[PATCH] zoned vm counters: conversion of nr_pagetables to per zone counter
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * mm/page-writeback.c.
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
8 *
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/spinlock.h>
16#include <linux/fs.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/slab.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/init.h>
23#include <linux/backing-dev.h>
24#include <linux/blkdev.h>
25#include <linux/mpage.h>
26#include <linux/percpu.h>
27#include <linux/notifier.h>
28#include <linux/smp.h>
29#include <linux/sysctl.h>
30#include <linux/cpu.h>
31#include <linux/syscalls.h>
32
33/*
34 * The maximum number of pages to writeout in a single bdflush/kupdate
35 * operation. We do this so we don't hold I_LOCK against an inode for
36 * enormous amounts of time, which would block a userspace task which has
37 * been forced to throttle against that inode. Also, the code reevaluates
38 * the dirty each time it has written this many pages.
39 */
40#define MAX_WRITEBACK_PAGES 1024
41
42/*
43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44 * will look to see if it needs to force writeback or throttling.
45 */
46static long ratelimit_pages = 32;
47
48static long total_pages; /* The total number of pages in the machine. */
e236a166 49static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
1da177e4
LT
50
51/*
52 * When balance_dirty_pages decides that the caller needs to perform some
53 * non-background writeback, this is how many pages it will attempt to write.
54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55 * large amounts of I/O are submitted.
56 */
57static inline long sync_writeback_pages(void)
58{
59 return ratelimit_pages + ratelimit_pages / 2;
60}
61
62/* The following parameters are exported via /proc/sys/vm */
63
64/*
65 * Start background writeback (via pdflush) at this percentage
66 */
67int dirty_background_ratio = 10;
68
69/*
70 * The generator of dirty data starts writeback at this percentage
71 */
72int vm_dirty_ratio = 40;
73
74/*
fd5403c7 75 * The interval between `kupdate'-style writebacks, in jiffies
1da177e4 76 */
f6ef9438 77int dirty_writeback_interval = 5 * HZ;
1da177e4
LT
78
79/*
fd5403c7 80 * The longest number of jiffies for which data is allowed to remain dirty
1da177e4 81 */
f6ef9438 82int dirty_expire_interval = 30 * HZ;
1da177e4
LT
83
84/*
85 * Flag that makes the machine dump writes/reads and block dirtyings.
86 */
87int block_dump;
88
89/*
ed5b43f1
BS
90 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
91 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
92 */
93int laptop_mode;
94
95EXPORT_SYMBOL(laptop_mode);
96
97/* End of sysctl-exported parameters */
98
99
100static void background_writeout(unsigned long _min_pages);
101
102struct writeback_state
103{
104 unsigned long nr_dirty;
105 unsigned long nr_unstable;
106 unsigned long nr_mapped;
107 unsigned long nr_writeback;
108};
109
110static void get_writeback_state(struct writeback_state *wbs)
111{
112 wbs->nr_dirty = read_page_state(nr_dirty);
113 wbs->nr_unstable = read_page_state(nr_unstable);
f3dbd344
CL
114 wbs->nr_mapped = global_page_state(NR_FILE_MAPPED) +
115 global_page_state(NR_ANON_PAGES);
1da177e4
LT
116 wbs->nr_writeback = read_page_state(nr_writeback);
117}
118
119/*
120 * Work out the current dirty-memory clamping and background writeout
121 * thresholds.
122 *
123 * The main aim here is to lower them aggressively if there is a lot of mapped
124 * memory around. To avoid stressing page reclaim with lots of unreclaimable
125 * pages. It is better to clamp down on writers than to start swapping, and
126 * performing lots of scanning.
127 *
128 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
129 *
130 * We don't permit the clamping level to fall below 5% - that is getting rather
131 * excessive.
132 *
133 * We make sure that the background writeout level is below the adjusted
134 * clamping level.
135 */
136static void
137get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
138 struct address_space *mapping)
139{
140 int background_ratio; /* Percentages */
141 int dirty_ratio;
142 int unmapped_ratio;
143 long background;
144 long dirty;
145 unsigned long available_memory = total_pages;
146 struct task_struct *tsk;
147
148 get_writeback_state(wbs);
149
150#ifdef CONFIG_HIGHMEM
151 /*
152 * If this mapping can only allocate from low memory,
153 * we exclude high memory from our count.
