memcg: fold __mem_cgroup_move_account into caller
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c
DN
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
2bd9bb20 297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
4ffef5fe 300
90254a65
DN
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
87946a72
DN
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
4e416953
BS
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
217bc319
KH
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
327 NR_CHARGE_TYPE,
328};
329
8c7c6e34
KH
330/* for encoding cft->private value on file */
331#define _MEM (0)
332#define _MEMSWAP (1)
9490ff27 333#define _OOM_TYPE (2)
8c7c6e34
KH
334#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
337/* Used for OOM nofiier */
338#define OOM_CONTROL (0)
8c7c6e34 339
75822b44
BS
340/*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
347#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 349
8c7c6e34
KH
350static void mem_cgroup_get(struct mem_cgroup *mem);
351static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 352static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 353static void drain_all_stock_async(void);
8c7c6e34 354
f64c3f54
BS
355static struct mem_cgroup_per_zone *
356mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357{
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359}
360
d324236b
WF
361struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362{
363 return &mem->css;
364}
365
f64c3f54 366static struct mem_cgroup_per_zone *
97a6c37b 367page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 368{
97a6c37b
JW
369 int nid = page_to_nid(page);
370 int zid = page_zonenum(page);
f64c3f54 371
f64c3f54
BS
372 return mem_cgroup_zoneinfo(mem, nid, zid);
373}
374
375static struct mem_cgroup_tree_per_zone *
376soft_limit_tree_node_zone(int nid, int zid)
377{
378 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
379}
380
381static struct mem_cgroup_tree_per_zone *
382soft_limit_tree_from_page(struct page *page)
383{
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
386
387 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388}
389
390static void
4e416953 391__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 392 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
393 struct mem_cgroup_tree_per_zone *mctz,
394 unsigned long long new_usage_in_excess)
f64c3f54
BS
395{
396 struct rb_node **p = &mctz->rb_root.rb_node;
397 struct rb_node *parent = NULL;
398 struct mem_cgroup_per_zone *mz_node;
399
400 if (mz->on_tree)
401 return;
402
ef8745c1
KH
403 mz->usage_in_excess = new_usage_in_excess;
404 if (!mz->usage_in_excess)
405 return;
f64c3f54
BS
406 while (*p) {
407 parent = *p;
408 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
409 tree_node);
410 if (mz->usage_in_excess < mz_node->usage_in_excess)
411 p = &(*p)->rb_left;
412 /*
413 * We can't avoid mem cgroups that are over their soft
414 * limit by the same amount
415 */
416 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
417 p = &(*p)->rb_right;
418 }
419 rb_link_node(&mz->tree_node, parent, p);
420 rb_insert_color(&mz->tree_node, &mctz->rb_root);
421 mz->on_tree = true;
4e416953
BS
422}
423
424static void
425__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
426 struct mem_cgroup_per_zone *mz,
427 struct mem_cgroup_tree_per_zone *mctz)
428{
429 if (!mz->on_tree)
430 return;
431 rb_erase(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = false;
433}
434
f64c3f54
BS
435static void
436mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439{
440 spin_lock(&mctz->lock);
4e416953 441 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
442 spin_unlock(&mctz->lock);
443}
444
f64c3f54
BS
445
446static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
447{
ef8745c1 448 unsigned long long excess;
f64c3f54
BS
449 struct mem_cgroup_per_zone *mz;
450 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
451 int nid = page_to_nid(page);
452 int zid = page_zonenum(page);
f64c3f54
BS
453 mctz = soft_limit_tree_from_page(page);
454
455 /*
4e649152
KH
456 * Necessary to update all ancestors when hierarchy is used.
457 * because their event counter is not touched.
f64c3f54 458 */
4e649152
KH
459 for (; mem; mem = parent_mem_cgroup(mem)) {
460 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 461 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
462 /*
463 * We have to update the tree if mz is on RB-tree or
464 * mem is over its softlimit.
465 */
ef8745c1 466 if (excess || mz->on_tree) {
4e649152
KH
467 spin_lock(&mctz->lock);
468 /* if on-tree, remove it */
469 if (mz->on_tree)
470 __mem_cgroup_remove_exceeded(mem, mz, mctz);
471 /*
ef8745c1
KH
472 * Insert again. mz->usage_in_excess will be updated.
473 * If excess is 0, no tree ops.
4e649152 474 */
ef8745c1 475 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
476 spin_unlock(&mctz->lock);
477 }
f64c3f54
BS
478 }
479}
480
481static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
482{
483 int node, zone;
484 struct mem_cgroup_per_zone *mz;
485 struct mem_cgroup_tree_per_zone *mctz;
486
487 for_each_node_state(node, N_POSSIBLE) {
488 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
489 mz = mem_cgroup_zoneinfo(mem, node, zone);
490 mctz = soft_limit_tree_node_zone(node, zone);
491 mem_cgroup_remove_exceeded(mem, mz, mctz);
492 }
493 }
494}
495
4e416953
BS
496static struct mem_cgroup_per_zone *
497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498{
499 struct rb_node *rightmost = NULL;
26251eaf 500 struct mem_cgroup_per_zone *mz;
4e416953
BS
501
502retry:
26251eaf 503 mz = NULL;
4e416953
BS
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516 !css_tryget(&mz->mem->css))
517 goto retry;
518done:
519 return mz;
520}
521
522static struct mem_cgroup_per_zone *
523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct mem_cgroup_per_zone *mz;
526
527 spin_lock(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock(&mctz->lock);
530 return mz;
531}
532
711d3d2c
KH
533/*
534 * Implementation Note: reading percpu statistics for memcg.
535 *
536 * Both of vmstat[] and percpu_counter has threshold and do periodic
537 * synchronization to implement "quick" read. There are trade-off between
538 * reading cost and precision of value. Then, we may have a chance to implement
539 * a periodic synchronizion of counter in memcg's counter.
540 *
541 * But this _read() function is used for user interface now. The user accounts
542 * memory usage by memory cgroup and he _always_ requires exact value because
543 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
544 * have to visit all online cpus and make sum. So, for now, unnecessary
545 * synchronization is not implemented. (just implemented for cpu hotplug)
546 *
547 * If there are kernel internal actions which can make use of some not-exact
548 * value, and reading all cpu value can be performance bottleneck in some
549 * common workload, threashold and synchonization as vmstat[] should be
550 * implemented.
551 */
c62b1a3b
KH
552static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
553 enum mem_cgroup_stat_index idx)
554{
555 int cpu;
556 s64 val = 0;
557
711d3d2c
KH
558 get_online_cpus();
559 for_each_online_cpu(cpu)
c62b1a3b 560 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
561#ifdef CONFIG_HOTPLUG_CPU
562 spin_lock(&mem->pcp_counter_lock);
563 val += mem->nocpu_base.count[idx];
564 spin_unlock(&mem->pcp_counter_lock);
565#endif
566 put_online_cpus();
c62b1a3b
KH
567 return val;
568}
569
570static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
571{
572 s64 ret;
573
574 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
575 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
576 return ret;
577}
578
0c3e73e8
BS
579static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
580 bool charge)
581{
582 int val = (charge) ? 1 : -1;
c62b1a3b 583 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
584}
585
c05555b5 586static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 587 bool file, int nr_pages)
d52aa412 588{
c62b1a3b
KH
589 preempt_disable();
590
e401f176
KH
591 if (file)
592 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 593 else
e401f176 594 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 595
e401f176
KH
596 /* pagein of a big page is an event. So, ignore page size */
597 if (nr_pages > 0)
c62b1a3b 598 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
3751d604 599 else {
c62b1a3b 600 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
3751d604
KH
601 nr_pages = -nr_pages; /* for event */
602 }
e401f176
KH
603
604 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
2e72b634 605
c62b1a3b 606 preempt_enable();
6d12e2d8
KH
607}
608
14067bb3 609static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 610 enum lru_list idx)
6d12e2d8
KH
611{
612 int nid, zid;
613 struct mem_cgroup_per_zone *mz;
614 u64 total = 0;
615
616 for_each_online_node(nid)
617 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
618 mz = mem_cgroup_zoneinfo(mem, nid, zid);
619 total += MEM_CGROUP_ZSTAT(mz, idx);
620 }
621 return total;
d52aa412
KH
622}
623
d2265e6f
KH
624static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
625{
626 s64 val;
627
628 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
629
630 return !(val & ((1 << event_mask_shift) - 1));
631}
632
633/*
634 * Check events in order.
635 *
636 */
637static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
638{
639 /* threshold event is triggered in finer grain than soft limit */
640 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
641 mem_cgroup_threshold(mem);
642 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
643 mem_cgroup_update_tree(mem, page);
644 }
645}
646
d5b69e38 647static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
648{
649 return container_of(cgroup_subsys_state(cont,
650 mem_cgroup_subsys_id), struct mem_cgroup,
651 css);
652}
653
cf475ad2 654struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 655{
31a78f23
BS
656 /*
657 * mm_update_next_owner() may clear mm->owner to NULL
658 * if it races with swapoff, page migration, etc.
659 * So this can be called with p == NULL.
660 */
661 if (unlikely(!p))
662 return NULL;
663
78fb7466
PE
664 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
665 struct mem_cgroup, css);
666}
667
54595fe2
KH
668static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
669{
670 struct mem_cgroup *mem = NULL;
0b7f569e
KH
671
672 if (!mm)
673 return NULL;
54595fe2
KH
674 /*
675 * Because we have no locks, mm->owner's may be being moved to other
676 * cgroup. We use css_tryget() here even if this looks
677 * pessimistic (rather than adding locks here).
678 */
679 rcu_read_lock();
680 do {
681 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
682 if (unlikely(!mem))
683 break;
684 } while (!css_tryget(&mem->css));
685 rcu_read_unlock();
686 return mem;
687}
688
7d74b06f
KH
689/* The caller has to guarantee "mem" exists before calling this */
690static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 691{
711d3d2c
KH
692 struct cgroup_subsys_state *css;
693 int found;
694
695 if (!mem) /* ROOT cgroup has the smallest ID */
696 return root_mem_cgroup; /*css_put/get against root is ignored*/
697 if (!mem->use_hierarchy) {
698 if (css_tryget(&mem->css))
699 return mem;
700 return NULL;
701 }
702 rcu_read_lock();
703 /*
704 * searching a memory cgroup which has the smallest ID under given
705 * ROOT cgroup. (ID >= 1)
706 */
707 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
708 if (css && css_tryget(css))
709 mem = container_of(css, struct mem_cgroup, css);
710 else
711 mem = NULL;
712 rcu_read_unlock();
713 return mem;
7d74b06f
KH
714}
715
716static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
717 struct mem_cgroup *root,
718 bool cond)
719{
720 int nextid = css_id(&iter->css) + 1;
721 int found;
722 int hierarchy_used;
14067bb3 723 struct cgroup_subsys_state *css;
14067bb3 724
7d74b06f 725 hierarchy_used = iter->use_hierarchy;
14067bb3 726
7d74b06f 727 css_put(&iter->css);
711d3d2c
KH
728 /* If no ROOT, walk all, ignore hierarchy */
729 if (!cond || (root && !hierarchy_used))
7d74b06f 730 return NULL;
14067bb3 731
711d3d2c
KH
732 if (!root)
733 root = root_mem_cgroup;
734
7d74b06f
KH
735 do {
736 iter = NULL;
14067bb3 737 rcu_read_lock();
7d74b06f
KH
738
739 css = css_get_next(&mem_cgroup_subsys, nextid,
740 &root->css, &found);
14067bb3 741 if (css && css_tryget(css))
7d74b06f 742 iter = container_of(css, struct mem_cgroup, css);
14067bb3 743 rcu_read_unlock();
7d74b06f 744 /* If css is NULL, no more cgroups will be found */
14067bb3 745 nextid = found + 1;
7d74b06f 746 } while (css && !iter);
14067bb3 747
7d74b06f 748 return iter;
14067bb3 749}
7d74b06f
KH
750/*
751 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
752 * be careful that "break" loop is not allowed. We have reference count.
753 * Instead of that modify "cond" to be false and "continue" to exit the loop.
754 */
755#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
756 for (iter = mem_cgroup_start_loop(root);\
757 iter != NULL;\
758 iter = mem_cgroup_get_next(iter, root, cond))
759
760#define for_each_mem_cgroup_tree(iter, root) \
761 for_each_mem_cgroup_tree_cond(iter, root, true)
762
711d3d2c
KH
763#define for_each_mem_cgroup_all(iter) \
764 for_each_mem_cgroup_tree_cond(iter, NULL, true)
765
14067bb3 766
4b3bde4c
BS
767static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
768{
769 return (mem == root_mem_cgroup);
770}
771
08e552c6
KH
772/*
773 * Following LRU functions are allowed to be used without PCG_LOCK.
774 * Operations are called by routine of global LRU independently from memcg.
775 * What we have to take care of here is validness of pc->mem_cgroup.
776 *
777 * Changes to pc->mem_cgroup happens when
778 * 1. charge
779 * 2. moving account
780 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
781 * It is added to LRU before charge.
782 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
783 * When moving account, the page is not on LRU. It's isolated.
784 */
4f98a2fe 785
08e552c6
KH
786void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
787{
788 struct page_cgroup *pc;
08e552c6 789 struct mem_cgroup_per_zone *mz;
6d12e2d8 790
f8d66542 791 if (mem_cgroup_disabled())
08e552c6
KH
792 return;
793 pc = lookup_page_cgroup(page);
794 /* can happen while we handle swapcache. */
4b3bde4c 795 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 796 return;
4b3bde4c 797 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
798 /*
799 * We don't check PCG_USED bit. It's cleared when the "page" is finally
800 * removed from global LRU.
801 */
97a6c37b 802 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
803 /* huge page split is done under lru_lock. so, we have no races. */
804 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
805 if (mem_cgroup_is_root(pc->mem_cgroup))
806 return;
807 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 808 list_del_init(&pc->lru);
6d12e2d8
KH
809}
810
08e552c6 811void mem_cgroup_del_lru(struct page *page)
6d12e2d8 812{
08e552c6
KH
813 mem_cgroup_del_lru_list(page, page_lru(page));
814}
b69408e8 815
3f58a829
MK
816/*
817 * Writeback is about to end against a page which has been marked for immediate
818 * reclaim. If it still appears to be reclaimable, move it to the tail of the
819 * inactive list.
820 */
821void mem_cgroup_rotate_reclaimable_page(struct page *page)
822{
823 struct mem_cgroup_per_zone *mz;
824 struct page_cgroup *pc;
825 enum lru_list lru = page_lru(page);
826
827 if (mem_cgroup_disabled())
828 return;
829
830 pc = lookup_page_cgroup(page);
831 /* unused or root page is not rotated. */
832 if (!PageCgroupUsed(pc))
833 return;
834 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
835 smp_rmb();
836 if (mem_cgroup_is_root(pc->mem_cgroup))
837 return;
97a6c37b 838 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
839 list_move_tail(&pc->lru, &mz->lists[lru]);
840}
841
08e552c6
KH
842void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
843{
844 struct mem_cgroup_per_zone *mz;
845 struct page_cgroup *pc;
b69408e8 846
f8d66542 847 if (mem_cgroup_disabled())
08e552c6 848 return;
6d12e2d8 849
08e552c6 850 pc = lookup_page_cgroup(page);
4b3bde4c 851 /* unused or root page is not rotated. */
713735b4
JW
852 if (!PageCgroupUsed(pc))
853 return;
854 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
855 smp_rmb();
856 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 857 return;
97a6c37b 858 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 859 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
860}
861
08e552c6 862void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 863{
08e552c6
KH
864 struct page_cgroup *pc;
865 struct mem_cgroup_per_zone *mz;
6d12e2d8 866
f8d66542 867 if (mem_cgroup_disabled())
08e552c6
KH
868 return;
869 pc = lookup_page_cgroup(page);
4b3bde4c 870 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 871 if (!PageCgroupUsed(pc))
894bc310 872 return;
713735b4
JW
873 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
874 smp_rmb();
97a6c37b 875 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
876 /* huge page split is done under lru_lock. so, we have no races. */
877 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
878 SetPageCgroupAcctLRU(pc);
879 if (mem_cgroup_is_root(pc->mem_cgroup))
880 return;
08e552c6
KH
881 list_add(&pc->lru, &mz->lists[lru]);
882}
544122e5 883
08e552c6 884/*
544122e5
KH
885 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
886 * lru because the page may.be reused after it's fully uncharged (because of
887 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
888 * it again. This function is only used to charge SwapCache. It's done under
889 * lock_page and expected that zone->lru_lock is never held.
08e552c6 890 */
544122e5 891static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 892{
544122e5
KH
893 unsigned long flags;
894 struct zone *zone = page_zone(page);
895 struct page_cgroup *pc = lookup_page_cgroup(page);
896
897 spin_lock_irqsave(&zone->lru_lock, flags);
898 /*
899 * Forget old LRU when this page_cgroup is *not* used. This Used bit
900 * is guarded by lock_page() because the page is SwapCache.
901 */
902 if (!PageCgroupUsed(pc))
903 mem_cgroup_del_lru_list(page, page_lru(page));
904 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
905}
906
544122e5
KH
907static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
908{
909 unsigned long flags;
910 struct zone *zone = page_zone(page);
911 struct page_cgroup *pc = lookup_page_cgroup(page);
912
913 spin_lock_irqsave(&zone->lru_lock, flags);
914 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 915 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
916 mem_cgroup_add_lru_list(page, page_lru(page));
917 spin_unlock_irqrestore(&zone->lru_lock, flags);
918}
919
920
08e552c6
KH
921void mem_cgroup_move_lists(struct page *page,
922 enum lru_list from, enum lru_list to)
923{
f8d66542 924 if (mem_cgroup_disabled())
08e552c6
KH
925 return;
926 mem_cgroup_del_lru_list(page, from);
927 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
928}
929
4c4a2214
DR
930int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
931{
932 int ret;
0b7f569e 933 struct mem_cgroup *curr = NULL;
158e0a2d 934 struct task_struct *p;
4c4a2214 935
158e0a2d
KH
936 p = find_lock_task_mm(task);
937 if (!p)
938 return 0;
939 curr = try_get_mem_cgroup_from_mm(p->mm);
940 task_unlock(p);
0b7f569e
KH
941 if (!curr)
942 return 0;
d31f56db
DN
943 /*
944 * We should check use_hierarchy of "mem" not "curr". Because checking
945 * use_hierarchy of "curr" here make this function true if hierarchy is
946 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
947 * hierarchy(even if use_hierarchy is disabled in "mem").
