thp: do not mark zero-page pmd write-protected explicitly
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
542f85f9 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31
JW
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673
JW
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
bea8c150 1278 struct lruvec *lruvec;
6d12e2d8 1279
bea8c150
HD
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
925b7673 1284
08e552c6 1285 pc = lookup_page_cgroup(page);
38c5d72f 1286 memcg = pc->mem_cgroup;
7512102c 1287 /*
dfe0e773 1288 * Swapcache readahead pages are added to the LRU - and
29833315 1289 * possibly migrated - before they are charged.
7512102c 1290 */
29833315
JW
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
7512102c 1293
e231875b 1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1295 lruvec = &mz->lruvec;
1296out:
1297 /*
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1301 */
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
08e552c6 1305}
b69408e8 1306
925b7673 1307/**
fa9add64
HD
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
925b7673 1312 *
fa9add64
HD
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
3f58a829 1315 */
fa9add64
HD
1316void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
3f58a829
MK
1318{
1319 struct mem_cgroup_per_zone *mz;
fa9add64 1320 unsigned long *lru_size;
3f58a829
MK
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
fa9add64
HD
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1329}
544122e5 1330
3e92041d 1331/*
c0ff4b85 1332 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1333 * hierarchy subtree
1334 */
c3ac9a8a
JW
1335bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
3e92041d 1337{
91c63734
JW
1338 if (root_memcg == memcg)
1339 return true;
3a981f48 1340 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1341 return false;
b47f77b5 1342 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1343}
1344
1345static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1346 struct mem_cgroup *memcg)
1347{
1348 bool ret;
1349
91c63734 1350 rcu_read_lock();
c3ac9a8a 1351 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1352 rcu_read_unlock();
1353 return ret;
3e92041d
MH
1354}
1355
ffbdccf5
DR
1356bool task_in_mem_cgroup(struct task_struct *task,
1357 const struct mem_cgroup *memcg)
4c4a2214 1358{
0b7f569e 1359 struct mem_cgroup *curr = NULL;
158e0a2d 1360 struct task_struct *p;
ffbdccf5 1361 bool ret;
4c4a2214 1362
158e0a2d 1363 p = find_lock_task_mm(task);
de077d22 1364 if (p) {
df381975 1365 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1366 task_unlock(p);
1367 } else {
1368 /*
1369 * All threads may have already detached their mm's, but the oom
1370 * killer still needs to detect if they have already been oom
1371 * killed to prevent needlessly killing additional tasks.
1372 */
ffbdccf5 1373 rcu_read_lock();
de077d22
DR
1374 curr = mem_cgroup_from_task(task);
1375 if (curr)
1376 css_get(&curr->css);
ffbdccf5 1377 rcu_read_unlock();
de077d22 1378 }
d31f56db 1379 /*
c0ff4b85 1380 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1381 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1382 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1383 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1384 */
c0ff4b85 1385 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1386 css_put(&curr->css);
4c4a2214
DR
1387 return ret;
1388}
1389
c56d5c7d 1390int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1391{
9b272977 1392 unsigned long inactive_ratio;
14797e23 1393 unsigned long inactive;
9b272977 1394 unsigned long active;
c772be93 1395 unsigned long gb;
14797e23 1396
4d7dcca2
HD
1397 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1398 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1399
c772be93
KM
1400 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1401 if (gb)
1402 inactive_ratio = int_sqrt(10 * gb);
1403 else
1404 inactive_ratio = 1;
1405
9b272977 1406 return inactive * inactive_ratio < active;
14797e23
KM
1407}
1408
3e32cb2e 1409#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1410 container_of(counter, struct mem_cgroup, member)
1411
19942822 1412/**
9d11ea9f 1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1414 * @memcg: the memory cgroup
19942822 1415 *
9d11ea9f 1416 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1417 * pages.
19942822 1418 */
c0ff4b85 1419static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1420{
3e32cb2e
JW
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
9d11ea9f 1424
3e32cb2e
JW
1425 count = page_counter_read(&memcg->memory);
1426 limit = ACCESS_ONCE(memcg->memory.limit);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_swap_account) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = ACCESS_ONCE(memcg->memsw.limit);
1433 if (count <= limit)
1434 margin = min(margin, limit - count);
1435 }
1436
1437 return margin;
19942822
JW
1438}
1439
1f4c025b 1440int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1441{
a7885eb8 1442 /* root ? */
14208b0e 1443 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1444 return vm_swappiness;
1445
bf1ff263 1446 return memcg->swappiness;
a7885eb8
KM
1447}
1448
32047e2a 1449/*
bdcbb659 1450 * A routine for checking "mem" is under move_account() or not.
32047e2a 1451 *
bdcbb659
QH
1452 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1453 * moving cgroups. This is for waiting at high-memory pressure
1454 * caused by "move".
32047e2a 1455 */
c0ff4b85 1456static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1457{
2bd9bb20
KH
1458 struct mem_cgroup *from;
1459 struct mem_cgroup *to;
4b534334 1460 bool ret = false;
2bd9bb20
KH
1461 /*
1462 * Unlike task_move routines, we access mc.to, mc.from not under
1463 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1464 */
1465 spin_lock(&mc.lock);
1466 from = mc.from;
1467 to = mc.to;
1468 if (!from)
1469 goto unlock;
3e92041d 1470
c0ff4b85
R
1471 ret = mem_cgroup_same_or_subtree(memcg, from)
1472 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1473unlock:
1474 spin_unlock(&mc.lock);
4b534334
KH
1475 return ret;
1476}
1477
c0ff4b85 1478static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1479{
1480 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1481 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1482 DEFINE_WAIT(wait);
1483 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1484 /* moving charge context might have finished. */
1485 if (mc.moving_task)
1486 schedule();
1487 finish_wait(&mc.waitq, &wait);
1488 return true;
1489 }
1490 }
1491 return false;
1492}
1493
58cf188e 1494#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1495/**
58cf188e 1496 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1497 * @memcg: The memory cgroup that went over limit
1498 * @p: Task that is going to be killed
1499 *
1500 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501 * enabled
1502 */
1503void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1504{
e61734c5 1505 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1506 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1507 struct mem_cgroup *iter;
1508 unsigned int i;
e222432b 1509
58cf188e 1510 if (!p)
e222432b
BS
1511 return;
1512
08088cb9 1513 mutex_lock(&oom_info_lock);
e222432b
BS
1514 rcu_read_lock();
1515
e61734c5
TH
1516 pr_info("Task in ");
1517 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1518 pr_info(" killed as a result of limit of ");
1519 pr_cont_cgroup_path(memcg->css.cgroup);
1520 pr_info("\n");
e222432b 1521
e222432b
BS
1522 rcu_read_unlock();
1523
3e32cb2e
JW
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
1526 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1527 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1528 K((u64)page_counter_read(&memcg->memsw)),
1529 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1530 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->kmem)),
1532 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1533
1534 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1535 pr_info("Memory cgroup stats for ");
1536 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1537 pr_cont(":");
1538
1539 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1540 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1541 continue;
1542 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1543 K(mem_cgroup_read_stat(iter, i)));
1544 }
1545
1546 for (i = 0; i < NR_LRU_LISTS; i++)
1547 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1548 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1549
1550 pr_cont("\n");
1551 }
08088cb9 1552 mutex_unlock(&oom_info_lock);
e222432b
BS
1553}
1554
81d39c20
KH
1555/*
1556 * This function returns the number of memcg under hierarchy tree. Returns
1557 * 1(self count) if no children.
1558 */
c0ff4b85 1559static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1560{
1561 int num = 0;
7d74b06f
KH
1562 struct mem_cgroup *iter;
1563
c0ff4b85 1564 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1565 num++;
81d39c20
KH
1566 return num;
1567}
1568
a63d83f4
DR
1569/*
1570 * Return the memory (and swap, if configured) limit for a memcg.
1571 */
3e32cb2e 1572static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1573{
3e32cb2e 1574 unsigned long limit;
a63d83f4 1575
3e32cb2e 1576 limit = memcg->memory.limit;
9a5a8f19 1577 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1578 unsigned long memsw_limit;
9a5a8f19 1579
3e32cb2e
JW
1580 memsw_limit = memcg->memsw.limit;
1581 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1582 }
9a5a8f19 1583 return limit;
a63d83f4
DR
1584}
1585
19965460
DR
1586static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1587 int order)
9cbb78bb
DR
1588{
1589 struct mem_cgroup *iter;
1590 unsigned long chosen_points = 0;
1591 unsigned long totalpages;
1592 unsigned int points = 0;
1593 struct task_struct *chosen = NULL;
1594
876aafbf 1595 /*
465adcf1
DR
1596 * If current has a pending SIGKILL or is exiting, then automatically
1597 * select it. The goal is to allow it to allocate so that it may
1598 * quickly exit and free its memory.
876aafbf 1599 */
465adcf1 1600 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1601 set_thread_flag(TIF_MEMDIE);
1602 return;
1603 }
1604
1605 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1606 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1607 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1608 struct css_task_iter it;
9cbb78bb
DR
1609 struct task_struct *task;
1610
72ec7029
TH
1611 css_task_iter_start(&iter->css, &it);
1612 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1613 switch (oom_scan_process_thread(task, totalpages, NULL,
1614 false)) {
1615 case OOM_SCAN_SELECT:
1616 if (chosen)
1617 put_task_struct(chosen);
1618 chosen = task;
1619 chosen_points = ULONG_MAX;
1620 get_task_struct(chosen);
1621 /* fall through */
1622 case OOM_SCAN_CONTINUE:
1623 continue;
1624 case OOM_SCAN_ABORT:
72ec7029 1625 css_task_iter_end(&it);
9cbb78bb
DR
1626 mem_cgroup_iter_break(memcg, iter);
1627 if (chosen)
1628 put_task_struct(chosen);
1629 return;
1630 case OOM_SCAN_OK:
1631 break;
1632 };
1633 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1634 if (!points || points < chosen_points)
1635 continue;
1636 /* Prefer thread group leaders for display purposes */
1637 if (points == chosen_points &&
1638 thread_group_leader(chosen))
1639 continue;
1640
1641 if (chosen)
1642 put_task_struct(chosen);
1643 chosen = task;
1644 chosen_points = points;
1645 get_task_struct(chosen);
9cbb78bb 1646 }
72ec7029 1647 css_task_iter_end(&it);
9cbb78bb
DR
1648 }
1649
1650 if (!chosen)
1651 return;
1652 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1653 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1654 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1655}
1656
4d0c066d
KH
1657/**
1658 * test_mem_cgroup_node_reclaimable
dad7557e 1659 * @memcg: the target memcg
4d0c066d
KH
1660 * @nid: the node ID to be checked.
1661 * @noswap : specify true here if the user wants flle only information.
1662 *
1663 * This function returns whether the specified memcg contains any
1664 * reclaimable pages on a node. Returns true if there are any reclaimable
1665 * pages in the node.
1666 */
c0ff4b85 1667static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1668 int nid, bool noswap)
1669{
c0ff4b85 1670 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1671 return true;
1672 if (noswap || !total_swap_pages)
1673 return false;
c0ff4b85 1674 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1675 return true;
1676 return false;
1677
1678}
bb4cc1a8 1679#if MAX_NUMNODES > 1
889976db
YH
1680
1681/*
1682 * Always updating the nodemask is not very good - even if we have an empty
1683 * list or the wrong list here, we can start from some node and traverse all
1684 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1685 *
1686 */
c0ff4b85 1687static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1688{
1689 int nid;
453a9bf3
KH
1690 /*
1691 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1692 * pagein/pageout changes since the last update.
1693 */
c0ff4b85 1694 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1695 return;
c0ff4b85 1696 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1697 return;
1698
889976db 1699 /* make a nodemask where this memcg uses memory from */
31aaea4a 1700 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1701
31aaea4a 1702 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1703
c0ff4b85
R
1704 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1705 node_clear(nid, memcg->scan_nodes);
889976db 1706 }
453a9bf3 1707
c0ff4b85
R
1708 atomic_set(&memcg->numainfo_events, 0);
1709 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1710}
1711
1712/*
1713 * Selecting a node where we start reclaim from. Because what we need is just
1714 * reducing usage counter, start from anywhere is O,K. Considering
1715 * memory reclaim from current node, there are pros. and cons.
1716 *
1717 * Freeing memory from current node means freeing memory from a node which
1718 * we'll use or we've used. So, it may make LRU bad. And if several threads
1719 * hit limits, it will see a contention on a node. But freeing from remote
1720 * node means more costs for memory reclaim because of memory latency.
1721 *
1722 * Now, we use round-robin. Better algorithm is welcomed.
1723 */
c0ff4b85 1724int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1725{
1726 int node;
1727
c0ff4b85
R
1728 mem_cgroup_may_update_nodemask(memcg);
1729 node = memcg->last_scanned_node;
889976db 1730
c0ff4b85 1731 node = next_node(node, memcg->scan_nodes);
889976db 1732 if (node == MAX_NUMNODES)
c0ff4b85 1733 node = first_node(memcg->scan_nodes);
889976db
YH
1734 /*
1735 * We call this when we hit limit, not when pages are added to LRU.
1736 * No LRU may hold pages because all pages are UNEVICTABLE or
1737 * memcg is too small and all pages are not on LRU. In that case,
1738 * we use curret node.
1739 */
1740 if (unlikely(node == MAX_NUMNODES))
1741 node = numa_node_id();
1742
c0ff4b85 1743 memcg->last_scanned_node = node;
889976db
YH
1744 return node;
1745}
889976db 1746#else
c0ff4b85 1747int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1748{
1749 return 0;
1750}
1751#endif
1752
0608f43d
AM
1753static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1754 struct zone *zone,
1755 gfp_t gfp_mask,
1756 unsigned long *total_scanned)
1757{
1758 struct mem_cgroup *victim = NULL;
1759 int total = 0;
1760 int loop = 0;
1761 unsigned long excess;
1762 unsigned long nr_scanned;
1763 struct mem_cgroup_reclaim_cookie reclaim = {
1764 .zone = zone,
1765 .priority = 0,
1766 };
1767
3e32cb2e 1768 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1769
1770 while (1) {
1771 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1772 if (!victim) {
1773 loop++;
1774 if (loop >= 2) {
1775 /*
1776 * If we have not been able to reclaim
1777 * anything, it might because there are
1778 * no reclaimable pages under this hierarchy
1779 */
1780 if (!total)
1781 break;
1782 /*
1783 * We want to do more targeted reclaim.
1784 * excess >> 2 is not to excessive so as to
1785 * reclaim too much, nor too less that we keep
1786 * coming back to reclaim from this cgroup
1787 */
1788 if (total >= (excess >> 2) ||
1789 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1790 break;
1791 }
1792 continue;
1793 }
0608f43d
AM
1794 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1795 zone, &nr_scanned);
1796 *total_scanned += nr_scanned;
3e32cb2e 1797 if (!soft_limit_excess(root_memcg))
0608f43d 1798 break;
6d61ef40 1799 }
0608f43d
AM
1800 mem_cgroup_iter_break(root_memcg, victim);
1801 return total;
6d61ef40
BS
1802}
1803
0056f4e6
JW
1804#ifdef CONFIG_LOCKDEP
1805static struct lockdep_map memcg_oom_lock_dep_map = {
1806 .name = "memcg_oom_lock",
1807};
1808#endif
1809
fb2a6fc5
JW
1810static DEFINE_SPINLOCK(memcg_oom_lock);
1811
867578cb
KH
1812/*
1813 * Check OOM-Killer is already running under our hierarchy.
1814 * If someone is running, return false.
1815 */
fb2a6fc5 1816static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1817{
79dfdacc 1818 struct mem_cgroup *iter, *failed = NULL;
a636b327 1819
fb2a6fc5
JW
1820 spin_lock(&memcg_oom_lock);
1821
9f3a0d09 1822 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1823 if (iter->oom_lock) {
79dfdacc
MH
1824 /*
1825 * this subtree of our hierarchy is already locked
1826 * so we cannot give a lock.
1827 */
79dfdacc 1828 failed = iter;
9f3a0d09
JW
1829 mem_cgroup_iter_break(memcg, iter);
1830 break;
23751be0
JW
1831 } else
1832 iter->oom_lock = true;
7d74b06f 1833 }
867578cb 1834
fb2a6fc5
JW
1835 if (failed) {
1836 /*
1837 * OK, we failed to lock the whole subtree so we have
1838 * to clean up what we set up to the failing subtree
1839 */
1840 for_each_mem_cgroup_tree(iter, memcg) {
1841 if (iter == failed) {
1842 mem_cgroup_iter_break(memcg, iter);
1843 break;
1844 }
1845 iter->oom_lock = false;
79dfdacc 1846 }
0056f4e6
JW
1847 } else
1848 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1849
1850 spin_unlock(&memcg_oom_lock);
1851
1852 return !failed;
a636b327 1853}
0b7f569e 1854
fb2a6fc5 1855static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1856{
7d74b06f
KH
1857 struct mem_cgroup *iter;
1858
fb2a6fc5 1859 spin_lock(&memcg_oom_lock);
0056f4e6 1860 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1861 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1862 iter->oom_lock = false;
fb2a6fc5 1863 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1864}
1865
c0ff4b85 1866static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1867{
1868 struct mem_cgroup *iter;
1869
c0ff4b85 1870 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1871 atomic_inc(&iter->under_oom);
1872}
1873
c0ff4b85 1874static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1875{
1876 struct mem_cgroup *iter;
1877
867578cb
KH
1878 /*
1879 * When a new child is created while the hierarchy is under oom,
1880 * mem_cgroup_oom_lock() may not be called. We have to use
1881 * atomic_add_unless() here.
1882 */
c0ff4b85 1883 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1884 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1885}
1886
867578cb
KH
1887static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1888
dc98df5a 1889struct oom_wait_info {
d79154bb 1890 struct mem_cgroup *memcg;
dc98df5a
KH
1891 wait_queue_t wait;
1892};
1893
1894static int memcg_oom_wake_function(wait_queue_t *wait,
1895 unsigned mode, int sync, void *arg)
1896{
d79154bb
HD
1897 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1898 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1899 struct oom_wait_info *oom_wait_info;
1900
1901 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1902 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1903
dc98df5a 1904 /*
d79154bb 1905 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1906 * Then we can use css_is_ancestor without taking care of RCU.
1907 */
c0ff4b85
R
1908 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1909 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1910 return 0;
dc98df5a
KH
1911 return autoremove_wake_function(wait, mode, sync, arg);
1912}
1913
c0ff4b85 1914static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1915{
3812c8c8 1916 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1917 /* for filtering, pass "memcg" as argument. */
1918 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1919}
1920
c0ff4b85 1921static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1922{
c0ff4b85
R
1923 if (memcg && atomic_read(&memcg->under_oom))
1924 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1925}
1926
3812c8c8 1927static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1928{
3812c8c8
JW
1929 if (!current->memcg_oom.may_oom)
1930 return;
867578cb 1931 /*
49426420
JW
1932 * We are in the middle of the charge context here, so we
1933 * don't want to block when potentially sitting on a callstack
1934 * that holds all kinds of filesystem and mm locks.