154 */
155 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
156 available_memory -= totalhigh_pages;
157#endif
158
159
160 unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
161
162 dirty_ratio = vm_dirty_ratio;
163 if (dirty_ratio > unmapped_ratio / 2)
164 dirty_ratio = unmapped_ratio / 2;
165
166 if (dirty_ratio < 5)
167 dirty_ratio = 5;
168
169 background_ratio = dirty_background_ratio;
170 if (background_ratio >= dirty_ratio)
171 background_ratio = dirty_ratio / 2;
172
173 background = (background_ratio * available_memory) / 100;
174 dirty = (dirty_ratio * available_memory) / 100;
175 tsk = current;
176 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
177 background += background / 4;
178 dirty += dirty / 4;
179 }
180 *pbackground = background;
181 *pdirty = dirty;
182}
183
184/*
185 * balance_dirty_pages() must be called by processes which are generating dirty
186 * data. It looks at the number of dirty pages in the machine and will force
187 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
188 * If we're over `background_thresh' then pdflush is woken to perform some
189 * writeout.
190 */
191static void balance_dirty_pages(struct address_space *mapping)
192{
193 struct writeback_state wbs;
194 long nr_reclaimable;
195 long background_thresh;
196 long dirty_thresh;
197 unsigned long pages_written = 0;
198 unsigned long write_chunk = sync_writeback_pages();
199
200 struct backing_dev_info *bdi = mapping->backing_dev_info;
201
202 for (;;) {
203 struct writeback_control wbc = {
204 .bdi = bdi,
205 .sync_mode = WB_SYNC_NONE,
206 .older_than_this = NULL,
207 .nr_to_write = write_chunk,
111ebb6e 208 .range_cyclic = 1,
1da177e4
LT
209 };
210
211 get_dirty_limits(&wbs, &background_thresh,
212 &dirty_thresh, mapping);
213 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
214 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
215 break;
216
e236a166
AM
217 if (!dirty_exceeded)
218 dirty_exceeded = 1;
1da177e4
LT
219
220 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
221 * Unstable writes are a feature of certain networked
222 * filesystems (i.e. NFS) in which data may have been
223 * written to the server's write cache, but has not yet
224 * been flushed to permanent storage.
225 */
226 if (nr_reclaimable) {
227 writeback_inodes(&wbc);
228 get_dirty_limits(&wbs, &background_thresh,
229 &dirty_thresh, mapping);
230 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
231 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
232 break;
233 pages_written += write_chunk - wbc.nr_to_write;
234 if (pages_written >= write_chunk)
235 break; /* We've done our duty */
236 }
237 blk_congestion_wait(WRITE, HZ/10);
238 }
239
e236a166 240 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
1da177e4
LT
241 dirty_exceeded = 0;
242
243 if (writeback_in_progress(bdi))
244 return; /* pdflush is already working this queue */
245
246 /*
247 * In laptop mode, we wait until hitting the higher threshold before
248 * starting background writeout, and then write out all the way down
249 * to the lower threshold. So slow writers cause minimal disk activity.
250 *
251 * In normal mode, we start background writeout at the lower
252 * background_thresh, to keep the amount of dirty memory low.
253 */
254 if ((laptop_mode && pages_written) ||
255 (!laptop_mode && (nr_reclaimable > background_thresh)))
256 pdflush_operation(background_writeout, 0);
257}
258
259/**
fa5a734e 260 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 261 * @mapping: address_space which was dirtied
a580290c 262 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
263 *
264 * Processes which are dirtying memory should call in here once for each page
265 * which was newly dirtied. The function will periodically check the system's
266 * dirty state and will initiate writeback if needed.
267 *
268 * On really big machines, get_writeback_state is expensive, so try to avoid
269 * calling it too often (ratelimiting). But once we're over the dirty memory
270 * limit we decrease the ratelimiting by a lot, to prevent individual processes
271 * from overshooting the limit by (ratelimit_pages) each.
272 */
fa5a734e
AM
273void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
274 unsigned long nr_pages_dirtied)
1da177e4 275{
fa5a734e
AM
276 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
277 unsigned long ratelimit;
278 unsigned long *p;
1da177e4
LT
279
280 ratelimit = ratelimit_pages;
281 if (dirty_exceeded)
282 ratelimit = 8;
283
284 /*
285 * Check the rate limiting. Also, we do not want to throttle real-time
286 * tasks in balance_dirty_pages(). Period.
