mm: consider compaction feedback also for costly allocation
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
2a7684a2
WF
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
22b751c3 527 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
528 return;
529 }
530
d936cf9b
HD
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
ff8e8116 541 pr_alert(
1e9e6365 542 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
ff8e8116 551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 552 current->comm, page_to_pfn(page));
ff8e8116
VB
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
4e462112 558 dump_page_owner(page);
3dc14741 559
4f31888c 560 print_modules();
1da177e4 561 dump_stack();
d936cf9b 562out:
8cc3b392 563 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 564 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
566}
567
1da177e4
LT
568/*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
1d798ca3 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 572 *
1d798ca3
KS
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 575 *
1d798ca3
KS
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
1da177e4 578 *
1d798ca3 579 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 580 * This usage means that zero-order pages may not be compound.
1da177e4 581 */
d98c7a09 582
9a982250 583void free_compound_page(struct page *page)
d98c7a09 584{
d85f3385 585 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
586}
587
d00181b9 588void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
589{
590 int i;
591 int nr_pages = 1 << order;
592
f1e61557 593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
58a84aa9 598 set_page_count(p, 0);
1c290f64 599 p->mapping = TAIL_MAPPING;
1d798ca3 600 set_compound_head(p, page);
18229df5 601 }
53f9263b 602 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
603}
604
c0a32fc5
SG
605#ifdef CONFIG_DEBUG_PAGEALLOC
606unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
607bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 609EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
610bool _debug_guardpage_enabled __read_mostly;
611
031bc574
JK
612static int __init early_debug_pagealloc(char *buf)
613{
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
ea6eabb0
CB
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
031bc574
JK
623 return 0;
624}
625early_param("debug_pagealloc", early_debug_pagealloc);
626
e30825f1
JK
627static bool need_debug_guardpage(void)
628{
031bc574
JK
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
e30825f1
JK
633 return true;
634}
635
636static void init_debug_guardpage(void)
637{
031bc574
JK
638 if (!debug_pagealloc_enabled())
639 return;
640
e30825f1
JK
641 _debug_guardpage_enabled = true;
642}
643
644struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647};
c0a32fc5
SG
648
649static int __init debug_guardpage_minorder_setup(char *buf)
650{
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 654 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
1170532b 658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
659 return 0;
660}
661__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
2847cf95
JK
663static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
c0a32fc5 665{
e30825f1
JK
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
678}
679
2847cf95
JK
680static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
c0a32fc5 682{
e30825f1
JK
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
e30825f1 696struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
697static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13e7444b 718 * (a) the buddy is not in a hole &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
14e07298 733 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 734 return 0;
13e7444b 735
c0a32fc5 736 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
c0a32fc5
SG
742 return 1;
743 }
744
cb2b95e1 745 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
6aa3001b 756 return 1;
676165a8 757 }
6aa3001b 758 return 0;
1da177e4
LT
759}
760
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
1da177e4 777 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
1da177e4 780 * If a block is freed, and its buddy is also free, then this
5f63b720 781 * triggers coalescing into a block of larger size.
1da177e4 782 *
6d49e352 783 * -- nyc
1da177e4
LT
784 */
785
48db57f8 786static inline void __free_one_page(struct page *page,
dc4b0caf 787 unsigned long pfn,
ed0ae21d
MG
788 struct zone *zone, unsigned int order,
789 int migratetype)
1da177e4
LT
790{
791 unsigned long page_idx;
6dda9d55 792 unsigned long combined_idx;
43506fad 793 unsigned long uninitialized_var(buddy_idx);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
d9dddbf5 806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 807
309381fe
SL
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 810
d9dddbf5 811continue_merging:
3c605096 812 while (order < max_order - 1) {
43506fad
KC
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
cb2b95e1 815 if (!page_is_buddy(page, buddy, order))
d9dddbf5 816 goto done_merging;
c0a32fc5
SG
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
2847cf95 822 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
43506fad 828 combined_idx = buddy_idx & page_idx;
1da177e4
LT
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
d9dddbf5
VB
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858done_merging:
1da177e4 859 set_page_order(page, order);
6dda9d55
CZ
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
b7f50cfa 869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 870 struct page *higher_page, *higher_buddy;
43506fad
KC
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 874 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883out:
1da177e4
LT
884 zone->free_area[order].nr_free++;
885}
886
7bfec6f4
MG
887/*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894{
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900#ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902#endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907}
908
bb552ac6 909static void free_pages_check_bad(struct page *page)
1da177e4 910{
7bfec6f4
MG
911 const char *bad_reason;
912 unsigned long bad_flags;
913
7bfec6f4
MG
914 bad_reason = NULL;
915 bad_flags = 0;
f0b791a3 916
53f9263b 917 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
fe896d18 921 if (unlikely(page_ref_count(page) != 0))
0139aa7b 922 bad_reason = "nonzero _refcount";
f0b791a3
DH
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
9edad6ea
JW
927#ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930#endif
7bfec6f4 931 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
932}
933
934static inline int free_pages_check(struct page *page)
935{
da838d4f 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 937 return 0;
bb552ac6
MG
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
7bfec6f4 941 return 1;
1da177e4
LT
942}
943
4db7548c
MG
944static int free_tail_pages_check(struct page *head_page, struct page *page)
945{
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992}
993
e2769dbd
MG
994static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
4db7548c 996{
e2769dbd 997 int bad = 0;
4db7548c 998
4db7548c
MG
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
e2769dbd
MG
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
1003 kasan_free_pages(page, order);
1004
1005 /*
1006 * Check tail pages before head page information is cleared to
1007 * avoid checking PageCompound for order-0 pages.
1008 */
1009 if (unlikely(order)) {
1010 bool compound = PageCompound(page);
1011 int i;
1012
1013 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1014
e2769dbd
MG
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
4db7548c
MG
1025 if (PageAnonHead(page))
1026 page->mapping = NULL;
e2769dbd
MG
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
4db7548c 1031
e2769dbd
MG
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
4db7548c
MG
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
e2769dbd 1038 PAGE_SIZE << order);
4db7548c 1039 debug_check_no_obj_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 }
e2769dbd
MG
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
4db7548c 1045
4db7548c
MG
1046 return true;
1047}
1048
e2769dbd
MG
1049#ifdef CONFIG_DEBUG_VM
1050static inline bool free_pcp_prepare(struct page *page)
1051{
1052 return free_pages_prepare(page, 0, true);
1053}
1054
1055static inline bool bulkfree_pcp_prepare(struct page *page)
1056{
1057 return false;
1058}
1059#else
1060static bool free_pcp_prepare(struct page *page)
1061{
1062 return free_pages_prepare(page, 0, false);
1063}
1064
4db7548c
MG
1065static bool bulkfree_pcp_prepare(struct page *page)
1066{
1067 return free_pages_check(page);
1068}
1069#endif /* CONFIG_DEBUG_VM */
1070
1da177e4 1071/*
5f8dcc21 1072 * Frees a number of pages from the PCP lists
1da177e4 1073 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1074 * count is the number of pages to free.
1da177e4
LT
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
5f8dcc21
MG
1082static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1da177e4 1084{
5f8dcc21 1085 int migratetype = 0;
a6f9edd6 1086 int batch_free = 0;
0d5d823a 1087 unsigned long nr_scanned;
3777999d 1088 bool isolated_pageblocks;
5f8dcc21 1089
c54ad30c 1090 spin_lock(&zone->lock);
3777999d 1091 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1095
e5b31ac2 1096 while (count) {
48db57f8 1097 struct page *page;
5f8dcc21
MG
1098 struct list_head *list;
1099
1100 /*
a6f9edd6
MG
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
5f8dcc21
MG
1106 */
1107 do {
a6f9edd6 1108 batch_free++;
5f8dcc21
MG
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
48db57f8 1113
1d16871d
NK
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1116 batch_free = count;
1d16871d 1117
a6f9edd6 1118 do {
770c8aaa
BZ
1119 int mt; /* migratetype of the to-be-freed page */
1120
a16601c5 1121 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
aa016d14 1124
bb14c2c7 1125 mt = get_pcppage_migratetype(page);
aa016d14
VB
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
3777999d 1129 if (unlikely(isolated_pageblocks))
51bb1a40 1130 mt = get_pageblock_migratetype(page);
51bb1a40 1131
4db7548c
MG
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
dc4b0caf 1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1136 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1137 } while (--count && --batch_free && !list_empty(list));
1da177e4 1138 }
c54ad30c 1139 spin_unlock(&zone->lock);
1da177e4
LT
1140}
1141
dc4b0caf
MG
1142static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
7aeb09f9 1144 unsigned int order,
ed0ae21d 1145 int migratetype)
1da177e4 1146{
0d5d823a 1147 unsigned long nr_scanned;
006d22d9 1148 spin_lock(&zone->lock);
0d5d823a
MG
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1152
ad53f92e
JK
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1156 }
dc4b0caf 1157 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1158 spin_unlock(&zone->lock);
48db57f8
NP
1159}
1160
1e8ce83c
RH
1161static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163{
1e8ce83c 1164 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1e8ce83c 1168
1e8ce83c
RH
1169 INIT_LIST_HEAD(&page->lru);
1170#ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174#endif
1175}
1176
1177static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179{
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181}
1182
7e18adb4
MG
1183#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184static void init_reserved_page(unsigned long pfn)
1185{
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202}
1203#else
1204static inline void init_reserved_page(unsigned long pfn)
1205{
1206}
1207#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
92923ca3
NZ
1209/*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
7e18adb4 1215void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1216{
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
7e18adb4
MG
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1d798ca3
KS
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
7e18adb4
MG
1229 SetPageReserved(page);
1230 }
1231 }
92923ca3
NZ
1232}
1233
ec95f53a
KM
1234static void __free_pages_ok(struct page *page, unsigned int order)
1235{
1236 unsigned long flags;
95e34412 1237 int migratetype;
dc4b0caf 1238 unsigned long pfn = page_to_pfn(page);
ec95f53a 1239
e2769dbd 1240 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1241 return;
1242
cfc47a28 1243 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1244 local_irq_save(flags);
f8891e5e 1245 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1247 local_irq_restore(flags);
1da177e4
LT
1248}
1249
949698a3 1250static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1251{
c3993076 1252 unsigned int nr_pages = 1 << order;
e2d0bd2b 1253 struct page *p = page;
c3993076 1254 unsigned int loop;
a226f6c8 1255
e2d0bd2b
YL
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
c3993076
JW
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
a226f6c8 1261 }
e2d0bd2b
YL
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
c3993076 1264
e2d0bd2b 1265 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
a226f6c8
DH
1268}
1269
75a592a4
MG
1270#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1272
75a592a4
MG
1273static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275int __meminit early_pfn_to_nid(unsigned long pfn)
1276{
7ace9917 1277 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1278 int nid;
1279
7ace9917 1280 spin_lock(&early_pfn_lock);
75a592a4 1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1282 if (nid < 0)
1283 nid = 0;
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
75a592a4
MG
1287}
1288#endif
1289
1290#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293{
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300}
1301
1302/* Only safe to use early in boot when initialisation is single-threaded */
1303static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304{
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306}
1307
1308#else
1309
1310static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311{
1312 return true;
1313}
1314static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316{
1317 return true;
1318}
1319#endif
1320
1321
0e1cc95b 1322void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1323 unsigned int order)
1324{
1325 if (early_page_uninitialised(pfn))
1326 return;
949698a3 1327 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1328}
1329
7cf91a98
JK
1330/*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349{
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371}
1372
1373void set_zone_contiguous(struct zone *zone)
1374{
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392}
1393
1394void clear_zone_contiguous(struct zone *zone)
1395{
1396 zone->contiguous = false;
1397}
1398
7e18adb4 1399#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1400static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1401 unsigned long pfn, int nr_pages)
1402{
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1412 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1413 return;
1414 }
1415
949698a3
LZ
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
a4de83dd
MG
1418}
1419
d3cd131d
NS
1420/* Completion tracking for deferred_init_memmap() threads */
1421static atomic_t pgdat_init_n_undone __initdata;
1422static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424static inline void __init pgdat_init_report_one_done(void)
1425{
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428}
0e1cc95b 1429
7e18adb4 1430/* Initialise remaining memory on a node */
0e1cc95b 1431static int __init deferred_init_memmap(void *data)
7e18adb4 1432{
0e1cc95b
MG
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
7e18adb4
MG
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
7e18adb4 1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1443
0e1cc95b 1444 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1445 pgdat_init_report_one_done();
0e1cc95b
MG
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
54608c3f 1467 struct page *page = NULL;
a4de83dd
MG
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
7e18adb4
MG
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
54608c3f 1480 if (!pfn_valid_within(pfn))
a4de83dd 1481 goto free_range;
7e18adb4 1482
54608c3f
MG
1483 /*
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1486 */
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
a4de83dd 1490 goto free_range;
54608c3f
MG
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
a4de83dd
MG
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
54608c3f
MG
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
7e18adb4
MG
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1515 goto free_range;
7e18adb4
MG
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
7e18adb4 1535 }
a4de83dd 1536
7e18adb4
MG
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1538 }
1539
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1542
0e1cc95b 1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1544 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1545
1546 pgdat_init_report_one_done();
0e1cc95b
MG
1547 return 0;
1548}
7cf91a98 1549#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1550
1551void __init page_alloc_init_late(void)
1552{
7cf91a98
JK
1553 struct zone *zone;
1554
1555#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1556 int nid;
1557
d3cd131d
NS
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1560 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1562 }
1563
1564 /* Block until all are initialised */
d3cd131d 1565 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1566
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
7cf91a98
JK
1569#endif
1570
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
7e18adb4 1573}
7e18adb4 1574
47118af0 1575#ifdef CONFIG_CMA
9cf510a5 1576/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1577void __init init_cma_reserved_pageblock(struct page *page)
1578{
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1581
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1586
47118af0 1587 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1588
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1600 }
1601
3dcc0571 1602 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1603}
1604#endif
1da177e4
LT
1605
1606/*
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1617 *
6d49e352 1618 * -- nyc
1da177e4 1619 */
085cc7d5 1620static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1da177e4
LT
1623{
1624 unsigned long size = 1 << high;
1625
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
309381fe 1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1631
2847cf95 1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1633 debug_guardpage_enabled() &&
2847cf95 1634 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
2847cf95 1641 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1642 continue;
1643 }
b2a0ac88 1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1da177e4
LT
1648}
1649
4e611801 1650static void check_new_page_bad(struct page *page)
1da177e4 1651{
4e611801
VB
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
7bfec6f4 1654
53f9263b 1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
fe896d18 1659 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1660 bad_reason = "nonzero _count";
f4c18e6f
NH
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
1664 }
f0b791a3
DH
1665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1666 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1667 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1668 }
9edad6ea
JW
1669#ifdef CONFIG_MEMCG
1670 if (unlikely(page->mem_cgroup))
1671 bad_reason = "page still charged to cgroup";
1672#endif
4e611801
VB
1673 bad_page(page, bad_reason, bad_flags);
1674}
1675
1676/*
1677 * This page is about to be returned from the page allocator
1678 */
1679static inline int check_new_page(struct page *page)
1680{
1681 if (likely(page_expected_state(page,
1682 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1683 return 0;
1684
1685 check_new_page_bad(page);
1686 return 1;
2a7684a2
WF
1687}
1688
1414c7f4
LA
1689static inline bool free_pages_prezeroed(bool poisoned)
1690{
1691 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1692 page_poisoning_enabled() && poisoned;
1693}
1694
479f854a
MG
1695#ifdef CONFIG_DEBUG_VM
1696static bool check_pcp_refill(struct page *page)
1697{
1698 return false;
1699}
1700
1701static bool check_new_pcp(struct page *page)
1702{
1703 return check_new_page(page);
1704}
1705#else
1706static bool check_pcp_refill(struct page *page)
1707{
1708 return check_new_page(page);
1709}
1710static bool check_new_pcp(struct page *page)
1711{
1712 return false;
1713}
1714#endif /* CONFIG_DEBUG_VM */
1715
1716static bool check_new_pages(struct page *page, unsigned int order)
1717{
1718 int i;
1719 for (i = 0; i < (1 << order); i++) {
1720 struct page *p = page + i;
1721
1722 if (unlikely(check_new_page(p)))
1723 return true;
1724 }
1725
1726 return false;
1727}
1728
1729static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1730 unsigned int alloc_flags)
2a7684a2
WF
1731{
1732 int i;
1414c7f4 1733 bool poisoned = true;
2a7684a2
WF
1734
1735 for (i = 0; i < (1 << order); i++) {
1736 struct page *p = page + i;
1414c7f4
LA
1737 if (poisoned)
1738 poisoned &= page_is_poisoned(p);
2a7684a2 1739 }
689bcebf 1740
4c21e2f2 1741 set_page_private(page, 0);
7835e98b 1742 set_page_refcounted(page);
cc102509
NP
1743
1744 arch_alloc_page(page, order);
1da177e4 1745 kernel_map_pages(page, 1 << order, 1);
8823b1db 1746 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1747 kasan_alloc_pages(page, order);
17cf4406 1748
1414c7f4 1749 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1750 for (i = 0; i < (1 << order); i++)
1751 clear_highpage(page + i);
17cf4406
NP
1752
1753 if (order && (gfp_flags & __GFP_COMP))
1754 prep_compound_page(page, order);
1755
48c96a36
JK
1756 set_page_owner(page, order, gfp_flags);
1757
75379191 1758 /*
2f064f34 1759 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1760 * allocate the page. The expectation is that the caller is taking
1761 * steps that will free more memory. The caller should avoid the page
1762 * being used for !PFMEMALLOC purposes.
1763 */
2f064f34
MH
1764 if (alloc_flags & ALLOC_NO_WATERMARKS)
1765 set_page_pfmemalloc(page);
1766 else
1767 clear_page_pfmemalloc(page);
1da177e4
LT
1768}
1769
56fd56b8
MG
1770/*
1771 * Go through the free lists for the given migratetype and remove
1772 * the smallest available page from the freelists
1773 */
728ec980
MG
1774static inline
1775struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1776 int migratetype)
1777{
1778 unsigned int current_order;
b8af2941 1779 struct free_area *area;
56fd56b8
MG
1780 struct page *page;
1781
1782 /* Find a page of the appropriate size in the preferred list */
1783 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1784 area = &(zone->free_area[current_order]);
a16601c5 1785 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1786 struct page, lru);
a16601c5
GT
1787 if (!page)
1788 continue;
56fd56b8
MG
1789 list_del(&page->lru);
1790 rmv_page_order(page);
1791 area->nr_free--;
56fd56b8 1792 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1793 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1794 return page;
1795 }
1796
1797 return NULL;
1798}
1799
1800
b2a0ac88
MG
1801/*
1802 * This array describes the order lists are fallen back to when
1803 * the free lists for the desirable migrate type are depleted
1804 */
47118af0 1805static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1806 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1807 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1808 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1809#ifdef CONFIG_CMA
974a786e 1810 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1811#endif
194159fb 1812#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1813 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1814#endif
b2a0ac88
MG
1815};
1816
dc67647b
JK
1817#ifdef CONFIG_CMA
1818static struct page *__rmqueue_cma_fallback(struct zone *zone,
1819 unsigned int order)
1820{
1821 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1822}
1823#else
1824static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1825 unsigned int order) { return NULL; }
1826#endif
1827
c361be55
MG
1828/*
1829 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1830 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1831 * boundary. If alignment is required, use move_freepages_block()
1832 */
435b405c 1833int move_freepages(struct zone *zone,
b69a7288
AB
1834 struct page *start_page, struct page *end_page,
1835 int migratetype)
c361be55
MG
1836{
1837 struct page *page;
d00181b9 1838 unsigned int order;
d100313f 1839 int pages_moved = 0;
c361be55
MG
1840
1841#ifndef CONFIG_HOLES_IN_ZONE
1842 /*
1843 * page_zone is not safe to call in this context when
1844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1845 * anyway as we check zone boundaries in move_freepages_block().
1846 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1847 * grouping pages by mobility
c361be55 1848 */
97ee4ba7 1849 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1850#endif
1851
1852 for (page = start_page; page <= end_page;) {
344c790e 1853 /* Make sure we are not inadvertently changing nodes */
309381fe 1854 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1855
c361be55
MG
1856 if (!pfn_valid_within(page_to_pfn(page))) {
1857 page++;
1858 continue;
1859 }
1860
1861 if (!PageBuddy(page)) {
1862 page++;
1863 continue;
1864 }
1865
1866 order = page_order(page);
84be48d8
KS
1867 list_move(&page->lru,
1868 &zone->free_area[order].free_list[migratetype]);
c361be55 1869 page += 1 << order;
d100313f 1870 pages_moved += 1 << order;
c361be55
MG
1871 }
1872
d100313f 1873 return pages_moved;
c361be55
MG
1874}
1875
ee6f509c 1876int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1877 int migratetype)
c361be55
MG
1878{
1879 unsigned long start_pfn, end_pfn;
1880 struct page *start_page, *end_page;
1881
1882 start_pfn = page_to_pfn(page);
d9c23400 1883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1884 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1885 end_page = start_page + pageblock_nr_pages - 1;
1886 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1887
1888 /* Do not cross zone boundaries */
108bcc96 1889 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1890 start_page = page;
108bcc96 1891 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1892 return 0;
1893
1894 return move_freepages(zone, start_page, end_page, migratetype);
1895}
1896
2f66a68f
MG
1897static void change_pageblock_range(struct page *pageblock_page,
1898 int start_order, int migratetype)
1899{
1900 int nr_pageblocks = 1 << (start_order - pageblock_order);
1901
1902 while (nr_pageblocks--) {
1903 set_pageblock_migratetype(pageblock_page, migratetype);
1904 pageblock_page += pageblock_nr_pages;
1905 }
1906}
1907
fef903ef 1908/*
9c0415eb
VB
1909 * When we are falling back to another migratetype during allocation, try to
1910 * steal extra free pages from the same pageblocks to satisfy further
1911 * allocations, instead of polluting multiple pageblocks.
1912 *
1913 * If we are stealing a relatively large buddy page, it is likely there will
1914 * be more free pages in the pageblock, so try to steal them all. For
1915 * reclaimable and unmovable allocations, we steal regardless of page size,
1916 * as fragmentation caused by those allocations polluting movable pageblocks
1917 * is worse than movable allocations stealing from unmovable and reclaimable
1918 * pageblocks.
fef903ef 1919 */
4eb7dce6
JK
1920static bool can_steal_fallback(unsigned int order, int start_mt)
1921{
1922 /*
1923 * Leaving this order check is intended, although there is
1924 * relaxed order check in next check. The reason is that
1925 * we can actually steal whole pageblock if this condition met,
1926 * but, below check doesn't guarantee it and that is just heuristic
1927 * so could be changed anytime.
1928 */
1929 if (order >= pageblock_order)
1930 return true;
1931
1932 if (order >= pageblock_order / 2 ||
1933 start_mt == MIGRATE_RECLAIMABLE ||
1934 start_mt == MIGRATE_UNMOVABLE ||
1935 page_group_by_mobility_disabled)
1936 return true;
1937
1938 return false;
1939}
1940
1941/*
1942 * This function implements actual steal behaviour. If order is large enough,
1943 * we can steal whole pageblock. If not, we first move freepages in this
1944 * pageblock and check whether half of pages are moved or not. If half of
1945 * pages are moved, we can change migratetype of pageblock and permanently
1946 * use it's pages as requested migratetype in the future.
1947 */
1948static void steal_suitable_fallback(struct zone *zone, struct page *page,
1949 int start_type)
fef903ef 1950{
d00181b9 1951 unsigned int current_order = page_order(page);
4eb7dce6 1952 int pages;
fef903ef 1953
fef903ef
SB
1954 /* Take ownership for orders >= pageblock_order */
1955 if (current_order >= pageblock_order) {
1956 change_pageblock_range(page, current_order, start_type);
3a1086fb 1957 return;
fef903ef
SB
1958 }
1959
4eb7dce6 1960 pages = move_freepages_block(zone, page, start_type);
fef903ef 1961
4eb7dce6
JK
1962 /* Claim the whole block if over half of it is free */
1963 if (pages >= (1 << (pageblock_order-1)) ||
1964 page_group_by_mobility_disabled)
1965 set_pageblock_migratetype(page, start_type);
1966}
1967
2149cdae
JK
1968/*
1969 * Check whether there is a suitable fallback freepage with requested order.
1970 * If only_stealable is true, this function returns fallback_mt only if
1971 * we can steal other freepages all together. This would help to reduce
1972 * fragmentation due to mixed migratetype pages in one pageblock.
1973 */
1974int find_suitable_fallback(struct free_area *area, unsigned int order,
1975 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1976{
1977 int i;
1978 int fallback_mt;
1979
1980 if (area->nr_free == 0)
1981 return -1;
1982
1983 *can_steal = false;
1984 for (i = 0;; i++) {
1985 fallback_mt = fallbacks[migratetype][i];
974a786e 1986 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1987 break;
1988
1989 if (list_empty(&area->free_list[fallback_mt]))
1990 continue;
fef903ef 1991
4eb7dce6
JK
1992 if (can_steal_fallback(order, migratetype))
1993 *can_steal = true;
1994
2149cdae
JK
1995 if (!only_stealable)
1996 return fallback_mt;
1997
1998 if (*can_steal)
1999 return fallback_mt;
fef903ef 2000 }
4eb7dce6
JK
2001
2002 return -1;
fef903ef
SB
2003}
2004
0aaa29a5
MG
2005/*
2006 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2007 * there are no empty page blocks that contain a page with a suitable order
2008 */
2009static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2010 unsigned int alloc_order)
2011{
2012 int mt;
2013 unsigned long max_managed, flags;
2014
2015 /*
2016 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2017 * Check is race-prone but harmless.