948 */
949 if (mem->use_hierarchy)
0b7f569e
KH
950 ret = css_is_ancestor(&curr->css, &mem->css);
951 else
952 ret = (curr == mem);
953 css_put(&curr->css);
4c4a2214
DR
954 return ret;
955}
956
c772be93 957static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
958{
959 unsigned long active;
960 unsigned long inactive;
c772be93
KM
961 unsigned long gb;
962 unsigned long inactive_ratio;
14797e23 963
14067bb3
KH
964 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
965 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 966
c772be93
KM
967 gb = (inactive + active) >> (30 - PAGE_SHIFT);
968 if (gb)
969 inactive_ratio = int_sqrt(10 * gb);
970 else
971 inactive_ratio = 1;
972
973 if (present_pages) {
974 present_pages[0] = inactive;
975 present_pages[1] = active;
976 }
977
978 return inactive_ratio;
979}
980
981int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
982{
983 unsigned long active;
984 unsigned long inactive;
985 unsigned long present_pages[2];
986 unsigned long inactive_ratio;
987
988 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
989
990 inactive = present_pages[0];
991 active = present_pages[1];
992
993 if (inactive * inactive_ratio < active)
14797e23
KM
994 return 1;
995
996 return 0;
997}
998
56e49d21
RR
999int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1000{
1001 unsigned long active;
1002 unsigned long inactive;
1003
1004 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1005 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1006
1007 return (active > inactive);
1008}
1009
a3d8e054
KM
1010unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1011 struct zone *zone,
1012 enum lru_list lru)
1013{
13d7e3a2 1014 int nid = zone_to_nid(zone);
a3d8e054
KM
1015 int zid = zone_idx(zone);
1016 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1017
1018 return MEM_CGROUP_ZSTAT(mz, lru);
1019}
1020
3e2f41f1
KM
1021struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1022 struct zone *zone)
1023{
13d7e3a2 1024 int nid = zone_to_nid(zone);
3e2f41f1
KM
1025 int zid = zone_idx(zone);
1026 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1027
1028 return &mz->reclaim_stat;
1029}
1030
1031struct zone_reclaim_stat *
1032mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1033{
1034 struct page_cgroup *pc;
1035 struct mem_cgroup_per_zone *mz;
1036
1037 if (mem_cgroup_disabled())
1038 return NULL;
1039
1040 pc = lookup_page_cgroup(page);
bd112db8
DN
1041 if (!PageCgroupUsed(pc))
1042 return NULL;
713735b4
JW
1043 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1044 smp_rmb();
97a6c37b 1045 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1046 if (!mz)
1047 return NULL;
1048
1049 return &mz->reclaim_stat;
1050}
1051
66e1707b
BS
1052unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1053 struct list_head *dst,
1054 unsigned long *scanned, int order,
1055 int mode, struct zone *z,
1056 struct mem_cgroup *mem_cont,
4f98a2fe 1057 int active, int file)
66e1707b
BS
1058{
1059 unsigned long nr_taken = 0;
1060 struct page *page;
1061 unsigned long scan;
1062 LIST_HEAD(pc_list);
1063 struct list_head *src;
ff7283fa 1064 struct page_cgroup *pc, *tmp;
13d7e3a2 1065 int nid = zone_to_nid(z);
1ecaab2b
KH
1066 int zid = zone_idx(z);
1067 struct mem_cgroup_per_zone *mz;
b7c46d15 1068 int lru = LRU_FILE * file + active;
2ffebca6 1069 int ret;
66e1707b 1070
cf475ad2 1071 BUG_ON(!mem_cont);
1ecaab2b 1072 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1073 src = &mz->lists[lru];
66e1707b 1074
ff7283fa
KH
1075 scan = 0;
1076 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1077 if (scan >= nr_to_scan)
ff7283fa 1078 break;
08e552c6
KH
1079
1080 page = pc->page;
52d4b9ac
KH
1081 if (unlikely(!PageCgroupUsed(pc)))
1082 continue;
436c6541 1083 if (unlikely(!PageLRU(page)))
ff7283fa 1084 continue;
ff7283fa 1085
436c6541 1086 scan++;
2ffebca6
KH
1087 ret = __isolate_lru_page(page, mode, file);
1088 switch (ret) {
1089 case 0:
66e1707b 1090 list_move(&page->lru, dst);
2ffebca6 1091 mem_cgroup_del_lru(page);
2c888cfb 1092 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1093 break;
1094 case -EBUSY:
1095 /* we don't affect global LRU but rotate in our LRU */
1096 mem_cgroup_rotate_lru_list(page, page_lru(page));
1097 break;
1098 default:
1099 break;
66e1707b
BS
1100 }
1101 }
1102
66e1707b 1103 *scanned = scan;
cc8e970c
KM
1104
1105 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1106 0, 0, 0, mode);
1107
66e1707b
BS
1108 return nr_taken;
1109}
1110
6d61ef40
BS
1111#define mem_cgroup_from_res_counter(counter, member) \
1112 container_of(counter, struct mem_cgroup, member)
1113
19942822 1114/**
9d11ea9f
JW
1115 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1116 * @mem: the memory cgroup
19942822 1117 *
9d11ea9f
JW
1118 * Returns the maximum amount of memory @mem can be charged with, in
1119 * bytes.
19942822 1120 */
9d11ea9f 1121static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1122{
9d11ea9f
JW
1123 unsigned long long margin;
1124
1125 margin = res_counter_margin(&mem->res);
1126 if (do_swap_account)
1127 margin = min(margin, res_counter_margin(&mem->memsw));
1128 return margin;
19942822
JW
1129}
1130
a7885eb8
KM
1131static unsigned int get_swappiness(struct mem_cgroup *memcg)
1132{
1133 struct cgroup *cgrp = memcg->css.cgroup;
1134 unsigned int swappiness;
1135
1136 /* root ? */
1137 if (cgrp->parent == NULL)
1138 return vm_swappiness;
1139
1140 spin_lock(&memcg->reclaim_param_lock);
1141 swappiness = memcg->swappiness;
1142 spin_unlock(&memcg->reclaim_param_lock);
1143
1144 return swappiness;
1145}
1146
32047e2a
KH
1147static void mem_cgroup_start_move(struct mem_cgroup *mem)
1148{
1149 int cpu;
1489ebad
KH
1150
1151 get_online_cpus();
1152 spin_lock(&mem->pcp_counter_lock);
1153 for_each_online_cpu(cpu)
32047e2a 1154 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1155 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1156 spin_unlock(&mem->pcp_counter_lock);
1157 put_online_cpus();
32047e2a
KH
1158
1159 synchronize_rcu();
1160}
1161
1162static void mem_cgroup_end_move(struct mem_cgroup *mem)
1163{
1164 int cpu;
1165
1166 if (!mem)
1167 return;
1489ebad
KH
1168 get_online_cpus();
1169 spin_lock(&mem->pcp_counter_lock);
1170 for_each_online_cpu(cpu)
32047e2a 1171 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1172 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1173 spin_unlock(&mem->pcp_counter_lock);
1174 put_online_cpus();
32047e2a
KH
1175}
1176/*
1177 * 2 routines for checking "mem" is under move_account() or not.
1178 *
1179 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1180 * for avoiding race in accounting. If true,
1181 * pc->mem_cgroup may be overwritten.
1182 *
1183 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1184 * under hierarchy of moving cgroups. This is for
1185 * waiting at hith-memory prressure caused by "move".
1186 */
1187
1188static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1189{
1190 VM_BUG_ON(!rcu_read_lock_held());
1191 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1192}
4b534334
KH
1193
1194static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1195{
2bd9bb20
KH
1196 struct mem_cgroup *from;
1197 struct mem_cgroup *to;
4b534334 1198 bool ret = false;
2bd9bb20
KH
1199 /*
1200 * Unlike task_move routines, we access mc.to, mc.from not under
1201 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1202 */
1203 spin_lock(&mc.lock);
1204 from = mc.from;
1205 to = mc.to;
1206 if (!from)
1207 goto unlock;
1208 if (from == mem || to == mem
1209 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1210 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1211 ret = true;
1212unlock:
1213 spin_unlock(&mc.lock);
4b534334
KH
1214 return ret;
1215}
1216
1217static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1218{
1219 if (mc.moving_task && current != mc.moving_task) {
1220 if (mem_cgroup_under_move(mem)) {
1221 DEFINE_WAIT(wait);
1222 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1223 /* moving charge context might have finished. */
1224 if (mc.moving_task)
1225 schedule();
1226 finish_wait(&mc.waitq, &wait);
1227 return true;
1228 }
1229 }
1230 return false;
1231}
1232
e222432b 1233/**
6a6135b6 1234 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1235 * @memcg: The memory cgroup that went over limit
1236 * @p: Task that is going to be killed
1237 *
1238 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1239 * enabled
1240 */
1241void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1242{
1243 struct cgroup *task_cgrp;
1244 struct cgroup *mem_cgrp;
1245 /*
1246 * Need a buffer in BSS, can't rely on allocations. The code relies
1247 * on the assumption that OOM is serialized for memory controller.
1248 * If this assumption is broken, revisit this code.
1249 */
1250 static char memcg_name[PATH_MAX];
1251 int ret;
1252
d31f56db 1253 if (!memcg || !p)
e222432b
BS
1254 return;
1255
1256
1257 rcu_read_lock();
1258
1259 mem_cgrp = memcg->css.cgroup;
1260 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1261
1262 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1263 if (ret < 0) {
1264 /*
1265 * Unfortunately, we are unable to convert to a useful name
1266 * But we'll still print out the usage information
1267 */
1268 rcu_read_unlock();
1269 goto done;
1270 }
1271 rcu_read_unlock();
1272
1273 printk(KERN_INFO "Task in %s killed", memcg_name);
1274
1275 rcu_read_lock();
1276 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1277 if (ret < 0) {
1278 rcu_read_unlock();
1279 goto done;
1280 }
1281 rcu_read_unlock();
1282
1283 /*
1284 * Continues from above, so we don't need an KERN_ level
1285 */
1286 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1287done:
1288
1289 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1290 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1291 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1292 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1293 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1294 "failcnt %llu\n",
1295 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1296 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1297 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1298}
1299
81d39c20
KH
1300/*
1301 * This function returns the number of memcg under hierarchy tree. Returns
1302 * 1(self count) if no children.
1303 */
1304static int mem_cgroup_count_children(struct mem_cgroup *mem)
1305{
1306 int num = 0;
7d74b06f
KH
1307 struct mem_cgroup *iter;
1308
1309 for_each_mem_cgroup_tree(iter, mem)
1310 num++;
81d39c20
KH
1311 return num;
1312}
1313
a63d83f4
DR
1314/*
1315 * Return the memory (and swap, if configured) limit for a memcg.
1316 */
1317u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1318{
1319 u64 limit;
1320 u64 memsw;
1321
f3e8eb70
JW
1322 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1323 limit += total_swap_pages << PAGE_SHIFT;
1324
a63d83f4
DR
1325 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1326 /*
1327 * If memsw is finite and limits the amount of swap space available
1328 * to this memcg, return that limit.
1329 */
1330 return min(limit, memsw);
1331}
1332
6d61ef40 1333/*
04046e1a
KH
1334 * Visit the first child (need not be the first child as per the ordering
1335 * of the cgroup list, since we track last_scanned_child) of @mem and use
1336 * that to reclaim free pages from.
1337 */
1338static struct mem_cgroup *
1339mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1340{
1341 struct mem_cgroup *ret = NULL;
1342 struct cgroup_subsys_state *css;
1343 int nextid, found;
1344
1345 if (!root_mem->use_hierarchy) {
1346 css_get(&root_mem->css);
1347 ret = root_mem;
1348 }
1349
1350 while (!ret) {
1351 rcu_read_lock();
1352 nextid = root_mem->last_scanned_child + 1;
1353 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1354 &found);
1355 if (css && css_tryget(css))
1356 ret = container_of(css, struct mem_cgroup, css);
1357
1358 rcu_read_unlock();
1359 /* Updates scanning parameter */
1360 spin_lock(&root_mem->reclaim_param_lock);
1361 if (!css) {
1362 /* this means start scan from ID:1 */
1363 root_mem->last_scanned_child = 0;
1364 } else
1365 root_mem->last_scanned_child = found;
1366 spin_unlock(&root_mem->reclaim_param_lock);
1367 }
1368
1369 return ret;
1370}
1371
1372/*
1373 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1374 * we reclaimed from, so that we don't end up penalizing one child extensively
1375 * based on its position in the children list.
6d61ef40
BS
1376 *
1377 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1378 *
1379 * We give up and return to the caller when we visit root_mem twice.
1380 * (other groups can be removed while we're walking....)
81d39c20
KH
1381 *
1382 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1383 */
1384static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1385 struct zone *zone,
75822b44
BS
1386 gfp_t gfp_mask,
1387 unsigned long reclaim_options)
6d61ef40 1388{
04046e1a
KH
1389 struct mem_cgroup *victim;
1390 int ret, total = 0;
1391 int loop = 0;
75822b44
BS
1392 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1393 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1394 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f
JW
1395 unsigned long excess;
1396
1397 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1398
22a668d7
KH
1399 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1400 if (root_mem->memsw_is_minimum)
1401 noswap = true;
1402
4e416953 1403 while (1) {
04046e1a 1404 victim = mem_cgroup_select_victim(root_mem);
4e416953 1405 if (victim == root_mem) {
04046e1a 1406 loop++;
cdec2e42
KH
1407 if (loop >= 1)
1408 drain_all_stock_async();
4e416953
BS
1409 if (loop >= 2) {
1410 /*
1411 * If we have not been able to reclaim
1412 * anything, it might because there are
1413 * no reclaimable pages under this hierarchy
1414 */
1415 if (!check_soft || !total) {
1416 css_put(&victim->css);
1417 break;
1418 }
1419 /*
1420 * We want to do more targetted reclaim.
1421 * excess >> 2 is not to excessive so as to
1422 * reclaim too much, nor too less that we keep
1423 * coming back to reclaim from this cgroup
1424 */
1425 if (total >= (excess >> 2) ||
1426 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1427 css_put(&victim->css);
1428 break;
1429 }
1430 }
1431 }
c62b1a3b 1432 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1433 /* this cgroup's local usage == 0 */
1434 css_put(&victim->css);
6d61ef40
BS
1435 continue;
1436 }
04046e1a 1437 /* we use swappiness of local cgroup */
4e416953
BS
1438 if (check_soft)
1439 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1440 noswap, get_swappiness(victim), zone);
4e416953
BS
1441 else
1442 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1443 noswap, get_swappiness(victim));
04046e1a 1444 css_put(&victim->css);
81d39c20
KH
1445 /*
1446 * At shrinking usage, we can't check we should stop here or
1447 * reclaim more. It's depends on callers. last_scanned_child
1448 * will work enough for keeping fairness under tree.
1449 */
1450 if (shrink)
1451 return ret;
04046e1a 1452 total += ret;
4e416953 1453 if (check_soft) {
9d11ea9f 1454 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1455 return total;
9d11ea9f 1456 } else if (mem_cgroup_margin(root_mem))
04046e1a 1457 return 1 + total;
6d61ef40 1458 }
04046e1a 1459 return total;
6d61ef40
BS
1460}
1461
867578cb
KH
1462/*
1463 * Check OOM-Killer is already running under our hierarchy.
1464 * If someone is running, return false.
1465 */
1466static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1467{
7d74b06f
KH
1468 int x, lock_count = 0;
1469 struct mem_cgroup *iter;
a636b327 1470
7d74b06f
KH
1471 for_each_mem_cgroup_tree(iter, mem) {
1472 x = atomic_inc_return(&iter->oom_lock);
1473 lock_count = max(x, lock_count);
1474 }
867578cb
KH
1475
1476 if (lock_count == 1)
1477 return true;
1478 return false;
a636b327 1479}
0b7f569e 1480
7d74b06f 1481static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1482{
7d74b06f
KH
1483 struct mem_cgroup *iter;
1484
867578cb
KH
1485 /*
1486 * When a new child is created while the hierarchy is under oom,
1487 * mem_cgroup_oom_lock() may not be called. We have to use
1488 * atomic_add_unless() here.
1489 */
7d74b06f
KH
1490 for_each_mem_cgroup_tree(iter, mem)
1491 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1492 return 0;
1493}
1494
867578cb
KH
1495
1496static DEFINE_MUTEX(memcg_oom_mutex);
1497static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1498
dc98df5a
KH
1499struct oom_wait_info {
1500 struct mem_cgroup *mem;
1501 wait_queue_t wait;
1502};
1503
1504static int memcg_oom_wake_function(wait_queue_t *wait,
1505 unsigned mode, int sync, void *arg)
1506{
1507 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1508 struct oom_wait_info *oom_wait_info;
1509
1510 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1511
1512 if (oom_wait_info->mem == wake_mem)
1513 goto wakeup;
1514 /* if no hierarchy, no match */
1515 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1516 return 0;
1517 /*
1518 * Both of oom_wait_info->mem and wake_mem are stable under us.
1519 * Then we can use css_is_ancestor without taking care of RCU.
1520 */
1521 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1522 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1523 return 0;
1524
1525wakeup:
1526 return autoremove_wake_function(wait, mode, sync, arg);
1527}
1528
1529static void memcg_wakeup_oom(struct mem_cgroup *mem)
1530{
1531 /* for filtering, pass "mem" as argument. */
1532 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1533}
1534
3c11ecf4
KH
1535static void memcg_oom_recover(struct mem_cgroup *mem)
1536{
2bd9bb20 1537 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1538 memcg_wakeup_oom(mem);
1539}
1540
867578cb
KH
1541/*
1542 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1543 */
1544bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1545{
dc98df5a 1546 struct oom_wait_info owait;
3c11ecf4 1547 bool locked, need_to_kill;
867578cb 1548
dc98df5a
KH
1549 owait.mem = mem;
1550 owait.wait.flags = 0;
1551 owait.wait.func = memcg_oom_wake_function;
1552 owait.wait.private = current;
1553 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1554 need_to_kill = true;
867578cb
KH
1555 /* At first, try to OOM lock hierarchy under mem.*/
1556 mutex_lock(&memcg_oom_mutex);
1557 locked = mem_cgroup_oom_lock(mem);
1558 /*
1559 * Even if signal_pending(), we can't quit charge() loop without
1560 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1561 * under OOM is always welcomed, use TASK_KILLABLE here.
1562 */
3c11ecf4
KH
1563 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1564 if (!locked || mem->oom_kill_disable)
1565 need_to_kill = false;
1566 if (locked)
9490ff27 1567 mem_cgroup_oom_notify(mem);
867578cb
KH
1568 mutex_unlock(&memcg_oom_mutex);
1569
3c11ecf4
KH
1570 if (need_to_kill) {
1571 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1572 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1573 } else {
867578cb 1574 schedule();
dc98df5a 1575 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1576 }
1577 mutex_lock(&memcg_oom_mutex);
1578 mem_cgroup_oom_unlock(mem);
dc98df5a 1579 memcg_wakeup_oom(mem);
867578cb
KH
1580 mutex_unlock(&memcg_oom_mutex);
1581
1582 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1583 return false;
1584 /* Give chance to dying process */
1585 schedule_timeout(1);
1586 return true;
0b7f569e
KH
1587}
1588
d69b042f
BS
1589/*
1590 * Currently used to update mapped file statistics, but the routine can be
1591 * generalized to update other statistics as well.
32047e2a
KH
1592 *
1593 * Notes: Race condition
1594 *
1595 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1596 * it tends to be costly. But considering some conditions, we doesn't need
1597 * to do so _always_.
1598 *
1599 * Considering "charge", lock_page_cgroup() is not required because all
1600 * file-stat operations happen after a page is attached to radix-tree. There
1601 * are no race with "charge".