1935 *
1936 * Also, the caller may handle a failed allocation gracefully
1937 * (like optional page cache readahead) and so an OOM killer
1938 * invocation might not even be necessary.
1939 *
1940 * That's why we don't do anything here except remember the
1941 * OOM context and then deal with it at the end of the page
1942 * fault when the stack is unwound, the locks are released,
1943 * and when we know whether the fault was overall successful.
867578cb 1944 */
49426420
JW
1945 css_get(&memcg->css);
1946 current->memcg_oom.memcg = memcg;
1947 current->memcg_oom.gfp_mask = mask;
1948 current->memcg_oom.order = order;
3812c8c8
JW
1949}
1950
1951/**
1952 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1953 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1954 *
49426420
JW
1955 * This has to be called at the end of a page fault if the memcg OOM
1956 * handler was enabled.
3812c8c8 1957 *
49426420 1958 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1959 * sleep on a waitqueue until the userspace task resolves the
1960 * situation. Sleeping directly in the charge context with all kinds
1961 * of locks held is not a good idea, instead we remember an OOM state
1962 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1963 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1964 *
1965 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1966 * completed, %false otherwise.
3812c8c8 1967 */
49426420 1968bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1969{
49426420 1970 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1971 struct oom_wait_info owait;
49426420 1972 bool locked;
3812c8c8
JW
1973
1974 /* OOM is global, do not handle */
3812c8c8 1975 if (!memcg)
49426420 1976 return false;
3812c8c8 1977
49426420
JW
1978 if (!handle)
1979 goto cleanup;
3812c8c8
JW
1980
1981 owait.memcg = memcg;
1982 owait.wait.flags = 0;
1983 owait.wait.func = memcg_oom_wake_function;
1984 owait.wait.private = current;
1985 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1986
3812c8c8 1987 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1988 mem_cgroup_mark_under_oom(memcg);
1989
1990 locked = mem_cgroup_oom_trylock(memcg);
1991
1992 if (locked)
1993 mem_cgroup_oom_notify(memcg);
1994
1995 if (locked && !memcg->oom_kill_disable) {
1996 mem_cgroup_unmark_under_oom(memcg);
1997 finish_wait(&memcg_oom_waitq, &owait.wait);
1998 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1999 current->memcg_oom.order);
2000 } else {
3812c8c8 2001 schedule();
49426420
JW
2002 mem_cgroup_unmark_under_oom(memcg);
2003 finish_wait(&memcg_oom_waitq, &owait.wait);
2004 }
2005
2006 if (locked) {
fb2a6fc5
JW
2007 mem_cgroup_oom_unlock(memcg);
2008 /*
2009 * There is no guarantee that an OOM-lock contender
2010 * sees the wakeups triggered by the OOM kill
2011 * uncharges. Wake any sleepers explicitely.
2012 */
2013 memcg_oom_recover(memcg);
2014 }
49426420
JW
2015cleanup:
2016 current->memcg_oom.memcg = NULL;
3812c8c8 2017 css_put(&memcg->css);
867578cb 2018 return true;
0b7f569e
KH
2019}
2020
d7365e78
JW
2021/**
2022 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2023 * @page: page that is going to change accounted state
2024 * @locked: &memcg->move_lock slowpath was taken
2025 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2026 *
d7365e78
JW
2027 * This function must mark the beginning of an accounted page state
2028 * change to prevent double accounting when the page is concurrently
2029 * being moved to another memcg:
32047e2a 2030 *
d7365e78
JW
2031 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2032 * if (TestClearPageState(page))
2033 * mem_cgroup_update_page_stat(memcg, state, -1);
2034 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2035 *
d7365e78
JW
2036 * The RCU lock is held throughout the transaction. The fast path can
2037 * get away without acquiring the memcg->move_lock (@locked is false)
2038 * because page moving starts with an RCU grace period.
32047e2a 2039 *
d7365e78
JW
2040 * The RCU lock also protects the memcg from being freed when the page
2041 * state that is going to change is the only thing preventing the page
2042 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2043 * which allows migration to go ahead and uncharge the page before the
2044 * account transaction might be complete.
d69b042f 2045 */
d7365e78
JW
2046struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2047 bool *locked,
2048 unsigned long *flags)
89c06bd5
KH
2049{
2050 struct mem_cgroup *memcg;
2051 struct page_cgroup *pc;
2052
d7365e78
JW
2053 rcu_read_lock();
2054
2055 if (mem_cgroup_disabled())
2056 return NULL;
2057
89c06bd5
KH
2058 pc = lookup_page_cgroup(page);
2059again:
2060 memcg = pc->mem_cgroup;
29833315 2061 if (unlikely(!memcg))
d7365e78
JW
2062 return NULL;
2063
2064 *locked = false;
bdcbb659 2065 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2066 return memcg;
89c06bd5 2067
354a4783 2068 spin_lock_irqsave(&memcg->move_lock, *flags);
29833315 2069 if (memcg != pc->mem_cgroup) {
354a4783 2070 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2071 goto again;
2072 }
2073 *locked = true;
d7365e78
JW
2074
2075 return memcg;
89c06bd5
KH
2076}
2077
d7365e78
JW
2078/**
2079 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2080 * @memcg: the memcg that was accounted against
2081 * @locked: value received from mem_cgroup_begin_page_stat()
2082 * @flags: value received from mem_cgroup_begin_page_stat()
2083 */
2084void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2085 unsigned long flags)
89c06bd5 2086{
d7365e78 2087 if (memcg && locked)
354a4783 2088 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5 2089
d7365e78 2090 rcu_read_unlock();
89c06bd5
KH
2091}
2092
d7365e78
JW
2093/**
2094 * mem_cgroup_update_page_stat - update page state statistics
2095 * @memcg: memcg to account against
2096 * @idx: page state item to account
2097 * @val: number of pages (positive or negative)
2098 *
2099 * See mem_cgroup_begin_page_stat() for locking requirements.
2100 */
2101void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2102 enum mem_cgroup_stat_index idx, int val)
d69b042f 2103{
658b72c5 2104 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2105
d7365e78
JW
2106 if (memcg)
2107 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2108}
26174efd 2109
cdec2e42
KH
2110/*
2111 * size of first charge trial. "32" comes from vmscan.c's magic value.
2112 * TODO: maybe necessary to use big numbers in big irons.
2113 */
7ec99d62 2114#define CHARGE_BATCH 32U
cdec2e42
KH
2115struct memcg_stock_pcp {
2116 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2117 unsigned int nr_pages;
cdec2e42 2118 struct work_struct work;
26fe6168 2119 unsigned long flags;
a0db00fc 2120#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2121};
2122static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2123static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2124
a0956d54
SS
2125/**
2126 * consume_stock: Try to consume stocked charge on this cpu.
2127 * @memcg: memcg to consume from.
2128 * @nr_pages: how many pages to charge.
2129 *
2130 * The charges will only happen if @memcg matches the current cpu's memcg
2131 * stock, and at least @nr_pages are available in that stock. Failure to
2132 * service an allocation will refill the stock.
2133 *
2134 * returns true if successful, false otherwise.
cdec2e42 2135 */
a0956d54 2136static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2137{
2138 struct memcg_stock_pcp *stock;
3e32cb2e 2139 bool ret = false;
cdec2e42 2140
a0956d54 2141 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2142 return ret;
a0956d54 2143
cdec2e42 2144 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2145 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2146 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2147 ret = true;
2148 }
cdec2e42
KH
2149 put_cpu_var(memcg_stock);
2150 return ret;
2151}
2152
2153/*
3e32cb2e 2154 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2155 */
2156static void drain_stock(struct memcg_stock_pcp *stock)
2157{
2158 struct mem_cgroup *old = stock->cached;
2159
11c9ea4e 2160 if (stock->nr_pages) {
3e32cb2e 2161 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2162 if (do_swap_account)
3e32cb2e 2163 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2164 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2165 stock->nr_pages = 0;
cdec2e42
KH
2166 }
2167 stock->cached = NULL;
cdec2e42
KH
2168}
2169
2170/*
2171 * This must be called under preempt disabled or must be called by
2172 * a thread which is pinned to local cpu.
2173 */
2174static void drain_local_stock(struct work_struct *dummy)
2175{
7c8e0181 2176 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2177 drain_stock(stock);
26fe6168 2178 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2179}
2180
e4777496
MH
2181static void __init memcg_stock_init(void)
2182{
2183 int cpu;
2184
2185 for_each_possible_cpu(cpu) {
2186 struct memcg_stock_pcp *stock =
2187 &per_cpu(memcg_stock, cpu);
2188 INIT_WORK(&stock->work, drain_local_stock);
2189 }
2190}
2191
cdec2e42 2192/*
3e32cb2e 2193 * Cache charges(val) to local per_cpu area.
320cc51d 2194 * This will be consumed by consume_stock() function, later.
cdec2e42 2195 */
c0ff4b85 2196static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2197{
2198 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2199
c0ff4b85 2200 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2201 drain_stock(stock);
c0ff4b85 2202 stock->cached = memcg;
cdec2e42 2203 }
11c9ea4e 2204 stock->nr_pages += nr_pages;
cdec2e42
KH
2205 put_cpu_var(memcg_stock);
2206}
2207
2208/*
c0ff4b85 2209 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2210 * of the hierarchy under it.
cdec2e42 2211 */
6d3d6aa2 2212static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2213{
26fe6168 2214 int cpu, curcpu;
d38144b7 2215
6d3d6aa2
JW
2216 /* If someone's already draining, avoid adding running more workers. */
2217 if (!mutex_trylock(&percpu_charge_mutex))
2218 return;
cdec2e42 2219 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2220 get_online_cpus();
5af12d0e 2221 curcpu = get_cpu();
cdec2e42
KH
2222 for_each_online_cpu(cpu) {
2223 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2224 struct mem_cgroup *memcg;
26fe6168 2225
c0ff4b85
R
2226 memcg = stock->cached;
2227 if (!memcg || !stock->nr_pages)
26fe6168 2228 continue;
c0ff4b85 2229 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2230 continue;
d1a05b69
MH
2231 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2232 if (cpu == curcpu)
2233 drain_local_stock(&stock->work);
2234 else
2235 schedule_work_on(cpu, &stock->work);
2236 }
cdec2e42 2237 }
5af12d0e 2238 put_cpu();
f894ffa8 2239 put_online_cpus();
9f50fad6 2240 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2241}
2242
711d3d2c
KH
2243/*
2244 * This function drains percpu counter value from DEAD cpu and
2245 * move it to local cpu. Note that this function can be preempted.
2246 */
c0ff4b85 2247static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2248{
2249 int i;
2250
c0ff4b85 2251 spin_lock(&memcg->pcp_counter_lock);
6104621d 2252 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2253 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2254
c0ff4b85
R
2255 per_cpu(memcg->stat->count[i], cpu) = 0;
2256 memcg->nocpu_base.count[i] += x;
711d3d2c 2257 }
e9f8974f 2258 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2259 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2260
c0ff4b85
R
2261 per_cpu(memcg->stat->events[i], cpu) = 0;
2262 memcg->nocpu_base.events[i] += x;
e9f8974f 2263 }
c0ff4b85 2264 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2265}
2266
0db0628d 2267static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2268 unsigned long action,
2269 void *hcpu)
2270{
2271 int cpu = (unsigned long)hcpu;
2272 struct memcg_stock_pcp *stock;
711d3d2c 2273 struct mem_cgroup *iter;
cdec2e42 2274
619d094b 2275 if (action == CPU_ONLINE)
1489ebad 2276 return NOTIFY_OK;
1489ebad 2277
d833049b 2278 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2279 return NOTIFY_OK;
711d3d2c 2280
9f3a0d09 2281 for_each_mem_cgroup(iter)
711d3d2c
KH
2282 mem_cgroup_drain_pcp_counter(iter, cpu);
2283
cdec2e42
KH
2284 stock = &per_cpu(memcg_stock, cpu);
2285 drain_stock(stock);
2286 return NOTIFY_OK;
2287}
2288
00501b53
JW
2289static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2290 unsigned int nr_pages)
8a9f3ccd 2291{
7ec99d62 2292 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2293 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2294 struct mem_cgroup *mem_over_limit;
3e32cb2e 2295 struct page_counter *counter;
6539cc05 2296 unsigned long nr_reclaimed;
b70a2a21
JW
2297 bool may_swap = true;
2298 bool drained = false;
05b84301 2299 int ret = 0;
a636b327 2300
ce00a967
JW
2301 if (mem_cgroup_is_root(memcg))
2302 goto done;
6539cc05 2303retry:
b6b6cc72
MH
2304 if (consume_stock(memcg, nr_pages))
2305 goto done;
8a9f3ccd 2306
3fbe7244 2307 if (!do_swap_account ||
3e32cb2e
JW
2308 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2309 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2310 goto done_restock;
3fbe7244 2311 if (do_swap_account)
3e32cb2e
JW
2312 page_counter_uncharge(&memcg->memsw, batch);
2313 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2314 } else {
3e32cb2e 2315 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2316 may_swap = false;
3fbe7244 2317 }
7a81b88c 2318
6539cc05
JW
2319 if (batch > nr_pages) {
2320 batch = nr_pages;
2321 goto retry;
2322 }
6d61ef40 2323
06b078fc
JW
2324 /*
2325 * Unlike in global OOM situations, memcg is not in a physical
2326 * memory shortage. Allow dying and OOM-killed tasks to
2327 * bypass the last charges so that they can exit quickly and
2328 * free their memory.
2329 */
2330 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2331 fatal_signal_pending(current) ||
2332 current->flags & PF_EXITING))
2333 goto bypass;
2334
2335 if (unlikely(task_in_memcg_oom(current)))
2336 goto nomem;
2337
6539cc05
JW
2338 if (!(gfp_mask & __GFP_WAIT))
2339 goto nomem;
4b534334 2340
b70a2a21
JW
2341 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2342 gfp_mask, may_swap);
6539cc05 2343
61e02c74 2344 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2345 goto retry;
28c34c29 2346
b70a2a21 2347 if (!drained) {
6d3d6aa2 2348 drain_all_stock(mem_over_limit);
b70a2a21
JW
2349 drained = true;
2350 goto retry;
2351 }
2352
28c34c29
JW
2353 if (gfp_mask & __GFP_NORETRY)
2354 goto nomem;
6539cc05
JW
2355 /*
2356 * Even though the limit is exceeded at this point, reclaim
2357 * may have been able to free some pages. Retry the charge
2358 * before killing the task.
2359 *
2360 * Only for regular pages, though: huge pages are rather
2361 * unlikely to succeed so close to the limit, and we fall back
2362 * to regular pages anyway in case of failure.
2363 */
61e02c74 2364 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2365 goto retry;
2366 /*
2367 * At task move, charge accounts can be doubly counted. So, it's
2368 * better to wait until the end of task_move if something is going on.
2369 */
2370 if (mem_cgroup_wait_acct_move(mem_over_limit))
2371 goto retry;
2372
9b130619
JW
2373 if (nr_retries--)
2374 goto retry;
2375
06b078fc
JW
2376 if (gfp_mask & __GFP_NOFAIL)
2377 goto bypass;
2378
6539cc05
JW
2379 if (fatal_signal_pending(current))
2380 goto bypass;
2381
61e02c74 2382 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2383nomem:
6d1fdc48 2384 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2385 return -ENOMEM;
867578cb 2386bypass:
ce00a967 2387 return -EINTR;
6539cc05
JW
2388
2389done_restock:
e8ea14cc 2390 css_get_many(&memcg->css, batch);
6539cc05
JW
2391 if (batch > nr_pages)
2392 refill_stock(memcg, batch - nr_pages);
2393done:
05b84301 2394 return ret;
7a81b88c 2395}
8a9f3ccd 2396
00501b53 2397static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2398{
ce00a967
JW
2399 if (mem_cgroup_is_root(memcg))
2400 return;
2401
3e32cb2e 2402 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2403 if (do_swap_account)
3e32cb2e 2404 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2405
2406 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2407}
2408
a3b2d692
KH
2409/*
2410 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2411 * rcu_read_lock(). The caller is responsible for calling
2412 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2413 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2414 */
2415static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2416{
a3b2d692
KH
2417 /* ID 0 is unused ID */
2418 if (!id)
2419 return NULL;
34c00c31 2420 return mem_cgroup_from_id(id);
a3b2d692
KH
2421}
2422
0a31bc97
JW
2423/*
2424 * try_get_mem_cgroup_from_page - look up page's memcg association
2425 * @page: the page
2426 *
2427 * Look up, get a css reference, and return the memcg that owns @page.
2428 *
2429 * The page must be locked to prevent racing with swap-in and page
2430 * cache charges. If coming from an unlocked page table, the caller
2431 * must ensure the page is on the LRU or this can race with charging.
2432 */
e42d9d5d 2433struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2434{
29833315 2435 struct mem_cgroup *memcg;
3c776e64 2436 struct page_cgroup *pc;
a3b2d692 2437 unsigned short id;
b5a84319
KH
2438 swp_entry_t ent;
2439
309381fe 2440 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2441
3c776e64 2442 pc = lookup_page_cgroup(page);
29833315
JW
2443 memcg = pc->mem_cgroup;
2444
2445 if (memcg) {
2446 if (!css_tryget_online(&memcg->css))
c0ff4b85 2447 memcg = NULL;
e42d9d5d 2448 } else if (PageSwapCache(page)) {
3c776e64 2449 ent.val = page_private(page);
9fb4b7cc 2450 id = lookup_swap_cgroup_id(ent);
a3b2d692 2451 rcu_read_lock();
c0ff4b85 2452 memcg = mem_cgroup_lookup(id);
ec903c0c 2453 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2454 memcg = NULL;
a3b2d692 2455 rcu_read_unlock();
3c776e64 2456 }
c0ff4b85 2457 return memcg;
b5a84319
KH
2458}
2459
0a31bc97
JW
2460static void lock_page_lru(struct page *page, int *isolated)
2461{
2462 struct zone *zone = page_zone(page);
2463
2464 spin_lock_irq(&zone->lru_lock);
2465 if (PageLRU(page)) {
2466 struct lruvec *lruvec;
2467
2468 lruvec = mem_cgroup_page_lruvec(page, zone);
2469 ClearPageLRU(page);
2470 del_page_from_lru_list(page, lruvec, page_lru(page));
2471 *isolated = 1;
2472 } else
2473 *isolated = 0;
2474}
2475
2476static void unlock_page_lru(struct page *page, int isolated)
2477{
2478 struct zone *zone = page_zone(page);
2479
2480 if (isolated) {
2481 struct lruvec *lruvec;
2482
2483 lruvec = mem_cgroup_page_lruvec(page, zone);
2484 VM_BUG_ON_PAGE(PageLRU(page), page);
2485 SetPageLRU(page);
2486 add_page_to_lru_list(page, lruvec, page_lru(page));
2487 }
2488 spin_unlock_irq(&zone->lru_lock);
2489}
2490
00501b53 2491static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2492 bool lrucare)
7a81b88c 2493{
ce587e65 2494 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2495 int isolated;
9ce70c02 2496
29833315 2497 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
ca3e0214
KH
2498 /*
2499 * we don't need page_cgroup_lock about tail pages, becase they are not
2500 * accessed by any other context at this point.