2018 */
2019 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2020 if (zone->nr_reserved_highatomic >= max_managed)
2021 return;
2022
2023 spin_lock_irqsave(&zone->lock, flags);
2024
2025 /* Recheck the nr_reserved_highatomic limit under the lock */
2026 if (zone->nr_reserved_highatomic >= max_managed)
2027 goto out_unlock;
2028
2029 /* Yoink! */
2030 mt = get_pageblock_migratetype(page);
2031 if (mt != MIGRATE_HIGHATOMIC &&
2032 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2033 zone->nr_reserved_highatomic += pageblock_nr_pages;
2034 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2035 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2036 }
2037
2038out_unlock:
2039 spin_unlock_irqrestore(&zone->lock, flags);
2040}
2041
2042/*
2043 * Used when an allocation is about to fail under memory pressure. This
2044 * potentially hurts the reliability of high-order allocations when under
2045 * intense memory pressure but failed atomic allocations should be easier
2046 * to recover from than an OOM.
2047 */
2048static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2049{
2050 struct zonelist *zonelist = ac->zonelist;
2051 unsigned long flags;
2052 struct zoneref *z;
2053 struct zone *zone;
2054 struct page *page;
2055 int order;
2056
2057 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2058 ac->nodemask) {
2059 /* Preserve at least one pageblock */
2060 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2061 continue;
2062
2063 spin_lock_irqsave(&zone->lock, flags);
2064 for (order = 0; order < MAX_ORDER; order++) {
2065 struct free_area *area = &(zone->free_area[order]);
2066
a16601c5
GT
2067 page = list_first_entry_or_null(
2068 &area->free_list[MIGRATE_HIGHATOMIC],
2069 struct page, lru);
2070 if (!page)
0aaa29a5
MG
2071 continue;
2072
0aaa29a5
MG
2073 /*
2074 * It should never happen but changes to locking could
2075 * inadvertently allow a per-cpu drain to add pages
2076 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2077 * and watch for underflows.
2078 */
2079 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2080 zone->nr_reserved_highatomic);
2081
2082 /*
2083 * Convert to ac->migratetype and avoid the normal
2084 * pageblock stealing heuristics. Minimally, the caller
2085 * is doing the work and needs the pages. More
2086 * importantly, if the block was always converted to
2087 * MIGRATE_UNMOVABLE or another type then the number
2088 * of pageblocks that cannot be completely freed
2089 * may increase.
2090 */
2091 set_pageblock_migratetype(page, ac->migratetype);
2092 move_freepages_block(zone, page, ac->migratetype);
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 return;
2095 }
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 }
2098}
2099
b2a0ac88 2100/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2101static inline struct page *
7aeb09f9 2102__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2103{
b8af2941 2104 struct free_area *area;
7aeb09f9 2105 unsigned int current_order;
b2a0ac88 2106 struct page *page;
4eb7dce6
JK
2107 int fallback_mt;
2108 bool can_steal;
b2a0ac88
MG
2109
2110 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2111 for (current_order = MAX_ORDER-1;
2112 current_order >= order && current_order <= MAX_ORDER-1;
2113 --current_order) {
4eb7dce6
JK
2114 area = &(zone->free_area[current_order]);
2115 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2116 start_migratetype, false, &can_steal);
4eb7dce6
JK
2117 if (fallback_mt == -1)
2118 continue;
b2a0ac88 2119
a16601c5 2120 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2121 struct page, lru);
2122 if (can_steal)
2123 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2124
4eb7dce6
JK
2125 /* Remove the page from the freelists */
2126 area->nr_free--;
2127 list_del(&page->lru);
2128 rmv_page_order(page);
3a1086fb 2129
4eb7dce6
JK
2130 expand(zone, page, order, current_order, area,
2131 start_migratetype);
2132 /*
bb14c2c7 2133 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2134 * migratetype depending on the decisions in
bb14c2c7
VB
2135 * find_suitable_fallback(). This is OK as long as it does not
2136 * differ for MIGRATE_CMA pageblocks. Those can be used as
2137 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2138 */
bb14c2c7 2139 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2140
4eb7dce6
JK
2141 trace_mm_page_alloc_extfrag(page, order, current_order,
2142 start_migratetype, fallback_mt);
e0fff1bd 2143
4eb7dce6 2144 return page;
b2a0ac88
MG
2145 }
2146
728ec980 2147 return NULL;
b2a0ac88
MG
2148}
2149
56fd56b8 2150/*
1da177e4
LT
2151 * Do the hard work of removing an element from the buddy allocator.
2152 * Call me with the zone->lock already held.
2153 */
b2a0ac88 2154static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2155 int migratetype)
1da177e4 2156{
1da177e4
LT
2157 struct page *page;
2158
56fd56b8 2159 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2160 if (unlikely(!page)) {
dc67647b
JK
2161 if (migratetype == MIGRATE_MOVABLE)
2162 page = __rmqueue_cma_fallback(zone, order);
2163
2164 if (!page)
2165 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2166 }
2167
0d3d062a 2168 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2169 return page;
1da177e4
LT
2170}
2171
5f63b720 2172/*
1da177e4
LT
2173 * Obtain a specified number of elements from the buddy allocator, all under
2174 * a single hold of the lock, for efficiency. Add them to the supplied list.
2175 * Returns the number of new pages which were placed at *list.
2176 */
5f63b720 2177static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2178 unsigned long count, struct list_head *list,
b745bc85 2179 int migratetype, bool cold)
1da177e4 2180{
5bcc9f86 2181 int i;
5f63b720 2182
c54ad30c 2183 spin_lock(&zone->lock);
1da177e4 2184 for (i = 0; i < count; ++i) {
6ac0206b 2185 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2186 if (unlikely(page == NULL))
1da177e4 2187 break;
81eabcbe 2188
479f854a
MG
2189 if (unlikely(check_pcp_refill(page)))
2190 continue;
2191
81eabcbe
MG
2192 /*
2193 * Split buddy pages returned by expand() are received here
2194 * in physical page order. The page is added to the callers and
2195 * list and the list head then moves forward. From the callers
2196 * perspective, the linked list is ordered by page number in
2197 * some conditions. This is useful for IO devices that can
2198 * merge IO requests if the physical pages are ordered
2199 * properly.
2200 */
b745bc85 2201 if (likely(!cold))
e084b2d9
MG
2202 list_add(&page->lru, list);
2203 else
2204 list_add_tail(&page->lru, list);
81eabcbe 2205 list = &page->lru;
bb14c2c7 2206 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2207 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2208 -(1 << order));
1da177e4 2209 }
f2260e6b 2210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2211 spin_unlock(&zone->lock);
085cc7d5 2212 return i;
1da177e4
LT
2213}
2214
4ae7c039 2215#ifdef CONFIG_NUMA
8fce4d8e 2216/*
4037d452
CL
2217 * Called from the vmstat counter updater to drain pagesets of this
2218 * currently executing processor on remote nodes after they have
2219 * expired.
2220 *
879336c3
CL
2221 * Note that this function must be called with the thread pinned to
2222 * a single processor.
8fce4d8e 2223 */
4037d452 2224void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2225{
4ae7c039 2226 unsigned long flags;
7be12fc9 2227 int to_drain, batch;
4ae7c039 2228
4037d452 2229 local_irq_save(flags);
4db0c3c2 2230 batch = READ_ONCE(pcp->batch);
7be12fc9 2231 to_drain = min(pcp->count, batch);
2a13515c
KM
2232 if (to_drain > 0) {
2233 free_pcppages_bulk(zone, to_drain, pcp);
2234 pcp->count -= to_drain;
2235 }
4037d452 2236 local_irq_restore(flags);
4ae7c039
CL
2237}
2238#endif
2239
9f8f2172 2240/*
93481ff0 2241 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2242 *
2243 * The processor must either be the current processor and the
2244 * thread pinned to the current processor or a processor that
2245 * is not online.
2246 */
93481ff0 2247static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2248{
c54ad30c 2249 unsigned long flags;
93481ff0
VB
2250 struct per_cpu_pageset *pset;
2251 struct per_cpu_pages *pcp;
1da177e4 2252
93481ff0
VB
2253 local_irq_save(flags);
2254 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2255
93481ff0
VB
2256 pcp = &pset->pcp;
2257 if (pcp->count) {
2258 free_pcppages_bulk(zone, pcp->count, pcp);
2259 pcp->count = 0;
2260 }
2261 local_irq_restore(flags);
2262}
3dfa5721 2263
93481ff0
VB
2264/*
2265 * Drain pcplists of all zones on the indicated processor.
2266 *
2267 * The processor must either be the current processor and the
2268 * thread pinned to the current processor or a processor that
2269 * is not online.
2270 */
2271static void drain_pages(unsigned int cpu)
2272{
2273 struct zone *zone;
2274
2275 for_each_populated_zone(zone) {
2276 drain_pages_zone(cpu, zone);
1da177e4
LT
2277 }
2278}
1da177e4 2279
9f8f2172
CL
2280/*
2281 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2282 *
2283 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2284 * the single zone's pages.
9f8f2172 2285 */
93481ff0 2286void drain_local_pages(struct zone *zone)
9f8f2172 2287{
93481ff0
VB
2288 int cpu = smp_processor_id();
2289
2290 if (zone)
2291 drain_pages_zone(cpu, zone);
2292 else
2293 drain_pages(cpu);
9f8f2172
CL
2294}
2295
2296/*
74046494
GBY
2297 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2298 *
93481ff0
VB
2299 * When zone parameter is non-NULL, spill just the single zone's pages.
2300 *
74046494
GBY
2301 * Note that this code is protected against sending an IPI to an offline
2302 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2303 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2304 * nothing keeps CPUs from showing up after we populated the cpumask and
2305 * before the call to on_each_cpu_mask().
9f8f2172 2306 */
93481ff0 2307void drain_all_pages(struct zone *zone)
9f8f2172 2308{
74046494 2309 int cpu;
74046494
GBY
2310
2311 /*
2312 * Allocate in the BSS so we wont require allocation in
2313 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2314 */
2315 static cpumask_t cpus_with_pcps;
2316
2317 /*
2318 * We don't care about racing with CPU hotplug event
2319 * as offline notification will cause the notified
2320 * cpu to drain that CPU pcps and on_each_cpu_mask
2321 * disables preemption as part of its processing
2322 */
2323 for_each_online_cpu(cpu) {
93481ff0
VB
2324 struct per_cpu_pageset *pcp;
2325 struct zone *z;
74046494 2326 bool has_pcps = false;
93481ff0
VB
2327
2328 if (zone) {
74046494 2329 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2330 if (pcp->pcp.count)
74046494 2331 has_pcps = true;
93481ff0
VB
2332 } else {
2333 for_each_populated_zone(z) {
2334 pcp = per_cpu_ptr(z->pageset, cpu);
2335 if (pcp->pcp.count) {
2336 has_pcps = true;
2337 break;
2338 }
74046494
GBY
2339 }
2340 }
93481ff0 2341
74046494
GBY
2342 if (has_pcps)
2343 cpumask_set_cpu(cpu, &cpus_with_pcps);
2344 else
2345 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2346 }
93481ff0
VB
2347 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2348 zone, 1);
9f8f2172
CL
2349}
2350
296699de 2351#ifdef CONFIG_HIBERNATION
1da177e4
LT
2352
2353void mark_free_pages(struct zone *zone)
2354{
f623f0db
RW
2355 unsigned long pfn, max_zone_pfn;
2356 unsigned long flags;
7aeb09f9 2357 unsigned int order, t;
86760a2c 2358 struct page *page;
1da177e4 2359
8080fc03 2360 if (zone_is_empty(zone))
1da177e4
LT
2361 return;
2362
2363 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2364
108bcc96 2365 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2366 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2367 if (pfn_valid(pfn)) {
86760a2c 2368 page = pfn_to_page(pfn);
ba6b0979
JK
2369
2370 if (page_zone(page) != zone)
2371 continue;
2372
7be98234
RW
2373 if (!swsusp_page_is_forbidden(page))
2374 swsusp_unset_page_free(page);
f623f0db 2375 }
1da177e4 2376
b2a0ac88 2377 for_each_migratetype_order(order, t) {
86760a2c
GT
2378 list_for_each_entry(page,
2379 &zone->free_area[order].free_list[t], lru) {
f623f0db 2380 unsigned long i;
1da177e4 2381
86760a2c 2382 pfn = page_to_pfn(page);
f623f0db 2383 for (i = 0; i < (1UL << order); i++)
7be98234 2384 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2385 }
b2a0ac88 2386 }
1da177e4
LT
2387 spin_unlock_irqrestore(&zone->lock, flags);
2388}
e2c55dc8 2389#endif /* CONFIG_PM */
1da177e4 2390
1da177e4
LT
2391/*
2392 * Free a 0-order page
b745bc85 2393 * cold == true ? free a cold page : free a hot page
1da177e4 2394 */
b745bc85 2395void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2396{
2397 struct zone *zone = page_zone(page);
2398 struct per_cpu_pages *pcp;
2399 unsigned long flags;
dc4b0caf 2400 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2401 int migratetype;
1da177e4 2402
4db7548c 2403 if (!free_pcp_prepare(page))
689bcebf
HD
2404 return;
2405
dc4b0caf 2406 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2407 set_pcppage_migratetype(page, migratetype);
1da177e4 2408 local_irq_save(flags);
f8891e5e 2409 __count_vm_event(PGFREE);
da456f14 2410
5f8dcc21
MG
2411 /*
2412 * We only track unmovable, reclaimable and movable on pcp lists.
2413 * Free ISOLATE pages back to the allocator because they are being
2414 * offlined but treat RESERVE as movable pages so we can get those
2415 * areas back if necessary. Otherwise, we may have to free
2416 * excessively into the page allocator
2417 */
2418 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2419 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2420 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2421 goto out;
2422 }
2423 migratetype = MIGRATE_MOVABLE;
2424 }
2425
99dcc3e5 2426 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2427 if (!cold)
5f8dcc21 2428 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2429 else
2430 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2431 pcp->count++;
48db57f8 2432 if (pcp->count >= pcp->high) {
4db0c3c2 2433 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2434 free_pcppages_bulk(zone, batch, pcp);
2435 pcp->count -= batch;
48db57f8 2436 }
5f8dcc21
MG
2437
2438out:
1da177e4 2439 local_irq_restore(flags);
1da177e4
LT
2440}
2441
cc59850e
KK
2442/*
2443 * Free a list of 0-order pages
2444 */
b745bc85 2445void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2446{
2447 struct page *page, *next;
2448
2449 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2450 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2451 free_hot_cold_page(page, cold);
2452 }
2453}
2454
8dfcc9ba
NP
2455/*
2456 * split_page takes a non-compound higher-order page, and splits it into
2457 * n (1<<order) sub-pages: page[0..n]
2458 * Each sub-page must be freed individually.
2459 *
2460 * Note: this is probably too low level an operation for use in drivers.
2461 * Please consult with lkml before using this in your driver.
2462 */
2463void split_page(struct page *page, unsigned int order)
2464{
2465 int i;
e2cfc911 2466 gfp_t gfp_mask;
8dfcc9ba 2467
309381fe
SL
2468 VM_BUG_ON_PAGE(PageCompound(page), page);
2469 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2470
2471#ifdef CONFIG_KMEMCHECK
2472 /*
2473 * Split shadow pages too, because free(page[0]) would
2474 * otherwise free the whole shadow.
2475 */
2476 if (kmemcheck_page_is_tracked(page))
2477 split_page(virt_to_page(page[0].shadow), order);
2478#endif
2479
e2cfc911
JK
2480 gfp_mask = get_page_owner_gfp(page);
2481 set_page_owner(page, 0, gfp_mask);
48c96a36 2482 for (i = 1; i < (1 << order); i++) {
7835e98b 2483 set_page_refcounted(page + i);
e2cfc911 2484 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2485 }
8dfcc9ba 2486}
5853ff23 2487EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2488
3c605096 2489int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2490{
748446bb
MG
2491 unsigned long watermark;
2492 struct zone *zone;
2139cbe6 2493 int mt;
748446bb
MG
2494
2495 BUG_ON(!PageBuddy(page));
2496
2497 zone = page_zone(page);
2e30abd1 2498 mt = get_pageblock_migratetype(page);
748446bb 2499
194159fb 2500 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2501 /* Obey watermarks as if the page was being allocated */
2502 watermark = low_wmark_pages(zone) + (1 << order);
2503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2504 return 0;
2505
8fb74b9f 2506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2507 }
748446bb
MG
2508
2509 /* Remove page from free list */
2510 list_del(&page->lru);
2511 zone->free_area[order].nr_free--;
2512 rmv_page_order(page);
2139cbe6 2513
e2cfc911 2514 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2515
8fb74b9f 2516 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2517 if (order >= pageblock_order - 1) {
2518 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2519 for (; page < endpage; page += pageblock_nr_pages) {
2520 int mt = get_pageblock_migratetype(page);
194159fb 2521 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2522 set_pageblock_migratetype(page,
2523 MIGRATE_MOVABLE);
2524 }
748446bb
MG
2525 }
2526
f3a14ced 2527
8fb74b9f 2528 return 1UL << order;
1fb3f8ca
MG
2529}
2530
2531/*
2532 * Similar to split_page except the page is already free. As this is only
2533 * being used for migration, the migratetype of the block also changes.
2534 * As this is called with interrupts disabled, the caller is responsible
2535 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2536 * are enabled.
2537 *
2538 * Note: this is probably too low level an operation for use in drivers.
2539 * Please consult with lkml before using this in your driver.
2540 */
2541int split_free_page(struct page *page)
2542{
2543 unsigned int order;
2544 int nr_pages;
2545
1fb3f8ca
MG
2546 order = page_order(page);
2547
8fb74b9f 2548 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2549 if (!nr_pages)
2550 return 0;
2551
2552 /* Split into individual pages */
2553 set_page_refcounted(page);
2554 split_page(page, order);
2555 return nr_pages;
748446bb
MG
2556}
2557
060e7417
MG
2558/*
2559 * Update NUMA hit/miss statistics
2560 *
2561 * Must be called with interrupts disabled.
2562 *
2563 * When __GFP_OTHER_NODE is set assume the node of the preferred
2564 * zone is the local node. This is useful for daemons who allocate
2565 * memory on behalf of other processes.
2566 */
2567static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2568 gfp_t flags)
2569{
2570#ifdef CONFIG_NUMA
2571 int local_nid = numa_node_id();
2572 enum zone_stat_item local_stat = NUMA_LOCAL;
2573
2574 if (unlikely(flags & __GFP_OTHER_NODE)) {
2575 local_stat = NUMA_OTHER;
2576 local_nid = preferred_zone->node;
2577 }
2578
2579 if (z->node == local_nid) {
2580 __inc_zone_state(z, NUMA_HIT);
2581 __inc_zone_state(z, local_stat);
2582 } else {
2583 __inc_zone_state(z, NUMA_MISS);
2584 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2585 }
2586#endif
2587}
2588
1da177e4 2589/*
75379191 2590 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2591 */
0a15c3e9
MG
2592static inline
2593struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2594 struct zone *zone, unsigned int order,
c603844b
MG
2595 gfp_t gfp_flags, unsigned int alloc_flags,
2596 int migratetype)
1da177e4
LT
2597{
2598 unsigned long flags;
689bcebf 2599 struct page *page;
b745bc85 2600 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2601
48db57f8 2602 if (likely(order == 0)) {
1da177e4 2603 struct per_cpu_pages *pcp;
5f8dcc21 2604 struct list_head *list;
1da177e4 2605
1da177e4 2606 local_irq_save(flags);
479f854a
MG
2607 do {
2608 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2609 list = &pcp->lists[migratetype];
2610 if (list_empty(list)) {
2611 pcp->count += rmqueue_bulk(zone, 0,
2612 pcp->batch, list,
2613 migratetype, cold);
2614 if (unlikely(list_empty(list)))
2615 goto failed;
2616 }
b92a6edd 2617
479f854a
MG
2618 if (cold)
2619 page = list_last_entry(list, struct page, lru);
2620 else
2621 page = list_first_entry(list, struct page, lru);
2622 } while (page && check_new_pcp(page));
5f8dcc21 2623
754078eb 2624 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2625 list_del(&page->lru);
2626 pcp->count--;
7fb1d9fc 2627 } else {
0f352e53
MH
2628 /*
2629 * We most definitely don't want callers attempting to
2630 * allocate greater than order-1 page units with __GFP_NOFAIL.
2631 */
2632 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2633 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2634
479f854a
MG
2635 do {
2636 page = NULL;
2637 if (alloc_flags & ALLOC_HARDER) {
2638 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2639 if (page)
2640 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2641 }
2642 if (!page)
2643 page = __rmqueue(zone, order, migratetype);
2644 } while (page && check_new_pages(page, order));
a74609fa
NP
2645 spin_unlock(&zone->lock);
2646 if (!page)
2647 goto failed;
754078eb 2648 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2649 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2650 get_pcppage_migratetype(page));
1da177e4
LT
2651 }
2652
abe5f972 2653 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2654 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2655 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2656
f8891e5e 2657 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2658 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2659 local_irq_restore(flags);
1da177e4 2660
309381fe 2661 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2662 return page;
a74609fa
NP
2663
2664failed:
2665 local_irq_restore(flags);
a74609fa 2666 return NULL;
1da177e4
LT
2667}
2668
933e312e
AM
2669#ifdef CONFIG_FAIL_PAGE_ALLOC
2670
b2588c4b 2671static struct {
933e312e
AM
2672 struct fault_attr attr;
2673
621a5f7a 2674 bool ignore_gfp_highmem;
71baba4b 2675 bool ignore_gfp_reclaim;
54114994 2676 u32 min_order;
933e312e
AM
2677} fail_page_alloc = {
2678 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2679 .ignore_gfp_reclaim = true,
621a5f7a 2680 .ignore_gfp_highmem = true,
54114994 2681 .min_order = 1,
933e312e
AM
2682};
2683
2684static int __init setup_fail_page_alloc(char *str)
2685{
2686 return setup_fault_attr(&fail_page_alloc.attr, str);
2687}
2688__setup("fail_page_alloc=", setup_fail_page_alloc);
2689
deaf386e 2690static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2691{
54114994 2692 if (order < fail_page_alloc.min_order)
deaf386e 2693 return false;
933e312e 2694 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2695 return false;
933e312e 2696 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2697 return false;
71baba4b
MG
2698 if (fail_page_alloc.ignore_gfp_reclaim &&
2699 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2700 return false;
933e312e
AM
2701
2702 return should_fail(&fail_page_alloc.attr, 1 << order);
2703}
2704
2705#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2706
2707static int __init fail_page_alloc_debugfs(void)
2708{
f4ae40a6 2709 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2710 struct dentry *dir;
933e312e 2711
dd48c085
AM
2712 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2713 &fail_page_alloc.attr);
2714 if (IS_ERR(dir))
2715 return PTR_ERR(dir);
933e312e 2716
b2588c4b 2717 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2718 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2719 goto fail;
2720 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2721 &fail_page_alloc.ignore_gfp_highmem))
2722 goto fail;
2723 if (!debugfs_create_u32("min-order", mode, dir,
2724 &fail_page_alloc.min_order))
2725 goto fail;
2726
2727 return 0;
2728fail:
dd48c085 2729 debugfs_remove_recursive(dir);
933e312e 2730
b2588c4b 2731 return -ENOMEM;
933e312e
AM
2732}
2733
2734late_initcall(fail_page_alloc_debugfs);
2735
2736#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2737
2738#else /* CONFIG_FAIL_PAGE_ALLOC */
2739
deaf386e 2740static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2741{
deaf386e 2742 return false;
933e312e
AM
2743}
2744
2745#endif /* CONFIG_FAIL_PAGE_ALLOC */
2746
1da177e4 2747/*
97a16fc8
MG
2748 * Return true if free base pages are above 'mark'. For high-order checks it
2749 * will return true of the order-0 watermark is reached and there is at least
2750 * one free page of a suitable size. Checking now avoids taking the zone lock
2751 * to check in the allocation paths if no pages are free.
1da177e4 2752 */
7aeb09f9 2753static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2754 unsigned long mark, int classzone_idx,
2755 unsigned int alloc_flags,
7aeb09f9 2756 long free_pages)
1da177e4 2757{
d23ad423 2758 long min = mark;
1da177e4 2759 int o;
c603844b 2760 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2761
0aaa29a5 2762 /* free_pages may go negative - that's OK */
df0a6daa 2763 free_pages -= (1 << order) - 1;
0aaa29a5 2764
7fb1d9fc 2765 if (alloc_flags & ALLOC_HIGH)
1da177e4 2766 min -= min / 2;
0aaa29a5
MG
2767
2768 /*
2769 * If the caller does not have rights to ALLOC_HARDER then subtract
2770 * the high-atomic reserves. This will over-estimate the size of the
2771 * atomic reserve but it avoids a search.
2772 */
97a16fc8 2773 if (likely(!alloc_harder))
0aaa29a5
MG
2774 free_pages -= z->nr_reserved_highatomic;
2775 else
1da177e4 2776 min -= min / 4;
e2b19197 2777
d95ea5d1
BZ
2778#ifdef CONFIG_CMA
2779 /* If allocation can't use CMA areas don't use free CMA pages */
2780 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2781 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2782#endif
026b0814 2783
97a16fc8
MG
2784 /*
2785 * Check watermarks for an order-0 allocation request. If these
2786 * are not met, then a high-order request also cannot go ahead
2787 * even if a suitable page happened to be free.
