdir()->pre_destroy() can be called while we do this charge.
3359 * In that case, we need to call pre_destroy() again. check it here.
3360 */
c0ff4b85 3361 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3362}
78fb7466 3363
ab936cbc
KH
3364/*
3365 * At replace page cache, newpage is not under any memcg but it's on
3366 * LRU. So, this function doesn't touch res_counter but handles LRU
3367 * in correct way. Both pages are locked so we cannot race with uncharge.
3368 */
3369void mem_cgroup_replace_page_cache(struct page *oldpage,
3370 struct page *newpage)
3371{
3372 struct mem_cgroup *memcg;
3373 struct page_cgroup *pc;
ab936cbc 3374 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3375
3376 if (mem_cgroup_disabled())
3377 return;
3378
3379 pc = lookup_page_cgroup(oldpage);
3380 /* fix accounting on old pages */
3381 lock_page_cgroup(pc);
3382 memcg = pc->mem_cgroup;
b2402857 3383 mem_cgroup_charge_statistics(memcg, false, -1);
ab936cbc
KH
3384 ClearPageCgroupUsed(pc);
3385 unlock_page_cgroup(pc);
3386
3387 if (PageSwapBacked(oldpage))
3388 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3389
ab936cbc
KH
3390 /*
3391 * Even if newpage->mapping was NULL before starting replacement,
3392 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3393 * LRU while we overwrite pc->mem_cgroup.
3394 */
9ce70c02 3395 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
ab936cbc
KH
3396}
3397
f212ad7c
DN
3398#ifdef CONFIG_DEBUG_VM
3399static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3400{
3401 struct page_cgroup *pc;
3402
3403 pc = lookup_page_cgroup(page);
cfa44946
JW
3404 /*
3405 * Can be NULL while feeding pages into the page allocator for
3406 * the first time, i.e. during boot or memory hotplug;
3407 * or when mem_cgroup_disabled().
3408 */
f212ad7c
DN
3409 if (likely(pc) && PageCgroupUsed(pc))
3410 return pc;
3411 return NULL;
3412}
3413
3414bool mem_cgroup_bad_page_check(struct page *page)
3415{
3416 if (mem_cgroup_disabled())
3417 return false;
3418
3419 return lookup_page_cgroup_used(page) != NULL;
3420}
3421
3422void mem_cgroup_print_bad_page(struct page *page)
3423{
3424 struct page_cgroup *pc;
3425
3426 pc = lookup_page_cgroup_used(page);
3427 if (pc) {
90b3feae 3428 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3429 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3430 }
3431}
3432#endif
3433
8c7c6e34
KH
3434static DEFINE_MUTEX(set_limit_mutex);
3435
d38d2a75 3436static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3437 unsigned long long val)
628f4235 3438{
81d39c20 3439 int retry_count;
3c11ecf4 3440 u64 memswlimit, memlimit;
628f4235 3441 int ret = 0;
81d39c20
KH
3442 int children = mem_cgroup_count_children(memcg);
3443 u64 curusage, oldusage;
3c11ecf4 3444 int enlarge;
81d39c20
KH
3445
3446 /*
3447 * For keeping hierarchical_reclaim simple, how long we should retry
3448 * is depends on callers. We set our retry-count to be function
3449 * of # of children which we should visit in this loop.
3450 */
3451 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3452
3453 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3454
3c11ecf4 3455 enlarge = 0;
8c7c6e34 3456 while (retry_count) {
628f4235
KH
3457 if (signal_pending(current)) {
3458 ret = -EINTR;
3459 break;
3460 }
8c7c6e34
KH
3461 /*
3462 * Rather than hide all in some function, I do this in
3463 * open coded manner. You see what this really does.
c0ff4b85 3464 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3465 */
3466 mutex_lock(&set_limit_mutex);
3467 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3468 if (memswlimit < val) {
3469 ret = -EINVAL;
3470 mutex_unlock(&set_limit_mutex);
628f4235
KH
3471 break;
3472 }
3c11ecf4
KH
3473
3474 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3475 if (memlimit < val)
3476 enlarge = 1;
3477
8c7c6e34 3478 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3479 if (!ret) {
3480 if (memswlimit == val)
3481 memcg->memsw_is_minimum = true;
3482 else
3483 memcg->memsw_is_minimum = false;
3484 }
8c7c6e34
KH
3485 mutex_unlock(&set_limit_mutex);
3486
3487 if (!ret)
3488 break;
3489
5660048c
JW
3490 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3491 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3492 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3493 /* Usage is reduced ? */
3494 if (curusage >= oldusage)
3495 retry_count--;
3496 else
3497 oldusage = curusage;
8c7c6e34 3498 }
3c11ecf4
KH
3499 if (!ret && enlarge)
3500 memcg_oom_recover(memcg);
14797e23 3501
8c7c6e34
KH
3502 return ret;
3503}
3504
338c8431
LZ
3505static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3506 unsigned long long val)
8c7c6e34 3507{
81d39c20 3508 int retry_count;
3c11ecf4 3509 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3510 int children = mem_cgroup_count_children(memcg);
3511 int ret = -EBUSY;
3c11ecf4 3512 int enlarge = 0;
8c7c6e34 3513
81d39c20
KH
3514 /* see mem_cgroup_resize_res_limit */
3515 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3516 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3517 while (retry_count) {
3518 if (signal_pending(current)) {
3519 ret = -EINTR;
3520 break;
3521 }
3522 /*
3523 * Rather than hide all in some function, I do this in
3524 * open coded manner. You see what this really does.
c0ff4b85 3525 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3526 */
3527 mutex_lock(&set_limit_mutex);
3528 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3529 if (memlimit > val) {
3530 ret = -EINVAL;
3531 mutex_unlock(&set_limit_mutex);
3532 break;
3533 }
3c11ecf4
KH
3534 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3535 if (memswlimit < val)
3536 enlarge = 1;
8c7c6e34 3537 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3538 if (!ret) {
3539 if (memlimit == val)
3540 memcg->memsw_is_minimum = true;
3541 else
3542 memcg->memsw_is_minimum = false;
3543 }
8c7c6e34
KH
3544 mutex_unlock(&set_limit_mutex);
3545
3546 if (!ret)
3547 break;
3548
5660048c
JW
3549 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3550 MEM_CGROUP_RECLAIM_NOSWAP |
3551 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3552 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3553 /* Usage is reduced ? */
8c7c6e34 3554 if (curusage >= oldusage)
628f4235 3555 retry_count--;
81d39c20
KH
3556 else
3557 oldusage = curusage;
628f4235 3558 }
3c11ecf4
KH
3559 if (!ret && enlarge)
3560 memcg_oom_recover(memcg);
628f4235
KH
3561 return ret;
3562}
3563
4e416953 3564unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3565 gfp_t gfp_mask,
3566 unsigned long *total_scanned)
4e416953
BS
3567{
3568 unsigned long nr_reclaimed = 0;
3569 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3570 unsigned long reclaimed;
3571 int loop = 0;
3572 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3573 unsigned long long excess;
0ae5e89c 3574 unsigned long nr_scanned;
4e416953
BS
3575
3576 if (order > 0)
3577 return 0;
3578
00918b6a 3579 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3580 /*
3581 * This loop can run a while, specially if mem_cgroup's continuously
3582 * keep exceeding their soft limit and putting the system under
3583 * pressure
3584 */
3585 do {
3586 if (next_mz)
3587 mz = next_mz;
3588 else
3589 mz = mem_cgroup_largest_soft_limit_node(mctz);
3590 if (!mz)
3591 break;
3592
0ae5e89c 3593 nr_scanned = 0;
d79154bb 3594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3595 gfp_mask, &nr_scanned);
4e416953 3596 nr_reclaimed += reclaimed;
0ae5e89c 3597 *total_scanned += nr_scanned;
4e416953
BS
3598 spin_lock(&mctz->lock);
3599
3600 /*
3601 * If we failed to reclaim anything from this memory cgroup
3602 * it is time to move on to the next cgroup
3603 */
3604 next_mz = NULL;
3605 if (!reclaimed) {
3606 do {
3607 /*
3608 * Loop until we find yet another one.
3609 *
3610 * By the time we get the soft_limit lock
3611 * again, someone might have aded the
3612 * group back on the RB tree. Iterate to
3613 * make sure we get a different mem.
3614 * mem_cgroup_largest_soft_limit_node returns
3615 * NULL if no other cgroup is present on
3616 * the tree
3617 */
3618 next_mz =
3619 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3620 if (next_mz == mz)
d79154bb 3621 css_put(&next_mz->memcg->css);
39cc98f1 3622 else /* next_mz == NULL or other memcg */
4e416953
BS
3623 break;
3624 } while (1);
3625 }
d79154bb
HD
3626 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3627 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3628 /*
3629 * One school of thought says that we should not add
3630 * back the node to the tree if reclaim returns 0.
3631 * But our reclaim could return 0, simply because due
3632 * to priority we are exposing a smaller subset of
3633 * memory to reclaim from. Consider this as a longer
3634 * term TODO.
3635 */
ef8745c1 3636 /* If excess == 0, no tree ops */
d79154bb 3637 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3638 spin_unlock(&mctz->lock);
d79154bb 3639 css_put(&mz->memcg->css);
4e416953
BS
3640 loop++;
3641 /*
3642 * Could not reclaim anything and there are no more
3643 * mem cgroups to try or we seem to be looping without
3644 * reclaiming anything.