2501 */
9ce70c02
HD
2502
2503 /*
2504 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2505 * may already be on some other mem_cgroup's LRU. Take care of it.
2506 */
0a31bc97
JW
2507 if (lrucare)
2508 lock_page_lru(page, &isolated);
9ce70c02 2509
0a31bc97
JW
2510 /*
2511 * Nobody should be changing or seriously looking at
29833315 2512 * pc->mem_cgroup at this point:
0a31bc97
JW
2513 *
2514 * - the page is uncharged
2515 *
2516 * - the page is off-LRU
2517 *
2518 * - an anonymous fault has exclusive page access, except for
2519 * a locked page table
2520 *
2521 * - a page cache insertion, a swapin fault, or a migration
2522 * have the page locked
2523 */
c0ff4b85 2524 pc->mem_cgroup = memcg;
9ce70c02 2525
0a31bc97
JW
2526 if (lrucare)
2527 unlock_page_lru(page, isolated);
7a81b88c 2528}
66e1707b 2529
7ae1e1d0 2530#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2531/*
2532 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2533 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2534 */
2535static DEFINE_MUTEX(memcg_slab_mutex);
2536
1f458cbf
GC
2537/*
2538 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2539 * in the memcg_cache_params struct.
2540 */
2541static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2542{
2543 struct kmem_cache *cachep;
2544
2545 VM_BUG_ON(p->is_root_cache);
2546 cachep = p->root_cache;
7a67d7ab 2547 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2548}
2549
3e32cb2e
JW
2550static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2551 unsigned long nr_pages)
7ae1e1d0 2552{
3e32cb2e 2553 struct page_counter *counter;
7ae1e1d0 2554 int ret = 0;
7ae1e1d0 2555
3e32cb2e
JW
2556 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2557 if (ret < 0)
7ae1e1d0
GC
2558 return ret;
2559
3e32cb2e 2560 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2561 if (ret == -EINTR) {
2562 /*
00501b53
JW
2563 * try_charge() chose to bypass to root due to OOM kill or
2564 * fatal signal. Since our only options are to either fail
2565 * the allocation or charge it to this cgroup, do it as a
2566 * temporary condition. But we can't fail. From a kmem/slab
2567 * perspective, the cache has already been selected, by
2568 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2569 * our minds.
2570 *
2571 * This condition will only trigger if the task entered
00501b53
JW
2572 * memcg_charge_kmem in a sane state, but was OOM-killed
2573 * during try_charge() above. Tasks that were already dying
2574 * when the allocation triggers should have been already
7ae1e1d0
GC
2575 * directed to the root cgroup in memcontrol.h
2576 */
3e32cb2e 2577 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2578 if (do_swap_account)
3e32cb2e 2579 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2580 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2581 ret = 0;
2582 } else if (ret)
3e32cb2e 2583 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2584
2585 return ret;
2586}
2587
3e32cb2e
JW
2588static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2589 unsigned long nr_pages)
7ae1e1d0 2590{
3e32cb2e 2591 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2592 if (do_swap_account)
3e32cb2e 2593 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2594
64f21993 2595 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2596
2597 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2598}
2599
2633d7a0
GC
2600/*
2601 * helper for acessing a memcg's index. It will be used as an index in the
2602 * child cache array in kmem_cache, and also to derive its name. This function
2603 * will return -1 when this is not a kmem-limited memcg.
2604 */
2605int memcg_cache_id(struct mem_cgroup *memcg)
2606{
2607 return memcg ? memcg->kmemcg_id : -1;
2608}
2609
f3bb3043 2610static int memcg_alloc_cache_id(void)
55007d84 2611{
f3bb3043
VD
2612 int id, size;
2613 int err;
2614
2615 id = ida_simple_get(&kmem_limited_groups,
2616 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2617 if (id < 0)
2618 return id;
55007d84 2619
f3bb3043
VD
2620 if (id < memcg_limited_groups_array_size)
2621 return id;
2622
2623 /*
2624 * There's no space for the new id in memcg_caches arrays,
2625 * so we have to grow them.
2626 */
2627
2628 size = 2 * (id + 1);
55007d84
GC
2629 if (size < MEMCG_CACHES_MIN_SIZE)
2630 size = MEMCG_CACHES_MIN_SIZE;
2631 else if (size > MEMCG_CACHES_MAX_SIZE)
2632 size = MEMCG_CACHES_MAX_SIZE;
2633
f3bb3043
VD
2634 mutex_lock(&memcg_slab_mutex);
2635 err = memcg_update_all_caches(size);
2636 mutex_unlock(&memcg_slab_mutex);
2637
2638 if (err) {
2639 ida_simple_remove(&kmem_limited_groups, id);
2640 return err;
2641 }
2642 return id;
2643}
2644
2645static void memcg_free_cache_id(int id)
2646{
2647 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2648}
2649
2650/*
2651 * We should update the current array size iff all caches updates succeed. This
2652 * can only be done from the slab side. The slab mutex needs to be held when
2653 * calling this.
2654 */
2655void memcg_update_array_size(int num)
2656{
f3bb3043 2657 memcg_limited_groups_array_size = num;
55007d84
GC
2658}
2659
776ed0f0
VD
2660static void memcg_register_cache(struct mem_cgroup *memcg,
2661 struct kmem_cache *root_cache)
2633d7a0 2662{
93f39eea
VD
2663 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2664 memcg_slab_mutex */
bd673145 2665 struct kmem_cache *cachep;
d7f25f8a
GC
2666 int id;
2667
bd673145
VD
2668 lockdep_assert_held(&memcg_slab_mutex);
2669
2670 id = memcg_cache_id(memcg);
2671
2672 /*
2673 * Since per-memcg caches are created asynchronously on first
2674 * allocation (see memcg_kmem_get_cache()), several threads can try to
2675 * create the same cache, but only one of them may succeed.
2676 */
2677 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2678 return;
2679
073ee1c6 2680 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2681 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2682 /*
bd673145
VD
2683 * If we could not create a memcg cache, do not complain, because
2684 * that's not critical at all as we can always proceed with the root
2685 * cache.
2edefe11 2686 */
bd673145
VD
2687 if (!cachep)
2688 return;
2edefe11 2689
33a690c4 2690 css_get(&memcg->css);
bd673145 2691 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2692
d7f25f8a 2693 /*
959c8963
VD
2694 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2695 * barrier here to ensure nobody will see the kmem_cache partially
2696 * initialized.
d7f25f8a 2697 */
959c8963
VD
2698 smp_wmb();
2699
bd673145
VD
2700 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2701 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2702}
d7f25f8a 2703
776ed0f0 2704static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2705{
bd673145 2706 struct kmem_cache *root_cache;
1aa13254
VD
2707 struct mem_cgroup *memcg;
2708 int id;
2709
bd673145 2710 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2711
bd673145 2712 BUG_ON(is_root_cache(cachep));
2edefe11 2713
bd673145
VD
2714 root_cache = cachep->memcg_params->root_cache;
2715 memcg = cachep->memcg_params->memcg;
96403da2 2716 id = memcg_cache_id(memcg);
d7f25f8a 2717
bd673145
VD
2718 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2719 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2720
bd673145
VD
2721 list_del(&cachep->memcg_params->list);
2722
2723 kmem_cache_destroy(cachep);
33a690c4
VD
2724
2725 /* drop the reference taken in memcg_register_cache */
2726 css_put(&memcg->css);
2633d7a0
GC
2727}
2728
0e9d92f2
GC
2729/*
2730 * During the creation a new cache, we need to disable our accounting mechanism
2731 * altogether. This is true even if we are not creating, but rather just
2732 * enqueing new caches to be created.
2733 *
2734 * This is because that process will trigger allocations; some visible, like
2735 * explicit kmallocs to auxiliary data structures, name strings and internal
2736 * cache structures; some well concealed, like INIT_WORK() that can allocate
2737 * objects during debug.
2738 *
2739 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2740 * to it. This may not be a bounded recursion: since the first cache creation
2741 * failed to complete (waiting on the allocation), we'll just try to create the
2742 * cache again, failing at the same point.
2743 *
2744 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2745 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2746 * inside the following two functions.
2747 */
2748static inline void memcg_stop_kmem_account(void)
2749{
2750 VM_BUG_ON(!current->mm);
2751 current->memcg_kmem_skip_account++;
2752}
2753
2754static inline void memcg_resume_kmem_account(void)
2755{
2756 VM_BUG_ON(!current->mm);
2757 current->memcg_kmem_skip_account--;
2758}
2759
776ed0f0 2760int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2761{
2762 struct kmem_cache *c;
b8529907 2763 int i, failed = 0;
7cf27982 2764
bd673145 2765 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2766 for_each_memcg_cache_index(i) {
2767 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2768 if (!c)
2769 continue;
2770
776ed0f0 2771 memcg_unregister_cache(c);
b8529907
VD
2772
2773 if (cache_from_memcg_idx(s, i))
2774 failed++;
7cf27982 2775 }
bd673145 2776 mutex_unlock(&memcg_slab_mutex);
b8529907 2777 return failed;
7cf27982
GC
2778}
2779
776ed0f0 2780static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2781{
2782 struct kmem_cache *cachep;
bd673145 2783 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2784
2785 if (!memcg_kmem_is_active(memcg))
2786 return;
2787
bd673145
VD
2788 mutex_lock(&memcg_slab_mutex);
2789 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2790 cachep = memcg_params_to_cache(params);
bd673145
VD
2791 kmem_cache_shrink(cachep);
2792 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2793 memcg_unregister_cache(cachep);
1f458cbf 2794 }
bd673145 2795 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2796}
2797
776ed0f0 2798struct memcg_register_cache_work {
5722d094
VD
2799 struct mem_cgroup *memcg;
2800 struct kmem_cache *cachep;
2801 struct work_struct work;
2802};
2803
776ed0f0 2804static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2805{
776ed0f0
VD
2806 struct memcg_register_cache_work *cw =
2807 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2808 struct mem_cgroup *memcg = cw->memcg;
2809 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2810
bd673145 2811 mutex_lock(&memcg_slab_mutex);
776ed0f0 2812 memcg_register_cache(memcg, cachep);
bd673145
VD
2813 mutex_unlock(&memcg_slab_mutex);
2814
5722d094 2815 css_put(&memcg->css);
d7f25f8a
GC
2816 kfree(cw);
2817}
2818
2819/*
2820 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2821 */
776ed0f0
VD
2822static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2823 struct kmem_cache *cachep)
d7f25f8a 2824{
776ed0f0 2825 struct memcg_register_cache_work *cw;
d7f25f8a 2826
776ed0f0 2827 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2828 if (cw == NULL) {
2829 css_put(&memcg->css);
d7f25f8a
GC
2830 return;
2831 }
2832
2833 cw->memcg = memcg;
2834 cw->cachep = cachep;
2835
776ed0f0 2836 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2837 schedule_work(&cw->work);
2838}
2839
776ed0f0
VD
2840static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2841 struct kmem_cache *cachep)
0e9d92f2
GC
2842{
2843 /*
2844 * We need to stop accounting when we kmalloc, because if the
2845 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2846 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2847 *
2848 * However, it is better to enclose the whole function. Depending on
2849 * the debugging options enabled, INIT_WORK(), for instance, can
2850 * trigger an allocation. This too, will make us recurse. Because at
2851 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2852 * the safest choice is to do it like this, wrapping the whole function.
2853 */
2854 memcg_stop_kmem_account();
776ed0f0 2855 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2856 memcg_resume_kmem_account();
2857}
c67a8a68
VD
2858
2859int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2860{
3e32cb2e 2861 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2862 int res;
2863
3e32cb2e 2864 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2865 if (!res)
3e32cb2e 2866 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2867 return res;
2868}
2869
2870void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2871{
3e32cb2e
JW
2872 unsigned int nr_pages = 1 << order;
2873
2874 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2875 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2876}
2877
d7f25f8a
GC
2878/*
2879 * Return the kmem_cache we're supposed to use for a slab allocation.
2880 * We try to use the current memcg's version of the cache.
2881 *
2882 * If the cache does not exist yet, if we are the first user of it,
2883 * we either create it immediately, if possible, or create it asynchronously
2884 * in a workqueue.
2885 * In the latter case, we will let the current allocation go through with
2886 * the original cache.
2887 *
2888 * Can't be called in interrupt context or from kernel threads.
2889 * This function needs to be called with rcu_read_lock() held.
2890 */
2891struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2892 gfp_t gfp)
2893{
2894 struct mem_cgroup *memcg;
959c8963 2895 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2896
2897 VM_BUG_ON(!cachep->memcg_params);
2898 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2899
0e9d92f2
GC
2900 if (!current->mm || current->memcg_kmem_skip_account)
2901 return cachep;
2902
d7f25f8a
GC
2903 rcu_read_lock();
2904 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2905
cf2b8fbf 2906 if (!memcg_kmem_is_active(memcg))
ca0dde97 2907 goto out;
d7f25f8a 2908
959c8963
VD
2909 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2910 if (likely(memcg_cachep)) {
2911 cachep = memcg_cachep;
ca0dde97 2912 goto out;
d7f25f8a
GC
2913 }
2914
ca0dde97 2915 /* The corresponding put will be done in the workqueue. */
ec903c0c 2916 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
2917 goto out;
2918 rcu_read_unlock();
2919
2920 /*
2921 * If we are in a safe context (can wait, and not in interrupt
2922 * context), we could be be predictable and return right away.
2923 * This would guarantee that the allocation being performed
2924 * already belongs in the new cache.
2925 *
2926 * However, there are some clashes that can arrive from locking.
2927 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2928 * memcg_create_kmem_cache, this means no further allocation
2929 * could happen with the slab_mutex held. So it's better to
2930 * defer everything.
ca0dde97 2931 */
776ed0f0 2932 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
2933 return cachep;
2934out:
2935 rcu_read_unlock();
2936 return cachep;
d7f25f8a 2937}
d7f25f8a 2938
7ae1e1d0
GC
2939/*
2940 * We need to verify if the allocation against current->mm->owner's memcg is
2941 * possible for the given order. But the page is not allocated yet, so we'll
2942 * need a further commit step to do the final arrangements.
2943 *
2944 * It is possible for the task to switch cgroups in this mean time, so at
2945 * commit time, we can't rely on task conversion any longer. We'll then use
2946 * the handle argument to return to the caller which cgroup we should commit
2947 * against. We could also return the memcg directly and avoid the pointer
2948 * passing, but a boolean return value gives better semantics considering
2949 * the compiled-out case as well.
2950 *
2951 * Returning true means the allocation is possible.
2952 */
2953bool
2954__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2955{
2956 struct mem_cgroup *memcg;
2957 int ret;
2958
2959 *_memcg = NULL;
6d42c232
GC
2960
2961 /*
2962 * Disabling accounting is only relevant for some specific memcg
2963 * internal allocations. Therefore we would initially not have such
52383431
VD
2964 * check here, since direct calls to the page allocator that are
2965 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2966 * outside memcg core. We are mostly concerned with cache allocations,
2967 * and by having this test at memcg_kmem_get_cache, we are already able
2968 * to relay the allocation to the root cache and bypass the memcg cache
2969 * altogether.
6d42c232
GC
2970 *
2971 * There is one exception, though: the SLUB allocator does not create
2972 * large order caches, but rather service large kmallocs directly from
2973 * the page allocator. Therefore, the following sequence when backed by
2974 * the SLUB allocator:
2975 *
f894ffa8
AM
2976 * memcg_stop_kmem_account();
2977 * kmalloc(<large_number>)
2978 * memcg_resume_kmem_account();
6d42c232
GC
2979 *
2980 * would effectively ignore the fact that we should skip accounting,
2981 * since it will drive us directly to this function without passing
2982 * through the cache selector memcg_kmem_get_cache. Such large
2983 * allocations are extremely rare but can happen, for instance, for the
2984 * cache arrays. We bring this test here.
2985 */
2986 if (!current->mm || current->memcg_kmem_skip_account)
2987 return true;
2988
df381975 2989 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2990
cf2b8fbf 2991 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2992 css_put(&memcg->css);
2993 return true;
2994 }
2995
3e32cb2e 2996 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2997 if (!ret)
2998 *_memcg = memcg;
7ae1e1d0
GC
2999
3000 css_put(&memcg->css);
3001 return (ret == 0);
3002}
3003
3004void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3005 int order)
3006{
3007 struct page_cgroup *pc;
3008
3009 VM_BUG_ON(mem_cgroup_is_root(memcg));
3010
3011 /* The page allocation failed. Revert */
3012 if (!page) {
3e32cb2e 3013 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3014 return;
3015 }
7ae1e1d0 3016 pc = lookup_page_cgroup(page);
7ae1e1d0 3017 pc->mem_cgroup = memcg;
7ae1e1d0
GC
3018}
3019
3020void __memcg_kmem_uncharge_pages(struct page *page, int order)
3021{
29833315
JW
3022 struct page_cgroup *pc = lookup_page_cgroup(page);
3023 struct mem_cgroup *memcg = pc->mem_cgroup;
7ae1e1d0 3024
7ae1e1d0
GC
3025 if (!memcg)
3026 return;
3027
309381fe 3028 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 3029
3e32cb2e 3030 memcg_uncharge_kmem(memcg, 1 << order);
29833315 3031 pc->mem_cgroup = NULL;
7ae1e1d0 3032}
1f458cbf 3033#else
776ed0f0 3034static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3035{
3036}
7ae1e1d0
GC
3037#endif /* CONFIG_MEMCG_KMEM */
3038
ca3e0214
KH
3039#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3040
ca3e0214
KH
3041/*
3042 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3043 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3044 * charge/uncharge will be never happen and move_account() is done under
3045 * compound_lock(), so we don't have to take care of races.
ca3e0214 3046 */
e94c8a9c 3047void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3048{
29833315 3049 struct page_cgroup *pc = lookup_page_cgroup(head);
e94c8a9c 3050 int i;
ca3e0214 3051
3d37c4a9
KH
3052 if (mem_cgroup_disabled())
3053 return;
b070e65c 3054
29833315
JW
3055 for (i = 1; i < HPAGE_PMD_NR; i++)
3056 pc[i].mem_cgroup = pc[0].mem_cgroup;
b9982f8d 3057
29833315 3058 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 3059 HPAGE_PMD_NR);
ca3e0214 3060}
12d27107 3061#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3062
f817ed48 3063/**
de3638d9 3064 * mem_cgroup_move_account - move account of the page
5564e88b 3065 * @page: the page
7ec99d62 3066 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3067 * @pc: page_cgroup of the page.
3068 * @from: mem_cgroup which the page is moved from.
3069 * @to: mem_cgroup which the page is moved to. @from != @to.
3070 *
3071 * The caller must confirm following.