2788 */
2789 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2790 return false;
1da177e4 2791
97a16fc8
MG
2792 /* If this is an order-0 request then the watermark is fine */
2793 if (!order)
2794 return true;
2795
2796 /* For a high-order request, check at least one suitable page is free */
2797 for (o = order; o < MAX_ORDER; o++) {
2798 struct free_area *area = &z->free_area[o];
2799 int mt;
2800
2801 if (!area->nr_free)
2802 continue;
2803
2804 if (alloc_harder)
2805 return true;
1da177e4 2806
97a16fc8
MG
2807 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2808 if (!list_empty(&area->free_list[mt]))
2809 return true;
2810 }
2811
2812#ifdef CONFIG_CMA
2813 if ((alloc_flags & ALLOC_CMA) &&
2814 !list_empty(&area->free_list[MIGRATE_CMA])) {
2815 return true;
2816 }
2817#endif
1da177e4 2818 }
97a16fc8 2819 return false;
88f5acf8
MG
2820}
2821
7aeb09f9 2822bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2823 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2824{
2825 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2826 zone_page_state(z, NR_FREE_PAGES));
2827}
2828
48ee5f36
MG
2829static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2830 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2831{
2832 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2833 long cma_pages = 0;
2834
2835#ifdef CONFIG_CMA
2836 /* If allocation can't use CMA areas don't use free CMA pages */
2837 if (!(alloc_flags & ALLOC_CMA))
2838 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2839#endif
2840
2841 /*
2842 * Fast check for order-0 only. If this fails then the reserves
2843 * need to be calculated. There is a corner case where the check
2844 * passes but only the high-order atomic reserve are free. If
2845 * the caller is !atomic then it'll uselessly search the free
2846 * list. That corner case is then slower but it is harmless.
2847 */
2848 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2849 return true;
2850
2851 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2852 free_pages);
2853}
2854
7aeb09f9 2855bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2856 unsigned long mark, int classzone_idx)
88f5acf8
MG
2857{
2858 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2859
2860 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2861 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2862
e2b19197 2863 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2864 free_pages);
1da177e4
LT
2865}
2866
9276b1bc 2867#ifdef CONFIG_NUMA
81c0a2bb
JW
2868static bool zone_local(struct zone *local_zone, struct zone *zone)
2869{
fff4068c 2870 return local_zone->node == zone->node;
81c0a2bb
JW
2871}
2872
957f822a
DR
2873static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2874{
5f7a75ac
MG
2875 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2876 RECLAIM_DISTANCE;
957f822a 2877}
9276b1bc 2878#else /* CONFIG_NUMA */
81c0a2bb
JW
2879static bool zone_local(struct zone *local_zone, struct zone *zone)
2880{
2881 return true;
2882}
2883
957f822a
DR
2884static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885{
2886 return true;
2887}
9276b1bc
PJ
2888#endif /* CONFIG_NUMA */
2889
4ffeaf35
MG
2890static void reset_alloc_batches(struct zone *preferred_zone)
2891{
2892 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2893
2894 do {
2895 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2896 high_wmark_pages(zone) - low_wmark_pages(zone) -
2897 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2898 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2899 } while (zone++ != preferred_zone);
2900}
2901
7fb1d9fc 2902/*
0798e519 2903 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2904 * a page.
2905 */
2906static struct page *
a9263751
VB
2907get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2908 const struct alloc_context *ac)
753ee728 2909{
c33d6c06 2910 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2911 struct zone *zone;
30534755
MG
2912 bool fair_skipped = false;
2913 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2914
9276b1bc 2915zonelist_scan:
7fb1d9fc 2916 /*
9276b1bc 2917 * Scan zonelist, looking for a zone with enough free.
344736f2 2918 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2919 */
c33d6c06 2920 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2921 ac->nodemask) {
be06af00 2922 struct page *page;
e085dbc5
JW
2923 unsigned long mark;
2924
664eedde
MG
2925 if (cpusets_enabled() &&
2926 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2927 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2928 continue;
81c0a2bb
JW
2929 /*
2930 * Distribute pages in proportion to the individual
2931 * zone size to ensure fair page aging. The zone a
2932 * page was allocated in should have no effect on the
2933 * time the page has in memory before being reclaimed.
81c0a2bb 2934 */
30534755 2935 if (apply_fair) {
57054651 2936 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2937 fair_skipped = true;
3a025760 2938 continue;
4ffeaf35 2939 }
c33d6c06 2940 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2941 if (fair_skipped)
2942 goto reset_fair;
2943 apply_fair = false;
2944 }
81c0a2bb 2945 }
a756cf59
JW
2946 /*
2947 * When allocating a page cache page for writing, we
2948 * want to get it from a zone that is within its dirty
2949 * limit, such that no single zone holds more than its
2950 * proportional share of globally allowed dirty pages.
2951 * The dirty limits take into account the zone's
2952 * lowmem reserves and high watermark so that kswapd
2953 * should be able to balance it without having to
2954 * write pages from its LRU list.
2955 *
2956 * This may look like it could increase pressure on
2957 * lower zones by failing allocations in higher zones
2958 * before they are full. But the pages that do spill
2959 * over are limited as the lower zones are protected
2960 * by this very same mechanism. It should not become
2961 * a practical burden to them.
2962 *
2963 * XXX: For now, allow allocations to potentially
2964 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2965 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2966 * which is important when on a NUMA setup the allowed
2967 * zones are together not big enough to reach the
2968 * global limit. The proper fix for these situations
2969 * will require awareness of zones in the
2970 * dirty-throttling and the flusher threads.
2971 */
c9ab0c4f 2972 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2973 continue;
7fb1d9fc 2974
e085dbc5 2975 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2976 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2977 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2978 int ret;
2979
5dab2911
MG
2980 /* Checked here to keep the fast path fast */
2981 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2982 if (alloc_flags & ALLOC_NO_WATERMARKS)
2983 goto try_this_zone;
2984
957f822a 2985 if (zone_reclaim_mode == 0 ||
c33d6c06 2986 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2987 continue;
2988
fa5e084e
MG
2989 ret = zone_reclaim(zone, gfp_mask, order);
2990 switch (ret) {
2991 case ZONE_RECLAIM_NOSCAN:
2992 /* did not scan */
cd38b115 2993 continue;
fa5e084e
MG
2994 case ZONE_RECLAIM_FULL:
2995 /* scanned but unreclaimable */
cd38b115 2996 continue;
fa5e084e
MG
2997 default:
2998 /* did we reclaim enough */
fed2719e 2999 if (zone_watermark_ok(zone, order, mark,
93ea9964 3000 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3001 goto try_this_zone;
3002
fed2719e 3003 continue;
0798e519 3004 }
7fb1d9fc
RS
3005 }
3006
fa5e084e 3007try_this_zone:
c33d6c06 3008 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3009 gfp_mask, alloc_flags, ac->migratetype);
75379191 3010 if (page) {
479f854a 3011 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3012
3013 /*
3014 * If this is a high-order atomic allocation then check
3015 * if the pageblock should be reserved for the future
3016 */
3017 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3018 reserve_highatomic_pageblock(page, zone, order);
3019
75379191
VB
3020 return page;
3021 }
54a6eb5c 3022 }
9276b1bc 3023
4ffeaf35
MG
3024 /*
3025 * The first pass makes sure allocations are spread fairly within the
3026 * local node. However, the local node might have free pages left
3027 * after the fairness batches are exhausted, and remote zones haven't
3028 * even been considered yet. Try once more without fairness, and
3029 * include remote zones now, before entering the slowpath and waking
3030 * kswapd: prefer spilling to a remote zone over swapping locally.
3031 */
30534755
MG
3032 if (fair_skipped) {
3033reset_fair:
3034 apply_fair = false;
3035 fair_skipped = false;
c33d6c06 3036 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 3037 goto zonelist_scan;
30534755 3038 }
4ffeaf35
MG
3039
3040 return NULL;
753ee728
MH
3041}
3042
29423e77
DR
3043/*
3044 * Large machines with many possible nodes should not always dump per-node
3045 * meminfo in irq context.
3046 */
3047static inline bool should_suppress_show_mem(void)
3048{
3049 bool ret = false;
3050
3051#if NODES_SHIFT > 8
3052 ret = in_interrupt();
3053#endif
3054 return ret;
3055}
3056
a238ab5b
DH
3057static DEFINE_RATELIMIT_STATE(nopage_rs,
3058 DEFAULT_RATELIMIT_INTERVAL,
3059 DEFAULT_RATELIMIT_BURST);
3060
d00181b9 3061void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3062{
a238ab5b
DH
3063 unsigned int filter = SHOW_MEM_FILTER_NODES;
3064
c0a32fc5
SG
3065 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3066 debug_guardpage_minorder() > 0)
a238ab5b
DH
3067 return;
3068
3069 /*
3070 * This documents exceptions given to allocations in certain
3071 * contexts that are allowed to allocate outside current's set
3072 * of allowed nodes.
3073 */
3074 if (!(gfp_mask & __GFP_NOMEMALLOC))
3075 if (test_thread_flag(TIF_MEMDIE) ||
3076 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3077 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3078 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3079 filter &= ~SHOW_MEM_FILTER_NODES;
3080
3081 if (fmt) {
3ee9a4f0
JP
3082 struct va_format vaf;
3083 va_list args;
3084
a238ab5b 3085 va_start(args, fmt);
3ee9a4f0
JP
3086
3087 vaf.fmt = fmt;
3088 vaf.va = &args;
3089
3090 pr_warn("%pV", &vaf);
3091
a238ab5b
DH
3092 va_end(args);
3093 }
3094
c5c990e8
VB
3095 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3096 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3097 dump_stack();
3098 if (!should_suppress_show_mem())
3099 show_mem(filter);
3100}
3101
11e33f6a
MG
3102static inline struct page *
3103__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3104 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3105{
6e0fc46d
DR
3106 struct oom_control oc = {
3107 .zonelist = ac->zonelist,
3108 .nodemask = ac->nodemask,
3109 .gfp_mask = gfp_mask,
3110 .order = order,
6e0fc46d 3111 };
11e33f6a
MG
3112 struct page *page;
3113
9879de73
JW
3114 *did_some_progress = 0;
3115
9879de73 3116 /*
dc56401f
JW
3117 * Acquire the oom lock. If that fails, somebody else is
3118 * making progress for us.
9879de73 3119 */
dc56401f 3120 if (!mutex_trylock(&oom_lock)) {
9879de73 3121 *did_some_progress = 1;
11e33f6a 3122 schedule_timeout_uninterruptible(1);
1da177e4
LT
3123 return NULL;
3124 }
6b1de916 3125
11e33f6a
MG
3126 /*
3127 * Go through the zonelist yet one more time, keep very high watermark
3128 * here, this is only to catch a parallel oom killing, we must fail if
3129 * we're still under heavy pressure.
3130 */
a9263751
VB
3131 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3132 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3133 if (page)
11e33f6a
MG
3134 goto out;
3135
4365a567 3136 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3137 /* Coredumps can quickly deplete all memory reserves */
3138 if (current->flags & PF_DUMPCORE)
3139 goto out;
4365a567
KH
3140 /* The OOM killer will not help higher order allocs */
3141 if (order > PAGE_ALLOC_COSTLY_ORDER)
3142 goto out;
03668b3c 3143 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3144 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3145 goto out;
9083905a
JW
3146 if (pm_suspended_storage())
3147 goto out;
3da88fb3
MH
3148 /*
3149 * XXX: GFP_NOFS allocations should rather fail than rely on
3150 * other request to make a forward progress.
3151 * We are in an unfortunate situation where out_of_memory cannot
3152 * do much for this context but let's try it to at least get
3153 * access to memory reserved if the current task is killed (see
3154 * out_of_memory). Once filesystems are ready to handle allocation
3155 * failures more gracefully we should just bail out here.
3156 */
3157
4167e9b2 3158 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3159 if (gfp_mask & __GFP_THISNODE)
3160 goto out;
3161 }
11e33f6a 3162 /* Exhausted what can be done so it's blamo time */
5020e285 3163 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3164 *did_some_progress = 1;
5020e285
MH
3165
3166 if (gfp_mask & __GFP_NOFAIL) {
3167 page = get_page_from_freelist(gfp_mask, order,
3168 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3169 /*
3170 * fallback to ignore cpuset restriction if our nodes
3171 * are depleted
3172 */
3173 if (!page)
3174 page = get_page_from_freelist(gfp_mask, order,
3175 ALLOC_NO_WATERMARKS, ac);
3176 }
3177 }
11e33f6a 3178out:
dc56401f 3179 mutex_unlock(&oom_lock);
11e33f6a
MG
3180 return page;
3181}
3182
33c2d214
MH
3183
3184/*
3185 * Maximum number of compaction retries wit a progress before OOM
3186 * killer is consider as the only way to move forward.
3187 */
3188#define MAX_COMPACT_RETRIES 16
3189
56de7263
MG
3190#ifdef CONFIG_COMPACTION
3191/* Try memory compaction for high-order allocations before reclaim */
3192static struct page *
3193__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3194 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3195 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3196{
98dd3b48 3197 struct page *page;
c5d01d0d 3198 int contended_compaction;
53853e2d
VB
3199
3200 if (!order)
66199712 3201 return NULL;
66199712 3202
c06b1fca 3203 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3204 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3205 mode, &contended_compaction);
c06b1fca 3206 current->flags &= ~PF_MEMALLOC;
56de7263 3207
c5d01d0d 3208 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3209 return NULL;
53853e2d 3210
98dd3b48
VB
3211 /*
3212 * At least in one zone compaction wasn't deferred or skipped, so let's
3213 * count a compaction stall
3214 */
3215 count_vm_event(COMPACTSTALL);
8fb74b9f 3216
a9263751
VB
3217 page = get_page_from_freelist(gfp_mask, order,
3218 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3219
98dd3b48
VB
3220 if (page) {
3221 struct zone *zone = page_zone(page);
53853e2d 3222
98dd3b48
VB
3223 zone->compact_blockskip_flush = false;
3224 compaction_defer_reset(zone, order, true);
3225 count_vm_event(COMPACTSUCCESS);
3226 return page;
3227 }
56de7263 3228
98dd3b48
VB
3229 /*
3230 * It's bad if compaction run occurs and fails. The most likely reason
3231 * is that pages exist, but not enough to satisfy watermarks.
3232 */
3233 count_vm_event(COMPACTFAIL);
66199712 3234
c5d01d0d
MH
3235 /*
3236 * In all zones where compaction was attempted (and not
3237 * deferred or skipped), lock contention has been detected.
3238 * For THP allocation we do not want to disrupt the others
3239 * so we fallback to base pages instead.
3240 */
3241 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3242 *compact_result = COMPACT_CONTENDED;
3243
3244 /*
3245 * If compaction was aborted due to need_resched(), we do not
3246 * want to further increase allocation latency, unless it is
3247 * khugepaged trying to collapse.
3248 */
3249 if (contended_compaction == COMPACT_CONTENDED_SCHED
3250 && !(current->flags & PF_KTHREAD))
3251 *compact_result = COMPACT_CONTENDED;
3252
98dd3b48 3253 cond_resched();
56de7263
MG
3254
3255 return NULL;
3256}
33c2d214
MH
3257
3258static inline bool
3259should_compact_retry(unsigned int order, enum compact_result compact_result,
3260 enum migrate_mode *migrate_mode,
3261 int compaction_retries)
3262{
7854ea6c
MH
3263 int max_retries = MAX_COMPACT_RETRIES;
3264
33c2d214
MH
3265 if (!order)
3266 return false;
3267
3268 /*
3269 * compaction considers all the zone as desperately out of memory
3270 * so it doesn't really make much sense to retry except when the
3271 * failure could be caused by weak migration mode.
3272 */
3273 if (compaction_failed(compact_result)) {
3274 if (*migrate_mode == MIGRATE_ASYNC) {
3275 *migrate_mode = MIGRATE_SYNC_LIGHT;
3276 return true;
3277 }
3278 return false;
3279 }
3280
3281 /*
7854ea6c
MH
3282 * make sure the compaction wasn't deferred or didn't bail out early
3283 * due to locks contention before we declare that we should give up.
33c2d214 3284 */
7854ea6c
MH
3285 if (compaction_withdrawn(compact_result))
3286 return true;
3287
3288 /*
3289 * !costly requests are much more important than __GFP_REPEAT
3290 * costly ones because they are de facto nofail and invoke OOM
3291 * killer to move on while costly can fail and users are ready
3292 * to cope with that. 1/4 retries is rather arbitrary but we
3293 * would need much more detailed feedback from compaction to
3294 * make a better decision.
3295 */
3296 if (order > PAGE_ALLOC_COSTLY_ORDER)
3297 max_retries /= 4;
3298 if (compaction_retries <= max_retries)
3299 return true;
33c2d214
MH
3300
3301 return false;
3302}
56de7263
MG
3303#else
3304static inline struct page *
3305__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3306 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3307 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3308{
33c2d214 3309 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3310 return NULL;
3311}
33c2d214
MH
3312
3313static inline bool
3314should_compact_retry(unsigned int order, enum compact_result compact_result,
3315 enum migrate_mode *migrate_mode,
3316 int compaction_retries)
3317{
3318 return false;
3319}
56de7263
MG
3320#endif /* CONFIG_COMPACTION */
3321
bba90710
MS
3322/* Perform direct synchronous page reclaim */
3323static int
a9263751
VB
3324__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3325 const struct alloc_context *ac)
11e33f6a 3326{
11e33f6a 3327 struct reclaim_state reclaim_state;
bba90710 3328 int progress;
11e33f6a
MG
3329
3330 cond_resched();
3331
3332 /* We now go into synchronous reclaim */
3333 cpuset_memory_pressure_bump();
c06b1fca 3334 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3335 lockdep_set_current_reclaim_state(gfp_mask);
3336 reclaim_state.reclaimed_slab = 0;
c06b1fca 3337 current->reclaim_state = &reclaim_state;
11e33f6a 3338
a9263751
VB
3339 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3340 ac->nodemask);
11e33f6a 3341
c06b1fca 3342 current->reclaim_state = NULL;
11e33f6a 3343 lockdep_clear_current_reclaim_state();
c06b1fca 3344 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3345
3346 cond_resched();
3347
bba90710
MS
3348 return progress;
3349}
3350
3351/* The really slow allocator path where we enter direct reclaim */
3352static inline struct page *
3353__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3354 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3355 unsigned long *did_some_progress)
bba90710
MS
3356{
3357 struct page *page = NULL;
3358 bool drained = false;
3359
a9263751 3360 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3361 if (unlikely(!(*did_some_progress)))
3362 return NULL;
11e33f6a 3363
9ee493ce 3364retry:
a9263751
VB
3365 page = get_page_from_freelist(gfp_mask, order,
3366 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3367
3368 /*
3369 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3370 * pages are pinned on the per-cpu lists or in high alloc reserves.
3371 * Shrink them them and try again
9ee493ce
MG
3372 */
3373 if (!page && !drained) {
0aaa29a5 3374 unreserve_highatomic_pageblock(ac);
93481ff0 3375 drain_all_pages(NULL);
9ee493ce
MG
3376 drained = true;
3377 goto retry;
3378 }
3379
11e33f6a
MG
3380 return page;
3381}
3382
a9263751 3383static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3384{
3385 struct zoneref *z;
3386 struct zone *zone;
3387
a9263751
VB
3388 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3389 ac->high_zoneidx, ac->nodemask)
93ea9964 3390 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3391}
3392
c603844b 3393static inline unsigned int
341ce06f
PZ
3394gfp_to_alloc_flags(gfp_t gfp_mask)
3395{
c603844b 3396 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3397
a56f57ff 3398 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3399 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3400
341ce06f
PZ
3401 /*
3402 * The caller may dip into page reserves a bit more if the caller
3403 * cannot run direct reclaim, or if the caller has realtime scheduling
3404 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3405 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3406 */
e6223a3b 3407 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3408
d0164adc 3409 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3410 /*
b104a35d
DR
3411 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3412 * if it can't schedule.
5c3240d9 3413 */
b104a35d 3414 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3415 alloc_flags |= ALLOC_HARDER;
523b9458 3416 /*
b104a35d 3417 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3418 * comment for __cpuset_node_allowed().
523b9458 3419 */
341ce06f 3420 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3421 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3422 alloc_flags |= ALLOC_HARDER;
3423
b37f1dd0
MG
3424 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3425 if (gfp_mask & __GFP_MEMALLOC)
3426 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3427 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3428 alloc_flags |= ALLOC_NO_WATERMARKS;
3429 else if (!in_interrupt() &&
3430 ((current->flags & PF_MEMALLOC) ||
3431 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3432 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3433 }
d95ea5d1 3434#ifdef CONFIG_CMA
43e7a34d 3435 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3436 alloc_flags |= ALLOC_CMA;
3437#endif
341ce06f
PZ
3438 return alloc_flags;
3439}
3440
072bb0aa
MG
3441bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3442{
b37f1dd0 3443 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3444}
3445
d0164adc
MG
3446static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3447{
3448 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3449}
3450
0a0337e0
MH
3451/*
3452 * Maximum number of reclaim retries without any progress before OOM killer
3453 * is consider as the only way to move forward.
3454 */
3455#define MAX_RECLAIM_RETRIES 16
3456
3457/*
3458 * Checks whether it makes sense to retry the reclaim to make a forward progress
3459 * for the given allocation request.
3460 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3461 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3462 * any progress in a row) is considered as well as the reclaimable pages on the
3463 * applicable zone list (with a backoff mechanism which is a function of
3464 * no_progress_loops).
0a0337e0
MH
3465 *
3466 * Returns true if a retry is viable or false to enter the oom path.
3467 */
3468static inline bool
3469should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3470 struct alloc_context *ac, int alloc_flags,
7854ea6c 3471 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3472{
3473 struct zone *zone;
3474 struct zoneref *z;
3475
3476 /*
3477 * Make sure we converge to OOM if we cannot make any progress
3478 * several times in the row.
3479 */
3480 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3481 return false;
3482
0a0337e0
MH
3483 /*
3484 * Keep reclaiming pages while there is a chance this will lead somewhere.
3485 * If none of the target zones can satisfy our allocation request even
3486 * if all reclaimable pages are considered then we are screwed and have
3487 * to go OOM.
3488 */
3489 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3490 ac->nodemask) {
3491 unsigned long available;
ede37713 3492 unsigned long reclaimable;
0a0337e0 3493
ede37713 3494 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3495 available -= DIV_ROUND_UP(no_progress_loops * available,
3496 MAX_RECLAIM_RETRIES);
3497 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3498
3499 /*
3500 * Would the allocation succeed if we reclaimed the whole
3501 * available?
3502 */
3503 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3504 ac_classzone_idx(ac), alloc_flags, available)) {
3505 /*
3506 * If we didn't make any progress and have a lot of
3507 * dirty + writeback pages then we should wait for
3508 * an IO to complete to slow down the reclaim and
3509 * prevent from pre mature OOM
3510 */
3511 if (!did_some_progress) {
3512 unsigned long writeback;
3513 unsigned long dirty;
3514
3515 writeback = zone_page_state_snapshot(zone,
3516 NR_WRITEBACK);
3517 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3518
3519 if (2*(writeback + dirty) > reclaimable) {
3520 congestion_wait(BLK_RW_ASYNC, HZ/10);
3521 return true;
3522 }
3523 }
3524
3525 /*
3526 * Memory allocation/reclaim might be called from a WQ
3527 * context and the current implementation of the WQ
3528 * concurrency control doesn't recognize that
3529 * a particular WQ is congested if the worker thread is
3530 * looping without ever sleeping. Therefore we have to
3531 * do a short sleep here rather than calling
3532 * cond_resched().
3533 */
3534 if (current->flags & PF_WQ_WORKER)
3535 schedule_timeout_uninterruptible(1);
3536 else
3537 cond_resched();
3538
0a0337e0
MH
3539 return true;
3540 }
3541 }
3542
3543 return false;
3544}
3545
11e33f6a
MG
3546static inline struct page *
3547__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3548 struct alloc_context *ac)
11e33f6a 3549{
d0164adc 3550 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3551 struct page *page = NULL;
c603844b 3552 unsigned int alloc_flags;
11e33f6a 3553 unsigned long did_some_progress;
e0b9daeb 3554 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3555 enum compact_result compact_result;
33c2d214 3556 int compaction_retries = 0;
0a0337e0 3557 int no_progress_loops = 0;
1da177e4 3558
72807a74
MG
3559 /*
3560 * In the slowpath, we sanity check order to avoid ever trying to
3561 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3562 * be using allocators in order of preference for an area that is
3563 * too large.
3564 */
1fc28b70
MG
3565 if (order >= MAX_ORDER) {
3566 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3567 return NULL;
1fc28b70 3568 }
1da177e4 3569
d0164adc
MG
3570 /*
3571 * We also sanity check to catch abuse of atomic reserves being used by
3572 * callers that are not in atomic context.
3573 */
3574 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3575 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3576 gfp_mask &= ~__GFP_ATOMIC;
3577
9879de73 3578retry:
d0164adc 3579 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3580 wake_all_kswapds(order, ac);
1da177e4 3581
9bf2229f 3582 /*
7fb1d9fc
RS
3583 * OK, we're below the kswapd watermark and have kicked background
3584 * reclaim. Now things get more complex, so set up alloc_flags according
3585 * to how we want to proceed.
