mm: meminit: initialise remaining struct pages in parallel with kswapd
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
3a80a7fa
MG
238#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
239static inline void reset_deferred_meminit(pg_data_t *pgdat)
240{
241 pgdat->first_deferred_pfn = ULONG_MAX;
242}
243
244/* Returns true if the struct page for the pfn is uninitialised */
245static inline bool __defermem_init early_page_uninitialised(unsigned long pfn)
246{
247 int nid = early_pfn_to_nid(pfn);
248
249 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
250 return true;
251
252 return false;
253}
254
7e18adb4
MG
255static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
256{
257 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
258 return true;
259
260 return false;
261}
262
3a80a7fa
MG
263/*
264 * Returns false when the remaining initialisation should be deferred until
265 * later in the boot cycle when it can be parallelised.
266 */
267static inline bool update_defer_init(pg_data_t *pgdat,
268 unsigned long pfn, unsigned long zone_end,
269 unsigned long *nr_initialised)
270{
271 /* Always populate low zones for address-contrained allocations */
272 if (zone_end < pgdat_end_pfn(pgdat))
273 return true;
274
275 /* Initialise at least 2G of the highest zone */
276 (*nr_initialised)++;
277 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
278 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
279 pgdat->first_deferred_pfn = pfn;
280 return false;
281 }
282
283 return true;
284}
285#else
286static inline void reset_deferred_meminit(pg_data_t *pgdat)
287{
288}
289
290static inline bool early_page_uninitialised(unsigned long pfn)
291{
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 return false;
298}
299
3a80a7fa
MG
300static inline bool update_defer_init(pg_data_t *pgdat,
301 unsigned long pfn, unsigned long zone_end,
302 unsigned long *nr_initialised)
303{
304 return true;
305}
306#endif
307
308
ee6f509c 309void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 310{
5d0f3f72
KM
311 if (unlikely(page_group_by_mobility_disabled &&
312 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
313 migratetype = MIGRATE_UNMOVABLE;
314
b2a0ac88
MG
315 set_pageblock_flags_group(page, (unsigned long)migratetype,
316 PB_migrate, PB_migrate_end);
317}
318
13e7444b 319#ifdef CONFIG_DEBUG_VM
c6a57e19 320static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 321{
bdc8cb98
DH
322 int ret = 0;
323 unsigned seq;
324 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 325 unsigned long sp, start_pfn;
c6a57e19 326
bdc8cb98
DH
327 do {
328 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
329 start_pfn = zone->zone_start_pfn;
330 sp = zone->spanned_pages;
108bcc96 331 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
332 ret = 1;
333 } while (zone_span_seqretry(zone, seq));
334
b5e6a5a2 335 if (ret)
613813e8
DH
336 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
337 pfn, zone_to_nid(zone), zone->name,
338 start_pfn, start_pfn + sp);
b5e6a5a2 339
bdc8cb98 340 return ret;
c6a57e19
DH
341}
342
343static int page_is_consistent(struct zone *zone, struct page *page)
344{
14e07298 345 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 346 return 0;
1da177e4 347 if (zone != page_zone(page))
c6a57e19
DH
348 return 0;
349
350 return 1;
351}
352/*
353 * Temporary debugging check for pages not lying within a given zone.
354 */
355static int bad_range(struct zone *zone, struct page *page)
356{
357 if (page_outside_zone_boundaries(zone, page))
1da177e4 358 return 1;
c6a57e19
DH
359 if (!page_is_consistent(zone, page))
360 return 1;
361
1da177e4
LT
362 return 0;
363}
13e7444b
NP
364#else
365static inline int bad_range(struct zone *zone, struct page *page)
366{
367 return 0;
368}
369#endif
370
d230dec1
KS
371static void bad_page(struct page *page, const char *reason,
372 unsigned long bad_flags)
1da177e4 373{
d936cf9b
HD
374 static unsigned long resume;
375 static unsigned long nr_shown;
376 static unsigned long nr_unshown;
377
2a7684a2
WF
378 /* Don't complain about poisoned pages */
379 if (PageHWPoison(page)) {
22b751c3 380 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
381 return;
382 }
383
d936cf9b
HD
384 /*
385 * Allow a burst of 60 reports, then keep quiet for that minute;
386 * or allow a steady drip of one report per second.
387 */
388 if (nr_shown == 60) {
389 if (time_before(jiffies, resume)) {
390 nr_unshown++;
391 goto out;
392 }
393 if (nr_unshown) {
1e9e6365
HD
394 printk(KERN_ALERT
395 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
396 nr_unshown);
397 nr_unshown = 0;
398 }
399 nr_shown = 0;
400 }
401 if (nr_shown++ == 0)
402 resume = jiffies + 60 * HZ;
403
1e9e6365 404 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 405 current->comm, page_to_pfn(page));
f0b791a3 406 dump_page_badflags(page, reason, bad_flags);
3dc14741 407
4f31888c 408 print_modules();
1da177e4 409 dump_stack();
d936cf9b 410out:
8cc3b392 411 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 412 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 413 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
414}
415
1da177e4
LT
416/*
417 * Higher-order pages are called "compound pages". They are structured thusly:
418 *
419 * The first PAGE_SIZE page is called the "head page".
420 *
421 * The remaining PAGE_SIZE pages are called "tail pages".
422 *
6416b9fa
WSH
423 * All pages have PG_compound set. All tail pages have their ->first_page
424 * pointing at the head page.
1da177e4 425 *
41d78ba5
HD
426 * The first tail page's ->lru.next holds the address of the compound page's
427 * put_page() function. Its ->lru.prev holds the order of allocation.
428 * This usage means that zero-order pages may not be compound.