08e552c6 3072 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3073 * - compound_lock is held when nr_pages > 1
f817ed48 3074 *
2f3479b1
KH
3075 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3076 * from old cgroup.
f817ed48 3077 */
7ec99d62
JW
3078static int mem_cgroup_move_account(struct page *page,
3079 unsigned int nr_pages,
3080 struct page_cgroup *pc,
3081 struct mem_cgroup *from,
2f3479b1 3082 struct mem_cgroup *to)
f817ed48 3083{
de3638d9
JW
3084 unsigned long flags;
3085 int ret;
987eba66 3086
f817ed48 3087 VM_BUG_ON(from == to);
309381fe 3088 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3089 /*
3090 * The page is isolated from LRU. So, collapse function
3091 * will not handle this page. But page splitting can happen.
3092 * Do this check under compound_page_lock(). The caller should
3093 * hold it.
3094 */
3095 ret = -EBUSY;
7ec99d62 3096 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3097 goto out;
3098
0a31bc97
JW
3099 /*
3100 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3101 * of its source page while we change it: page migration takes
3102 * both pages off the LRU, but page cache replacement doesn't.
3103 */
3104 if (!trylock_page(page))
3105 goto out;
de3638d9
JW
3106
3107 ret = -EINVAL;
29833315 3108 if (pc->mem_cgroup != from)
0a31bc97 3109 goto out_unlock;
de3638d9 3110
354a4783 3111 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3112
0a31bc97 3113 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3114 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3115 nr_pages);
3116 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3117 nr_pages);
3118 }
3ea67d06 3119
59d1d256
JW
3120 if (PageWriteback(page)) {
3121 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3122 nr_pages);
3123 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3124 nr_pages);
3125 }
3ea67d06 3126
0a31bc97
JW
3127 /*
3128 * It is safe to change pc->mem_cgroup here because the page
3129 * is referenced, charged, and isolated - we can't race with
3130 * uncharging, charging, migration, or LRU putback.
3131 */
d69b042f 3132
854ffa8d 3133 /* caller should have done css_get */
08e552c6 3134 pc->mem_cgroup = to;
354a4783
JW
3135 spin_unlock_irqrestore(&from->move_lock, flags);
3136
de3638d9 3137 ret = 0;
0a31bc97
JW
3138
3139 local_irq_disable();
3140 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3141 memcg_check_events(to, page);
0a31bc97 3142 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3143 memcg_check_events(from, page);
0a31bc97
JW
3144 local_irq_enable();
3145out_unlock:
3146 unlock_page(page);
de3638d9 3147out:
f817ed48
KH
3148 return ret;
3149}
3150
c255a458 3151#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3152static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3153 bool charge)
d13d1443 3154{
0a31bc97
JW
3155 int val = (charge) ? 1 : -1;
3156 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3157}
02491447
DN
3158
3159/**
3160 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3161 * @entry: swap entry to be moved
3162 * @from: mem_cgroup which the entry is moved from
3163 * @to: mem_cgroup which the entry is moved to
3164 *
3165 * It succeeds only when the swap_cgroup's record for this entry is the same
3166 * as the mem_cgroup's id of @from.
3167 *
3168 * Returns 0 on success, -EINVAL on failure.
3169 *
3e32cb2e 3170 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3171 * both res and memsw, and called css_get().
3172 */
3173static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3174 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3175{
3176 unsigned short old_id, new_id;
3177
34c00c31
LZ
3178 old_id = mem_cgroup_id(from);
3179 new_id = mem_cgroup_id(to);
02491447
DN
3180
3181 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3182 mem_cgroup_swap_statistics(from, false);
483c30b5 3183 mem_cgroup_swap_statistics(to, true);
02491447 3184 /*
483c30b5 3185 * This function is only called from task migration context now.
3e32cb2e 3186 * It postpones page_counter and refcount handling till the end
483c30b5 3187 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3188 * improvement. But we cannot postpone css_get(to) because if
3189 * the process that has been moved to @to does swap-in, the
3190 * refcount of @to might be decreased to 0.
3191 *
3192 * We are in attach() phase, so the cgroup is guaranteed to be
3193 * alive, so we can just call css_get().
02491447 3194 */
4050377b 3195 css_get(&to->css);
02491447
DN
3196 return 0;
3197 }
3198 return -EINVAL;
3199}
3200#else
3201static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3202 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3203{
3204 return -EINVAL;
3205}
8c7c6e34 3206#endif
d13d1443 3207
f212ad7c
DN
3208#ifdef CONFIG_DEBUG_VM
3209static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3210{
3211 struct page_cgroup *pc;
3212
3213 pc = lookup_page_cgroup(page);
cfa44946
JW
3214 /*
3215 * Can be NULL while feeding pages into the page allocator for
3216 * the first time, i.e. during boot or memory hotplug;
3217 * or when mem_cgroup_disabled().
3218 */
29833315 3219 if (likely(pc) && pc->mem_cgroup)
f212ad7c
DN
3220 return pc;
3221 return NULL;
3222}
3223
3224bool mem_cgroup_bad_page_check(struct page *page)
3225{
3226 if (mem_cgroup_disabled())
3227 return false;
3228
3229 return lookup_page_cgroup_used(page) != NULL;
3230}
3231
3232void mem_cgroup_print_bad_page(struct page *page)
3233{
3234 struct page_cgroup *pc;
3235
3236 pc = lookup_page_cgroup_used(page);
29833315
JW
3237 if (pc)
3238 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
f212ad7c
DN
3239}
3240#endif
3241
3e32cb2e
JW
3242static DEFINE_MUTEX(memcg_limit_mutex);
3243
d38d2a75 3244static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3245 unsigned long limit)
628f4235 3246{
3e32cb2e
JW
3247 unsigned long curusage;
3248 unsigned long oldusage;
3249 bool enlarge = false;
81d39c20 3250 int retry_count;
3e32cb2e 3251 int ret;
81d39c20
KH
3252
3253 /*
3254 * For keeping hierarchical_reclaim simple, how long we should retry
3255 * is depends on callers. We set our retry-count to be function
3256 * of # of children which we should visit in this loop.
3257 */
3e32cb2e
JW
3258 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3259 mem_cgroup_count_children(memcg);
81d39c20 3260
3e32cb2e 3261 oldusage = page_counter_read(&memcg->memory);
628f4235 3262
3e32cb2e 3263 do {
628f4235
KH
3264 if (signal_pending(current)) {
3265 ret = -EINTR;
3266 break;
3267 }
3e32cb2e
JW
3268
3269 mutex_lock(&memcg_limit_mutex);
3270 if (limit > memcg->memsw.limit) {
3271 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3272 ret = -EINVAL;
628f4235
KH
3273 break;
3274 }
3e32cb2e
JW
3275 if (limit > memcg->memory.limit)
3276 enlarge = true;
3277 ret = page_counter_limit(&memcg->memory, limit);
3278 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3279
3280 if (!ret)
3281 break;
3282
b70a2a21
JW
3283 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3284
3e32cb2e 3285 curusage = page_counter_read(&memcg->memory);
81d39c20 3286 /* Usage is reduced ? */
f894ffa8 3287 if (curusage >= oldusage)
81d39c20
KH
3288 retry_count--;
3289 else
3290 oldusage = curusage;
3e32cb2e
JW
3291 } while (retry_count);
3292
3c11ecf4
KH
3293 if (!ret && enlarge)
3294 memcg_oom_recover(memcg);
14797e23 3295
8c7c6e34
KH
3296 return ret;
3297}
3298
338c8431 3299static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3300 unsigned long limit)
8c7c6e34 3301{
3e32cb2e
JW
3302 unsigned long curusage;
3303 unsigned long oldusage;
3304 bool enlarge = false;
81d39c20 3305 int retry_count;
3e32cb2e 3306 int ret;
8c7c6e34 3307
81d39c20 3308 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3309 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3310 mem_cgroup_count_children(memcg);
3311
3312 oldusage = page_counter_read(&memcg->memsw);
3313
3314 do {
8c7c6e34
KH
3315 if (signal_pending(current)) {
3316 ret = -EINTR;
3317 break;
3318 }
3e32cb2e
JW
3319
3320 mutex_lock(&memcg_limit_mutex);
3321 if (limit < memcg->memory.limit) {
3322 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3323 ret = -EINVAL;
8c7c6e34
KH
3324 break;
3325 }
3e32cb2e
JW
3326 if (limit > memcg->memsw.limit)
3327 enlarge = true;
3328 ret = page_counter_limit(&memcg->memsw, limit);
3329 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3330
3331 if (!ret)
3332 break;
3333
b70a2a21
JW
3334 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3335
3e32cb2e 3336 curusage = page_counter_read(&memcg->memsw);
81d39c20 3337 /* Usage is reduced ? */
8c7c6e34 3338 if (curusage >= oldusage)
628f4235 3339 retry_count--;
81d39c20
KH
3340 else
3341 oldusage = curusage;
3e32cb2e
JW
3342 } while (retry_count);
3343
3c11ecf4
KH
3344 if (!ret && enlarge)
3345 memcg_oom_recover(memcg);
3e32cb2e 3346
628f4235
KH
3347 return ret;
3348}
3349
0608f43d
AM
3350unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3351 gfp_t gfp_mask,
3352 unsigned long *total_scanned)
3353{
3354 unsigned long nr_reclaimed = 0;
3355 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3356 unsigned long reclaimed;
3357 int loop = 0;
3358 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3359 unsigned long excess;
0608f43d
AM
3360 unsigned long nr_scanned;
3361
3362 if (order > 0)
3363 return 0;
3364
3365 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3366 /*
3367 * This loop can run a while, specially if mem_cgroup's continuously
3368 * keep exceeding their soft limit and putting the system under
3369 * pressure
3370 */
3371 do {
3372 if (next_mz)
3373 mz = next_mz;
3374 else
3375 mz = mem_cgroup_largest_soft_limit_node(mctz);
3376 if (!mz)
3377 break;
3378
3379 nr_scanned = 0;
3380 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3381 gfp_mask, &nr_scanned);
3382 nr_reclaimed += reclaimed;
3383 *total_scanned += nr_scanned;
0a31bc97 3384 spin_lock_irq(&mctz->lock);
bc2f2e7f 3385 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3386
3387 /*
3388 * If we failed to reclaim anything from this memory cgroup
3389 * it is time to move on to the next cgroup
3390 */
3391 next_mz = NULL;
bc2f2e7f
VD
3392 if (!reclaimed)
3393 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3394
3e32cb2e 3395 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3396 /*
3397 * One school of thought says that we should not add
3398 * back the node to the tree if reclaim returns 0.
3399 * But our reclaim could return 0, simply because due
3400 * to priority we are exposing a smaller subset of
3401 * memory to reclaim from. Consider this as a longer
3402 * term TODO.
3403 */
3404 /* If excess == 0, no tree ops */
cf2c8127 3405 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3406 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3407 css_put(&mz->memcg->css);
3408 loop++;
3409 /*
3410 * Could not reclaim anything and there are no more
3411 * mem cgroups to try or we seem to be looping without
3412 * reclaiming anything.
3413 */
3414 if (!nr_reclaimed &&
3415 (next_mz == NULL ||
3416 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3417 break;
3418 } while (!nr_reclaimed);
3419 if (next_mz)
3420 css_put(&next_mz->memcg->css);
3421 return nr_reclaimed;
3422}
3423
ea280e7b
TH
3424/*
3425 * Test whether @memcg has children, dead or alive. Note that this
3426 * function doesn't care whether @memcg has use_hierarchy enabled and
3427 * returns %true if there are child csses according to the cgroup
3428 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3429 */
b5f99b53
GC
3430static inline bool memcg_has_children(struct mem_cgroup *memcg)
3431{
ea280e7b
TH
3432 bool ret;
3433
696ac172 3434 /*
ea280e7b
TH
3435 * The lock does not prevent addition or deletion of children, but
3436 * it prevents a new child from being initialized based on this
3437 * parent in css_online(), so it's enough to decide whether
3438 * hierarchically inherited attributes can still be changed or not.
696ac172 3439 */
ea280e7b
TH
3440 lockdep_assert_held(&memcg_create_mutex);
3441
3442 rcu_read_lock();
3443 ret = css_next_child(NULL, &memcg->css);
3444 rcu_read_unlock();
3445 return ret;
b5f99b53
GC
3446}
3447
c26251f9
MH
3448/*
3449 * Reclaims as many pages from the given memcg as possible and moves
3450 * the rest to the parent.
3451 *
3452 * Caller is responsible for holding css reference for memcg.
3453 */
3454static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3455{
3456 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3457
c1e862c1
KH
3458 /* we call try-to-free pages for make this cgroup empty */
3459 lru_add_drain_all();
f817ed48 3460 /* try to free all pages in this cgroup */
3e32cb2e 3461 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3462 int progress;
c1e862c1 3463
c26251f9
MH
3464 if (signal_pending(current))
3465 return -EINTR;
3466
b70a2a21
JW
3467 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3468 GFP_KERNEL, true);
c1e862c1 3469 if (!progress) {
f817ed48 3470 nr_retries--;
c1e862c1 3471 /* maybe some writeback is necessary */
8aa7e847 3472 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3473 }
f817ed48
KH
3474
3475 }
ab5196c2
MH
3476
3477 return 0;
cc847582
KH
3478}
3479
6770c64e
TH
3480static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3481 char *buf, size_t nbytes,
3482 loff_t off)
c1e862c1 3483{
6770c64e 3484 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3485
d8423011
MH
3486 if (mem_cgroup_is_root(memcg))
3487 return -EINVAL;
6770c64e 3488 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3489}
3490
182446d0
TH
3491static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3492 struct cftype *cft)
18f59ea7 3493{
182446d0 3494 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3495}
3496
182446d0
TH
3497static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3498 struct cftype *cft, u64 val)
18f59ea7
BS
3499{
3500 int retval = 0;
182446d0 3501 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3502 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3503
0999821b 3504 mutex_lock(&memcg_create_mutex);
567fb435
GC
3505
3506 if (memcg->use_hierarchy == val)
3507 goto out;
3508
18f59ea7 3509 /*
af901ca1 3510 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3511 * in the child subtrees. If it is unset, then the change can
3512 * occur, provided the current cgroup has no children.
3513 *
3514 * For the root cgroup, parent_mem is NULL, we allow value to be
3515 * set if there are no children.
3516 */
c0ff4b85 3517 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3518 (val == 1 || val == 0)) {
ea280e7b 3519 if (!memcg_has_children(memcg))
c0ff4b85 3520 memcg->use_hierarchy = val;
18f59ea7
BS
3521 else
3522 retval = -EBUSY;
3523 } else
3524 retval = -EINVAL;
567fb435
GC
3525
3526out:
0999821b 3527 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3528
3529 return retval;
3530}
3531
3e32cb2e
JW
3532static unsigned long tree_stat(struct mem_cgroup *memcg,
3533 enum mem_cgroup_stat_index idx)
ce00a967
JW
3534{
3535 struct mem_cgroup *iter;
3536 long val = 0;
3537
3538 /* Per-cpu values can be negative, use a signed accumulator */
3539 for_each_mem_cgroup_tree(iter, memcg)
3540 val += mem_cgroup_read_stat(iter, idx);
3541
3542 if (val < 0) /* race ? */
3543 val = 0;
3544 return val;
3545}
3546
3547static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3548{
3549 u64 val;
3550
3e32cb2e
JW
3551 if (mem_cgroup_is_root(memcg)) {
3552 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3553 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3554 if (swap)
3555 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3556 } else {
ce00a967 3557 if (!swap)
3e32cb2e 3558 val = page_counter_read(&memcg->memory);
ce00a967 3559 else
3e32cb2e 3560 val = page_counter_read(&memcg->memsw);
ce00a967 3561 }
ce00a967
JW
3562 return val << PAGE_SHIFT;
3563}
3564
3e32cb2e
JW
3565enum {
3566 RES_USAGE,
3567 RES_LIMIT,
3568 RES_MAX_USAGE,
3569 RES_FAILCNT,
3570 RES_SOFT_LIMIT,
3571};
ce00a967 3572
791badbd 3573static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3574 struct cftype *cft)
8cdea7c0 3575{
182446d0 3576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3577 struct page_counter *counter;
af36f906 3578
3e32cb2e 3579 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3580 case _MEM:
3e32cb2e
JW
3581 counter = &memcg->memory;
3582 break;
8c7c6e34 3583 case _MEMSWAP:
3e32cb2e
JW
3584 counter = &memcg->memsw;
3585 break;
510fc4e1 3586 case _KMEM:
3e32cb2e 3587 counter = &memcg->kmem;
510fc4e1 3588 break;
8c7c6e34
KH
3589 default:
3590 BUG();
8c7c6e34 3591 }
3e32cb2e
JW
3592
3593 switch (MEMFILE_ATTR(cft->private)) {
3594 case RES_USAGE:
3595 if (counter == &memcg->memory)
3596 return mem_cgroup_usage(memcg, false);
3597 if (counter == &memcg->memsw)
3598 return mem_cgroup_usage(memcg, true);
3599 return (u64)page_counter_read(counter) * PAGE_SIZE;
3600 case RES_LIMIT:
3601 return (u64)counter->limit * PAGE_SIZE;
3602 case RES_MAX_USAGE:
3603 return (u64)counter->watermark * PAGE_SIZE;
3604 case RES_FAILCNT:
3605 return counter->failcnt;
3606 case RES_SOFT_LIMIT:
3607 return (u64)memcg->soft_limit * PAGE_SIZE;
3608 default:
3609 BUG();
3610 }
8cdea7c0 3611}
510fc4e1 3612
510fc4e1 3613#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3614static int memcg_activate_kmem(struct mem_cgroup *memcg,
3615 unsigned long nr_pages)
d6441637
VD
3616{
3617 int err = 0;
3618 int memcg_id;
3619
3620 if (memcg_kmem_is_active(memcg))
3621 return 0;
3622
3623 /*
3624 * We are going to allocate memory for data shared by all memory
3625 * cgroups so let's stop accounting here.
3626 */
3627 memcg_stop_kmem_account();
3628
510fc4e1
GC
3629 /*
3630 * For simplicity, we won't allow this to be disabled. It also can't
3631 * be changed if the cgroup has children already, or if tasks had
3632 * already joined.
3633 *
3634 * If tasks join before we set the limit, a person looking at
3635 * kmem.usage_in_bytes will have no way to determine when it took
3636 * place, which makes the value quite meaningless.
3637 *
3638 * After it first became limited, changes in the value of the limit are
3639 * of course permitted.
510fc4e1 3640 */
0999821b 3641 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3642 if (cgroup_has_tasks(memcg->css.cgroup) ||
3643 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3644 err = -EBUSY;
3645 mutex_unlock(&memcg_create_mutex);
3646 if (err)
3647 goto out;
510fc4e1 3648
f3bb3043 3649 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3650 if (memcg_id < 0) {
3651 err = memcg_id;
3652 goto out;
3653 }
3654
d6441637
VD
3655 memcg->kmemcg_id = memcg_id;
3656 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3657
3658 /*
3659 * We couldn't have accounted to this cgroup, because it hasn't got the
3660 * active bit set yet, so this should succeed.
3661 */
3e32cb2e 3662 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3663 VM_BUG_ON(err);
3664
3665 static_key_slow_inc(&memcg_kmem_enabled_key);
3666 /*
3667 * Setting the active bit after enabling static branching will
3668 * guarantee no one starts accounting before all call sites are
3669 * patched.