9bf2229f 3586 */
341ce06f 3587 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3588
341ce06f 3589 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3590 page = get_page_from_freelist(gfp_mask, order,
3591 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3592 if (page)
3593 goto got_pg;
1da177e4 3594
11e33f6a 3595 /* Allocate without watermarks if the context allows */
341ce06f 3596 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3597 /*
3598 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3599 * the allocation is high priority and these type of
3600 * allocations are system rather than user orientated
3601 */
a9263751 3602 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3603 page = get_page_from_freelist(gfp_mask, order,
3604 ALLOC_NO_WATERMARKS, ac);
3605 if (page)
3606 goto got_pg;
1da177e4
LT
3607 }
3608
d0164adc
MG
3609 /* Caller is not willing to reclaim, we can't balance anything */
3610 if (!can_direct_reclaim) {
aed0a0e3 3611 /*
33d53103
MH
3612 * All existing users of the __GFP_NOFAIL are blockable, so warn
3613 * of any new users that actually allow this type of allocation
3614 * to fail.
aed0a0e3
DR
3615 */
3616 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3617 goto nopage;
aed0a0e3 3618 }
1da177e4 3619
341ce06f 3620 /* Avoid recursion of direct reclaim */
33d53103
MH
3621 if (current->flags & PF_MEMALLOC) {
3622 /*
3623 * __GFP_NOFAIL request from this context is rather bizarre
3624 * because we cannot reclaim anything and only can loop waiting
3625 * for somebody to do a work for us.
3626 */
3627 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3628 cond_resched();
3629 goto retry;
3630 }
341ce06f 3631 goto nopage;
33d53103 3632 }
341ce06f 3633
6583bb64
DR
3634 /* Avoid allocations with no watermarks from looping endlessly */
3635 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3636 goto nopage;
3637
77f1fe6b
MG
3638 /*
3639 * Try direct compaction. The first pass is asynchronous. Subsequent
3640 * attempts after direct reclaim are synchronous
3641 */
a9263751
VB
3642 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3643 migration_mode,
c5d01d0d 3644 &compact_result);
56de7263
MG
3645 if (page)
3646 goto got_pg;
75f30861 3647
1f9efdef 3648 /* Checks for THP-specific high-order allocations */
d0164adc 3649 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3650 /*
3651 * If compaction is deferred for high-order allocations, it is
3652 * because sync compaction recently failed. If this is the case
3653 * and the caller requested a THP allocation, we do not want
3654 * to heavily disrupt the system, so we fail the allocation
3655 * instead of entering direct reclaim.
3656 */
c5d01d0d 3657 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3658 goto nopage;
3659
3660 /*
c5d01d0d
MH
3661 * Compaction is contended so rather back off than cause
3662 * excessive stalls.
1f9efdef 3663 */
c5d01d0d 3664 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3665 goto nopage;
3666 }
66199712 3667
33c2d214
MH
3668 if (order && compaction_made_progress(compact_result))
3669 compaction_retries++;
8fe78048 3670
11e33f6a 3671 /* Try direct reclaim and then allocating */
a9263751
VB
3672 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3673 &did_some_progress);
11e33f6a
MG
3674 if (page)
3675 goto got_pg;
1da177e4 3676
9083905a
JW
3677 /* Do not loop if specifically requested */
3678 if (gfp_mask & __GFP_NORETRY)
3679 goto noretry;
3680
0a0337e0
MH
3681 /*
3682 * Do not retry costly high order allocations unless they are
3683 * __GFP_REPEAT
3684 */
3685 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3686 goto noretry;
3687
7854ea6c
MH
3688 /*
3689 * Costly allocations might have made a progress but this doesn't mean
3690 * their order will become available due to high fragmentation so
3691 * always increment the no progress counter for them
3692 */
3693 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3694 no_progress_loops = 0;
7854ea6c 3695 else
0a0337e0 3696 no_progress_loops++;
1da177e4 3697
0a0337e0 3698 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3699 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3700 goto retry;
3701
33c2d214
MH
3702 /*
3703 * It doesn't make any sense to retry for the compaction if the order-0
3704 * reclaim is not able to make any progress because the current
3705 * implementation of the compaction depends on the sufficient amount
3706 * of free memory (see __compaction_suitable)
3707 */
3708 if (did_some_progress > 0 &&
3709 should_compact_retry(order, compact_result,
3710 &migration_mode, compaction_retries))
3711 goto retry;
3712
9083905a
JW
3713 /* Reclaim has failed us, start killing things */
3714 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3715 if (page)
3716 goto got_pg;
3717
3718 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3719 if (did_some_progress) {
3720 no_progress_loops = 0;
9083905a 3721 goto retry;
0a0337e0 3722 }
9083905a
JW
3723
3724noretry:
3725 /*
33c2d214
MH
3726 * High-order allocations do not necessarily loop after direct reclaim
3727 * and reclaim/compaction depends on compaction being called after
3728 * reclaim so call directly if necessary.
3729 * It can become very expensive to allocate transparent hugepages at
3730 * fault, so use asynchronous memory compaction for THP unless it is
3731 * khugepaged trying to collapse. All other requests should tolerate
3732 * at least light sync migration.
9083905a 3733 */
33c2d214
MH
3734 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3735 migration_mode = MIGRATE_ASYNC;
3736 else
3737 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3738 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3739 ac, migration_mode,
c5d01d0d 3740 &compact_result);
9083905a
JW
3741 if (page)
3742 goto got_pg;
1da177e4 3743nopage:
a238ab5b 3744 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3745got_pg:
072bb0aa 3746 return page;
1da177e4 3747}
11e33f6a
MG
3748
3749/*
3750 * This is the 'heart' of the zoned buddy allocator.
3751 */
3752struct page *
3753__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3754 struct zonelist *zonelist, nodemask_t *nodemask)
3755{
5bb1b169 3756 struct page *page;
cc9a6c87 3757 unsigned int cpuset_mems_cookie;
c603844b 3758 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3759 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3760 struct alloc_context ac = {
3761 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3762 .zonelist = zonelist,
a9263751
VB
3763 .nodemask = nodemask,
3764 .migratetype = gfpflags_to_migratetype(gfp_mask),
3765 };
11e33f6a 3766
682a3385 3767 if (cpusets_enabled()) {
83d4ca81 3768 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3769 alloc_flags |= ALLOC_CPUSET;
3770 if (!ac.nodemask)
3771 ac.nodemask = &cpuset_current_mems_allowed;
3772 }
3773
dcce284a
BH
3774 gfp_mask &= gfp_allowed_mask;
3775
11e33f6a
MG
3776 lockdep_trace_alloc(gfp_mask);
3777
d0164adc 3778 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3779
3780 if (should_fail_alloc_page(gfp_mask, order))
3781 return NULL;
3782
3783 /*
3784 * Check the zones suitable for the gfp_mask contain at least one
3785 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3786 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3787 */
3788 if (unlikely(!zonelist->_zonerefs->zone))
3789 return NULL;
3790
a9263751 3791 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3792 alloc_flags |= ALLOC_CMA;
3793
cc9a6c87 3794retry_cpuset:
d26914d1 3795 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3796
c9ab0c4f
MG
3797 /* Dirty zone balancing only done in the fast path */
3798 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3799
5117f45d 3800 /* The preferred zone is used for statistics later */
c33d6c06
MG
3801 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3802 ac.high_zoneidx, ac.nodemask);
3803 if (!ac.preferred_zoneref) {
5bb1b169 3804 page = NULL;
4fcb0971 3805 goto no_zone;
5bb1b169
MG
3806 }
3807
5117f45d 3808 /* First allocation attempt */
a9263751 3809 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3810 if (likely(page))
3811 goto out;
11e33f6a 3812
4fcb0971
MG
3813 /*
3814 * Runtime PM, block IO and its error handling path can deadlock
3815 * because I/O on the device might not complete.
3816 */
3817 alloc_mask = memalloc_noio_flags(gfp_mask);
3818 ac.spread_dirty_pages = false;
23f086f9 3819
4741526b
MG
3820 /*
3821 * Restore the original nodemask if it was potentially replaced with
3822 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3823 */
3824 if (cpusets_enabled())
3825 ac.nodemask = nodemask;
4fcb0971 3826 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3827
4fcb0971 3828no_zone:
cc9a6c87
MG
3829 /*
3830 * When updating a task's mems_allowed, it is possible to race with
3831 * parallel threads in such a way that an allocation can fail while
3832 * the mask is being updated. If a page allocation is about to fail,
3833 * check if the cpuset changed during allocation and if so, retry.
3834 */
83d4ca81
MG
3835 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3836 alloc_mask = gfp_mask;
cc9a6c87 3837 goto retry_cpuset;
83d4ca81 3838 }
cc9a6c87 3839
4fcb0971
MG
3840out:
3841 if (kmemcheck_enabled && page)
3842 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3843
3844 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3845
11e33f6a 3846 return page;
1da177e4 3847}
d239171e 3848EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3849
3850/*
3851 * Common helper functions.
3852 */
920c7a5d 3853unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3854{
945a1113
AM
3855 struct page *page;
3856
3857 /*
3858 * __get_free_pages() returns a 32-bit address, which cannot represent
3859 * a highmem page
3860 */
3861 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3862
1da177e4
LT
3863 page = alloc_pages(gfp_mask, order);
3864 if (!page)
3865 return 0;
3866 return (unsigned long) page_address(page);
3867}
1da177e4
LT
3868EXPORT_SYMBOL(__get_free_pages);
3869
920c7a5d 3870unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3871{
945a1113 3872 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3873}
1da177e4
LT
3874EXPORT_SYMBOL(get_zeroed_page);
3875
920c7a5d 3876void __free_pages(struct page *page, unsigned int order)
1da177e4 3877{
b5810039 3878 if (put_page_testzero(page)) {
1da177e4 3879 if (order == 0)
b745bc85 3880 free_hot_cold_page(page, false);
1da177e4
LT
3881 else
3882 __free_pages_ok(page, order);
3883 }
3884}
3885
3886EXPORT_SYMBOL(__free_pages);
3887
920c7a5d 3888void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3889{
3890 if (addr != 0) {
725d704e 3891 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3892 __free_pages(virt_to_page((void *)addr), order);
3893 }
3894}
3895
3896EXPORT_SYMBOL(free_pages);
3897
b63ae8ca
AD
3898/*
3899 * Page Fragment:
3900 * An arbitrary-length arbitrary-offset area of memory which resides
3901 * within a 0 or higher order page. Multiple fragments within that page
3902 * are individually refcounted, in the page's reference counter.
3903 *
3904 * The page_frag functions below provide a simple allocation framework for
3905 * page fragments. This is used by the network stack and network device
3906 * drivers to provide a backing region of memory for use as either an
3907 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3908 */
3909static struct page *__page_frag_refill(struct page_frag_cache *nc,
3910 gfp_t gfp_mask)
3911{
3912 struct page *page = NULL;
3913 gfp_t gfp = gfp_mask;
3914
3915#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3916 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3917 __GFP_NOMEMALLOC;
3918 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3919 PAGE_FRAG_CACHE_MAX_ORDER);
3920 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3921#endif
3922 if (unlikely(!page))
3923 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3924
3925 nc->va = page ? page_address(page) : NULL;
3926
3927 return page;
3928}
3929
3930void *__alloc_page_frag(struct page_frag_cache *nc,
3931 unsigned int fragsz, gfp_t gfp_mask)
3932{
3933 unsigned int size = PAGE_SIZE;
3934 struct page *page;
3935 int offset;
3936
3937 if (unlikely(!nc->va)) {
3938refill:
3939 page = __page_frag_refill(nc, gfp_mask);
3940 if (!page)
3941 return NULL;
3942
3943#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3944 /* if size can vary use size else just use PAGE_SIZE */
3945 size = nc->size;
3946#endif
3947 /* Even if we own the page, we do not use atomic_set().
3948 * This would break get_page_unless_zero() users.
3949 */
fe896d18 3950 page_ref_add(page, size - 1);
b63ae8ca
AD
3951
3952 /* reset page count bias and offset to start of new frag */
2f064f34 3953 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3954 nc->pagecnt_bias = size;
3955 nc->offset = size;
3956 }
3957
3958 offset = nc->offset - fragsz;
3959 if (unlikely(offset < 0)) {
3960 page = virt_to_page(nc->va);
3961
fe896d18 3962 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3963 goto refill;
3964
3965#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3966 /* if size can vary use size else just use PAGE_SIZE */
3967 size = nc->size;
3968#endif
3969 /* OK, page count is 0, we can safely set it */
fe896d18 3970 set_page_count(page, size);
b63ae8ca
AD
3971
3972 /* reset page count bias and offset to start of new frag */
3973 nc->pagecnt_bias = size;
3974 offset = size - fragsz;
3975 }
3976
3977 nc->pagecnt_bias--;
3978 nc->offset = offset;
3979
3980 return nc->va + offset;
3981}
3982EXPORT_SYMBOL(__alloc_page_frag);
3983
3984/*
3985 * Frees a page fragment allocated out of either a compound or order 0 page.
3986 */
3987void __free_page_frag(void *addr)
3988{
3989 struct page *page = virt_to_head_page(addr);
3990
3991 if (unlikely(put_page_testzero(page)))
3992 __free_pages_ok(page, compound_order(page));
3993}
3994EXPORT_SYMBOL(__free_page_frag);
3995
6a1a0d3b 3996/*
52383431 3997 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3998 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3999 * equivalent to alloc_pages.
6a1a0d3b 4000 *
52383431
VD
4001 * It should be used when the caller would like to use kmalloc, but since the
4002 * allocation is large, it has to fall back to the page allocator.
4003 */
4004struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4005{
4006 struct page *page;
52383431 4007
52383431 4008 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4009 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4010 __free_pages(page, order);
4011 page = NULL;
4012 }
52383431
VD
4013 return page;
4014}
4015
4016struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4017{
4018 struct page *page;
52383431 4019
52383431 4020 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4021 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4022 __free_pages(page, order);
4023 page = NULL;
4024 }
52383431
VD
4025 return page;
4026}
4027
4028/*
4029 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4030 * alloc_kmem_pages.
6a1a0d3b 4031 */
52383431 4032void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4033{
d05e83a6 4034 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4035 __free_pages(page, order);
4036}
4037
52383431 4038void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4039{
4040 if (addr != 0) {
4041 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4042 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4043 }
4044}
4045
d00181b9
KS
4046static void *make_alloc_exact(unsigned long addr, unsigned int order,
4047 size_t size)
ee85c2e1
AK
4048{
4049 if (addr) {
4050 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4051 unsigned long used = addr + PAGE_ALIGN(size);
4052
4053 split_page(virt_to_page((void *)addr), order);
4054 while (used < alloc_end) {
4055 free_page(used);
4056 used += PAGE_SIZE;
4057 }
4058 }
4059 return (void *)addr;
4060}
4061
2be0ffe2
TT
4062/**
4063 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4064 * @size: the number of bytes to allocate
4065 * @gfp_mask: GFP flags for the allocation
4066 *
4067 * This function is similar to alloc_pages(), except that it allocates the
4068 * minimum number of pages to satisfy the request. alloc_pages() can only
4069 * allocate memory in power-of-two pages.
4070 *
4071 * This function is also limited by MAX_ORDER.
4072 *
4073 * Memory allocated by this function must be released by free_pages_exact().
4074 */
4075void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4076{
4077 unsigned int order = get_order(size);
4078 unsigned long addr;
4079
4080 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4081 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4082}
4083EXPORT_SYMBOL(alloc_pages_exact);
4084
ee85c2e1
AK
4085/**
4086 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4087 * pages on a node.
b5e6ab58 4088 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4089 * @size: the number of bytes to allocate
4090 * @gfp_mask: GFP flags for the allocation
4091 *
4092 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4093 * back.
ee85c2e1 4094 */
e1931811 4095void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4096{
d00181b9 4097 unsigned int order = get_order(size);
ee85c2e1
AK
4098 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4099 if (!p)
4100 return NULL;
4101 return make_alloc_exact((unsigned long)page_address(p), order, size);
4102}
ee85c2e1 4103
2be0ffe2
TT
4104/**
4105 * free_pages_exact - release memory allocated via alloc_pages_exact()
4106 * @virt: the value returned by alloc_pages_exact.
4107 * @size: size of allocation, same value as passed to alloc_pages_exact().
4108 *
4109 * Release the memory allocated by a previous call to alloc_pages_exact.
4110 */
4111void free_pages_exact(void *virt, size_t size)
4112{
4113 unsigned long addr = (unsigned long)virt;
4114 unsigned long end = addr + PAGE_ALIGN(size);
4115
4116 while (addr < end) {
4117 free_page(addr);
4118 addr += PAGE_SIZE;
4119 }
4120}
4121EXPORT_SYMBOL(free_pages_exact);
4122
e0fb5815
ZY
4123/**
4124 * nr_free_zone_pages - count number of pages beyond high watermark
4125 * @offset: The zone index of the highest zone
4126 *
4127 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4128 * high watermark within all zones at or below a given zone index. For each
4129 * zone, the number of pages is calculated as:
834405c3 4130 * managed_pages - high_pages
e0fb5815 4131 */
ebec3862 4132static unsigned long nr_free_zone_pages(int offset)
1da177e4 4133{
dd1a239f 4134 struct zoneref *z;
54a6eb5c
MG
4135 struct zone *zone;
4136
e310fd43 4137 /* Just pick one node, since fallback list is circular */
ebec3862 4138 unsigned long sum = 0;
1da177e4 4139
0e88460d 4140 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4141
54a6eb5c 4142 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4143 unsigned long size = zone->managed_pages;
41858966 4144 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4145 if (size > high)
4146 sum += size - high;
1da177e4
LT
4147 }
4148
4149 return sum;
4150}
4151
e0fb5815
ZY
4152/**
4153 * nr_free_buffer_pages - count number of pages beyond high watermark
4154 *
4155 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4156 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4157 */
ebec3862 4158unsigned long nr_free_buffer_pages(void)
1da177e4 4159{
af4ca457 4160 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4161}
c2f1a551 4162EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4163
e0fb5815
ZY
4164/**
4165 * nr_free_pagecache_pages - count number of pages beyond high watermark
4166 *
4167 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4168 * high watermark within all zones.
1da177e4 4169 */
ebec3862 4170unsigned long nr_free_pagecache_pages(void)
1da177e4 4171{
2a1e274a 4172 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4173}
08e0f6a9
CL
4174
4175static inline void show_node(struct zone *zone)
1da177e4 4176{
e5adfffc 4177 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4178 printk("Node %d ", zone_to_nid(zone));
1da177e4 4179}
1da177e4 4180
d02bd27b
IR
4181long si_mem_available(void)
4182{
4183 long available;
4184 unsigned long pagecache;
4185 unsigned long wmark_low = 0;
4186 unsigned long pages[NR_LRU_LISTS];
4187 struct zone *zone;
4188 int lru;
4189
4190 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4191 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4192
4193 for_each_zone(zone)
4194 wmark_low += zone->watermark[WMARK_LOW];
4195
4196 /*
4197 * Estimate the amount of memory available for userspace allocations,
4198 * without causing swapping.
4199 */
4200 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4201
4202 /*
4203 * Not all the page cache can be freed, otherwise the system will
4204 * start swapping. Assume at least half of the page cache, or the
4205 * low watermark worth of cache, needs to stay.
4206 */
4207 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4208 pagecache -= min(pagecache / 2, wmark_low);
4209 available += pagecache;
4210
4211 /*
4212 * Part of the reclaimable slab consists of items that are in use,
4213 * and cannot be freed. Cap this estimate at the low watermark.
4214 */
4215 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4216 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4217
4218 if (available < 0)
4219 available = 0;
4220 return available;
4221}
4222EXPORT_SYMBOL_GPL(si_mem_available);
4223
1da177e4
LT
4224void si_meminfo(struct sysinfo *val)
4225{
4226 val->totalram = totalram_pages;
cc7452b6 4227 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4228 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4229 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4230 val->totalhigh = totalhigh_pages;
4231 val->freehigh = nr_free_highpages();
1da177e4
LT
4232 val->mem_unit = PAGE_SIZE;
4233}
4234
4235EXPORT_SYMBOL(si_meminfo);
4236
4237#ifdef CONFIG_NUMA
4238void si_meminfo_node(struct sysinfo *val, int nid)
4239{
cdd91a77
JL
4240 int zone_type; /* needs to be signed */
4241 unsigned long managed_pages = 0;
fc2bd799
JK
4242 unsigned long managed_highpages = 0;
4243 unsigned long free_highpages = 0;
1da177e4
LT
4244 pg_data_t *pgdat = NODE_DATA(nid);
4245
cdd91a77
JL
4246 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4247 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4248 val->totalram = managed_pages;
cc7452b6 4249 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4250 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4251#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4252 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4253 struct zone *zone = &pgdat->node_zones[zone_type];
4254
4255 if (is_highmem(zone)) {
4256 managed_highpages += zone->managed_pages;
4257 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4258 }
4259 }
4260 val->totalhigh = managed_highpages;
4261 val->freehigh = free_highpages;
98d2b0eb 4262#else
fc2bd799
JK
4263 val->totalhigh = managed_highpages;
4264 val->freehigh = free_highpages;
98d2b0eb 4265#endif
1da177e4
LT
4266 val->mem_unit = PAGE_SIZE;
4267}
4268#endif
4269
ddd588b5 4270/*
7bf02ea2
DR
4271 * Determine whether the node should be displayed or not, depending on whether
4272 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4273 */
7bf02ea2 4274bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4275{
4276 bool ret = false;
cc9a6c87 4277 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4278
4279 if (!(flags & SHOW_MEM_FILTER_NODES))
4280 goto out;
4281
cc9a6c87 4282 do {
d26914d1 4283 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4284 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4285 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4286out:
4287 return ret;
4288}
4289
1da177e4
LT
4290#define K(x) ((x) << (PAGE_SHIFT-10))
4291
377e4f16
RV
4292static void show_migration_types(unsigned char type)
4293{
4294 static const char types[MIGRATE_TYPES] = {
4295 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4296 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4297 [MIGRATE_RECLAIMABLE] = 'E',
4298 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4299#ifdef CONFIG_CMA
4300 [MIGRATE_CMA] = 'C',
4301#endif
194159fb 4302#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4303 [MIGRATE_ISOLATE] = 'I',
194159fb 4304#endif
377e4f16
RV
4305 };
4306 char tmp[MIGRATE_TYPES + 1];
4307 char *p = tmp;
4308 int i;
4309
4310 for (i = 0; i < MIGRATE_TYPES; i++) {
4311 if (type & (1 << i))
4312 *p++ = types[i];
4313 }
4314
4315 *p = '\0';
4316 printk("(%s) ", tmp);
4317}
4318
1da177e4
LT
4319/*
4320 * Show free area list (used inside shift_scroll-lock stuff)
4321 * We also calculate the percentage fragmentation. We do this by counting the
4322 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4323 *
4324 * Bits in @filter:
4325 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4326 * cpuset.
1da177e4 4327 */
7bf02ea2 4328void show_free_areas(unsigned int filter)
1da177e4 4329{
d1bfcdb8 4330 unsigned long free_pcp = 0;
c7241913 4331 int cpu;
1da177e4
LT
4332 struct zone *zone;
4333
ee99c71c 4334 for_each_populated_zone(zone) {
7bf02ea2 4335 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4336 continue;
d1bfcdb8 4337
761b0677
KK
4338 for_each_online_cpu(cpu)
4339 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4340 }
4341
a731286d
KM
4342 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4343 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4344 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4345 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4346 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4347 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4348 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4349 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4350 global_page_state(NR_ISOLATED_ANON),
4351 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4352 global_page_state(NR_INACTIVE_FILE),
a731286d 4353 global_page_state(NR_ISOLATED_FILE),
7b854121 4354 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4355 global_page_state(NR_FILE_DIRTY),
ce866b34 4356 global_page_state(NR_WRITEBACK),
fd39fc85 4357 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4358 global_page_state(NR_SLAB_RECLAIMABLE),
4359 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4360 global_page_state(NR_FILE_MAPPED),
4b02108a 4361 global_page_state(NR_SHMEM),
a25700a5 4362 global_page_state(NR_PAGETABLE),
d1ce749a 4363 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4364 global_page_state(NR_FREE_PAGES),
4365 free_pcp,
d1ce749a 4366 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4367
ee99c71c 4368 for_each_populated_zone(zone) {
1da177e4
LT
4369 int i;
4370
7bf02ea2 4371 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4372 continue;
d1bfcdb8
KK
4373
4374 free_pcp = 0;
4375 for_each_online_cpu(cpu)
4376 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4377
1da177e4
LT
4378 show_node(zone);
4379 printk("%s"
4380 " free:%lukB"
4381 " min:%lukB"
4382 " low:%lukB"
4383 " high:%lukB"
4f98a2fe
RR
4384 " active_anon:%lukB"
4385 " inactive_anon:%lukB"
4386 " active_file:%lukB"
4387 " inactive_file:%lukB"
7b854121 4388 " unevictable:%lukB"
a731286d
KM
4389 " isolated(anon):%lukB"
4390 " isolated(file):%lukB"
1da177e4 4391 " present:%lukB"
9feedc9d 4392 " managed:%lukB"
4a0aa73f
KM
4393 " mlocked:%lukB"
4394 " dirty:%lukB"
4395 " writeback:%lukB"
4396 " mapped:%lukB"
4b02108a 4397 " shmem:%lukB"
4a0aa73f
KM
4398 " slab_reclaimable:%lukB"
4399 " slab_unreclaimable:%lukB"
c6a7f572 4400 " kernel_stack:%lukB"
4a0aa73f
KM
4401 " pagetables:%lukB"
4402 " unstable:%lukB"
4403 " bounce:%lukB"
d1bfcdb8
KK
4404 " free_pcp:%lukB"
4405 " local_pcp:%ukB"
d1ce749a 4406 " free_cma:%lukB"
4a0aa73f 4407 " writeback_tmp:%lukB"
1da177e4
LT
4408 " pages_scanned:%lu"
4409 " all_unreclaimable? %s"
4410 "\n",
4411 zone->name,
88f5acf8 4412 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4413 K(min_wmark_pages(zone)),
4414 K(low_wmark_pages(zone)),
4415 K(high_wmark_pages(zone)),
4f98a2fe
RR
4416 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4417 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4418 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4419 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4420 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4421 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4422 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4423 K(zone->present_pages),
9feedc9d 4424 K(zone->managed_pages),
4a0aa73f
KM
4425 K(zone_page_state(zone, NR_MLOCK)),
4426 K(zone_page_state(zone, NR_FILE_DIRTY)),
4427 K(zone_page_state(zone, NR_WRITEBACK)),
4428 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4429 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4430 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4431 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4432 zone_page_state(zone, NR_KERNEL_STACK) *
4433 THREAD_SIZE / 1024,
4a0aa73f
KM
4434 K(zone_page_state(zone, NR_PAGETABLE)),
4435 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4436 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4437 K(free_pcp),
4438 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4439 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4440 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4441 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4442 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4443 );
4444 printk("lowmem_reserve[]:");
4445 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4446 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4447 printk("\n");
4448 }
4449
ee99c71c 4450 for_each_populated_zone(zone) {
d00181b9
KS
4451 unsigned int order;
4452 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4453 unsigned char types[MAX_ORDER];
1da177e4 4454
7bf02ea2 4455 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4456 continue;
1da177e4
LT
4457 show_node(zone);
4458 printk("%s: ", zone->name);
1da177e4
LT
4459
4460 spin_lock_irqsave(&zone->lock, flags);
4461 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4462 struct free_area *area = &zone->free_area[order];
4463 int type;
4464
4465 nr[order] = area->nr_free;
8f9de51a 4466 total += nr[order] << order;
377e4f16
RV
4467
4468 types[order] = 0;
4469 for (type = 0; type < MIGRATE_TYPES; type++) {
4470 if (!list_empty(&area->free_list[type]))
4471 types[order] |= 1 << type;
4472 }
1da177e4
LT
4473 }
4474 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4475 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4476 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4477 if (nr[order])
4478 show_migration_types(types[order]);
4479 }
1da177e4
LT
4480 printk("= %lukB\n", K(total));
4481 }
4482
949f7ec5
DR
4483 hugetlb_show_meminfo();
4484
e6f3602d
LW
4485 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4486
1da177e4
LT
4487 show_swap_cache_info();
4488}
4489
19770b32
MG
4490static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4491{
4492 zoneref->zone = zone;
4493 zoneref->zone_idx = zone_idx(zone);
4494}
4495
1da177e4
LT
4496/*
4497 * Builds allocation fallback zone lists.