1da177e4 429 */
d98c7a09
HD
430
431static void free_compound_page(struct page *page)
432{
d85f3385 433 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
434}
435
01ad1c08 436void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
437{
438 int i;
439 int nr_pages = 1 << order;
440
441 set_compound_page_dtor(page, free_compound_page);
442 set_compound_order(page, order);
443 __SetPageHead(page);
444 for (i = 1; i < nr_pages; i++) {
445 struct page *p = page + i;
58a84aa9 446 set_page_count(p, 0);
18229df5 447 p->first_page = page;
668f9abb
DR
448 /* Make sure p->first_page is always valid for PageTail() */
449 smp_wmb();
450 __SetPageTail(p);
18229df5
AW
451 }
452}
453
c0a32fc5
SG
454#ifdef CONFIG_DEBUG_PAGEALLOC
455unsigned int _debug_guardpage_minorder;
031bc574 456bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
457bool _debug_guardpage_enabled __read_mostly;
458
031bc574
JK
459static int __init early_debug_pagealloc(char *buf)
460{
461 if (!buf)
462 return -EINVAL;
463
464 if (strcmp(buf, "on") == 0)
465 _debug_pagealloc_enabled = true;
466
467 return 0;
468}
469early_param("debug_pagealloc", early_debug_pagealloc);
470
e30825f1
JK
471static bool need_debug_guardpage(void)
472{
031bc574
JK
473 /* If we don't use debug_pagealloc, we don't need guard page */
474 if (!debug_pagealloc_enabled())
475 return false;
476
e30825f1
JK
477 return true;
478}
479
480static void init_debug_guardpage(void)
481{
031bc574
JK
482 if (!debug_pagealloc_enabled())
483 return;
484
e30825f1
JK
485 _debug_guardpage_enabled = true;
486}
487
488struct page_ext_operations debug_guardpage_ops = {
489 .need = need_debug_guardpage,
490 .init = init_debug_guardpage,
491};
c0a32fc5
SG
492
493static int __init debug_guardpage_minorder_setup(char *buf)
494{
495 unsigned long res;
496
497 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
498 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
499 return 0;
500 }
501 _debug_guardpage_minorder = res;
502 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
503 return 0;
504}
505__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
506
2847cf95
JK
507static inline void set_page_guard(struct zone *zone, struct page *page,
508 unsigned int order, int migratetype)
c0a32fc5 509{
e30825f1
JK
510 struct page_ext *page_ext;
511
512 if (!debug_guardpage_enabled())
513 return;
514
515 page_ext = lookup_page_ext(page);
516 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
517
2847cf95
JK
518 INIT_LIST_HEAD(&page->lru);
519 set_page_private(page, order);
520 /* Guard pages are not available for any usage */
521 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
522}
523
2847cf95
JK
524static inline void clear_page_guard(struct zone *zone, struct page *page,
525 unsigned int order, int migratetype)
c0a32fc5 526{
e30825f1
JK
527 struct page_ext *page_ext;
528
529 if (!debug_guardpage_enabled())
530 return;
531
532 page_ext = lookup_page_ext(page);
533 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534
2847cf95
JK
535 set_page_private(page, 0);
536 if (!is_migrate_isolate(migratetype))
537 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
538}
539#else
e30825f1 540struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
541static inline void set_page_guard(struct zone *zone, struct page *page,
542 unsigned int order, int migratetype) {}
543static inline void clear_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
c0a32fc5
SG
545#endif
546
7aeb09f9 547static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 548{
4c21e2f2 549 set_page_private(page, order);
676165a8 550 __SetPageBuddy(page);
1da177e4
LT
551}
552
553static inline void rmv_page_order(struct page *page)
554{
676165a8 555 __ClearPageBuddy(page);
4c21e2f2 556 set_page_private(page, 0);
1da177e4
LT
557}
558
1da177e4
LT
559/*
560 * This function checks whether a page is free && is the buddy
561 * we can do coalesce a page and its buddy if
13e7444b 562 * (a) the buddy is not in a hole &&
676165a8 563 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
564 * (c) a page and its buddy have the same order &&
565 * (d) a page and its buddy are in the same zone.
676165a8 566 *
cf6fe945
WSH
567 * For recording whether a page is in the buddy system, we set ->_mapcount
568 * PAGE_BUDDY_MAPCOUNT_VALUE.
569 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
570 * serialized by zone->lock.
1da177e4 571 *
676165a8 572 * For recording page's order, we use page_private(page).
1da177e4 573 */
cb2b95e1 574static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 575 unsigned int order)
1da177e4 576{
14e07298 577 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 578 return 0;
13e7444b 579
c0a32fc5 580 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
581 if (page_zone_id(page) != page_zone_id(buddy))
582 return 0;
583
4c5018ce
WY
584 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
585
c0a32fc5
SG
586 return 1;
587 }
588
cb2b95e1 589 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
590 /*
591 * zone check is done late to avoid uselessly
592 * calculating zone/node ids for pages that could
593 * never merge.
594 */
595 if (page_zone_id(page) != page_zone_id(buddy))
596 return 0;
597
4c5018ce
WY
598 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
599
6aa3001b 600 return 1;
676165a8 601 }
6aa3001b 602 return 0;
1da177e4
LT
603}
604
605/*
606 * Freeing function for a buddy system allocator.
607 *
608 * The concept of a buddy system is to maintain direct-mapped table
609 * (containing bit values) for memory blocks of various "orders".
610 * The bottom level table contains the map for the smallest allocatable
611 * units of memory (here, pages), and each level above it describes
612 * pairs of units from the levels below, hence, "buddies".
613 * At a high level, all that happens here is marking the table entry
614 * at the bottom level available, and propagating the changes upward
615 * as necessary, plus some accounting needed to play nicely with other
616 * parts of the VM system.
617 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
618 * free pages of length of (1 << order) and marked with _mapcount
619 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
620 * field.
1da177e4 621 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
622 * other. That is, if we allocate a small block, and both were
623 * free, the remainder of the region must be split into blocks.
1da177e4 624 * If a block is freed, and its buddy is also free, then this
5f63b720 625 * triggers coalescing into a block of larger size.
1da177e4 626 *
6d49e352 627 * -- nyc
1da177e4
LT
628 */
629
48db57f8 630static inline void __free_one_page(struct page *page,
dc4b0caf 631 unsigned long pfn,
ed0ae21d
MG
632 struct zone *zone, unsigned int order,
633 int migratetype)
1da177e4
LT
634{
635 unsigned long page_idx;
6dda9d55 636 unsigned long combined_idx;
43506fad 637 unsigned long uninitialized_var(buddy_idx);
6dda9d55 638 struct page *buddy;
3c605096 639 int max_order = MAX_ORDER;
1da177e4 640
d29bb978 641 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 642 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 643
ed0ae21d 644 VM_BUG_ON(migratetype == -1);
3c605096
JK
645 if (is_migrate_isolate(migratetype)) {
646 /*
647 * We restrict max order of merging to prevent merge
648 * between freepages on isolate pageblock and normal
649 * pageblock. Without this, pageblock isolation
650 * could cause incorrect freepage accounting.
651 */
652 max_order = min(MAX_ORDER, pageblock_order + 1);
653 } else {
8f82b55d 654 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 655 }
ed0ae21d 656
3c605096 657 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 658
309381fe
SL
659 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 661
3c605096 662 while (order < max_order - 1) {
43506fad
KC
663 buddy_idx = __find_buddy_index(page_idx, order);
664 buddy = page + (buddy_idx - page_idx);
cb2b95e1 665 if (!page_is_buddy(page, buddy, order))
3c82d0ce 666 break;
c0a32fc5
SG
667 /*
668 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
669 * merge with it and move up one order.