3645 */
3646 if (!nr_reclaimed &&
3647 (next_mz == NULL ||
3648 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3649 break;
3650 } while (!nr_reclaimed);
3651 if (next_mz)
d79154bb 3652 css_put(&next_mz->memcg->css);
4e416953
BS
3653 return nr_reclaimed;
3654}
3655
cc847582
KH
3656/*
3657 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3658 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3659 */
c0ff4b85 3660static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3661 int node, int zid, enum lru_list lru)
cc847582 3662{
08e552c6 3663 struct mem_cgroup_per_zone *mz;
08e552c6 3664 unsigned long flags, loop;
072c56c1 3665 struct list_head *list;
925b7673
JW
3666 struct page *busy;
3667 struct zone *zone;
f817ed48 3668 int ret = 0;
072c56c1 3669
08e552c6 3670 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3671 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3672 list = &mz->lruvec.lists[lru];
cc847582 3673
1eb49272 3674 loop = mz->lru_size[lru];
f817ed48
KH
3675 /* give some margin against EBUSY etc...*/
3676 loop += 256;
3677 busy = NULL;
3678 while (loop--) {
925b7673 3679 struct page_cgroup *pc;
5564e88b
JW
3680 struct page *page;
3681
f817ed48 3682 ret = 0;
08e552c6 3683 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3684 if (list_empty(list)) {
08e552c6 3685 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3686 break;
f817ed48 3687 }
925b7673
JW
3688 page = list_entry(list->prev, struct page, lru);
3689 if (busy == page) {
3690 list_move(&page->lru, list);
648bcc77 3691 busy = NULL;
08e552c6 3692 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3693 continue;
3694 }
08e552c6 3695 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3696
925b7673 3697 pc = lookup_page_cgroup(page);
5564e88b 3698
c0ff4b85 3699 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3700 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3701 break;
f817ed48
KH
3702
3703 if (ret == -EBUSY || ret == -EINVAL) {
3704 /* found lock contention or "pc" is obsolete. */
925b7673 3705 busy = page;
f817ed48
KH
3706 cond_resched();
3707 } else
3708 busy = NULL;
cc847582 3709 }
08e552c6 3710
f817ed48
KH
3711 if (!ret && !list_empty(list))
3712 return -EBUSY;
3713 return ret;
cc847582
KH
3714}
3715
3716/*
3717 * make mem_cgroup's charge to be 0 if there is no task.
3718 * This enables deleting this mem_cgroup.
3719 */
c0ff4b85 3720static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3721{
f817ed48
KH
3722 int ret;
3723 int node, zid, shrink;
3724 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3725 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3726
c0ff4b85 3727 css_get(&memcg->css);
f817ed48
KH
3728
3729 shrink = 0;
c1e862c1
KH
3730 /* should free all ? */
3731 if (free_all)
3732 goto try_to_free;
f817ed48 3733move_account:
fce66477 3734 do {
f817ed48 3735 ret = -EBUSY;
c1e862c1
KH
3736 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3737 goto out;
3738 ret = -EINTR;
3739 if (signal_pending(current))
cc847582 3740 goto out;
52d4b9ac
KH
3741 /* This is for making all *used* pages to be on LRU. */
3742 lru_add_drain_all();
c0ff4b85 3743 drain_all_stock_sync(memcg);
f817ed48 3744 ret = 0;
c0ff4b85 3745 mem_cgroup_start_move(memcg);
299b4eaa 3746 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3747 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3748 enum lru_list lru;
3749 for_each_lru(lru) {
c0ff4b85 3750 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3751 node, zid, lru);
f817ed48
KH
3752 if (ret)
3753 break;
3754 }
1ecaab2b 3755 }
f817ed48
KH
3756 if (ret)
3757 break;
3758 }
c0ff4b85
R
3759 mem_cgroup_end_move(memcg);
3760 memcg_oom_recover(memcg);
f817ed48
KH
3761 /* it seems parent cgroup doesn't have enough mem */
3762 if (ret == -ENOMEM)
3763 goto try_to_free;
52d4b9ac 3764 cond_resched();
fce66477 3765 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3766 } while (memcg->res.usage > 0 || ret);
cc847582 3767out:
c0ff4b85 3768 css_put(&memcg->css);
cc847582 3769 return ret;
f817ed48
KH
3770
3771try_to_free:
c1e862c1
KH
3772 /* returns EBUSY if there is a task or if we come here twice. */
3773 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3774 ret = -EBUSY;
3775 goto out;
3776 }
c1e862c1
KH
3777 /* we call try-to-free pages for make this cgroup empty */
3778 lru_add_drain_all();
f817ed48
KH
3779 /* try to free all pages in this cgroup */
3780 shrink = 1;
c0ff4b85 3781 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3782 int progress;
c1e862c1
KH
3783
3784 if (signal_pending(current)) {
3785 ret = -EINTR;
3786 goto out;
3787 }
c0ff4b85 3788 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3789 false);
c1e862c1 3790 if (!progress) {
f817ed48 3791 nr_retries--;
c1e862c1 3792 /* maybe some writeback is necessary */
8aa7e847 3793 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3794 }
f817ed48
KH
3795
3796 }
08e552c6 3797 lru_add_drain();
f817ed48 3798 /* try move_account...there may be some *locked* pages. */
fce66477 3799 goto move_account;
cc847582
KH
3800}
3801
c1e862c1
KH
3802int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3803{
3804 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3805}
3806
3807
18f59ea7
BS
3808static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3809{
3810 return mem_cgroup_from_cont(cont)->use_hierarchy;
3811}
3812
3813static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3814 u64 val)
3815{
3816 int retval = 0;
c0ff4b85 3817 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3818 struct cgroup *parent = cont->parent;
c0ff4b85 3819 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3820
3821 if (parent)
c0ff4b85 3822 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3823
3824 cgroup_lock();
3825 /*
af901ca1 3826 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3827 * in the child subtrees. If it is unset, then the change can
3828 * occur, provided the current cgroup has no children.
3829 *
3830 * For the root cgroup, parent_mem is NULL, we allow value to be
3831 * set if there are no children.
3832 */
c0ff4b85 3833 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3834 (val == 1 || val == 0)) {
3835 if (list_empty(&cont->children))
c0ff4b85 3836 memcg->use_hierarchy = val;
18f59ea7
BS
3837 else
3838 retval = -EBUSY;
3839 } else
3840 retval = -EINVAL;
3841 cgroup_unlock();
3842
3843 return retval;
3844}
3845
0c3e73e8 3846
c0ff4b85 3847static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3848 enum mem_cgroup_stat_index idx)
0c3e73e8 3849{
7d74b06f 3850 struct mem_cgroup *iter;
7a159cc9 3851 long val = 0;
0c3e73e8 3852
7a159cc9 3853 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3854 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3855 val += mem_cgroup_read_stat(iter, idx);
3856
3857 if (val < 0) /* race ? */
3858 val = 0;
3859 return val;
0c3e73e8
BS
3860}
3861
c0ff4b85 3862static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3863{
7d74b06f 3864 u64 val;
104f3928 3865
c0ff4b85 3866 if (!mem_cgroup_is_root(memcg)) {
104f3928 3867 if (!swap)
65c64ce8 3868 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3869 else
65c64ce8 3870 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3871 }
3872
c0ff4b85
R
3873 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3874 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3875
7d74b06f 3876 if (swap)
c0ff4b85 3877 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3878
3879 return val << PAGE_SHIFT;
3880}
3881
af36f906
TH
3882static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3883 struct file *file, char __user *buf,
3884 size_t nbytes, loff_t *ppos)
8cdea7c0 3885{
c0ff4b85 3886 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3887 char str[64];
104f3928 3888 u64 val;
af36f906 3889 int type, name, len;
8c7c6e34
KH
3890
3891 type = MEMFILE_TYPE(cft->private);
3892 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3893
3894 if (!do_swap_account && type == _MEMSWAP)
3895 return -EOPNOTSUPP;
3896
8c7c6e34
KH
3897 switch (type) {
3898 case _MEM:
104f3928 3899 if (name == RES_USAGE)
c0ff4b85 3900 val = mem_cgroup_usage(memcg, false);
104f3928 3901 else
c0ff4b85 3902 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3903 break;
3904 case _MEMSWAP:
104f3928 3905 if (name == RES_USAGE)
c0ff4b85 3906 val = mem_cgroup_usage(memcg, true);
104f3928 3907 else
c0ff4b85 3908 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3909 break;
3910 default:
3911 BUG();
8c7c6e34 3912 }
af36f906
TH
3913
3914 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3915 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3916}
628f4235
KH
3917/*
3918 * The user of this function is...
3919 * RES_LIMIT.
