[PATCH] mm: remove pcp low
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
39
40#include <asm/tlbflush.h>
41#include "internal.h"
42
43/*
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
46 */
c3d8c141 47nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 48EXPORT_SYMBOL(node_online_map);
c3d8c141 49nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 50EXPORT_SYMBOL(node_possible_map);
c3d8c141 51struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
52unsigned long totalram_pages __read_mostly;
53unsigned long totalhigh_pages __read_mostly;
1da177e4
LT
54long nr_swap_pages;
55
56/*
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
63 *
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
1da177e4 66 */
a2f1b424 67int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
68
69EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
70
71/*
72 * Used by page_zone() to look up the address of the struct zone whose
73 * id is encoded in the upper bits of page->flags
74 */
c3d8c141 75struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
76EXPORT_SYMBOL(zone_table);
77
a2f1b424 78static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
79int min_free_kbytes = 1024;
80
81unsigned long __initdata nr_kernel_pages;
82unsigned long __initdata nr_all_pages;
83
13e7444b 84#ifdef CONFIG_DEBUG_VM
c6a57e19 85static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 86{
bdc8cb98
DH
87 int ret = 0;
88 unsigned seq;
89 unsigned long pfn = page_to_pfn(page);
c6a57e19 90
bdc8cb98
DH
91 do {
92 seq = zone_span_seqbegin(zone);
93 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
94 ret = 1;
95 else if (pfn < zone->zone_start_pfn)
96 ret = 1;
97 } while (zone_span_seqretry(zone, seq));
98
99 return ret;
c6a57e19
DH
100}
101
102static int page_is_consistent(struct zone *zone, struct page *page)
103{
1da177e4
LT
104#ifdef CONFIG_HOLES_IN_ZONE
105 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 106 return 0;
1da177e4
LT
107#endif
108 if (zone != page_zone(page))
c6a57e19
DH
109 return 0;
110
111 return 1;
112}
113/*
114 * Temporary debugging check for pages not lying within a given zone.
115 */
116static int bad_range(struct zone *zone, struct page *page)
117{
118 if (page_outside_zone_boundaries(zone, page))
1da177e4 119 return 1;
c6a57e19
DH
120 if (!page_is_consistent(zone, page))
121 return 1;
122
1da177e4
LT
123 return 0;
124}
125
13e7444b
NP
126#else
127static inline int bad_range(struct zone *zone, struct page *page)
128{
129 return 0;
130}
131#endif
132
1da177e4
LT
133static void bad_page(const char *function, struct page *page)
134{
135 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
136 function, current->comm, page);
137 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
07808b74 138 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
1da177e4
LT
139 page->mapping, page_mapcount(page), page_count(page));
140 printk(KERN_EMERG "Backtrace:\n");
141 dump_stack();
142 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
334795ec
HD
143 page->flags &= ~(1 << PG_lru |
144 1 << PG_private |
1da177e4 145 1 << PG_locked |
1da177e4
LT
146 1 << PG_active |
147 1 << PG_dirty |
334795ec
HD
148 1 << PG_reclaim |
149 1 << PG_slab |
1da177e4 150 1 << PG_swapcache |
689bcebf 151 1 << PG_writeback );
1da177e4
LT
152 set_page_count(page, 0);
153 reset_page_mapcount(page);
154 page->mapping = NULL;
9f158333 155 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
156}
157
1da177e4
LT
158/*
159 * Higher-order pages are called "compound pages". They are structured thusly:
160 *
161 * The first PAGE_SIZE page is called the "head page".
162 *
163 * The remaining PAGE_SIZE pages are called "tail pages".
164 *
165 * All pages have PG_compound set. All pages have their ->private pointing at
166 * the head page (even the head page has this).
167 *
168 * The first tail page's ->mapping, if non-zero, holds the address of the
169 * compound page's put_page() function.
170 *
171 * The order of the allocation is stored in the first tail page's ->index
172 * This is only for debug at present. This usage means that zero-order pages
173 * may not be compound.
174 */
175static void prep_compound_page(struct page *page, unsigned long order)
176{
177 int i;
178 int nr_pages = 1 << order;
179
180 page[1].mapping = NULL;
181 page[1].index = order;
182 for (i = 0; i < nr_pages; i++) {
183 struct page *p = page + i;
184
185 SetPageCompound(p);
4c21e2f2 186 set_page_private(p, (unsigned long)page);
1da177e4
LT
187 }
188}
189
190static void destroy_compound_page(struct page *page, unsigned long order)
191{
192 int i;
193 int nr_pages = 1 << order;
194
195 if (!PageCompound(page))
196 return;
197
198 if (page[1].index != order)
199 bad_page(__FUNCTION__, page);
200
201 for (i = 0; i < nr_pages; i++) {
202 struct page *p = page + i;
203
204 if (!PageCompound(p))
205 bad_page(__FUNCTION__, page);
4c21e2f2 206 if (page_private(p) != (unsigned long)page)
1da177e4
LT
207 bad_page(__FUNCTION__, page);
208 ClearPageCompound(p);
209 }
210}
1da177e4
LT
211
212/*
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
216 */
217static inline unsigned long page_order(struct page *page) {
4c21e2f2 218 return page_private(page);
1da177e4
LT
219}
220
221static inline void set_page_order(struct page *page, int order) {
4c21e2f2 222 set_page_private(page, order);
1da177e4
LT
223 __SetPagePrivate(page);
224}
225
226static inline void rmv_page_order(struct page *page)
227{
228 __ClearPagePrivate(page);
4c21e2f2 229 set_page_private(page, 0);
1da177e4
LT
230}
231
232/*
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
235 *
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242 *
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
246 *
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248 */
249static inline struct page *
250__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251{
252 unsigned long buddy_idx = page_idx ^ (1 << order);
253
254 return page + (buddy_idx - page_idx);
255}
256
257static inline unsigned long
258__find_combined_index(unsigned long page_idx, unsigned int order)
259{
260 return (page_idx & ~(1 << order));
261}
262
263/*
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
13e7444b
NP
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
4c21e2f2 270 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
271 *
272 */
273static inline int page_is_buddy(struct page *page, int order)
274{
13e7444b
NP
275#ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278#endif
279
1da177e4
LT
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
1da177e4
LT
282 page_count(page) == 0)
283 return 1;
284 return 0;
285}
286
287/*
288 * Freeing function for a buddy system allocator.
289 *
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 301 * order is recorded in page_private(page) field.
1da177e4
LT
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
307 *
308 * -- wli
309 */
310
311static inline void __free_pages_bulk (struct page *page,
312 struct zone *zone, unsigned int order)
313{
314 unsigned long page_idx;
315 int order_size = 1 << order;
316
317 if (unlikely(order))
318 destroy_compound_page(page, order);
319
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
321
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
324
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
330
1da177e4 331 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
13e7444b 334
1da177e4
LT
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
13e7444b 339 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
343 }
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
347}
348
689bcebf 349static inline int free_pages_check(const char *function, struct page *page)
1da177e4 350{
92be2e33
NP
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
1da177e4
LT
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
b5810039 362 1 << PG_writeback |
92be2e33 363 1 << PG_reserved ))))
1da177e4
LT
364 bad_page(function, page);
365 if (PageDirty(page))
242e5468 366 __ClearPageDirty(page);
689bcebf
HD
367 /*
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
371 */
372 return PageReserved(page);
1da177e4
LT
373}
374
375/*
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
207f36ee 378 * count is the number of pages to free.
1da177e4
LT
379 *
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
382 *
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
385 */
386static int
387free_pages_bulk(struct zone *zone, int count,
388 struct list_head *list, unsigned int order)
389{
1da177e4
LT
390 struct page *page = NULL;
391 int ret = 0;
392
c54ad30c 393 spin_lock(&zone->lock);
1da177e4
LT
394 zone->all_unreclaimable = 0;
395 zone->pages_scanned = 0;
396 while (!list_empty(list) && count--) {
397 page = list_entry(list->prev, struct page, lru);
398 /* have to delete it as __free_pages_bulk list manipulates */
399 list_del(&page->lru);
400 __free_pages_bulk(page, zone, order);
401 ret++;
402 }
c54ad30c 403 spin_unlock(&zone->lock);
1da177e4
LT
404 return ret;
405}
406
407void __free_pages_ok(struct page *page, unsigned int order)
408{
c54ad30c 409 unsigned long flags;
1da177e4
LT
410 LIST_HEAD(list);
411 int i;
689bcebf 412 int reserved = 0;
1da177e4
LT
413
414 arch_free_page(page, order);
415
1da177e4
LT
416#ifndef CONFIG_MMU
417 if (order > 0)
418 for (i = 1 ; i < (1 << order) ; ++i)
419 __put_page(page + i);
420#endif
421
422 for (i = 0 ; i < (1 << order) ; ++i)
689bcebf
HD
423 reserved += free_pages_check(__FUNCTION__, page + i);
424 if (reserved)
425 return;
426
1da177e4 427 list_add(&page->lru, &list);
689bcebf 428 mod_page_state(pgfree, 1 << order);
1da177e4 429 kernel_map_pages(page, 1<<order, 0);
c54ad30c 430 local_irq_save(flags);
1da177e4 431 free_pages_bulk(page_zone(page), 1, &list, order);
c54ad30c 432 local_irq_restore(flags);
1da177e4
LT
433}
434
435
436/*
437 * The order of subdivision here is critical for the IO subsystem.
438 * Please do not alter this order without good reasons and regression
439 * testing. Specifically, as large blocks of memory are subdivided,
440 * the order in which smaller blocks are delivered depends on the order
441 * they're subdivided in this function. This is the primary factor
442 * influencing the order in which pages are delivered to the IO
443 * subsystem according to empirical testing, and this is also justified
444 * by considering the behavior of a buddy system containing a single
445 * large block of memory acted on by a series of small allocations.