670 */
671 if (page_is_guard(buddy)) {
2847cf95 672 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
673 } else {
674 list_del(&buddy->lru);
675 zone->free_area[order].nr_free--;
676 rmv_page_order(buddy);
677 }
43506fad 678 combined_idx = buddy_idx & page_idx;
1da177e4
LT
679 page = page + (combined_idx - page_idx);
680 page_idx = combined_idx;
681 order++;
682 }
683 set_page_order(page, order);
6dda9d55
CZ
684
685 /*
686 * If this is not the largest possible page, check if the buddy
687 * of the next-highest order is free. If it is, it's possible
688 * that pages are being freed that will coalesce soon. In case,
689 * that is happening, add the free page to the tail of the list
690 * so it's less likely to be used soon and more likely to be merged
691 * as a higher order page
692 */
b7f50cfa 693 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 694 struct page *higher_page, *higher_buddy;
43506fad
KC
695 combined_idx = buddy_idx & page_idx;
696 higher_page = page + (combined_idx - page_idx);
697 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 698 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
699 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
700 list_add_tail(&page->lru,
701 &zone->free_area[order].free_list[migratetype]);
702 goto out;
703 }
704 }
705
706 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
707out:
1da177e4
LT
708 zone->free_area[order].nr_free++;
709}
710
224abf92 711static inline int free_pages_check(struct page *page)
1da177e4 712{
d230dec1 713 const char *bad_reason = NULL;
f0b791a3
DH
714 unsigned long bad_flags = 0;
715
716 if (unlikely(page_mapcount(page)))
717 bad_reason = "nonzero mapcount";
718 if (unlikely(page->mapping != NULL))
719 bad_reason = "non-NULL mapping";
720 if (unlikely(atomic_read(&page->_count) != 0))
721 bad_reason = "nonzero _count";
722 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
723 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
724 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
725 }
9edad6ea
JW
726#ifdef CONFIG_MEMCG
727 if (unlikely(page->mem_cgroup))
728 bad_reason = "page still charged to cgroup";
729#endif
f0b791a3
DH
730 if (unlikely(bad_reason)) {
731 bad_page(page, bad_reason, bad_flags);
79f4b7bf 732 return 1;
8cc3b392 733 }
90572890 734 page_cpupid_reset_last(page);
79f4b7bf
HD
735 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
736 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
737 return 0;
1da177e4
LT
738}
739
740/*
5f8dcc21 741 * Frees a number of pages from the PCP lists
1da177e4 742 * Assumes all pages on list are in same zone, and of same order.
207f36ee 743 * count is the number of pages to free.
1da177e4
LT
744 *
745 * If the zone was previously in an "all pages pinned" state then look to
746 * see if this freeing clears that state.
747 *
748 * And clear the zone's pages_scanned counter, to hold off the "all pages are
749 * pinned" detection logic.
750 */
5f8dcc21
MG
751static void free_pcppages_bulk(struct zone *zone, int count,
752 struct per_cpu_pages *pcp)
1da177e4 753{
5f8dcc21 754 int migratetype = 0;
a6f9edd6 755 int batch_free = 0;
72853e29 756 int to_free = count;
0d5d823a 757 unsigned long nr_scanned;
5f8dcc21 758
c54ad30c 759 spin_lock(&zone->lock);
0d5d823a
MG
760 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
761 if (nr_scanned)
762 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 763
72853e29 764 while (to_free) {
48db57f8 765 struct page *page;
5f8dcc21
MG
766 struct list_head *list;
767
768 /*
a6f9edd6
MG
769 * Remove pages from lists in a round-robin fashion. A
770 * batch_free count is maintained that is incremented when an
771 * empty list is encountered. This is so more pages are freed
772 * off fuller lists instead of spinning excessively around empty
773 * lists
5f8dcc21
MG
774 */
775 do {
a6f9edd6 776 batch_free++;
5f8dcc21
MG
777 if (++migratetype == MIGRATE_PCPTYPES)
778 migratetype = 0;
779 list = &pcp->lists[migratetype];
780 } while (list_empty(list));
48db57f8 781
1d16871d
NK
782 /* This is the only non-empty list. Free them all. */
783 if (batch_free == MIGRATE_PCPTYPES)
784 batch_free = to_free;
785
a6f9edd6 786 do {
770c8aaa
BZ
787 int mt; /* migratetype of the to-be-freed page */
788
a6f9edd6
MG
789 page = list_entry(list->prev, struct page, lru);
790 /* must delete as __free_one_page list manipulates */
791 list_del(&page->lru);
b12c4ad1 792 mt = get_freepage_migratetype(page);
8f82b55d 793 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 794 mt = get_pageblock_migratetype(page);
51bb1a40 795
a7016235 796 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 797 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 798 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 799 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 800 }
c54ad30c 801 spin_unlock(&zone->lock);
1da177e4
LT
802}
803
dc4b0caf
MG
804static void free_one_page(struct zone *zone,
805 struct page *page, unsigned long pfn,
7aeb09f9 806 unsigned int order,
ed0ae21d 807 int migratetype)
1da177e4 808{
0d5d823a 809 unsigned long nr_scanned;
006d22d9 810 spin_lock(&zone->lock);
0d5d823a
MG
811 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
812 if (nr_scanned)
813 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 814
ad53f92e
JK
815 if (unlikely(has_isolate_pageblock(zone) ||
816 is_migrate_isolate(migratetype))) {
817 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 818 }
dc4b0caf 819 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 820 spin_unlock(&zone->lock);
48db57f8
NP
821}
822
81422f29
KS
823static int free_tail_pages_check(struct page *head_page, struct page *page)
824{
825 if (!IS_ENABLED(CONFIG_DEBUG_VM))
826 return 0;
827 if (unlikely(!PageTail(page))) {
828 bad_page(page, "PageTail not set", 0);
829 return 1;
830 }
831 if (unlikely(page->first_page != head_page)) {
832 bad_page(page, "first_page not consistent", 0);
833 return 1;
834 }
835 return 0;
836}
837
1e8ce83c
RH
838static void __meminit __init_single_page(struct page *page, unsigned long pfn,
839 unsigned long zone, int nid)
840{
841 struct zone *z = &NODE_DATA(nid)->node_zones[zone];
842
843 set_page_links(page, zone, nid, pfn);
844 mminit_verify_page_links(page, zone, nid, pfn);
845 init_page_count(page);
846 page_mapcount_reset(page);
847 page_cpupid_reset_last(page);
1e8ce83c
RH
848
849 /*
850 * Mark the block movable so that blocks are reserved for
851 * movable at startup. This will force kernel allocations
852 * to reserve their blocks rather than leaking throughout
853 * the address space during boot when many long-lived
854 * kernel allocations are made. Later some blocks near
855 * the start are marked MIGRATE_RESERVE by
856 * setup_zone_migrate_reserve()
857 *
858 * bitmap is created for zone's valid pfn range. but memmap
859 * can be created for invalid pages (for alignment)
860 * check here not to call set_pageblock_migratetype() against
861 * pfn out of zone.