3670 */
3671 memcg_kmem_set_active(memcg);
510fc4e1 3672out:
d6441637
VD
3673 memcg_resume_kmem_account();
3674 return err;
d6441637
VD
3675}
3676
d6441637 3677static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3678 unsigned long limit)
d6441637
VD
3679{
3680 int ret;
3681
3e32cb2e 3682 mutex_lock(&memcg_limit_mutex);
d6441637 3683 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3684 ret = memcg_activate_kmem(memcg, limit);
d6441637 3685 else
3e32cb2e
JW
3686 ret = page_counter_limit(&memcg->kmem, limit);
3687 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3688 return ret;
3689}
3690
55007d84 3691static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3692{
55007d84 3693 int ret = 0;
510fc4e1 3694 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3695
d6441637
VD
3696 if (!parent)
3697 return 0;
55007d84 3698
8c0145b6 3699 mutex_lock(&memcg_limit_mutex);
55007d84 3700 /*
d6441637
VD
3701 * If the parent cgroup is not kmem-active now, it cannot be activated
3702 * after this point, because it has at least one child already.
55007d84 3703 */
d6441637 3704 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3705 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3706 mutex_unlock(&memcg_limit_mutex);
55007d84 3707 return ret;
510fc4e1 3708}
d6441637
VD
3709#else
3710static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3711 unsigned long limit)
d6441637
VD
3712{
3713 return -EINVAL;
3714}
6d043990 3715#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3716
628f4235
KH
3717/*
3718 * The user of this function is...
3719 * RES_LIMIT.
3720 */
451af504
TH
3721static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3722 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3723{
451af504 3724 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3725 unsigned long nr_pages;
628f4235
KH
3726 int ret;
3727
451af504 3728 buf = strstrip(buf);
3e32cb2e
JW
3729 ret = page_counter_memparse(buf, &nr_pages);
3730 if (ret)
3731 return ret;
af36f906 3732
3e32cb2e 3733 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3734 case RES_LIMIT:
4b3bde4c
BS
3735 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3736 ret = -EINVAL;
3737 break;
3738 }
3e32cb2e
JW
3739 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740 case _MEM:
3741 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3742 break;
3e32cb2e
JW
3743 case _MEMSWAP:
3744 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3745 break;
3e32cb2e
JW
3746 case _KMEM:
3747 ret = memcg_update_kmem_limit(memcg, nr_pages);
3748 break;
3749 }
296c81d8 3750 break;
3e32cb2e
JW
3751 case RES_SOFT_LIMIT:
3752 memcg->soft_limit = nr_pages;
3753 ret = 0;
628f4235
KH
3754 break;
3755 }
451af504 3756 return ret ?: nbytes;
8cdea7c0
BS
3757}
3758
6770c64e
TH
3759static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3760 size_t nbytes, loff_t off)
c84872e1 3761{
6770c64e 3762 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3763 struct page_counter *counter;
c84872e1 3764
3e32cb2e
JW
3765 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3766 case _MEM:
3767 counter = &memcg->memory;
3768 break;
3769 case _MEMSWAP:
3770 counter = &memcg->memsw;
3771 break;
3772 case _KMEM:
3773 counter = &memcg->kmem;
3774 break;
3775 default:
3776 BUG();
3777 }
af36f906 3778
3e32cb2e 3779 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3780 case RES_MAX_USAGE:
3e32cb2e 3781 page_counter_reset_watermark(counter);
29f2a4da
PE
3782 break;
3783 case RES_FAILCNT:
3e32cb2e 3784 counter->failcnt = 0;
29f2a4da 3785 break;
3e32cb2e
JW
3786 default:
3787 BUG();
29f2a4da 3788 }
f64c3f54 3789
6770c64e 3790 return nbytes;
c84872e1
PE
3791}
3792
182446d0 3793static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3794 struct cftype *cft)
3795{
182446d0 3796 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3797}
3798
02491447 3799#ifdef CONFIG_MMU
182446d0 3800static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3801 struct cftype *cft, u64 val)
3802{
182446d0 3803 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3804
3805 if (val >= (1 << NR_MOVE_TYPE))
3806 return -EINVAL;
ee5e8472 3807
7dc74be0 3808 /*
ee5e8472
GC
3809 * No kind of locking is needed in here, because ->can_attach() will
3810 * check this value once in the beginning of the process, and then carry
3811 * on with stale data. This means that changes to this value will only
3812 * affect task migrations starting after the change.
7dc74be0 3813 */
c0ff4b85 3814 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3815 return 0;
3816}
02491447 3817#else
182446d0 3818static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3819 struct cftype *cft, u64 val)
3820{
3821 return -ENOSYS;
3822}
3823#endif
7dc74be0 3824
406eb0c9 3825#ifdef CONFIG_NUMA
2da8ca82 3826static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3827{
25485de6
GT
3828 struct numa_stat {
3829 const char *name;
3830 unsigned int lru_mask;
3831 };
3832
3833 static const struct numa_stat stats[] = {
3834 { "total", LRU_ALL },
3835 { "file", LRU_ALL_FILE },
3836 { "anon", LRU_ALL_ANON },
3837 { "unevictable", BIT(LRU_UNEVICTABLE) },
3838 };
3839 const struct numa_stat *stat;
406eb0c9 3840 int nid;
25485de6 3841 unsigned long nr;
2da8ca82 3842 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3843
25485de6
GT
3844 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3845 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3846 seq_printf(m, "%s=%lu", stat->name, nr);
3847 for_each_node_state(nid, N_MEMORY) {
3848 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3849 stat->lru_mask);
3850 seq_printf(m, " N%d=%lu", nid, nr);
3851 }
3852 seq_putc(m, '\n');
406eb0c9 3853 }
406eb0c9 3854
071aee13
YH
3855 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3856 struct mem_cgroup *iter;
3857
3858 nr = 0;
3859 for_each_mem_cgroup_tree(iter, memcg)
3860 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3861 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3862 for_each_node_state(nid, N_MEMORY) {
3863 nr = 0;
3864 for_each_mem_cgroup_tree(iter, memcg)
3865 nr += mem_cgroup_node_nr_lru_pages(
3866 iter, nid, stat->lru_mask);
3867 seq_printf(m, " N%d=%lu", nid, nr);
3868 }
3869 seq_putc(m, '\n');
406eb0c9 3870 }
406eb0c9 3871
406eb0c9
YH
3872 return 0;
3873}
3874#endif /* CONFIG_NUMA */
3875
af7c4b0e
JW
3876static inline void mem_cgroup_lru_names_not_uptodate(void)
3877{
3878 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3879}
3880
2da8ca82 3881static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3882{
2da8ca82 3883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3884 unsigned long memory, memsw;
af7c4b0e
JW
3885 struct mem_cgroup *mi;
3886 unsigned int i;
406eb0c9 3887
af7c4b0e 3888 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3889 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3890 continue;
af7c4b0e
JW
3891 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3892 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3893 }
7b854121 3894
af7c4b0e
JW
3895 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3896 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3897 mem_cgroup_read_events(memcg, i));
3898
3899 for (i = 0; i < NR_LRU_LISTS; i++)
3900 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3901 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3902
14067bb3 3903 /* Hierarchical information */
3e32cb2e
JW
3904 memory = memsw = PAGE_COUNTER_MAX;
3905 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3906 memory = min(memory, mi->memory.limit);
3907 memsw = min(memsw, mi->memsw.limit);
fee7b548 3908 }
3e32cb2e
JW
3909 seq_printf(m, "hierarchical_memory_limit %llu\n",
3910 (u64)memory * PAGE_SIZE);
3911 if (do_swap_account)
3912 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3913 (u64)memsw * PAGE_SIZE);
7f016ee8 3914
af7c4b0e
JW
3915 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3916 long long val = 0;
3917
bff6bb83 3918 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3919 continue;
af7c4b0e
JW
3920 for_each_mem_cgroup_tree(mi, memcg)
3921 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3922 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3923 }
3924
3925 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3926 unsigned long long val = 0;
3927
3928 for_each_mem_cgroup_tree(mi, memcg)
3929 val += mem_cgroup_read_events(mi, i);
3930 seq_printf(m, "total_%s %llu\n",
3931 mem_cgroup_events_names[i], val);
3932 }
3933
3934 for (i = 0; i < NR_LRU_LISTS; i++) {
3935 unsigned long long val = 0;
3936
3937 for_each_mem_cgroup_tree(mi, memcg)
3938 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3939 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3940 }
14067bb3 3941
7f016ee8 3942#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3943 {
3944 int nid, zid;
3945 struct mem_cgroup_per_zone *mz;
89abfab1 3946 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3947 unsigned long recent_rotated[2] = {0, 0};
3948 unsigned long recent_scanned[2] = {0, 0};
3949
3950 for_each_online_node(nid)
3951 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3952 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3953 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3954
89abfab1
HD
3955 recent_rotated[0] += rstat->recent_rotated[0];
3956 recent_rotated[1] += rstat->recent_rotated[1];
3957 recent_scanned[0] += rstat->recent_scanned[0];
3958 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3959 }
78ccf5b5
JW
3960 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3961 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3962 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3963 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3964 }
3965#endif
3966
d2ceb9b7
KH
3967 return 0;
3968}
3969
182446d0
TH
3970static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3971 struct cftype *cft)
a7885eb8 3972{
182446d0 3973 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3974
1f4c025b 3975 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3976}
3977
182446d0
TH
3978static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3979 struct cftype *cft, u64 val)
a7885eb8 3980{
182446d0 3981 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3982
3dae7fec 3983 if (val > 100)
a7885eb8
KM
3984 return -EINVAL;
3985
14208b0e 3986 if (css->parent)
3dae7fec
JW
3987 memcg->swappiness = val;
3988 else
3989 vm_swappiness = val;
068b38c1 3990
a7885eb8
KM
3991 return 0;
3992}
3993
2e72b634
KS
3994static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3995{
3996 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3997 unsigned long usage;
2e72b634
KS
3998 int i;
3999
4000 rcu_read_lock();
4001 if (!swap)
2c488db2 4002 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4003 else
2c488db2 4004 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4005
4006 if (!t)
4007 goto unlock;
4008
ce00a967 4009 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4010
4011 /*
748dad36 4012 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4013 * If it's not true, a threshold was crossed after last
4014 * call of __mem_cgroup_threshold().
4015 */
5407a562 4016 i = t->current_threshold;
2e72b634
KS
4017
4018 /*
4019 * Iterate backward over array of thresholds starting from
4020 * current_threshold and check if a threshold is crossed.
4021 * If none of thresholds below usage is crossed, we read
4022 * only one element of the array here.
4023 */
4024 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4025 eventfd_signal(t->entries[i].eventfd, 1);
4026
4027 /* i = current_threshold + 1 */
4028 i++;
4029
4030 /*
4031 * Iterate forward over array of thresholds starting from
4032 * current_threshold+1 and check if a threshold is crossed.
4033 * If none of thresholds above usage is crossed, we read
4034 * only one element of the array here.
4035 */
4036 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4037 eventfd_signal(t->entries[i].eventfd, 1);
4038
4039 /* Update current_threshold */
5407a562 4040 t->current_threshold = i - 1;
2e72b634
KS
4041unlock:
4042 rcu_read_unlock();
4043}
4044
4045static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4046{
ad4ca5f4
KS
4047 while (memcg) {
4048 __mem_cgroup_threshold(memcg, false);
4049 if (do_swap_account)
4050 __mem_cgroup_threshold(memcg, true);
4051
4052 memcg = parent_mem_cgroup(memcg);
4053 }
2e72b634
KS
4054}
4055
4056static int compare_thresholds(const void *a, const void *b)
4057{
4058 const struct mem_cgroup_threshold *_a = a;
4059 const struct mem_cgroup_threshold *_b = b;
4060
2bff24a3
GT
4061 if (_a->threshold > _b->threshold)
4062 return 1;
4063
4064 if (_a->threshold < _b->threshold)
4065 return -1;
4066
4067 return 0;
2e72b634
KS
4068}
4069
c0ff4b85 4070static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4071{
4072 struct mem_cgroup_eventfd_list *ev;
4073
2bcf2e92
MH
4074 spin_lock(&memcg_oom_lock);
4075
c0ff4b85 4076 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4077 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4078
4079 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4080 return 0;
4081}
4082
c0ff4b85 4083static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4084{
7d74b06f
KH
4085 struct mem_cgroup *iter;
4086
c0ff4b85 4087 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4088 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4089}
4090
59b6f873 4091static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4092 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4093{
2c488db2
KS
4094 struct mem_cgroup_thresholds *thresholds;
4095 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4096 unsigned long threshold;
4097 unsigned long usage;
2c488db2 4098 int i, size, ret;
2e72b634 4099
3e32cb2e 4100 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4101 if (ret)
4102 return ret;
4103
4104 mutex_lock(&memcg->thresholds_lock);
2c488db2 4105
05b84301 4106 if (type == _MEM) {
2c488db2 4107 thresholds = &memcg->thresholds;
ce00a967 4108 usage = mem_cgroup_usage(memcg, false);
05b84301 4109 } else if (type == _MEMSWAP) {
2c488db2 4110 thresholds = &memcg->memsw_thresholds;
ce00a967 4111 usage = mem_cgroup_usage(memcg, true);
05b84301 4112 } else
2e72b634
KS
4113 BUG();
4114
2e72b634 4115 /* Check if a threshold crossed before adding a new one */
2c488db2 4116 if (thresholds->primary)
2e72b634
KS
4117 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4118
2c488db2 4119 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4120
4121 /* Allocate memory for new array of thresholds */
2c488db2 4122 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4123 GFP_KERNEL);
2c488db2 4124 if (!new) {
2e72b634
KS
4125 ret = -ENOMEM;
4126 goto unlock;
4127 }
2c488db2 4128 new->size = size;
2e72b634
KS
4129
4130 /* Copy thresholds (if any) to new array */
2c488db2
KS
4131 if (thresholds->primary) {
4132 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4133 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4134 }
4135
2e72b634 4136 /* Add new threshold */
2c488db2
KS
4137 new->entries[size - 1].eventfd = eventfd;
4138 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4139
4140 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4141 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4142 compare_thresholds, NULL);
4143
4144 /* Find current threshold */
2c488db2 4145 new->current_threshold = -1;
2e72b634 4146 for (i = 0; i < size; i++) {
748dad36 4147 if (new->entries[i].threshold <= usage) {
2e72b634 4148 /*
2c488db2
KS
4149 * new->current_threshold will not be used until
4150 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4151 * it here.
4152 */
2c488db2 4153 ++new->current_threshold;
748dad36
SZ
4154 } else
4155 break;
2e72b634
KS
4156 }
4157
2c488db2
KS
4158 /* Free old spare buffer and save old primary buffer as spare */
4159 kfree(thresholds->spare);
4160 thresholds->spare = thresholds->primary;
4161
4162 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4163
907860ed 4164 /* To be sure that nobody uses thresholds */
2e72b634
KS
4165 synchronize_rcu();
4166
2e72b634
KS
4167unlock:
4168 mutex_unlock(&memcg->thresholds_lock);
4169
4170 return ret;
4171}
4172
59b6f873 4173static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4174 struct eventfd_ctx *eventfd, const char *args)
4175{
59b6f873 4176 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4177}
4178
59b6f873 4179static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4180 struct eventfd_ctx *eventfd, const char *args)
4181{
59b6f873 4182 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4183}
4184
59b6f873 4185static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4186 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4187{
2c488db2
KS
4188 struct mem_cgroup_thresholds *thresholds;
4189 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4190 unsigned long usage;
2c488db2 4191 int i, j, size;
2e72b634
KS
4192
4193 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4194
4195 if (type == _MEM) {
2c488db2 4196 thresholds = &memcg->thresholds;
ce00a967 4197 usage = mem_cgroup_usage(memcg, false);
05b84301 4198 } else if (type == _MEMSWAP) {
2c488db2 4199 thresholds = &memcg->memsw_thresholds;
ce00a967 4200 usage = mem_cgroup_usage(memcg, true);
05b84301 4201 } else
2e72b634
KS
4202 BUG();
4203
371528ca
AV
4204 if (!thresholds->primary)
4205 goto unlock;
4206
2e72b634
KS
4207 /* Check if a threshold crossed before removing */
4208 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4209
4210 /* Calculate new number of threshold */
2c488db2
KS
4211 size = 0;
4212 for (i = 0; i < thresholds->primary->size; i++) {
4213 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4214 size++;
4215 }
4216
2c488db2 4217 new = thresholds->spare;
907860ed 4218
2e72b634
KS
4219 /* Set thresholds array to NULL if we don't have thresholds */
4220 if (!size) {
2c488db2
KS
4221 kfree(new);
4222 new = NULL;
907860ed 4223 goto swap_buffers;
2e72b634
KS
4224 }
4225
2c488db2 4226 new->size = size;
2e72b634
KS
4227
4228 /* Copy thresholds and find current threshold */
2c488db2
KS
4229 new->current_threshold = -1;
4230 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4231 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4232 continue;
4233
2c488db2 4234 new->entries[j] = thresholds->primary->entries[i];
748dad36 4235 if (new->entries[j].threshold <= usage) {
2e72b634 4236 /*
2c488db2 4237 * new->current_threshold will not be used
2e72b634
KS
4238 * until rcu_assign_pointer(), so it's safe to increment
4239 * it here.