446 * This behavior is a critical factor in sglist merging's success.
447 *
448 * -- wli
449 */
450static inline struct page *
451expand(struct zone *zone, struct page *page,
452 int low, int high, struct free_area *area)
453{
454 unsigned long size = 1 << high;
455
456 while (high > low) {
457 area--;
458 high--;
459 size >>= 1;
460 BUG_ON(bad_range(zone, &page[size]));
461 list_add(&page[size].lru, &area->free_list);
462 area->nr_free++;
463 set_page_order(&page[size], high);
464 }
465 return page;
466}
467
1da177e4
LT
468/*
469 * This page is about to be returned from the page allocator
470 */
689bcebf 471static int prep_new_page(struct page *page, int order)
1da177e4 472{
92be2e33
NP
473 if (unlikely(page_mapcount(page) |
474 (page->mapping != NULL) |
475 (page_count(page) != 0) |
334795ec
HD
476 (page->flags & (
477 1 << PG_lru |
1da177e4
LT
478 1 << PG_private |
479 1 << PG_locked |
1da177e4
LT
480 1 << PG_active |
481 1 << PG_dirty |
482 1 << PG_reclaim |
334795ec 483 1 << PG_slab |
1da177e4 484 1 << PG_swapcache |
b5810039 485 1 << PG_writeback |
92be2e33 486 1 << PG_reserved ))))
1da177e4
LT
487 bad_page(__FUNCTION__, page);
488
689bcebf
HD
489 /*
490 * For now, we report if PG_reserved was found set, but do not
491 * clear it, and do not allocate the page: as a safety net.
492 */
493 if (PageReserved(page))
494 return 1;
495
1da177e4
LT
496 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
497 1 << PG_referenced | 1 << PG_arch_1 |
498 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 499 set_page_private(page, 0);
1da177e4
LT
500 set_page_refs(page, order);
501 kernel_map_pages(page, 1 << order, 1);
689bcebf 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Do the hard work of removing an element from the buddy allocator.
507 * Call me with the zone->lock already held.
508 */
509static struct page *__rmqueue(struct zone *zone, unsigned int order)
510{
511 struct free_area * area;
512 unsigned int current_order;
513 struct page *page;
514
515 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
516 area = zone->free_area + current_order;
517 if (list_empty(&area->free_list))
518 continue;
519
520 page = list_entry(area->free_list.next, struct page, lru);
521 list_del(&page->lru);
522 rmv_page_order(page);
523 area->nr_free--;
524 zone->free_pages -= 1UL << order;
525 return expand(zone, page, order, current_order, area);
526 }
527
528 return NULL;
529}
530
531/*
532 * Obtain a specified number of elements from the buddy allocator, all under
533 * a single hold of the lock, for efficiency. Add them to the supplied list.
534 * Returns the number of new pages which were placed at *list.
535 */
536static int rmqueue_bulk(struct zone *zone, unsigned int order,
537 unsigned long count, struct list_head *list)
538{
1da177e4
LT
539 int i;
540 int allocated = 0;
541 struct page *page;
542
c54ad30c 543 spin_lock(&zone->lock);
1da177e4
LT
544 for (i = 0; i < count; ++i) {
545 page = __rmqueue(zone, order);
546 if (page == NULL)
547 break;
548 allocated++;
549 list_add_tail(&page->lru, list);
550 }
c54ad30c 551 spin_unlock(&zone->lock);
1da177e4
LT
552 return allocated;
553}
554
4ae7c039
CL
555#ifdef CONFIG_NUMA
556/* Called from the slab reaper to drain remote pagesets */
557void drain_remote_pages(void)
558{
559 struct zone *zone;
560 int i;
561 unsigned long flags;
562
563 local_irq_save(flags);
564 for_each_zone(zone) {
565 struct per_cpu_pageset *pset;
566
567 /* Do not drain local pagesets */
568 if (zone->zone_pgdat->node_id == numa_node_id())
569 continue;
570
571 pset = zone->pageset[smp_processor_id()];
572 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
573 struct per_cpu_pages *pcp;
574
575 pcp = &pset->pcp[i];
576 if (pcp->count)
577 pcp->count -= free_pages_bulk(zone, pcp->count,
578 &pcp->list, 0);
579 }
580 }
581 local_irq_restore(flags);
582}
583#endif
584
1da177e4
LT
585#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
586static void __drain_pages(unsigned int cpu)
587{
c54ad30c 588 unsigned long flags;
1da177e4
LT
589 struct zone *zone;
590 int i;
591
592 for_each_zone(zone) {
593 struct per_cpu_pageset *pset;
594
e7c8d5c9 595 pset = zone_pcp(zone, cpu);
1da177e4
LT
596 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
597 struct per_cpu_pages *pcp;
598
599 pcp = &pset->pcp[i];
c54ad30c 600 local_irq_save(flags);
1da177e4
LT
601 pcp->count -= free_pages_bulk(zone, pcp->count,
602 &pcp->list, 0);
c54ad30c 603 local_irq_restore(flags);
1da177e4
LT
604 }
605 }
606}
607#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
608
609#ifdef CONFIG_PM
610
611void mark_free_pages(struct zone *zone)
612{
613 unsigned long zone_pfn, flags;
614 int order;
615 struct list_head *curr;
616
617 if (!zone->spanned_pages)
618 return;
619
620 spin_lock_irqsave(&zone->lock, flags);
621 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
622 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
623
624 for (order = MAX_ORDER - 1; order >= 0; --order)
625 list_for_each(curr, &zone->free_area[order].free_list) {
626 unsigned long start_pfn, i;
627
628 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
629
630 for (i=0; i < (1<<order); i++)
631 SetPageNosaveFree(pfn_to_page(start_pfn+i));
632 }
633 spin_unlock_irqrestore(&zone->lock, flags);
634}
635
636/*
637 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
638 */
639void drain_local_pages(void)
640{
641 unsigned long flags;
642
643 local_irq_save(flags);
644 __drain_pages(smp_processor_id());
645 local_irq_restore(flags);
646}
647#endif /* CONFIG_PM */
648
649static void zone_statistics(struct zonelist *zonelist, struct zone *z)
650{
651#ifdef CONFIG_NUMA
652 unsigned long flags;
653 int cpu;
654 pg_data_t *pg = z->zone_pgdat;
655 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
656 struct per_cpu_pageset *p;
657
658 local_irq_save(flags);
659 cpu = smp_processor_id();
e7c8d5c9 660 p = zone_pcp(z,cpu);
1da177e4 661 if (pg == orig) {
e7c8d5c9 662 p->numa_hit++;
1da177e4
LT
663 } else {
664 p->numa_miss++;
e7c8d5c9 665 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
666 }
667 if (pg == NODE_DATA(numa_node_id()))
668 p->local_node++;
669 else
670 p->other_node++;
671 local_irq_restore(flags);
672#endif
673}
674
675/*
676 * Free a 0-order page
677 */
678static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
679static void fastcall free_hot_cold_page(struct page *page, int cold)
680{
681 struct zone *zone = page_zone(page);
682 struct per_cpu_pages *pcp;
683 unsigned long flags;
684
685 arch_free_page(page, 0);
686
1da177e4
LT
687 if (PageAnon(page))
688 page->mapping = NULL;
689bcebf
HD
689 if (free_pages_check(__FUNCTION__, page))
690 return;
691
692 inc_page_state(pgfree);
693 kernel_map_pages(page, 1, 0);
694
e7c8d5c9 695 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 696 local_irq_save(flags);
1da177e4
LT
697 list_add(&page->lru, &pcp->list);
698 pcp->count++;
2caaad41
CL
699 if (pcp->count >= pcp->high)
700 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1da177e4
LT
701 local_irq_restore(flags);
702 put_cpu();
703}
704
705void fastcall free_hot_page(struct page *page)
706{
707 free_hot_cold_page(page, 0);
708}
709
710void fastcall free_cold_page(struct page *page)
711{
712 free_hot_cold_page(page, 1);
713}
714
dd0fc66f 715static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
716{
717 int i;
718
719 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
720 for(i = 0; i < (1 << order); i++)
721 clear_highpage(page + i);
722}
723
724/*
725 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
726 * we cheat by calling it from here, in the order > 0 path. Saves a branch
727 * or two.
728 */
729static struct page *
dd0fc66f 730buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
731{
732 unsigned long flags;
689bcebf 733 struct page *page;
1da177e4
LT
734 int cold = !!(gfp_flags & __GFP_COLD);
735
689bcebf 736again:
1da177e4
LT
737 if (order == 0) {
738 struct per_cpu_pages *pcp;
739
689bcebf 740 page = NULL;
e7c8d5c9 741 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 742 local_irq_save(flags);
2d92c5c9 743 if (!pcp->count)
1da177e4
LT
744 pcp->count += rmqueue_bulk(zone, 0,
745 pcp->batch, &pcp->list);
c54ad30c 746 if (likely(pcp->count)) {
1da177e4
LT
747 page = list_entry(pcp->list.next, struct page, lru);
748 list_del(&page->lru);
749 pcp->count--;
750 }
751 local_irq_restore(flags);
752 put_cpu();
7fb1d9fc 753 } else {
1da177e4
LT
754 spin_lock_irqsave(&zone->lock, flags);
755 page = __rmqueue(zone, order);
756 spin_unlock_irqrestore(&zone->lock, flags);
757 }
758
759 if (page != NULL) {
760 BUG_ON(bad_range(zone, page));
761 mod_page_state_zone(zone, pgalloc, 1 << order);
689bcebf
HD
762 if (prep_new_page(page, order))
763 goto again;
1da177e4
LT
764
765 if (gfp_flags & __GFP_ZERO)
766 prep_zero_page(page, order, gfp_flags);
767
768 if (order && (gfp_flags & __GFP_COMP))
769 prep_compound_page(page, order);
770 }
771 return page;
772}
773
7fb1d9fc 774#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
775#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
776#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
777#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
778#define ALLOC_HARDER 0x10 /* try to alloc harder */
779#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
780#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 781
1da177e4
LT
782/*
783 * Return 1 if free pages are above 'mark'. This takes into account the order
784 * of the allocation.