862 */
863 if ((z->zone_start_pfn <= pfn)
864 && (pfn < zone_end_pfn(z))
865 && !(pfn & (pageblock_nr_pages - 1)))
866 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
867
868 INIT_LIST_HEAD(&page->lru);
869#ifdef WANT_PAGE_VIRTUAL
870 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
871 if (!is_highmem_idx(zone))
872 set_page_address(page, __va(pfn << PAGE_SHIFT));
873#endif
874}
875
876static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
877 int nid)
878{
879 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
880}
881
7e18adb4
MG
882#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
883static void init_reserved_page(unsigned long pfn)
884{
885 pg_data_t *pgdat;
886 int nid, zid;
887
888 if (!early_page_uninitialised(pfn))
889 return;
890
891 nid = early_pfn_to_nid(pfn);
892 pgdat = NODE_DATA(nid);
893
894 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
895 struct zone *zone = &pgdat->node_zones[zid];
896
897 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
898 break;
899 }
900 __init_single_pfn(pfn, zid, nid);
901}
902#else
903static inline void init_reserved_page(unsigned long pfn)
904{
905}
906#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
907
92923ca3
NZ
908/*
909 * Initialised pages do not have PageReserved set. This function is
910 * called for each range allocated by the bootmem allocator and
911 * marks the pages PageReserved. The remaining valid pages are later
912 * sent to the buddy page allocator.
913 */
7e18adb4 914void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
915{
916 unsigned long start_pfn = PFN_DOWN(start);
917 unsigned long end_pfn = PFN_UP(end);
918
7e18adb4
MG
919 for (; start_pfn < end_pfn; start_pfn++) {
920 if (pfn_valid(start_pfn)) {
921 struct page *page = pfn_to_page(start_pfn);
922
923 init_reserved_page(start_pfn);
924 SetPageReserved(page);
925 }
926 }
92923ca3
NZ
927}
928
ec95f53a 929static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 930{
81422f29
KS
931 bool compound = PageCompound(page);
932 int i, bad = 0;
1da177e4 933
ab1f306f 934 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 935 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 936
b413d48a 937 trace_mm_page_free(page, order);
b1eeab67 938 kmemcheck_free_shadow(page, order);
b8c73fc2 939 kasan_free_pages(page, order);
b1eeab67 940
8dd60a3a
AA
941 if (PageAnon(page))
942 page->mapping = NULL;
81422f29
KS
943 bad += free_pages_check(page);
944 for (i = 1; i < (1 << order); i++) {
945 if (compound)
946 bad += free_tail_pages_check(page, page + i);
8dd60a3a 947 bad += free_pages_check(page + i);
81422f29 948 }
8cc3b392 949 if (bad)
ec95f53a 950 return false;
689bcebf 951
48c96a36
JK
952 reset_page_owner(page, order);
953
3ac7fe5a 954 if (!PageHighMem(page)) {
b8af2941
PK
955 debug_check_no_locks_freed(page_address(page),
956 PAGE_SIZE << order);
3ac7fe5a
TG
957 debug_check_no_obj_freed(page_address(page),
958 PAGE_SIZE << order);
959 }
dafb1367 960 arch_free_page(page, order);
48db57f8 961 kernel_map_pages(page, 1 << order, 0);
dafb1367 962
ec95f53a
KM
963 return true;
964}
965
966static void __free_pages_ok(struct page *page, unsigned int order)
967{
968 unsigned long flags;
95e34412 969 int migratetype;
dc4b0caf 970 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
971
972 if (!free_pages_prepare(page, order))
973 return;
974
cfc47a28 975 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 976 local_irq_save(flags);
f8891e5e 977 __count_vm_events(PGFREE, 1 << order);
95e34412 978 set_freepage_migratetype(page, migratetype);
dc4b0caf 979 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 980 local_irq_restore(flags);
1da177e4
LT
981}
982
3a80a7fa
MG
983static void __defer_init __free_pages_boot_core(struct page *page,
984 unsigned long pfn, unsigned int order)
a226f6c8 985{
c3993076 986 unsigned int nr_pages = 1 << order;
e2d0bd2b 987 struct page *p = page;
c3993076 988 unsigned int loop;
a226f6c8 989
e2d0bd2b
YL
990 prefetchw(p);
991 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
992 prefetchw(p + 1);
c3993076
JW
993 __ClearPageReserved(p);
994 set_page_count(p, 0);
a226f6c8 995 }
e2d0bd2b
YL
996 __ClearPageReserved(p);
997 set_page_count(p, 0);
c3993076 998
e2d0bd2b 999 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1000 set_page_refcounted(page);
1001 __free_pages(page, order);
a226f6c8
DH
1002}
1003
75a592a4
MG
1004#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1005 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1006/* Only safe to use early in boot when initialisation is single-threaded */
1007static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1008
1009int __meminit early_pfn_to_nid(unsigned long pfn)
1010{
1011 int nid;
1012
1013 /* The system will behave unpredictably otherwise */
1014 BUG_ON(system_state != SYSTEM_BOOTING);
1015
1016 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1017 if (nid >= 0)
1018 return nid;
1019 /* just returns 0 */
1020 return 0;
1021}
1022#endif
1023
1024#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1025static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027{
1028 int nid;
1029
1030 nid = __early_pfn_to_nid(pfn, state);
1031 if (nid >= 0 && nid != node)
1032 return false;
1033 return true;
1034}
1035
1036/* Only safe to use early in boot when initialisation is single-threaded */
1037static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1038{
1039 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1040}
1041
1042#else
1043
1044static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1045{
1046 return true;
1047}
1048static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1049 struct mminit_pfnnid_cache *state)
1050{
1051 return true;
1052}
1053#endif
1054
1055
3a80a7fa
MG
1056void __defer_init __free_pages_bootmem(struct page *page, unsigned long pfn,
1057 unsigned int order)
1058{
1059 if (early_page_uninitialised(pfn))
1060 return;
1061 return __free_pages_boot_core(page, pfn, order);
1062}
1063
7e18adb4
MG
1064#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1065/* Initialise remaining memory on a node */
1066void __defermem_init deferred_init_memmap(int nid)
1067{
1068 struct mminit_pfnnid_cache nid_init_state = { };
1069 unsigned long start = jiffies;
1070 unsigned long nr_pages = 0;
1071 unsigned long walk_start, walk_end;
1072 int i, zid;
1073 struct zone *zone;