1602 *
1603 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1604 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1605 * if there are race with "uncharge". Statistics itself is properly handled
1606 * by flags.
1607 *
1608 * Considering "move", this is an only case we see a race. To make the race
1609 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1610 * possibility of race condition. If there is, we take a lock.
d69b042f 1611 */
26174efd 1612
2a7106f2
GT
1613void mem_cgroup_update_page_stat(struct page *page,
1614 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1615{
1616 struct mem_cgroup *mem;
32047e2a
KH
1617 struct page_cgroup *pc = lookup_page_cgroup(page);
1618 bool need_unlock = false;
dbd4ea78 1619 unsigned long uninitialized_var(flags);
d69b042f 1620
d69b042f
BS
1621 if (unlikely(!pc))
1622 return;
1623
32047e2a 1624 rcu_read_lock();
d69b042f 1625 mem = pc->mem_cgroup;
32047e2a
KH
1626 if (unlikely(!mem || !PageCgroupUsed(pc)))
1627 goto out;
1628 /* pc->mem_cgroup is unstable ? */
ca3e0214 1629 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1630 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1631 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1632 need_unlock = true;
1633 mem = pc->mem_cgroup;
1634 if (!mem || !PageCgroupUsed(pc))
1635 goto out;
1636 }
26174efd 1637
26174efd 1638 switch (idx) {
2a7106f2 1639 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1640 if (val > 0)
1641 SetPageCgroupFileMapped(pc);
1642 else if (!page_mapped(page))
0c270f8f 1643 ClearPageCgroupFileMapped(pc);
2a7106f2 1644 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1645 break;
1646 default:
1647 BUG();
8725d541 1648 }
d69b042f 1649
2a7106f2
GT
1650 this_cpu_add(mem->stat->count[idx], val);
1651
32047e2a
KH
1652out:
1653 if (unlikely(need_unlock))
dbd4ea78 1654 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1655 rcu_read_unlock();
1656 return;
d69b042f 1657}
2a7106f2 1658EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1659
cdec2e42
KH
1660/*
1661 * size of first charge trial. "32" comes from vmscan.c's magic value.
1662 * TODO: maybe necessary to use big numbers in big irons.
1663 */
1664#define CHARGE_SIZE (32 * PAGE_SIZE)
1665struct memcg_stock_pcp {
1666 struct mem_cgroup *cached; /* this never be root cgroup */
1667 int charge;
1668 struct work_struct work;
1669};
1670static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1671static atomic_t memcg_drain_count;
1672
1673/*
1674 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1675 * from local stock and true is returned. If the stock is 0 or charges from a
1676 * cgroup which is not current target, returns false. This stock will be
1677 * refilled.
1678 */
1679static bool consume_stock(struct mem_cgroup *mem)
1680{
1681 struct memcg_stock_pcp *stock;
1682 bool ret = true;
1683
1684 stock = &get_cpu_var(memcg_stock);
1685 if (mem == stock->cached && stock->charge)
1686 stock->charge -= PAGE_SIZE;
1687 else /* need to call res_counter_charge */
1688 ret = false;
1689 put_cpu_var(memcg_stock);
1690 return ret;
1691}
1692
1693/*
1694 * Returns stocks cached in percpu to res_counter and reset cached information.
1695 */
1696static void drain_stock(struct memcg_stock_pcp *stock)
1697{
1698 struct mem_cgroup *old = stock->cached;
1699
1700 if (stock->charge) {
1701 res_counter_uncharge(&old->res, stock->charge);
1702 if (do_swap_account)
1703 res_counter_uncharge(&old->memsw, stock->charge);
1704 }
1705 stock->cached = NULL;
1706 stock->charge = 0;
1707}
1708
1709/*
1710 * This must be called under preempt disabled or must be called by
1711 * a thread which is pinned to local cpu.
1712 */
1713static void drain_local_stock(struct work_struct *dummy)
1714{
1715 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1716 drain_stock(stock);
1717}
1718
1719/*
1720 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1721 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1722 */
1723static void refill_stock(struct mem_cgroup *mem, int val)
1724{
1725 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1726
1727 if (stock->cached != mem) { /* reset if necessary */
1728 drain_stock(stock);
1729 stock->cached = mem;
1730 }
1731 stock->charge += val;
1732 put_cpu_var(memcg_stock);
1733}
1734
1735/*
1736 * Tries to drain stocked charges in other cpus. This function is asynchronous
1737 * and just put a work per cpu for draining localy on each cpu. Caller can
1738 * expects some charges will be back to res_counter later but cannot wait for
1739 * it.
1740 */
1741static void drain_all_stock_async(void)
1742{
1743 int cpu;
1744 /* This function is for scheduling "drain" in asynchronous way.
1745 * The result of "drain" is not directly handled by callers. Then,
1746 * if someone is calling drain, we don't have to call drain more.
1747 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1748 * there is a race. We just do loose check here.
1749 */
1750 if (atomic_read(&memcg_drain_count))
1751 return;
1752 /* Notify other cpus that system-wide "drain" is running */
1753 atomic_inc(&memcg_drain_count);
1754 get_online_cpus();
1755 for_each_online_cpu(cpu) {
1756 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1757 schedule_work_on(cpu, &stock->work);
1758 }
1759 put_online_cpus();
1760 atomic_dec(&memcg_drain_count);
1761 /* We don't wait for flush_work */
1762}
1763
1764/* This is a synchronous drain interface. */
1765static void drain_all_stock_sync(void)
1766{
1767 /* called when force_empty is called */
1768 atomic_inc(&memcg_drain_count);
1769 schedule_on_each_cpu(drain_local_stock);
1770 atomic_dec(&memcg_drain_count);
1771}
1772
711d3d2c
KH
1773/*
1774 * This function drains percpu counter value from DEAD cpu and
1775 * move it to local cpu. Note that this function can be preempted.
1776 */
1777static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1778{
1779 int i;
1780
1781 spin_lock(&mem->pcp_counter_lock);
1782 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1783 s64 x = per_cpu(mem->stat->count[i], cpu);
1784
1785 per_cpu(mem->stat->count[i], cpu) = 0;
1786 mem->nocpu_base.count[i] += x;
1787 }
1489ebad
KH
1788 /* need to clear ON_MOVE value, works as a kind of lock. */
1789 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1790 spin_unlock(&mem->pcp_counter_lock);
1791}
1792
1793static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1794{
1795 int idx = MEM_CGROUP_ON_MOVE;
1796
1797 spin_lock(&mem->pcp_counter_lock);
1798 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1799 spin_unlock(&mem->pcp_counter_lock);
1800}
1801
1802static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1803 unsigned long action,
1804 void *hcpu)
1805{
1806 int cpu = (unsigned long)hcpu;
1807 struct memcg_stock_pcp *stock;
711d3d2c 1808 struct mem_cgroup *iter;
cdec2e42 1809
1489ebad
KH
1810 if ((action == CPU_ONLINE)) {
1811 for_each_mem_cgroup_all(iter)
1812 synchronize_mem_cgroup_on_move(iter, cpu);
1813 return NOTIFY_OK;
1814 }
1815
711d3d2c 1816 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1817 return NOTIFY_OK;
711d3d2c
KH
1818
1819 for_each_mem_cgroup_all(iter)
1820 mem_cgroup_drain_pcp_counter(iter, cpu);
1821
cdec2e42
KH
1822 stock = &per_cpu(memcg_stock, cpu);
1823 drain_stock(stock);
1824 return NOTIFY_OK;
1825}
1826
4b534334
KH
1827
1828/* See __mem_cgroup_try_charge() for details */
1829enum {
1830 CHARGE_OK, /* success */
1831 CHARGE_RETRY, /* need to retry but retry is not bad */
1832 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1833 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1834 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1835};
1836
1837static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1838 int csize, bool oom_check)
1839{
1840 struct mem_cgroup *mem_over_limit;
1841 struct res_counter *fail_res;
1842 unsigned long flags = 0;
1843 int ret;
1844
1845 ret = res_counter_charge(&mem->res, csize, &fail_res);
1846
1847 if (likely(!ret)) {
1848 if (!do_swap_account)
1849 return CHARGE_OK;
1850 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1851 if (likely(!ret))
1852 return CHARGE_OK;
1853
01c88e2d 1854 res_counter_uncharge(&mem->res, csize);
4b534334
KH
1855 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1856 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1857 } else
1858 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7
JW
1859 /*
1860 * csize can be either a huge page (HPAGE_SIZE), a batch of
1861 * regular pages (CHARGE_SIZE), or a single regular page
1862 * (PAGE_SIZE).
1863 *
1864 * Never reclaim on behalf of optional batching, retry with a
1865 * single page instead.
1866 */
1867 if (csize == CHARGE_SIZE)
4b534334
KH
1868 return CHARGE_RETRY;
1869
1870 if (!(gfp_mask & __GFP_WAIT))
1871 return CHARGE_WOULDBLOCK;
1872
1873 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
19942822 1874 gfp_mask, flags);
9d11ea9f 1875 if (mem_cgroup_margin(mem_over_limit) >= csize)
19942822 1876 return CHARGE_RETRY;
4b534334 1877 /*
19942822
JW
1878 * Even though the limit is exceeded at this point, reclaim
1879 * may have been able to free some pages. Retry the charge
1880 * before killing the task.
1881 *
1882 * Only for regular pages, though: huge pages are rather
1883 * unlikely to succeed so close to the limit, and we fall back
1884 * to regular pages anyway in case of failure.
4b534334 1885 */
19942822 1886 if (csize == PAGE_SIZE && ret)
4b534334
KH
1887 return CHARGE_RETRY;
1888
1889 /*
1890 * At task move, charge accounts can be doubly counted. So, it's
1891 * better to wait until the end of task_move if something is going on.
1892 */
1893 if (mem_cgroup_wait_acct_move(mem_over_limit))
1894 return CHARGE_RETRY;
1895
1896 /* If we don't need to call oom-killer at el, return immediately */
1897 if (!oom_check)
1898 return CHARGE_NOMEM;
1899 /* check OOM */
1900 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1901 return CHARGE_OOM_DIE;
1902
1903 return CHARGE_RETRY;
1904}
1905
f817ed48
KH
1906/*
1907 * Unlike exported interface, "oom" parameter is added. if oom==true,
1908 * oom-killer can be invoked.
8a9f3ccd 1909 */
f817ed48 1910static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1911 gfp_t gfp_mask,
1912 struct mem_cgroup **memcg, bool oom,
1913 int page_size)
8a9f3ccd 1914{
4b534334
KH
1915 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1916 struct mem_cgroup *mem = NULL;
1917 int ret;
ec168510 1918 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1919
867578cb
KH
1920 /*
1921 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1922 * in system level. So, allow to go ahead dying process in addition to
1923 * MEMDIE process.
1924 */
1925 if (unlikely(test_thread_flag(TIF_MEMDIE)
1926 || fatal_signal_pending(current)))
1927 goto bypass;
a636b327 1928
8a9f3ccd 1929 /*
3be91277
HD
1930 * We always charge the cgroup the mm_struct belongs to.
1931 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1932 * thread group leader migrates. It's possible that mm is not
1933 * set, if so charge the init_mm (happens for pagecache usage).
1934 */
f75ca962
KH
1935 if (!*memcg && !mm)
1936 goto bypass;
1937again:
1938 if (*memcg) { /* css should be a valid one */
4b534334 1939 mem = *memcg;
f75ca962
KH
1940 VM_BUG_ON(css_is_removed(&mem->css));
1941 if (mem_cgroup_is_root(mem))
1942 goto done;
ec168510 1943 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1944 goto done;
4b534334
KH
1945 css_get(&mem->css);
1946 } else {
f75ca962 1947 struct task_struct *p;
54595fe2 1948
f75ca962
KH
1949 rcu_read_lock();
1950 p = rcu_dereference(mm->owner);
f75ca962 1951 /*
ebb76ce1
KH
1952 * Because we don't have task_lock(), "p" can exit.
1953 * In that case, "mem" can point to root or p can be NULL with
1954 * race with swapoff. Then, we have small risk of mis-accouning.
1955 * But such kind of mis-account by race always happens because
1956 * we don't have cgroup_mutex(). It's overkill and we allo that
1957 * small race, here.
1958 * (*) swapoff at el will charge against mm-struct not against
1959 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1960 */
1961 mem = mem_cgroup_from_task(p);
ebb76ce1 1962 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1963 rcu_read_unlock();
1964 goto done;
1965 }
ec168510 1966 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1967 /*
1968 * It seems dagerous to access memcg without css_get().
1969 * But considering how consume_stok works, it's not
1970 * necessary. If consume_stock success, some charges
1971 * from this memcg are cached on this cpu. So, we
1972 * don't need to call css_get()/css_tryget() before
1973 * calling consume_stock().
1974 */
1975 rcu_read_unlock();
1976 goto done;
1977 }
1978 /* after here, we may be blocked. we need to get refcnt */
1979 if (!css_tryget(&mem->css)) {
1980 rcu_read_unlock();
1981 goto again;
1982 }
1983 rcu_read_unlock();
1984 }
8a9f3ccd 1985
4b534334
KH
1986 do {
1987 bool oom_check;
7a81b88c 1988
4b534334 1989 /* If killed, bypass charge */
f75ca962
KH
1990 if (fatal_signal_pending(current)) {
1991 css_put(&mem->css);
4b534334 1992 goto bypass;
f75ca962 1993 }
6d61ef40 1994
4b534334
KH
1995 oom_check = false;
1996 if (oom && !nr_oom_retries) {
1997 oom_check = true;
1998 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1999 }
66e1707b 2000
4b534334 2001 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 2002
4b534334
KH
2003 switch (ret) {
2004 case CHARGE_OK:
2005 break;
2006 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 2007 csize = page_size;
f75ca962
KH
2008 css_put(&mem->css);
2009 mem = NULL;
2010 goto again;
4b534334 2011 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2012 css_put(&mem->css);
4b534334
KH
2013 goto nomem;
2014 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2015 if (!oom) {
2016 css_put(&mem->css);
867578cb 2017 goto nomem;
f75ca962 2018 }
4b534334
KH
2019 /* If oom, we never return -ENOMEM */
2020 nr_oom_retries--;
2021 break;
2022 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2023 css_put(&mem->css);
867578cb 2024 goto bypass;
66e1707b 2025 }
4b534334
KH
2026 } while (ret != CHARGE_OK);
2027
ec168510
AA
2028 if (csize > page_size)
2029 refill_stock(mem, csize - page_size);
f75ca962 2030 css_put(&mem->css);
0c3e73e8 2031done:
f75ca962 2032 *memcg = mem;
7a81b88c
KH
2033 return 0;
2034nomem:
f75ca962 2035 *memcg = NULL;
7a81b88c 2036 return -ENOMEM;
867578cb
KH
2037bypass:
2038 *memcg = NULL;
2039 return 0;
7a81b88c 2040}
8a9f3ccd 2041
a3032a2c
DN
2042/*
2043 * Somemtimes we have to undo a charge we got by try_charge().
2044 * This function is for that and do uncharge, put css's refcnt.
2045 * gotten by try_charge().
2046 */
854ffa8d
DN
2047static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2048 unsigned long count)
a3032a2c
DN
2049{
2050 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2051 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2052 if (do_swap_account)
854ffa8d 2053 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2054 }
854ffa8d
DN
2055}
2056
ec168510
AA
2057static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2058 int page_size)
854ffa8d 2059{
ec168510 2060 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2061}
2062
a3b2d692
KH
2063/*
2064 * A helper function to get mem_cgroup from ID. must be called under
2065 * rcu_read_lock(). The caller must check css_is_removed() or some if
2066 * it's concern. (dropping refcnt from swap can be called against removed
2067 * memcg.)
2068 */
2069static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2070{
2071 struct cgroup_subsys_state *css;
2072
2073 /* ID 0 is unused ID */
2074 if (!id)
2075 return NULL;
2076 css = css_lookup(&mem_cgroup_subsys, id);
2077 if (!css)
2078 return NULL;
2079 return container_of(css, struct mem_cgroup, css);
2080}
2081
e42d9d5d 2082struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2083{
e42d9d5d 2084 struct mem_cgroup *mem = NULL;
3c776e64 2085 struct page_cgroup *pc;
a3b2d692 2086 unsigned short id;
b5a84319
KH
2087 swp_entry_t ent;
2088
3c776e64
DN
2089 VM_BUG_ON(!PageLocked(page));
2090
3c776e64 2091 pc = lookup_page_cgroup(page);
c0bd3f63 2092 lock_page_cgroup(pc);
a3b2d692 2093 if (PageCgroupUsed(pc)) {
3c776e64 2094 mem = pc->mem_cgroup;
a3b2d692
KH
2095 if (mem && !css_tryget(&mem->css))
2096 mem = NULL;
e42d9d5d 2097 } else if (PageSwapCache(page)) {
3c776e64 2098 ent.val = page_private(page);
a3b2d692
KH
2099 id = lookup_swap_cgroup(ent);
2100 rcu_read_lock();
2101 mem = mem_cgroup_lookup(id);
2102 if (mem && !css_tryget(&mem->css))
2103 mem = NULL;
2104 rcu_read_unlock();
3c776e64 2105 }
c0bd3f63 2106 unlock_page_cgroup(pc);
b5a84319
KH
2107 return mem;
2108}
2109
ca3e0214
KH
2110static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2111 struct page_cgroup *pc,
2112 enum charge_type ctype,
2113 int page_size)
7a81b88c 2114{
ca3e0214
KH
2115 int nr_pages = page_size >> PAGE_SHIFT;
2116
ca3e0214
KH
2117 lock_page_cgroup(pc);
2118 if (unlikely(PageCgroupUsed(pc))) {
2119 unlock_page_cgroup(pc);
2120 mem_cgroup_cancel_charge(mem, page_size);
2121 return;
2122 }
2123 /*
2124 * we don't need page_cgroup_lock about tail pages, becase they are not
2125 * accessed by any other context at this point.
2126 */
8a9f3ccd 2127 pc->mem_cgroup = mem;
261fb61a
KH
2128 /*
2129 * We access a page_cgroup asynchronously without lock_page_cgroup().
2130 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2131 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2132 * before USED bit, we need memory barrier here.
2133 * See mem_cgroup_add_lru_list(), etc.
2134 */
08e552c6 2135 smp_wmb();
4b3bde4c
BS
2136 switch (ctype) {
2137 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2138 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2139 SetPageCgroupCache(pc);
2140 SetPageCgroupUsed(pc);
2141 break;
2142 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2143 ClearPageCgroupCache(pc);
2144 SetPageCgroupUsed(pc);
2145 break;
2146 default:
2147 break;
2148 }
3be91277 2149
ca3e0214 2150 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2151 unlock_page_cgroup(pc);
430e4863
KH
2152 /*
2153 * "charge_statistics" updated event counter. Then, check it.
2154 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2155 * if they exceeds softlimit.
2156 */
d2265e6f 2157 memcg_check_events(mem, pc->page);
7a81b88c 2158}
66e1707b 2159
ca3e0214
KH
2160#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2161
2162#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2163 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2164/*
2165 * Because tail pages are not marked as "used", set it. We're under
2166 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2167 */
2168void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2169{
2170 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2171 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2172 unsigned long flags;
2173
3d37c4a9
KH
2174 if (mem_cgroup_disabled())
2175 return;
ca3e0214 2176 /*
ece35ca8 2177 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2178 * page state accounting.