287 */
fa5a734e
AM
288 preempt_disable();
289 p = &__get_cpu_var(ratelimits);
290 *p += nr_pages_dirtied;
291 if (unlikely(*p >= ratelimit)) {
292 *p = 0;
293 preempt_enable();
1da177e4
LT
294 balance_dirty_pages(mapping);
295 return;
296 }
fa5a734e 297 preempt_enable();
1da177e4 298}
fa5a734e 299EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4
LT
300
301void throttle_vm_writeout(void)
302{
303 struct writeback_state wbs;
304 long background_thresh;
305 long dirty_thresh;
306
307 for ( ; ; ) {
308 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
309
310 /*
311 * Boost the allowable dirty threshold a bit for page
312 * allocators so they don't get DoS'ed by heavy writers
313 */
314 dirty_thresh += dirty_thresh / 10; /* wheeee... */
315
316 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
317 break;
318 blk_congestion_wait(WRITE, HZ/10);
319 }
320}
321
322
323/*
324 * writeback at least _min_pages, and keep writing until the amount of dirty
325 * memory is less than the background threshold, or until we're all clean.
326 */
327static void background_writeout(unsigned long _min_pages)
328{
329 long min_pages = _min_pages;
330 struct writeback_control wbc = {
331 .bdi = NULL,
332 .sync_mode = WB_SYNC_NONE,
333 .older_than_this = NULL,
334 .nr_to_write = 0,
335 .nonblocking = 1,
111ebb6e 336 .range_cyclic = 1,
1da177e4
LT
337 };
338
339 for ( ; ; ) {
340 struct writeback_state wbs;
341 long background_thresh;
342 long dirty_thresh;
343
344 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
345 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
346 && min_pages <= 0)
347 break;
348 wbc.encountered_congestion = 0;
349 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
350 wbc.pages_skipped = 0;
351 writeback_inodes(&wbc);
352 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
353 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
354 /* Wrote less than expected */
355 blk_congestion_wait(WRITE, HZ/10);
356 if (!wbc.encountered_congestion)
357 break;
358 }
359 }
360}
361
362/*
363 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
364 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
365 * -1 if all pdflush threads were busy.
366 */
687a21ce 367int wakeup_pdflush(long nr_pages)
1da177e4
LT
368{
369 if (nr_pages == 0) {
370 struct writeback_state wbs;
371
372 get_writeback_state(&wbs);
373 nr_pages = wbs.nr_dirty + wbs.nr_unstable;
374 }
375 return pdflush_operation(background_writeout, nr_pages);
376}
377
378static void wb_timer_fn(unsigned long unused);
379static void laptop_timer_fn(unsigned long unused);
380
8d06afab
IM
381static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
382static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
1da177e4
LT
383
384/*
385 * Periodic writeback of "old" data.
386 *
387 * Define "old": the first time one of an inode's pages is dirtied, we mark the
388 * dirtying-time in the inode's address_space. So this periodic writeback code
389 * just walks the superblock inode list, writing back any inodes which are
390 * older than a specific point in time.
391 *
f6ef9438
BS
392 * Try to run once per dirty_writeback_interval. But if a writeback event
393 * takes longer than a dirty_writeback_interval interval, then leave a
1da177e4
LT
394 * one-second gap.
395 *
396 * older_than_this takes precedence over nr_to_write. So we'll only write back
397 * all dirty pages if they are all attached to "old" mappings.