3920 */
856c13aa
PM
3921static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3922 const char *buffer)
8cdea7c0 3923{
628f4235 3924 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3925 int type, name;
628f4235
KH
3926 unsigned long long val;
3927 int ret;
3928
8c7c6e34
KH
3929 type = MEMFILE_TYPE(cft->private);
3930 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3931
3932 if (!do_swap_account && type == _MEMSWAP)
3933 return -EOPNOTSUPP;
3934
8c7c6e34 3935 switch (name) {
628f4235 3936 case RES_LIMIT:
4b3bde4c
BS
3937 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3938 ret = -EINVAL;
3939 break;
3940 }
628f4235
KH
3941 /* This function does all necessary parse...reuse it */
3942 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3943 if (ret)
3944 break;
3945 if (type == _MEM)
628f4235 3946 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3947 else
3948 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3949 break;
296c81d8
BS
3950 case RES_SOFT_LIMIT:
3951 ret = res_counter_memparse_write_strategy(buffer, &val);
3952 if (ret)
3953 break;
3954 /*
3955 * For memsw, soft limits are hard to implement in terms
3956 * of semantics, for now, we support soft limits for
3957 * control without swap
3958 */
3959 if (type == _MEM)
3960 ret = res_counter_set_soft_limit(&memcg->res, val);
3961 else
3962 ret = -EINVAL;
3963 break;
628f4235
KH
3964 default:
3965 ret = -EINVAL; /* should be BUG() ? */
3966 break;
3967 }
3968 return ret;
8cdea7c0
BS
3969}
3970
fee7b548
KH
3971static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3972 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3973{
3974 struct cgroup *cgroup;
3975 unsigned long long min_limit, min_memsw_limit, tmp;
3976
3977 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3978 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3979 cgroup = memcg->css.cgroup;
3980 if (!memcg->use_hierarchy)
3981 goto out;
3982
3983 while (cgroup->parent) {
3984 cgroup = cgroup->parent;
3985 memcg = mem_cgroup_from_cont(cgroup);
3986 if (!memcg->use_hierarchy)
3987 break;
3988 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3989 min_limit = min(min_limit, tmp);
3990 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3991 min_memsw_limit = min(min_memsw_limit, tmp);
3992 }
3993out:
3994 *mem_limit = min_limit;
3995 *memsw_limit = min_memsw_limit;
fee7b548
KH
3996}
3997
29f2a4da 3998static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3999{
af36f906 4000 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4001 int type, name;
c84872e1 4002
8c7c6e34
KH
4003 type = MEMFILE_TYPE(event);
4004 name = MEMFILE_ATTR(event);
af36f906
TH
4005
4006 if (!do_swap_account && type == _MEMSWAP)
4007 return -EOPNOTSUPP;
4008
8c7c6e34 4009 switch (name) {
29f2a4da 4010 case RES_MAX_USAGE:
8c7c6e34 4011 if (type == _MEM)
c0ff4b85 4012 res_counter_reset_max(&memcg->res);
8c7c6e34 4013 else
c0ff4b85 4014 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4015 break;
4016 case RES_FAILCNT:
8c7c6e34 4017 if (type == _MEM)
c0ff4b85 4018 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4019 else
c0ff4b85 4020 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4021 break;
4022 }
f64c3f54 4023
85cc59db 4024 return 0;
c84872e1
PE
4025}
4026
7dc74be0
DN
4027static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4028 struct cftype *cft)
4029{
4030 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4031}
4032
02491447 4033#ifdef CONFIG_MMU
7dc74be0
DN
4034static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4035 struct cftype *cft, u64 val)
4036{
c0ff4b85 4037 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4038
4039 if (val >= (1 << NR_MOVE_TYPE))
4040 return -EINVAL;
4041 /*
4042 * We check this value several times in both in can_attach() and
4043 * attach(), so we need cgroup lock to prevent this value from being
4044 * inconsistent.
4045 */
4046 cgroup_lock();
c0ff4b85 4047 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4048 cgroup_unlock();
4049
4050 return 0;
4051}
02491447
DN
4052#else
4053static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4054 struct cftype *cft, u64 val)
4055{
4056 return -ENOSYS;
4057}
4058#endif
7dc74be0 4059
14067bb3
KH
4060
4061/* For read statistics */
4062enum {
4063 MCS_CACHE,
4064 MCS_RSS,
d8046582 4065 MCS_FILE_MAPPED,
14067bb3
KH
4066 MCS_PGPGIN,
4067 MCS_PGPGOUT,
1dd3a273 4068 MCS_SWAP,
456f998e
YH
4069 MCS_PGFAULT,
4070 MCS_PGMAJFAULT,
14067bb3
KH
4071 MCS_INACTIVE_ANON,
4072 MCS_ACTIVE_ANON,
4073 MCS_INACTIVE_FILE,
4074 MCS_ACTIVE_FILE,
4075 MCS_UNEVICTABLE,
4076 NR_MCS_STAT,
4077};
4078
4079struct mcs_total_stat {
4080 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4081};
4082
14067bb3
KH
4083struct {
4084 char *local_name;
4085 char *total_name;
4086} memcg_stat_strings[NR_MCS_STAT] = {
4087 {"cache", "total_cache"},
4088 {"rss", "total_rss"},
d69b042f 4089 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4090 {"pgpgin", "total_pgpgin"},
4091 {"pgpgout", "total_pgpgout"},
1dd3a273 4092 {"swap", "total_swap"},
456f998e
YH
4093 {"pgfault", "total_pgfault"},
4094 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4095 {"inactive_anon", "total_inactive_anon"},
4096 {"active_anon", "total_active_anon"},
4097 {"inactive_file", "total_inactive_file"},
4098 {"active_file", "total_active_file"},
4099 {"unevictable", "total_unevictable"}
4100};
4101
4102
7d74b06f 4103static void
c0ff4b85 4104mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4105{
14067bb3
KH
4106 s64 val;
4107
4108 /* per cpu stat */
c0ff4b85 4109 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4110 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4111 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4112 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4113 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4114 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4115 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4116 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4117 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4118 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4119 if (do_swap_account) {
c0ff4b85 4120 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4121 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4122 }
c0ff4b85 4123 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4124 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4125 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4126 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4127
4128 /* per zone stat */
c0ff4b85 4129 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4130 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4131 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4132 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4133 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4134 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4135 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4136 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4137 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4138 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4139}
4140
4141static void
c0ff4b85 4142mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4143{
7d74b06f
KH
4144 struct mem_cgroup *iter;
4145
c0ff4b85 4146 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4147 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4148}
4149
406eb0c9
YH
4150#ifdef CONFIG_NUMA
4151static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4152{
4153 int nid;
4154 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4155 unsigned long node_nr;
4156 struct cgroup *cont = m->private;
d79154bb 4157 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4158
d79154bb 4159 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4160 seq_printf(m, "total=%lu", total_nr);
4161 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4162 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4163 seq_printf(m, " N%d=%lu", nid, node_nr);
4164 }
4165 seq_putc(m, '\n');
4166
d79154bb 4167 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4168 seq_printf(m, "file=%lu", file_nr);
4169 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4170 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4171 LRU_ALL_FILE);
406eb0c9
YH
4172 seq_printf(m, " N%d=%lu", nid, node_nr);
4173 }
4174 seq_putc(m, '\n');
4175
d79154bb 4176 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4177 seq_printf(m, "anon=%lu", anon_nr);
4178 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4179 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4180 LRU_ALL_ANON);
406eb0c9
YH
4181 seq_printf(m, " N%d=%lu", nid, node_nr);
4182 }
4183 seq_putc(m, '\n');
4184
d79154bb 4185 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4186 seq_printf(m, "unevictable=%lu", unevictable_nr);
4187 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4188 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4189 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4190 seq_printf(m, " N%d=%lu", nid, node_nr);
4191 }
4192 seq_putc(m, '\n');
4193 return 0;
4194}
4195#endif /* CONFIG_NUMA */
4196
c64745cf
PM
4197static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4198 struct cgroup_map_cb *cb)
d2ceb9b7 4199{
d79154bb 4200 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4201 struct mcs_total_stat mystat;
d2ceb9b7
KH
4202 int i;
4203
14067bb3 4204 memset(&mystat, 0, sizeof(mystat));
d79154bb 4205 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4206
406eb0c9 4207
1dd3a273
DN
4208 for (i = 0; i < NR_MCS_STAT; i++) {
4209 if (i == MCS_SWAP && !do_swap_account)
4210 continue;
14067bb3 4211 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4212 }
7b854121 4213
14067bb3 4214 /* Hierarchical information */
fee7b548
KH
4215 {
4216 unsigned long long limit, memsw_limit;
d79154bb 4217 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4218 cb->fill(cb, "hierarchical_memory_limit", limit);
4219 if (do_swap_account)
4220 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4221 }
7f016ee8 4222
14067bb3 4223 memset(&mystat, 0, sizeof(mystat));
d79154bb 4224 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4225 for (i = 0; i < NR_MCS_STAT; i++) {
4226 if (i == MCS_SWAP && !do_swap_account)
4227 continue;
14067bb3 4228 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4229 }
14067bb3 4230
7f016ee8 4231#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4232 {
4233 int nid, zid;
4234 struct mem_cgroup_per_zone *mz;
4235 unsigned long recent_rotated[2] = {0, 0};
4236 unsigned long recent_scanned[2] = {0, 0};
4237
4238 for_each_online_node(nid)
4239 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4240 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
7f016ee8
KM
4241
4242 recent_rotated[0] +=
4243 mz->reclaim_stat.recent_rotated[0];
4244 recent_rotated[1] +=
4245 mz->reclaim_stat.recent_rotated[1];
4246 recent_scanned[0] +=
4247 mz->reclaim_stat.recent_scanned[0];
4248 recent_scanned[1] +=
4249 mz->reclaim_stat.recent_scanned[1];
4250 }
4251 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4252 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4253 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4254 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4255 }
4256#endif
4257
d2ceb9b7
KH
4258 return 0;
4259}
4260
a7885eb8
KM
4261static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4262{
4263 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4264
1f4c025b 4265 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4266}
4267
4268static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4269 u64 val)
4270{
4271 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4272 struct mem_cgroup *parent;
068b38c1 4273
a7885eb8
KM
4274 if (val > 100)
4275 return -EINVAL;
4276
4277 if (cgrp->parent == NULL)
4278 return -EINVAL;
4279
4280 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4281
4282 cgroup_lock();
4283
a7885eb8
KM
4284 /* If under hierarchy, only empty-root can set this value */
4285 if ((parent->use_hierarchy) ||
068b38c1
LZ
4286 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4287 cgroup_unlock();
a7885eb8 4288 return -EINVAL;
068b38c1 4289 }
a7885eb8 4290
a7885eb8 4291 memcg->swappiness = val;
a7885eb8 4292
068b38c1
LZ
4293 cgroup_unlock();
4294
a7885eb8
KM
4295 return 0;
4296}
4297
2e72b634
KS
4298static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4299{
4300 struct mem_cgroup_threshold_ary *t;
4301 u64 usage;
4302 int i;
4303
4304 rcu_read_lock();
4305 if (!swap)
2c488db2 4306 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4307 else
2c488db2 4308 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4309
4310 if (!t)
4311 goto unlock;
4312
4313 usage = mem_cgroup_usage(memcg, swap);
4314
4315 /*
4316 * current_threshold points to threshold just below usage.