4240 */
2c488db2 4241 ++new->current_threshold;
2e72b634
KS
4242 }
4243 j++;
4244 }
4245
907860ed 4246swap_buffers:
2c488db2
KS
4247 /* Swap primary and spare array */
4248 thresholds->spare = thresholds->primary;
8c757763
SZ
4249 /* If all events are unregistered, free the spare array */
4250 if (!new) {
4251 kfree(thresholds->spare);
4252 thresholds->spare = NULL;
4253 }
4254
2c488db2 4255 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4256
907860ed 4257 /* To be sure that nobody uses thresholds */
2e72b634 4258 synchronize_rcu();
371528ca 4259unlock:
2e72b634 4260 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4261}
c1e862c1 4262
59b6f873 4263static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4264 struct eventfd_ctx *eventfd)
4265{
59b6f873 4266 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4267}
4268
59b6f873 4269static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4270 struct eventfd_ctx *eventfd)
4271{
59b6f873 4272 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4273}
4274
59b6f873 4275static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4276 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4277{
9490ff27 4278 struct mem_cgroup_eventfd_list *event;
9490ff27 4279
9490ff27
KH
4280 event = kmalloc(sizeof(*event), GFP_KERNEL);
4281 if (!event)
4282 return -ENOMEM;
4283
1af8efe9 4284 spin_lock(&memcg_oom_lock);
9490ff27
KH
4285
4286 event->eventfd = eventfd;
4287 list_add(&event->list, &memcg->oom_notify);
4288
4289 /* already in OOM ? */
79dfdacc 4290 if (atomic_read(&memcg->under_oom))
9490ff27 4291 eventfd_signal(eventfd, 1);
1af8efe9 4292 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4293
4294 return 0;
4295}
4296
59b6f873 4297static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4298 struct eventfd_ctx *eventfd)
9490ff27 4299{
9490ff27 4300 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4301
1af8efe9 4302 spin_lock(&memcg_oom_lock);
9490ff27 4303
c0ff4b85 4304 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4305 if (ev->eventfd == eventfd) {
4306 list_del(&ev->list);
4307 kfree(ev);
4308 }
4309 }
4310
1af8efe9 4311 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4312}
4313
2da8ca82 4314static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4315{
2da8ca82 4316 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4317
791badbd
TH
4318 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4319 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4320 return 0;
4321}
4322
182446d0 4323static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4324 struct cftype *cft, u64 val)
4325{
182446d0 4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4327
4328 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4329 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4330 return -EINVAL;
4331
c0ff4b85 4332 memcg->oom_kill_disable = val;
4d845ebf 4333 if (!val)
c0ff4b85 4334 memcg_oom_recover(memcg);
3dae7fec 4335
3c11ecf4
KH
4336 return 0;
4337}
4338
c255a458 4339#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4340static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4341{
55007d84
GC
4342 int ret;
4343
2633d7a0 4344 memcg->kmemcg_id = -1;
55007d84
GC
4345 ret = memcg_propagate_kmem(memcg);
4346 if (ret)
4347 return ret;
2633d7a0 4348
1d62e436 4349 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4350}
e5671dfa 4351
10d5ebf4 4352static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4353{
1d62e436 4354 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4355}
e5671dfa 4356#else
cbe128e3 4357static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4358{
4359 return 0;
4360}
d1a4c0b3 4361
10d5ebf4
LZ
4362static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4363{
4364}
e5671dfa
GC
4365#endif
4366
3bc942f3
TH
4367/*
4368 * DO NOT USE IN NEW FILES.
4369 *
4370 * "cgroup.event_control" implementation.
4371 *
4372 * This is way over-engineered. It tries to support fully configurable
4373 * events for each user. Such level of flexibility is completely
4374 * unnecessary especially in the light of the planned unified hierarchy.
4375 *
4376 * Please deprecate this and replace with something simpler if at all
4377 * possible.
4378 */
4379
79bd9814
TH
4380/*
4381 * Unregister event and free resources.
4382 *
4383 * Gets called from workqueue.
4384 */
3bc942f3 4385static void memcg_event_remove(struct work_struct *work)
79bd9814 4386{
3bc942f3
TH
4387 struct mem_cgroup_event *event =
4388 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4389 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4390
4391 remove_wait_queue(event->wqh, &event->wait);
4392
59b6f873 4393 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4394
4395 /* Notify userspace the event is going away. */
4396 eventfd_signal(event->eventfd, 1);
4397
4398 eventfd_ctx_put(event->eventfd);
4399 kfree(event);
59b6f873 4400 css_put(&memcg->css);
79bd9814
TH
4401}
4402
4403/*
4404 * Gets called on POLLHUP on eventfd when user closes it.
4405 *
4406 * Called with wqh->lock held and interrupts disabled.
4407 */
3bc942f3
TH
4408static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4409 int sync, void *key)
79bd9814 4410{
3bc942f3
TH
4411 struct mem_cgroup_event *event =
4412 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4413 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4414 unsigned long flags = (unsigned long)key;
4415
4416 if (flags & POLLHUP) {
4417 /*
4418 * If the event has been detached at cgroup removal, we
4419 * can simply return knowing the other side will cleanup
4420 * for us.
4421 *
4422 * We can't race against event freeing since the other
4423 * side will require wqh->lock via remove_wait_queue(),
4424 * which we hold.
4425 */
fba94807 4426 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4427 if (!list_empty(&event->list)) {
4428 list_del_init(&event->list);
4429 /*
4430 * We are in atomic context, but cgroup_event_remove()
4431 * may sleep, so we have to call it in workqueue.
4432 */
4433 schedule_work(&event->remove);
4434 }
fba94807 4435 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4436 }
4437
4438 return 0;
4439}
4440
3bc942f3 4441static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4442 wait_queue_head_t *wqh, poll_table *pt)
4443{
3bc942f3
TH
4444 struct mem_cgroup_event *event =
4445 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4446
4447 event->wqh = wqh;
4448 add_wait_queue(wqh, &event->wait);
4449}
4450
4451/*
3bc942f3
TH
4452 * DO NOT USE IN NEW FILES.
4453 *
79bd9814
TH
4454 * Parse input and register new cgroup event handler.
4455 *
4456 * Input must be in format '<event_fd> <control_fd> <args>'.
4457 * Interpretation of args is defined by control file implementation.
4458 */
451af504
TH
4459static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4460 char *buf, size_t nbytes, loff_t off)
79bd9814 4461{
451af504 4462 struct cgroup_subsys_state *css = of_css(of);
fba94807 4463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4464 struct mem_cgroup_event *event;
79bd9814
TH
4465 struct cgroup_subsys_state *cfile_css;
4466 unsigned int efd, cfd;
4467 struct fd efile;
4468 struct fd cfile;
fba94807 4469 const char *name;
79bd9814
TH
4470 char *endp;
4471 int ret;
4472
451af504
TH
4473 buf = strstrip(buf);
4474
4475 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4476 if (*endp != ' ')
4477 return -EINVAL;
451af504 4478 buf = endp + 1;
79bd9814 4479
451af504 4480 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4481 if ((*endp != ' ') && (*endp != '\0'))
4482 return -EINVAL;
451af504 4483 buf = endp + 1;
79bd9814
TH
4484
4485 event = kzalloc(sizeof(*event), GFP_KERNEL);
4486 if (!event)
4487 return -ENOMEM;
4488
59b6f873 4489 event->memcg = memcg;
79bd9814 4490 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4491 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4492 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4493 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4494
4495 efile = fdget(efd);
4496 if (!efile.file) {
4497 ret = -EBADF;
4498 goto out_kfree;
4499 }
4500
4501 event->eventfd = eventfd_ctx_fileget(efile.file);
4502 if (IS_ERR(event->eventfd)) {
4503 ret = PTR_ERR(event->eventfd);
4504 goto out_put_efile;
4505 }
4506
4507 cfile = fdget(cfd);
4508 if (!cfile.file) {
4509 ret = -EBADF;
4510 goto out_put_eventfd;
4511 }
4512
4513 /* the process need read permission on control file */
4514 /* AV: shouldn't we check that it's been opened for read instead? */
4515 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4516 if (ret < 0)
4517 goto out_put_cfile;
4518
fba94807
TH
4519 /*
4520 * Determine the event callbacks and set them in @event. This used
4521 * to be done via struct cftype but cgroup core no longer knows
4522 * about these events. The following is crude but the whole thing
4523 * is for compatibility anyway.
3bc942f3
TH
4524 *
4525 * DO NOT ADD NEW FILES.
fba94807
TH
4526 */
4527 name = cfile.file->f_dentry->d_name.name;
4528
4529 if (!strcmp(name, "memory.usage_in_bytes")) {
4530 event->register_event = mem_cgroup_usage_register_event;
4531 event->unregister_event = mem_cgroup_usage_unregister_event;
4532 } else if (!strcmp(name, "memory.oom_control")) {
4533 event->register_event = mem_cgroup_oom_register_event;
4534 event->unregister_event = mem_cgroup_oom_unregister_event;
4535 } else if (!strcmp(name, "memory.pressure_level")) {
4536 event->register_event = vmpressure_register_event;
4537 event->unregister_event = vmpressure_unregister_event;
4538 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4539 event->register_event = memsw_cgroup_usage_register_event;
4540 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4541 } else {
4542 ret = -EINVAL;
4543 goto out_put_cfile;
4544 }
4545
79bd9814 4546 /*
b5557c4c
TH
4547 * Verify @cfile should belong to @css. Also, remaining events are
4548 * automatically removed on cgroup destruction but the removal is
4549 * asynchronous, so take an extra ref on @css.
79bd9814 4550 */
ec903c0c
TH
4551 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4552 &memory_cgrp_subsys);
79bd9814 4553 ret = -EINVAL;
5a17f543 4554 if (IS_ERR(cfile_css))
79bd9814 4555 goto out_put_cfile;
5a17f543
TH
4556 if (cfile_css != css) {
4557 css_put(cfile_css);
79bd9814 4558 goto out_put_cfile;
5a17f543 4559 }
79bd9814 4560
451af504 4561 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4562 if (ret)
4563 goto out_put_css;
4564
4565 efile.file->f_op->poll(efile.file, &event->pt);
4566
fba94807
TH
4567 spin_lock(&memcg->event_list_lock);
4568 list_add(&event->list, &memcg->event_list);
4569 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4570
4571 fdput(cfile);
4572 fdput(efile);
4573
451af504 4574 return nbytes;
79bd9814
TH
4575
4576out_put_css:
b5557c4c 4577 css_put(css);
79bd9814
TH
4578out_put_cfile:
4579 fdput(cfile);
4580out_put_eventfd:
4581 eventfd_ctx_put(event->eventfd);
4582out_put_efile:
4583 fdput(efile);
4584out_kfree:
4585 kfree(event);
4586
4587 return ret;
4588}
4589
8cdea7c0
BS
4590static struct cftype mem_cgroup_files[] = {
4591 {
0eea1030 4592 .name = "usage_in_bytes",
8c7c6e34 4593 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4594 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4595 },
c84872e1
PE
4596 {
4597 .name = "max_usage_in_bytes",
8c7c6e34 4598 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4599 .write = mem_cgroup_reset,
791badbd 4600 .read_u64 = mem_cgroup_read_u64,
c84872e1 4601 },
8cdea7c0 4602 {
0eea1030 4603 .name = "limit_in_bytes",
8c7c6e34 4604 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4605 .write = mem_cgroup_write,
791badbd 4606 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4607 },
296c81d8
BS
4608 {
4609 .name = "soft_limit_in_bytes",
4610 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4611 .write = mem_cgroup_write,
791badbd 4612 .read_u64 = mem_cgroup_read_u64,
296c81d8 4613 },
8cdea7c0
BS
4614 {
4615 .name = "failcnt",
8c7c6e34 4616 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4617 .write = mem_cgroup_reset,
791badbd 4618 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4619 },
d2ceb9b7
KH
4620 {
4621 .name = "stat",
2da8ca82 4622 .seq_show = memcg_stat_show,
d2ceb9b7 4623 },
c1e862c1
KH
4624 {
4625 .name = "force_empty",
6770c64e 4626 .write = mem_cgroup_force_empty_write,
c1e862c1 4627 },
18f59ea7
BS
4628 {
4629 .name = "use_hierarchy",
4630 .write_u64 = mem_cgroup_hierarchy_write,
4631 .read_u64 = mem_cgroup_hierarchy_read,
4632 },
79bd9814 4633 {
3bc942f3 4634 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4635 .write = memcg_write_event_control,
79bd9814
TH
4636 .flags = CFTYPE_NO_PREFIX,
4637 .mode = S_IWUGO,
4638 },
a7885eb8
KM
4639 {
4640 .name = "swappiness",
4641 .read_u64 = mem_cgroup_swappiness_read,
4642 .write_u64 = mem_cgroup_swappiness_write,
4643 },
7dc74be0
DN
4644 {
4645 .name = "move_charge_at_immigrate",
4646 .read_u64 = mem_cgroup_move_charge_read,
4647 .write_u64 = mem_cgroup_move_charge_write,
4648 },
9490ff27
KH
4649 {
4650 .name = "oom_control",
2da8ca82 4651 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4652 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4653 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4654 },
70ddf637
AV
4655 {
4656 .name = "pressure_level",
70ddf637 4657 },
406eb0c9
YH
4658#ifdef CONFIG_NUMA
4659 {
4660 .name = "numa_stat",
2da8ca82 4661 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4662 },
4663#endif
510fc4e1
GC
4664#ifdef CONFIG_MEMCG_KMEM
4665 {
4666 .name = "kmem.limit_in_bytes",
4667 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4668 .write = mem_cgroup_write,
791badbd 4669 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4670 },
4671 {
4672 .name = "kmem.usage_in_bytes",
4673 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4674 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4675 },
4676 {
4677 .name = "kmem.failcnt",
4678 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4679 .write = mem_cgroup_reset,
791badbd 4680 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4681 },
4682 {
4683 .name = "kmem.max_usage_in_bytes",
4684 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4685 .write = mem_cgroup_reset,
791badbd 4686 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4687 },
749c5415
GC
4688#ifdef CONFIG_SLABINFO
4689 {
4690 .name = "kmem.slabinfo",
b047501c
VD
4691 .seq_start = slab_start,
4692 .seq_next = slab_next,
4693 .seq_stop = slab_stop,
4694 .seq_show = memcg_slab_show,
749c5415
GC
4695 },
4696#endif
8c7c6e34 4697#endif
6bc10349 4698 { }, /* terminate */
af36f906 4699};
8c7c6e34 4700
2d11085e
MH
4701#ifdef CONFIG_MEMCG_SWAP
4702static struct cftype memsw_cgroup_files[] = {
4703 {
4704 .name = "memsw.usage_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4706 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4707 },
4708 {
4709 .name = "memsw.max_usage_in_bytes",
4710 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4711 .write = mem_cgroup_reset,
791badbd 4712 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4713 },
4714 {
4715 .name = "memsw.limit_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4717 .write = mem_cgroup_write,
791badbd 4718 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4719 },
4720 {
4721 .name = "memsw.failcnt",
4722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4723 .write = mem_cgroup_reset,
791badbd 4724 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4725 },
4726 { }, /* terminate */
4727};
4728#endif
c0ff4b85 4729static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4730{
4731 struct mem_cgroup_per_node *pn;
1ecaab2b 4732 struct mem_cgroup_per_zone *mz;
41e3355d 4733 int zone, tmp = node;
1ecaab2b
KH
4734 /*
4735 * This routine is called against possible nodes.
4736 * But it's BUG to call kmalloc() against offline node.
4737 *
4738 * TODO: this routine can waste much memory for nodes which will
4739 * never be onlined. It's better to use memory hotplug callback
4740 * function.
4741 */
41e3355d
KH
4742 if (!node_state(node, N_NORMAL_MEMORY))
4743 tmp = -1;
17295c88 4744 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4745 if (!pn)
4746 return 1;
1ecaab2b 4747
1ecaab2b
KH
4748 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4749 mz = &pn->zoneinfo[zone];
bea8c150 4750 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4751 mz->usage_in_excess = 0;
4752 mz->on_tree = false;
d79154bb 4753 mz->memcg = memcg;
1ecaab2b 4754 }
54f72fe0 4755 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4756 return 0;
4757}
4758
c0ff4b85 4759static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4760{
54f72fe0 4761 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4762}
4763
33327948
KH
4764static struct mem_cgroup *mem_cgroup_alloc(void)
4765{
d79154bb 4766 struct mem_cgroup *memcg;
8ff69e2c 4767 size_t size;
33327948 4768
8ff69e2c
VD
4769 size = sizeof(struct mem_cgroup);
4770 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4771
8ff69e2c 4772 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4773 if (!memcg)
e7bbcdf3
DC
4774 return NULL;
4775
d79154bb
HD
4776 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4777 if (!memcg->stat)
d2e61b8d 4778 goto out_free;
d79154bb
HD
4779 spin_lock_init(&memcg->pcp_counter_lock);
4780 return memcg;
d2e61b8d
DC
4781
4782out_free:
8ff69e2c 4783 kfree(memcg);
d2e61b8d 4784 return NULL;
33327948
KH
4785}
4786
59927fb9 4787/*
c8b2a36f
GC
4788 * At destroying mem_cgroup, references from swap_cgroup can remain.
4789 * (scanning all at force_empty is too costly...)
4790 *
4791 * Instead of clearing all references at force_empty, we remember
4792 * the number of reference from swap_cgroup and free mem_cgroup when
4793 * it goes down to 0.
4794 *
4795 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4796 */
c8b2a36f
GC
4797
4798static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4799{
c8b2a36f 4800 int node;
59927fb9 4801
bb4cc1a8 4802 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4803
4804 for_each_node(node)
4805 free_mem_cgroup_per_zone_info(memcg, node);
4806
4807 free_percpu(memcg->stat);
4808
3f134619
GC
4809 /*
4810 * We need to make sure that (at least for now), the jump label
4811 * destruction code runs outside of the cgroup lock. This is because
4812 * get_online_cpus(), which is called from the static_branch update,
4813 * can't be called inside the cgroup_lock. cpusets are the ones
4814 * enforcing this dependency, so if they ever change, we might as well.
4815 *
4816 * schedule_work() will guarantee this happens. Be careful if you need
4817 * to move this code around, and make sure it is outside
4818 * the cgroup_lock.
4819 */
a8964b9b 4820 disarm_static_keys(memcg);
8ff69e2c 4821 kfree(memcg);
59927fb9 4822}
3afe36b1 4823
7bcc1bb1
DN
4824/*
4825 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4826 */
e1aab161 4827struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4828{
3e32cb2e 4829 if (!memcg->memory.parent)
7bcc1bb1 4830 return NULL;
3e32cb2e 4831 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4832}
e1aab161 4833EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4834
bb4cc1a8
AM
4835static void __init mem_cgroup_soft_limit_tree_init(void)
4836{
4837 struct mem_cgroup_tree_per_node *rtpn;
4838 struct mem_cgroup_tree_per_zone *rtpz;
4839 int tmp, node, zone;
4840
4841 for_each_node(node) {
4842 tmp = node;
4843 if (!node_state(node, N_NORMAL_MEMORY))
4844 tmp = -1;
4845 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4846 BUG_ON(!rtpn);
4847
4848 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4849
4850 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4851 rtpz = &rtpn->rb_tree_per_zone[zone];
4852 rtpz->rb_root = RB_ROOT;
4853 spin_lock_init(&rtpz->lock);
4854 }
4855 }
4856}
4857
0eb253e2 4858static struct cgroup_subsys_state * __ref
eb95419b 4859mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4860{
d142e3e6 4861 struct mem_cgroup *memcg;
04046e1a 4862 long error = -ENOMEM;
6d12e2d8 4863 int node;
8cdea7c0 4864
c0ff4b85
R
4865 memcg = mem_cgroup_alloc();
4866 if (!memcg)
04046e1a 4867 return ERR_PTR(error);
78fb7466 4868
3ed28fa1 4869 for_each_node(node)
c0ff4b85 4870 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4871 goto free_out;
f64c3f54 4872
c077719b 4873 /* root ? */
eb95419b 4874 if (parent_css == NULL) {
a41c58a6 4875 root_mem_cgroup = memcg;
3e32cb2e
JW
4876 page_counter_init(&memcg->memory, NULL);
4877 page_counter_init(&memcg->memsw, NULL);
4878 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4879 }
28dbc4b6 4880
d142e3e6
GC
4881 memcg->last_scanned_node = MAX_NUMNODES;
4882 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4883 memcg->move_charge_at_immigrate = 0;
4884 mutex_init(&memcg->thresholds_lock);
4885 spin_lock_init(&memcg->move_lock);
70ddf637 4886 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4887 INIT_LIST_HEAD(&memcg->event_list);
4888 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
4889
4890 return &memcg->css;
4891
4892free_out:
4893 __mem_cgroup_free(memcg);
4894 return ERR_PTR(error);
4895}
4896
4897static int
eb95419b 4898mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4899{
eb95419b 4900 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4901 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4902 int ret;
d142e3e6 4903
15a4c835 4904 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4905 return -ENOSPC;
4906
63876986 4907 if (!parent)
d142e3e6
GC
4908 return 0;
4909
0999821b 4910 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4911
4912 memcg->use_hierarchy = parent->use_hierarchy;
4913 memcg->oom_kill_disable = parent->oom_kill_disable;
4914 memcg->swappiness = mem_cgroup_swappiness(parent);
4915
4916 if (parent->use_hierarchy) {
3e32cb2e
JW
4917 page_counter_init(&memcg->memory, &parent->memory);
4918 page_counter_init(&memcg->memsw, &parent->memsw);
4919 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4920
7bcc1bb1 4921 /*
8d76a979
LZ
4922 * No need to take a reference to the parent because cgroup
4923 * core guarantees its existence.