398 */
399static void wb_kupdate(unsigned long arg)
400{
401 unsigned long oldest_jif;
402 unsigned long start_jif;
403 unsigned long next_jif;
404 long nr_to_write;
405 struct writeback_state wbs;
406 struct writeback_control wbc = {
407 .bdi = NULL,
408 .sync_mode = WB_SYNC_NONE,
409 .older_than_this = &oldest_jif,
410 .nr_to_write = 0,
411 .nonblocking = 1,
412 .for_kupdate = 1,
111ebb6e 413 .range_cyclic = 1,
1da177e4
LT
414 };
415
416 sync_supers();
417
418 get_writeback_state(&wbs);
f6ef9438 419 oldest_jif = jiffies - dirty_expire_interval;
1da177e4 420 start_jif = jiffies;
f6ef9438 421 next_jif = start_jif + dirty_writeback_interval;
1da177e4
LT
422 nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
423 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
424 while (nr_to_write > 0) {
425 wbc.encountered_congestion = 0;
426 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
427 writeback_inodes(&wbc);
428 if (wbc.nr_to_write > 0) {
429 if (wbc.encountered_congestion)
430 blk_congestion_wait(WRITE, HZ/10);
431 else
432 break; /* All the old data is written */
433 }
434 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
435 }
436 if (time_before(next_jif, jiffies + HZ))
437 next_jif = jiffies + HZ;
f6ef9438 438 if (dirty_writeback_interval)
1da177e4
LT
439 mod_timer(&wb_timer, next_jif);
440}
441
442/*
443 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
444 */
445int dirty_writeback_centisecs_handler(ctl_table *table, int write,
446 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
447{
f6ef9438
BS
448 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
449 if (dirty_writeback_interval) {
1da177e4 450 mod_timer(&wb_timer,
f6ef9438
BS
451 jiffies + dirty_writeback_interval);
452 } else {
1da177e4
LT
453 del_timer(&wb_timer);
454 }
455 return 0;
456}
457
458static void wb_timer_fn(unsigned long unused)
459{
460 if (pdflush_operation(wb_kupdate, 0) < 0)
461 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
462}
463
464static void laptop_flush(unsigned long unused)
465{
466 sys_sync();
467}
468
469static void laptop_timer_fn(unsigned long unused)
470{
471 pdflush_operation(laptop_flush, 0);
472}
473
474/*
475 * We've spun up the disk and we're in laptop mode: schedule writeback
476 * of all dirty data a few seconds from now. If the flush is already scheduled
477 * then push it back - the user is still using the disk.
478 */
479void laptop_io_completion(void)
480{
ed5b43f1 481 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
482}
483
484/*
485 * We're in laptop mode and we've just synced. The sync's writes will have
486 * caused another writeback to be scheduled by laptop_io_completion.
487 * Nothing needs to be written back anymore, so we unschedule the writeback.
488 */
489void laptop_sync_completion(void)
490{
491 del_timer(&laptop_mode_wb_timer);
492}
493
494/*
495 * If ratelimit_pages is too high then we can get into dirty-data overload
496 * if a large number of processes all perform writes at the same time.
497 * If it is too low then SMP machines will call the (expensive)
498 * get_writeback_state too often.
499 *
500 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
501 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
502 * thresholds before writeback cuts in.
503 *
504 * But the limit should not be set too high. Because it also controls the
505 * amount of memory which the balance_dirty_pages() caller has to write back.
506 * If this is too large then the caller will block on the IO queue all the
507 * time. So limit it to four megabytes - the balance_dirty_pages() caller
508 * will write six megabyte chunks, max.
509 */
510
511static void set_ratelimit(void)
512{
513 ratelimit_pages = total_pages / (num_online_cpus() * 32);
514 if (ratelimit_pages < 16)
515 ratelimit_pages = 16;
516 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
517 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
518}
519
26c2143b 520static int __cpuinit
1da177e4
LT
521ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
522{
523 set_ratelimit();
524 return 0;
525}
526
74b85f37 527static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
528 .notifier_call = ratelimit_handler,
529 .next = NULL,
530};
531
532/*
533 * If the machine has a large highmem:lowmem ratio then scale back the default
534 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
535 * number of buffer_heads.
536 */
537void __init page_writeback_init(void)
538{
539 long buffer_pages = nr_free_buffer_pages();
540 long correction;
541
542 total_pages = nr_free_pagecache_pages();
543
544 correction = (100 * 4 * buffer_pages) / total_pages;
545
546 if (correction < 100) {
547 dirty_background_ratio *= correction;
548 dirty_background_ratio /= 100;
549 vm_dirty_ratio *= correction;
550 vm_dirty_ratio /= 100;
551
552 if (dirty_background_ratio <= 0)
553 dirty_background_ratio = 1;
554 if (vm_dirty_ratio <= 0)
555 vm_dirty_ratio = 1;
556 }
f6ef9438 557 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
1da177e4
LT
558 set_ratelimit();
559 register_cpu_notifier(&ratelimit_nb);
560}
561
562int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
563{
22905f77
AM
564 int ret;
565
1da177e4
LT
566 if (wbc->nr_to_write <= 0)
567 return 0;
22905f77 568 wbc->for_writepages = 1;
1da177e4 569 if (mapping->a_ops->writepages)
22905f77
AM
570 ret = mapping->a_ops->writepages(mapping, wbc);
571 else
572 ret = generic_writepages(mapping, wbc);
573 wbc->for_writepages = 0;
574 return ret;
1da177e4
LT
575}
576
577/**
578 * write_one_page - write out a single page and optionally wait on I/O
579 *
67be2dd1
MW
580 * @page: the page to write
581 * @wait: if true, wait on writeout
1da177e4
LT
582 *
583 * The page must be locked by the caller and will be unlocked upon return.