785 */
786int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 787 int classzone_idx, int alloc_flags)
1da177e4
LT
788{
789 /* free_pages my go negative - that's OK */
790 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
791 int o;
792
7fb1d9fc 793 if (alloc_flags & ALLOC_HIGH)
1da177e4 794 min -= min / 2;
7fb1d9fc 795 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
796 min -= min / 4;
797
798 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
799 return 0;
800 for (o = 0; o < order; o++) {
801 /* At the next order, this order's pages become unavailable */
802 free_pages -= z->free_area[o].nr_free << o;
803
804 /* Require fewer higher order pages to be free */
805 min >>= 1;
806
807 if (free_pages <= min)
808 return 0;
809 }
810 return 1;
811}
812
7fb1d9fc
RS
813/*
814 * get_page_from_freeliest goes through the zonelist trying to allocate
815 * a page.
816 */
817static struct page *
818get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
819 struct zonelist *zonelist, int alloc_flags)
753ee728 820{
7fb1d9fc
RS
821 struct zone **z = zonelist->zones;
822 struct page *page = NULL;
823 int classzone_idx = zone_idx(*z);
824
825 /*
826 * Go through the zonelist once, looking for a zone with enough free.
827 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
828 */
829 do {
830 if ((alloc_flags & ALLOC_CPUSET) &&
831 !cpuset_zone_allowed(*z, gfp_mask))
832 continue;
833
834 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
835 unsigned long mark;
836 if (alloc_flags & ALLOC_WMARK_MIN)
837 mark = (*z)->pages_min;
838 else if (alloc_flags & ALLOC_WMARK_LOW)
839 mark = (*z)->pages_low;
840 else
841 mark = (*z)->pages_high;
842 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc
RS
843 classzone_idx, alloc_flags))
844 continue;
845 }
846
847 page = buffered_rmqueue(*z, order, gfp_mask);
848 if (page) {
849 zone_statistics(zonelist, *z);
850 break;
851 }
852 } while (*(++z) != NULL);
853 return page;
753ee728
MH
854}
855
1da177e4
LT
856/*
857 * This is the 'heart' of the zoned buddy allocator.
858 */
859struct page * fastcall
dd0fc66f 860__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
861 struct zonelist *zonelist)
862{
260b2367 863 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 864 struct zone **z;
1da177e4
LT
865 struct page *page;
866 struct reclaim_state reclaim_state;
867 struct task_struct *p = current;
1da177e4 868 int do_retry;
7fb1d9fc 869 int alloc_flags;
1da177e4
LT
870 int did_some_progress;
871
872 might_sleep_if(wait);
873
6b1de916 874restart:
7fb1d9fc 875 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 876
7fb1d9fc 877 if (unlikely(*z == NULL)) {
1da177e4
LT
878 /* Should this ever happen?? */
879 return NULL;
880 }
6b1de916 881
7fb1d9fc 882 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 883 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
884 if (page)
885 goto got_pg;
1da177e4 886
6b1de916 887 do {
7fb1d9fc 888 wakeup_kswapd(*z, order);
6b1de916 889 } while (*(++z));
1da177e4 890
9bf2229f 891 /*
7fb1d9fc
RS
892 * OK, we're below the kswapd watermark and have kicked background
893 * reclaim. Now things get more complex, so set up alloc_flags according
894 * to how we want to proceed.
895 *
896 * The caller may dip into page reserves a bit more if the caller
897 * cannot run direct reclaim, or if the caller has realtime scheduling
898 * policy.
9bf2229f 899 */
3148890b 900 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
901 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
902 alloc_flags |= ALLOC_HARDER;
903 if (gfp_mask & __GFP_HIGH)
904 alloc_flags |= ALLOC_HIGH;
47f3a867 905 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
906
907 /*
908 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 909 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
910 *
911 * This is the last chance, in general, before the goto nopage.
912 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 913 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 914 */
7fb1d9fc
RS
915 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
916 if (page)
917 goto got_pg;
1da177e4
LT
918
919 /* This allocation should allow future memory freeing. */
b84a35be
NP
920
921 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
922 && !in_interrupt()) {
923 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 924nofail_alloc:
b84a35be 925 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 926 page = get_page_from_freelist(gfp_mask, order,
47f3a867 927 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
928 if (page)
929 goto got_pg;
885036d3
KK
930 if (gfp_mask & __GFP_NOFAIL) {
931 blk_congestion_wait(WRITE, HZ/50);
932 goto nofail_alloc;
933 }
1da177e4
LT
934 }
935 goto nopage;
936 }
937
938 /* Atomic allocations - we can't balance anything */
939 if (!wait)
940 goto nopage;
941
942rebalance:
943 cond_resched();
944
945 /* We now go into synchronous reclaim */
946 p->flags |= PF_MEMALLOC;
947 reclaim_state.reclaimed_slab = 0;
948 p->reclaim_state = &reclaim_state;
949
7fb1d9fc 950 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
951
952 p->reclaim_state = NULL;
953 p->flags &= ~PF_MEMALLOC;
954
955 cond_resched();
956
957 if (likely(did_some_progress)) {
7fb1d9fc
RS
958 page = get_page_from_freelist(gfp_mask, order,
959 zonelist, alloc_flags);
960 if (page)
961 goto got_pg;
1da177e4
LT
962 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
963 /*
964 * Go through the zonelist yet one more time, keep
965 * very high watermark here, this is only to catch
966 * a parallel oom killing, we must fail if we're still
967 * under heavy pressure.
968 */
7fb1d9fc 969 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 970 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
971 if (page)
972 goto got_pg;
1da177e4 973
79b9ce31 974 out_of_memory(gfp_mask, order);
1da177e4
LT
975 goto restart;
976 }
977
978 /*
979 * Don't let big-order allocations loop unless the caller explicitly
980 * requests that. Wait for some write requests to complete then retry.
981 *
982 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
983 * <= 3, but that may not be true in other implementations.
984 */
985 do_retry = 0;
986 if (!(gfp_mask & __GFP_NORETRY)) {
987 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
988 do_retry = 1;
989 if (gfp_mask & __GFP_NOFAIL)
990 do_retry = 1;
991 }
992 if (do_retry) {
993 blk_congestion_wait(WRITE, HZ/50);
994 goto rebalance;
995 }
996
997nopage:
998 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
999 printk(KERN_WARNING "%s: page allocation failure."
1000 " order:%d, mode:0x%x\n",
1001 p->comm, order, gfp_mask);
1002 dump_stack();
578c2fd6 1003 show_mem();
1da177e4 1004 }
1da177e4 1005got_pg:
1da177e4
LT
1006 return page;
1007}
1008
1009EXPORT_SYMBOL(__alloc_pages);
1010
1011/*
1012 * Common helper functions.
1013 */
dd0fc66f 1014fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1015{
1016 struct page * page;
1017 page = alloc_pages(gfp_mask, order);
1018 if (!page)
1019 return 0;
1020 return (unsigned long) page_address(page);
1021}
1022
1023EXPORT_SYMBOL(__get_free_pages);
1024
dd0fc66f 1025fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1026{
1027 struct page * page;
1028
1029 /*
1030 * get_zeroed_page() returns a 32-bit address, which cannot represent
1031 * a highmem page
1032 */
260b2367 1033 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1034
1035 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1036 if (page)
1037 return (unsigned long) page_address(page);
1038 return 0;
1039}
1040
1041EXPORT_SYMBOL(get_zeroed_page);
1042
1043void __pagevec_free(struct pagevec *pvec)
1044{
1045 int i = pagevec_count(pvec);
1046
1047 while (--i >= 0)
1048 free_hot_cold_page(pvec->pages[i], pvec->cold);
1049}
1050
1051fastcall void __free_pages(struct page *page, unsigned int order)
1052{
b5810039 1053 if (put_page_testzero(page)) {
1da177e4
LT
1054 if (order == 0)
1055 free_hot_page(page);
1056 else
1057 __free_pages_ok(page, order);
1058 }
1059}
1060
1061EXPORT_SYMBOL(__free_pages);
1062
1063fastcall void free_pages(unsigned long addr, unsigned int order)
1064{
1065 if (addr != 0) {
1066 BUG_ON(!virt_addr_valid((void *)addr));
1067 __free_pages(virt_to_page((void *)addr), order);
1068 }
1069}
1070
1071EXPORT_SYMBOL(free_pages);
1072
1073/*
1074 * Total amount of free (allocatable) RAM:
1075 */
1076unsigned int nr_free_pages(void)
1077{
1078 unsigned int sum = 0;
1079 struct zone *zone;
1080
1081 for_each_zone(zone)
1082 sum += zone->free_pages;
1083
1084 return sum;
1085}
1086
1087EXPORT_SYMBOL(nr_free_pages);
1088
1089#ifdef CONFIG_NUMA
1090unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1091{
1092 unsigned int i, sum = 0;
1093
1094 for (i = 0; i < MAX_NR_ZONES; i++)
1095 sum += pgdat->node_zones[i].free_pages;
1096
1097 return sum;
1098}
1099#endif
1100
1101static unsigned int nr_free_zone_pages(int offset)
1102{
e310fd43
MB
1103 /* Just pick one node, since fallback list is circular */
1104 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1105 unsigned int sum = 0;
1106
e310fd43
MB
1107 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1108 struct zone **zonep = zonelist->zones;
1109 struct zone *zone;
1da177e4 1110
e310fd43
MB
1111 for (zone = *zonep++; zone; zone = *zonep++) {
1112 unsigned long size = zone->present_pages;
1113 unsigned long high = zone->pages_high;
1114 if (size > high)
1115 sum += size - high;
1da177e4
LT
1116 }
1117
1118 return sum;
1119}
1120
1121/*
1122 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1123 */
1124unsigned int nr_free_buffer_pages(void)
1125{
af4ca457 1126 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1127}
1128
1129/*
1130 * Amount of free RAM allocatable within all zones
1131 */
1132unsigned int nr_free_pagecache_pages(void)
1133{
af4ca457 1134 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1135}
1136
1137#ifdef CONFIG_HIGHMEM
1138unsigned int nr_free_highpages (void)
1139{
1140 pg_data_t *pgdat;
1141 unsigned int pages = 0;
1142
1143 for_each_pgdat(pgdat)
1144 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1145
1146 return pages;
1147}
1148#endif
1149
1150#ifdef CONFIG_NUMA
1151static void show_node(struct zone *zone)
1152{
1153 printk("Node %d ", zone->zone_pgdat->node_id);
1154}
1155#else
1156#define show_node(zone) do { } while (0)
1157#endif
1158
1159/*
1160 * Accumulate the page_state information across all CPUs.