7bcc1bb1 4924 */
18f59ea7 4925 } else {
3e32cb2e
JW
4926 page_counter_init(&memcg->memory, NULL);
4927 page_counter_init(&memcg->memsw, NULL);
4928 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4929 /*
4930 * Deeper hierachy with use_hierarchy == false doesn't make
4931 * much sense so let cgroup subsystem know about this
4932 * unfortunate state in our controller.
4933 */
d142e3e6 4934 if (parent != root_mem_cgroup)
073219e9 4935 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4936 }
0999821b 4937 mutex_unlock(&memcg_create_mutex);
d6441637 4938
2f7dd7a4
JW
4939 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4940 if (ret)
4941 return ret;
4942
4943 /*
4944 * Make sure the memcg is initialized: mem_cgroup_iter()
4945 * orders reading memcg->initialized against its callers
4946 * reading the memcg members.
4947 */
4948 smp_store_release(&memcg->initialized, 1);
4949
4950 return 0;
8cdea7c0
BS
4951}
4952
eb95419b 4953static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4954{
eb95419b 4955 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4956 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4957
4958 /*
4959 * Unregister events and notify userspace.
4960 * Notify userspace about cgroup removing only after rmdir of cgroup
4961 * directory to avoid race between userspace and kernelspace.
4962 */
fba94807
TH
4963 spin_lock(&memcg->event_list_lock);
4964 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4965 list_del_init(&event->list);
4966 schedule_work(&event->remove);
4967 }
fba94807 4968 spin_unlock(&memcg->event_list_lock);
ec64f515 4969
776ed0f0 4970 memcg_unregister_all_caches(memcg);
33cb876e 4971 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4972}
4973
eb95419b 4974static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4975{
eb95419b 4976 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4977
10d5ebf4 4978 memcg_destroy_kmem(memcg);
465939a1 4979 __mem_cgroup_free(memcg);
8cdea7c0
BS
4980}
4981
1ced953b
TH
4982/**
4983 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4984 * @css: the target css
4985 *
4986 * Reset the states of the mem_cgroup associated with @css. This is
4987 * invoked when the userland requests disabling on the default hierarchy
4988 * but the memcg is pinned through dependency. The memcg should stop
4989 * applying policies and should revert to the vanilla state as it may be
4990 * made visible again.
4991 *
4992 * The current implementation only resets the essential configurations.
4993 * This needs to be expanded to cover all the visible parts.
4994 */
4995static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4996{
4997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4998
3e32cb2e
JW
4999 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5000 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5001 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5002 memcg->soft_limit = 0;
1ced953b
TH
5003}
5004
02491447 5005#ifdef CONFIG_MMU
7dc74be0 5006/* Handlers for move charge at task migration. */
854ffa8d 5007static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5008{
05b84301 5009 int ret;
9476db97
JW
5010
5011 /* Try a single bulk charge without reclaim first */
00501b53 5012 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5013 if (!ret) {
854ffa8d 5014 mc.precharge += count;
854ffa8d
DN
5015 return ret;
5016 }
692e7c45 5017 if (ret == -EINTR) {
00501b53 5018 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5019 return ret;
5020 }
9476db97
JW
5021
5022 /* Try charges one by one with reclaim */
854ffa8d 5023 while (count--) {
00501b53 5024 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5025 /*
5026 * In case of failure, any residual charges against
5027 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5028 * later on. However, cancel any charges that are
5029 * bypassed to root right away or they'll be lost.
9476db97 5030 */
692e7c45 5031 if (ret == -EINTR)
00501b53 5032 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5033 if (ret)
38c5d72f 5034 return ret;
854ffa8d 5035 mc.precharge++;
9476db97 5036 cond_resched();
854ffa8d 5037 }
9476db97 5038 return 0;
4ffef5fe
DN
5039}
5040
5041/**
8d32ff84 5042 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5043 * @vma: the vma the pte to be checked belongs
5044 * @addr: the address corresponding to the pte to be checked
5045 * @ptent: the pte to be checked
02491447 5046 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5047 *
5048 * Returns
5049 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5050 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5051 * move charge. if @target is not NULL, the page is stored in target->page
5052 * with extra refcnt got(Callers should handle it).
02491447
DN
5053 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5054 * target for charge migration. if @target is not NULL, the entry is stored
5055 * in target->ent.
4ffef5fe
DN
5056 *
5057 * Called with pte lock held.
5058 */
4ffef5fe
DN
5059union mc_target {
5060 struct page *page;
02491447 5061 swp_entry_t ent;
4ffef5fe
DN
5062};
5063
4ffef5fe 5064enum mc_target_type {
8d32ff84 5065 MC_TARGET_NONE = 0,
4ffef5fe 5066 MC_TARGET_PAGE,
02491447 5067 MC_TARGET_SWAP,
4ffef5fe
DN
5068};
5069
90254a65
DN
5070static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5071 unsigned long addr, pte_t ptent)
4ffef5fe 5072{
90254a65 5073 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5074
90254a65
DN
5075 if (!page || !page_mapped(page))
5076 return NULL;
5077 if (PageAnon(page)) {
5078 /* we don't move shared anon */
4b91355e 5079 if (!move_anon())
90254a65 5080 return NULL;
87946a72
DN
5081 } else if (!move_file())
5082 /* we ignore mapcount for file pages */
90254a65
DN
5083 return NULL;
5084 if (!get_page_unless_zero(page))
5085 return NULL;
5086
5087 return page;
5088}
5089
4b91355e 5090#ifdef CONFIG_SWAP
90254a65
DN
5091static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5092 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5093{
90254a65
DN
5094 struct page *page = NULL;
5095 swp_entry_t ent = pte_to_swp_entry(ptent);
5096
5097 if (!move_anon() || non_swap_entry(ent))
5098 return NULL;
4b91355e
KH
5099 /*
5100 * Because lookup_swap_cache() updates some statistics counter,
5101 * we call find_get_page() with swapper_space directly.
5102 */
33806f06 5103 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5104 if (do_swap_account)
5105 entry->val = ent.val;
5106
5107 return page;
5108}
4b91355e
KH
5109#else
5110static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5111 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5112{
5113 return NULL;
5114}
5115#endif
90254a65 5116
87946a72
DN
5117static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5118 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5119{
5120 struct page *page = NULL;
87946a72
DN
5121 struct address_space *mapping;
5122 pgoff_t pgoff;
5123
5124 if (!vma->vm_file) /* anonymous vma */
5125 return NULL;
5126 if (!move_file())
5127 return NULL;
5128
87946a72
DN
5129 mapping = vma->vm_file->f_mapping;
5130 if (pte_none(ptent))
5131 pgoff = linear_page_index(vma, addr);
5132 else /* pte_file(ptent) is true */
5133 pgoff = pte_to_pgoff(ptent);
5134
5135 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5136#ifdef CONFIG_SWAP
5137 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5138 if (shmem_mapping(mapping)) {
5139 page = find_get_entry(mapping, pgoff);
5140 if (radix_tree_exceptional_entry(page)) {
5141 swp_entry_t swp = radix_to_swp_entry(page);
5142 if (do_swap_account)
5143 *entry = swp;
5144 page = find_get_page(swap_address_space(swp), swp.val);
5145 }
5146 } else
5147 page = find_get_page(mapping, pgoff);
5148#else
5149 page = find_get_page(mapping, pgoff);
aa3b1895 5150#endif
87946a72
DN
5151 return page;
5152}
5153
8d32ff84 5154static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5155 unsigned long addr, pte_t ptent, union mc_target *target)
5156{
5157 struct page *page = NULL;
5158 struct page_cgroup *pc;
8d32ff84 5159 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5160 swp_entry_t ent = { .val = 0 };
5161
5162 if (pte_present(ptent))
5163 page = mc_handle_present_pte(vma, addr, ptent);
5164 else if (is_swap_pte(ptent))
5165 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5166 else if (pte_none(ptent) || pte_file(ptent))
5167 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5168
5169 if (!page && !ent.val)
8d32ff84 5170 return ret;
02491447
DN
5171 if (page) {
5172 pc = lookup_page_cgroup(page);
5173 /*
0a31bc97
JW
5174 * Do only loose check w/o serialization.
5175 * mem_cgroup_move_account() checks the pc is valid or
5176 * not under LRU exclusion.
02491447 5177 */
29833315 5178 if (pc->mem_cgroup == mc.from) {
02491447
DN
5179 ret = MC_TARGET_PAGE;
5180 if (target)
5181 target->page = page;
5182 }
5183 if (!ret || !target)
5184 put_page(page);
5185 }
90254a65
DN
5186 /* There is a swap entry and a page doesn't exist or isn't charged */
5187 if (ent.val && !ret &&
34c00c31 5188 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5189 ret = MC_TARGET_SWAP;
5190 if (target)
5191 target->ent = ent;
4ffef5fe 5192 }
4ffef5fe
DN
5193 return ret;
5194}
5195
12724850
NH
5196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5197/*
5198 * We don't consider swapping or file mapped pages because THP does not
5199 * support them for now.
5200 * Caller should make sure that pmd_trans_huge(pmd) is true.
5201 */
5202static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5203 unsigned long addr, pmd_t pmd, union mc_target *target)
5204{
5205 struct page *page = NULL;
5206 struct page_cgroup *pc;
5207 enum mc_target_type ret = MC_TARGET_NONE;
5208
5209 page = pmd_page(pmd);
309381fe 5210 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5211 if (!move_anon())
5212 return ret;
5213 pc = lookup_page_cgroup(page);
29833315 5214 if (pc->mem_cgroup == mc.from) {
12724850
NH
5215 ret = MC_TARGET_PAGE;
5216 if (target) {
5217 get_page(page);
5218 target->page = page;
5219 }
5220 }
5221 return ret;
5222}
5223#else
5224static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5225 unsigned long addr, pmd_t pmd, union mc_target *target)
5226{
5227 return MC_TARGET_NONE;
5228}
5229#endif
5230
4ffef5fe
DN
5231static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5232 unsigned long addr, unsigned long end,
5233 struct mm_walk *walk)
5234{
5235 struct vm_area_struct *vma = walk->private;
5236 pte_t *pte;
5237 spinlock_t *ptl;
5238
bf929152 5239 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5240 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5241 mc.precharge += HPAGE_PMD_NR;
bf929152 5242 spin_unlock(ptl);
1a5a9906 5243 return 0;
12724850 5244 }
03319327 5245
45f83cef
AA
5246 if (pmd_trans_unstable(pmd))
5247 return 0;
4ffef5fe
DN
5248 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5249 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5250 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5251 mc.precharge++; /* increment precharge temporarily */
5252 pte_unmap_unlock(pte - 1, ptl);
5253 cond_resched();
5254
7dc74be0
DN
5255 return 0;
5256}
5257
4ffef5fe
DN
5258static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5259{
5260 unsigned long precharge;
5261 struct vm_area_struct *vma;
5262
dfe076b0 5263 down_read(&mm->mmap_sem);
4ffef5fe
DN
5264 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5265 struct mm_walk mem_cgroup_count_precharge_walk = {
5266 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5267 .mm = mm,
5268 .private = vma,
5269 };
5270 if (is_vm_hugetlb_page(vma))
5271 continue;
4ffef5fe
DN
5272 walk_page_range(vma->vm_start, vma->vm_end,
5273 &mem_cgroup_count_precharge_walk);
5274 }
dfe076b0 5275 up_read(&mm->mmap_sem);
4ffef5fe
DN
5276
5277 precharge = mc.precharge;
5278 mc.precharge = 0;
5279
5280 return precharge;
5281}
5282
4ffef5fe
DN
5283static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5284{
dfe076b0
DN
5285 unsigned long precharge = mem_cgroup_count_precharge(mm);
5286
5287 VM_BUG_ON(mc.moving_task);
5288 mc.moving_task = current;
5289 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5290}
5291
dfe076b0
DN
5292/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5293static void __mem_cgroup_clear_mc(void)
4ffef5fe 5294{
2bd9bb20
KH
5295 struct mem_cgroup *from = mc.from;
5296 struct mem_cgroup *to = mc.to;
5297
4ffef5fe 5298 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5299 if (mc.precharge) {
00501b53 5300 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5301 mc.precharge = 0;
5302 }
5303 /*
5304 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5305 * we must uncharge here.
5306 */
5307 if (mc.moved_charge) {
00501b53 5308 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5309 mc.moved_charge = 0;
4ffef5fe 5310 }
483c30b5
DN
5311 /* we must fixup refcnts and charges */
5312 if (mc.moved_swap) {
483c30b5 5313 /* uncharge swap account from the old cgroup */
ce00a967 5314 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5315 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5316
05b84301 5317 /*
3e32cb2e
JW
5318 * we charged both to->memory and to->memsw, so we
5319 * should uncharge to->memory.
05b84301 5320 */
ce00a967 5321 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5322 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5323
e8ea14cc 5324 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5325
4050377b 5326 /* we've already done css_get(mc.to) */
483c30b5
DN
5327 mc.moved_swap = 0;
5328 }
dfe076b0
DN
5329 memcg_oom_recover(from);
5330 memcg_oom_recover(to);
5331 wake_up_all(&mc.waitq);
5332}
5333
5334static void mem_cgroup_clear_mc(void)
5335{
5336 struct mem_cgroup *from = mc.from;
5337
5338 /*
5339 * we must clear moving_task before waking up waiters at the end of
5340 * task migration.
5341 */
5342 mc.moving_task = NULL;
5343 __mem_cgroup_clear_mc();
2bd9bb20 5344 spin_lock(&mc.lock);
4ffef5fe
DN
5345 mc.from = NULL;
5346 mc.to = NULL;
2bd9bb20 5347 spin_unlock(&mc.lock);
247b1447
JW
5348
5349 atomic_dec(&from->moving_account);
4ffef5fe
DN
5350}
5351
eb95419b 5352static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5353 struct cgroup_taskset *tset)
7dc74be0 5354{
2f7ee569 5355 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5356 int ret = 0;
eb95419b 5357 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5358 unsigned long move_charge_at_immigrate;
7dc74be0 5359
ee5e8472
GC
5360 /*
5361 * We are now commited to this value whatever it is. Changes in this
5362 * tunable will only affect upcoming migrations, not the current one.
5363 * So we need to save it, and keep it going.
5364 */
5365 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5366 if (move_charge_at_immigrate) {
7dc74be0
DN
5367 struct mm_struct *mm;
5368 struct mem_cgroup *from = mem_cgroup_from_task(p);
5369
c0ff4b85 5370 VM_BUG_ON(from == memcg);
7dc74be0
DN
5371
5372 mm = get_task_mm(p);
5373 if (!mm)
5374 return 0;
7dc74be0 5375 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5376 if (mm->owner == p) {
5377 VM_BUG_ON(mc.from);
5378 VM_BUG_ON(mc.to);
5379 VM_BUG_ON(mc.precharge);
854ffa8d 5380 VM_BUG_ON(mc.moved_charge);
483c30b5 5381 VM_BUG_ON(mc.moved_swap);
247b1447
JW
5382
5383 /*
5384 * Signal mem_cgroup_begin_page_stat() to take
5385 * the memcg's move_lock while we're moving
5386 * its pages to another memcg. Then wait for
5387 * already started RCU-only updates to finish.
5388 */
5389 atomic_inc(&from->moving_account);
5390 synchronize_rcu();
5391
2bd9bb20 5392 spin_lock(&mc.lock);
4ffef5fe 5393 mc.from = from;
c0ff4b85 5394 mc.to = memcg;
ee5e8472 5395 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5396 spin_unlock(&mc.lock);
dfe076b0 5397 /* We set mc.moving_task later */
4ffef5fe
DN
5398
5399 ret = mem_cgroup_precharge_mc(mm);
5400 if (ret)
5401 mem_cgroup_clear_mc();
dfe076b0
DN
5402 }
5403 mmput(mm);
7dc74be0
DN
5404 }
5405 return ret;
5406}
5407
eb95419b 5408static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5409 struct cgroup_taskset *tset)
7dc74be0 5410{
4e2f245d
JW
5411 if (mc.to)
5412 mem_cgroup_clear_mc();
7dc74be0
DN
5413}
5414
4ffef5fe
DN
5415static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5416 unsigned long addr, unsigned long end,
5417 struct mm_walk *walk)
7dc74be0 5418{
4ffef5fe
DN
5419 int ret = 0;
5420 struct vm_area_struct *vma = walk->private;
5421 pte_t *pte;
5422 spinlock_t *ptl;
12724850
NH
5423 enum mc_target_type target_type;
5424 union mc_target target;
5425 struct page *page;
5426 struct page_cgroup *pc;
4ffef5fe 5427
12724850
NH
5428 /*
5429 * We don't take compound_lock() here but no race with splitting thp
5430 * happens because:
5431 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5432 * under splitting, which means there's no concurrent thp split,
5433 * - if another thread runs into split_huge_page() just after we
5434 * entered this if-block, the thread must wait for page table lock
5435 * to be unlocked in __split_huge_page_splitting(), where the main
5436 * part of thp split is not executed yet.