4317 * If it's not true, a threshold was crossed after last
4318 * call of __mem_cgroup_threshold().
4319 */
5407a562 4320 i = t->current_threshold;
2e72b634
KS
4321
4322 /*
4323 * Iterate backward over array of thresholds starting from
4324 * current_threshold and check if a threshold is crossed.
4325 * If none of thresholds below usage is crossed, we read
4326 * only one element of the array here.
4327 */
4328 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4329 eventfd_signal(t->entries[i].eventfd, 1);
4330
4331 /* i = current_threshold + 1 */
4332 i++;
4333
4334 /*
4335 * Iterate forward over array of thresholds starting from
4336 * current_threshold+1 and check if a threshold is crossed.
4337 * If none of thresholds above usage is crossed, we read
4338 * only one element of the array here.
4339 */
4340 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4341 eventfd_signal(t->entries[i].eventfd, 1);
4342
4343 /* Update current_threshold */
5407a562 4344 t->current_threshold = i - 1;
2e72b634
KS
4345unlock:
4346 rcu_read_unlock();
4347}
4348
4349static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4350{
ad4ca5f4
KS
4351 while (memcg) {
4352 __mem_cgroup_threshold(memcg, false);
4353 if (do_swap_account)
4354 __mem_cgroup_threshold(memcg, true);
4355
4356 memcg = parent_mem_cgroup(memcg);
4357 }
2e72b634
KS
4358}
4359
4360static int compare_thresholds(const void *a, const void *b)
4361{
4362 const struct mem_cgroup_threshold *_a = a;
4363 const struct mem_cgroup_threshold *_b = b;
4364
4365 return _a->threshold - _b->threshold;
4366}
4367
c0ff4b85 4368static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4369{
4370 struct mem_cgroup_eventfd_list *ev;
4371
c0ff4b85 4372 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4373 eventfd_signal(ev->eventfd, 1);
4374 return 0;
4375}
4376
c0ff4b85 4377static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4378{
7d74b06f
KH
4379 struct mem_cgroup *iter;
4380
c0ff4b85 4381 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4382 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4383}
4384
4385static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4386 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4387{
4388 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4389 struct mem_cgroup_thresholds *thresholds;
4390 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4391 int type = MEMFILE_TYPE(cft->private);
4392 u64 threshold, usage;
2c488db2 4393 int i, size, ret;
2e72b634
KS
4394
4395 ret = res_counter_memparse_write_strategy(args, &threshold);
4396 if (ret)
4397 return ret;
4398
4399 mutex_lock(&memcg->thresholds_lock);
2c488db2 4400
2e72b634 4401 if (type == _MEM)
2c488db2 4402 thresholds = &memcg->thresholds;
2e72b634 4403 else if (type == _MEMSWAP)
2c488db2 4404 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4405 else
4406 BUG();
4407
4408 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4409
4410 /* Check if a threshold crossed before adding a new one */
2c488db2 4411 if (thresholds->primary)
2e72b634
KS
4412 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4413
2c488db2 4414 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4415
4416 /* Allocate memory for new array of thresholds */
2c488db2 4417 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4418 GFP_KERNEL);
2c488db2 4419 if (!new) {
2e72b634
KS
4420 ret = -ENOMEM;
4421 goto unlock;
4422 }
2c488db2 4423 new->size = size;
2e72b634
KS
4424
4425 /* Copy thresholds (if any) to new array */
2c488db2
KS
4426 if (thresholds->primary) {
4427 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4428 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4429 }
4430
2e72b634 4431 /* Add new threshold */
2c488db2
KS
4432 new->entries[size - 1].eventfd = eventfd;
4433 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4434
4435 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4436 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4437 compare_thresholds, NULL);
4438
4439 /* Find current threshold */
2c488db2 4440 new->current_threshold = -1;
2e72b634 4441 for (i = 0; i < size; i++) {
2c488db2 4442 if (new->entries[i].threshold < usage) {
2e72b634 4443 /*
2c488db2
KS
4444 * new->current_threshold will not be used until
4445 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4446 * it here.
4447 */
2c488db2 4448 ++new->current_threshold;
2e72b634
KS
4449 }
4450 }
4451
2c488db2
KS
4452 /* Free old spare buffer and save old primary buffer as spare */
4453 kfree(thresholds->spare);
4454 thresholds->spare = thresholds->primary;
4455
4456 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4457
907860ed 4458 /* To be sure that nobody uses thresholds */
2e72b634
KS
4459 synchronize_rcu();
4460
2e72b634
KS
4461unlock:
4462 mutex_unlock(&memcg->thresholds_lock);
4463
4464 return ret;
4465}
4466
907860ed 4467static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4468 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4469{
4470 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4471 struct mem_cgroup_thresholds *thresholds;
4472 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4473 int type = MEMFILE_TYPE(cft->private);
4474 u64 usage;
2c488db2 4475 int i, j, size;
2e72b634
KS
4476
4477 mutex_lock(&memcg->thresholds_lock);
4478 if (type == _MEM)
2c488db2 4479 thresholds = &memcg->thresholds;
2e72b634 4480 else if (type == _MEMSWAP)
2c488db2 4481 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4482 else
4483 BUG();
4484
371528ca
AV
4485 if (!thresholds->primary)
4486 goto unlock;
4487
2e72b634
KS
4488 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4489
4490 /* Check if a threshold crossed before removing */
4491 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4492
4493 /* Calculate new number of threshold */
2c488db2
KS
4494 size = 0;
4495 for (i = 0; i < thresholds->primary->size; i++) {
4496 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4497 size++;
4498 }
4499
2c488db2 4500 new = thresholds->spare;
907860ed 4501
2e72b634
KS
4502 /* Set thresholds array to NULL if we don't have thresholds */
4503 if (!size) {
2c488db2
KS
4504 kfree(new);
4505 new = NULL;
907860ed 4506 goto swap_buffers;
2e72b634
KS
4507 }
4508
2c488db2 4509 new->size = size;
2e72b634
KS
4510
4511 /* Copy thresholds and find current threshold */
2c488db2
KS
4512 new->current_threshold = -1;
4513 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4514 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4515 continue;
4516
2c488db2
KS
4517 new->entries[j] = thresholds->primary->entries[i];
4518 if (new->entries[j].threshold < usage) {
2e72b634 4519 /*
2c488db2 4520 * new->current_threshold will not be used
2e72b634
KS
4521 * until rcu_assign_pointer(), so it's safe to increment
4522 * it here.