1a93205b
CL
4498 *
4499 * Add all populated zones of a node to the zonelist.
1da177e4 4500 */
f0c0b2b8 4501static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4502 int nr_zones)
1da177e4 4503{
1a93205b 4504 struct zone *zone;
bc732f1d 4505 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4506
4507 do {
2f6726e5 4508 zone_type--;
070f8032 4509 zone = pgdat->node_zones + zone_type;
1a93205b 4510 if (populated_zone(zone)) {
dd1a239f
MG
4511 zoneref_set_zone(zone,
4512 &zonelist->_zonerefs[nr_zones++]);
070f8032 4513 check_highest_zone(zone_type);
1da177e4 4514 }
2f6726e5 4515 } while (zone_type);
bc732f1d 4516
070f8032 4517 return nr_zones;
1da177e4
LT
4518}
4519
f0c0b2b8
KH
4520
4521/*
4522 * zonelist_order:
4523 * 0 = automatic detection of better ordering.
4524 * 1 = order by ([node] distance, -zonetype)
4525 * 2 = order by (-zonetype, [node] distance)
4526 *
4527 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4528 * the same zonelist. So only NUMA can configure this param.
4529 */
4530#define ZONELIST_ORDER_DEFAULT 0
4531#define ZONELIST_ORDER_NODE 1
4532#define ZONELIST_ORDER_ZONE 2
4533
4534/* zonelist order in the kernel.
4535 * set_zonelist_order() will set this to NODE or ZONE.
4536 */
4537static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4538static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4539
4540
1da177e4 4541#ifdef CONFIG_NUMA
f0c0b2b8
KH
4542/* The value user specified ....changed by config */
4543static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4544/* string for sysctl */
4545#define NUMA_ZONELIST_ORDER_LEN 16
4546char numa_zonelist_order[16] = "default";
4547
4548/*
4549 * interface for configure zonelist ordering.
4550 * command line option "numa_zonelist_order"
4551 * = "[dD]efault - default, automatic configuration.
4552 * = "[nN]ode - order by node locality, then by zone within node
4553 * = "[zZ]one - order by zone, then by locality within zone
4554 */
4555
4556static int __parse_numa_zonelist_order(char *s)
4557{
4558 if (*s == 'd' || *s == 'D') {
4559 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4560 } else if (*s == 'n' || *s == 'N') {
4561 user_zonelist_order = ZONELIST_ORDER_NODE;
4562 } else if (*s == 'z' || *s == 'Z') {
4563 user_zonelist_order = ZONELIST_ORDER_ZONE;
4564 } else {
1170532b 4565 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4566 return -EINVAL;
4567 }
4568 return 0;
4569}
4570
4571static __init int setup_numa_zonelist_order(char *s)
4572{
ecb256f8
VL
4573 int ret;
4574
4575 if (!s)
4576 return 0;
4577
4578 ret = __parse_numa_zonelist_order(s);
4579 if (ret == 0)
4580 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4581
4582 return ret;
f0c0b2b8
KH
4583}
4584early_param("numa_zonelist_order", setup_numa_zonelist_order);
4585
4586/*
4587 * sysctl handler for numa_zonelist_order
4588 */
cccad5b9 4589int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4590 void __user *buffer, size_t *length,
f0c0b2b8
KH
4591 loff_t *ppos)
4592{
4593 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4594 int ret;
443c6f14 4595 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4596
443c6f14 4597 mutex_lock(&zl_order_mutex);
dacbde09
CG
4598 if (write) {
4599 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4600 ret = -EINVAL;
4601 goto out;
4602 }
4603 strcpy(saved_string, (char *)table->data);
4604 }
8d65af78 4605 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4606 if (ret)
443c6f14 4607 goto out;
f0c0b2b8
KH
4608 if (write) {
4609 int oldval = user_zonelist_order;
dacbde09
CG
4610
4611 ret = __parse_numa_zonelist_order((char *)table->data);
4612 if (ret) {
f0c0b2b8
KH
4613 /*
4614 * bogus value. restore saved string
4615 */
dacbde09 4616 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4617 NUMA_ZONELIST_ORDER_LEN);
4618 user_zonelist_order = oldval;
4eaf3f64
HL
4619 } else if (oldval != user_zonelist_order) {
4620 mutex_lock(&zonelists_mutex);
9adb62a5 4621 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4622 mutex_unlock(&zonelists_mutex);
4623 }
f0c0b2b8 4624 }
443c6f14
AK
4625out:
4626 mutex_unlock(&zl_order_mutex);
4627 return ret;
f0c0b2b8
KH
4628}
4629
4630
62bc62a8 4631#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4632static int node_load[MAX_NUMNODES];
4633
1da177e4 4634/**
4dc3b16b 4635 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4636 * @node: node whose fallback list we're appending
4637 * @used_node_mask: nodemask_t of already used nodes
4638 *
4639 * We use a number of factors to determine which is the next node that should
4640 * appear on a given node's fallback list. The node should not have appeared
4641 * already in @node's fallback list, and it should be the next closest node
4642 * according to the distance array (which contains arbitrary distance values
4643 * from each node to each node in the system), and should also prefer nodes
4644 * with no CPUs, since presumably they'll have very little allocation pressure
4645 * on them otherwise.
4646 * It returns -1 if no node is found.
4647 */
f0c0b2b8 4648static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4649{
4cf808eb 4650 int n, val;
1da177e4 4651 int min_val = INT_MAX;
00ef2d2f 4652 int best_node = NUMA_NO_NODE;
a70f7302 4653 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4654
4cf808eb
LT
4655 /* Use the local node if we haven't already */
4656 if (!node_isset(node, *used_node_mask)) {
4657 node_set(node, *used_node_mask);
4658 return node;
4659 }
1da177e4 4660
4b0ef1fe 4661 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4662
4663 /* Don't want a node to appear more than once */
4664 if (node_isset(n, *used_node_mask))
4665 continue;
4666
1da177e4
LT
4667 /* Use the distance array to find the distance */
4668 val = node_distance(node, n);
4669
4cf808eb
LT
4670 /* Penalize nodes under us ("prefer the next node") */
4671 val += (n < node);
4672
1da177e4 4673 /* Give preference to headless and unused nodes */
a70f7302
RR
4674 tmp = cpumask_of_node(n);
4675 if (!cpumask_empty(tmp))
1da177e4
LT
4676 val += PENALTY_FOR_NODE_WITH_CPUS;
4677
4678 /* Slight preference for less loaded node */
4679 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4680 val += node_load[n];
4681
4682 if (val < min_val) {
4683 min_val = val;
4684 best_node = n;
4685 }
4686 }
4687
4688 if (best_node >= 0)
4689 node_set(best_node, *used_node_mask);
4690
4691 return best_node;
4692}
4693
f0c0b2b8
KH
4694
4695/*
4696 * Build zonelists ordered by node and zones within node.
4697 * This results in maximum locality--normal zone overflows into local
4698 * DMA zone, if any--but risks exhausting DMA zone.
4699 */
4700static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4701{
f0c0b2b8 4702 int j;
1da177e4 4703 struct zonelist *zonelist;
f0c0b2b8 4704
54a6eb5c 4705 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4706 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4707 ;
bc732f1d 4708 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4709 zonelist->_zonerefs[j].zone = NULL;
4710 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4711}
4712
523b9458
CL
4713/*
4714 * Build gfp_thisnode zonelists
4715 */
4716static void build_thisnode_zonelists(pg_data_t *pgdat)
4717{
523b9458
CL
4718 int j;
4719 struct zonelist *zonelist;
4720
54a6eb5c 4721 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4722 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4723 zonelist->_zonerefs[j].zone = NULL;
4724 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4725}
4726
f0c0b2b8
KH
4727/*
4728 * Build zonelists ordered by zone and nodes within zones.
4729 * This results in conserving DMA zone[s] until all Normal memory is
4730 * exhausted, but results in overflowing to remote node while memory
4731 * may still exist in local DMA zone.
4732 */
4733static int node_order[MAX_NUMNODES];
4734
4735static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4736{
f0c0b2b8
KH
4737 int pos, j, node;
4738 int zone_type; /* needs to be signed */
4739 struct zone *z;
4740 struct zonelist *zonelist;
4741
54a6eb5c
MG
4742 zonelist = &pgdat->node_zonelists[0];
4743 pos = 0;
4744 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4745 for (j = 0; j < nr_nodes; j++) {
4746 node = node_order[j];
4747 z = &NODE_DATA(node)->node_zones[zone_type];
4748 if (populated_zone(z)) {
dd1a239f
MG
4749 zoneref_set_zone(z,
4750 &zonelist->_zonerefs[pos++]);
54a6eb5c 4751 check_highest_zone(zone_type);
f0c0b2b8
KH
4752 }
4753 }
f0c0b2b8 4754 }
dd1a239f
MG
4755 zonelist->_zonerefs[pos].zone = NULL;
4756 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4757}
4758
3193913c
MG
4759#if defined(CONFIG_64BIT)
4760/*
4761 * Devices that require DMA32/DMA are relatively rare and do not justify a
4762 * penalty to every machine in case the specialised case applies. Default
4763 * to Node-ordering on 64-bit NUMA machines
4764 */
4765static int default_zonelist_order(void)
4766{
4767 return ZONELIST_ORDER_NODE;
4768}
4769#else
4770/*
4771 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4772 * by the kernel. If processes running on node 0 deplete the low memory zone
4773 * then reclaim will occur more frequency increasing stalls and potentially
4774 * be easier to OOM if a large percentage of the zone is under writeback or
4775 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4776 * Hence, default to zone ordering on 32-bit.
4777 */
f0c0b2b8
KH
4778static int default_zonelist_order(void)
4779{
f0c0b2b8
KH
4780 return ZONELIST_ORDER_ZONE;
4781}
3193913c 4782#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4783
4784static void set_zonelist_order(void)
4785{
4786 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4787 current_zonelist_order = default_zonelist_order();
4788 else
4789 current_zonelist_order = user_zonelist_order;
4790}
4791
4792static void build_zonelists(pg_data_t *pgdat)
4793{
c00eb15a 4794 int i, node, load;
1da177e4 4795 nodemask_t used_mask;
f0c0b2b8
KH
4796 int local_node, prev_node;
4797 struct zonelist *zonelist;
d00181b9 4798 unsigned int order = current_zonelist_order;
1da177e4
LT
4799
4800 /* initialize zonelists */
523b9458 4801 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4802 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4803 zonelist->_zonerefs[0].zone = NULL;
4804 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4805 }
4806
4807 /* NUMA-aware ordering of nodes */
4808 local_node = pgdat->node_id;
62bc62a8 4809 load = nr_online_nodes;
1da177e4
LT
4810 prev_node = local_node;
4811 nodes_clear(used_mask);
f0c0b2b8 4812
f0c0b2b8 4813 memset(node_order, 0, sizeof(node_order));
c00eb15a 4814 i = 0;
f0c0b2b8 4815
1da177e4
LT
4816 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4817 /*
4818 * We don't want to pressure a particular node.
4819 * So adding penalty to the first node in same
4820 * distance group to make it round-robin.
4821 */
957f822a
DR
4822 if (node_distance(local_node, node) !=
4823 node_distance(local_node, prev_node))
f0c0b2b8
KH
4824 node_load[node] = load;
4825
1da177e4
LT
4826 prev_node = node;
4827 load--;
f0c0b2b8
KH
4828 if (order == ZONELIST_ORDER_NODE)
4829 build_zonelists_in_node_order(pgdat, node);
4830 else
c00eb15a 4831 node_order[i++] = node; /* remember order */
f0c0b2b8 4832 }
1da177e4 4833
f0c0b2b8
KH
4834 if (order == ZONELIST_ORDER_ZONE) {
4835 /* calculate node order -- i.e., DMA last! */
c00eb15a 4836 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4837 }
523b9458
CL
4838
4839 build_thisnode_zonelists(pgdat);
1da177e4
LT
4840}
4841
7aac7898
LS
4842#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4843/*
4844 * Return node id of node used for "local" allocations.
4845 * I.e., first node id of first zone in arg node's generic zonelist.
4846 * Used for initializing percpu 'numa_mem', which is used primarily
4847 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4848 */
4849int local_memory_node(int node)
4850{
c33d6c06 4851 struct zoneref *z;
7aac7898 4852
c33d6c06 4853 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4854 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4855 NULL);
4856 return z->zone->node;
7aac7898
LS
4857}
4858#endif
f0c0b2b8 4859
1da177e4
LT
4860#else /* CONFIG_NUMA */
4861
f0c0b2b8
KH
4862static void set_zonelist_order(void)
4863{
4864 current_zonelist_order = ZONELIST_ORDER_ZONE;
4865}
4866
4867static void build_zonelists(pg_data_t *pgdat)
1da177e4 4868{
19655d34 4869 int node, local_node;
54a6eb5c
MG
4870 enum zone_type j;
4871 struct zonelist *zonelist;
1da177e4
LT
4872
4873 local_node = pgdat->node_id;
1da177e4 4874
54a6eb5c 4875 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4876 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4877
54a6eb5c
MG
4878 /*
4879 * Now we build the zonelist so that it contains the zones
4880 * of all the other nodes.
4881 * We don't want to pressure a particular node, so when
4882 * building the zones for node N, we make sure that the
4883 * zones coming right after the local ones are those from
4884 * node N+1 (modulo N)
4885 */
4886 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4887 if (!node_online(node))
4888 continue;
bc732f1d 4889 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4890 }
54a6eb5c
MG
4891 for (node = 0; node < local_node; node++) {
4892 if (!node_online(node))
4893 continue;
bc732f1d 4894 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4895 }
4896
dd1a239f
MG
4897 zonelist->_zonerefs[j].zone = NULL;
4898 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4899}
4900
4901#endif /* CONFIG_NUMA */
4902
99dcc3e5
CL
4903/*
4904 * Boot pageset table. One per cpu which is going to be used for all
4905 * zones and all nodes. The parameters will be set in such a way
4906 * that an item put on a list will immediately be handed over to
4907 * the buddy list. This is safe since pageset manipulation is done
4908 * with interrupts disabled.
4909 *
4910 * The boot_pagesets must be kept even after bootup is complete for
4911 * unused processors and/or zones. They do play a role for bootstrapping
4912 * hotplugged processors.
4913 *
4914 * zoneinfo_show() and maybe other functions do
4915 * not check if the processor is online before following the pageset pointer.
4916 * Other parts of the kernel may not check if the zone is available.
4917 */
4918static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4919static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4920static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4921
4eaf3f64
HL
4922/*
4923 * Global mutex to protect against size modification of zonelists
4924 * as well as to serialize pageset setup for the new populated zone.
4925 */
4926DEFINE_MUTEX(zonelists_mutex);
4927
9b1a4d38 4928/* return values int ....just for stop_machine() */
4ed7e022 4929static int __build_all_zonelists(void *data)
1da177e4 4930{
6811378e 4931 int nid;
99dcc3e5 4932 int cpu;
9adb62a5 4933 pg_data_t *self = data;
9276b1bc 4934
7f9cfb31
BL
4935#ifdef CONFIG_NUMA
4936 memset(node_load, 0, sizeof(node_load));
4937#endif
9adb62a5
JL
4938
4939 if (self && !node_online(self->node_id)) {
4940 build_zonelists(self);
9adb62a5
JL
4941 }
4942
9276b1bc 4943 for_each_online_node(nid) {
7ea1530a
CL
4944 pg_data_t *pgdat = NODE_DATA(nid);
4945
4946 build_zonelists(pgdat);
9276b1bc 4947 }
99dcc3e5
CL
4948
4949 /*
4950 * Initialize the boot_pagesets that are going to be used
4951 * for bootstrapping processors. The real pagesets for
4952 * each zone will be allocated later when the per cpu
4953 * allocator is available.
4954 *
4955 * boot_pagesets are used also for bootstrapping offline
4956 * cpus if the system is already booted because the pagesets
4957 * are needed to initialize allocators on a specific cpu too.
4958 * F.e. the percpu allocator needs the page allocator which
4959 * needs the percpu allocator in order to allocate its pagesets
4960 * (a chicken-egg dilemma).
4961 */
7aac7898 4962 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4963 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4964
7aac7898
LS
4965#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4966 /*
4967 * We now know the "local memory node" for each node--
4968 * i.e., the node of the first zone in the generic zonelist.
4969 * Set up numa_mem percpu variable for on-line cpus. During
4970 * boot, only the boot cpu should be on-line; we'll init the
4971 * secondary cpus' numa_mem as they come on-line. During
4972 * node/memory hotplug, we'll fixup all on-line cpus.
4973 */
4974 if (cpu_online(cpu))
4975 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4976#endif
4977 }
4978
6811378e
YG
4979 return 0;
4980}
4981
061f67bc
RV
4982static noinline void __init
4983build_all_zonelists_init(void)
4984{
4985 __build_all_zonelists(NULL);
4986 mminit_verify_zonelist();
4987 cpuset_init_current_mems_allowed();
4988}
4989
4eaf3f64
HL
4990/*
4991 * Called with zonelists_mutex held always
4992 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4993 *
4994 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4995 * [we're only called with non-NULL zone through __meminit paths] and
4996 * (2) call of __init annotated helper build_all_zonelists_init
4997 * [protected by SYSTEM_BOOTING].
4eaf3f64 4998 */
9adb62a5 4999void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5000{
f0c0b2b8
KH
5001 set_zonelist_order();
5002
6811378e 5003 if (system_state == SYSTEM_BOOTING) {
061f67bc 5004 build_all_zonelists_init();
6811378e 5005 } else {
e9959f0f 5006#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5007 if (zone)
5008 setup_zone_pageset(zone);
e9959f0f 5009#endif
dd1895e2
CS
5010 /* we have to stop all cpus to guarantee there is no user
5011 of zonelist */
9adb62a5 5012 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5013 /* cpuset refresh routine should be here */
5014 }
bd1e22b8 5015 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5016 /*
5017 * Disable grouping by mobility if the number of pages in the
5018 * system is too low to allow the mechanism to work. It would be
5019 * more accurate, but expensive to check per-zone. This check is
5020 * made on memory-hotadd so a system can start with mobility
5021 * disabled and enable it later
5022 */
d9c23400 5023 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5024 page_group_by_mobility_disabled = 1;
5025 else
5026 page_group_by_mobility_disabled = 0;
5027
756a025f
JP
5028 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5029 nr_online_nodes,
5030 zonelist_order_name[current_zonelist_order],
5031 page_group_by_mobility_disabled ? "off" : "on",
5032 vm_total_pages);
f0c0b2b8 5033#ifdef CONFIG_NUMA
f88dfff5 5034 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5035#endif
1da177e4
LT
5036}
5037
5038/*
5039 * Helper functions to size the waitqueue hash table.
5040 * Essentially these want to choose hash table sizes sufficiently
5041 * large so that collisions trying to wait on pages are rare.
5042 * But in fact, the number of active page waitqueues on typical
5043 * systems is ridiculously low, less than 200. So this is even
5044 * conservative, even though it seems large.
5045 *
5046 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5047 * waitqueues, i.e. the size of the waitq table given the number of pages.
5048 */
5049#define PAGES_PER_WAITQUEUE 256
5050
cca448fe 5051#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5052static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5053{
5054 unsigned long size = 1;
5055
5056 pages /= PAGES_PER_WAITQUEUE;
5057
5058 while (size < pages)
5059 size <<= 1;
5060
5061 /*
5062 * Once we have dozens or even hundreds of threads sleeping
5063 * on IO we've got bigger problems than wait queue collision.
5064 * Limit the size of the wait table to a reasonable size.
5065 */
5066 size = min(size, 4096UL);
5067
5068 return max(size, 4UL);
5069}
cca448fe
YG
5070#else
5071/*
5072 * A zone's size might be changed by hot-add, so it is not possible to determine
5073 * a suitable size for its wait_table. So we use the maximum size now.
5074 *
5075 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5076 *
5077 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5078 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5079 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5080 *
5081 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5082 * or more by the traditional way. (See above). It equals:
5083 *
5084 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5085 * ia64(16K page size) : = ( 8G + 4M)byte.
5086 * powerpc (64K page size) : = (32G +16M)byte.
5087 */
5088static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5089{
5090 return 4096UL;
5091}
5092#endif
1da177e4
LT
5093
5094/*
5095 * This is an integer logarithm so that shifts can be used later
5096 * to extract the more random high bits from the multiplicative
5097 * hash function before the remainder is taken.
5098 */
5099static inline unsigned long wait_table_bits(unsigned long size)
5100{
5101 return ffz(~size);
5102}
5103
1da177e4
LT
5104/*
5105 * Initially all pages are reserved - free ones are freed
5106 * up by free_all_bootmem() once the early boot process is
5107 * done. Non-atomic initialization, single-pass.
5108 */
c09b4240 5109void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5110 unsigned long start_pfn, enum memmap_context context)
1da177e4 5111{
4b94ffdc 5112 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5113 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5114 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5115 unsigned long pfn;
3a80a7fa 5116 unsigned long nr_initialised = 0;
342332e6
TI
5117#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5118 struct memblock_region *r = NULL, *tmp;
5119#endif
1da177e4 5120
22b31eec
HD
5121 if (highest_memmap_pfn < end_pfn - 1)
5122 highest_memmap_pfn = end_pfn - 1;
5123
4b94ffdc
DW
5124 /*
5125 * Honor reservation requested by the driver for this ZONE_DEVICE
5126 * memory
5127 */
5128 if (altmap && start_pfn == altmap->base_pfn)
5129 start_pfn += altmap->reserve;
5130
cbe8dd4a 5131 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5132 /*
b72d0ffb
AM
5133 * There can be holes in boot-time mem_map[]s handed to this
5134 * function. They do not exist on hotplugged memory.
a2f3aa02 5135 */
b72d0ffb
AM
5136 if (context != MEMMAP_EARLY)
5137 goto not_early;
5138
5139 if (!early_pfn_valid(pfn))
5140 continue;
5141 if (!early_pfn_in_nid(pfn, nid))
5142 continue;
5143 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5144 break;
342332e6
TI
5145
5146#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5147 /*
5148 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5149 * from zone_movable_pfn[nid] to end of each node should be
5150 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5151 */
5152 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5153 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5154 continue;
342332e6 5155
b72d0ffb
AM
5156 /*
5157 * Check given memblock attribute by firmware which can affect
5158 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5159 * mirrored, it's an overlapped memmap init. skip it.
5160 */
5161 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5162 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5163 for_each_memblock(memory, tmp)
5164 if (pfn < memblock_region_memory_end_pfn(tmp))
5165 break;
5166 r = tmp;
5167 }
5168 if (pfn >= memblock_region_memory_base_pfn(r) &&
5169 memblock_is_mirror(r)) {
5170 /* already initialized as NORMAL */
5171 pfn = memblock_region_memory_end_pfn(r);
5172 continue;
342332e6 5173 }
a2f3aa02 5174 }
b72d0ffb 5175#endif
ac5d2539 5176
b72d0ffb 5177not_early:
ac5d2539
MG
5178 /*
5179 * Mark the block movable so that blocks are reserved for
5180 * movable at startup. This will force kernel allocations
5181 * to reserve their blocks rather than leaking throughout
5182 * the address space during boot when many long-lived
974a786e 5183 * kernel allocations are made.
ac5d2539
MG
5184 *
5185 * bitmap is created for zone's valid pfn range. but memmap
5186 * can be created for invalid pages (for alignment)
5187 * check here not to call set_pageblock_migratetype() against
5188 * pfn out of zone.