1074 pg_data_t *pgdat = NODE_DATA(nid);
1075 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1076
1077 if (first_init_pfn == ULONG_MAX)
1078 return;
1079
1080 /* Sanity check boundaries */
1081 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1082 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1083 pgdat->first_deferred_pfn = ULONG_MAX;
1084
1085 /* Only the highest zone is deferred so find it */
1086 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1087 zone = pgdat->node_zones + zid;
1088 if (first_init_pfn < zone_end_pfn(zone))
1089 break;
1090 }
1091
1092 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1093 unsigned long pfn, end_pfn;
1094
1095 end_pfn = min(walk_end, zone_end_pfn(zone));
1096 pfn = first_init_pfn;
1097 if (pfn < walk_start)
1098 pfn = walk_start;
1099 if (pfn < zone->zone_start_pfn)
1100 pfn = zone->zone_start_pfn;
1101
1102 for (; pfn < end_pfn; pfn++) {
1103 struct page *page;
1104
1105 if (!pfn_valid(pfn))
1106 continue;
1107
1108 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state))
1109 continue;
1110
1111 if (page->flags) {
1112 VM_BUG_ON(page_zone(page) != zone);
1113 continue;
1114 }
1115
1116 __init_single_page(page, pfn, zid, nid);
1117 __free_pages_boot_core(page, pfn, 0);
1118 nr_pages++;
1119 cond_resched();
1120 }
1121 first_init_pfn = max(end_pfn, first_init_pfn);
1122 }
1123
1124 /* Sanity check that the next zone really is unpopulated */
1125 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1126
1127 pr_info("kswapd %d initialised %lu pages in %ums\n", nid, nr_pages,
1128 jiffies_to_msecs(jiffies - start));
1129}
1130#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1131
47118af0 1132#ifdef CONFIG_CMA
9cf510a5 1133/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1134void __init init_cma_reserved_pageblock(struct page *page)
1135{
1136 unsigned i = pageblock_nr_pages;
1137 struct page *p = page;
1138
1139 do {
1140 __ClearPageReserved(p);
1141 set_page_count(p, 0);
1142 } while (++p, --i);
1143
47118af0 1144 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1145
1146 if (pageblock_order >= MAX_ORDER) {
1147 i = pageblock_nr_pages;
1148 p = page;
1149 do {
1150 set_page_refcounted(p);
1151 __free_pages(p, MAX_ORDER - 1);
1152 p += MAX_ORDER_NR_PAGES;
1153 } while (i -= MAX_ORDER_NR_PAGES);
1154 } else {
1155 set_page_refcounted(page);
1156 __free_pages(page, pageblock_order);
1157 }
1158
3dcc0571 1159 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1160}
1161#endif
1da177e4
LT
1162
1163/*
1164 * The order of subdivision here is critical for the IO subsystem.
1165 * Please do not alter this order without good reasons and regression
1166 * testing. Specifically, as large blocks of memory are subdivided,
1167 * the order in which smaller blocks are delivered depends on the order
1168 * they're subdivided in this function. This is the primary factor
1169 * influencing the order in which pages are delivered to the IO
1170 * subsystem according to empirical testing, and this is also justified
1171 * by considering the behavior of a buddy system containing a single
1172 * large block of memory acted on by a series of small allocations.
1173 * This behavior is a critical factor in sglist merging's success.
1174 *
6d49e352 1175 * -- nyc
1da177e4 1176 */
085cc7d5 1177static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1178 int low, int high, struct free_area *area,
1179 int migratetype)
1da177e4
LT
1180{
1181 unsigned long size = 1 << high;
1182
1183 while (high > low) {
1184 area--;
1185 high--;
1186 size >>= 1;
309381fe 1187 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1188
2847cf95 1189 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1190 debug_guardpage_enabled() &&
2847cf95 1191 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1192 /*
1193 * Mark as guard pages (or page), that will allow to
1194 * merge back to allocator when buddy will be freed.
1195 * Corresponding page table entries will not be touched,
1196 * pages will stay not present in virtual address space
1197 */
2847cf95 1198 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1199 continue;
1200 }
b2a0ac88 1201 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1202 area->nr_free++;
1203 set_page_order(&page[size], high);
1204 }
1da177e4
LT
1205}
1206
1da177e4
LT
1207/*
1208 * This page is about to be returned from the page allocator
1209 */
2a7684a2 1210static inline int check_new_page(struct page *page)
1da177e4 1211{
d230dec1 1212 const char *bad_reason = NULL;
f0b791a3
DH
1213 unsigned long bad_flags = 0;
1214
1215 if (unlikely(page_mapcount(page)))
1216 bad_reason = "nonzero mapcount";
1217 if (unlikely(page->mapping != NULL))
1218 bad_reason = "non-NULL mapping";
1219 if (unlikely(atomic_read(&page->_count) != 0))
1220 bad_reason = "nonzero _count";
1221 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1222 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1223 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1224 }
9edad6ea
JW
1225#ifdef CONFIG_MEMCG
1226 if (unlikely(page->mem_cgroup))
1227 bad_reason = "page still charged to cgroup";
1228#endif
f0b791a3
DH
1229 if (unlikely(bad_reason)) {
1230 bad_page(page, bad_reason, bad_flags);
689bcebf 1231 return 1;
8cc3b392 1232 }
2a7684a2
WF
1233 return 0;
1234}
1235
75379191
VB
1236static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1237 int alloc_flags)
2a7684a2
WF
1238{
1239 int i;
1240
1241 for (i = 0; i < (1 << order); i++) {
1242 struct page *p = page + i;
1243 if (unlikely(check_new_page(p)))
1244 return 1;
1245 }
689bcebf 1246
4c21e2f2 1247 set_page_private(page, 0);
7835e98b 1248 set_page_refcounted(page);
cc102509
NP
1249
1250 arch_alloc_page(page, order);
1da177e4 1251 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1252 kasan_alloc_pages(page, order);
17cf4406
NP
1253
1254 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1255 for (i = 0; i < (1 << order); i++)
1256 clear_highpage(page + i);
17cf4406
NP
1257
1258 if (order && (gfp_flags & __GFP_COMP))
1259 prep_compound_page(page, order);
1260
48c96a36
JK
1261 set_page_owner(page, order, gfp_flags);
1262
75379191
VB
1263 /*
1264 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1265 * allocate the page. The expectation is that the caller is taking
1266 * steps that will free more memory. The caller should avoid the page
1267 * being used for !PFMEMALLOC purposes.