2179 */
2180 move_lock_page_cgroup(head_pc, &flags);
2181
2182 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2183 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2184 if (PageCgroupAcctLRU(head_pc)) {
2185 enum lru_list lru;
2186 struct mem_cgroup_per_zone *mz;
2187
2188 /*
2189 * LRU flags cannot be copied because we need to add tail
2190 *.page to LRU by generic call and our hook will be called.
2191 * We hold lru_lock, then, reduce counter directly.
2192 */
2193 lru = page_lru(head);
97a6c37b 2194 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2195 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2196 }
ca3e0214
KH
2197 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2198 move_unlock_page_cgroup(head_pc, &flags);
2199}
2200#endif
2201
f817ed48 2202/**
de3638d9 2203 * mem_cgroup_move_account - move account of the page
f817ed48
KH
2204 * @pc: page_cgroup of the page.
2205 * @from: mem_cgroup which the page is moved from.
2206 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2207 * @uncharge: whether we should call uncharge and css_put against @from.
de3638d9 2208 * @charge_size: number of bytes to charge (regular or huge page)
f817ed48
KH
2209 *
2210 * The caller must confirm following.
08e552c6 2211 * - page is not on LRU (isolate_page() is useful.)
de3638d9 2212 * - compound_lock is held when charge_size > PAGE_SIZE
f817ed48 2213 *
854ffa8d
DN
2214 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2215 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2216 * true, this function does "uncharge" from old cgroup, but it doesn't if
2217 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2218 */
de3638d9
JW
2219static int mem_cgroup_move_account(struct page_cgroup *pc,
2220 struct mem_cgroup *from, struct mem_cgroup *to,
2221 bool uncharge, int charge_size)
f817ed48 2222{
987eba66 2223 int nr_pages = charge_size >> PAGE_SHIFT;
de3638d9
JW
2224 unsigned long flags;
2225 int ret;
987eba66 2226
f817ed48 2227 VM_BUG_ON(from == to);
08e552c6 2228 VM_BUG_ON(PageLRU(pc->page));
de3638d9
JW
2229 /*
2230 * The page is isolated from LRU. So, collapse function
2231 * will not handle this page. But page splitting can happen.
2232 * Do this check under compound_page_lock(). The caller should
2233 * hold it.
2234 */
2235 ret = -EBUSY;
2236 if (charge_size > PAGE_SIZE && !PageTransHuge(pc->page))
2237 goto out;
2238
2239 lock_page_cgroup(pc);
2240
2241 ret = -EINVAL;
2242 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2243 goto unlock;
2244
2245 move_lock_page_cgroup(pc, &flags);
f817ed48 2246
8725d541 2247 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2248 /* Update mapped_file data for mem_cgroup */
2249 preempt_disable();
2250 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2251 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2252 preempt_enable();
d69b042f 2253 }
987eba66 2254 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2255 if (uncharge)
2256 /* This is not "cancel", but cancel_charge does all we need. */
987eba66 2257 mem_cgroup_cancel_charge(from, charge_size);
d69b042f 2258
854ffa8d 2259 /* caller should have done css_get */
08e552c6 2260 pc->mem_cgroup = to;
987eba66 2261 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2262 /*
2263 * We charges against "to" which may not have any tasks. Then, "to"
2264 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2265 * this function is just force_empty() and move charge, so it's
2266 * garanteed that "to" is never removed. So, we don't check rmdir
2267 * status here.
88703267 2268 */
de3638d9
JW
2269 move_unlock_page_cgroup(pc, &flags);
2270 ret = 0;
2271unlock:
57f9fd7d 2272 unlock_page_cgroup(pc);
d2265e6f
KH
2273 /*
2274 * check events
2275 */
2276 memcg_check_events(to, pc->page);
2277 memcg_check_events(from, pc->page);
de3638d9 2278out:
f817ed48
KH
2279 return ret;
2280}
2281
2282/*
2283 * move charges to its parent.
2284 */
2285
2286static int mem_cgroup_move_parent(struct page_cgroup *pc,
2287 struct mem_cgroup *child,
2288 gfp_t gfp_mask)
2289{
08e552c6 2290 struct page *page = pc->page;
f817ed48
KH
2291 struct cgroup *cg = child->css.cgroup;
2292 struct cgroup *pcg = cg->parent;
2293 struct mem_cgroup *parent;
52dbb905 2294 int page_size = PAGE_SIZE;
987eba66 2295 unsigned long flags;
f817ed48
KH
2296 int ret;
2297
2298 /* Is ROOT ? */
2299 if (!pcg)
2300 return -EINVAL;
2301
57f9fd7d
DN
2302 ret = -EBUSY;
2303 if (!get_page_unless_zero(page))
2304 goto out;
2305 if (isolate_lru_page(page))
2306 goto put;
52dbb905
KH
2307
2308 if (PageTransHuge(page))
2309 page_size = HPAGE_SIZE;
08e552c6 2310
f817ed48 2311 parent = mem_cgroup_from_cont(pcg);
52dbb905
KH
2312 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2313 &parent, false, page_size);
a636b327 2314 if (ret || !parent)
57f9fd7d 2315 goto put_back;
f817ed48 2316
52dbb905 2317 if (page_size > PAGE_SIZE)
987eba66
KH
2318 flags = compound_lock_irqsave(page);
2319
52dbb905 2320 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
854ffa8d 2321 if (ret)
52dbb905 2322 mem_cgroup_cancel_charge(parent, page_size);
8dba474f 2323
52dbb905 2324 if (page_size > PAGE_SIZE)
987eba66 2325 compound_unlock_irqrestore(page, flags);
8dba474f 2326put_back:
08e552c6 2327 putback_lru_page(page);
57f9fd7d 2328put:
40d58138 2329 put_page(page);
57f9fd7d 2330out:
f817ed48
KH
2331 return ret;
2332}
2333
7a81b88c
KH
2334/*
2335 * Charge the memory controller for page usage.
2336 * Return
2337 * 0 if the charge was successful
2338 * < 0 if the cgroup is over its limit
2339 */
2340static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2341 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2342{
73045c47 2343 struct mem_cgroup *mem = NULL;
8493ae43 2344 int page_size = PAGE_SIZE;
7a81b88c 2345 struct page_cgroup *pc;
8493ae43 2346 bool oom = true;
7a81b88c 2347 int ret;
ec168510 2348
37c2ac78 2349 if (PageTransHuge(page)) {
ec168510 2350 page_size <<= compound_order(page);
37c2ac78 2351 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2352 /*
2353 * Never OOM-kill a process for a huge page. The
2354 * fault handler will fall back to regular pages.
2355 */
2356 oom = false;
37c2ac78 2357 }
7a81b88c
KH
2358
2359 pc = lookup_page_cgroup(page);
af4a6621 2360 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2361
8493ae43 2362 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
a636b327 2363 if (ret || !mem)
7a81b88c
KH
2364 return ret;
2365
ec168510 2366 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2367 return 0;
8a9f3ccd
BS
2368}
2369
7a81b88c
KH
2370int mem_cgroup_newpage_charge(struct page *page,
2371 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2372{
f8d66542 2373 if (mem_cgroup_disabled())
cede86ac 2374 return 0;
69029cd5
KH
2375 /*
2376 * If already mapped, we don't have to account.
2377 * If page cache, page->mapping has address_space.
2378 * But page->mapping may have out-of-use anon_vma pointer,
2379 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2380 * is NULL.
2381 */
2382 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2383 return 0;
2384 if (unlikely(!mm))
2385 mm = &init_mm;
217bc319 2386 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2387 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2388}
2389
83aae4c7
DN
2390static void
2391__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2392 enum charge_type ctype);
2393
e1a1cd59
BS
2394int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2395 gfp_t gfp_mask)
8697d331 2396{
b5a84319
KH
2397 int ret;
2398
f8d66542 2399 if (mem_cgroup_disabled())
cede86ac 2400 return 0;
52d4b9ac
KH
2401 if (PageCompound(page))
2402 return 0;
accf163e
KH
2403 /*
2404 * Corner case handling. This is called from add_to_page_cache()
2405 * in usual. But some FS (shmem) precharges this page before calling it
2406 * and call add_to_page_cache() with GFP_NOWAIT.
2407 *
2408 * For GFP_NOWAIT case, the page may be pre-charged before calling
2409 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2410 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2411 * And when the page is SwapCache, it should take swap information
2412 * into account. This is under lock_page() now.
accf163e
KH
2413 */
2414 if (!(gfp_mask & __GFP_WAIT)) {
2415 struct page_cgroup *pc;
2416
52d4b9ac
KH
2417 pc = lookup_page_cgroup(page);
2418 if (!pc)
2419 return 0;
2420 lock_page_cgroup(pc);
2421 if (PageCgroupUsed(pc)) {
2422 unlock_page_cgroup(pc);
accf163e
KH
2423 return 0;
2424 }
52d4b9ac 2425 unlock_page_cgroup(pc);
accf163e
KH
2426 }
2427
73045c47 2428 if (unlikely(!mm))
8697d331 2429 mm = &init_mm;
accf163e 2430
c05555b5
KH
2431 if (page_is_file_cache(page))
2432 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2433 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2434
83aae4c7
DN
2435 /* shmem */
2436 if (PageSwapCache(page)) {
56039efa 2437 struct mem_cgroup *mem;
73045c47 2438
83aae4c7
DN
2439 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2440 if (!ret)
2441 __mem_cgroup_commit_charge_swapin(page, mem,
2442 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2443 } else
2444 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2445 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2446
b5a84319 2447 return ret;
e8589cc1
KH
2448}
2449
54595fe2
KH
2450/*
2451 * While swap-in, try_charge -> commit or cancel, the page is locked.
2452 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2453 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2454 * "commit()" or removed by "cancel()"
2455 */
8c7c6e34
KH
2456int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2457 struct page *page,
2458 gfp_t mask, struct mem_cgroup **ptr)
2459{
2460 struct mem_cgroup *mem;
54595fe2 2461 int ret;
8c7c6e34 2462
56039efa
KH
2463 *ptr = NULL;
2464
f8d66542 2465 if (mem_cgroup_disabled())
8c7c6e34
KH
2466 return 0;
2467
2468 if (!do_swap_account)
2469 goto charge_cur_mm;
8c7c6e34
KH
2470 /*
2471 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2472 * the pte, and even removed page from swap cache: in those cases
2473 * do_swap_page()'s pte_same() test will fail; but there's also a
2474 * KSM case which does need to charge the page.
8c7c6e34
KH
2475 */
2476 if (!PageSwapCache(page))
407f9c8b 2477 goto charge_cur_mm;
e42d9d5d 2478 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2479 if (!mem)
2480 goto charge_cur_mm;
8c7c6e34 2481 *ptr = mem;
ec168510 2482 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2483 css_put(&mem->css);
2484 return ret;
8c7c6e34
KH
2485charge_cur_mm:
2486 if (unlikely(!mm))
2487 mm = &init_mm;
ec168510 2488 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2489}
2490
83aae4c7
DN
2491static void
2492__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2493 enum charge_type ctype)
7a81b88c
KH
2494{
2495 struct page_cgroup *pc;
2496
f8d66542 2497 if (mem_cgroup_disabled())
7a81b88c
KH
2498 return;
2499 if (!ptr)
2500 return;
88703267 2501 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2502 pc = lookup_page_cgroup(page);
544122e5 2503 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2504 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2505 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2506 /*
2507 * Now swap is on-memory. This means this page may be
2508 * counted both as mem and swap....double count.
03f3c433
KH
2509 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2510 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2511 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2512 */
03f3c433 2513 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2514 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2515 unsigned short id;
8c7c6e34 2516 struct mem_cgroup *memcg;
a3b2d692
KH
2517
2518 id = swap_cgroup_record(ent, 0);
2519 rcu_read_lock();
2520 memcg = mem_cgroup_lookup(id);
8c7c6e34 2521 if (memcg) {
a3b2d692
KH
2522 /*
2523 * This recorded memcg can be obsolete one. So, avoid
2524 * calling css_tryget
2525 */
0c3e73e8 2526 if (!mem_cgroup_is_root(memcg))
4e649152 2527 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2528 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2529 mem_cgroup_put(memcg);
2530 }
a3b2d692 2531 rcu_read_unlock();
8c7c6e34 2532 }
88703267
KH
2533 /*
2534 * At swapin, we may charge account against cgroup which has no tasks.
2535 * So, rmdir()->pre_destroy() can be called while we do this charge.
2536 * In that case, we need to call pre_destroy() again. check it here.
2537 */
2538 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2539}
2540
83aae4c7
DN
2541void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2542{
2543 __mem_cgroup_commit_charge_swapin(page, ptr,
2544 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2545}
2546
7a81b88c
KH
2547void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2548{
f8d66542 2549 if (mem_cgroup_disabled())
7a81b88c
KH
2550 return;
2551 if (!mem)
2552 return;
ec168510 2553 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2554}
2555
569b846d 2556static void
ec168510
AA
2557__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2558 int page_size)
569b846d
KH
2559{
2560 struct memcg_batch_info *batch = NULL;
2561 bool uncharge_memsw = true;
2562 /* If swapout, usage of swap doesn't decrease */
2563 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2564 uncharge_memsw = false;
569b846d
KH
2565
2566 batch = &current->memcg_batch;
2567 /*
2568 * In usual, we do css_get() when we remember memcg pointer.
2569 * But in this case, we keep res->usage until end of a series of
2570 * uncharges. Then, it's ok to ignore memcg's refcnt.
2571 */
2572 if (!batch->memcg)
2573 batch->memcg = mem;
3c11ecf4
KH
2574 /*
2575 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2576 * In those cases, all pages freed continously can be expected to be in
2577 * the same cgroup and we have chance to coalesce uncharges.
2578 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2579 * because we want to do uncharge as soon as possible.
2580 */
2581
2582 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2583 goto direct_uncharge;
2584
ec168510
AA
2585 if (page_size != PAGE_SIZE)
2586 goto direct_uncharge;
2587
569b846d
KH
2588 /*
2589 * In typical case, batch->memcg == mem. This means we can
2590 * merge a series of uncharges to an uncharge of res_counter.
2591 * If not, we uncharge res_counter ony by one.
2592 */
2593 if (batch->memcg != mem)
2594 goto direct_uncharge;
2595 /* remember freed charge and uncharge it later */
2596 batch->bytes += PAGE_SIZE;
2597 if (uncharge_memsw)
2598 batch->memsw_bytes += PAGE_SIZE;
2599 return;
2600direct_uncharge:
ec168510 2601 res_counter_uncharge(&mem->res, page_size);
569b846d 2602 if (uncharge_memsw)
ec168510 2603 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2604 if (unlikely(batch->memcg != mem))
2605 memcg_oom_recover(mem);
569b846d
KH
2606 return;
2607}
7a81b88c 2608
8a9f3ccd 2609/*
69029cd5 2610 * uncharge if !page_mapped(page)
8a9f3ccd 2611 */
8c7c6e34 2612static struct mem_cgroup *
69029cd5 2613__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2614{
152c9ccb 2615 int count;
8289546e 2616 struct page_cgroup *pc;
8c7c6e34 2617 struct mem_cgroup *mem = NULL;
ec168510 2618 int page_size = PAGE_SIZE;
8a9f3ccd 2619
f8d66542 2620 if (mem_cgroup_disabled())
8c7c6e34 2621 return NULL;
4077960e 2622
d13d1443 2623 if (PageSwapCache(page))
8c7c6e34 2624 return NULL;
d13d1443 2625
37c2ac78 2626 if (PageTransHuge(page)) {
ec168510 2627 page_size <<= compound_order(page);
37c2ac78
AA
2628 VM_BUG_ON(!PageTransHuge(page));
2629 }
ec168510 2630
152c9ccb 2631 count = page_size >> PAGE_SHIFT;
8697d331 2632 /*
3c541e14 2633 * Check if our page_cgroup is valid
8697d331 2634 */
52d4b9ac
KH
2635 pc = lookup_page_cgroup(page);
2636 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2637 return NULL;
b9c565d5 2638
52d4b9ac 2639 lock_page_cgroup(pc);
d13d1443 2640
8c7c6e34
KH
2641 mem = pc->mem_cgroup;
2642
d13d1443
KH
2643 if (!PageCgroupUsed(pc))
2644 goto unlock_out;
2645
2646 switch (ctype) {
2647 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2648 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2649 /* See mem_cgroup_prepare_migration() */
2650 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2651 goto unlock_out;
2652 break;
2653 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2654 if (!PageAnon(page)) { /* Shared memory */
2655 if (page->mapping && !page_is_file_cache(page))
2656 goto unlock_out;
2657 } else if (page_mapped(page)) /* Anon */
2658 goto unlock_out;
2659 break;
2660 default:
2661 break;
52d4b9ac 2662 }
d13d1443 2663
ca3e0214 2664 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
04046e1a 2665
52d4b9ac 2666 ClearPageCgroupUsed(pc);
544122e5
KH
2667 /*
2668 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2669 * freed from LRU. This is safe because uncharged page is expected not
2670 * to be reused (freed soon). Exception is SwapCache, it's handled by
2671 * special functions.
2672 */
b9c565d5 2673
52d4b9ac 2674 unlock_page_cgroup(pc);
f75ca962
KH
2675 /*
2676 * even after unlock, we have mem->res.usage here and this memcg
2677 * will never be freed.
2678 */
d2265e6f 2679 memcg_check_events(mem, page);
f75ca962
KH
2680 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2681 mem_cgroup_swap_statistics(mem, true);
2682 mem_cgroup_get(mem);
2683 }
2684 if (!mem_cgroup_is_root(mem))
ec168510 2685 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2686
8c7c6e34 2687 return mem;
d13d1443
KH
2688
2689unlock_out:
2690 unlock_page_cgroup(pc);
8c7c6e34 2691 return NULL;
3c541e14
BS
2692}
2693
69029cd5
KH
2694void mem_cgroup_uncharge_page(struct page *page)
2695{
52d4b9ac
KH
2696 /* early check. */
2697 if (page_mapped(page))
2698 return;
2699 if (page->mapping && !PageAnon(page))
2700 return;
69029cd5
KH
2701 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2702}
2703
2704void mem_cgroup_uncharge_cache_page(struct page *page)
2705{
2706 VM_BUG_ON(page_mapped(page));
b7abea96 2707 VM_BUG_ON(page->mapping);
69029cd5
KH
2708 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2709}
2710
569b846d
KH
2711/*
2712 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2713 * In that cases, pages are freed continuously and we can expect pages
2714 * are in the same memcg. All these calls itself limits the number of
2715 * pages freed at once, then uncharge_start/end() is called properly.