1161 * The result is unavoidably approximate - it can change
1162 * during and after execution of this function.
1163 */
1164static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1165
1166atomic_t nr_pagecache = ATOMIC_INIT(0);
1167EXPORT_SYMBOL(nr_pagecache);
1168#ifdef CONFIG_SMP
1169DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1170#endif
1171
c07e02db 1172void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4
LT
1173{
1174 int cpu = 0;
1175
1176 memset(ret, 0, sizeof(*ret));
c07e02db 1177 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1178
c07e02db 1179 cpu = first_cpu(*cpumask);
1da177e4
LT
1180 while (cpu < NR_CPUS) {
1181 unsigned long *in, *out, off;
1182
1183 in = (unsigned long *)&per_cpu(page_states, cpu);
1184
c07e02db 1185 cpu = next_cpu(cpu, *cpumask);
1da177e4
LT
1186
1187 if (cpu < NR_CPUS)
1188 prefetch(&per_cpu(page_states, cpu));
1189
1190 out = (unsigned long *)ret;
1191 for (off = 0; off < nr; off++)
1192 *out++ += *in++;
1193 }
1194}
1195
c07e02db
MH
1196void get_page_state_node(struct page_state *ret, int node)
1197{
1198 int nr;
1199 cpumask_t mask = node_to_cpumask(node);
1200
1201 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1202 nr /= sizeof(unsigned long);
1203
1204 __get_page_state(ret, nr+1, &mask);
1205}
1206
1da177e4
LT
1207void get_page_state(struct page_state *ret)
1208{
1209 int nr;
c07e02db 1210 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1211
1212 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1213 nr /= sizeof(unsigned long);
1214
c07e02db 1215 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1216}
1217
1218void get_full_page_state(struct page_state *ret)
1219{
c07e02db
MH
1220 cpumask_t mask = CPU_MASK_ALL;
1221
1222 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1223}
1224
c2f29ea1 1225unsigned long __read_page_state(unsigned long offset)
1da177e4
LT
1226{
1227 unsigned long ret = 0;
1228 int cpu;
1229
1230 for_each_online_cpu(cpu) {
1231 unsigned long in;
1232
1233 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1234 ret += *((unsigned long *)in);
1235 }
1236 return ret;
1237}
1238
83e5d8f7 1239void __mod_page_state(unsigned long offset, unsigned long delta)
1da177e4
LT
1240{
1241 unsigned long flags;
1242 void* ptr;
1243
1244 local_irq_save(flags);
1245 ptr = &__get_cpu_var(page_states);
1246 *(unsigned long*)(ptr + offset) += delta;
1247 local_irq_restore(flags);
1248}
1249
1250EXPORT_SYMBOL(__mod_page_state);
1251
1252void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1253 unsigned long *free, struct pglist_data *pgdat)
1254{
1255 struct zone *zones = pgdat->node_zones;
1256 int i;
1257
1258 *active = 0;
1259 *inactive = 0;
1260 *free = 0;
1261 for (i = 0; i < MAX_NR_ZONES; i++) {
1262 *active += zones[i].nr_active;
1263 *inactive += zones[i].nr_inactive;
1264 *free += zones[i].free_pages;
1265 }
1266}
1267
1268void get_zone_counts(unsigned long *active,
1269 unsigned long *inactive, unsigned long *free)
1270{
1271 struct pglist_data *pgdat;
1272
1273 *active = 0;
1274 *inactive = 0;
1275 *free = 0;
1276 for_each_pgdat(pgdat) {
1277 unsigned long l, m, n;
1278 __get_zone_counts(&l, &m, &n, pgdat);
1279 *active += l;
1280 *inactive += m;
1281 *free += n;
1282 }
1283}
1284
1285void si_meminfo(struct sysinfo *val)
1286{
1287 val->totalram = totalram_pages;
1288 val->sharedram = 0;
1289 val->freeram = nr_free_pages();
1290 val->bufferram = nr_blockdev_pages();
1291#ifdef CONFIG_HIGHMEM
1292 val->totalhigh = totalhigh_pages;
1293 val->freehigh = nr_free_highpages();
1294#else
1295 val->totalhigh = 0;
1296 val->freehigh = 0;
1297#endif
1298 val->mem_unit = PAGE_SIZE;
1299}
1300
1301EXPORT_SYMBOL(si_meminfo);
1302
1303#ifdef CONFIG_NUMA
1304void si_meminfo_node(struct sysinfo *val, int nid)
1305{
1306 pg_data_t *pgdat = NODE_DATA(nid);
1307
1308 val->totalram = pgdat->node_present_pages;
1309 val->freeram = nr_free_pages_pgdat(pgdat);
1310 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1311 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1312 val->mem_unit = PAGE_SIZE;
1313}
1314#endif
1315
1316#define K(x) ((x) << (PAGE_SHIFT-10))
1317
1318/*
1319 * Show free area list (used inside shift_scroll-lock stuff)
1320 * We also calculate the percentage fragmentation. We do this by counting the
1321 * memory on each free list with the exception of the first item on the list.
1322 */
1323void show_free_areas(void)
1324{
1325 struct page_state ps;
1326 int cpu, temperature;
1327 unsigned long active;
1328 unsigned long inactive;
1329 unsigned long free;
1330 struct zone *zone;
1331
1332 for_each_zone(zone) {
1333 show_node(zone);
1334 printk("%s per-cpu:", zone->name);
1335
1336 if (!zone->present_pages) {
1337 printk(" empty\n");
1338 continue;
1339 } else
1340 printk("\n");
1341
6b482c67 1342 for_each_online_cpu(cpu) {
1da177e4
LT
1343 struct per_cpu_pageset *pageset;
1344
e7c8d5c9 1345 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1346
1347 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1348 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1349 cpu,
1350 temperature ? "cold" : "hot",
1da177e4 1351 pageset->pcp[temperature].high,
4ae7c039
CL
1352 pageset->pcp[temperature].batch,
1353 pageset->pcp[temperature].count);
1da177e4
LT
1354 }
1355 }
1356
1357 get_page_state(&ps);
1358 get_zone_counts(&active, &inactive, &free);
1359
c0d62219 1360 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1361 K(nr_free_pages()),
1362 K(nr_free_highpages()));
1363
1364 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1365 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1366 active,
1367 inactive,
1368 ps.nr_dirty,
1369 ps.nr_writeback,
1370 ps.nr_unstable,
1371 nr_free_pages(),
1372 ps.nr_slab,
1373 ps.nr_mapped,
1374 ps.nr_page_table_pages);
1375
1376 for_each_zone(zone) {
1377 int i;
1378
1379 show_node(zone);
1380 printk("%s"
1381 " free:%lukB"
1382 " min:%lukB"
1383 " low:%lukB"
1384 " high:%lukB"
1385 " active:%lukB"
1386 " inactive:%lukB"
1387 " present:%lukB"
1388 " pages_scanned:%lu"
1389 " all_unreclaimable? %s"
1390 "\n",
1391 zone->name,
1392 K(zone->free_pages),
1393 K(zone->pages_min),
1394 K(zone->pages_low),
1395 K(zone->pages_high),
1396 K(zone->nr_active),
1397 K(zone->nr_inactive),
1398 K(zone->present_pages),
1399 zone->pages_scanned,
1400 (zone->all_unreclaimable ? "yes" : "no")
1401 );
1402 printk("lowmem_reserve[]:");
1403 for (i = 0; i < MAX_NR_ZONES; i++)
1404 printk(" %lu", zone->lowmem_reserve[i]);
1405 printk("\n");
1406 }
1407
1408 for_each_zone(zone) {
1409 unsigned long nr, flags, order, total = 0;
1410
1411 show_node(zone);
1412 printk("%s: ", zone->name);
1413 if (!zone->present_pages) {
1414 printk("empty\n");
1415 continue;
1416 }
1417
1418 spin_lock_irqsave(&zone->lock, flags);
1419 for (order = 0; order < MAX_ORDER; order++) {
1420 nr = zone->free_area[order].nr_free;
1421 total += nr << order;
1422 printk("%lu*%lukB ", nr, K(1UL) << order);
1423 }
1424 spin_unlock_irqrestore(&zone->lock, flags);
1425 printk("= %lukB\n", K(total));
1426 }
1427
1428 show_swap_cache_info();
1429}
1430
1431/*
1432 * Builds allocation fallback zone lists.