5189 */
5190 if (!(pfn & (pageblock_nr_pages - 1))) {
5191 struct page *page = pfn_to_page(pfn);
5192
5193 __init_single_page(page, pfn, zone, nid);
5194 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5195 } else {
5196 __init_single_pfn(pfn, zone, nid);
5197 }
1da177e4
LT
5198 }
5199}
5200
1e548deb 5201static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5202{
7aeb09f9 5203 unsigned int order, t;
b2a0ac88
MG
5204 for_each_migratetype_order(order, t) {
5205 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5206 zone->free_area[order].nr_free = 0;
5207 }
5208}
5209
5210#ifndef __HAVE_ARCH_MEMMAP_INIT
5211#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5212 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5213#endif
5214
7cd2b0a3 5215static int zone_batchsize(struct zone *zone)
e7c8d5c9 5216{
3a6be87f 5217#ifdef CONFIG_MMU
e7c8d5c9
CL
5218 int batch;
5219
5220 /*
5221 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5222 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5223 *
5224 * OK, so we don't know how big the cache is. So guess.
5225 */
b40da049 5226 batch = zone->managed_pages / 1024;
ba56e91c
SR
5227 if (batch * PAGE_SIZE > 512 * 1024)
5228 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5229 batch /= 4; /* We effectively *= 4 below */
5230 if (batch < 1)
5231 batch = 1;
5232
5233 /*
0ceaacc9
NP
5234 * Clamp the batch to a 2^n - 1 value. Having a power
5235 * of 2 value was found to be more likely to have
5236 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5237 *
0ceaacc9
NP
5238 * For example if 2 tasks are alternately allocating
5239 * batches of pages, one task can end up with a lot
5240 * of pages of one half of the possible page colors
5241 * and the other with pages of the other colors.
e7c8d5c9 5242 */
9155203a 5243 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5244
e7c8d5c9 5245 return batch;
3a6be87f
DH
5246
5247#else
5248 /* The deferral and batching of frees should be suppressed under NOMMU
5249 * conditions.
5250 *
5251 * The problem is that NOMMU needs to be able to allocate large chunks
5252 * of contiguous memory as there's no hardware page translation to
5253 * assemble apparent contiguous memory from discontiguous pages.
5254 *
5255 * Queueing large contiguous runs of pages for batching, however,
5256 * causes the pages to actually be freed in smaller chunks. As there
5257 * can be a significant delay between the individual batches being
5258 * recycled, this leads to the once large chunks of space being
5259 * fragmented and becoming unavailable for high-order allocations.
5260 */
5261 return 0;
5262#endif
e7c8d5c9
CL
5263}
5264
8d7a8fa9
CS
5265/*
5266 * pcp->high and pcp->batch values are related and dependent on one another:
5267 * ->batch must never be higher then ->high.
5268 * The following function updates them in a safe manner without read side
5269 * locking.
5270 *
5271 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5272 * those fields changing asynchronously (acording the the above rule).
5273 *
5274 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5275 * outside of boot time (or some other assurance that no concurrent updaters
5276 * exist).
5277 */
5278static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5279 unsigned long batch)
5280{
5281 /* start with a fail safe value for batch */
5282 pcp->batch = 1;
5283 smp_wmb();
5284
5285 /* Update high, then batch, in order */
5286 pcp->high = high;
5287 smp_wmb();
5288
5289 pcp->batch = batch;
5290}
5291
3664033c 5292/* a companion to pageset_set_high() */
4008bab7
CS
5293static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5294{
8d7a8fa9 5295 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5296}
5297
88c90dbc 5298static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5299{
5300 struct per_cpu_pages *pcp;
5f8dcc21 5301 int migratetype;
2caaad41 5302
1c6fe946
MD
5303 memset(p, 0, sizeof(*p));
5304
3dfa5721 5305 pcp = &p->pcp;
2caaad41 5306 pcp->count = 0;
5f8dcc21
MG
5307 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5308 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5309}
5310
88c90dbc
CS
5311static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5312{
5313 pageset_init(p);
5314 pageset_set_batch(p, batch);
5315}
5316
8ad4b1fb 5317/*
3664033c 5318 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5319 * to the value high for the pageset p.
5320 */
3664033c 5321static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5322 unsigned long high)
5323{
8d7a8fa9
CS
5324 unsigned long batch = max(1UL, high / 4);
5325 if ((high / 4) > (PAGE_SHIFT * 8))
5326 batch = PAGE_SHIFT * 8;
8ad4b1fb 5327
8d7a8fa9 5328 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5329}
5330
7cd2b0a3
DR
5331static void pageset_set_high_and_batch(struct zone *zone,
5332 struct per_cpu_pageset *pcp)
56cef2b8 5333{
56cef2b8 5334 if (percpu_pagelist_fraction)
3664033c 5335 pageset_set_high(pcp,
56cef2b8
CS
5336 (zone->managed_pages /
5337 percpu_pagelist_fraction));
5338 else
5339 pageset_set_batch(pcp, zone_batchsize(zone));
5340}
5341
169f6c19
CS
5342static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5343{
5344 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5345
5346 pageset_init(pcp);
5347 pageset_set_high_and_batch(zone, pcp);
5348}
5349
4ed7e022 5350static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5351{
5352 int cpu;
319774e2 5353 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5354 for_each_possible_cpu(cpu)
5355 zone_pageset_init(zone, cpu);
319774e2
WF
5356}
5357
2caaad41 5358/*
99dcc3e5
CL
5359 * Allocate per cpu pagesets and initialize them.
5360 * Before this call only boot pagesets were available.
e7c8d5c9 5361 */
99dcc3e5 5362void __init setup_per_cpu_pageset(void)
e7c8d5c9 5363{
99dcc3e5 5364 struct zone *zone;
e7c8d5c9 5365
319774e2
WF
5366 for_each_populated_zone(zone)
5367 setup_zone_pageset(zone);
e7c8d5c9
CL
5368}
5369
577a32f6 5370static noinline __init_refok
cca448fe 5371int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5372{
5373 int i;
cca448fe 5374 size_t alloc_size;
ed8ece2e
DH
5375
5376 /*
5377 * The per-page waitqueue mechanism uses hashed waitqueues
5378 * per zone.
5379 */
02b694de
YG
5380 zone->wait_table_hash_nr_entries =
5381 wait_table_hash_nr_entries(zone_size_pages);
5382 zone->wait_table_bits =
5383 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5384 alloc_size = zone->wait_table_hash_nr_entries
5385 * sizeof(wait_queue_head_t);
5386
cd94b9db 5387 if (!slab_is_available()) {
cca448fe 5388 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5389 memblock_virt_alloc_node_nopanic(
5390 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5391 } else {
5392 /*
5393 * This case means that a zone whose size was 0 gets new memory
5394 * via memory hot-add.
5395 * But it may be the case that a new node was hot-added. In
5396 * this case vmalloc() will not be able to use this new node's
5397 * memory - this wait_table must be initialized to use this new
5398 * node itself as well.
5399 * To use this new node's memory, further consideration will be
5400 * necessary.
5401 */
8691f3a7 5402 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5403 }
5404 if (!zone->wait_table)
5405 return -ENOMEM;
ed8ece2e 5406
b8af2941 5407 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5408 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5409
5410 return 0;
ed8ece2e
DH
5411}
5412
c09b4240 5413static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5414{
99dcc3e5
CL
5415 /*
5416 * per cpu subsystem is not up at this point. The following code
5417 * relies on the ability of the linker to provide the
5418 * offset of a (static) per cpu variable into the per cpu area.
5419 */
5420 zone->pageset = &boot_pageset;
ed8ece2e 5421
b38a8725 5422 if (populated_zone(zone))
99dcc3e5
CL
5423 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5424 zone->name, zone->present_pages,
5425 zone_batchsize(zone));
ed8ece2e
DH
5426}
5427
4ed7e022 5428int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5429 unsigned long zone_start_pfn,
b171e409 5430 unsigned long size)
ed8ece2e
DH
5431{
5432 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5433 int ret;
5434 ret = zone_wait_table_init(zone, size);
5435 if (ret)
5436 return ret;
ed8ece2e
DH
5437 pgdat->nr_zones = zone_idx(zone) + 1;
5438
ed8ece2e
DH
5439 zone->zone_start_pfn = zone_start_pfn;
5440
708614e6
MG
5441 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5442 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5443 pgdat->node_id,
5444 (unsigned long)zone_idx(zone),
5445 zone_start_pfn, (zone_start_pfn + size));
5446
1e548deb 5447 zone_init_free_lists(zone);
718127cc
YG
5448
5449 return 0;
ed8ece2e
DH
5450}
5451
0ee332c1 5452#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5453#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5454
c713216d
MG
5455/*
5456 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5457 */
8a942fde
MG
5458int __meminit __early_pfn_to_nid(unsigned long pfn,
5459 struct mminit_pfnnid_cache *state)
c713216d 5460{
c13291a5 5461 unsigned long start_pfn, end_pfn;
e76b63f8 5462 int nid;
7c243c71 5463
8a942fde
MG
5464 if (state->last_start <= pfn && pfn < state->last_end)
5465 return state->last_nid;
c713216d 5466
e76b63f8
YL
5467 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5468 if (nid != -1) {
8a942fde
MG
5469 state->last_start = start_pfn;
5470 state->last_end = end_pfn;
5471 state->last_nid = nid;
e76b63f8
YL
5472 }
5473
5474 return nid;
c713216d
MG
5475}
5476#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5477
c713216d 5478/**
6782832e 5479 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5480 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5481 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5482 *
7d018176
ZZ
5483 * If an architecture guarantees that all ranges registered contain no holes
5484 * and may be freed, this this function may be used instead of calling
5485 * memblock_free_early_nid() manually.
c713216d 5486 */
c13291a5 5487void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5488{
c13291a5
TH
5489 unsigned long start_pfn, end_pfn;
5490 int i, this_nid;
edbe7d23 5491
c13291a5
TH
5492 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5493 start_pfn = min(start_pfn, max_low_pfn);
5494 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5495
c13291a5 5496 if (start_pfn < end_pfn)
6782832e
SS
5497 memblock_free_early_nid(PFN_PHYS(start_pfn),
5498 (end_pfn - start_pfn) << PAGE_SHIFT,
5499 this_nid);
edbe7d23 5500 }
edbe7d23 5501}
edbe7d23 5502
c713216d
MG
5503/**
5504 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5505 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5506 *
7d018176
ZZ
5507 * If an architecture guarantees that all ranges registered contain no holes and may
5508 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5509 */
5510void __init sparse_memory_present_with_active_regions(int nid)
5511{
c13291a5
TH
5512 unsigned long start_pfn, end_pfn;
5513 int i, this_nid;
c713216d 5514
c13291a5
TH
5515 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5516 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5517}
5518
5519/**
5520 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5521 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5522 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5523 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5524 *
5525 * It returns the start and end page frame of a node based on information
7d018176 5526 * provided by memblock_set_node(). If called for a node
c713216d 5527 * with no available memory, a warning is printed and the start and end
88ca3b94 5528 * PFNs will be 0.
c713216d 5529 */
a3142c8e 5530void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5531 unsigned long *start_pfn, unsigned long *end_pfn)
5532{
c13291a5 5533 unsigned long this_start_pfn, this_end_pfn;
c713216d 5534 int i;
c13291a5 5535
c713216d
MG
5536 *start_pfn = -1UL;
5537 *end_pfn = 0;
5538
c13291a5
TH
5539 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5540 *start_pfn = min(*start_pfn, this_start_pfn);
5541 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5542 }
5543
633c0666 5544 if (*start_pfn == -1UL)
c713216d 5545 *start_pfn = 0;
c713216d
MG
5546}
5547
2a1e274a
MG
5548/*
5549 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5550 * assumption is made that zones within a node are ordered in monotonic
5551 * increasing memory addresses so that the "highest" populated zone is used
5552 */
b69a7288 5553static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5554{
5555 int zone_index;
5556 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5557 if (zone_index == ZONE_MOVABLE)
5558 continue;
5559
5560 if (arch_zone_highest_possible_pfn[zone_index] >
5561 arch_zone_lowest_possible_pfn[zone_index])
5562 break;
5563 }
5564
5565 VM_BUG_ON(zone_index == -1);
5566 movable_zone = zone_index;
5567}
5568
5569/*
5570 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5571 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5572 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5573 * in each node depending on the size of each node and how evenly kernelcore
5574 * is distributed. This helper function adjusts the zone ranges
5575 * provided by the architecture for a given node by using the end of the
5576 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5577 * zones within a node are in order of monotonic increases memory addresses
5578 */
b69a7288 5579static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5580 unsigned long zone_type,
5581 unsigned long node_start_pfn,
5582 unsigned long node_end_pfn,
5583 unsigned long *zone_start_pfn,
5584 unsigned long *zone_end_pfn)
5585{
5586 /* Only adjust if ZONE_MOVABLE is on this node */
5587 if (zone_movable_pfn[nid]) {
5588 /* Size ZONE_MOVABLE */
5589 if (zone_type == ZONE_MOVABLE) {
5590 *zone_start_pfn = zone_movable_pfn[nid];
5591 *zone_end_pfn = min(node_end_pfn,
5592 arch_zone_highest_possible_pfn[movable_zone]);
5593
2a1e274a
MG
5594 /* Check if this whole range is within ZONE_MOVABLE */
5595 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5596 *zone_start_pfn = *zone_end_pfn;
5597 }
5598}
5599
c713216d
MG
5600/*
5601 * Return the number of pages a zone spans in a node, including holes
5602 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5603 */
6ea6e688 5604static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5605 unsigned long zone_type,
7960aedd
ZY
5606 unsigned long node_start_pfn,
5607 unsigned long node_end_pfn,
d91749c1
TI
5608 unsigned long *zone_start_pfn,
5609 unsigned long *zone_end_pfn,
c713216d
MG
5610 unsigned long *ignored)
5611{
b5685e92 5612 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5613 if (!node_start_pfn && !node_end_pfn)
5614 return 0;
5615
7960aedd 5616 /* Get the start and end of the zone */
d91749c1
TI
5617 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5618 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5619 adjust_zone_range_for_zone_movable(nid, zone_type,
5620 node_start_pfn, node_end_pfn,
d91749c1 5621 zone_start_pfn, zone_end_pfn);
c713216d
MG
5622
5623 /* Check that this node has pages within the zone's required range */
d91749c1 5624 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5625 return 0;
5626
5627 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5628 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5629 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5630
5631 /* Return the spanned pages */
d91749c1 5632 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5633}
5634
5635/*
5636 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5637 * then all holes in the requested range will be accounted for.
c713216d 5638 */
32996250 5639unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5640 unsigned long range_start_pfn,
5641 unsigned long range_end_pfn)
5642{
96e907d1
TH
5643 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5644 unsigned long start_pfn, end_pfn;
5645 int i;
c713216d 5646
96e907d1
TH
5647 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5648 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5649 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5650 nr_absent -= end_pfn - start_pfn;
c713216d 5651 }
96e907d1 5652 return nr_absent;
c713216d
MG
5653}
5654
5655/**
5656 * absent_pages_in_range - Return number of page frames in holes within a range
5657 * @start_pfn: The start PFN to start searching for holes
5658 * @end_pfn: The end PFN to stop searching for holes
5659 *
88ca3b94 5660 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5661 */
5662unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5663 unsigned long end_pfn)
5664{
5665 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5666}
5667
5668/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5669static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5670 unsigned long zone_type,
7960aedd
ZY
5671 unsigned long node_start_pfn,
5672 unsigned long node_end_pfn,
c713216d
MG
5673 unsigned long *ignored)
5674{
96e907d1
TH
5675 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5676 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5677 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5678 unsigned long nr_absent;
9c7cd687 5679
b5685e92 5680 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5681 if (!node_start_pfn && !node_end_pfn)
5682 return 0;
5683
96e907d1
TH
5684 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5685 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5686
2a1e274a
MG
5687 adjust_zone_range_for_zone_movable(nid, zone_type,
5688 node_start_pfn, node_end_pfn,
5689 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5690 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5691
5692 /*
5693 * ZONE_MOVABLE handling.
5694 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5695 * and vice versa.
5696 */
5697 if (zone_movable_pfn[nid]) {
5698 if (mirrored_kernelcore) {
5699 unsigned long start_pfn, end_pfn;
5700 struct memblock_region *r;
5701
5702 for_each_memblock(memory, r) {
5703 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5704 zone_start_pfn, zone_end_pfn);
5705 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5706 zone_start_pfn, zone_end_pfn);
5707
5708 if (zone_type == ZONE_MOVABLE &&
5709 memblock_is_mirror(r))
5710 nr_absent += end_pfn - start_pfn;
5711
5712 if (zone_type == ZONE_NORMAL &&
5713 !memblock_is_mirror(r))
5714 nr_absent += end_pfn - start_pfn;
5715 }
5716 } else {
5717 if (zone_type == ZONE_NORMAL)
5718 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5719 }
5720 }
5721
5722 return nr_absent;
c713216d 5723}
0e0b864e 5724
0ee332c1 5725#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5726static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5727 unsigned long zone_type,
7960aedd
ZY
5728 unsigned long node_start_pfn,
5729 unsigned long node_end_pfn,
d91749c1
TI
5730 unsigned long *zone_start_pfn,
5731 unsigned long *zone_end_pfn,
c713216d
MG
5732 unsigned long *zones_size)
5733{
d91749c1
TI
5734 unsigned int zone;
5735
5736 *zone_start_pfn = node_start_pfn;
5737 for (zone = 0; zone < zone_type; zone++)
5738 *zone_start_pfn += zones_size[zone];
5739
5740 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5741
c713216d
MG
5742 return zones_size[zone_type];
5743}
5744
6ea6e688 5745static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5746 unsigned long zone_type,
7960aedd
ZY
5747 unsigned long node_start_pfn,
5748 unsigned long node_end_pfn,
c713216d
MG
5749 unsigned long *zholes_size)
5750{
5751 if (!zholes_size)
5752 return 0;
5753
5754 return zholes_size[zone_type];
5755}
20e6926d 5756
0ee332c1 5757#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5758
a3142c8e 5759static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5760 unsigned long node_start_pfn,
5761 unsigned long node_end_pfn,
5762 unsigned long *zones_size,
5763 unsigned long *zholes_size)
c713216d 5764{
febd5949 5765 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5766 enum zone_type i;
5767
febd5949
GZ
5768 for (i = 0; i < MAX_NR_ZONES; i++) {
5769 struct zone *zone = pgdat->node_zones + i;
d91749c1 5770 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5771 unsigned long size, real_size;
c713216d 5772
febd5949
GZ
5773 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5774 node_start_pfn,
5775 node_end_pfn,
d91749c1
TI
5776 &zone_start_pfn,
5777 &zone_end_pfn,
febd5949
GZ
5778 zones_size);
5779 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5780 node_start_pfn, node_end_pfn,
5781 zholes_size);
d91749c1
TI
5782 if (size)
5783 zone->zone_start_pfn = zone_start_pfn;
5784 else
5785 zone->zone_start_pfn = 0;
febd5949
GZ
5786 zone->spanned_pages = size;
5787 zone->present_pages = real_size;
5788
5789 totalpages += size;
5790 realtotalpages += real_size;
5791 }
5792
5793 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5794 pgdat->node_present_pages = realtotalpages;
5795 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5796 realtotalpages);
5797}
5798
835c134e
MG
5799#ifndef CONFIG_SPARSEMEM
5800/*
5801 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5802 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5803 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5804 * round what is now in bits to nearest long in bits, then return it in
5805 * bytes.
5806 */
7c45512d 5807static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5808{
5809 unsigned long usemapsize;
5810
7c45512d 5811 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5812 usemapsize = roundup(zonesize, pageblock_nr_pages);
5813 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5814 usemapsize *= NR_PAGEBLOCK_BITS;
5815 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5816
5817 return usemapsize / 8;
5818}
5819
5820static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5821 struct zone *zone,
5822 unsigned long zone_start_pfn,
5823 unsigned long zonesize)
835c134e 5824{
7c45512d 5825 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5826 zone->pageblock_flags = NULL;
58a01a45 5827 if (usemapsize)
6782832e
SS
5828 zone->pageblock_flags =
5829 memblock_virt_alloc_node_nopanic(usemapsize,
5830 pgdat->node_id);
835c134e
MG
5831}
5832#else
7c45512d
LT
5833static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5834 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5835#endif /* CONFIG_SPARSEMEM */
5836
d9c23400 5837#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5838
d9c23400 5839/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5840void __paginginit set_pageblock_order(void)
d9c23400 5841{
955c1cd7
AM
5842 unsigned int order;
5843
d9c23400
MG
5844 /* Check that pageblock_nr_pages has not already been setup */
5845 if (pageblock_order)
5846 return;
5847
955c1cd7
AM
5848 if (HPAGE_SHIFT > PAGE_SHIFT)
5849 order = HUGETLB_PAGE_ORDER;
5850 else
5851 order = MAX_ORDER - 1;
5852
d9c23400
MG
5853 /*
5854 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5855 * This value may be variable depending on boot parameters on IA64 and
5856 * powerpc.
d9c23400
MG
5857 */
5858 pageblock_order = order;
5859}
5860#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5861
ba72cb8c
MG
5862/*
5863 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5864 * is unused as pageblock_order is set at compile-time. See
5865 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5866 * the kernel config
ba72cb8c 5867 */
15ca220e 5868void __paginginit set_pageblock_order(void)
ba72cb8c 5869{
ba72cb8c 5870}
d9c23400
MG
5871
5872#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5873
01cefaef
JL
5874static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5875 unsigned long present_pages)
5876{
5877 unsigned long pages = spanned_pages;
5878
5879 /*
5880 * Provide a more accurate estimation if there are holes within
5881 * the zone and SPARSEMEM is in use. If there are holes within the
5882 * zone, each populated memory region may cost us one or two extra
5883 * memmap pages due to alignment because memmap pages for each
5884 * populated regions may not naturally algined on page boundary.
5885 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5886 */
5887 if (spanned_pages > present_pages + (present_pages >> 4) &&
5888 IS_ENABLED(CONFIG_SPARSEMEM))
5889 pages = present_pages;
5890
5891 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5892}
5893
1da177e4
LT
5894/*
5895 * Set up the zone data structures:
5896 * - mark all pages reserved
5897 * - mark all memory queues empty
5898 * - clear the memory bitmaps
6527af5d
MK
5899 *
5900 * NOTE: pgdat should get zeroed by caller.
1da177e4 5901 */
7f3eb55b 5902static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5903{
2f1b6248 5904 enum zone_type j;
ed8ece2e 5905 int nid = pgdat->node_id;
718127cc 5906 int ret;
1da177e4 5907
208d54e5 5908 pgdat_resize_init(pgdat);
8177a420
AA
5909#ifdef CONFIG_NUMA_BALANCING
5910 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5911 pgdat->numabalancing_migrate_nr_pages = 0;
5912 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5913#endif
5914#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5915 spin_lock_init(&pgdat->split_queue_lock);
5916 INIT_LIST_HEAD(&pgdat->split_queue);
5917 pgdat->split_queue_len = 0;
8177a420 5918#endif
1da177e4 5919 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5920 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5921#ifdef CONFIG_COMPACTION
5922 init_waitqueue_head(&pgdat->kcompactd_wait);
5923#endif
eefa864b 5924 pgdat_page_ext_init(pgdat);
5f63b720 5925
1da177e4
LT
5926 for (j = 0; j < MAX_NR_ZONES; j++) {
5927 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5928 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5929 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5930
febd5949
GZ
5931 size = zone->spanned_pages;
5932 realsize = freesize = zone->present_pages;
1da177e4 5933
0e0b864e 5934 /*
9feedc9d 5935 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5936 * is used by this zone for memmap. This affects the watermark
5937 * and per-cpu initialisations
5938 */
01cefaef 5939 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5940 if (!is_highmem_idx(j)) {
5941 if (freesize >= memmap_pages) {
5942 freesize -= memmap_pages;
5943 if (memmap_pages)
5944 printk(KERN_DEBUG
5945 " %s zone: %lu pages used for memmap\n",
5946 zone_names[j], memmap_pages);
5947 } else
1170532b 5948 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5949 zone_names[j], memmap_pages, freesize);
5950 }
0e0b864e 5951
6267276f 5952 /* Account for reserved pages */
9feedc9d
JL
5953 if (j == 0 && freesize > dma_reserve) {
5954 freesize -= dma_reserve;
d903ef9f 5955 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5956 zone_names[0], dma_reserve);
0e0b864e
MG
5957 }
5958
98d2b0eb 5959 if (!is_highmem_idx(j))
9feedc9d 5960 nr_kernel_pages += freesize;
01cefaef
JL
5961 /* Charge for highmem memmap if there are enough kernel pages */
5962 else if (nr_kernel_pages > memmap_pages * 2)
5963 nr_kernel_pages -= memmap_pages;
9feedc9d 5964 nr_all_pages += freesize;
1da177e4 5965
9feedc9d
JL
5966 /*
5967 * Set an approximate value for lowmem here, it will be adjusted
5968 * when the bootmem allocator frees pages into the buddy system.
5969 * And all highmem pages will be managed by the buddy system.