2716 * This may be called prural(2) times in a context,
2717 */
2718
2719void mem_cgroup_uncharge_start(void)
2720{
2721 current->memcg_batch.do_batch++;
2722 /* We can do nest. */
2723 if (current->memcg_batch.do_batch == 1) {
2724 current->memcg_batch.memcg = NULL;
2725 current->memcg_batch.bytes = 0;
2726 current->memcg_batch.memsw_bytes = 0;
2727 }
2728}
2729
2730void mem_cgroup_uncharge_end(void)
2731{
2732 struct memcg_batch_info *batch = &current->memcg_batch;
2733
2734 if (!batch->do_batch)
2735 return;
2736
2737 batch->do_batch--;
2738 if (batch->do_batch) /* If stacked, do nothing. */
2739 return;
2740
2741 if (!batch->memcg)
2742 return;
2743 /*
2744 * This "batch->memcg" is valid without any css_get/put etc...
2745 * bacause we hide charges behind us.
2746 */
2747 if (batch->bytes)
2748 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2749 if (batch->memsw_bytes)
2750 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2751 memcg_oom_recover(batch->memcg);
569b846d
KH
2752 /* forget this pointer (for sanity check) */
2753 batch->memcg = NULL;
2754}
2755
e767e056 2756#ifdef CONFIG_SWAP
8c7c6e34 2757/*
e767e056 2758 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2759 * memcg information is recorded to swap_cgroup of "ent"
2760 */
8a9478ca
KH
2761void
2762mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2763{
2764 struct mem_cgroup *memcg;
8a9478ca
KH
2765 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2766
2767 if (!swapout) /* this was a swap cache but the swap is unused ! */
2768 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2769
2770 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2771
f75ca962
KH
2772 /*
2773 * record memcg information, if swapout && memcg != NULL,
2774 * mem_cgroup_get() was called in uncharge().
2775 */
2776 if (do_swap_account && swapout && memcg)
a3b2d692 2777 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2778}
e767e056 2779#endif
8c7c6e34
KH
2780
2781#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2782/*
2783 * called from swap_entry_free(). remove record in swap_cgroup and
2784 * uncharge "memsw" account.
2785 */
2786void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2787{
8c7c6e34 2788 struct mem_cgroup *memcg;
a3b2d692 2789 unsigned short id;
8c7c6e34
KH
2790
2791 if (!do_swap_account)
2792 return;
2793
a3b2d692
KH
2794 id = swap_cgroup_record(ent, 0);
2795 rcu_read_lock();
2796 memcg = mem_cgroup_lookup(id);
8c7c6e34 2797 if (memcg) {
a3b2d692
KH
2798 /*
2799 * We uncharge this because swap is freed.
2800 * This memcg can be obsolete one. We avoid calling css_tryget
2801 */
0c3e73e8 2802 if (!mem_cgroup_is_root(memcg))
4e649152 2803 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2804 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2805 mem_cgroup_put(memcg);
2806 }
a3b2d692 2807 rcu_read_unlock();
d13d1443 2808}
02491447
DN
2809
2810/**
2811 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2812 * @entry: swap entry to be moved
2813 * @from: mem_cgroup which the entry is moved from
2814 * @to: mem_cgroup which the entry is moved to
483c30b5 2815 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2816 *
2817 * It succeeds only when the swap_cgroup's record for this entry is the same
2818 * as the mem_cgroup's id of @from.
2819 *
2820 * Returns 0 on success, -EINVAL on failure.
2821 *
2822 * The caller must have charged to @to, IOW, called res_counter_charge() about
2823 * both res and memsw, and called css_get().
2824 */
2825static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2826 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2827{
2828 unsigned short old_id, new_id;
2829
2830 old_id = css_id(&from->css);
2831 new_id = css_id(&to->css);
2832
2833 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2834 mem_cgroup_swap_statistics(from, false);
483c30b5 2835 mem_cgroup_swap_statistics(to, true);
02491447 2836 /*
483c30b5
DN
2837 * This function is only called from task migration context now.
2838 * It postpones res_counter and refcount handling till the end
2839 * of task migration(mem_cgroup_clear_mc()) for performance
2840 * improvement. But we cannot postpone mem_cgroup_get(to)
2841 * because if the process that has been moved to @to does
2842 * swap-in, the refcount of @to might be decreased to 0.
02491447 2843 */
02491447 2844 mem_cgroup_get(to);
483c30b5
DN
2845 if (need_fixup) {
2846 if (!mem_cgroup_is_root(from))
2847 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2848 mem_cgroup_put(from);
2849 /*
2850 * we charged both to->res and to->memsw, so we should
2851 * uncharge to->res.
2852 */
2853 if (!mem_cgroup_is_root(to))
2854 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2855 }
02491447
DN
2856 return 0;
2857 }
2858 return -EINVAL;
2859}
2860#else
2861static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2862 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2863{
2864 return -EINVAL;
2865}
8c7c6e34 2866#endif
d13d1443 2867
ae41be37 2868/*
01b1ae63
KH
2869 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2870 * page belongs to.
ae41be37 2871 */
ac39cf8c 2872int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 2873 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37
KH
2874{
2875 struct page_cgroup *pc;
e8589cc1 2876 struct mem_cgroup *mem = NULL;
ac39cf8c 2877 enum charge_type ctype;
e8589cc1 2878 int ret = 0;
8869b8f6 2879
56039efa
KH
2880 *ptr = NULL;
2881
ec168510 2882 VM_BUG_ON(PageTransHuge(page));
f8d66542 2883 if (mem_cgroup_disabled())
4077960e
BS
2884 return 0;
2885
52d4b9ac
KH
2886 pc = lookup_page_cgroup(page);
2887 lock_page_cgroup(pc);
2888 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2889 mem = pc->mem_cgroup;
2890 css_get(&mem->css);
ac39cf8c 2891 /*
2892 * At migrating an anonymous page, its mapcount goes down
2893 * to 0 and uncharge() will be called. But, even if it's fully
2894 * unmapped, migration may fail and this page has to be
2895 * charged again. We set MIGRATION flag here and delay uncharge
2896 * until end_migration() is called
2897 *
2898 * Corner Case Thinking
2899 * A)
2900 * When the old page was mapped as Anon and it's unmap-and-freed
2901 * while migration was ongoing.
2902 * If unmap finds the old page, uncharge() of it will be delayed
2903 * until end_migration(). If unmap finds a new page, it's
2904 * uncharged when it make mapcount to be 1->0. If unmap code
2905 * finds swap_migration_entry, the new page will not be mapped
2906 * and end_migration() will find it(mapcount==0).
2907 *
2908 * B)
2909 * When the old page was mapped but migraion fails, the kernel
2910 * remaps it. A charge for it is kept by MIGRATION flag even
2911 * if mapcount goes down to 0. We can do remap successfully
2912 * without charging it again.
2913 *
2914 * C)
2915 * The "old" page is under lock_page() until the end of
2916 * migration, so, the old page itself will not be swapped-out.
2917 * If the new page is swapped out before end_migraton, our
2918 * hook to usual swap-out path will catch the event.
2919 */
2920 if (PageAnon(page))
2921 SetPageCgroupMigration(pc);
e8589cc1 2922 }
52d4b9ac 2923 unlock_page_cgroup(pc);
ac39cf8c 2924 /*
2925 * If the page is not charged at this point,
2926 * we return here.
2927 */
2928 if (!mem)
2929 return 0;
01b1ae63 2930
93d5c9be 2931 *ptr = mem;
ef6a3c63 2932 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
ac39cf8c 2933 css_put(&mem->css);/* drop extra refcnt */
2934 if (ret || *ptr == NULL) {
2935 if (PageAnon(page)) {
2936 lock_page_cgroup(pc);
2937 ClearPageCgroupMigration(pc);
2938 unlock_page_cgroup(pc);
2939 /*
2940 * The old page may be fully unmapped while we kept it.
2941 */
2942 mem_cgroup_uncharge_page(page);
2943 }
2944 return -ENOMEM;
e8589cc1 2945 }
ac39cf8c 2946 /*
2947 * We charge new page before it's used/mapped. So, even if unlock_page()
2948 * is called before end_migration, we can catch all events on this new
2949 * page. In the case new page is migrated but not remapped, new page's
2950 * mapcount will be finally 0 and we call uncharge in end_migration().
2951 */
2952 pc = lookup_page_cgroup(newpage);
2953 if (PageAnon(page))
2954 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2955 else if (page_is_file_cache(page))
2956 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2957 else
2958 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 2959 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 2960 return ret;
ae41be37 2961}
8869b8f6 2962
69029cd5 2963/* remove redundant charge if migration failed*/
01b1ae63 2964void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 2965 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 2966{
ac39cf8c 2967 struct page *used, *unused;
01b1ae63 2968 struct page_cgroup *pc;
01b1ae63
KH
2969
2970 if (!mem)
2971 return;
ac39cf8c 2972 /* blocks rmdir() */
88703267 2973 cgroup_exclude_rmdir(&mem->css);
50de1dd9 2974 if (!migration_ok) {
ac39cf8c 2975 used = oldpage;
2976 unused = newpage;
01b1ae63 2977 } else {
ac39cf8c 2978 used = newpage;
01b1ae63
KH
2979 unused = oldpage;
2980 }
69029cd5 2981 /*
ac39cf8c 2982 * We disallowed uncharge of pages under migration because mapcount
2983 * of the page goes down to zero, temporarly.
2984 * Clear the flag and check the page should be charged.
01b1ae63 2985 */
ac39cf8c 2986 pc = lookup_page_cgroup(oldpage);
2987 lock_page_cgroup(pc);
2988 ClearPageCgroupMigration(pc);
2989 unlock_page_cgroup(pc);
01b1ae63 2990
ac39cf8c 2991 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2992
01b1ae63 2993 /*
ac39cf8c 2994 * If a page is a file cache, radix-tree replacement is very atomic
2995 * and we can skip this check. When it was an Anon page, its mapcount
2996 * goes down to 0. But because we added MIGRATION flage, it's not
2997 * uncharged yet. There are several case but page->mapcount check
2998 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2999 * check. (see prepare_charge() also)
69029cd5 3000 */
ac39cf8c 3001 if (PageAnon(used))
3002 mem_cgroup_uncharge_page(used);
88703267 3003 /*
ac39cf8c 3004 * At migration, we may charge account against cgroup which has no
3005 * tasks.
88703267
KH
3006 * So, rmdir()->pre_destroy() can be called while we do this charge.
3007 * In that case, we need to call pre_destroy() again. check it here.
3008 */
3009 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3010}
78fb7466 3011
c9b0ed51 3012/*
ae3abae6
DN
3013 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3014 * Calling hierarchical_reclaim is not enough because we should update
3015 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3016 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3017 * not from the memcg which this page would be charged to.
3018 * try_charge_swapin does all of these works properly.
c9b0ed51 3019 */
ae3abae6 3020int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3021 struct mm_struct *mm,
3022 gfp_t gfp_mask)
c9b0ed51 3023{
56039efa 3024 struct mem_cgroup *mem;
ae3abae6 3025 int ret;
c9b0ed51 3026
f8d66542 3027 if (mem_cgroup_disabled())
cede86ac 3028 return 0;
c9b0ed51 3029
ae3abae6
DN
3030 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3031 if (!ret)
3032 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3033
ae3abae6 3034 return ret;
c9b0ed51
KH
3035}
3036
f212ad7c
DN
3037#ifdef CONFIG_DEBUG_VM
3038static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3039{
3040 struct page_cgroup *pc;
3041
3042 pc = lookup_page_cgroup(page);
3043 if (likely(pc) && PageCgroupUsed(pc))
3044 return pc;
3045 return NULL;
3046}
3047
3048bool mem_cgroup_bad_page_check(struct page *page)
3049{
3050 if (mem_cgroup_disabled())
3051 return false;
3052
3053 return lookup_page_cgroup_used(page) != NULL;
3054}
3055
3056void mem_cgroup_print_bad_page(struct page *page)
3057{
3058 struct page_cgroup *pc;
3059
3060 pc = lookup_page_cgroup_used(page);
3061 if (pc) {
3062 int ret = -1;
3063 char *path;
3064
3065 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3066 pc, pc->flags, pc->mem_cgroup);
3067
3068 path = kmalloc(PATH_MAX, GFP_KERNEL);
3069 if (path) {
3070 rcu_read_lock();
3071 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3072 path, PATH_MAX);
3073 rcu_read_unlock();
3074 }
3075
3076 printk(KERN_CONT "(%s)\n",
3077 (ret < 0) ? "cannot get the path" : path);
3078 kfree(path);
3079 }
3080}
3081#endif
3082
8c7c6e34
KH
3083static DEFINE_MUTEX(set_limit_mutex);
3084
d38d2a75 3085static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3086 unsigned long long val)
628f4235 3087{
81d39c20 3088 int retry_count;
3c11ecf4 3089 u64 memswlimit, memlimit;
628f4235 3090 int ret = 0;
81d39c20
KH
3091 int children = mem_cgroup_count_children(memcg);
3092 u64 curusage, oldusage;
3c11ecf4 3093 int enlarge;
81d39c20
KH
3094
3095 /*
3096 * For keeping hierarchical_reclaim simple, how long we should retry
3097 * is depends on callers. We set our retry-count to be function
3098 * of # of children which we should visit in this loop.
3099 */
3100 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3101
3102 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3103
3c11ecf4 3104 enlarge = 0;
8c7c6e34 3105 while (retry_count) {
628f4235
KH
3106 if (signal_pending(current)) {
3107 ret = -EINTR;
3108 break;
3109 }
8c7c6e34
KH
3110 /*
3111 * Rather than hide all in some function, I do this in
3112 * open coded manner. You see what this really does.
3113 * We have to guarantee mem->res.limit < mem->memsw.limit.
3114 */
3115 mutex_lock(&set_limit_mutex);
3116 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3117 if (memswlimit < val) {
3118 ret = -EINVAL;
3119 mutex_unlock(&set_limit_mutex);
628f4235
KH
3120 break;
3121 }
3c11ecf4
KH
3122
3123 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3124 if (memlimit < val)
3125 enlarge = 1;
3126
8c7c6e34 3127 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3128 if (!ret) {
3129 if (memswlimit == val)
3130 memcg->memsw_is_minimum = true;
3131 else
3132 memcg->memsw_is_minimum = false;
3133 }
8c7c6e34
KH
3134 mutex_unlock(&set_limit_mutex);
3135
3136 if (!ret)
3137 break;
3138
aa20d489 3139 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3140 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3141 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3142 /* Usage is reduced ? */
3143 if (curusage >= oldusage)
3144 retry_count--;
3145 else
3146 oldusage = curusage;
8c7c6e34 3147 }
3c11ecf4
KH
3148 if (!ret && enlarge)
3149 memcg_oom_recover(memcg);
14797e23 3150
8c7c6e34
KH
3151 return ret;
3152}
3153
338c8431
LZ
3154static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3155 unsigned long long val)
8c7c6e34 3156{
81d39c20 3157 int retry_count;
3c11ecf4 3158 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3159 int children = mem_cgroup_count_children(memcg);
3160 int ret = -EBUSY;
3c11ecf4 3161 int enlarge = 0;
8c7c6e34 3162
81d39c20
KH
3163 /* see mem_cgroup_resize_res_limit */
3164 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3165 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3166 while (retry_count) {
3167 if (signal_pending(current)) {
3168 ret = -EINTR;
3169 break;
3170 }
3171 /*
3172 * Rather than hide all in some function, I do this in
3173 * open coded manner. You see what this really does.
3174 * We have to guarantee mem->res.limit < mem->memsw.limit.
3175 */
3176 mutex_lock(&set_limit_mutex);
3177 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3178 if (memlimit > val) {
3179 ret = -EINVAL;
3180 mutex_unlock(&set_limit_mutex);
3181 break;
3182 }
3c11ecf4
KH
3183 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3184 if (memswlimit < val)
3185 enlarge = 1;
8c7c6e34 3186 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3187 if (!ret) {
3188 if (memlimit == val)
3189 memcg->memsw_is_minimum = true;
3190 else
3191 memcg->memsw_is_minimum = false;
3192 }
8c7c6e34
KH
3193 mutex_unlock(&set_limit_mutex);
3194
3195 if (!ret)
3196 break;
3197
4e416953 3198 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3199 MEM_CGROUP_RECLAIM_NOSWAP |
3200 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3201 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3202 /* Usage is reduced ? */
8c7c6e34 3203 if (curusage >= oldusage)
628f4235 3204 retry_count--;
81d39c20
KH
3205 else
3206 oldusage = curusage;
628f4235 3207 }
3c11ecf4
KH
3208 if (!ret && enlarge)
3209 memcg_oom_recover(memcg);
628f4235
KH
3210 return ret;
3211}
3212
4e416953 3213unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3214 gfp_t gfp_mask)
4e416953
BS
3215{
3216 unsigned long nr_reclaimed = 0;
3217 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3218 unsigned long reclaimed;
3219 int loop = 0;
3220 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3221 unsigned long long excess;
4e416953
BS
3222
3223 if (order > 0)
3224 return 0;
3225
00918b6a 3226 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3227 /*
3228 * This loop can run a while, specially if mem_cgroup's continuously
3229 * keep exceeding their soft limit and putting the system under
3230 * pressure
3231 */
3232 do {
3233 if (next_mz)
3234 mz = next_mz;
3235 else
3236 mz = mem_cgroup_largest_soft_limit_node(mctz);
3237 if (!mz)
3238 break;
3239
3240 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3241 gfp_mask,
3242 MEM_CGROUP_RECLAIM_SOFT);
3243 nr_reclaimed += reclaimed;
3244 spin_lock(&mctz->lock);
3245
3246 /*
3247 * If we failed to reclaim anything from this memory cgroup
3248 * it is time to move on to the next cgroup
3249 */
3250 next_mz = NULL;
3251 if (!reclaimed) {
3252 do {
3253 /*
3254 * Loop until we find yet another one.
3255 *
3256 * By the time we get the soft_limit lock
3257 * again, someone might have aded the
3258 * group back on the RB tree. Iterate to
3259 * make sure we get a different mem.
3260 * mem_cgroup_largest_soft_limit_node returns
3261 * NULL if no other cgroup is present on
3262 * the tree
3263 */
3264 next_mz =
3265 __mem_cgroup_largest_soft_limit_node(mctz);
3266 if (next_mz == mz) {
3267 css_put(&next_mz->mem->css);
3268 next_mz = NULL;
3269 } else /* next_mz == NULL or other memcg */
3270 break;
3271 } while (1);
3272 }
4e416953 3273 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3274 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3275 /*
3276 * One school of thought says that we should not add
3277 * back the node to the tree if reclaim returns 0.
3278 * But our reclaim could return 0, simply because due
3279 * to priority we are exposing a smaller subset of
3280 * memory to reclaim from. Consider this as a longer
3281 * term TODO.
3282 */
ef8745c1
KH
3283 /* If excess == 0, no tree ops */
3284 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3285 spin_unlock(&mctz->lock);
3286 css_put(&mz->mem->css);
3287 loop++;
3288 /*
3289 * Could not reclaim anything and there are no more
3290 * mem cgroups to try or we seem to be looping without
3291 * reclaiming anything.