1433 */
1434static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1435{
1436 switch (k) {
1437 struct zone *zone;
1438 default:
1439 BUG();
1440 case ZONE_HIGHMEM:
1441 zone = pgdat->node_zones + ZONE_HIGHMEM;
1442 if (zone->present_pages) {
1443#ifndef CONFIG_HIGHMEM
1444 BUG();
1445#endif
1446 zonelist->zones[j++] = zone;
1447 }
1448 case ZONE_NORMAL:
1449 zone = pgdat->node_zones + ZONE_NORMAL;
1450 if (zone->present_pages)
1451 zonelist->zones[j++] = zone;
a2f1b424
AK
1452 case ZONE_DMA32:
1453 zone = pgdat->node_zones + ZONE_DMA32;
1454 if (zone->present_pages)
1455 zonelist->zones[j++] = zone;
1da177e4
LT
1456 case ZONE_DMA:
1457 zone = pgdat->node_zones + ZONE_DMA;
1458 if (zone->present_pages)
1459 zonelist->zones[j++] = zone;
1460 }
1461
1462 return j;
1463}
1464
260b2367
AV
1465static inline int highest_zone(int zone_bits)
1466{
1467 int res = ZONE_NORMAL;
1468 if (zone_bits & (__force int)__GFP_HIGHMEM)
1469 res = ZONE_HIGHMEM;
a2f1b424
AK
1470 if (zone_bits & (__force int)__GFP_DMA32)
1471 res = ZONE_DMA32;
260b2367
AV
1472 if (zone_bits & (__force int)__GFP_DMA)
1473 res = ZONE_DMA;
1474 return res;
1475}
1476
1da177e4
LT
1477#ifdef CONFIG_NUMA
1478#define MAX_NODE_LOAD (num_online_nodes())
1479static int __initdata node_load[MAX_NUMNODES];
1480/**
4dc3b16b 1481 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1482 * @node: node whose fallback list we're appending
1483 * @used_node_mask: nodemask_t of already used nodes
1484 *
1485 * We use a number of factors to determine which is the next node that should
1486 * appear on a given node's fallback list. The node should not have appeared
1487 * already in @node's fallback list, and it should be the next closest node
1488 * according to the distance array (which contains arbitrary distance values
1489 * from each node to each node in the system), and should also prefer nodes
1490 * with no CPUs, since presumably they'll have very little allocation pressure
1491 * on them otherwise.
1492 * It returns -1 if no node is found.
1493 */
1494static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1495{
1496 int i, n, val;
1497 int min_val = INT_MAX;
1498 int best_node = -1;
1499
1500 for_each_online_node(i) {
1501 cpumask_t tmp;
1502
1503 /* Start from local node */
1504 n = (node+i) % num_online_nodes();
1505
1506 /* Don't want a node to appear more than once */
1507 if (node_isset(n, *used_node_mask))
1508 continue;
1509
1510 /* Use the local node if we haven't already */
1511 if (!node_isset(node, *used_node_mask)) {
1512 best_node = node;
1513 break;
1514 }
1515
1516 /* Use the distance array to find the distance */
1517 val = node_distance(node, n);
1518
1519 /* Give preference to headless and unused nodes */
1520 tmp = node_to_cpumask(n);
1521 if (!cpus_empty(tmp))
1522 val += PENALTY_FOR_NODE_WITH_CPUS;
1523
1524 /* Slight preference for less loaded node */
1525 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1526 val += node_load[n];
1527
1528 if (val < min_val) {
1529 min_val = val;
1530 best_node = n;
1531 }
1532 }
1533
1534 if (best_node >= 0)
1535 node_set(best_node, *used_node_mask);
1536
1537 return best_node;
1538}
1539
1540static void __init build_zonelists(pg_data_t *pgdat)
1541{
1542 int i, j, k, node, local_node;
1543 int prev_node, load;
1544 struct zonelist *zonelist;
1545 nodemask_t used_mask;
1546
1547 /* initialize zonelists */
1548 for (i = 0; i < GFP_ZONETYPES; i++) {
1549 zonelist = pgdat->node_zonelists + i;
1550 zonelist->zones[0] = NULL;
1551 }
1552
1553 /* NUMA-aware ordering of nodes */
1554 local_node = pgdat->node_id;
1555 load = num_online_nodes();
1556 prev_node = local_node;
1557 nodes_clear(used_mask);
1558 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1559 /*
1560 * We don't want to pressure a particular node.
1561 * So adding penalty to the first node in same
1562 * distance group to make it round-robin.
1563 */
1564 if (node_distance(local_node, node) !=
1565 node_distance(local_node, prev_node))
1566 node_load[node] += load;
1567 prev_node = node;
1568 load--;
1569 for (i = 0; i < GFP_ZONETYPES; i++) {
1570 zonelist = pgdat->node_zonelists + i;
1571 for (j = 0; zonelist->zones[j] != NULL; j++);
1572
260b2367 1573 k = highest_zone(i);
1da177e4
LT
1574
1575 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1576 zonelist->zones[j] = NULL;
1577 }
1578 }
1579}
1580
1581#else /* CONFIG_NUMA */
1582
1583static void __init build_zonelists(pg_data_t *pgdat)
1584{
1585 int i, j, k, node, local_node;
1586
1587 local_node = pgdat->node_id;
1588 for (i = 0; i < GFP_ZONETYPES; i++) {
1589 struct zonelist *zonelist;
1590
1591 zonelist = pgdat->node_zonelists + i;
1592
1593 j = 0;
260b2367 1594 k = highest_zone(i);
1da177e4
LT
1595 j = build_zonelists_node(pgdat, zonelist, j, k);
1596 /*
1597 * Now we build the zonelist so that it contains the zones
1598 * of all the other nodes.
1599 * We don't want to pressure a particular node, so when
1600 * building the zones for node N, we make sure that the
1601 * zones coming right after the local ones are those from
1602 * node N+1 (modulo N)
1603 */
1604 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1605 if (!node_online(node))
1606 continue;
1607 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1608 }
1609 for (node = 0; node < local_node; node++) {
1610 if (!node_online(node))
1611 continue;
1612 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1613 }
1614
1615 zonelist->zones[j] = NULL;
1616 }
1617}
1618
1619#endif /* CONFIG_NUMA */
1620
1621void __init build_all_zonelists(void)
1622{
1623 int i;
1624
1625 for_each_online_node(i)
1626 build_zonelists(NODE_DATA(i));
1627 printk("Built %i zonelists\n", num_online_nodes());
1628 cpuset_init_current_mems_allowed();
1629}
1630
1631/*
1632 * Helper functions to size the waitqueue hash table.
1633 * Essentially these want to choose hash table sizes sufficiently
1634 * large so that collisions trying to wait on pages are rare.
1635 * But in fact, the number of active page waitqueues on typical
1636 * systems is ridiculously low, less than 200. So this is even
1637 * conservative, even though it seems large.
1638 *
1639 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1640 * waitqueues, i.e. the size of the waitq table given the number of pages.
1641 */
1642#define PAGES_PER_WAITQUEUE 256
1643
1644static inline unsigned long wait_table_size(unsigned long pages)
1645{
1646 unsigned long size = 1;
1647
1648 pages /= PAGES_PER_WAITQUEUE;
1649
1650 while (size < pages)
1651 size <<= 1;
1652
1653 /*
1654 * Once we have dozens or even hundreds of threads sleeping
1655 * on IO we've got bigger problems than wait queue collision.
1656 * Limit the size of the wait table to a reasonable size.
1657 */
1658 size = min(size, 4096UL);
1659
1660 return max(size, 4UL);
1661}
1662
1663/*
1664 * This is an integer logarithm so that shifts can be used later
1665 * to extract the more random high bits from the multiplicative
1666 * hash function before the remainder is taken.
1667 */
1668static inline unsigned long wait_table_bits(unsigned long size)
1669{
1670 return ffz(~size);
1671}
1672
1673#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1674
1675static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1676 unsigned long *zones_size, unsigned long *zholes_size)
1677{
1678 unsigned long realtotalpages, totalpages = 0;
1679 int i;
1680
1681 for (i = 0; i < MAX_NR_ZONES; i++)
1682 totalpages += zones_size[i];
1683 pgdat->node_spanned_pages = totalpages;
1684
1685 realtotalpages = totalpages;
1686 if (zholes_size)
1687 for (i = 0; i < MAX_NR_ZONES; i++)
1688 realtotalpages -= zholes_size[i];
1689 pgdat->node_present_pages = realtotalpages;
1690 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1691}
1692
1693
1694/*
1695 * Initially all pages are reserved - free ones are freed
1696 * up by free_all_bootmem() once the early boot process is
1697 * done. Non-atomic initialization, single-pass.