1268 */
1269 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1270
689bcebf 1271 return 0;
1da177e4
LT
1272}
1273
56fd56b8
MG
1274/*
1275 * Go through the free lists for the given migratetype and remove
1276 * the smallest available page from the freelists
1277 */
728ec980
MG
1278static inline
1279struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1280 int migratetype)
1281{
1282 unsigned int current_order;
b8af2941 1283 struct free_area *area;
56fd56b8
MG
1284 struct page *page;
1285
1286 /* Find a page of the appropriate size in the preferred list */
1287 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1288 area = &(zone->free_area[current_order]);
1289 if (list_empty(&area->free_list[migratetype]))
1290 continue;
1291
1292 page = list_entry(area->free_list[migratetype].next,
1293 struct page, lru);
1294 list_del(&page->lru);
1295 rmv_page_order(page);
1296 area->nr_free--;
56fd56b8 1297 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1298 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1299 return page;
1300 }
1301
1302 return NULL;
1303}
1304
1305
b2a0ac88
MG
1306/*
1307 * This array describes the order lists are fallen back to when
1308 * the free lists for the desirable migrate type are depleted
1309 */
47118af0
MN
1310static int fallbacks[MIGRATE_TYPES][4] = {
1311 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1312 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1313 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1314#ifdef CONFIG_CMA
47118af0 1315 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1316#endif
6d4a4916 1317 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1318#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1319 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1320#endif
b2a0ac88
MG
1321};
1322
dc67647b
JK
1323#ifdef CONFIG_CMA
1324static struct page *__rmqueue_cma_fallback(struct zone *zone,
1325 unsigned int order)
1326{
1327 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1328}
1329#else
1330static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1331 unsigned int order) { return NULL; }
1332#endif
1333
c361be55
MG
1334/*
1335 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1336 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1337 * boundary. If alignment is required, use move_freepages_block()
1338 */
435b405c 1339int move_freepages(struct zone *zone,
b69a7288
AB
1340 struct page *start_page, struct page *end_page,
1341 int migratetype)
c361be55
MG
1342{
1343 struct page *page;
1344 unsigned long order;
d100313f 1345 int pages_moved = 0;
c361be55
MG
1346
1347#ifndef CONFIG_HOLES_IN_ZONE
1348 /*
1349 * page_zone is not safe to call in this context when
1350 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1351 * anyway as we check zone boundaries in move_freepages_block().
1352 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1353 * grouping pages by mobility
c361be55 1354 */
97ee4ba7 1355 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1356#endif
1357
1358 for (page = start_page; page <= end_page;) {
344c790e 1359 /* Make sure we are not inadvertently changing nodes */
309381fe 1360 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1361
c361be55
MG
1362 if (!pfn_valid_within(page_to_pfn(page))) {
1363 page++;
1364 continue;
1365 }
1366
1367 if (!PageBuddy(page)) {
1368 page++;
1369 continue;
1370 }
1371
1372 order = page_order(page);
84be48d8
KS
1373 list_move(&page->lru,
1374 &zone->free_area[order].free_list[migratetype]);
95e34412 1375 set_freepage_migratetype(page, migratetype);
c361be55 1376 page += 1 << order;
d100313f 1377 pages_moved += 1 << order;
c361be55
MG
1378 }
1379
d100313f 1380 return pages_moved;
c361be55
MG
1381}
1382
ee6f509c 1383int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1384 int migratetype)
c361be55
MG
1385{
1386 unsigned long start_pfn, end_pfn;
1387 struct page *start_page, *end_page;
1388
1389 start_pfn = page_to_pfn(page);
d9c23400 1390 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1391 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1392 end_page = start_page + pageblock_nr_pages - 1;
1393 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1394
1395 /* Do not cross zone boundaries */
108bcc96 1396 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1397 start_page = page;
108bcc96 1398 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1399 return 0;
1400
1401 return move_freepages(zone, start_page, end_page, migratetype);
1402}
1403
2f66a68f
MG
1404static void change_pageblock_range(struct page *pageblock_page,
1405 int start_order, int migratetype)
1406{
1407 int nr_pageblocks = 1 << (start_order - pageblock_order);
1408
1409 while (nr_pageblocks--) {
1410 set_pageblock_migratetype(pageblock_page, migratetype);
1411 pageblock_page += pageblock_nr_pages;
1412 }
1413}
1414
fef903ef 1415/*
9c0415eb
VB
1416 * When we are falling back to another migratetype during allocation, try to
1417 * steal extra free pages from the same pageblocks to satisfy further
1418 * allocations, instead of polluting multiple pageblocks.
1419 *
1420 * If we are stealing a relatively large buddy page, it is likely there will
1421 * be more free pages in the pageblock, so try to steal them all. For
1422 * reclaimable and unmovable allocations, we steal regardless of page size,
1423 * as fragmentation caused by those allocations polluting movable pageblocks
1424 * is worse than movable allocations stealing from unmovable and reclaimable
1425 * pageblocks.
fef903ef 1426 */
4eb7dce6
JK
1427static bool can_steal_fallback(unsigned int order, int start_mt)
1428{
1429 /*
1430 * Leaving this order check is intended, although there is
1431 * relaxed order check in next check. The reason is that
1432 * we can actually steal whole pageblock if this condition met,
1433 * but, below check doesn't guarantee it and that is just heuristic
1434 * so could be changed anytime.
1435 */
1436 if (order >= pageblock_order)
1437 return true;
1438
1439 if (order >= pageblock_order / 2 ||
1440 start_mt == MIGRATE_RECLAIMABLE ||
1441 start_mt == MIGRATE_UNMOVABLE ||
1442 page_group_by_mobility_disabled)
1443 return true;
1444
1445 return false;
1446}
1447
1448/*
1449 * This function implements actual steal behaviour. If order is large enough,
1450 * we can steal whole pageblock. If not, we first move freepages in this
1451 * pageblock and check whether half of pages are moved or not. If half of
1452 * pages are moved, we can change migratetype of pageblock and permanently
1453 * use it's pages as requested migratetype in the future.