4523 */
2c488db2 4524 ++new->current_threshold;
2e72b634
KS
4525 }
4526 j++;
4527 }
4528
907860ed 4529swap_buffers:
2c488db2
KS
4530 /* Swap primary and spare array */
4531 thresholds->spare = thresholds->primary;
4532 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4533
907860ed 4534 /* To be sure that nobody uses thresholds */
2e72b634 4535 synchronize_rcu();
371528ca 4536unlock:
2e72b634 4537 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4538}
c1e862c1 4539
9490ff27
KH
4540static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4541 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4542{
4543 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4544 struct mem_cgroup_eventfd_list *event;
4545 int type = MEMFILE_TYPE(cft->private);
4546
4547 BUG_ON(type != _OOM_TYPE);
4548 event = kmalloc(sizeof(*event), GFP_KERNEL);
4549 if (!event)
4550 return -ENOMEM;
4551
1af8efe9 4552 spin_lock(&memcg_oom_lock);
9490ff27
KH
4553
4554 event->eventfd = eventfd;
4555 list_add(&event->list, &memcg->oom_notify);
4556
4557 /* already in OOM ? */
79dfdacc 4558 if (atomic_read(&memcg->under_oom))
9490ff27 4559 eventfd_signal(eventfd, 1);
1af8efe9 4560 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4561
4562 return 0;
4563}
4564
907860ed 4565static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4566 struct cftype *cft, struct eventfd_ctx *eventfd)
4567{
c0ff4b85 4568 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4569 struct mem_cgroup_eventfd_list *ev, *tmp;
4570 int type = MEMFILE_TYPE(cft->private);
4571
4572 BUG_ON(type != _OOM_TYPE);
4573
1af8efe9 4574 spin_lock(&memcg_oom_lock);
9490ff27 4575
c0ff4b85 4576 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4577 if (ev->eventfd == eventfd) {
4578 list_del(&ev->list);
4579 kfree(ev);
4580 }
4581 }
4582
1af8efe9 4583 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4584}
4585
3c11ecf4
KH
4586static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4587 struct cftype *cft, struct cgroup_map_cb *cb)
4588{
c0ff4b85 4589 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4590
c0ff4b85 4591 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4592
c0ff4b85 4593 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4594 cb->fill(cb, "under_oom", 1);
4595 else
4596 cb->fill(cb, "under_oom", 0);
4597 return 0;
4598}
4599
3c11ecf4
KH
4600static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4601 struct cftype *cft, u64 val)
4602{
c0ff4b85 4603 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4604 struct mem_cgroup *parent;
4605
4606 /* cannot set to root cgroup and only 0 and 1 are allowed */
4607 if (!cgrp->parent || !((val == 0) || (val == 1)))
4608 return -EINVAL;
4609
4610 parent = mem_cgroup_from_cont(cgrp->parent);
4611
4612 cgroup_lock();
4613 /* oom-kill-disable is a flag for subhierarchy. */
4614 if ((parent->use_hierarchy) ||
c0ff4b85 4615 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4616 cgroup_unlock();
4617 return -EINVAL;
4618 }
c0ff4b85 4619 memcg->oom_kill_disable = val;
4d845ebf 4620 if (!val)
c0ff4b85 4621 memcg_oom_recover(memcg);
3c11ecf4
KH
4622 cgroup_unlock();
4623 return 0;
4624}
4625
406eb0c9
YH
4626#ifdef CONFIG_NUMA
4627static const struct file_operations mem_control_numa_stat_file_operations = {
4628 .read = seq_read,
4629 .llseek = seq_lseek,
4630 .release = single_release,
4631};
4632
4633static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4634{
4635 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4636
4637 file->f_op = &mem_control_numa_stat_file_operations;
4638 return single_open(file, mem_control_numa_stat_show, cont);
4639}
4640#endif /* CONFIG_NUMA */
4641
e5671dfa 4642#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4643static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4644{
d1a4c0b3
GC
4645 /*
4646 * Part of this would be better living in a separate allocation
4647 * function, leaving us with just the cgroup tree population work.
4648 * We, however, depend on state such as network's proto_list that
4649 * is only initialized after cgroup creation. I found the less
4650 * cumbersome way to deal with it to defer it all to populate time
4651 */
65c64ce8 4652 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4653};
4654
761b3ef5 4655static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3 4656{
761b3ef5 4657 mem_cgroup_sockets_destroy(cont);
d1a4c0b3 4658}
e5671dfa
GC
4659#else
4660static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4661{
4662 return 0;
4663}
d1a4c0b3 4664
761b3ef5 4665static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3
GC
4666{
4667}
e5671dfa
GC
4668#endif
4669
8cdea7c0
BS
4670static struct cftype mem_cgroup_files[] = {
4671 {
0eea1030 4672 .name = "usage_in_bytes",
8c7c6e34 4673 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4674 .read = mem_cgroup_read,
9490ff27
KH
4675 .register_event = mem_cgroup_usage_register_event,
4676 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4677 },
c84872e1
PE
4678 {
4679 .name = "max_usage_in_bytes",
8c7c6e34 4680 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4681 .trigger = mem_cgroup_reset,
af36f906 4682 .read = mem_cgroup_read,
c84872e1 4683 },
8cdea7c0 4684 {
0eea1030 4685 .name = "limit_in_bytes",
8c7c6e34 4686 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4687 .write_string = mem_cgroup_write,
af36f906 4688 .read = mem_cgroup_read,
8cdea7c0 4689 },
296c81d8
BS
4690 {
4691 .name = "soft_limit_in_bytes",
4692 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4693 .write_string = mem_cgroup_write,
af36f906 4694 .read = mem_cgroup_read,
296c81d8 4695 },
8cdea7c0
BS
4696 {
4697 .name = "failcnt",
8c7c6e34 4698 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4699 .trigger = mem_cgroup_reset,
af36f906 4700 .read = mem_cgroup_read,
8cdea7c0 4701 },
d2ceb9b7
KH
4702 {
4703 .name = "stat",
c64745cf 4704 .read_map = mem_control_stat_show,
d2ceb9b7 4705 },
c1e862c1
KH
4706 {
4707 .name = "force_empty",
4708 .trigger = mem_cgroup_force_empty_write,
4709 },
18f59ea7
BS
4710 {
4711 .name = "use_hierarchy",
4712 .write_u64 = mem_cgroup_hierarchy_write,
4713 .read_u64 = mem_cgroup_hierarchy_read,
4714 },
a7885eb8
KM
4715 {
4716 .name = "swappiness",
4717 .read_u64 = mem_cgroup_swappiness_read,
4718 .write_u64 = mem_cgroup_swappiness_write,
4719 },
7dc74be0
DN
4720 {
4721 .name = "move_charge_at_immigrate",
4722 .read_u64 = mem_cgroup_move_charge_read,
4723 .write_u64 = mem_cgroup_move_charge_write,
4724 },
9490ff27
KH
4725 {
4726 .name = "oom_control",
3c11ecf4
KH
4727 .read_map = mem_cgroup_oom_control_read,
4728 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4729 .register_event = mem_cgroup_oom_register_event,
4730 .unregister_event = mem_cgroup_oom_unregister_event,
4731 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4732 },
406eb0c9
YH
4733#ifdef CONFIG_NUMA
4734 {
4735 .name = "numa_stat",
4736 .open = mem_control_numa_stat_open,
89577127 4737 .mode = S_IRUGO,
406eb0c9
YH
4738 },
4739#endif
8c7c6e34 4740#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4741 {
4742 .name = "memsw.usage_in_bytes",
4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4744 .read = mem_cgroup_read,
9490ff27
KH
4745 .register_event = mem_cgroup_usage_register_event,
4746 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4747 },
4748 {
4749 .name = "memsw.max_usage_in_bytes",
4750 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4751 .trigger = mem_cgroup_reset,
af36f906 4752 .read = mem_cgroup_read,
8c7c6e34
KH
4753 },
4754 {
4755 .name = "memsw.limit_in_bytes",
4756 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4757 .write_string = mem_cgroup_write,
af36f906 4758 .read = mem_cgroup_read,
8c7c6e34
KH
4759 },
4760 {
4761 .name = "memsw.failcnt",
4762 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4763 .trigger = mem_cgroup_reset,
af36f906 4764 .read = mem_cgroup_read,
8c7c6e34 4765 },
8c7c6e34 4766#endif
af36f906 4767};
8c7c6e34 4768
c0ff4b85 4769static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4770{
4771 struct mem_cgroup_per_node *pn;
1ecaab2b 4772 struct mem_cgroup_per_zone *mz;
f156ab93 4773 enum lru_list lru;
41e3355d 4774 int zone, tmp = node;
1ecaab2b
KH
4775 /*
4776 * This routine is called against possible nodes.
4777 * But it's BUG to call kmalloc() against offline node.
4778 *
4779 * TODO: this routine can waste much memory for nodes which will
4780 * never be onlined. It's better to use memory hotplug callback
4781 * function.
4782 */
41e3355d
KH
4783 if (!node_state(node, N_NORMAL_MEMORY))
4784 tmp = -1;
17295c88 4785 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4786 if (!pn)
4787 return 1;
1ecaab2b 4788
1ecaab2b
KH
4789 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4790 mz = &pn->zoneinfo[zone];
f156ab93
HD
4791 for_each_lru(lru)
4792 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
f64c3f54 4793 mz->usage_in_excess = 0;
4e416953 4794 mz->on_tree = false;
d79154bb 4795 mz->memcg = memcg;
1ecaab2b 4796 }
0a619e58 4797 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4798 return 0;
4799}
4800
c0ff4b85 4801static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4802{
c0ff4b85 4803 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4804}
4805
33327948
KH
4806static struct mem_cgroup *mem_cgroup_alloc(void)
4807{
d79154bb 4808 struct mem_cgroup *memcg;
c62b1a3b 4809 int size = sizeof(struct mem_cgroup);
33327948 4810
c62b1a3b 4811 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4812 if (size < PAGE_SIZE)
d79154bb 4813 memcg = kzalloc(size, GFP_KERNEL);
33327948 4814 else
d79154bb 4815 memcg = vzalloc(size);
33327948 4816
d79154bb 4817 if (!memcg)
e7bbcdf3
DC
4818 return NULL;
4819
d79154bb
HD
4820 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4821 if (!memcg->stat)
d2e61b8d 4822 goto out_free;
d79154bb
HD
4823 spin_lock_init(&memcg->pcp_counter_lock);
4824 return memcg;
d2e61b8d
DC
4825
4826out_free:
4827 if (size < PAGE_SIZE)
d79154bb 4828 kfree(memcg);
d2e61b8d 4829 else
d79154bb 4830 vfree(memcg);
d2e61b8d 4831 return NULL;
33327948
KH
4832}
4833
59927fb9
HD
4834/*
4835 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4836 * but in process context. The work_freeing structure is overlaid
4837 * on the rcu_freeing structure, which itself is overlaid on memsw.