3292 */
3293 if (!nr_reclaimed &&
3294 (next_mz == NULL ||
3295 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3296 break;
3297 } while (!nr_reclaimed);
3298 if (next_mz)
3299 css_put(&next_mz->mem->css);
3300 return nr_reclaimed;
3301}
3302
cc847582
KH
3303/*
3304 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3305 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3306 */
f817ed48 3307static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3308 int node, int zid, enum lru_list lru)
cc847582 3309{
08e552c6
KH
3310 struct zone *zone;
3311 struct mem_cgroup_per_zone *mz;
f817ed48 3312 struct page_cgroup *pc, *busy;
08e552c6 3313 unsigned long flags, loop;
072c56c1 3314 struct list_head *list;
f817ed48 3315 int ret = 0;
072c56c1 3316
08e552c6
KH
3317 zone = &NODE_DATA(node)->node_zones[zid];
3318 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3319 list = &mz->lists[lru];
cc847582 3320
f817ed48
KH
3321 loop = MEM_CGROUP_ZSTAT(mz, lru);
3322 /* give some margin against EBUSY etc...*/
3323 loop += 256;
3324 busy = NULL;
3325 while (loop--) {
3326 ret = 0;
08e552c6 3327 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3328 if (list_empty(list)) {
08e552c6 3329 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3330 break;
f817ed48
KH
3331 }
3332 pc = list_entry(list->prev, struct page_cgroup, lru);
3333 if (busy == pc) {
3334 list_move(&pc->lru, list);
648bcc77 3335 busy = NULL;
08e552c6 3336 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3337 continue;
3338 }
08e552c6 3339 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3340
2c26fdd7 3341 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3342 if (ret == -ENOMEM)
52d4b9ac 3343 break;
f817ed48
KH
3344
3345 if (ret == -EBUSY || ret == -EINVAL) {
3346 /* found lock contention or "pc" is obsolete. */
3347 busy = pc;
3348 cond_resched();
3349 } else
3350 busy = NULL;
cc847582 3351 }
08e552c6 3352
f817ed48
KH
3353 if (!ret && !list_empty(list))
3354 return -EBUSY;
3355 return ret;
cc847582
KH
3356}
3357
3358/*
3359 * make mem_cgroup's charge to be 0 if there is no task.
3360 * This enables deleting this mem_cgroup.
3361 */
c1e862c1 3362static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3363{
f817ed48
KH
3364 int ret;
3365 int node, zid, shrink;
3366 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3367 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3368
cc847582 3369 css_get(&mem->css);
f817ed48
KH
3370
3371 shrink = 0;
c1e862c1
KH
3372 /* should free all ? */
3373 if (free_all)
3374 goto try_to_free;
f817ed48 3375move_account:
fce66477 3376 do {
f817ed48 3377 ret = -EBUSY;
c1e862c1
KH
3378 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3379 goto out;
3380 ret = -EINTR;
3381 if (signal_pending(current))
cc847582 3382 goto out;
52d4b9ac
KH
3383 /* This is for making all *used* pages to be on LRU. */
3384 lru_add_drain_all();
cdec2e42 3385 drain_all_stock_sync();
f817ed48 3386 ret = 0;
32047e2a 3387 mem_cgroup_start_move(mem);
299b4eaa 3388 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3389 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3390 enum lru_list l;
f817ed48
KH
3391 for_each_lru(l) {
3392 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3393 node, zid, l);
f817ed48
KH
3394 if (ret)
3395 break;
3396 }
1ecaab2b 3397 }
f817ed48
KH
3398 if (ret)
3399 break;
3400 }
32047e2a 3401 mem_cgroup_end_move(mem);
3c11ecf4 3402 memcg_oom_recover(mem);
f817ed48
KH
3403 /* it seems parent cgroup doesn't have enough mem */
3404 if (ret == -ENOMEM)
3405 goto try_to_free;
52d4b9ac 3406 cond_resched();
fce66477
DN
3407 /* "ret" should also be checked to ensure all lists are empty. */
3408 } while (mem->res.usage > 0 || ret);
cc847582
KH
3409out:
3410 css_put(&mem->css);
3411 return ret;
f817ed48
KH
3412
3413try_to_free:
c1e862c1
KH
3414 /* returns EBUSY if there is a task or if we come here twice. */
3415 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3416 ret = -EBUSY;
3417 goto out;
3418 }
c1e862c1
KH
3419 /* we call try-to-free pages for make this cgroup empty */
3420 lru_add_drain_all();
f817ed48
KH
3421 /* try to free all pages in this cgroup */
3422 shrink = 1;
3423 while (nr_retries && mem->res.usage > 0) {
3424 int progress;
c1e862c1
KH
3425
3426 if (signal_pending(current)) {
3427 ret = -EINTR;
3428 goto out;
3429 }
a7885eb8
KM
3430 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3431 false, get_swappiness(mem));
c1e862c1 3432 if (!progress) {
f817ed48 3433 nr_retries--;
c1e862c1 3434 /* maybe some writeback is necessary */
8aa7e847 3435 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3436 }
f817ed48
KH
3437
3438 }
08e552c6 3439 lru_add_drain();
f817ed48 3440 /* try move_account...there may be some *locked* pages. */
fce66477 3441 goto move_account;
cc847582
KH
3442}
3443
c1e862c1
KH
3444int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3445{
3446 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3447}
3448
3449
18f59ea7
BS
3450static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3451{
3452 return mem_cgroup_from_cont(cont)->use_hierarchy;
3453}
3454
3455static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3456 u64 val)
3457{
3458 int retval = 0;
3459 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3460 struct cgroup *parent = cont->parent;
3461 struct mem_cgroup *parent_mem = NULL;
3462
3463 if (parent)
3464 parent_mem = mem_cgroup_from_cont(parent);
3465
3466 cgroup_lock();
3467 /*
af901ca1 3468 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3469 * in the child subtrees. If it is unset, then the change can
3470 * occur, provided the current cgroup has no children.
3471 *
3472 * For the root cgroup, parent_mem is NULL, we allow value to be
3473 * set if there are no children.
3474 */
3475 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3476 (val == 1 || val == 0)) {
3477 if (list_empty(&cont->children))
3478 mem->use_hierarchy = val;
3479 else
3480 retval = -EBUSY;
3481 } else
3482 retval = -EINVAL;
3483 cgroup_unlock();
3484
3485 return retval;
3486}
3487
0c3e73e8 3488
7d74b06f
KH
3489static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3490 enum mem_cgroup_stat_index idx)
0c3e73e8 3491{
7d74b06f
KH
3492 struct mem_cgroup *iter;
3493 s64 val = 0;
0c3e73e8 3494
7d74b06f
KH
3495 /* each per cpu's value can be minus.Then, use s64 */
3496 for_each_mem_cgroup_tree(iter, mem)
3497 val += mem_cgroup_read_stat(iter, idx);
3498
3499 if (val < 0) /* race ? */
3500 val = 0;
3501 return val;
0c3e73e8
BS
3502}
3503
104f3928
KS
3504static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3505{
7d74b06f 3506 u64 val;
104f3928
KS
3507
3508 if (!mem_cgroup_is_root(mem)) {
3509 if (!swap)
3510 return res_counter_read_u64(&mem->res, RES_USAGE);
3511 else
3512 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3513 }
3514
7d74b06f
KH
3515 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3516 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3517
7d74b06f
KH
3518 if (swap)
3519 val += mem_cgroup_get_recursive_idx_stat(mem,
3520 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3521
3522 return val << PAGE_SHIFT;
3523}
3524
2c3daa72 3525static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3526{
8c7c6e34 3527 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3528 u64 val;
8c7c6e34
KH
3529 int type, name;
3530
3531 type = MEMFILE_TYPE(cft->private);
3532 name = MEMFILE_ATTR(cft->private);
3533 switch (type) {
3534 case _MEM:
104f3928
KS
3535 if (name == RES_USAGE)
3536 val = mem_cgroup_usage(mem, false);
3537 else
0c3e73e8 3538 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3539 break;
3540 case _MEMSWAP:
104f3928
KS
3541 if (name == RES_USAGE)
3542 val = mem_cgroup_usage(mem, true);
3543 else
0c3e73e8 3544 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3545 break;
3546 default:
3547 BUG();
3548 break;
3549 }
3550 return val;
8cdea7c0 3551}
628f4235
KH
3552/*
3553 * The user of this function is...
3554 * RES_LIMIT.
3555 */
856c13aa
PM
3556static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3557 const char *buffer)
8cdea7c0 3558{
628f4235 3559 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3560 int type, name;
628f4235
KH
3561 unsigned long long val;
3562 int ret;
3563
8c7c6e34
KH
3564 type = MEMFILE_TYPE(cft->private);
3565 name = MEMFILE_ATTR(cft->private);
3566 switch (name) {
628f4235 3567 case RES_LIMIT:
4b3bde4c
BS
3568 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3569 ret = -EINVAL;
3570 break;
3571 }
628f4235
KH
3572 /* This function does all necessary parse...reuse it */
3573 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3574 if (ret)
3575 break;
3576 if (type == _MEM)
628f4235 3577 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3578 else
3579 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3580 break;
296c81d8
BS
3581 case RES_SOFT_LIMIT:
3582 ret = res_counter_memparse_write_strategy(buffer, &val);
3583 if (ret)
3584 break;
3585 /*
3586 * For memsw, soft limits are hard to implement in terms
3587 * of semantics, for now, we support soft limits for
3588 * control without swap
3589 */
3590 if (type == _MEM)
3591 ret = res_counter_set_soft_limit(&memcg->res, val);
3592 else
3593 ret = -EINVAL;
3594 break;
628f4235
KH
3595 default:
3596 ret = -EINVAL; /* should be BUG() ? */
3597 break;
3598 }
3599 return ret;
8cdea7c0
BS
3600}
3601
fee7b548
KH
3602static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3603 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3604{
3605 struct cgroup *cgroup;
3606 unsigned long long min_limit, min_memsw_limit, tmp;
3607
3608 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3609 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3610 cgroup = memcg->css.cgroup;
3611 if (!memcg->use_hierarchy)
3612 goto out;
3613
3614 while (cgroup->parent) {
3615 cgroup = cgroup->parent;
3616 memcg = mem_cgroup_from_cont(cgroup);
3617 if (!memcg->use_hierarchy)
3618 break;
3619 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3620 min_limit = min(min_limit, tmp);
3621 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3622 min_memsw_limit = min(min_memsw_limit, tmp);
3623 }
3624out:
3625 *mem_limit = min_limit;
3626 *memsw_limit = min_memsw_limit;
3627 return;
3628}
3629
29f2a4da 3630static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3631{
3632 struct mem_cgroup *mem;
8c7c6e34 3633 int type, name;
c84872e1
PE
3634
3635 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3636 type = MEMFILE_TYPE(event);
3637 name = MEMFILE_ATTR(event);
3638 switch (name) {
29f2a4da 3639 case RES_MAX_USAGE:
8c7c6e34
KH
3640 if (type == _MEM)
3641 res_counter_reset_max(&mem->res);
3642 else
3643 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3644 break;
3645 case RES_FAILCNT:
8c7c6e34
KH
3646 if (type == _MEM)
3647 res_counter_reset_failcnt(&mem->res);
3648 else
3649 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3650 break;
3651 }
f64c3f54 3652
85cc59db 3653 return 0;
c84872e1
PE
3654}
3655
7dc74be0
DN
3656static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3657 struct cftype *cft)
3658{
3659 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3660}
3661
02491447 3662#ifdef CONFIG_MMU
7dc74be0
DN
3663static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3664 struct cftype *cft, u64 val)
3665{
3666 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3667
3668 if (val >= (1 << NR_MOVE_TYPE))
3669 return -EINVAL;
3670 /*
3671 * We check this value several times in both in can_attach() and
3672 * attach(), so we need cgroup lock to prevent this value from being
3673 * inconsistent.
3674 */
3675 cgroup_lock();
3676 mem->move_charge_at_immigrate = val;
3677 cgroup_unlock();
3678
3679 return 0;
3680}
02491447
DN
3681#else
3682static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3683 struct cftype *cft, u64 val)
3684{
3685 return -ENOSYS;
3686}
3687#endif
7dc74be0 3688
14067bb3
KH
3689
3690/* For read statistics */
3691enum {
3692 MCS_CACHE,
3693 MCS_RSS,
d8046582 3694 MCS_FILE_MAPPED,
14067bb3
KH
3695 MCS_PGPGIN,
3696 MCS_PGPGOUT,
1dd3a273 3697 MCS_SWAP,
14067bb3
KH
3698 MCS_INACTIVE_ANON,
3699 MCS_ACTIVE_ANON,
3700 MCS_INACTIVE_FILE,
3701 MCS_ACTIVE_FILE,
3702 MCS_UNEVICTABLE,
3703 NR_MCS_STAT,
3704};
3705
3706struct mcs_total_stat {
3707 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3708};
3709
14067bb3
KH
3710struct {
3711 char *local_name;
3712 char *total_name;
3713} memcg_stat_strings[NR_MCS_STAT] = {
3714 {"cache", "total_cache"},
3715 {"rss", "total_rss"},
d69b042f 3716 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3717 {"pgpgin", "total_pgpgin"},
3718 {"pgpgout", "total_pgpgout"},
1dd3a273 3719 {"swap", "total_swap"},
14067bb3
KH
3720 {"inactive_anon", "total_inactive_anon"},
3721 {"active_anon", "total_active_anon"},
3722 {"inactive_file", "total_inactive_file"},
3723 {"active_file", "total_active_file"},
3724 {"unevictable", "total_unevictable"}
3725};
3726
3727
7d74b06f
KH
3728static void
3729mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3730{
14067bb3
KH
3731 s64 val;
3732
3733 /* per cpu stat */
c62b1a3b 3734 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3735 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3736 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3737 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3738 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3739 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3740 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3741 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3742 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3743 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3744 if (do_swap_account) {
c62b1a3b 3745 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3746 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3747 }
14067bb3
KH
3748
3749 /* per zone stat */
3750 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3751 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3752 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3753 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3754 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3755 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3756 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3757 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3758 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3759 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3760}
3761
3762static void
3763mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3764{
7d74b06f
KH
3765 struct mem_cgroup *iter;
3766
3767 for_each_mem_cgroup_tree(iter, mem)
3768 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3769}
3770
c64745cf
PM
3771static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3772 struct cgroup_map_cb *cb)
d2ceb9b7 3773{
d2ceb9b7 3774 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3775 struct mcs_total_stat mystat;
d2ceb9b7
KH
3776 int i;
3777
14067bb3
KH
3778 memset(&mystat, 0, sizeof(mystat));
3779 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3780
1dd3a273
DN
3781 for (i = 0; i < NR_MCS_STAT; i++) {
3782 if (i == MCS_SWAP && !do_swap_account)
3783 continue;
14067bb3 3784 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3785 }
7b854121 3786
14067bb3 3787 /* Hierarchical information */
fee7b548
KH
3788 {
3789 unsigned long long limit, memsw_limit;
3790 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3791 cb->fill(cb, "hierarchical_memory_limit", limit);
3792 if (do_swap_account)
3793 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3794 }
7f016ee8 3795
14067bb3
KH
3796 memset(&mystat, 0, sizeof(mystat));
3797 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3798 for (i = 0; i < NR_MCS_STAT; i++) {
3799 if (i == MCS_SWAP && !do_swap_account)
3800 continue;
14067bb3 3801 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3802 }
14067bb3 3803
7f016ee8 3804#ifdef CONFIG_DEBUG_VM
c772be93 3805 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3806
3807 {
3808 int nid, zid;
3809 struct mem_cgroup_per_zone *mz;
3810 unsigned long recent_rotated[2] = {0, 0};
3811 unsigned long recent_scanned[2] = {0, 0};
3812
3813 for_each_online_node(nid)
3814 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3815 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3816
3817 recent_rotated[0] +=
3818 mz->reclaim_stat.recent_rotated[0];
3819 recent_rotated[1] +=
3820 mz->reclaim_stat.recent_rotated[1];
3821 recent_scanned[0] +=
3822 mz->reclaim_stat.recent_scanned[0];
3823 recent_scanned[1] +=
3824 mz->reclaim_stat.recent_scanned[1];
3825 }
3826 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3827 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3828 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3829 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3830 }
3831#endif
3832
d2ceb9b7
KH
3833 return 0;
3834}
3835
a7885eb8
KM
3836static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3837{
3838 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3839
3840 return get_swappiness(memcg);
3841}
3842
3843static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3844 u64 val)
3845{
3846 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3847 struct mem_cgroup *parent;
068b38c1 3848
a7885eb8
KM
3849 if (val > 100)
3850 return -EINVAL;
3851
3852 if (cgrp->parent == NULL)
3853 return -EINVAL;
3854
3855 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3856
3857 cgroup_lock();
3858
a7885eb8
KM
3859 /* If under hierarchy, only empty-root can set this value */
3860 if ((parent->use_hierarchy) ||
068b38c1
LZ
3861 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3862 cgroup_unlock();
a7885eb8 3863 return -EINVAL;
068b38c1 3864 }
a7885eb8
KM
3865
3866 spin_lock(&memcg->reclaim_param_lock);
3867 memcg->swappiness = val;
3868 spin_unlock(&memcg->reclaim_param_lock);
3869
068b38c1
LZ
3870 cgroup_unlock();
3871
a7885eb8
KM
3872 return 0;
3873}
3874
2e72b634
KS
3875static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3876{
3877 struct mem_cgroup_threshold_ary *t;
3878 u64 usage;
3879 int i;
3880
3881 rcu_read_lock();
3882 if (!swap)
2c488db2 3883 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3884 else
2c488db2 3885 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3886
3887 if (!t)
3888 goto unlock;
3889
3890 usage = mem_cgroup_usage(memcg, swap);
3891
3892 /*
3893 * current_threshold points to threshold just below usage.
3894 * If it's not true, a threshold was crossed after last
3895 * call of __mem_cgroup_threshold().
3896 */
5407a562 3897 i = t->current_threshold;
2e72b634
KS
3898
3899 /*
3900 * Iterate backward over array of thresholds starting from
3901 * current_threshold and check if a threshold is crossed.
3902 * If none of thresholds below usage is crossed, we read
3903 * only one element of the array here.
3904 */
3905 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3906 eventfd_signal(t->entries[i].eventfd, 1);
3907
3908 /* i = current_threshold + 1 */
3909 i++;
3910
3911 /*
3912 * Iterate forward over array of thresholds starting from
3913 * current_threshold+1 and check if a threshold is crossed.
3914 * If none of thresholds above usage is crossed, we read
3915 * only one element of the array here.