584 *
585 * write_one_page() returns a negative error code if I/O failed.
586 */
587int write_one_page(struct page *page, int wait)
588{
589 struct address_space *mapping = page->mapping;
590 int ret = 0;
591 struct writeback_control wbc = {
592 .sync_mode = WB_SYNC_ALL,
593 .nr_to_write = 1,
594 };
595
596 BUG_ON(!PageLocked(page));
597
598 if (wait)
599 wait_on_page_writeback(page);
600
601 if (clear_page_dirty_for_io(page)) {
602 page_cache_get(page);
603 ret = mapping->a_ops->writepage(page, &wbc);
604 if (ret == 0 && wait) {
605 wait_on_page_writeback(page);
606 if (PageError(page))
607 ret = -EIO;
608 }
609 page_cache_release(page);
610 } else {
611 unlock_page(page);
612 }
613 return ret;
614}
615EXPORT_SYMBOL(write_one_page);
616
617/*
618 * For address_spaces which do not use buffers. Just tag the page as dirty in
619 * its radix tree.
620 *
621 * This is also used when a single buffer is being dirtied: we want to set the
622 * page dirty in that case, but not all the buffers. This is a "bottom-up"
623 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
624 *
625 * Most callers have locked the page, which pins the address_space in memory.
626 * But zap_pte_range() does not lock the page, however in that case the
627 * mapping is pinned by the vma's ->vm_file reference.
628 *
629 * We take care to handle the case where the page was truncated from the
630 * mapping by re-checking page_mapping() insode tree_lock.
631 */
632int __set_page_dirty_nobuffers(struct page *page)
633{
1da177e4
LT
634 if (!TestSetPageDirty(page)) {
635 struct address_space *mapping = page_mapping(page);
636 struct address_space *mapping2;
637
638 if (mapping) {
639 write_lock_irq(&mapping->tree_lock);
640 mapping2 = page_mapping(page);
641 if (mapping2) { /* Race with truncate? */
642 BUG_ON(mapping2 != mapping);
643 if (mapping_cap_account_dirty(mapping))
644 inc_page_state(nr_dirty);
645 radix_tree_tag_set(&mapping->page_tree,
646 page_index(page), PAGECACHE_TAG_DIRTY);
647 }
648 write_unlock_irq(&mapping->tree_lock);
649 if (mapping->host) {
650 /* !PageAnon && !swapper_space */
651 __mark_inode_dirty(mapping->host,
652 I_DIRTY_PAGES);
653 }
654 }
4741c9fd 655 return 1;
1da177e4 656 }
4741c9fd 657 return 0;
1da177e4
LT
658}
659EXPORT_SYMBOL(__set_page_dirty_nobuffers);
660
661/*
662 * When a writepage implementation decides that it doesn't want to write this
663 * page for some reason, it should redirty the locked page via
664 * redirty_page_for_writepage() and it should then unlock the page and return 0
665 */
666int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
667{
668 wbc->pages_skipped++;
669 return __set_page_dirty_nobuffers(page);
670}
671EXPORT_SYMBOL(redirty_page_for_writepage);
672
673/*
674 * If the mapping doesn't provide a set_page_dirty a_op, then
675 * just fall through and assume that it wants buffer_heads.
676 */
677int fastcall set_page_dirty(struct page *page)
678{
679 struct address_space *mapping = page_mapping(page);
680
681 if (likely(mapping)) {
682 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
683 if (spd)
684 return (*spd)(page);
685 return __set_page_dirty_buffers(page);
686 }
4741c9fd
AM
687 if (!PageDirty(page)) {
688 if (!TestSetPageDirty(page))
689 return 1;
690 }
1da177e4
LT
691 return 0;
692}
693EXPORT_SYMBOL(set_page_dirty);
694
695/*
696 * set_page_dirty() is racy if the caller has no reference against
697 * page->mapping->host, and if the page is unlocked. This is because another
698 * CPU could truncate the page off the mapping and then free the mapping.
699 *
700 * Usually, the page _is_ locked, or the caller is a user-space process which
701 * holds a reference on the inode by having an open file.
702 *
703 * In other cases, the page should be locked before running set_page_dirty().