4838 */
4839static void vfree_work(struct work_struct *work)
4840{
4841 struct mem_cgroup *memcg;
4842
4843 memcg = container_of(work, struct mem_cgroup, work_freeing);
4844 vfree(memcg);
4845}
4846static void vfree_rcu(struct rcu_head *rcu_head)
4847{
4848 struct mem_cgroup *memcg;
4849
4850 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4851 INIT_WORK(&memcg->work_freeing, vfree_work);
4852 schedule_work(&memcg->work_freeing);
4853}
4854
8c7c6e34
KH
4855/*
4856 * At destroying mem_cgroup, references from swap_cgroup can remain.
4857 * (scanning all at force_empty is too costly...)
4858 *
4859 * Instead of clearing all references at force_empty, we remember
4860 * the number of reference from swap_cgroup and free mem_cgroup when
4861 * it goes down to 0.
4862 *
8c7c6e34
KH
4863 * Removal of cgroup itself succeeds regardless of refs from swap.
4864 */
4865
c0ff4b85 4866static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4867{
08e552c6
KH
4868 int node;
4869
c0ff4b85
R
4870 mem_cgroup_remove_from_trees(memcg);
4871 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4872
3ed28fa1 4873 for_each_node(node)
c0ff4b85 4874 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4875
c0ff4b85 4876 free_percpu(memcg->stat);
c62b1a3b 4877 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4878 kfree_rcu(memcg, rcu_freeing);
33327948 4879 else
59927fb9 4880 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4881}
4882
c0ff4b85 4883static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4884{
c0ff4b85 4885 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4886}
4887
c0ff4b85 4888static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4889{
c0ff4b85
R
4890 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4891 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4892 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4893 if (parent)
4894 mem_cgroup_put(parent);
4895 }
8c7c6e34
KH
4896}
4897
c0ff4b85 4898static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4899{
c0ff4b85 4900 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4901}
4902
7bcc1bb1
DN
4903/*
4904 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4905 */
e1aab161 4906struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4907{
c0ff4b85 4908 if (!memcg->res.parent)
7bcc1bb1 4909 return NULL;
c0ff4b85 4910 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4911}
e1aab161 4912EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4913
c077719b
KH
4914#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4915static void __init enable_swap_cgroup(void)
4916{
f8d66542 4917 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4918 do_swap_account = 1;
4919}
4920#else
4921static void __init enable_swap_cgroup(void)
4922{
4923}
4924#endif
4925
f64c3f54
BS
4926static int mem_cgroup_soft_limit_tree_init(void)
4927{
4928 struct mem_cgroup_tree_per_node *rtpn;
4929 struct mem_cgroup_tree_per_zone *rtpz;
4930 int tmp, node, zone;
4931
3ed28fa1 4932 for_each_node(node) {
f64c3f54
BS
4933 tmp = node;
4934 if (!node_state(node, N_NORMAL_MEMORY))
4935 tmp = -1;
4936 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4937 if (!rtpn)
c3cecc68 4938 goto err_cleanup;
f64c3f54
BS
4939
4940 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4941
4942 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4943 rtpz = &rtpn->rb_tree_per_zone[zone];
4944 rtpz->rb_root = RB_ROOT;
4945 spin_lock_init(&rtpz->lock);
4946 }
4947 }
4948 return 0;
c3cecc68
MH
4949
4950err_cleanup:
3ed28fa1 4951 for_each_node(node) {
c3cecc68
MH
4952 if (!soft_limit_tree.rb_tree_per_node[node])
4953 break;
4954 kfree(soft_limit_tree.rb_tree_per_node[node]);
4955 soft_limit_tree.rb_tree_per_node[node] = NULL;
4956 }
4957 return 1;
4958
f64c3f54
BS
4959}
4960
0eb253e2 4961static struct cgroup_subsys_state * __ref
761b3ef5 4962mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4963{
c0ff4b85 4964 struct mem_cgroup *memcg, *parent;
04046e1a 4965 long error = -ENOMEM;
6d12e2d8 4966 int node;
8cdea7c0 4967
c0ff4b85
R
4968 memcg = mem_cgroup_alloc();
4969 if (!memcg)
04046e1a 4970 return ERR_PTR(error);
78fb7466 4971
3ed28fa1 4972 for_each_node(node)
c0ff4b85 4973 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4974 goto free_out;
f64c3f54 4975
c077719b 4976 /* root ? */
28dbc4b6 4977 if (cont->parent == NULL) {
cdec2e42 4978 int cpu;
c077719b 4979 enable_swap_cgroup();
28dbc4b6 4980 parent = NULL;
f64c3f54
BS
4981 if (mem_cgroup_soft_limit_tree_init())
4982 goto free_out;
a41c58a6 4983 root_mem_cgroup = memcg;
cdec2e42
KH
4984 for_each_possible_cpu(cpu) {
4985 struct memcg_stock_pcp *stock =
4986 &per_cpu(memcg_stock, cpu);
4987 INIT_WORK(&stock->work, drain_local_stock);
4988 }
711d3d2c 4989 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4990 } else {
28dbc4b6 4991 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4992 memcg->use_hierarchy = parent->use_hierarchy;
4993 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4994 }
28dbc4b6 4995
18f59ea7 4996 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4997 res_counter_init(&memcg->res, &parent->res);
4998 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4999 /*
5000 * We increment refcnt of the parent to ensure that we can
5001 * safely access it on res_counter_charge/uncharge.
5002 * This refcnt will be decremented when freeing this
5003 * mem_cgroup(see mem_cgroup_put).
5004 */
5005 mem_cgroup_get(parent);
18f59ea7 5006 } else {
c0ff4b85
R
5007 res_counter_init(&memcg->res, NULL);
5008 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5009 }
c0ff4b85
R
5010 memcg->last_scanned_node = MAX_NUMNODES;
5011 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5012
a7885eb8 5013 if (parent)
c0ff4b85
R
5014 memcg->swappiness = mem_cgroup_swappiness(parent);
5015 atomic_set(&memcg->refcnt, 1);
5016 memcg->move_charge_at_immigrate = 0;
5017 mutex_init(&memcg->thresholds_lock);
312734c0 5018 spin_lock_init(&memcg->move_lock);
c0ff4b85 5019 return &memcg->css;
6d12e2d8 5020free_out:
c0ff4b85 5021 __mem_cgroup_free(memcg);
04046e1a 5022 return ERR_PTR(error);
8cdea7c0
BS
5023}
5024
761b3ef5 5025static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5026{
c0ff4b85 5027 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5028
c0ff4b85 5029 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5030}
5031
761b3ef5 5032static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5033{
c0ff4b85 5034 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5035
761b3ef5 5036 kmem_cgroup_destroy(cont);
d1a4c0b3 5037
c0ff4b85 5038 mem_cgroup_put(memcg);
8cdea7c0
BS
5039}
5040
5041static int mem_cgroup_populate(struct cgroup_subsys *ss,
5042 struct cgroup *cont)
5043{
8c7c6e34
KH
5044 int ret;
5045
5046 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5047 ARRAY_SIZE(mem_cgroup_files));
5048
e5671dfa
GC
5049 if (!ret)
5050 ret = register_kmem_files(cont, ss);
5051
8c7c6e34 5052 return ret;
8cdea7c0
BS
5053}
5054
02491447 5055#ifdef CONFIG_MMU
7dc74be0 5056/* Handlers for move charge at task migration. */
854ffa8d
DN
5057#define PRECHARGE_COUNT_AT_ONCE 256
5058static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5059{
854ffa8d
DN
5060 int ret = 0;
5061 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5062 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5063
c0ff4b85 5064 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5065 mc.precharge += count;
5066 /* we don't need css_get for root */
5067 return ret;
5068 }
5069 /* try to charge at once */
5070 if (count > 1) {
5071 struct res_counter *dummy;
5072 /*
c0ff4b85 5073 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5074 * by cgroup_lock_live_cgroup() that it is not removed and we
5075 * are still under the same cgroup_mutex. So we can postpone
5076 * css_get().
5077 */
c0ff4b85 5078 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5079 goto one_by_one;
c0ff4b85 5080 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5081 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5082 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5083 goto one_by_one;
5084 }
5085 mc.precharge += count;
854ffa8d
DN
5086 return ret;
5087 }
5088one_by_one:
5089 /* fall back to one by one charge */
5090 while (count--) {
5091 if (signal_pending(current)) {
5092 ret = -EINTR;
5093 break;
5094 }
5095 if (!batch_count--) {
5096 batch_count = PRECHARGE_COUNT_AT_ONCE;
5097 cond_resched();
5098 }
c0ff4b85
R
5099 ret = __mem_cgroup_try_charge(NULL,
5100 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5101 if (ret)
854ffa8d 5102 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5103 return ret;
854ffa8d
DN
5104 mc.precharge++;
5105 }
4ffef5fe
DN
5106 return ret;
5107}
5108
5109/**
8d32ff84 5110 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5111 * @vma: the vma the pte to be checked belongs
5112 * @addr: the address corresponding to the pte to be checked
5113 * @ptent: the pte to be checked
02491447 5114 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5115 *
5116 * Returns
5117 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5118 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5119 * move charge. if @target is not NULL, the page is stored in target->page
5120 * with extra refcnt got(Callers should handle it).