1698 */
3947be19 1699void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1700 unsigned long start_pfn)
1701{
1da177e4 1702 struct page *page;
29751f69
AW
1703 unsigned long end_pfn = start_pfn + size;
1704 unsigned long pfn;
1da177e4 1705
d41dee36
AW
1706 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1707 if (!early_pfn_valid(pfn))
1708 continue;
1709 page = pfn_to_page(pfn);
1710 set_page_links(page, zone, nid, pfn);
b5810039 1711 set_page_count(page, 1);
1da177e4
LT
1712 reset_page_mapcount(page);
1713 SetPageReserved(page);
1714 INIT_LIST_HEAD(&page->lru);
1715#ifdef WANT_PAGE_VIRTUAL
1716 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1717 if (!is_highmem_idx(zone))
3212c6be 1718 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1719#endif
1da177e4
LT
1720 }
1721}
1722
1723void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1724 unsigned long size)
1725{
1726 int order;
1727 for (order = 0; order < MAX_ORDER ; order++) {
1728 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1729 zone->free_area[order].nr_free = 0;
1730 }
1731}
1732
d41dee36
AW
1733#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1734void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1735 unsigned long size)
1736{
1737 unsigned long snum = pfn_to_section_nr(pfn);
1738 unsigned long end = pfn_to_section_nr(pfn + size);
1739
1740 if (FLAGS_HAS_NODE)
1741 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1742 else
1743 for (; snum <= end; snum++)
1744 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1745}
1746
1da177e4
LT
1747#ifndef __HAVE_ARCH_MEMMAP_INIT
1748#define memmap_init(size, nid, zone, start_pfn) \
1749 memmap_init_zone((size), (nid), (zone), (start_pfn))
1750#endif
1751
e7c8d5c9
CL
1752static int __devinit zone_batchsize(struct zone *zone)
1753{
1754 int batch;
1755
1756 /*
1757 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1758 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1759 *
1760 * OK, so we don't know how big the cache is. So guess.
1761 */
1762 batch = zone->present_pages / 1024;
ba56e91c
SR
1763 if (batch * PAGE_SIZE > 512 * 1024)
1764 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1765 batch /= 4; /* We effectively *= 4 below */
1766 if (batch < 1)
1767 batch = 1;
1768
1769 /*
0ceaacc9
NP
1770 * Clamp the batch to a 2^n - 1 value. Having a power
1771 * of 2 value was found to be more likely to have
1772 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1773 *
0ceaacc9
NP
1774 * For example if 2 tasks are alternately allocating
1775 * batches of pages, one task can end up with a lot
1776 * of pages of one half of the possible page colors
1777 * and the other with pages of the other colors.
e7c8d5c9 1778 */
0ceaacc9 1779 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1780
e7c8d5c9
CL
1781 return batch;
1782}
1783
2caaad41
CL
1784inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1785{
1786 struct per_cpu_pages *pcp;
1787
1c6fe946
MD
1788 memset(p, 0, sizeof(*p));
1789
2caaad41
CL
1790 pcp = &p->pcp[0]; /* hot */
1791 pcp->count = 0;
2caaad41
CL
1792 pcp->high = 6 * batch;
1793 pcp->batch = max(1UL, 1 * batch);
1794 INIT_LIST_HEAD(&pcp->list);
1795
1796 pcp = &p->pcp[1]; /* cold*/
1797 pcp->count = 0;
2caaad41 1798 pcp->high = 2 * batch;
e46a5e28 1799 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1800 INIT_LIST_HEAD(&pcp->list);
1801}
1802
e7c8d5c9
CL
1803#ifdef CONFIG_NUMA
1804/*
2caaad41
CL
1805 * Boot pageset table. One per cpu which is going to be used for all
1806 * zones and all nodes. The parameters will be set in such a way
1807 * that an item put on a list will immediately be handed over to
1808 * the buddy list. This is safe since pageset manipulation is done
1809 * with interrupts disabled.
1810 *
1811 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1812 *
1813 * The boot_pagesets must be kept even after bootup is complete for
1814 * unused processors and/or zones. They do play a role for bootstrapping
1815 * hotplugged processors.
1816 *
1817 * zoneinfo_show() and maybe other functions do
1818 * not check if the processor is online before following the pageset pointer.
1819 * Other parts of the kernel may not check if the zone is available.
2caaad41
CL
1820 */
1821static struct per_cpu_pageset
b7c84c6a 1822 boot_pageset[NR_CPUS];
2caaad41
CL
1823
1824/*
1825 * Dynamically allocate memory for the
e7c8d5c9
CL
1826 * per cpu pageset array in struct zone.
1827 */
1828static int __devinit process_zones(int cpu)
1829{
1830 struct zone *zone, *dzone;
e7c8d5c9
CL
1831
1832 for_each_zone(zone) {
e7c8d5c9 1833
2caaad41 1834 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1835 GFP_KERNEL, cpu_to_node(cpu));
2caaad41 1836 if (!zone->pageset[cpu])
e7c8d5c9 1837 goto bad;
e7c8d5c9 1838
2caaad41 1839 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
e7c8d5c9
CL
1840 }
1841
1842 return 0;
1843bad:
1844 for_each_zone(dzone) {
1845 if (dzone == zone)
1846 break;
1847 kfree(dzone->pageset[cpu]);
1848 dzone->pageset[cpu] = NULL;
1849 }
1850 return -ENOMEM;
1851}
1852
1853static inline void free_zone_pagesets(int cpu)
1854{
1855#ifdef CONFIG_NUMA
1856 struct zone *zone;
1857
1858 for_each_zone(zone) {
1859 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1860
1861 zone_pcp(zone, cpu) = NULL;
1862 kfree(pset);
1863 }
1864#endif
1865}
1866
1867static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1868 unsigned long action,
1869 void *hcpu)
1870{
1871 int cpu = (long)hcpu;
1872 int ret = NOTIFY_OK;
1873
1874 switch (action) {
1875 case CPU_UP_PREPARE:
1876 if (process_zones(cpu))
1877 ret = NOTIFY_BAD;
1878 break;
b0d41693 1879 case CPU_UP_CANCELED:
e7c8d5c9
CL
1880 case CPU_DEAD:
1881 free_zone_pagesets(cpu);
1882 break;
e7c8d5c9
CL
1883 default:
1884 break;
1885 }
1886 return ret;
1887}
1888
1889static struct notifier_block pageset_notifier =
1890 { &pageset_cpuup_callback, NULL, 0 };
1891
78d9955b 1892void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1893{
1894 int err;
1895
1896 /* Initialize per_cpu_pageset for cpu 0.
1897 * A cpuup callback will do this for every cpu
1898 * as it comes online
1899 */
1900 err = process_zones(smp_processor_id());
1901 BUG_ON(err);
1902 register_cpu_notifier(&pageset_notifier);
1903}
1904
1905#endif
1906
ed8ece2e
DH
1907static __devinit
1908void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1909{
1910 int i;
1911 struct pglist_data *pgdat = zone->zone_pgdat;
1912
1913 /*
1914 * The per-page waitqueue mechanism uses hashed waitqueues
1915 * per zone.
1916 */
1917 zone->wait_table_size = wait_table_size(zone_size_pages);
1918 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1919 zone->wait_table = (wait_queue_head_t *)
1920 alloc_bootmem_node(pgdat, zone->wait_table_size
1921 * sizeof(wait_queue_head_t));
1922
1923 for(i = 0; i < zone->wait_table_size; ++i)
1924 init_waitqueue_head(zone->wait_table + i);
1925}
1926
1927static __devinit void zone_pcp_init(struct zone *zone)
1928{
1929 int cpu;
1930 unsigned long batch = zone_batchsize(zone);
1931
1932 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1933#ifdef CONFIG_NUMA
1934 /* Early boot. Slab allocator not functional yet */
1935 zone->pageset[cpu] = &boot_pageset[cpu];
1936 setup_pageset(&boot_pageset[cpu],0);
1937#else
1938 setup_pageset(zone_pcp(zone,cpu), batch);
1939#endif
1940 }
1941 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1942 zone->name, zone->present_pages, batch);
1943}
1944
1945static __devinit void init_currently_empty_zone(struct zone *zone,
1946 unsigned long zone_start_pfn, unsigned long size)
1947{
1948 struct pglist_data *pgdat = zone->zone_pgdat;
1949
1950 zone_wait_table_init(zone, size);
1951 pgdat->nr_zones = zone_idx(zone) + 1;
1952
1953 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1954 zone->zone_start_pfn = zone_start_pfn;
1955
1956 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1957
1958 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1959}
1960
1da177e4
LT
1961/*
1962 * Set up the zone data structures:
1963 * - mark all pages reserved
1964 * - mark all memory queues empty
1965 * - clear the memory bitmaps
1966 */
1967static void __init free_area_init_core(struct pglist_data *pgdat,
1968 unsigned long *zones_size, unsigned long *zholes_size)
1969{
ed8ece2e
DH
1970 unsigned long j;
1971 int nid = pgdat->node_id;
1da177e4
LT
1972 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1973
208d54e5 1974 pgdat_resize_init(pgdat);
1da177e4
LT
1975 pgdat->nr_zones = 0;
1976 init_waitqueue_head(&pgdat->kswapd_wait);
1977 pgdat->kswapd_max_order = 0;
1978
1979 for (j = 0; j < MAX_NR_ZONES; j++) {
1980 struct zone *zone = pgdat->node_zones + j;
1981 unsigned long size, realsize;
1da177e4 1982
1da177e4
LT
1983 realsize = size = zones_size[j];
1984 if (zholes_size)
1985 realsize -= zholes_size[j];
1986
a2f1b424 1987 if (j < ZONE_HIGHMEM)
1da177e4
LT
1988 nr_kernel_pages += realsize;
1989 nr_all_pages += realsize;
1990
1991 zone->spanned_pages = size;
1992 zone->present_pages = realsize;
1993 zone->name = zone_names[j];
1994 spin_lock_init(&zone->lock);
1995 spin_lock_init(&zone->lru_lock);
bdc8cb98 1996 zone_seqlock_init(zone);
1da177e4
LT
1997 zone->zone_pgdat = pgdat;
1998 zone->free_pages = 0;
1999
2000 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2001
ed8ece2e 2002 zone_pcp_init(zone);
1da177e4
LT
2003 INIT_LIST_HEAD(&zone->active_list);
2004 INIT_LIST_HEAD(&zone->inactive_list);
2005 zone->nr_scan_active = 0;
2006 zone->nr_scan_inactive = 0;
2007 zone->nr_active = 0;
2008 zone->nr_inactive = 0;
53e9a615 2009 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2010 if (!size)