1454 */
1455static void steal_suitable_fallback(struct zone *zone, struct page *page,
1456 int start_type)
fef903ef
SB
1457{
1458 int current_order = page_order(page);
4eb7dce6 1459 int pages;
fef903ef 1460
fef903ef
SB
1461 /* Take ownership for orders >= pageblock_order */
1462 if (current_order >= pageblock_order) {
1463 change_pageblock_range(page, current_order, start_type);
3a1086fb 1464 return;
fef903ef
SB
1465 }
1466
4eb7dce6 1467 pages = move_freepages_block(zone, page, start_type);
fef903ef 1468
4eb7dce6
JK
1469 /* Claim the whole block if over half of it is free */
1470 if (pages >= (1 << (pageblock_order-1)) ||
1471 page_group_by_mobility_disabled)
1472 set_pageblock_migratetype(page, start_type);
1473}
1474
2149cdae
JK
1475/*
1476 * Check whether there is a suitable fallback freepage with requested order.
1477 * If only_stealable is true, this function returns fallback_mt only if
1478 * we can steal other freepages all together. This would help to reduce
1479 * fragmentation due to mixed migratetype pages in one pageblock.
1480 */
1481int find_suitable_fallback(struct free_area *area, unsigned int order,
1482 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1483{
1484 int i;
1485 int fallback_mt;
1486
1487 if (area->nr_free == 0)
1488 return -1;
1489
1490 *can_steal = false;
1491 for (i = 0;; i++) {
1492 fallback_mt = fallbacks[migratetype][i];
1493 if (fallback_mt == MIGRATE_RESERVE)
1494 break;
1495
1496 if (list_empty(&area->free_list[fallback_mt]))
1497 continue;
fef903ef 1498
4eb7dce6
JK
1499 if (can_steal_fallback(order, migratetype))
1500 *can_steal = true;
1501
2149cdae
JK
1502 if (!only_stealable)
1503 return fallback_mt;
1504
1505 if (*can_steal)
1506 return fallback_mt;
fef903ef 1507 }
4eb7dce6
JK
1508
1509 return -1;
fef903ef
SB
1510}
1511
b2a0ac88 1512/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1513static inline struct page *
7aeb09f9 1514__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1515{
b8af2941 1516 struct free_area *area;
7aeb09f9 1517 unsigned int current_order;
b2a0ac88 1518 struct page *page;
4eb7dce6
JK
1519 int fallback_mt;
1520 bool can_steal;
b2a0ac88
MG
1521
1522 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1523 for (current_order = MAX_ORDER-1;
1524 current_order >= order && current_order <= MAX_ORDER-1;
1525 --current_order) {
4eb7dce6
JK
1526 area = &(zone->free_area[current_order]);
1527 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1528 start_migratetype, false, &can_steal);
4eb7dce6
JK
1529 if (fallback_mt == -1)
1530 continue;
b2a0ac88 1531
4eb7dce6
JK
1532 page = list_entry(area->free_list[fallback_mt].next,
1533 struct page, lru);
1534 if (can_steal)
1535 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1536
4eb7dce6
JK
1537 /* Remove the page from the freelists */
1538 area->nr_free--;
1539 list_del(&page->lru);
1540 rmv_page_order(page);
3a1086fb 1541
4eb7dce6
JK
1542 expand(zone, page, order, current_order, area,
1543 start_migratetype);
1544 /*
1545 * The freepage_migratetype may differ from pageblock's
1546 * migratetype depending on the decisions in
1547 * try_to_steal_freepages(). This is OK as long as it
1548 * does not differ for MIGRATE_CMA pageblocks. For CMA
1549 * we need to make sure unallocated pages flushed from
1550 * pcp lists are returned to the correct freelist.
1551 */
1552 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1553
4eb7dce6
JK
1554 trace_mm_page_alloc_extfrag(page, order, current_order,
1555 start_migratetype, fallback_mt);
e0fff1bd 1556
4eb7dce6 1557 return page;
b2a0ac88
MG
1558 }
1559
728ec980 1560 return NULL;
b2a0ac88
MG
1561}
1562
56fd56b8 1563/*
1da177e4
LT
1564 * Do the hard work of removing an element from the buddy allocator.
1565 * Call me with the zone->lock already held.
1566 */
b2a0ac88
MG
1567static struct page *__rmqueue(struct zone *zone, unsigned int order,
1568 int migratetype)
1da177e4 1569{
1da177e4
LT
1570 struct page *page;
1571
728ec980 1572retry_reserve:
56fd56b8 1573 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1574
728ec980 1575 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1576 if (migratetype == MIGRATE_MOVABLE)
1577 page = __rmqueue_cma_fallback(zone, order);
1578
1579 if (!page)
1580 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1581
728ec980
MG
1582 /*
1583 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1584 * is used because __rmqueue_smallest is an inline function
1585 * and we want just one call site
1586 */
1587 if (!page) {
1588 migratetype = MIGRATE_RESERVE;
1589 goto retry_reserve;
1590 }
1591 }
1592
0d3d062a 1593 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1594 return page;
1da177e4
LT
1595}
1596
5f63b720 1597/*
1da177e4
LT
1598 * Obtain a specified number of elements from the buddy allocator, all under
1599 * a single hold of the lock, for efficiency. Add them to the supplied list.
1600 * Returns the number of new pages which were placed at *list.
1601 */
5f63b720 1602static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1603 unsigned long count, struct list_head *list,
b745bc85 1604 int migratetype, bool cold)
1da177e4 1605{
5bcc9f86 1606 int i;
5f63b720 1607
c54ad30c 1608 spin_lock(&zone->lock);
1da177e4 1609 for (i = 0; i < count; ++i) {
b2a0ac88 1610 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1611 if (unlikely(page == NULL))
1da177e4 1612 break;
81eabcbe
MG
1613
1614 /*
1615 * Split buddy pages returned by expand() are received here
1616 * in physical page order. The page is added to the callers and
1617 * list and the list head then moves forward. From the callers
1618 * perspective, the linked list is ordered by page number in
1619 * some conditions. This is useful for IO devices that can
1620 * merge IO requests if the physical pages are ordered
1621 * properly.
1622 */
b745bc85 1623 if (likely(!cold))
e084b2d9
MG
1624 list_add(&page->lru, list);
1625 else
1626 list_add_tail(&page->lru, list);
81eabcbe 1627 list = &page->lru;
5bcc9f86 1628 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1629 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1630 -(1 << order));
1da177e4 1631 }
f2260e6b 1632 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1633 spin_unlock(&zone->lock);
085cc7d5 1634 return i;
1da177e4
LT
1635}
1636
4ae7c039 1637#ifdef CONFIG_NUMA
8fce4d8e 1638/*
4037d452
CL
1639 * Called from the vmstat counter updater to drain pagesets of this
1640 * currently executing processor on remote nodes after they have
1641 * expired.