02491447
DN
5121 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5122 * target for charge migration. if @target is not NULL, the entry is stored
5123 * in target->ent.
4ffef5fe
DN
5124 *
5125 * Called with pte lock held.
5126 */
4ffef5fe
DN
5127union mc_target {
5128 struct page *page;
02491447 5129 swp_entry_t ent;
4ffef5fe
DN
5130};
5131
4ffef5fe 5132enum mc_target_type {
8d32ff84 5133 MC_TARGET_NONE = 0,
4ffef5fe 5134 MC_TARGET_PAGE,
02491447 5135 MC_TARGET_SWAP,
4ffef5fe
DN
5136};
5137
90254a65
DN
5138static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5139 unsigned long addr, pte_t ptent)
4ffef5fe 5140{
90254a65 5141 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5142
90254a65
DN
5143 if (!page || !page_mapped(page))
5144 return NULL;
5145 if (PageAnon(page)) {
5146 /* we don't move shared anon */
be22aece 5147 if (!move_anon() || page_mapcount(page) > 2)
90254a65 5148 return NULL;
87946a72
DN
5149 } else if (!move_file())
5150 /* we ignore mapcount for file pages */
90254a65
DN
5151 return NULL;
5152 if (!get_page_unless_zero(page))
5153 return NULL;
5154
5155 return page;
5156}
5157
5158static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5159 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5160{
5161 int usage_count;
5162 struct page *page = NULL;
5163 swp_entry_t ent = pte_to_swp_entry(ptent);
5164
5165 if (!move_anon() || non_swap_entry(ent))
5166 return NULL;
5167 usage_count = mem_cgroup_count_swap_user(ent, &page);
5168 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5169 if (page)
5170 put_page(page);
90254a65 5171 return NULL;
02491447 5172 }
90254a65
DN
5173 if (do_swap_account)
5174 entry->val = ent.val;
5175
5176 return page;
5177}
5178
87946a72
DN
5179static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5180 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5181{
5182 struct page *page = NULL;
5183 struct inode *inode;
5184 struct address_space *mapping;
5185 pgoff_t pgoff;
5186
5187 if (!vma->vm_file) /* anonymous vma */
5188 return NULL;
5189 if (!move_file())
5190 return NULL;
5191
5192 inode = vma->vm_file->f_path.dentry->d_inode;
5193 mapping = vma->vm_file->f_mapping;
5194 if (pte_none(ptent))
5195 pgoff = linear_page_index(vma, addr);
5196 else /* pte_file(ptent) is true */
5197 pgoff = pte_to_pgoff(ptent);
5198
5199 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5200 page = find_get_page(mapping, pgoff);
5201
5202#ifdef CONFIG_SWAP
5203 /* shmem/tmpfs may report page out on swap: account for that too. */
5204 if (radix_tree_exceptional_entry(page)) {
5205 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5206 if (do_swap_account)
aa3b1895
HD
5207 *entry = swap;
5208 page = find_get_page(&swapper_space, swap.val);
87946a72 5209 }
aa3b1895 5210#endif
87946a72
DN
5211 return page;
5212}
5213
8d32ff84 5214static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5215 unsigned long addr, pte_t ptent, union mc_target *target)
5216{
5217 struct page *page = NULL;
5218 struct page_cgroup *pc;
8d32ff84 5219 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5220 swp_entry_t ent = { .val = 0 };
5221
5222 if (pte_present(ptent))
5223 page = mc_handle_present_pte(vma, addr, ptent);
5224 else if (is_swap_pte(ptent))
5225 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5226 else if (pte_none(ptent) || pte_file(ptent))
5227 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5228
5229 if (!page && !ent.val)
8d32ff84 5230 return ret;
02491447
DN
5231 if (page) {
5232 pc = lookup_page_cgroup(page);
5233 /*
5234 * Do only loose check w/o page_cgroup lock.
5235 * mem_cgroup_move_account() checks the pc is valid or not under
5236 * the lock.
5237 */
5238 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5239 ret = MC_TARGET_PAGE;
5240 if (target)
5241 target->page = page;
5242 }
5243 if (!ret || !target)
5244 put_page(page);
5245 }
90254a65
DN
5246 /* There is a swap entry and a page doesn't exist or isn't charged */
5247 if (ent.val && !ret &&
9fb4b7cc 5248 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5249 ret = MC_TARGET_SWAP;
5250 if (target)
5251 target->ent = ent;
4ffef5fe 5252 }
4ffef5fe
DN
5253 return ret;
5254}
5255
12724850
NH
5256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5257/*
5258 * We don't consider swapping or file mapped pages because THP does not
5259 * support them for now.
5260 * Caller should make sure that pmd_trans_huge(pmd) is true.
5261 */
5262static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5263 unsigned long addr, pmd_t pmd, union mc_target *target)
5264{
5265 struct page *page = NULL;
5266 struct page_cgroup *pc;
5267 enum mc_target_type ret = MC_TARGET_NONE;
5268
5269 page = pmd_page(pmd);
5270 VM_BUG_ON(!page || !PageHead(page));
5271 if (!move_anon())
5272 return ret;
5273 pc = lookup_page_cgroup(page);
5274 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5275 ret = MC_TARGET_PAGE;
5276 if (target) {
5277 get_page(page);
5278 target->page = page;
5279 }
5280 }
5281 return ret;
5282}
5283#else
5284static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5285 unsigned long addr, pmd_t pmd, union mc_target *target)
5286{
5287 return MC_TARGET_NONE;
5288}
5289#endif
5290
4ffef5fe
DN
5291static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5292 unsigned long addr, unsigned long end,
5293 struct mm_walk *walk)
5294{
5295 struct vm_area_struct *vma = walk->private;
5296 pte_t *pte;
5297 spinlock_t *ptl;
5298
12724850
NH
5299 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5300 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5301 mc.precharge += HPAGE_PMD_NR;
5302 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5303 return 0;
12724850 5304 }
03319327 5305
45f83cef
AA
5306 if (pmd_trans_unstable(pmd))
5307 return 0;
4ffef5fe
DN
5308 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5309 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5310 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5311 mc.precharge++; /* increment precharge temporarily */
5312 pte_unmap_unlock(pte - 1, ptl);
5313 cond_resched();
5314
7dc74be0
DN
5315 return 0;
5316}
5317
4ffef5fe
DN
5318static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5319{
5320 unsigned long precharge;
5321 struct vm_area_struct *vma;
5322
dfe076b0 5323 down_read(&mm->mmap_sem);
4ffef5fe
DN
5324 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5325 struct mm_walk mem_cgroup_count_precharge_walk = {
5326 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5327 .mm = mm,
5328 .private = vma,
5329 };
5330 if (is_vm_hugetlb_page(vma))
5331 continue;
4ffef5fe
DN
5332 walk_page_range(vma->vm_start, vma->vm_end,
5333 &mem_cgroup_count_precharge_walk);
5334 }
dfe076b0 5335 up_read(&mm->mmap_sem);
4ffef5fe
DN
5336
5337 precharge = mc.precharge;
5338 mc.precharge = 0;
5339
5340 return precharge;
5341}
5342
4ffef5fe
DN
5343static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5344{
dfe076b0
DN
5345 unsigned long precharge = mem_cgroup_count_precharge(mm);
5346
5347 VM_BUG_ON(mc.moving_task);
5348 mc.moving_task = current;
5349 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5350}
5351
dfe076b0
DN
5352/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5353static void __mem_cgroup_clear_mc(void)
4ffef5fe 5354{
2bd9bb20
KH
5355 struct mem_cgroup *from = mc.from;
5356 struct mem_cgroup *to = mc.to;
5357
4ffef5fe 5358 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5359 if (mc.precharge) {
5360 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5361 mc.precharge = 0;
5362 }
5363 /*
5364 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5365 * we must uncharge here.
5366 */
5367 if (mc.moved_charge) {
5368 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5369 mc.moved_charge = 0;
4ffef5fe 5370 }
483c30b5
DN
5371 /* we must fixup refcnts and charges */
5372 if (mc.moved_swap) {
483c30b5
DN
5373 /* uncharge swap account from the old cgroup */
5374 if (!mem_cgroup_is_root(mc.from))
5375 res_counter_uncharge(&mc.from->memsw,
5376 PAGE_SIZE * mc.moved_swap);
5377 __mem_cgroup_put(mc.from, mc.moved_swap);
5378
5379 if (!mem_cgroup_is_root(mc.to)) {
5380 /*
5381 * we charged both to->res and to->memsw, so we should
5382 * uncharge to->res.
5383 */
5384 res_counter_uncharge(&mc.to->res,
5385 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5386 }
5387 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5388 mc.moved_swap = 0;
5389 }
dfe076b0
DN
5390 memcg_oom_recover(from);
5391 memcg_oom_recover(to);
5392 wake_up_all(&mc.waitq);
5393}
5394
5395static void mem_cgroup_clear_mc(void)
5396{
5397 struct mem_cgroup *from = mc.from;
5398
5399 /*
5400 * we must clear moving_task before waking up waiters at the end of
5401 * task migration.