5437 */
bf929152 5438 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5439 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5440 spin_unlock(ptl);
12724850
NH
5441 return 0;
5442 }
5443 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5444 if (target_type == MC_TARGET_PAGE) {
5445 page = target.page;
5446 if (!isolate_lru_page(page)) {
5447 pc = lookup_page_cgroup(page);
5448 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5449 pc, mc.from, mc.to)) {
12724850
NH
5450 mc.precharge -= HPAGE_PMD_NR;
5451 mc.moved_charge += HPAGE_PMD_NR;
5452 }
5453 putback_lru_page(page);
5454 }
5455 put_page(page);
5456 }
bf929152 5457 spin_unlock(ptl);
1a5a9906 5458 return 0;
12724850
NH
5459 }
5460
45f83cef
AA
5461 if (pmd_trans_unstable(pmd))
5462 return 0;
4ffef5fe
DN
5463retry:
5464 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5465 for (; addr != end; addr += PAGE_SIZE) {
5466 pte_t ptent = *(pte++);
02491447 5467 swp_entry_t ent;
4ffef5fe
DN
5468
5469 if (!mc.precharge)
5470 break;
5471
8d32ff84 5472 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5473 case MC_TARGET_PAGE:
5474 page = target.page;
5475 if (isolate_lru_page(page))
5476 goto put;
5477 pc = lookup_page_cgroup(page);
7ec99d62 5478 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5479 mc.from, mc.to)) {
4ffef5fe 5480 mc.precharge--;
854ffa8d
DN
5481 /* we uncharge from mc.from later. */
5482 mc.moved_charge++;
4ffef5fe
DN
5483 }
5484 putback_lru_page(page);
8d32ff84 5485put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5486 put_page(page);
5487 break;
02491447
DN
5488 case MC_TARGET_SWAP:
5489 ent = target.ent;
e91cbb42 5490 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5491 mc.precharge--;
483c30b5
DN
5492 /* we fixup refcnts and charges later. */
5493 mc.moved_swap++;
5494 }
02491447 5495 break;
4ffef5fe
DN
5496 default:
5497 break;
5498 }
5499 }
5500 pte_unmap_unlock(pte - 1, ptl);
5501 cond_resched();
5502
5503 if (addr != end) {
5504 /*
5505 * We have consumed all precharges we got in can_attach().
5506 * We try charge one by one, but don't do any additional
5507 * charges to mc.to if we have failed in charge once in attach()
5508 * phase.
5509 */
854ffa8d 5510 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5511 if (!ret)
5512 goto retry;
5513 }
5514
5515 return ret;
5516}
5517
5518static void mem_cgroup_move_charge(struct mm_struct *mm)
5519{
5520 struct vm_area_struct *vma;
5521
5522 lru_add_drain_all();
dfe076b0
DN
5523retry:
5524 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5525 /*
5526 * Someone who are holding the mmap_sem might be waiting in
5527 * waitq. So we cancel all extra charges, wake up all waiters,
5528 * and retry. Because we cancel precharges, we might not be able
5529 * to move enough charges, but moving charge is a best-effort
5530 * feature anyway, so it wouldn't be a big problem.
5531 */
5532 __mem_cgroup_clear_mc();
5533 cond_resched();
5534 goto retry;
5535 }
4ffef5fe
DN
5536 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5537 int ret;
5538 struct mm_walk mem_cgroup_move_charge_walk = {
5539 .pmd_entry = mem_cgroup_move_charge_pte_range,
5540 .mm = mm,
5541 .private = vma,
5542 };
5543 if (is_vm_hugetlb_page(vma))
5544 continue;
4ffef5fe
DN
5545 ret = walk_page_range(vma->vm_start, vma->vm_end,
5546 &mem_cgroup_move_charge_walk);
5547 if (ret)
5548 /*
5549 * means we have consumed all precharges and failed in
5550 * doing additional charge. Just abandon here.
5551 */
5552 break;
5553 }
dfe076b0 5554 up_read(&mm->mmap_sem);
7dc74be0
DN
5555}
5556
eb95419b 5557static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5558 struct cgroup_taskset *tset)
67e465a7 5559{
2f7ee569 5560 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5561 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5562
dfe076b0 5563 if (mm) {
a433658c
KM
5564 if (mc.to)
5565 mem_cgroup_move_charge(mm);
dfe076b0
DN
5566 mmput(mm);
5567 }
a433658c
KM
5568 if (mc.to)
5569 mem_cgroup_clear_mc();
67e465a7 5570}
5cfb80a7 5571#else /* !CONFIG_MMU */
eb95419b 5572static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5573 struct cgroup_taskset *tset)
5cfb80a7
DN
5574{
5575 return 0;
5576}
eb95419b 5577static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5578 struct cgroup_taskset *tset)
5cfb80a7
DN
5579{
5580}
eb95419b 5581static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5582 struct cgroup_taskset *tset)
5cfb80a7
DN
5583{
5584}
5585#endif
67e465a7 5586
f00baae7
TH
5587/*
5588 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5589 * to verify whether we're attached to the default hierarchy on each mount
5590 * attempt.
f00baae7 5591 */
eb95419b 5592static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5593{
5594 /*
aa6ec29b 5595 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5596 * guarantees that @root doesn't have any children, so turning it
5597 * on for the root memcg is enough.
5598 */
aa6ec29b 5599 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5600 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5601}
5602
073219e9 5603struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5604 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5605 .css_online = mem_cgroup_css_online,
92fb9748
TH
5606 .css_offline = mem_cgroup_css_offline,
5607 .css_free = mem_cgroup_css_free,
1ced953b 5608 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5609 .can_attach = mem_cgroup_can_attach,
5610 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5611 .attach = mem_cgroup_move_task,
f00baae7 5612 .bind = mem_cgroup_bind,
5577964e 5613 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5614 .early_init = 0,
8cdea7c0 5615};
c077719b 5616
c255a458 5617#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5618static int __init enable_swap_account(char *s)
5619{
a2c8990a 5620 if (!strcmp(s, "1"))
a42c390c 5621 really_do_swap_account = 1;
a2c8990a 5622 else if (!strcmp(s, "0"))
a42c390c
MH
5623 really_do_swap_account = 0;
5624 return 1;
5625}
a2c8990a 5626__setup("swapaccount=", enable_swap_account);
c077719b 5627
2d11085e
MH
5628static void __init memsw_file_init(void)
5629{
2cf669a5
TH
5630 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5631 memsw_cgroup_files));
6acc8b02
MH
5632}
5633
5634static void __init enable_swap_cgroup(void)
5635{
5636 if (!mem_cgroup_disabled() && really_do_swap_account) {
5637 do_swap_account = 1;
5638 memsw_file_init();
5639 }
2d11085e 5640}
6acc8b02 5641
2d11085e 5642#else
6acc8b02 5643static void __init enable_swap_cgroup(void)
2d11085e
MH
5644{
5645}
c077719b 5646#endif
2d11085e 5647
0a31bc97
JW
5648#ifdef CONFIG_MEMCG_SWAP
5649/**
5650 * mem_cgroup_swapout - transfer a memsw charge to swap
5651 * @page: page whose memsw charge to transfer
5652 * @entry: swap entry to move the charge to
5653 *
5654 * Transfer the memsw charge of @page to @entry.
5655 */
5656void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5657{
7bdd143c 5658 struct mem_cgroup *memcg;
0a31bc97
JW
5659 struct page_cgroup *pc;
5660 unsigned short oldid;
5661
5662 VM_BUG_ON_PAGE(PageLRU(page), page);
5663 VM_BUG_ON_PAGE(page_count(page), page);
5664
5665 if (!do_swap_account)
5666 return;
5667
5668 pc = lookup_page_cgroup(page);
29833315 5669 memcg = pc->mem_cgroup;
0a31bc97
JW
5670
5671 /* Readahead page, never charged */
29833315 5672 if (!memcg)
0a31bc97
JW
5673 return;
5674
7bdd143c 5675 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5676 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5677 mem_cgroup_swap_statistics(memcg, true);
5678
29833315 5679 pc->mem_cgroup = NULL;
7bdd143c
JW
5680
5681 if (!mem_cgroup_is_root(memcg))
5682 page_counter_uncharge(&memcg->memory, 1);
5683
5684 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5685 VM_BUG_ON(!irqs_disabled());
0a31bc97 5686
7bdd143c
JW
5687 mem_cgroup_charge_statistics(memcg, page, -1);
5688 memcg_check_events(memcg, page);
0a31bc97
JW
5689}
5690
5691/**
5692 * mem_cgroup_uncharge_swap - uncharge a swap entry
5693 * @entry: swap entry to uncharge
5694 *
5695 * Drop the memsw charge associated with @entry.
5696 */
5697void mem_cgroup_uncharge_swap(swp_entry_t entry)
5698{
5699 struct mem_cgroup *memcg;
5700 unsigned short id;
5701
5702 if (!do_swap_account)
5703 return;
5704
5705 id = swap_cgroup_record(entry, 0);
5706 rcu_read_lock();
5707 memcg = mem_cgroup_lookup(id);
5708 if (memcg) {
ce00a967 5709 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5710 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5711 mem_cgroup_swap_statistics(memcg, false);
5712 css_put(&memcg->css);
5713 }
5714 rcu_read_unlock();
5715}
5716#endif
5717
00501b53
JW
5718/**
5719 * mem_cgroup_try_charge - try charging a page
5720 * @page: page to charge
5721 * @mm: mm context of the victim
5722 * @gfp_mask: reclaim mode
5723 * @memcgp: charged memcg return
5724 *
5725 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5726 * pages according to @gfp_mask if necessary.
5727 *
5728 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5729 * Otherwise, an error code is returned.
5730 *
5731 * After page->mapping has been set up, the caller must finalize the
5732 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5733 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5734 */
5735int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5736 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5737{
5738 struct mem_cgroup *memcg = NULL;
5739 unsigned int nr_pages = 1;
5740 int ret = 0;
5741
5742 if (mem_cgroup_disabled())
5743 goto out;
5744
5745 if (PageSwapCache(page)) {
5746 struct page_cgroup *pc = lookup_page_cgroup(page);
5747 /*
5748 * Every swap fault against a single page tries to charge the
5749 * page, bail as early as possible. shmem_unuse() encounters
5750 * already charged pages, too. The USED bit is protected by
5751 * the page lock, which serializes swap cache removal, which
5752 * in turn serializes uncharging.
5753 */
29833315 5754 if (pc->mem_cgroup)
00501b53
JW
5755 goto out;
5756 }
5757
5758 if (PageTransHuge(page)) {
5759 nr_pages <<= compound_order(page);
5760 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5761 }
5762
5763 if (do_swap_account && PageSwapCache(page))
5764 memcg = try_get_mem_cgroup_from_page(page);
5765 if (!memcg)
5766 memcg = get_mem_cgroup_from_mm(mm);
5767
5768 ret = try_charge(memcg, gfp_mask, nr_pages);
5769
5770 css_put(&memcg->css);
5771
5772 if (ret == -EINTR) {
5773 memcg = root_mem_cgroup;
5774 ret = 0;
5775 }
5776out:
5777 *memcgp = memcg;
5778 return ret;
5779}
5780
5781/**
5782 * mem_cgroup_commit_charge - commit a page charge
5783 * @page: page to charge
5784 * @memcg: memcg to charge the page to
5785 * @lrucare: page might be on LRU already
5786 *
5787 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5788 * after page->mapping has been set up. This must happen atomically
5789 * as part of the page instantiation, i.e. under the page table lock
5790 * for anonymous pages, under the page lock for page and swap cache.
5791 *
5792 * In addition, the page must not be on the LRU during the commit, to
5793 * prevent racing with task migration. If it might be, use @lrucare.
5794 *
5795 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5796 */
5797void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5798 bool lrucare)
5799{
5800 unsigned int nr_pages = 1;
5801
5802 VM_BUG_ON_PAGE(!page->mapping, page);
5803 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5804
5805 if (mem_cgroup_disabled())
5806 return;
5807 /*
5808 * Swap faults will attempt to charge the same page multiple
5809 * times. But reuse_swap_page() might have removed the page
5810 * from swapcache already, so we can't check PageSwapCache().
5811 */
5812 if (!memcg)
5813 return;
5814
6abb5a86
JW
5815 commit_charge(page, memcg, lrucare);
5816
00501b53
JW
5817 if (PageTransHuge(page)) {
5818 nr_pages <<= compound_order(page);
5819 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5820 }
5821
6abb5a86
JW
5822 local_irq_disable();
5823 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5824 memcg_check_events(memcg, page);
5825 local_irq_enable();
00501b53
JW
5826
5827 if (do_swap_account && PageSwapCache(page)) {
5828 swp_entry_t entry = { .val = page_private(page) };
5829 /*
5830 * The swap entry might not get freed for a long time,
5831 * let's not wait for it. The page already received a
5832 * memory+swap charge, drop the swap entry duplicate.
5833 */
5834 mem_cgroup_uncharge_swap(entry);
5835 }
5836}
5837
5838/**
5839 * mem_cgroup_cancel_charge - cancel a page charge
5840 * @page: page to charge
5841 * @memcg: memcg to charge the page to
5842 *
5843 * Cancel a charge transaction started by mem_cgroup_try_charge().
5844 */
5845void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5846{
5847 unsigned int nr_pages = 1;
5848
5849 if (mem_cgroup_disabled())
5850 return;
5851 /*
5852 * Swap faults will attempt to charge the same page multiple
5853 * times. But reuse_swap_page() might have removed the page
5854 * from swapcache already, so we can't check PageSwapCache().
5855 */
5856 if (!memcg)
5857 return;
5858
5859 if (PageTransHuge(page)) {
5860 nr_pages <<= compound_order(page);
5861 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5862 }
5863
5864 cancel_charge(memcg, nr_pages);
5865}
5866
747db954 5867static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5868 unsigned long nr_anon, unsigned long nr_file,
5869 unsigned long nr_huge, struct page *dummy_page)
5870{
18eca2e6 5871 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5872 unsigned long flags;
5873
ce00a967 5874 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5875 page_counter_uncharge(&memcg->memory, nr_pages);
5876 if (do_swap_account)
5877 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5878 memcg_oom_recover(memcg);
5879 }
747db954
JW
5880
5881 local_irq_save(flags);
5882 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5883 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5884 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5885 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5886 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5887 memcg_check_events(memcg, dummy_page);
5888 local_irq_restore(flags);
e8ea14cc
JW
5889
5890 if (!mem_cgroup_is_root(memcg))
18eca2e6 5891 css_put_many(&memcg->css, nr_pages);
747db954
JW
5892}
5893
5894static void uncharge_list(struct list_head *page_list)
5895{
5896 struct mem_cgroup *memcg = NULL;
747db954
JW
5897 unsigned long nr_anon = 0;
5898 unsigned long nr_file = 0;
5899 unsigned long nr_huge = 0;
5900 unsigned long pgpgout = 0;
747db954
JW
5901 struct list_head *next;
5902 struct page *page;
5903
5904 next = page_list->next;
5905 do {
5906 unsigned int nr_pages = 1;
5907 struct page_cgroup *pc;
5908
5909 page = list_entry(next, struct page, lru);
5910 next = page->lru.next;
5911
5912 VM_BUG_ON_PAGE(PageLRU(page), page);
5913 VM_BUG_ON_PAGE(page_count(page), page);
5914
5915 pc = lookup_page_cgroup(page);
29833315 5916 if (!pc->mem_cgroup)
747db954
JW
5917 continue;
5918
5919 /*
5920 * Nobody should be changing or seriously looking at
29833315
JW
5921 * pc->mem_cgroup at this point, we have fully
5922 * exclusive access to the page.
747db954
JW
5923 */
5924
5925 if (memcg != pc->mem_cgroup) {
5926 if (memcg) {
18eca2e6
JW
5927 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5928 nr_huge, page);
5929 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954
JW
5930 }
5931 memcg = pc->mem_cgroup;
5932 }
5933
5934 if (PageTransHuge(page)) {
5935 nr_pages <<= compound_order(page);
5936 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5937 nr_huge += nr_pages;
5938 }
5939
5940 if (PageAnon(page))
5941 nr_anon += nr_pages;
5942 else
5943 nr_file += nr_pages;
5944
29833315 5945 pc->mem_cgroup = NULL;
747db954
JW
5946
5947 pgpgout++;
5948 } while (next != page_list);
5949
5950 if (memcg)
18eca2e6
JW
5951 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5952 nr_huge, page);
747db954
JW
5953}
5954
0a31bc97
JW
5955/**
5956 * mem_cgroup_uncharge - uncharge a page
5957 * @page: page to uncharge
5958 *
5959 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5960 * mem_cgroup_commit_charge().
5961 */
5962void mem_cgroup_uncharge(struct page *page)
5963{
0a31bc97 5964 struct page_cgroup *pc;
0a31bc97
JW
5965
5966 if (mem_cgroup_disabled())
5967 return;
5968
747db954 5969 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 5970 pc = lookup_page_cgroup(page);
29833315 5971 if (!pc->mem_cgroup)
0a31bc97
JW
5972 return;
5973
747db954
JW
5974 INIT_LIST_HEAD(&page->lru);
5975 uncharge_list(&page->lru);
5976}
0a31bc97 5977
747db954
JW
5978/**
5979 * mem_cgroup_uncharge_list - uncharge a list of page
5980 * @page_list: list of pages to uncharge
5981 *
5982 * Uncharge a list of pages previously charged with
5983 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5984 */
5985void mem_cgroup_uncharge_list(struct list_head *page_list)
5986{
5987 if (mem_cgroup_disabled())
5988 return;
0a31bc97 5989
747db954
JW
5990 if (!list_empty(page_list))
5991 uncharge_list(page_list);
0a31bc97
JW
5992}
5993
5994/**
5995 * mem_cgroup_migrate - migrate a charge to another page
5996 * @oldpage: currently charged page
5997 * @newpage: page to transfer the charge to
5998 * @lrucare: both pages might be on the LRU already
5999 *
6000 * Migrate the charge from @oldpage to @newpage.
6001 *
6002 * Both pages must be locked, @newpage->mapping must be set up.
6003 */
6004void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6005 bool lrucare)
6006{
29833315 6007 struct mem_cgroup *memcg;
0a31bc97
JW
6008 struct page_cgroup *pc;
6009 int isolated;
6010
6011 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6012 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6013 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6014 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6015 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6016 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6017 newpage);
0a31bc97
JW
6018
6019 if (mem_cgroup_disabled())
6020 return;
6021
6022 /* Page cache replacement: new page already charged? */
6023 pc = lookup_page_cgroup(newpage);
29833315 6024 if (pc->mem_cgroup)
0a31bc97
JW
6025 return;
6026
7d5e3245
JW
6027 /*
6028 * Swapcache readahead pages can get migrated before being
6029 * charged, and migration from compaction can happen to an
6030 * uncharged page when the PFN walker finds a page that
6031 * reclaim just put back on the LRU but has not released yet.
6032 */
0a31bc97 6033 pc = lookup_page_cgroup(oldpage);
29833315
JW
6034 memcg = pc->mem_cgroup;
6035 if (!memcg)
0a31bc97
JW
6036 return;
6037
0a31bc97
JW
6038 if (lrucare)
6039 lock_page_lru(oldpage, &isolated);
6040
29833315 6041 pc->mem_cgroup = NULL;
0a31bc97
JW
6042
6043 if (lrucare)
6044 unlock_page_lru(oldpage, isolated);
6045
29833315 6046 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
6047}
6048
2d11085e 6049/*
1081312f
MH
6050 * subsys_initcall() for memory controller.
6051 *
6052 * Some parts like hotcpu_notifier() have to be initialized from this context
6053 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6054 * everything that doesn't depend on a specific mem_cgroup structure should
6055 * be initialized from here.
2d11085e
MH
6056 */
6057static int __init mem_cgroup_init(void)
6058{
6059 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6060 enable_swap_cgroup();
bb4cc1a8 6061 mem_cgroup_soft_limit_tree_init();
e4777496 6062 memcg_stock_init();
2d11085e
MH
6063 return 0;
6064}
6065subsys_initcall(mem_cgroup_init);
This page took 1.118578 seconds and 5 git commands to generate.