5970 */
5971 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5972#ifdef CONFIG_NUMA
d5f541ed 5973 zone->node = nid;
9feedc9d 5974 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5975 / 100;
9feedc9d 5976 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5977#endif
1da177e4
LT
5978 zone->name = zone_names[j];
5979 spin_lock_init(&zone->lock);
5980 spin_lock_init(&zone->lru_lock);
bdc8cb98 5981 zone_seqlock_init(zone);
1da177e4 5982 zone->zone_pgdat = pgdat;
ed8ece2e 5983 zone_pcp_init(zone);
81c0a2bb
JW
5984
5985 /* For bootup, initialized properly in watermark setup */
5986 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5987
bea8c150 5988 lruvec_init(&zone->lruvec);
1da177e4
LT
5989 if (!size)
5990 continue;
5991
955c1cd7 5992 set_pageblock_order();
7c45512d 5993 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5994 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5995 BUG_ON(ret);
76cdd58e 5996 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5997 }
5998}
5999
577a32f6 6000static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6001{
b0aeba74 6002 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6003 unsigned long __maybe_unused offset = 0;
6004
1da177e4
LT
6005 /* Skip empty nodes */
6006 if (!pgdat->node_spanned_pages)
6007 return;
6008
d41dee36 6009#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6010 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6011 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6012 /* ia64 gets its own node_mem_map, before this, without bootmem */
6013 if (!pgdat->node_mem_map) {
b0aeba74 6014 unsigned long size, end;
d41dee36
AW
6015 struct page *map;
6016
e984bb43
BP
6017 /*
6018 * The zone's endpoints aren't required to be MAX_ORDER
6019 * aligned but the node_mem_map endpoints must be in order
6020 * for the buddy allocator to function correctly.
6021 */
108bcc96 6022 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6023 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6024 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6025 map = alloc_remap(pgdat->node_id, size);
6026 if (!map)
6782832e
SS
6027 map = memblock_virt_alloc_node_nopanic(size,
6028 pgdat->node_id);
a1c34a3b 6029 pgdat->node_mem_map = map + offset;
1da177e4 6030 }
12d810c1 6031#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6032 /*
6033 * With no DISCONTIG, the global mem_map is just set as node 0's
6034 */
c713216d 6035 if (pgdat == NODE_DATA(0)) {
1da177e4 6036 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6037#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6038 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6039 mem_map -= offset;
0ee332c1 6040#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6041 }
1da177e4 6042#endif
d41dee36 6043#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6044}
6045
9109fb7b
JW
6046void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6047 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6048{
9109fb7b 6049 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6050 unsigned long start_pfn = 0;
6051 unsigned long end_pfn = 0;
9109fb7b 6052
88fdf75d 6053 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6054 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6055
3a80a7fa 6056 reset_deferred_meminit(pgdat);
1da177e4
LT
6057 pgdat->node_id = nid;
6058 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6059#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6060 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6061 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6062 (u64)start_pfn << PAGE_SHIFT,
6063 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6064#else
6065 start_pfn = node_start_pfn;
7960aedd
ZY
6066#endif
6067 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6068 zones_size, zholes_size);
1da177e4
LT
6069
6070 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6071#ifdef CONFIG_FLAT_NODE_MEM_MAP
6072 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6073 nid, (unsigned long)pgdat,
6074 (unsigned long)pgdat->node_mem_map);
6075#endif
1da177e4 6076
7f3eb55b 6077 free_area_init_core(pgdat);
1da177e4
LT
6078}
6079
0ee332c1 6080#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6081
6082#if MAX_NUMNODES > 1
6083/*
6084 * Figure out the number of possible node ids.
6085 */
f9872caf 6086void __init setup_nr_node_ids(void)
418508c1 6087{
904a9553 6088 unsigned int highest;
418508c1 6089
904a9553 6090 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6091 nr_node_ids = highest + 1;
6092}
418508c1
MS
6093#endif
6094
1e01979c
TH
6095/**
6096 * node_map_pfn_alignment - determine the maximum internode alignment
6097 *
6098 * This function should be called after node map is populated and sorted.
6099 * It calculates the maximum power of two alignment which can distinguish
6100 * all the nodes.
6101 *
6102 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6103 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6104 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6105 * shifted, 1GiB is enough and this function will indicate so.
6106 *
6107 * This is used to test whether pfn -> nid mapping of the chosen memory
6108 * model has fine enough granularity to avoid incorrect mapping for the
6109 * populated node map.
6110 *
6111 * Returns the determined alignment in pfn's. 0 if there is no alignment
6112 * requirement (single node).
6113 */
6114unsigned long __init node_map_pfn_alignment(void)
6115{
6116 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6117 unsigned long start, end, mask;
1e01979c 6118 int last_nid = -1;
c13291a5 6119 int i, nid;
1e01979c 6120
c13291a5 6121 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6122 if (!start || last_nid < 0 || last_nid == nid) {
6123 last_nid = nid;
6124 last_end = end;
6125 continue;
6126 }
6127
6128 /*
6129 * Start with a mask granular enough to pin-point to the
6130 * start pfn and tick off bits one-by-one until it becomes
6131 * too coarse to separate the current node from the last.
6132 */
6133 mask = ~((1 << __ffs(start)) - 1);
6134 while (mask && last_end <= (start & (mask << 1)))
6135 mask <<= 1;
6136
6137 /* accumulate all internode masks */
6138 accl_mask |= mask;
6139 }
6140
6141 /* convert mask to number of pages */
6142 return ~accl_mask + 1;
6143}
6144
a6af2bc3 6145/* Find the lowest pfn for a node */
b69a7288 6146static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6147{
a6af2bc3 6148 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6149 unsigned long start_pfn;
6150 int i;
1abbfb41 6151
c13291a5
TH
6152 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6153 min_pfn = min(min_pfn, start_pfn);
c713216d 6154
a6af2bc3 6155 if (min_pfn == ULONG_MAX) {
1170532b 6156 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6157 return 0;
6158 }
6159
6160 return min_pfn;
c713216d
MG
6161}
6162
6163/**
6164 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6165 *
6166 * It returns the minimum PFN based on information provided via
7d018176 6167 * memblock_set_node().
c713216d
MG
6168 */
6169unsigned long __init find_min_pfn_with_active_regions(void)
6170{
6171 return find_min_pfn_for_node(MAX_NUMNODES);
6172}
6173
37b07e41
LS
6174/*
6175 * early_calculate_totalpages()
6176 * Sum pages in active regions for movable zone.
4b0ef1fe 6177 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6178 */
484f51f8 6179static unsigned long __init early_calculate_totalpages(void)
7e63efef 6180{
7e63efef 6181 unsigned long totalpages = 0;
c13291a5
TH
6182 unsigned long start_pfn, end_pfn;
6183 int i, nid;
6184
6185 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6186 unsigned long pages = end_pfn - start_pfn;
7e63efef 6187
37b07e41
LS
6188 totalpages += pages;
6189 if (pages)
4b0ef1fe 6190 node_set_state(nid, N_MEMORY);
37b07e41 6191 }
b8af2941 6192 return totalpages;
7e63efef
MG
6193}
6194
2a1e274a
MG
6195/*
6196 * Find the PFN the Movable zone begins in each node. Kernel memory
6197 * is spread evenly between nodes as long as the nodes have enough
6198 * memory. When they don't, some nodes will have more kernelcore than
6199 * others
6200 */
b224ef85 6201static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6202{
6203 int i, nid;
6204 unsigned long usable_startpfn;
6205 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6206 /* save the state before borrow the nodemask */
4b0ef1fe 6207 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6208 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6209 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6210 struct memblock_region *r;
b2f3eebe
TC
6211
6212 /* Need to find movable_zone earlier when movable_node is specified. */
6213 find_usable_zone_for_movable();
6214
6215 /*
6216 * If movable_node is specified, ignore kernelcore and movablecore
6217 * options.
6218 */
6219 if (movable_node_is_enabled()) {
136199f0
EM
6220 for_each_memblock(memory, r) {
6221 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6222 continue;
6223
136199f0 6224 nid = r->nid;
b2f3eebe 6225
136199f0 6226 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6227 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6228 min(usable_startpfn, zone_movable_pfn[nid]) :
6229 usable_startpfn;
6230 }
6231
6232 goto out2;
6233 }
2a1e274a 6234
342332e6
TI
6235 /*
6236 * If kernelcore=mirror is specified, ignore movablecore option
6237 */
6238 if (mirrored_kernelcore) {
6239 bool mem_below_4gb_not_mirrored = false;
6240
6241 for_each_memblock(memory, r) {
6242 if (memblock_is_mirror(r))
6243 continue;
6244
6245 nid = r->nid;
6246
6247 usable_startpfn = memblock_region_memory_base_pfn(r);
6248
6249 if (usable_startpfn < 0x100000) {
6250 mem_below_4gb_not_mirrored = true;
6251 continue;
6252 }
6253
6254 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6255 min(usable_startpfn, zone_movable_pfn[nid]) :
6256 usable_startpfn;
6257 }
6258
6259 if (mem_below_4gb_not_mirrored)
6260 pr_warn("This configuration results in unmirrored kernel memory.");
6261
6262 goto out2;
6263 }
6264
7e63efef 6265 /*
b2f3eebe 6266 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6267 * kernelcore that corresponds so that memory usable for
6268 * any allocation type is evenly spread. If both kernelcore
6269 * and movablecore are specified, then the value of kernelcore
6270 * will be used for required_kernelcore if it's greater than
6271 * what movablecore would have allowed.
6272 */
6273 if (required_movablecore) {
7e63efef
MG
6274 unsigned long corepages;
6275
6276 /*
6277 * Round-up so that ZONE_MOVABLE is at least as large as what
6278 * was requested by the user
6279 */
6280 required_movablecore =
6281 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6282 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6283 corepages = totalpages - required_movablecore;
6284
6285 required_kernelcore = max(required_kernelcore, corepages);
6286 }
6287
bde304bd
XQ
6288 /*
6289 * If kernelcore was not specified or kernelcore size is larger
6290 * than totalpages, there is no ZONE_MOVABLE.
6291 */
6292 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6293 goto out;
2a1e274a
MG
6294
6295 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6296 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6297
6298restart:
6299 /* Spread kernelcore memory as evenly as possible throughout nodes */
6300 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6301 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6302 unsigned long start_pfn, end_pfn;
6303
2a1e274a
MG
6304 /*
6305 * Recalculate kernelcore_node if the division per node
6306 * now exceeds what is necessary to satisfy the requested
6307 * amount of memory for the kernel
6308 */
6309 if (required_kernelcore < kernelcore_node)
6310 kernelcore_node = required_kernelcore / usable_nodes;
6311
6312 /*
6313 * As the map is walked, we track how much memory is usable
6314 * by the kernel using kernelcore_remaining. When it is
6315 * 0, the rest of the node is usable by ZONE_MOVABLE
6316 */
6317 kernelcore_remaining = kernelcore_node;
6318
6319 /* Go through each range of PFNs within this node */
c13291a5 6320 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6321 unsigned long size_pages;
6322
c13291a5 6323 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6324 if (start_pfn >= end_pfn)
6325 continue;
6326
6327 /* Account for what is only usable for kernelcore */
6328 if (start_pfn < usable_startpfn) {
6329 unsigned long kernel_pages;
6330 kernel_pages = min(end_pfn, usable_startpfn)
6331 - start_pfn;
6332
6333 kernelcore_remaining -= min(kernel_pages,
6334 kernelcore_remaining);
6335 required_kernelcore -= min(kernel_pages,
6336 required_kernelcore);
6337
6338 /* Continue if range is now fully accounted */
6339 if (end_pfn <= usable_startpfn) {
6340
6341 /*
6342 * Push zone_movable_pfn to the end so
6343 * that if we have to rebalance
6344 * kernelcore across nodes, we will
6345 * not double account here
6346 */
6347 zone_movable_pfn[nid] = end_pfn;
6348 continue;
6349 }
6350 start_pfn = usable_startpfn;
6351 }
6352
6353 /*
6354 * The usable PFN range for ZONE_MOVABLE is from
6355 * start_pfn->end_pfn. Calculate size_pages as the
6356 * number of pages used as kernelcore
6357 */
6358 size_pages = end_pfn - start_pfn;
6359 if (size_pages > kernelcore_remaining)
6360 size_pages = kernelcore_remaining;
6361 zone_movable_pfn[nid] = start_pfn + size_pages;
6362
6363 /*
6364 * Some kernelcore has been met, update counts and
6365 * break if the kernelcore for this node has been
b8af2941 6366 * satisfied
2a1e274a
MG
6367 */
6368 required_kernelcore -= min(required_kernelcore,
6369 size_pages);
6370 kernelcore_remaining -= size_pages;
6371 if (!kernelcore_remaining)
6372 break;
6373 }
6374 }
6375
6376 /*
6377 * If there is still required_kernelcore, we do another pass with one
6378 * less node in the count. This will push zone_movable_pfn[nid] further
6379 * along on the nodes that still have memory until kernelcore is
b8af2941 6380 * satisfied
2a1e274a
MG
6381 */
6382 usable_nodes--;
6383 if (usable_nodes && required_kernelcore > usable_nodes)
6384 goto restart;
6385
b2f3eebe 6386out2:
2a1e274a
MG
6387 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6388 for (nid = 0; nid < MAX_NUMNODES; nid++)
6389 zone_movable_pfn[nid] =
6390 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6391
20e6926d 6392out:
66918dcd 6393 /* restore the node_state */
4b0ef1fe 6394 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6395}
6396
4b0ef1fe
LJ
6397/* Any regular or high memory on that node ? */
6398static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6399{
37b07e41
LS
6400 enum zone_type zone_type;
6401
4b0ef1fe
LJ
6402 if (N_MEMORY == N_NORMAL_MEMORY)
6403 return;
6404
6405 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6406 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6407 if (populated_zone(zone)) {
4b0ef1fe
LJ
6408 node_set_state(nid, N_HIGH_MEMORY);
6409 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6410 zone_type <= ZONE_NORMAL)
6411 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6412 break;
6413 }
37b07e41 6414 }
37b07e41
LS
6415}
6416
c713216d
MG
6417/**
6418 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6419 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6420 *
6421 * This will call free_area_init_node() for each active node in the system.
7d018176 6422 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6423 * zone in each node and their holes is calculated. If the maximum PFN
6424 * between two adjacent zones match, it is assumed that the zone is empty.
6425 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6426 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6427 * starts where the previous one ended. For example, ZONE_DMA32 starts
6428 * at arch_max_dma_pfn.
6429 */
6430void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6431{
c13291a5
TH
6432 unsigned long start_pfn, end_pfn;
6433 int i, nid;
a6af2bc3 6434
c713216d
MG
6435 /* Record where the zone boundaries are */
6436 memset(arch_zone_lowest_possible_pfn, 0,
6437 sizeof(arch_zone_lowest_possible_pfn));
6438 memset(arch_zone_highest_possible_pfn, 0,
6439 sizeof(arch_zone_highest_possible_pfn));
6440 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6441 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6442 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6443 if (i == ZONE_MOVABLE)
6444 continue;
c713216d
MG
6445 arch_zone_lowest_possible_pfn[i] =
6446 arch_zone_highest_possible_pfn[i-1];
6447 arch_zone_highest_possible_pfn[i] =
6448 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6449 }
2a1e274a
MG
6450 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6451 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6452
6453 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6454 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6455 find_zone_movable_pfns_for_nodes();
c713216d 6456
c713216d 6457 /* Print out the zone ranges */
f88dfff5 6458 pr_info("Zone ranges:\n");
2a1e274a
MG
6459 for (i = 0; i < MAX_NR_ZONES; i++) {
6460 if (i == ZONE_MOVABLE)
6461 continue;
f88dfff5 6462 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6463 if (arch_zone_lowest_possible_pfn[i] ==
6464 arch_zone_highest_possible_pfn[i])
f88dfff5 6465 pr_cont("empty\n");
72f0ba02 6466 else
8d29e18a
JG
6467 pr_cont("[mem %#018Lx-%#018Lx]\n",
6468 (u64)arch_zone_lowest_possible_pfn[i]
6469 << PAGE_SHIFT,
6470 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6471 << PAGE_SHIFT) - 1);
2a1e274a
MG
6472 }
6473
6474 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6475 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6476 for (i = 0; i < MAX_NUMNODES; i++) {
6477 if (zone_movable_pfn[i])
8d29e18a
JG
6478 pr_info(" Node %d: %#018Lx\n", i,
6479 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6480 }
c713216d 6481
f2d52fe5 6482 /* Print out the early node map */
f88dfff5 6483 pr_info("Early memory node ranges\n");
c13291a5 6484 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6485 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6486 (u64)start_pfn << PAGE_SHIFT,
6487 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6488
6489 /* Initialise every node */
708614e6 6490 mminit_verify_pageflags_layout();
8ef82866 6491 setup_nr_node_ids();
c713216d
MG
6492 for_each_online_node(nid) {
6493 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6494 free_area_init_node(nid, NULL,
c713216d 6495 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6496
6497 /* Any memory on that node */
6498 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6499 node_set_state(nid, N_MEMORY);
6500 check_for_memory(pgdat, nid);
c713216d
MG
6501 }
6502}
2a1e274a 6503
7e63efef 6504static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6505{
6506 unsigned long long coremem;
6507 if (!p)
6508 return -EINVAL;
6509
6510 coremem = memparse(p, &p);
7e63efef 6511 *core = coremem >> PAGE_SHIFT;
2a1e274a 6512
7e63efef 6513 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6514 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6515
6516 return 0;
6517}
ed7ed365 6518
7e63efef
MG
6519/*
6520 * kernelcore=size sets the amount of memory for use for allocations that
6521 * cannot be reclaimed or migrated.
6522 */
6523static int __init cmdline_parse_kernelcore(char *p)
6524{
342332e6
TI
6525 /* parse kernelcore=mirror */
6526 if (parse_option_str(p, "mirror")) {
6527 mirrored_kernelcore = true;
6528 return 0;
6529 }
6530
7e63efef
MG
6531 return cmdline_parse_core(p, &required_kernelcore);
6532}
6533
6534/*
6535 * movablecore=size sets the amount of memory for use for allocations that
6536 * can be reclaimed or migrated.
6537 */
6538static int __init cmdline_parse_movablecore(char *p)
6539{
6540 return cmdline_parse_core(p, &required_movablecore);
6541}
6542
ed7ed365 6543early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6544early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6545
0ee332c1 6546#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6547
c3d5f5f0
JL
6548void adjust_managed_page_count(struct page *page, long count)
6549{
6550 spin_lock(&managed_page_count_lock);
6551 page_zone(page)->managed_pages += count;
6552 totalram_pages += count;
3dcc0571
JL
6553#ifdef CONFIG_HIGHMEM
6554 if (PageHighMem(page))
6555 totalhigh_pages += count;
6556#endif
c3d5f5f0
JL
6557 spin_unlock(&managed_page_count_lock);
6558}
3dcc0571 6559EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6560
11199692 6561unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6562{
11199692
JL
6563 void *pos;
6564 unsigned long pages = 0;
69afade7 6565
11199692
JL
6566 start = (void *)PAGE_ALIGN((unsigned long)start);
6567 end = (void *)((unsigned long)end & PAGE_MASK);
6568 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6569 if ((unsigned int)poison <= 0xFF)
11199692
JL
6570 memset(pos, poison, PAGE_SIZE);
6571 free_reserved_page(virt_to_page(pos));
69afade7
JL
6572 }
6573
6574 if (pages && s)
11199692 6575 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6576 s, pages << (PAGE_SHIFT - 10), start, end);
6577
6578 return pages;
6579}
11199692 6580EXPORT_SYMBOL(free_reserved_area);
69afade7 6581
cfa11e08
JL
6582#ifdef CONFIG_HIGHMEM
6583void free_highmem_page(struct page *page)
6584{
6585 __free_reserved_page(page);
6586 totalram_pages++;
7b4b2a0d 6587 page_zone(page)->managed_pages++;
cfa11e08
JL
6588 totalhigh_pages++;
6589}
6590#endif
6591
7ee3d4e8
JL
6592
6593void __init mem_init_print_info(const char *str)
6594{
6595 unsigned long physpages, codesize, datasize, rosize, bss_size;
6596 unsigned long init_code_size, init_data_size;
6597
6598 physpages = get_num_physpages();
6599 codesize = _etext - _stext;
6600 datasize = _edata - _sdata;
6601 rosize = __end_rodata - __start_rodata;
6602 bss_size = __bss_stop - __bss_start;
6603 init_data_size = __init_end - __init_begin;
6604 init_code_size = _einittext - _sinittext;
6605
6606 /*
6607 * Detect special cases and adjust section sizes accordingly:
6608 * 1) .init.* may be embedded into .data sections
6609 * 2) .init.text.* may be out of [__init_begin, __init_end],
6610 * please refer to arch/tile/kernel/vmlinux.lds.S.
6611 * 3) .rodata.* may be embedded into .text or .data sections.
6612 */
6613#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6614 do { \
6615 if (start <= pos && pos < end && size > adj) \
6616 size -= adj; \
6617 } while (0)
7ee3d4e8
JL
6618
6619 adj_init_size(__init_begin, __init_end, init_data_size,
6620 _sinittext, init_code_size);
6621 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6622 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6623 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6624 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6625
6626#undef adj_init_size
6627
756a025f 6628 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6629#ifdef CONFIG_HIGHMEM
756a025f 6630 ", %luK highmem"
7ee3d4e8 6631#endif
756a025f
JP
6632 "%s%s)\n",
6633 nr_free_pages() << (PAGE_SHIFT - 10),
6634 physpages << (PAGE_SHIFT - 10),
6635 codesize >> 10, datasize >> 10, rosize >> 10,
6636 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6637 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6638 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6639#ifdef CONFIG_HIGHMEM
756a025f 6640 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6641#endif
756a025f 6642 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6643}
6644
0e0b864e 6645/**
88ca3b94
RD
6646 * set_dma_reserve - set the specified number of pages reserved in the first zone
6647 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6648 *
013110a7 6649 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6650 * In the DMA zone, a significant percentage may be consumed by kernel image
6651 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6652 * function may optionally be used to account for unfreeable pages in the
6653 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6654 * smaller per-cpu batchsize.
0e0b864e
MG
6655 */
6656void __init set_dma_reserve(unsigned long new_dma_reserve)
6657{
6658 dma_reserve = new_dma_reserve;
6659}
6660
1da177e4
LT
6661void __init free_area_init(unsigned long *zones_size)
6662{
9109fb7b 6663 free_area_init_node(0, zones_size,
1da177e4
LT
6664 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6665}
1da177e4 6666
1da177e4
LT
6667static int page_alloc_cpu_notify(struct notifier_block *self,
6668 unsigned long action, void *hcpu)
6669{
6670 int cpu = (unsigned long)hcpu;
1da177e4 6671
8bb78442 6672 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6673 lru_add_drain_cpu(cpu);
9f8f2172
CL
6674 drain_pages(cpu);
6675
6676 /*
6677 * Spill the event counters of the dead processor
6678 * into the current processors event counters.
6679 * This artificially elevates the count of the current
6680 * processor.
6681 */
f8891e5e 6682 vm_events_fold_cpu(cpu);
9f8f2172
CL
6683
6684 /*
6685 * Zero the differential counters of the dead processor
6686 * so that the vm statistics are consistent.
6687 *
6688 * This is only okay since the processor is dead and cannot
6689 * race with what we are doing.
6690 */
2bb921e5 6691 cpu_vm_stats_fold(cpu);
1da177e4
LT
6692 }
6693 return NOTIFY_OK;
6694}
1da177e4
LT
6695
6696void __init page_alloc_init(void)
6697{
6698 hotcpu_notifier(page_alloc_cpu_notify, 0);
6699}
6700
cb45b0e9 6701/*
34b10060 6702 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6703 * or min_free_kbytes changes.
6704 */
6705static void calculate_totalreserve_pages(void)
6706{
6707 struct pglist_data *pgdat;
6708 unsigned long reserve_pages = 0;
2f6726e5 6709 enum zone_type i, j;
cb45b0e9
HA
6710
6711 for_each_online_pgdat(pgdat) {
6712 for (i = 0; i < MAX_NR_ZONES; i++) {
6713 struct zone *zone = pgdat->node_zones + i;
3484b2de 6714 long max = 0;
cb45b0e9
HA
6715
6716 /* Find valid and maximum lowmem_reserve in the zone */
6717 for (j = i; j < MAX_NR_ZONES; j++) {
6718 if (zone->lowmem_reserve[j] > max)
6719 max = zone->lowmem_reserve[j];
6720 }
6721
41858966
MG
6722 /* we treat the high watermark as reserved pages. */
6723 max += high_wmark_pages(zone);
cb45b0e9 6724
b40da049
JL
6725 if (max > zone->managed_pages)
6726 max = zone->managed_pages;
a8d01437
JW
6727
6728 zone->totalreserve_pages = max;
6729
cb45b0e9
HA
6730 reserve_pages += max;
6731 }
6732 }
6733 totalreserve_pages = reserve_pages;
6734}
6735
1da177e4
LT
6736/*
6737 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6738 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6739 * has a correct pages reserved value, so an adequate number of
6740 * pages are left in the zone after a successful __alloc_pages().