704 */
705int set_page_dirty_lock(struct page *page)
706{
707 int ret;
708
709 lock_page(page);
710 ret = set_page_dirty(page);
711 unlock_page(page);
712 return ret;
713}
714EXPORT_SYMBOL(set_page_dirty_lock);
715
716/*
717 * Clear a page's dirty flag, while caring for dirty memory accounting.
718 * Returns true if the page was previously dirty.
719 */
720int test_clear_page_dirty(struct page *page)
721{
722 struct address_space *mapping = page_mapping(page);
723 unsigned long flags;
724
725 if (mapping) {
726 write_lock_irqsave(&mapping->tree_lock, flags);
727 if (TestClearPageDirty(page)) {
728 radix_tree_tag_clear(&mapping->page_tree,
729 page_index(page),
730 PAGECACHE_TAG_DIRTY);
731 write_unlock_irqrestore(&mapping->tree_lock, flags);
732 if (mapping_cap_account_dirty(mapping))
733 dec_page_state(nr_dirty);
734 return 1;
735 }
736 write_unlock_irqrestore(&mapping->tree_lock, flags);
737 return 0;
738 }
739 return TestClearPageDirty(page);
740}
741EXPORT_SYMBOL(test_clear_page_dirty);
742
743/*
744 * Clear a page's dirty flag, while caring for dirty memory accounting.
745 * Returns true if the page was previously dirty.
746 *
747 * This is for preparing to put the page under writeout. We leave the page
748 * tagged as dirty in the radix tree so that a concurrent write-for-sync
749 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
750 * implementation will run either set_page_writeback() or set_page_dirty(),
751 * at which stage we bring the page's dirty flag and radix-tree dirty tag
752 * back into sync.
753 *
754 * This incoherency between the page's dirty flag and radix-tree tag is
755 * unfortunate, but it only exists while the page is locked.
756 */
757int clear_page_dirty_for_io(struct page *page)
758{
759 struct address_space *mapping = page_mapping(page);
760
761 if (mapping) {
762 if (TestClearPageDirty(page)) {
763 if (mapping_cap_account_dirty(mapping))
764 dec_page_state(nr_dirty);
765 return 1;
766 }
767 return 0;
768 }
769 return TestClearPageDirty(page);
770}
58bb01a9 771EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
772
773int test_clear_page_writeback(struct page *page)
774{
775 struct address_space *mapping = page_mapping(page);
776 int ret;
777
778 if (mapping) {
779 unsigned long flags;
780
781 write_lock_irqsave(&mapping->tree_lock, flags);
782 ret = TestClearPageWriteback(page);
783 if (ret)
784 radix_tree_tag_clear(&mapping->page_tree,
785 page_index(page),
786 PAGECACHE_TAG_WRITEBACK);
787 write_unlock_irqrestore(&mapping->tree_lock, flags);
788 } else {
789 ret = TestClearPageWriteback(page);
790 }
791 return ret;
792}
793
794int test_set_page_writeback(struct page *page)
795{
796 struct address_space *mapping = page_mapping(page);
797 int ret;
798
799 if (mapping) {
800 unsigned long flags;
801
802 write_lock_irqsave(&mapping->tree_lock, flags);
803 ret = TestSetPageWriteback(page);
804 if (!ret)
805 radix_tree_tag_set(&mapping->page_tree,
806 page_index(page),
807 PAGECACHE_TAG_WRITEBACK);
808 if (!PageDirty(page))
809 radix_tree_tag_clear(&mapping->page_tree,
810 page_index(page),
811 PAGECACHE_TAG_DIRTY);
812 write_unlock_irqrestore(&mapping->tree_lock, flags);
813 } else {
814 ret = TestSetPageWriteback(page);
815 }
816 return ret;
817
818}
819EXPORT_SYMBOL(test_set_page_writeback);
820
821/*
822 * Return true if any of the pages in the mapping are marged with the
823 * passed tag.
824 */
825int mapping_tagged(struct address_space *mapping, int tag)
826{
827 unsigned long flags;
828 int ret;
829
830 read_lock_irqsave(&mapping->tree_lock, flags);
831 ret = radix_tree_tagged(&mapping->page_tree, tag);
832 read_unlock_irqrestore(&mapping->tree_lock, flags);
833 return ret;
834}
835EXPORT_SYMBOL(mapping_tagged);
This page took 0.165216 seconds and 5 git commands to generate.