2011 continue;
2012
d41dee36 2013 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2014 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2015 zone_start_pfn += size;
1da177e4
LT
2016 }
2017}
2018
2019static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2020{
1da177e4
LT
2021 /* Skip empty nodes */
2022 if (!pgdat->node_spanned_pages)
2023 return;
2024
d41dee36 2025#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2026 /* ia64 gets its own node_mem_map, before this, without bootmem */
2027 if (!pgdat->node_mem_map) {
d41dee36
AW
2028 unsigned long size;
2029 struct page *map;
2030
1da177e4 2031 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2032 map = alloc_remap(pgdat->node_id, size);
2033 if (!map)
2034 map = alloc_bootmem_node(pgdat, size);
2035 pgdat->node_mem_map = map;
1da177e4 2036 }
d41dee36 2037#ifdef CONFIG_FLATMEM
1da177e4
LT
2038 /*
2039 * With no DISCONTIG, the global mem_map is just set as node 0's
2040 */
2041 if (pgdat == NODE_DATA(0))
2042 mem_map = NODE_DATA(0)->node_mem_map;
2043#endif
d41dee36 2044#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2045}
2046
2047void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2048 unsigned long *zones_size, unsigned long node_start_pfn,
2049 unsigned long *zholes_size)
2050{
2051 pgdat->node_id = nid;
2052 pgdat->node_start_pfn = node_start_pfn;
2053 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2054
2055 alloc_node_mem_map(pgdat);
2056
2057 free_area_init_core(pgdat, zones_size, zholes_size);
2058}
2059
93b7504e 2060#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2061static bootmem_data_t contig_bootmem_data;
2062struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2063
2064EXPORT_SYMBOL(contig_page_data);
93b7504e 2065#endif
1da177e4
LT
2066
2067void __init free_area_init(unsigned long *zones_size)
2068{
93b7504e 2069 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2070 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2071}
1da177e4
LT
2072
2073#ifdef CONFIG_PROC_FS
2074
2075#include <linux/seq_file.h>
2076
2077static void *frag_start(struct seq_file *m, loff_t *pos)
2078{
2079 pg_data_t *pgdat;
2080 loff_t node = *pos;
2081
2082 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2083 --node;
2084
2085 return pgdat;
2086}
2087
2088static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2089{
2090 pg_data_t *pgdat = (pg_data_t *)arg;
2091
2092 (*pos)++;
2093 return pgdat->pgdat_next;
2094}
2095
2096static void frag_stop(struct seq_file *m, void *arg)
2097{
2098}
2099
2100/*
2101 * This walks the free areas for each zone.
2102 */
2103static int frag_show(struct seq_file *m, void *arg)
2104{
2105 pg_data_t *pgdat = (pg_data_t *)arg;
2106 struct zone *zone;
2107 struct zone *node_zones = pgdat->node_zones;
2108 unsigned long flags;
2109 int order;
2110
2111 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2112 if (!zone->present_pages)
2113 continue;
2114
2115 spin_lock_irqsave(&zone->lock, flags);
2116 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2117 for (order = 0; order < MAX_ORDER; ++order)
2118 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2119 spin_unlock_irqrestore(&zone->lock, flags);
2120 seq_putc(m, '\n');
2121 }
2122 return 0;
2123}
2124
2125struct seq_operations fragmentation_op = {
2126 .start = frag_start,
2127 .next = frag_next,
2128 .stop = frag_stop,
2129 .show = frag_show,
2130};
2131
295ab934
ND
2132/*
2133 * Output information about zones in @pgdat.
2134 */
2135static int zoneinfo_show(struct seq_file *m, void *arg)
2136{
2137 pg_data_t *pgdat = arg;
2138 struct zone *zone;
2139 struct zone *node_zones = pgdat->node_zones;
2140 unsigned long flags;
2141
2142 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2143 int i;
2144
2145 if (!zone->present_pages)
2146 continue;
2147
2148 spin_lock_irqsave(&zone->lock, flags);
2149 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2150 seq_printf(m,
2151 "\n pages free %lu"
2152 "\n min %lu"
2153 "\n low %lu"
2154 "\n high %lu"
2155 "\n active %lu"
2156 "\n inactive %lu"
2157 "\n scanned %lu (a: %lu i: %lu)"
2158 "\n spanned %lu"
2159 "\n present %lu",
2160 zone->free_pages,
2161 zone->pages_min,
2162 zone->pages_low,
2163 zone->pages_high,
2164 zone->nr_active,
2165 zone->nr_inactive,
2166 zone->pages_scanned,
2167 zone->nr_scan_active, zone->nr_scan_inactive,
2168 zone->spanned_pages,
2169 zone->present_pages);
2170 seq_printf(m,
2171 "\n protection: (%lu",
2172 zone->lowmem_reserve[0]);
2173 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2174 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2175 seq_printf(m,
2176 ")"
2177 "\n pagesets");
2178 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2179 struct per_cpu_pageset *pageset;
2180 int j;
2181
e7c8d5c9 2182 pageset = zone_pcp(zone, i);
295ab934
ND
2183 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2184 if (pageset->pcp[j].count)
2185 break;
2186 }
2187 if (j == ARRAY_SIZE(pageset->pcp))
2188 continue;
2189 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2190 seq_printf(m,
2191 "\n cpu: %i pcp: %i"
2192 "\n count: %i"
295ab934
ND
2193 "\n high: %i"
2194 "\n batch: %i",
2195 i, j,
2196 pageset->pcp[j].count,
295ab934
ND
2197 pageset->pcp[j].high,
2198 pageset->pcp[j].batch);
2199 }
2200#ifdef CONFIG_NUMA
2201 seq_printf(m,
2202 "\n numa_hit: %lu"
2203 "\n numa_miss: %lu"
2204 "\n numa_foreign: %lu"
2205 "\n interleave_hit: %lu"
2206 "\n local_node: %lu"
2207 "\n other_node: %lu",
2208 pageset->numa_hit,
2209 pageset->numa_miss,
2210 pageset->numa_foreign,
2211 pageset->interleave_hit,
2212 pageset->local_node,
2213 pageset->other_node);
2214#endif
2215 }
2216 seq_printf(m,
2217 "\n all_unreclaimable: %u"
2218 "\n prev_priority: %i"
2219 "\n temp_priority: %i"
2220 "\n start_pfn: %lu",
2221 zone->all_unreclaimable,
2222 zone->prev_priority,
2223 zone->temp_priority,
2224 zone->zone_start_pfn);
2225 spin_unlock_irqrestore(&zone->lock, flags);
2226 seq_putc(m, '\n');
2227 }
2228 return 0;
2229}
2230
2231struct seq_operations zoneinfo_op = {
2232 .start = frag_start, /* iterate over all zones. The same as in
2233 * fragmentation. */
2234 .next = frag_next,
2235 .stop = frag_stop,
2236 .show = zoneinfo_show,
2237};
2238
1da177e4
LT
2239static char *vmstat_text[] = {
2240 "nr_dirty",
2241 "nr_writeback",
2242 "nr_unstable",
2243 "nr_page_table_pages",
2244 "nr_mapped",
2245 "nr_slab",
2246
2247 "pgpgin",
2248 "pgpgout",
2249 "pswpin",
2250 "pswpout",
2251 "pgalloc_high",
2252
2253 "pgalloc_normal",
2254 "pgalloc_dma",
2255 "pgfree",
2256 "pgactivate",
2257 "pgdeactivate",
2258
2259 "pgfault",
2260 "pgmajfault",
2261 "pgrefill_high",
2262 "pgrefill_normal",
2263 "pgrefill_dma",
2264
2265 "pgsteal_high",
2266 "pgsteal_normal",
2267 "pgsteal_dma",
2268 "pgscan_kswapd_high",
2269 "pgscan_kswapd_normal",
2270
2271 "pgscan_kswapd_dma",
2272 "pgscan_direct_high",
2273 "pgscan_direct_normal",
2274 "pgscan_direct_dma",
2275 "pginodesteal",
2276
2277 "slabs_scanned",
2278 "kswapd_steal",
2279 "kswapd_inodesteal",
2280 "pageoutrun",
2281 "allocstall",
2282
2283 "pgrotated",
edfbe2b0 2284 "nr_bounce",
1da177e4
LT
2285};
2286
2287static void *vmstat_start(struct seq_file *m, loff_t *pos)
2288{
2289 struct page_state *ps;
2290
2291 if (*pos >= ARRAY_SIZE(vmstat_text))
2292 return NULL;
2293
2294 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2295 m->private = ps;
2296 if (!ps)
2297 return ERR_PTR(-ENOMEM);
2298 get_full_page_state(ps);
2299 ps->pgpgin /= 2; /* sectors -> kbytes */
2300 ps->pgpgout /= 2;
2301 return (unsigned long *)ps + *pos;
2302}
2303
2304static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2305{
2306 (*pos)++;
2307 if (*pos >= ARRAY_SIZE(vmstat_text))
2308 return NULL;
2309 return (unsigned long *)m->private + *pos;
2310}
2311
2312static int vmstat_show(struct seq_file *m, void *arg)
2313{
2314 unsigned long *l = arg;
2315 unsigned long off = l - (unsigned long *)m->private;
2316
2317 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2318 return 0;
2319}
2320
2321static void vmstat_stop(struct seq_file *m, void *arg)
2322{
2323 kfree(m->private);
2324 m->private = NULL;
2325}
2326
2327struct seq_operations vmstat_op = {
2328 .start = vmstat_start,
2329 .next = vmstat_next,
2330 .stop = vmstat_stop,
2331 .show = vmstat_show,
2332};
2333
2334#endif /* CONFIG_PROC_FS */
2335
2336#ifdef CONFIG_HOTPLUG_CPU
2337static int page_alloc_cpu_notify(struct notifier_block *self,
2338 unsigned long action, void *hcpu)
2339{
2340 int cpu = (unsigned long)hcpu;
2341 long *count;
2342 unsigned long *src, *dest;
2343
2344 if (action == CPU_DEAD) {
2345 int i;
2346
2347 /* Drain local pagecache count. */
2348 count = &per_cpu(nr_pagecache_local, cpu);
2349 atomic_add(*count, &nr_pagecache);
2350 *count = 0;
2351 local_irq_disable();
2352 __drain_pages(cpu);
2353
2354 /* Add dead cpu's page_states to our own. */
2355 dest = (unsigned long *)&__get_cpu_var(page_states);
2356 src = (unsigned long *)&per_cpu(page_states, cpu);
2357
2358 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2359 i++) {
2360 dest[i] += src[i];
2361 src[i] = 0;
2362 }
2363
2364 local_irq_enable();
2365 }
2366 return NOTIFY_OK;
2367}
2368#endif /* CONFIG_HOTPLUG_CPU */
2369
2370void __init page_alloc_init(void)
2371{
2372 hotcpu_notifier(page_alloc_cpu_notify, 0);
2373}
2374
2375/*
2376 * setup_per_zone_lowmem_reserve - called whenever
2377 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2378 * has a correct pages reserved value, so an adequate number of
2379 * pages are left in the zone after a successful __alloc_pages().