5402 */
5403 mc.moving_task = NULL;
5404 __mem_cgroup_clear_mc();
2bd9bb20 5405 spin_lock(&mc.lock);
4ffef5fe
DN
5406 mc.from = NULL;
5407 mc.to = NULL;
2bd9bb20 5408 spin_unlock(&mc.lock);
32047e2a 5409 mem_cgroup_end_move(from);
4ffef5fe
DN
5410}
5411
761b3ef5
LZ
5412static int mem_cgroup_can_attach(struct cgroup *cgroup,
5413 struct cgroup_taskset *tset)
7dc74be0 5414{
2f7ee569 5415 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5416 int ret = 0;
c0ff4b85 5417 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5418
c0ff4b85 5419 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5420 struct mm_struct *mm;
5421 struct mem_cgroup *from = mem_cgroup_from_task(p);
5422
c0ff4b85 5423 VM_BUG_ON(from == memcg);
7dc74be0
DN
5424
5425 mm = get_task_mm(p);
5426 if (!mm)
5427 return 0;
7dc74be0 5428 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5429 if (mm->owner == p) {
5430 VM_BUG_ON(mc.from);
5431 VM_BUG_ON(mc.to);
5432 VM_BUG_ON(mc.precharge);
854ffa8d 5433 VM_BUG_ON(mc.moved_charge);
483c30b5 5434 VM_BUG_ON(mc.moved_swap);
32047e2a 5435 mem_cgroup_start_move(from);
2bd9bb20 5436 spin_lock(&mc.lock);
4ffef5fe 5437 mc.from = from;
c0ff4b85 5438 mc.to = memcg;
2bd9bb20 5439 spin_unlock(&mc.lock);
dfe076b0 5440 /* We set mc.moving_task later */
4ffef5fe
DN
5441
5442 ret = mem_cgroup_precharge_mc(mm);
5443 if (ret)
5444 mem_cgroup_clear_mc();
dfe076b0
DN
5445 }
5446 mmput(mm);
7dc74be0
DN
5447 }
5448 return ret;
5449}
5450
761b3ef5
LZ
5451static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5452 struct cgroup_taskset *tset)
7dc74be0 5453{
4ffef5fe 5454 mem_cgroup_clear_mc();
7dc74be0
DN
5455}
5456
4ffef5fe
DN
5457static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5458 unsigned long addr, unsigned long end,
5459 struct mm_walk *walk)
7dc74be0 5460{
4ffef5fe
DN
5461 int ret = 0;
5462 struct vm_area_struct *vma = walk->private;
5463 pte_t *pte;
5464 spinlock_t *ptl;
12724850
NH
5465 enum mc_target_type target_type;
5466 union mc_target target;
5467 struct page *page;
5468 struct page_cgroup *pc;
4ffef5fe 5469
12724850
NH
5470 /*
5471 * We don't take compound_lock() here but no race with splitting thp
5472 * happens because:
5473 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5474 * under splitting, which means there's no concurrent thp split,
5475 * - if another thread runs into split_huge_page() just after we
5476 * entered this if-block, the thread must wait for page table lock
5477 * to be unlocked in __split_huge_page_splitting(), where the main
5478 * part of thp split is not executed yet.
5479 */
5480 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5481 if (!mc.precharge) {
5482 spin_unlock(&vma->vm_mm->page_table_lock);
5483 return 0;
5484 }
5485 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5486 if (target_type == MC_TARGET_PAGE) {
5487 page = target.page;
5488 if (!isolate_lru_page(page)) {
5489 pc = lookup_page_cgroup(page);
5490 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5491 pc, mc.from, mc.to,
5492 false)) {
5493 mc.precharge -= HPAGE_PMD_NR;
5494 mc.moved_charge += HPAGE_PMD_NR;
5495 }
5496 putback_lru_page(page);
5497 }
5498 put_page(page);
5499 }
5500 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5501 return 0;
12724850
NH
5502 }
5503
45f83cef
AA
5504 if (pmd_trans_unstable(pmd))
5505 return 0;
4ffef5fe
DN
5506retry:
5507 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5508 for (; addr != end; addr += PAGE_SIZE) {
5509 pte_t ptent = *(pte++);
02491447 5510 swp_entry_t ent;
4ffef5fe
DN
5511
5512 if (!mc.precharge)
5513 break;
5514
8d32ff84 5515 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5516 case MC_TARGET_PAGE:
5517 page = target.page;
5518 if (isolate_lru_page(page))
5519 goto put;
5520 pc = lookup_page_cgroup(page);
7ec99d62
JW
5521 if (!mem_cgroup_move_account(page, 1, pc,
5522 mc.from, mc.to, false)) {
4ffef5fe 5523 mc.precharge--;
854ffa8d
DN
5524 /* we uncharge from mc.from later. */
5525 mc.moved_charge++;
4ffef5fe
DN
5526 }
5527 putback_lru_page(page);
8d32ff84 5528put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5529 put_page(page);
5530 break;
02491447
DN
5531 case MC_TARGET_SWAP:
5532 ent = target.ent;
483c30b5
DN
5533 if (!mem_cgroup_move_swap_account(ent,
5534 mc.from, mc.to, false)) {
02491447 5535 mc.precharge--;
483c30b5
DN
5536 /* we fixup refcnts and charges later. */
5537 mc.moved_swap++;
5538 }
02491447 5539 break;
4ffef5fe
DN
5540 default:
5541 break;
5542 }
5543 }
5544 pte_unmap_unlock(pte - 1, ptl);
5545 cond_resched();
5546
5547 if (addr != end) {
5548 /*
5549 * We have consumed all precharges we got in can_attach().
5550 * We try charge one by one, but don't do any additional
5551 * charges to mc.to if we have failed in charge once in attach()
5552 * phase.
5553 */
854ffa8d 5554 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5555 if (!ret)
5556 goto retry;
5557 }
5558
5559 return ret;
5560}
5561
5562static void mem_cgroup_move_charge(struct mm_struct *mm)
5563{
5564 struct vm_area_struct *vma;
5565
5566 lru_add_drain_all();
dfe076b0
DN
5567retry:
5568 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5569 /*
5570 * Someone who are holding the mmap_sem might be waiting in
5571 * waitq. So we cancel all extra charges, wake up all waiters,
5572 * and retry. Because we cancel precharges, we might not be able
5573 * to move enough charges, but moving charge is a best-effort
5574 * feature anyway, so it wouldn't be a big problem.
5575 */
5576 __mem_cgroup_clear_mc();
5577 cond_resched();
5578 goto retry;
5579 }
4ffef5fe
DN
5580 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5581 int ret;
5582 struct mm_walk mem_cgroup_move_charge_walk = {
5583 .pmd_entry = mem_cgroup_move_charge_pte_range,
5584 .mm = mm,
5585 .private = vma,
5586 };
5587 if (is_vm_hugetlb_page(vma))
5588 continue;
4ffef5fe
DN
5589 ret = walk_page_range(vma->vm_start, vma->vm_end,
5590 &mem_cgroup_move_charge_walk);
5591 if (ret)
5592 /*
5593 * means we have consumed all precharges and failed in
5594 * doing additional charge. Just abandon here.
5595 */
5596 break;
5597 }
dfe076b0 5598 up_read(&mm->mmap_sem);
7dc74be0
DN
5599}
5600
761b3ef5
LZ
5601static void mem_cgroup_move_task(struct cgroup *cont,
5602 struct cgroup_taskset *tset)
67e465a7 5603{
2f7ee569 5604 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5605 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5606
dfe076b0 5607 if (mm) {
a433658c
KM
5608 if (mc.to)
5609 mem_cgroup_move_charge(mm);
5610 put_swap_token(mm);
dfe076b0
DN
5611 mmput(mm);
5612 }
a433658c
KM
5613 if (mc.to)
5614 mem_cgroup_clear_mc();
67e465a7 5615}
5cfb80a7 5616#else /* !CONFIG_MMU */
761b3ef5
LZ
5617static int mem_cgroup_can_attach(struct cgroup *cgroup,
5618 struct cgroup_taskset *tset)
5cfb80a7
DN
5619{
5620 return 0;
5621}
761b3ef5
LZ
5622static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5623 struct cgroup_taskset *tset)
5cfb80a7
DN
5624{
5625}
761b3ef5
LZ
5626static void mem_cgroup_move_task(struct cgroup *cont,
5627 struct cgroup_taskset *tset)
5cfb80a7
DN
5628{
5629}
5630#endif
67e465a7 5631
8cdea7c0
BS
5632struct cgroup_subsys mem_cgroup_subsys = {
5633 .name = "memory",
5634 .subsys_id = mem_cgroup_subsys_id,
5635 .create = mem_cgroup_create,
df878fb0 5636 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5637 .destroy = mem_cgroup_destroy,
5638 .populate = mem_cgroup_populate,
7dc74be0
DN
5639 .can_attach = mem_cgroup_can_attach,
5640 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5641 .attach = mem_cgroup_move_task,
6d12e2d8 5642 .early_init = 0,
04046e1a 5643 .use_id = 1,
8cdea7c0 5644};
c077719b
KH
5645
5646#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5647static int __init enable_swap_account(char *s)
5648{
5649 /* consider enabled if no parameter or 1 is given */
a2c8990a 5650 if (!strcmp(s, "1"))
a42c390c 5651 really_do_swap_account = 1;
a2c8990a 5652 else if (!strcmp(s, "0"))
a42c390c
MH
5653 really_do_swap_account = 0;
5654 return 1;
5655}
a2c8990a 5656__setup("swapaccount=", enable_swap_account);
c077719b 5657
c077719b 5658#endif
This page took 0.73095 seconds and 5 git commands to generate.