3916 */
3917 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3918 eventfd_signal(t->entries[i].eventfd, 1);
3919
3920 /* Update current_threshold */
5407a562 3921 t->current_threshold = i - 1;
2e72b634
KS
3922unlock:
3923 rcu_read_unlock();
3924}
3925
3926static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3927{
ad4ca5f4
KS
3928 while (memcg) {
3929 __mem_cgroup_threshold(memcg, false);
3930 if (do_swap_account)
3931 __mem_cgroup_threshold(memcg, true);
3932
3933 memcg = parent_mem_cgroup(memcg);
3934 }
2e72b634
KS
3935}
3936
3937static int compare_thresholds(const void *a, const void *b)
3938{
3939 const struct mem_cgroup_threshold *_a = a;
3940 const struct mem_cgroup_threshold *_b = b;
3941
3942 return _a->threshold - _b->threshold;
3943}
3944
7d74b06f 3945static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3946{
3947 struct mem_cgroup_eventfd_list *ev;
3948
3949 list_for_each_entry(ev, &mem->oom_notify, list)
3950 eventfd_signal(ev->eventfd, 1);
3951 return 0;
3952}
3953
3954static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3955{
7d74b06f
KH
3956 struct mem_cgroup *iter;
3957
3958 for_each_mem_cgroup_tree(iter, mem)
3959 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3960}
3961
3962static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3963 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3964{
3965 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3966 struct mem_cgroup_thresholds *thresholds;
3967 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3968 int type = MEMFILE_TYPE(cft->private);
3969 u64 threshold, usage;
2c488db2 3970 int i, size, ret;
2e72b634
KS
3971
3972 ret = res_counter_memparse_write_strategy(args, &threshold);
3973 if (ret)
3974 return ret;
3975
3976 mutex_lock(&memcg->thresholds_lock);
2c488db2 3977
2e72b634 3978 if (type == _MEM)
2c488db2 3979 thresholds = &memcg->thresholds;
2e72b634 3980 else if (type == _MEMSWAP)
2c488db2 3981 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3982 else
3983 BUG();
3984
3985 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3986
3987 /* Check if a threshold crossed before adding a new one */
2c488db2 3988 if (thresholds->primary)
2e72b634
KS
3989 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3990
2c488db2 3991 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3992
3993 /* Allocate memory for new array of thresholds */
2c488db2 3994 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3995 GFP_KERNEL);
2c488db2 3996 if (!new) {
2e72b634
KS
3997 ret = -ENOMEM;
3998 goto unlock;
3999 }
2c488db2 4000 new->size = size;
2e72b634
KS
4001
4002 /* Copy thresholds (if any) to new array */
2c488db2
KS
4003 if (thresholds->primary) {
4004 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4005 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4006 }
4007
2e72b634 4008 /* Add new threshold */
2c488db2
KS
4009 new->entries[size - 1].eventfd = eventfd;
4010 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4011
4012 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4013 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4014 compare_thresholds, NULL);
4015
4016 /* Find current threshold */
2c488db2 4017 new->current_threshold = -1;
2e72b634 4018 for (i = 0; i < size; i++) {
2c488db2 4019 if (new->entries[i].threshold < usage) {
2e72b634 4020 /*
2c488db2
KS
4021 * new->current_threshold will not be used until
4022 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4023 * it here.
4024 */
2c488db2 4025 ++new->current_threshold;
2e72b634
KS
4026 }
4027 }
4028
2c488db2
KS
4029 /* Free old spare buffer and save old primary buffer as spare */
4030 kfree(thresholds->spare);
4031 thresholds->spare = thresholds->primary;
4032
4033 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4034
907860ed 4035 /* To be sure that nobody uses thresholds */
2e72b634
KS
4036 synchronize_rcu();
4037
2e72b634
KS
4038unlock:
4039 mutex_unlock(&memcg->thresholds_lock);
4040
4041 return ret;
4042}
4043
907860ed 4044static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4045 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4046{
4047 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4048 struct mem_cgroup_thresholds *thresholds;
4049 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4050 int type = MEMFILE_TYPE(cft->private);
4051 u64 usage;
2c488db2 4052 int i, j, size;
2e72b634
KS
4053
4054 mutex_lock(&memcg->thresholds_lock);
4055 if (type == _MEM)
2c488db2 4056 thresholds = &memcg->thresholds;
2e72b634 4057 else if (type == _MEMSWAP)
2c488db2 4058 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4059 else
4060 BUG();
4061
4062 /*
4063 * Something went wrong if we trying to unregister a threshold
4064 * if we don't have thresholds
4065 */
4066 BUG_ON(!thresholds);
4067
4068 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4069
4070 /* Check if a threshold crossed before removing */
4071 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4072
4073 /* Calculate new number of threshold */
2c488db2
KS
4074 size = 0;
4075 for (i = 0; i < thresholds->primary->size; i++) {
4076 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4077 size++;
4078 }
4079
2c488db2 4080 new = thresholds->spare;
907860ed 4081
2e72b634
KS
4082 /* Set thresholds array to NULL if we don't have thresholds */
4083 if (!size) {
2c488db2
KS
4084 kfree(new);
4085 new = NULL;
907860ed 4086 goto swap_buffers;
2e72b634
KS
4087 }
4088
2c488db2 4089 new->size = size;
2e72b634
KS
4090
4091 /* Copy thresholds and find current threshold */
2c488db2
KS
4092 new->current_threshold = -1;
4093 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4094 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4095 continue;
4096
2c488db2
KS
4097 new->entries[j] = thresholds->primary->entries[i];
4098 if (new->entries[j].threshold < usage) {
2e72b634 4099 /*
2c488db2 4100 * new->current_threshold will not be used
2e72b634
KS
4101 * until rcu_assign_pointer(), so it's safe to increment
4102 * it here.
4103 */
2c488db2 4104 ++new->current_threshold;
2e72b634
KS
4105 }
4106 j++;
4107 }
4108
907860ed 4109swap_buffers:
2c488db2
KS
4110 /* Swap primary and spare array */
4111 thresholds->spare = thresholds->primary;
4112 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4113
907860ed 4114 /* To be sure that nobody uses thresholds */
2e72b634
KS
4115 synchronize_rcu();
4116
2e72b634 4117 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4118}
c1e862c1 4119
9490ff27
KH
4120static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4121 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4122{
4123 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4124 struct mem_cgroup_eventfd_list *event;
4125 int type = MEMFILE_TYPE(cft->private);
4126
4127 BUG_ON(type != _OOM_TYPE);
4128 event = kmalloc(sizeof(*event), GFP_KERNEL);
4129 if (!event)
4130 return -ENOMEM;
4131
4132 mutex_lock(&memcg_oom_mutex);
4133
4134 event->eventfd = eventfd;
4135 list_add(&event->list, &memcg->oom_notify);
4136
4137 /* already in OOM ? */
4138 if (atomic_read(&memcg->oom_lock))
4139 eventfd_signal(eventfd, 1);
4140 mutex_unlock(&memcg_oom_mutex);
4141
4142 return 0;
4143}
4144
907860ed 4145static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4146 struct cftype *cft, struct eventfd_ctx *eventfd)
4147{
4148 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4149 struct mem_cgroup_eventfd_list *ev, *tmp;
4150 int type = MEMFILE_TYPE(cft->private);
4151
4152 BUG_ON(type != _OOM_TYPE);
4153
4154 mutex_lock(&memcg_oom_mutex);
4155
4156 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4157 if (ev->eventfd == eventfd) {
4158 list_del(&ev->list);
4159 kfree(ev);
4160 }
4161 }
4162
4163 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4164}
4165
3c11ecf4
KH
4166static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4167 struct cftype *cft, struct cgroup_map_cb *cb)
4168{
4169 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4170
4171 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4172
4173 if (atomic_read(&mem->oom_lock))
4174 cb->fill(cb, "under_oom", 1);
4175 else
4176 cb->fill(cb, "under_oom", 0);
4177 return 0;
4178}
4179
3c11ecf4
KH
4180static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4181 struct cftype *cft, u64 val)
4182{
4183 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4184 struct mem_cgroup *parent;
4185
4186 /* cannot set to root cgroup and only 0 and 1 are allowed */
4187 if (!cgrp->parent || !((val == 0) || (val == 1)))
4188 return -EINVAL;
4189
4190 parent = mem_cgroup_from_cont(cgrp->parent);
4191
4192 cgroup_lock();
4193 /* oom-kill-disable is a flag for subhierarchy. */
4194 if ((parent->use_hierarchy) ||
4195 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4196 cgroup_unlock();
4197 return -EINVAL;
4198 }
4199 mem->oom_kill_disable = val;
4d845ebf
KH
4200 if (!val)
4201 memcg_oom_recover(mem);
3c11ecf4
KH
4202 cgroup_unlock();
4203 return 0;
4204}
4205
8cdea7c0
BS
4206static struct cftype mem_cgroup_files[] = {
4207 {
0eea1030 4208 .name = "usage_in_bytes",
8c7c6e34 4209 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4210 .read_u64 = mem_cgroup_read,
9490ff27
KH
4211 .register_event = mem_cgroup_usage_register_event,
4212 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4213 },
c84872e1
PE
4214 {
4215 .name = "max_usage_in_bytes",
8c7c6e34 4216 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4217 .trigger = mem_cgroup_reset,
c84872e1
PE
4218 .read_u64 = mem_cgroup_read,
4219 },
8cdea7c0 4220 {
0eea1030 4221 .name = "limit_in_bytes",
8c7c6e34 4222 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4223 .write_string = mem_cgroup_write,
2c3daa72 4224 .read_u64 = mem_cgroup_read,
8cdea7c0 4225 },
296c81d8
BS
4226 {
4227 .name = "soft_limit_in_bytes",
4228 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4229 .write_string = mem_cgroup_write,
4230 .read_u64 = mem_cgroup_read,
4231 },
8cdea7c0
BS
4232 {
4233 .name = "failcnt",
8c7c6e34 4234 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4235 .trigger = mem_cgroup_reset,
2c3daa72 4236 .read_u64 = mem_cgroup_read,
8cdea7c0 4237 },
d2ceb9b7
KH
4238 {
4239 .name = "stat",
c64745cf 4240 .read_map = mem_control_stat_show,
d2ceb9b7 4241 },
c1e862c1
KH
4242 {
4243 .name = "force_empty",
4244 .trigger = mem_cgroup_force_empty_write,
4245 },
18f59ea7
BS
4246 {
4247 .name = "use_hierarchy",
4248 .write_u64 = mem_cgroup_hierarchy_write,
4249 .read_u64 = mem_cgroup_hierarchy_read,
4250 },
a7885eb8
KM
4251 {
4252 .name = "swappiness",
4253 .read_u64 = mem_cgroup_swappiness_read,
4254 .write_u64 = mem_cgroup_swappiness_write,
4255 },
7dc74be0
DN
4256 {
4257 .name = "move_charge_at_immigrate",
4258 .read_u64 = mem_cgroup_move_charge_read,
4259 .write_u64 = mem_cgroup_move_charge_write,
4260 },
9490ff27
KH
4261 {
4262 .name = "oom_control",
3c11ecf4
KH
4263 .read_map = mem_cgroup_oom_control_read,
4264 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4265 .register_event = mem_cgroup_oom_register_event,
4266 .unregister_event = mem_cgroup_oom_unregister_event,
4267 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4268 },
8cdea7c0
BS
4269};
4270
8c7c6e34
KH
4271#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4272static struct cftype memsw_cgroup_files[] = {
4273 {
4274 .name = "memsw.usage_in_bytes",
4275 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4276 .read_u64 = mem_cgroup_read,
9490ff27
KH
4277 .register_event = mem_cgroup_usage_register_event,
4278 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4279 },
4280 {
4281 .name = "memsw.max_usage_in_bytes",
4282 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4283 .trigger = mem_cgroup_reset,
4284 .read_u64 = mem_cgroup_read,
4285 },
4286 {
4287 .name = "memsw.limit_in_bytes",
4288 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4289 .write_string = mem_cgroup_write,
4290 .read_u64 = mem_cgroup_read,
4291 },
4292 {
4293 .name = "memsw.failcnt",
4294 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4295 .trigger = mem_cgroup_reset,
4296 .read_u64 = mem_cgroup_read,
4297 },
4298};
4299
4300static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4301{
4302 if (!do_swap_account)
4303 return 0;
4304 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4305 ARRAY_SIZE(memsw_cgroup_files));
4306};
4307#else
4308static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4309{
4310 return 0;
4311}
4312#endif
4313
6d12e2d8
KH
4314static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4315{
4316 struct mem_cgroup_per_node *pn;
1ecaab2b 4317 struct mem_cgroup_per_zone *mz;
b69408e8 4318 enum lru_list l;
41e3355d 4319 int zone, tmp = node;
1ecaab2b
KH
4320 /*
4321 * This routine is called against possible nodes.
4322 * But it's BUG to call kmalloc() against offline node.
4323 *
4324 * TODO: this routine can waste much memory for nodes which will
4325 * never be onlined. It's better to use memory hotplug callback
4326 * function.
4327 */
41e3355d
KH
4328 if (!node_state(node, N_NORMAL_MEMORY))
4329 tmp = -1;
17295c88 4330 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4331 if (!pn)
4332 return 1;
1ecaab2b 4333
6d12e2d8 4334 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4335 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4336 mz = &pn->zoneinfo[zone];
b69408e8
CL
4337 for_each_lru(l)
4338 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4339 mz->usage_in_excess = 0;
4e416953
BS
4340 mz->on_tree = false;
4341 mz->mem = mem;
1ecaab2b 4342 }
6d12e2d8
KH
4343 return 0;
4344}
4345
1ecaab2b
KH
4346static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4347{
4348 kfree(mem->info.nodeinfo[node]);
4349}
4350
33327948
KH
4351static struct mem_cgroup *mem_cgroup_alloc(void)
4352{
4353 struct mem_cgroup *mem;
c62b1a3b 4354 int size = sizeof(struct mem_cgroup);
33327948 4355
c62b1a3b 4356 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4357 if (size < PAGE_SIZE)
17295c88 4358 mem = kzalloc(size, GFP_KERNEL);
33327948 4359 else
17295c88 4360 mem = vzalloc(size);
33327948 4361
e7bbcdf3
DC
4362 if (!mem)
4363 return NULL;
4364
c62b1a3b 4365 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4366 if (!mem->stat)
4367 goto out_free;
711d3d2c 4368 spin_lock_init(&mem->pcp_counter_lock);
33327948 4369 return mem;
d2e61b8d
DC
4370
4371out_free:
4372 if (size < PAGE_SIZE)
4373 kfree(mem);
4374 else
4375 vfree(mem);
4376 return NULL;
33327948
KH
4377}
4378
8c7c6e34
KH
4379/*
4380 * At destroying mem_cgroup, references from swap_cgroup can remain.
4381 * (scanning all at force_empty is too costly...)
4382 *
4383 * Instead of clearing all references at force_empty, we remember
4384 * the number of reference from swap_cgroup and free mem_cgroup when
4385 * it goes down to 0.
4386 *
8c7c6e34
KH
4387 * Removal of cgroup itself succeeds regardless of refs from swap.
4388 */
4389
a7ba0eef 4390static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4391{
08e552c6
KH
4392 int node;
4393
f64c3f54 4394 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4395 free_css_id(&mem_cgroup_subsys, &mem->css);
4396
08e552c6
KH
4397 for_each_node_state(node, N_POSSIBLE)
4398 free_mem_cgroup_per_zone_info(mem, node);
4399
c62b1a3b
KH
4400 free_percpu(mem->stat);
4401 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4402 kfree(mem);
4403 else
4404 vfree(mem);
4405}
4406
8c7c6e34
KH
4407static void mem_cgroup_get(struct mem_cgroup *mem)
4408{
4409 atomic_inc(&mem->refcnt);
4410}
4411
483c30b5 4412static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4413{
483c30b5 4414 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4415 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4416 __mem_cgroup_free(mem);
7bcc1bb1
DN
4417 if (parent)
4418 mem_cgroup_put(parent);
4419 }
8c7c6e34
KH
4420}
4421
483c30b5
DN
4422static void mem_cgroup_put(struct mem_cgroup *mem)
4423{
4424 __mem_cgroup_put(mem, 1);
4425}
4426
7bcc1bb1
DN
4427/*
4428 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4429 */
4430static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4431{
4432 if (!mem->res.parent)
4433 return NULL;
4434 return mem_cgroup_from_res_counter(mem->res.parent, res);
4435}
33327948 4436
c077719b
KH
4437#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4438static void __init enable_swap_cgroup(void)
4439{
f8d66542 4440 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4441 do_swap_account = 1;
4442}
4443#else
4444static void __init enable_swap_cgroup(void)
4445{
4446}
4447#endif
4448
f64c3f54
BS
4449static int mem_cgroup_soft_limit_tree_init(void)
4450{
4451 struct mem_cgroup_tree_per_node *rtpn;
4452 struct mem_cgroup_tree_per_zone *rtpz;
4453 int tmp, node, zone;
4454
4455 for_each_node_state(node, N_POSSIBLE) {
4456 tmp = node;
4457 if (!node_state(node, N_NORMAL_MEMORY))
4458 tmp = -1;
4459 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4460 if (!rtpn)
4461 return 1;
4462
4463 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4464
4465 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4466 rtpz = &rtpn->rb_tree_per_zone[zone];
4467 rtpz->rb_root = RB_ROOT;
4468 spin_lock_init(&rtpz->lock);
4469 }
4470 }
4471 return 0;
4472}
4473
0eb253e2 4474static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4475mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4476{
28dbc4b6 4477 struct mem_cgroup *mem, *parent;
04046e1a 4478 long error = -ENOMEM;
6d12e2d8 4479 int node;
8cdea7c0 4480
c8dad2bb
JB
4481 mem = mem_cgroup_alloc();
4482 if (!mem)
04046e1a 4483 return ERR_PTR(error);
78fb7466 4484
6d12e2d8
KH
4485 for_each_node_state(node, N_POSSIBLE)
4486 if (alloc_mem_cgroup_per_zone_info(mem, node))
4487 goto free_out;
f64c3f54 4488
c077719b 4489 /* root ? */
28dbc4b6 4490 if (cont->parent == NULL) {
cdec2e42 4491 int cpu;
c077719b 4492 enable_swap_cgroup();
28dbc4b6 4493 parent = NULL;
4b3bde4c 4494 root_mem_cgroup = mem;
f64c3f54
BS
4495 if (mem_cgroup_soft_limit_tree_init())
4496 goto free_out;
cdec2e42
KH
4497 for_each_possible_cpu(cpu) {
4498 struct memcg_stock_pcp *stock =
4499 &per_cpu(memcg_stock, cpu);
4500 INIT_WORK(&stock->work, drain_local_stock);
4501 }
711d3d2c 4502 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4503 } else {
28dbc4b6 4504 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4505 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4506 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4507 }
28dbc4b6 4508
18f59ea7
BS
4509 if (parent && parent->use_hierarchy) {
4510 res_counter_init(&mem->res, &parent->res);
4511 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4512 /*
4513 * We increment refcnt of the parent to ensure that we can
4514 * safely access it on res_counter_charge/uncharge.
4515 * This refcnt will be decremented when freeing this
4516 * mem_cgroup(see mem_cgroup_put).