2380 */
2381static void setup_per_zone_lowmem_reserve(void)
2382{
2383 struct pglist_data *pgdat;
2384 int j, idx;
2385
2386 for_each_pgdat(pgdat) {
2387 for (j = 0; j < MAX_NR_ZONES; j++) {
2388 struct zone *zone = pgdat->node_zones + j;
2389 unsigned long present_pages = zone->present_pages;
2390
2391 zone->lowmem_reserve[j] = 0;
2392
2393 for (idx = j-1; idx >= 0; idx--) {
2394 struct zone *lower_zone;
2395
2396 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2397 sysctl_lowmem_reserve_ratio[idx] = 1;
2398
2399 lower_zone = pgdat->node_zones + idx;
2400 lower_zone->lowmem_reserve[j] = present_pages /
2401 sysctl_lowmem_reserve_ratio[idx];
2402 present_pages += lower_zone->present_pages;
2403 }
2404 }
2405 }
2406}
2407
2408/*
2409 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2410 * that the pages_{min,low,high} values for each zone are set correctly
2411 * with respect to min_free_kbytes.
2412 */
3947be19 2413void setup_per_zone_pages_min(void)
1da177e4
LT
2414{
2415 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2416 unsigned long lowmem_pages = 0;
2417 struct zone *zone;
2418 unsigned long flags;
2419
2420 /* Calculate total number of !ZONE_HIGHMEM pages */
2421 for_each_zone(zone) {
2422 if (!is_highmem(zone))
2423 lowmem_pages += zone->present_pages;
2424 }
2425
2426 for_each_zone(zone) {
669ed175 2427 unsigned long tmp;
1da177e4 2428 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2429 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2430 if (is_highmem(zone)) {
2431 /*
669ed175
NP
2432 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2433 * need highmem pages, so cap pages_min to a small
2434 * value here.
2435 *
2436 * The (pages_high-pages_low) and (pages_low-pages_min)
2437 * deltas controls asynch page reclaim, and so should
2438 * not be capped for highmem.
1da177e4
LT
2439 */
2440 int min_pages;
2441
2442 min_pages = zone->present_pages / 1024;
2443 if (min_pages < SWAP_CLUSTER_MAX)
2444 min_pages = SWAP_CLUSTER_MAX;
2445 if (min_pages > 128)
2446 min_pages = 128;
2447 zone->pages_min = min_pages;
2448 } else {
669ed175
NP
2449 /*
2450 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2451 * proportionate to the zone's size.
2452 */
669ed175 2453 zone->pages_min = tmp;
1da177e4
LT
2454 }
2455
669ed175
NP
2456 zone->pages_low = zone->pages_min + tmp / 4;
2457 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2458 spin_unlock_irqrestore(&zone->lru_lock, flags);
2459 }
2460}
2461
2462/*
2463 * Initialise min_free_kbytes.
2464 *
2465 * For small machines we want it small (128k min). For large machines
2466 * we want it large (64MB max). But it is not linear, because network
2467 * bandwidth does not increase linearly with machine size. We use
2468 *
2469 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2470 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2471 *
2472 * which yields
2473 *
2474 * 16MB: 512k
2475 * 32MB: 724k
2476 * 64MB: 1024k
2477 * 128MB: 1448k
2478 * 256MB: 2048k
2479 * 512MB: 2896k
2480 * 1024MB: 4096k
2481 * 2048MB: 5792k
2482 * 4096MB: 8192k
2483 * 8192MB: 11584k
2484 * 16384MB: 16384k
2485 */
2486static int __init init_per_zone_pages_min(void)
2487{
2488 unsigned long lowmem_kbytes;
2489
2490 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2491
2492 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2493 if (min_free_kbytes < 128)
2494 min_free_kbytes = 128;
2495 if (min_free_kbytes > 65536)
2496 min_free_kbytes = 65536;
2497 setup_per_zone_pages_min();
2498 setup_per_zone_lowmem_reserve();
2499 return 0;
2500}
2501module_init(init_per_zone_pages_min)
2502
2503/*
2504 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2505 * that we can call two helper functions whenever min_free_kbytes
2506 * changes.
2507 */
2508int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2509 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2510{
2511 proc_dointvec(table, write, file, buffer, length, ppos);
2512 setup_per_zone_pages_min();
2513 return 0;
2514}
2515
2516/*
2517 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2518 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2519 * whenever sysctl_lowmem_reserve_ratio changes.
2520 *
2521 * The reserve ratio obviously has absolutely no relation with the
2522 * pages_min watermarks. The lowmem reserve ratio can only make sense
2523 * if in function of the boot time zone sizes.
2524 */
2525int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2526 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2527{
2528 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2529 setup_per_zone_lowmem_reserve();
2530 return 0;
2531}
2532
2533__initdata int hashdist = HASHDIST_DEFAULT;
2534
2535#ifdef CONFIG_NUMA
2536static int __init set_hashdist(char *str)
2537{
2538 if (!str)
2539 return 0;
2540 hashdist = simple_strtoul(str, &str, 0);
2541 return 1;
2542}
2543__setup("hashdist=", set_hashdist);
2544#endif
2545
2546/*
2547 * allocate a large system hash table from bootmem
2548 * - it is assumed that the hash table must contain an exact power-of-2
2549 * quantity of entries
2550 * - limit is the number of hash buckets, not the total allocation size
2551 */
2552void *__init alloc_large_system_hash(const char *tablename,
2553 unsigned long bucketsize,
2554 unsigned long numentries,
2555 int scale,
2556 int flags,
2557 unsigned int *_hash_shift,
2558 unsigned int *_hash_mask,
2559 unsigned long limit)
2560{
2561 unsigned long long max = limit;
2562 unsigned long log2qty, size;
2563 void *table = NULL;
2564
2565 /* allow the kernel cmdline to have a say */
2566 if (!numentries) {
2567 /* round applicable memory size up to nearest megabyte */
2568 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2569 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2570 numentries >>= 20 - PAGE_SHIFT;
2571 numentries <<= 20 - PAGE_SHIFT;
2572
2573 /* limit to 1 bucket per 2^scale bytes of low memory */
2574 if (scale > PAGE_SHIFT)
2575 numentries >>= (scale - PAGE_SHIFT);
2576 else
2577 numentries <<= (PAGE_SHIFT - scale);
2578 }
2579 /* rounded up to nearest power of 2 in size */
2580 numentries = 1UL << (long_log2(numentries) + 1);
2581
2582 /* limit allocation size to 1/16 total memory by default */
2583 if (max == 0) {
2584 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2585 do_div(max, bucketsize);
2586 }
2587
2588 if (numentries > max)
2589 numentries = max;
2590
2591 log2qty = long_log2(numentries);
2592
2593 do {
2594 size = bucketsize << log2qty;
2595 if (flags & HASH_EARLY)
2596 table = alloc_bootmem(size);
2597 else if (hashdist)
2598 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2599 else {
2600 unsigned long order;
2601 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2602 ;
2603 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2604 }
2605 } while (!table && size > PAGE_SIZE && --log2qty);
2606
2607 if (!table)
2608 panic("Failed to allocate %s hash table\n", tablename);
2609
2610 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2611 tablename,
2612 (1U << log2qty),
2613 long_log2(size) - PAGE_SHIFT,
2614 size);
2615
2616 if (_hash_shift)
2617 *_hash_shift = log2qty;
2618 if (_hash_mask)
2619 *_hash_mask = (1 << log2qty) - 1;
2620
2621 return table;
2622}
This page took 0.215369 seconds and 5 git commands to generate.