6741 */
6742static void setup_per_zone_lowmem_reserve(void)
6743{
6744 struct pglist_data *pgdat;
2f6726e5 6745 enum zone_type j, idx;
1da177e4 6746
ec936fc5 6747 for_each_online_pgdat(pgdat) {
1da177e4
LT
6748 for (j = 0; j < MAX_NR_ZONES; j++) {
6749 struct zone *zone = pgdat->node_zones + j;
b40da049 6750 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6751
6752 zone->lowmem_reserve[j] = 0;
6753
2f6726e5
CL
6754 idx = j;
6755 while (idx) {
1da177e4
LT
6756 struct zone *lower_zone;
6757
2f6726e5
CL
6758 idx--;
6759
1da177e4
LT
6760 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6761 sysctl_lowmem_reserve_ratio[idx] = 1;
6762
6763 lower_zone = pgdat->node_zones + idx;
b40da049 6764 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6765 sysctl_lowmem_reserve_ratio[idx];
b40da049 6766 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6767 }
6768 }
6769 }
cb45b0e9
HA
6770
6771 /* update totalreserve_pages */
6772 calculate_totalreserve_pages();
1da177e4
LT
6773}
6774
cfd3da1e 6775static void __setup_per_zone_wmarks(void)
1da177e4
LT
6776{
6777 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6778 unsigned long lowmem_pages = 0;
6779 struct zone *zone;
6780 unsigned long flags;
6781
6782 /* Calculate total number of !ZONE_HIGHMEM pages */
6783 for_each_zone(zone) {
6784 if (!is_highmem(zone))
b40da049 6785 lowmem_pages += zone->managed_pages;
1da177e4
LT
6786 }
6787
6788 for_each_zone(zone) {
ac924c60
AM
6789 u64 tmp;
6790
1125b4e3 6791 spin_lock_irqsave(&zone->lock, flags);
b40da049 6792 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6793 do_div(tmp, lowmem_pages);
1da177e4
LT
6794 if (is_highmem(zone)) {
6795 /*
669ed175
NP
6796 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6797 * need highmem pages, so cap pages_min to a small
6798 * value here.
6799 *
41858966 6800 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6801 * deltas control asynch page reclaim, and so should
669ed175 6802 * not be capped for highmem.
1da177e4 6803 */
90ae8d67 6804 unsigned long min_pages;
1da177e4 6805
b40da049 6806 min_pages = zone->managed_pages / 1024;
90ae8d67 6807 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6808 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6809 } else {
669ed175
NP
6810 /*
6811 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6812 * proportionate to the zone's size.
6813 */
41858966 6814 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6815 }
6816
795ae7a0
JW
6817 /*
6818 * Set the kswapd watermarks distance according to the
6819 * scale factor in proportion to available memory, but
6820 * ensure a minimum size on small systems.
6821 */
6822 tmp = max_t(u64, tmp >> 2,
6823 mult_frac(zone->managed_pages,
6824 watermark_scale_factor, 10000));
6825
6826 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6827 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6828
81c0a2bb 6829 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6830 high_wmark_pages(zone) - low_wmark_pages(zone) -
6831 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6832
1125b4e3 6833 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6834 }
cb45b0e9
HA
6835
6836 /* update totalreserve_pages */
6837 calculate_totalreserve_pages();
1da177e4
LT
6838}
6839
cfd3da1e
MG
6840/**
6841 * setup_per_zone_wmarks - called when min_free_kbytes changes
6842 * or when memory is hot-{added|removed}
6843 *
6844 * Ensures that the watermark[min,low,high] values for each zone are set
6845 * correctly with respect to min_free_kbytes.
6846 */
6847void setup_per_zone_wmarks(void)
6848{
6849 mutex_lock(&zonelists_mutex);
6850 __setup_per_zone_wmarks();
6851 mutex_unlock(&zonelists_mutex);
6852}
6853
1da177e4
LT
6854/*
6855 * Initialise min_free_kbytes.
6856 *
6857 * For small machines we want it small (128k min). For large machines
6858 * we want it large (64MB max). But it is not linear, because network
6859 * bandwidth does not increase linearly with machine size. We use
6860 *
b8af2941 6861 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6862 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6863 *
6864 * which yields
6865 *
6866 * 16MB: 512k
6867 * 32MB: 724k
6868 * 64MB: 1024k
6869 * 128MB: 1448k
6870 * 256MB: 2048k
6871 * 512MB: 2896k
6872 * 1024MB: 4096k
6873 * 2048MB: 5792k
6874 * 4096MB: 8192k
6875 * 8192MB: 11584k
6876 * 16384MB: 16384k
6877 */
1b79acc9 6878int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6879{
6880 unsigned long lowmem_kbytes;
5f12733e 6881 int new_min_free_kbytes;
1da177e4
LT
6882
6883 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6884 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6885
6886 if (new_min_free_kbytes > user_min_free_kbytes) {
6887 min_free_kbytes = new_min_free_kbytes;
6888 if (min_free_kbytes < 128)
6889 min_free_kbytes = 128;
6890 if (min_free_kbytes > 65536)
6891 min_free_kbytes = 65536;
6892 } else {
6893 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6894 new_min_free_kbytes, user_min_free_kbytes);
6895 }
bc75d33f 6896 setup_per_zone_wmarks();
a6cccdc3 6897 refresh_zone_stat_thresholds();
1da177e4
LT
6898 setup_per_zone_lowmem_reserve();
6899 return 0;
6900}
bc22af74 6901core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6902
6903/*
b8af2941 6904 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6905 * that we can call two helper functions whenever min_free_kbytes
6906 * changes.
6907 */
cccad5b9 6908int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6909 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6910{
da8c757b
HP
6911 int rc;
6912
6913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6914 if (rc)
6915 return rc;
6916
5f12733e
MH
6917 if (write) {
6918 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6919 setup_per_zone_wmarks();
5f12733e 6920 }
1da177e4
LT
6921 return 0;
6922}
6923
795ae7a0
JW
6924int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6925 void __user *buffer, size_t *length, loff_t *ppos)
6926{
6927 int rc;
6928
6929 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6930 if (rc)
6931 return rc;
6932
6933 if (write)
6934 setup_per_zone_wmarks();
6935
6936 return 0;
6937}
6938
9614634f 6939#ifdef CONFIG_NUMA
cccad5b9 6940int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6941 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6942{
6943 struct zone *zone;
6944 int rc;
6945
8d65af78 6946 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6947 if (rc)
6948 return rc;
6949
6950 for_each_zone(zone)
b40da049 6951 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6952 sysctl_min_unmapped_ratio) / 100;
6953 return 0;
6954}
0ff38490 6955
cccad5b9 6956int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6957 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6958{
6959 struct zone *zone;
6960 int rc;
6961
8d65af78 6962 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6963 if (rc)
6964 return rc;
6965
6966 for_each_zone(zone)
b40da049 6967 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6968 sysctl_min_slab_ratio) / 100;
6969 return 0;
6970}
9614634f
CL
6971#endif
6972
1da177e4
LT
6973/*
6974 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6975 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6976 * whenever sysctl_lowmem_reserve_ratio changes.
6977 *
6978 * The reserve ratio obviously has absolutely no relation with the
41858966 6979 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6980 * if in function of the boot time zone sizes.
6981 */
cccad5b9 6982int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6983 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6984{
8d65af78 6985 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6986 setup_per_zone_lowmem_reserve();
6987 return 0;
6988}
6989
8ad4b1fb
RS
6990/*
6991 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6992 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6993 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6994 */
cccad5b9 6995int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6996 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6997{
6998 struct zone *zone;
7cd2b0a3 6999 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7000 int ret;
7001
7cd2b0a3
DR
7002 mutex_lock(&pcp_batch_high_lock);
7003 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7004
8d65af78 7005 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7006 if (!write || ret < 0)
7007 goto out;
7008
7009 /* Sanity checking to avoid pcp imbalance */
7010 if (percpu_pagelist_fraction &&
7011 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7012 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7013 ret = -EINVAL;
7014 goto out;
7015 }
7016
7017 /* No change? */
7018 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7019 goto out;
c8e251fa 7020
364df0eb 7021 for_each_populated_zone(zone) {
7cd2b0a3
DR
7022 unsigned int cpu;
7023
22a7f12b 7024 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7025 pageset_set_high_and_batch(zone,
7026 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7027 }
7cd2b0a3 7028out:
c8e251fa 7029 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7030 return ret;
8ad4b1fb
RS
7031}
7032
a9919c79 7033#ifdef CONFIG_NUMA
f034b5d4 7034int hashdist = HASHDIST_DEFAULT;
1da177e4 7035
1da177e4
LT
7036static int __init set_hashdist(char *str)
7037{
7038 if (!str)
7039 return 0;
7040 hashdist = simple_strtoul(str, &str, 0);
7041 return 1;
7042}
7043__setup("hashdist=", set_hashdist);
7044#endif
7045
7046/*
7047 * allocate a large system hash table from bootmem
7048 * - it is assumed that the hash table must contain an exact power-of-2
7049 * quantity of entries
7050 * - limit is the number of hash buckets, not the total allocation size
7051 */
7052void *__init alloc_large_system_hash(const char *tablename,
7053 unsigned long bucketsize,
7054 unsigned long numentries,
7055 int scale,
7056 int flags,
7057 unsigned int *_hash_shift,
7058 unsigned int *_hash_mask,
31fe62b9
TB
7059 unsigned long low_limit,
7060 unsigned long high_limit)
1da177e4 7061{
31fe62b9 7062 unsigned long long max = high_limit;
1da177e4
LT
7063 unsigned long log2qty, size;
7064 void *table = NULL;
7065
7066 /* allow the kernel cmdline to have a say */
7067 if (!numentries) {
7068 /* round applicable memory size up to nearest megabyte */
04903664 7069 numentries = nr_kernel_pages;
a7e83318
JZ
7070
7071 /* It isn't necessary when PAGE_SIZE >= 1MB */
7072 if (PAGE_SHIFT < 20)
7073 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7074
7075 /* limit to 1 bucket per 2^scale bytes of low memory */
7076 if (scale > PAGE_SHIFT)
7077 numentries >>= (scale - PAGE_SHIFT);
7078 else
7079 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7080
7081 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7082 if (unlikely(flags & HASH_SMALL)) {
7083 /* Makes no sense without HASH_EARLY */
7084 WARN_ON(!(flags & HASH_EARLY));
7085 if (!(numentries >> *_hash_shift)) {
7086 numentries = 1UL << *_hash_shift;
7087 BUG_ON(!numentries);
7088 }
7089 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7090 numentries = PAGE_SIZE / bucketsize;
1da177e4 7091 }
6e692ed3 7092 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7093
7094 /* limit allocation size to 1/16 total memory by default */
7095 if (max == 0) {
7096 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7097 do_div(max, bucketsize);
7098 }
074b8517 7099 max = min(max, 0x80000000ULL);
1da177e4 7100
31fe62b9
TB
7101 if (numentries < low_limit)
7102 numentries = low_limit;
1da177e4
LT
7103 if (numentries > max)
7104 numentries = max;
7105
f0d1b0b3 7106 log2qty = ilog2(numentries);
1da177e4
LT
7107
7108 do {
7109 size = bucketsize << log2qty;
7110 if (flags & HASH_EARLY)
6782832e 7111 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7112 else if (hashdist)
7113 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7114 else {
1037b83b
ED
7115 /*
7116 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7117 * some pages at the end of hash table which
7118 * alloc_pages_exact() automatically does
1037b83b 7119 */
264ef8a9 7120 if (get_order(size) < MAX_ORDER) {
a1dd268c 7121 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7122 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7123 }
1da177e4
LT
7124 }
7125 } while (!table && size > PAGE_SIZE && --log2qty);
7126
7127 if (!table)
7128 panic("Failed to allocate %s hash table\n", tablename);
7129
1170532b
JP
7130 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7131 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7132
7133 if (_hash_shift)
7134 *_hash_shift = log2qty;
7135 if (_hash_mask)
7136 *_hash_mask = (1 << log2qty) - 1;
7137
7138 return table;
7139}
a117e66e 7140
a5d76b54 7141/*
80934513
MK
7142 * This function checks whether pageblock includes unmovable pages or not.
7143 * If @count is not zero, it is okay to include less @count unmovable pages
7144 *
b8af2941 7145 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7146 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7147 * expect this function should be exact.
a5d76b54 7148 */
b023f468
WC
7149bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7150 bool skip_hwpoisoned_pages)
49ac8255
KH
7151{
7152 unsigned long pfn, iter, found;
47118af0
MN
7153 int mt;
7154
49ac8255
KH
7155 /*
7156 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7157 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7158 */
7159 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7160 return false;
47118af0
MN
7161 mt = get_pageblock_migratetype(page);
7162 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7163 return false;
49ac8255
KH
7164
7165 pfn = page_to_pfn(page);
7166 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7167 unsigned long check = pfn + iter;
7168
29723fcc 7169 if (!pfn_valid_within(check))
49ac8255 7170 continue;
29723fcc 7171
49ac8255 7172 page = pfn_to_page(check);
c8721bbb
NH
7173
7174 /*
7175 * Hugepages are not in LRU lists, but they're movable.
7176 * We need not scan over tail pages bacause we don't
7177 * handle each tail page individually in migration.
7178 */
7179 if (PageHuge(page)) {
7180 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7181 continue;
7182 }
7183
97d255c8
MK
7184 /*
7185 * We can't use page_count without pin a page
7186 * because another CPU can free compound page.
7187 * This check already skips compound tails of THP
0139aa7b 7188 * because their page->_refcount is zero at all time.
97d255c8 7189 */
fe896d18 7190 if (!page_ref_count(page)) {
49ac8255
KH
7191 if (PageBuddy(page))
7192 iter += (1 << page_order(page)) - 1;
7193 continue;
7194 }
97d255c8 7195
b023f468
WC
7196 /*
7197 * The HWPoisoned page may be not in buddy system, and
7198 * page_count() is not 0.
7199 */
7200 if (skip_hwpoisoned_pages && PageHWPoison(page))
7201 continue;
7202
49ac8255
KH
7203 if (!PageLRU(page))
7204 found++;
7205 /*
6b4f7799
JW
7206 * If there are RECLAIMABLE pages, we need to check
7207 * it. But now, memory offline itself doesn't call
7208 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7209 */
7210 /*
7211 * If the page is not RAM, page_count()should be 0.
7212 * we don't need more check. This is an _used_ not-movable page.
7213 *
7214 * The problematic thing here is PG_reserved pages. PG_reserved
7215 * is set to both of a memory hole page and a _used_ kernel
7216 * page at boot.
7217 */
7218 if (found > count)
80934513 7219 return true;
49ac8255 7220 }
80934513 7221 return false;
49ac8255
KH
7222}
7223
7224bool is_pageblock_removable_nolock(struct page *page)
7225{
656a0706
MH
7226 struct zone *zone;
7227 unsigned long pfn;
687875fb
MH
7228
7229 /*
7230 * We have to be careful here because we are iterating over memory
7231 * sections which are not zone aware so we might end up outside of
7232 * the zone but still within the section.
656a0706
MH
7233 * We have to take care about the node as well. If the node is offline
7234 * its NODE_DATA will be NULL - see page_zone.
687875fb 7235 */
656a0706
MH
7236 if (!node_online(page_to_nid(page)))
7237 return false;
7238
7239 zone = page_zone(page);
7240 pfn = page_to_pfn(page);
108bcc96 7241 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7242 return false;
7243
b023f468 7244 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7245}
0c0e6195 7246
080fe206 7247#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7248
7249static unsigned long pfn_max_align_down(unsigned long pfn)
7250{
7251 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7252 pageblock_nr_pages) - 1);
7253}
7254
7255static unsigned long pfn_max_align_up(unsigned long pfn)
7256{
7257 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7258 pageblock_nr_pages));
7259}
7260
041d3a8c 7261/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7262static int __alloc_contig_migrate_range(struct compact_control *cc,
7263 unsigned long start, unsigned long end)
041d3a8c
MN
7264{
7265 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7266 unsigned long nr_reclaimed;
041d3a8c
MN
7267 unsigned long pfn = start;
7268 unsigned int tries = 0;
7269 int ret = 0;
7270
be49a6e1 7271 migrate_prep();
041d3a8c 7272
bb13ffeb 7273 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7274 if (fatal_signal_pending(current)) {
7275 ret = -EINTR;
7276 break;
7277 }
7278
bb13ffeb
MG
7279 if (list_empty(&cc->migratepages)) {
7280 cc->nr_migratepages = 0;
edc2ca61 7281 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7282 if (!pfn) {
7283 ret = -EINTR;
7284 break;
7285 }
7286 tries = 0;
7287 } else if (++tries == 5) {
7288 ret = ret < 0 ? ret : -EBUSY;
7289 break;
7290 }
7291
beb51eaa
MK
7292 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7293 &cc->migratepages);
7294 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7295
9c620e2b 7296 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7297 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7298 }
2a6f5124
SP
7299 if (ret < 0) {
7300 putback_movable_pages(&cc->migratepages);
7301 return ret;
7302 }
7303 return 0;
041d3a8c
MN
7304}
7305
7306/**
7307 * alloc_contig_range() -- tries to allocate given range of pages
7308 * @start: start PFN to allocate
7309 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7310 * @migratetype: migratetype of the underlaying pageblocks (either
7311 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7312 * in range must have the same migratetype and it must
7313 * be either of the two.
041d3a8c
MN
7314 *
7315 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7316 * aligned, however it's the caller's responsibility to guarantee that
7317 * we are the only thread that changes migrate type of pageblocks the
7318 * pages fall in.
7319 *
7320 * The PFN range must belong to a single zone.
7321 *
7322 * Returns zero on success or negative error code. On success all
7323 * pages which PFN is in [start, end) are allocated for the caller and
7324 * need to be freed with free_contig_range().
7325 */
0815f3d8
MN
7326int alloc_contig_range(unsigned long start, unsigned long end,
7327 unsigned migratetype)
041d3a8c 7328{
041d3a8c 7329 unsigned long outer_start, outer_end;
d00181b9
KS
7330 unsigned int order;
7331 int ret = 0;
041d3a8c 7332
bb13ffeb
MG
7333 struct compact_control cc = {
7334 .nr_migratepages = 0,
7335 .order = -1,
7336 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7337 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7338 .ignore_skip_hint = true,
7339 };
7340 INIT_LIST_HEAD(&cc.migratepages);
7341
041d3a8c
MN
7342 /*
7343 * What we do here is we mark all pageblocks in range as
7344 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7345 * have different sizes, and due to the way page allocator
7346 * work, we align the range to biggest of the two pages so
7347 * that page allocator won't try to merge buddies from
7348 * different pageblocks and change MIGRATE_ISOLATE to some
7349 * other migration type.
7350 *
7351 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7352 * migrate the pages from an unaligned range (ie. pages that
7353 * we are interested in). This will put all the pages in
7354 * range back to page allocator as MIGRATE_ISOLATE.
7355 *
7356 * When this is done, we take the pages in range from page
7357 * allocator removing them from the buddy system. This way
7358 * page allocator will never consider using them.
7359 *
7360 * This lets us mark the pageblocks back as
7361 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7362 * aligned range but not in the unaligned, original range are
7363 * put back to page allocator so that buddy can use them.
7364 */
7365
7366 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7367 pfn_max_align_up(end), migratetype,
7368 false);
041d3a8c 7369 if (ret)
86a595f9 7370 return ret;
041d3a8c 7371
8ef5849f
JK
7372 /*
7373 * In case of -EBUSY, we'd like to know which page causes problem.
7374 * So, just fall through. We will check it in test_pages_isolated().
7375 */
bb13ffeb 7376 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7377 if (ret && ret != -EBUSY)
041d3a8c
MN
7378 goto done;
7379
7380 /*
7381 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7382 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7383 * more, all pages in [start, end) are free in page allocator.
7384 * What we are going to do is to allocate all pages from
7385 * [start, end) (that is remove them from page allocator).
7386 *
7387 * The only problem is that pages at the beginning and at the
7388 * end of interesting range may be not aligned with pages that
7389 * page allocator holds, ie. they can be part of higher order
7390 * pages. Because of this, we reserve the bigger range and
7391 * once this is done free the pages we are not interested in.
7392 *
7393 * We don't have to hold zone->lock here because the pages are
7394 * isolated thus they won't get removed from buddy.
7395 */
7396
7397 lru_add_drain_all();
510f5507 7398 drain_all_pages(cc.zone);
041d3a8c
MN
7399
7400 order = 0;
7401 outer_start = start;
7402 while (!PageBuddy(pfn_to_page(outer_start))) {
7403 if (++order >= MAX_ORDER) {
8ef5849f
JK
7404 outer_start = start;
7405 break;
041d3a8c
MN
7406 }
7407 outer_start &= ~0UL << order;
7408 }
7409
8ef5849f
JK
7410 if (outer_start != start) {
7411 order = page_order(pfn_to_page(outer_start));
7412
7413 /*
7414 * outer_start page could be small order buddy page and
7415 * it doesn't include start page. Adjust outer_start
7416 * in this case to report failed page properly
7417 * on tracepoint in test_pages_isolated()
7418 */
7419 if (outer_start + (1UL << order) <= start)
7420 outer_start = start;
7421 }
7422
041d3a8c 7423 /* Make sure the range is really isolated. */
b023f468 7424 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7425 pr_info("%s: [%lx, %lx) PFNs busy\n",
7426 __func__, outer_start, end);
041d3a8c
MN
7427 ret = -EBUSY;
7428 goto done;
7429 }
7430
49f223a9 7431 /* Grab isolated pages from freelists. */
bb13ffeb 7432 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7433 if (!outer_end) {
7434 ret = -EBUSY;
7435 goto done;
7436 }
7437
7438 /* Free head and tail (if any) */
7439 if (start != outer_start)
7440 free_contig_range(outer_start, start - outer_start);
7441 if (end != outer_end)
7442 free_contig_range(end, outer_end - end);
7443
7444done:
7445 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7446 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7447 return ret;
7448}
7449
7450void free_contig_range(unsigned long pfn, unsigned nr_pages)
7451{
bcc2b02f
MS
7452 unsigned int count = 0;
7453
7454 for (; nr_pages--; pfn++) {
7455 struct page *page = pfn_to_page(pfn);
7456
7457 count += page_count(page) != 1;
7458 __free_page(page);
7459 }
7460 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7461}
7462#endif
7463
4ed7e022 7464#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7465/*
7466 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7467 * page high values need to be recalulated.
7468 */
4ed7e022
JL
7469void __meminit zone_pcp_update(struct zone *zone)
7470{
0a647f38 7471 unsigned cpu;
c8e251fa 7472 mutex_lock(&pcp_batch_high_lock);
0a647f38 7473 for_each_possible_cpu(cpu)
169f6c19
CS
7474 pageset_set_high_and_batch(zone,
7475 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7476 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7477}
7478#endif
7479
340175b7
JL
7480void zone_pcp_reset(struct zone *zone)
7481{
7482 unsigned long flags;
5a883813
MK
7483 int cpu;
7484 struct per_cpu_pageset *pset;
340175b7
JL
7485
7486 /* avoid races with drain_pages() */
7487 local_irq_save(flags);
7488 if (zone->pageset != &boot_pageset) {
5a883813
MK
7489 for_each_online_cpu(cpu) {
7490 pset = per_cpu_ptr(zone->pageset, cpu);
7491 drain_zonestat(zone, pset);
7492 }
340175b7
JL
7493 free_percpu(zone->pageset);
7494 zone->pageset = &boot_pageset;
7495 }
7496 local_irq_restore(flags);
7497}
7498
6dcd73d7 7499#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7500/*
b9eb6319
JK
7501 * All pages in the range must be in a single zone and isolated
7502 * before calling this.
0c0e6195
KH
7503 */
7504void
7505__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7506{
7507 struct page *page;
7508 struct zone *zone;
7aeb09f9 7509 unsigned int order, i;
0c0e6195
KH
7510 unsigned long pfn;
7511 unsigned long flags;
7512 /* find the first valid pfn */
7513 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7514 if (pfn_valid(pfn))
7515 break;
7516 if (pfn == end_pfn)
7517 return;
7518 zone = page_zone(pfn_to_page(pfn));
7519 spin_lock_irqsave(&zone->lock, flags);
7520 pfn = start_pfn;
7521 while (pfn < end_pfn) {
7522 if (!pfn_valid(pfn)) {
7523 pfn++;
7524 continue;
7525 }
7526 page = pfn_to_page(pfn);
b023f468
WC
7527 /*
7528 * The HWPoisoned page may be not in buddy system, and
7529 * page_count() is not 0.
7530 */
7531 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7532 pfn++;
7533 SetPageReserved(page);
7534 continue;
7535 }
7536
0c0e6195
KH
7537 BUG_ON(page_count(page));
7538 BUG_ON(!PageBuddy(page));
7539 order = page_order(page);
7540#ifdef CONFIG_DEBUG_VM
1170532b
JP
7541 pr_info("remove from free list %lx %d %lx\n",
7542 pfn, 1 << order, end_pfn);
0c0e6195
KH
7543#endif
7544 list_del(&page->lru);
7545 rmv_page_order(page);
7546 zone->free_area[order].nr_free--;
0c0e6195
KH
7547 for (i = 0; i < (1 << order); i++)
7548 SetPageReserved((page+i));
7549 pfn += (1 << order);
7550 }
7551 spin_unlock_irqrestore(&zone->lock, flags);
7552}
7553#endif
8d22ba1b 7554
8d22ba1b
WF
7555bool is_free_buddy_page(struct page *page)
7556{
7557 struct zone *zone = page_zone(page);
7558 unsigned long pfn = page_to_pfn(page);
7559 unsigned long flags;
7aeb09f9 7560 unsigned int order;
8d22ba1b
WF
7561
7562 spin_lock_irqsave(&zone->lock, flags);
7563 for (order = 0; order < MAX_ORDER; order++) {
7564 struct page *page_head = page - (pfn & ((1 << order) - 1));
7565
7566 if (PageBuddy(page_head) && page_order(page_head) >= order)
7567 break;
7568 }
7569 spin_unlock_irqrestore(&zone->lock, flags);
7570
7571 return order < MAX_ORDER;
7572}
This page took 1.741305 seconds and 5 git commands to generate.