4517 */
4518 mem_cgroup_get(parent);
18f59ea7
BS
4519 } else {
4520 res_counter_init(&mem->res, NULL);
4521 res_counter_init(&mem->memsw, NULL);
4522 }
04046e1a 4523 mem->last_scanned_child = 0;
2733c06a 4524 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4525 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4526
a7885eb8
KM
4527 if (parent)
4528 mem->swappiness = get_swappiness(parent);
a7ba0eef 4529 atomic_set(&mem->refcnt, 1);
7dc74be0 4530 mem->move_charge_at_immigrate = 0;
2e72b634 4531 mutex_init(&mem->thresholds_lock);
8cdea7c0 4532 return &mem->css;
6d12e2d8 4533free_out:
a7ba0eef 4534 __mem_cgroup_free(mem);
4b3bde4c 4535 root_mem_cgroup = NULL;
04046e1a 4536 return ERR_PTR(error);
8cdea7c0
BS
4537}
4538
ec64f515 4539static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4540 struct cgroup *cont)
4541{
4542 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4543
4544 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4545}
4546
8cdea7c0
BS
4547static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4548 struct cgroup *cont)
4549{
c268e994 4550 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4551
c268e994 4552 mem_cgroup_put(mem);
8cdea7c0
BS
4553}
4554
4555static int mem_cgroup_populate(struct cgroup_subsys *ss,
4556 struct cgroup *cont)
4557{
8c7c6e34
KH
4558 int ret;
4559
4560 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4561 ARRAY_SIZE(mem_cgroup_files));
4562
4563 if (!ret)
4564 ret = register_memsw_files(cont, ss);
4565 return ret;
8cdea7c0
BS
4566}
4567
02491447 4568#ifdef CONFIG_MMU
7dc74be0 4569/* Handlers for move charge at task migration. */
854ffa8d
DN
4570#define PRECHARGE_COUNT_AT_ONCE 256
4571static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4572{
854ffa8d
DN
4573 int ret = 0;
4574 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4575 struct mem_cgroup *mem = mc.to;
4576
854ffa8d
DN
4577 if (mem_cgroup_is_root(mem)) {
4578 mc.precharge += count;
4579 /* we don't need css_get for root */
4580 return ret;
4581 }
4582 /* try to charge at once */
4583 if (count > 1) {
4584 struct res_counter *dummy;
4585 /*
4586 * "mem" cannot be under rmdir() because we've already checked
4587 * by cgroup_lock_live_cgroup() that it is not removed and we
4588 * are still under the same cgroup_mutex. So we can postpone
4589 * css_get().
4590 */
4591 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4592 goto one_by_one;
4593 if (do_swap_account && res_counter_charge(&mem->memsw,
4594 PAGE_SIZE * count, &dummy)) {
4595 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4596 goto one_by_one;
4597 }
4598 mc.precharge += count;
854ffa8d
DN
4599 return ret;
4600 }
4601one_by_one:
4602 /* fall back to one by one charge */
4603 while (count--) {
4604 if (signal_pending(current)) {
4605 ret = -EINTR;
4606 break;
4607 }
4608 if (!batch_count--) {
4609 batch_count = PRECHARGE_COUNT_AT_ONCE;
4610 cond_resched();
4611 }
ec168510
AA
4612 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4613 PAGE_SIZE);
854ffa8d
DN
4614 if (ret || !mem)
4615 /* mem_cgroup_clear_mc() will do uncharge later */
4616 return -ENOMEM;
4617 mc.precharge++;
4618 }
4ffef5fe
DN
4619 return ret;
4620}
4621
4622/**
4623 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4624 * @vma: the vma the pte to be checked belongs
4625 * @addr: the address corresponding to the pte to be checked
4626 * @ptent: the pte to be checked
02491447 4627 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4628 *
4629 * Returns
4630 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4631 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4632 * move charge. if @target is not NULL, the page is stored in target->page
4633 * with extra refcnt got(Callers should handle it).
02491447
DN
4634 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4635 * target for charge migration. if @target is not NULL, the entry is stored
4636 * in target->ent.
4ffef5fe
DN
4637 *
4638 * Called with pte lock held.
4639 */
4ffef5fe
DN
4640union mc_target {
4641 struct page *page;
02491447 4642 swp_entry_t ent;
4ffef5fe
DN
4643};
4644
4ffef5fe
DN
4645enum mc_target_type {
4646 MC_TARGET_NONE, /* not used */
4647 MC_TARGET_PAGE,
02491447 4648 MC_TARGET_SWAP,
4ffef5fe
DN
4649};
4650
90254a65
DN
4651static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4652 unsigned long addr, pte_t ptent)
4ffef5fe 4653{
90254a65 4654 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4655
90254a65
DN
4656 if (!page || !page_mapped(page))
4657 return NULL;
4658 if (PageAnon(page)) {
4659 /* we don't move shared anon */
4660 if (!move_anon() || page_mapcount(page) > 2)
4661 return NULL;
87946a72
DN
4662 } else if (!move_file())
4663 /* we ignore mapcount for file pages */
90254a65
DN
4664 return NULL;
4665 if (!get_page_unless_zero(page))
4666 return NULL;
4667
4668 return page;
4669}
4670
4671static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4672 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4673{
4674 int usage_count;
4675 struct page *page = NULL;
4676 swp_entry_t ent = pte_to_swp_entry(ptent);
4677
4678 if (!move_anon() || non_swap_entry(ent))
4679 return NULL;
4680 usage_count = mem_cgroup_count_swap_user(ent, &page);
4681 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4682 if (page)
4683 put_page(page);
90254a65 4684 return NULL;
02491447 4685 }
90254a65
DN
4686 if (do_swap_account)
4687 entry->val = ent.val;
4688
4689 return page;
4690}
4691
87946a72
DN
4692static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4693 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4694{
4695 struct page *page = NULL;
4696 struct inode *inode;
4697 struct address_space *mapping;
4698 pgoff_t pgoff;
4699
4700 if (!vma->vm_file) /* anonymous vma */
4701 return NULL;
4702 if (!move_file())
4703 return NULL;
4704
4705 inode = vma->vm_file->f_path.dentry->d_inode;
4706 mapping = vma->vm_file->f_mapping;
4707 if (pte_none(ptent))
4708 pgoff = linear_page_index(vma, addr);
4709 else /* pte_file(ptent) is true */
4710 pgoff = pte_to_pgoff(ptent);
4711
4712 /* page is moved even if it's not RSS of this task(page-faulted). */
4713 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4714 page = find_get_page(mapping, pgoff);
4715 } else { /* shmem/tmpfs file. we should take account of swap too. */
4716 swp_entry_t ent;
4717 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4718 if (do_swap_account)
4719 entry->val = ent.val;
4720 }
4721
4722 return page;
4723}
4724
90254a65
DN
4725static int is_target_pte_for_mc(struct vm_area_struct *vma,
4726 unsigned long addr, pte_t ptent, union mc_target *target)
4727{
4728 struct page *page = NULL;
4729 struct page_cgroup *pc;
4730 int ret = 0;
4731 swp_entry_t ent = { .val = 0 };
4732
4733 if (pte_present(ptent))
4734 page = mc_handle_present_pte(vma, addr, ptent);
4735 else if (is_swap_pte(ptent))
4736 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4737 else if (pte_none(ptent) || pte_file(ptent))
4738 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4739
4740 if (!page && !ent.val)
4741 return 0;
02491447
DN
4742 if (page) {
4743 pc = lookup_page_cgroup(page);
4744 /*
4745 * Do only loose check w/o page_cgroup lock.
4746 * mem_cgroup_move_account() checks the pc is valid or not under
4747 * the lock.
4748 */
4749 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4750 ret = MC_TARGET_PAGE;
4751 if (target)
4752 target->page = page;
4753 }
4754 if (!ret || !target)
4755 put_page(page);
4756 }
90254a65
DN
4757 /* There is a swap entry and a page doesn't exist or isn't charged */
4758 if (ent.val && !ret &&
7f0f1546
KH
4759 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4760 ret = MC_TARGET_SWAP;
4761 if (target)
4762 target->ent = ent;
4ffef5fe 4763 }
4ffef5fe
DN
4764 return ret;
4765}
4766
4767static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4768 unsigned long addr, unsigned long end,
4769 struct mm_walk *walk)
4770{
4771 struct vm_area_struct *vma = walk->private;
4772 pte_t *pte;
4773 spinlock_t *ptl;
4774
03319327
DH
4775 split_huge_page_pmd(walk->mm, pmd);
4776
4ffef5fe
DN
4777 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4778 for (; addr != end; pte++, addr += PAGE_SIZE)
4779 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4780 mc.precharge++; /* increment precharge temporarily */
4781 pte_unmap_unlock(pte - 1, ptl);
4782 cond_resched();
4783
7dc74be0
DN
4784 return 0;
4785}
4786
4ffef5fe
DN
4787static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4788{
4789 unsigned long precharge;
4790 struct vm_area_struct *vma;
4791
dfe076b0 4792 down_read(&mm->mmap_sem);
4ffef5fe
DN
4793 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4794 struct mm_walk mem_cgroup_count_precharge_walk = {
4795 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4796 .mm = mm,
4797 .private = vma,
4798 };
4799 if (is_vm_hugetlb_page(vma))
4800 continue;
4ffef5fe
DN
4801 walk_page_range(vma->vm_start, vma->vm_end,
4802 &mem_cgroup_count_precharge_walk);
4803 }
dfe076b0 4804 up_read(&mm->mmap_sem);
4ffef5fe
DN
4805
4806 precharge = mc.precharge;
4807 mc.precharge = 0;
4808
4809 return precharge;
4810}
4811
4ffef5fe
DN
4812static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4813{
dfe076b0
DN
4814 unsigned long precharge = mem_cgroup_count_precharge(mm);
4815
4816 VM_BUG_ON(mc.moving_task);
4817 mc.moving_task = current;
4818 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4819}
4820
dfe076b0
DN
4821/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4822static void __mem_cgroup_clear_mc(void)
4ffef5fe 4823{
2bd9bb20
KH
4824 struct mem_cgroup *from = mc.from;
4825 struct mem_cgroup *to = mc.to;
4826
4ffef5fe 4827 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4828 if (mc.precharge) {
4829 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4830 mc.precharge = 0;
4831 }
4832 /*
4833 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4834 * we must uncharge here.
4835 */
4836 if (mc.moved_charge) {
4837 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4838 mc.moved_charge = 0;
4ffef5fe 4839 }
483c30b5
DN
4840 /* we must fixup refcnts and charges */
4841 if (mc.moved_swap) {
483c30b5
DN
4842 /* uncharge swap account from the old cgroup */
4843 if (!mem_cgroup_is_root(mc.from))
4844 res_counter_uncharge(&mc.from->memsw,
4845 PAGE_SIZE * mc.moved_swap);
4846 __mem_cgroup_put(mc.from, mc.moved_swap);
4847
4848 if (!mem_cgroup_is_root(mc.to)) {
4849 /*
4850 * we charged both to->res and to->memsw, so we should
4851 * uncharge to->res.
4852 */
4853 res_counter_uncharge(&mc.to->res,
4854 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4855 }
4856 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4857 mc.moved_swap = 0;
4858 }
dfe076b0
DN
4859 memcg_oom_recover(from);
4860 memcg_oom_recover(to);
4861 wake_up_all(&mc.waitq);
4862}
4863
4864static void mem_cgroup_clear_mc(void)
4865{
4866 struct mem_cgroup *from = mc.from;
4867
4868 /*
4869 * we must clear moving_task before waking up waiters at the end of
4870 * task migration.
4871 */
4872 mc.moving_task = NULL;
4873 __mem_cgroup_clear_mc();
2bd9bb20 4874 spin_lock(&mc.lock);
4ffef5fe
DN
4875 mc.from = NULL;
4876 mc.to = NULL;
2bd9bb20 4877 spin_unlock(&mc.lock);
32047e2a 4878 mem_cgroup_end_move(from);
4ffef5fe
DN
4879}
4880
7dc74be0
DN
4881static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4882 struct cgroup *cgroup,
4883 struct task_struct *p,
4884 bool threadgroup)
4885{
4886 int ret = 0;
4887 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4888
4889 if (mem->move_charge_at_immigrate) {
4890 struct mm_struct *mm;
4891 struct mem_cgroup *from = mem_cgroup_from_task(p);
4892
4893 VM_BUG_ON(from == mem);
4894
4895 mm = get_task_mm(p);
4896 if (!mm)
4897 return 0;
7dc74be0 4898 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4899 if (mm->owner == p) {
4900 VM_BUG_ON(mc.from);
4901 VM_BUG_ON(mc.to);
4902 VM_BUG_ON(mc.precharge);
854ffa8d 4903 VM_BUG_ON(mc.moved_charge);
483c30b5 4904 VM_BUG_ON(mc.moved_swap);
32047e2a 4905 mem_cgroup_start_move(from);
2bd9bb20 4906 spin_lock(&mc.lock);
4ffef5fe
DN
4907 mc.from = from;
4908 mc.to = mem;
2bd9bb20 4909 spin_unlock(&mc.lock);
dfe076b0 4910 /* We set mc.moving_task later */
4ffef5fe
DN
4911
4912 ret = mem_cgroup_precharge_mc(mm);
4913 if (ret)
4914 mem_cgroup_clear_mc();
dfe076b0
DN
4915 }
4916 mmput(mm);
7dc74be0
DN
4917 }
4918 return ret;
4919}
4920
4921static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4922 struct cgroup *cgroup,
4923 struct task_struct *p,
4924 bool threadgroup)
4925{
4ffef5fe 4926 mem_cgroup_clear_mc();
7dc74be0
DN
4927}
4928
4ffef5fe
DN
4929static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4930 unsigned long addr, unsigned long end,
4931 struct mm_walk *walk)
7dc74be0 4932{
4ffef5fe
DN
4933 int ret = 0;
4934 struct vm_area_struct *vma = walk->private;
4935 pte_t *pte;
4936 spinlock_t *ptl;
4937
03319327 4938 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
4939retry:
4940 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4941 for (; addr != end; addr += PAGE_SIZE) {
4942 pte_t ptent = *(pte++);
4943 union mc_target target;
4944 int type;
4945 struct page *page;
4946 struct page_cgroup *pc;
02491447 4947 swp_entry_t ent;
4ffef5fe
DN
4948
4949 if (!mc.precharge)
4950 break;
4951
4952 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4953 switch (type) {
4954 case MC_TARGET_PAGE:
4955 page = target.page;
4956 if (isolate_lru_page(page))
4957 goto put;
4958 pc = lookup_page_cgroup(page);
854ffa8d 4959 if (!mem_cgroup_move_account(pc,
987eba66 4960 mc.from, mc.to, false, PAGE_SIZE)) {
4ffef5fe 4961 mc.precharge--;
854ffa8d
DN
4962 /* we uncharge from mc.from later. */
4963 mc.moved_charge++;
4ffef5fe
DN
4964 }
4965 putback_lru_page(page);
4966put: /* is_target_pte_for_mc() gets the page */
4967 put_page(page);
4968 break;
02491447
DN
4969 case MC_TARGET_SWAP:
4970 ent = target.ent;
483c30b5
DN
4971 if (!mem_cgroup_move_swap_account(ent,
4972 mc.from, mc.to, false)) {
02491447 4973 mc.precharge--;
483c30b5
DN
4974 /* we fixup refcnts and charges later. */
4975 mc.moved_swap++;
4976 }
02491447 4977 break;
4ffef5fe
DN
4978 default:
4979 break;
4980 }
4981 }
4982 pte_unmap_unlock(pte - 1, ptl);
4983 cond_resched();
4984
4985 if (addr != end) {
4986 /*
4987 * We have consumed all precharges we got in can_attach().
4988 * We try charge one by one, but don't do any additional
4989 * charges to mc.to if we have failed in charge once in attach()
4990 * phase.
4991 */
854ffa8d 4992 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4993 if (!ret)
4994 goto retry;
4995 }
4996
4997 return ret;
4998}
4999
5000static void mem_cgroup_move_charge(struct mm_struct *mm)
5001{
5002 struct vm_area_struct *vma;
5003
5004 lru_add_drain_all();
dfe076b0
DN
5005retry:
5006 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5007 /*
5008 * Someone who are holding the mmap_sem might be waiting in
5009 * waitq. So we cancel all extra charges, wake up all waiters,
5010 * and retry. Because we cancel precharges, we might not be able
5011 * to move enough charges, but moving charge is a best-effort
5012 * feature anyway, so it wouldn't be a big problem.
5013 */
5014 __mem_cgroup_clear_mc();
5015 cond_resched();
5016 goto retry;
5017 }
4ffef5fe
DN
5018 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5019 int ret;
5020 struct mm_walk mem_cgroup_move_charge_walk = {
5021 .pmd_entry = mem_cgroup_move_charge_pte_range,
5022 .mm = mm,
5023 .private = vma,
5024 };
5025 if (is_vm_hugetlb_page(vma))
5026 continue;
4ffef5fe
DN
5027 ret = walk_page_range(vma->vm_start, vma->vm_end,
5028 &mem_cgroup_move_charge_walk);
5029 if (ret)
5030 /*
5031 * means we have consumed all precharges and failed in
5032 * doing additional charge. Just abandon here.
5033 */
5034 break;
5035 }
dfe076b0 5036 up_read(&mm->mmap_sem);
7dc74be0
DN
5037}
5038
67e465a7
BS
5039static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5040 struct cgroup *cont,
5041 struct cgroup *old_cont,
be367d09
BB
5042 struct task_struct *p,
5043 bool threadgroup)
67e465a7 5044{
dfe076b0
DN
5045 struct mm_struct *mm;
5046
5047 if (!mc.to)
4ffef5fe
DN
5048 /* no need to move charge */
5049 return;
5050
dfe076b0
DN
5051 mm = get_task_mm(p);
5052 if (mm) {
5053 mem_cgroup_move_charge(mm);
5054 mmput(mm);
5055 }
4ffef5fe 5056 mem_cgroup_clear_mc();
67e465a7 5057}
5cfb80a7
DN
5058#else /* !CONFIG_MMU */
5059static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5060 struct cgroup *cgroup,
5061 struct task_struct *p,
5062 bool threadgroup)
5063{
5064 return 0;
5065}
5066static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5067 struct cgroup *cgroup,
5068 struct task_struct *p,
5069 bool threadgroup)
5070{
5071}
5072static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5073 struct cgroup *cont,
5074 struct cgroup *old_cont,
5075 struct task_struct *p,
5076 bool threadgroup)
5077{
5078}
5079#endif
67e465a7 5080
8cdea7c0
BS
5081struct cgroup_subsys mem_cgroup_subsys = {
5082 .name = "memory",
5083 .subsys_id = mem_cgroup_subsys_id,
5084 .create = mem_cgroup_create,
df878fb0 5085 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5086 .destroy = mem_cgroup_destroy,
5087 .populate = mem_cgroup_populate,
7dc74be0
DN
5088 .can_attach = mem_cgroup_can_attach,
5089 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5090 .attach = mem_cgroup_move_task,
6d12e2d8 5091 .early_init = 0,
04046e1a 5092 .use_id = 1,
8cdea7c0 5093};
c077719b
KH
5094
5095#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5096static int __init enable_swap_account(char *s)
5097{
5098 /* consider enabled if no parameter or 1 is given */
fceda1bf 5099 if (!(*s) || !strcmp(s, "=1"))
a42c390c 5100 really_do_swap_account = 1;
fceda1bf 5101 else if (!strcmp(s, "=0"))
a42c390c
MH
5102 really_do_swap_account = 0;
5103 return 1;
5104}
5105__setup("swapaccount", enable_swap_account);
c077719b
KH
5106
5107static int __init disable_swap_account(char *s)
5108{
552b372b 5109 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
fceda1bf 5110 enable_swap_account("=0");
c077719b
KH
5111 return 1;
5112}
5113__setup("noswapaccount", disable_swap_account);
5114#endif
This page took 0.562955 seconds and 5 git commands to generate.