1642 *
879336c3
CL
1643 * Note that this function must be called with the thread pinned to
1644 * a single processor.
8fce4d8e 1645 */
4037d452 1646void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1647{
4ae7c039 1648 unsigned long flags;
7be12fc9 1649 int to_drain, batch;
4ae7c039 1650
4037d452 1651 local_irq_save(flags);
4db0c3c2 1652 batch = READ_ONCE(pcp->batch);
7be12fc9 1653 to_drain = min(pcp->count, batch);
2a13515c
KM
1654 if (to_drain > 0) {
1655 free_pcppages_bulk(zone, to_drain, pcp);
1656 pcp->count -= to_drain;
1657 }
4037d452 1658 local_irq_restore(flags);
4ae7c039
CL
1659}
1660#endif
1661
9f8f2172 1662/*
93481ff0 1663 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1664 *
1665 * The processor must either be the current processor and the
1666 * thread pinned to the current processor or a processor that
1667 * is not online.
1668 */
93481ff0 1669static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1670{
c54ad30c 1671 unsigned long flags;
93481ff0
VB
1672 struct per_cpu_pageset *pset;
1673 struct per_cpu_pages *pcp;
1da177e4 1674
93481ff0
VB
1675 local_irq_save(flags);
1676 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1677
93481ff0
VB
1678 pcp = &pset->pcp;
1679 if (pcp->count) {
1680 free_pcppages_bulk(zone, pcp->count, pcp);
1681 pcp->count = 0;
1682 }
1683 local_irq_restore(flags);
1684}
3dfa5721 1685
93481ff0
VB
1686/*
1687 * Drain pcplists of all zones on the indicated processor.
1688 *
1689 * The processor must either be the current processor and the
1690 * thread pinned to the current processor or a processor that
1691 * is not online.
1692 */
1693static void drain_pages(unsigned int cpu)
1694{
1695 struct zone *zone;
1696
1697 for_each_populated_zone(zone) {
1698 drain_pages_zone(cpu, zone);
1da177e4
LT
1699 }
1700}
1da177e4 1701
9f8f2172
CL
1702/*
1703 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1704 *
1705 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1706 * the single zone's pages.
9f8f2172 1707 */
93481ff0 1708void drain_local_pages(struct zone *zone)
9f8f2172 1709{
93481ff0
VB
1710 int cpu = smp_processor_id();
1711
1712 if (zone)
1713 drain_pages_zone(cpu, zone);
1714 else
1715 drain_pages(cpu);
9f8f2172
CL
1716}
1717
1718/*
74046494
GBY
1719 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1720 *
93481ff0
VB
1721 * When zone parameter is non-NULL, spill just the single zone's pages.
1722 *
74046494
GBY
1723 * Note that this code is protected against sending an IPI to an offline
1724 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1725 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1726 * nothing keeps CPUs from showing up after we populated the cpumask and
1727 * before the call to on_each_cpu_mask().
9f8f2172 1728 */
93481ff0 1729void drain_all_pages(struct zone *zone)
9f8f2172 1730{
74046494 1731 int cpu;
74046494
GBY
1732
1733 /*
1734 * Allocate in the BSS so we wont require allocation in
1735 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1736 */
1737 static cpumask_t cpus_with_pcps;
1738
1739 /*
1740 * We don't care about racing with CPU hotplug event
1741 * as offline notification will cause the notified
1742 * cpu to drain that CPU pcps and on_each_cpu_mask
1743 * disables preemption as part of its processing
1744 */
1745 for_each_online_cpu(cpu) {
93481ff0
VB
1746 struct per_cpu_pageset *pcp;
1747 struct zone *z;
74046494 1748 bool has_pcps = false;
93481ff0
VB
1749
1750 if (zone) {
74046494 1751 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1752 if (pcp->pcp.count)
74046494 1753 has_pcps = true;
93481ff0
VB
1754 } else {
1755 for_each_populated_zone(z) {
1756 pcp = per_cpu_ptr(z->pageset, cpu);
1757 if (pcp->pcp.count) {
1758 has_pcps = true;
1759 break;
1760 }
74046494
GBY
1761 }
1762 }
93481ff0 1763
74046494
GBY
1764 if (has_pcps)
1765 cpumask_set_cpu(cpu, &cpus_with_pcps);
1766 else
1767 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1768 }
93481ff0
VB
1769 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1770 zone, 1);
9f8f2172
CL
1771}
1772
296699de 1773#ifdef CONFIG_HIBERNATION
1da177e4
LT
1774
1775void mark_free_pages(struct zone *zone)
1776{
f623f0db
RW
1777 unsigned long pfn, max_zone_pfn;
1778 unsigned long flags;
7aeb09f9 1779 unsigned int order, t;
1da177e4
LT
1780 struct list_head *curr;
1781
8080fc03 1782 if (zone_is_empty(zone))
1da177e4
LT
1783 return;
1784
1785 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1786
108bcc96 1787 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1788 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1789 if (pfn_valid(pfn)) {
1790 struct page *page = pfn_to_page(pfn);
1791
7be98234
RW
1792 if (!swsusp_page_is_forbidden(page))
1793 swsusp_unset_page_free(page);
f623f0db 1794 }
1da177e4 1795
b2a0ac88
MG
1796 for_each_migratetype_order(order, t) {
1797 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1798 unsigned long i;
1da177e4 1799
f623f0db
RW
1800 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1801 for (i = 0; i < (1UL << order); i++)
7be98234 1802 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1803 }
b2a0ac88 1804 }
1da177e4
LT
1805 spin_unlock_irqrestore(&zone->lock, flags);
1806}
e2c55dc8 1807#endif /* CONFIG_PM */
1da177e4 1808
1da177e4
LT
1809/*
1810 * Free a 0-order page
b745bc85 1811 * cold == true ? free a cold page : free a hot page
1da177e4 1812 */
b745bc85 1813void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1814{
1815 struct zone *zone = page_zone(page);
1816 struct per_cpu_pages *pcp;
1817 unsigned long flags;
dc4b0caf 1818 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1819 int migratetype;
1da177e4 1820
ec95f53a 1821 if (!free_pages_prepare(page, 0))
689bcebf
HD
1822 return;
1823
dc4b0caf 1824 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1825 set_freepage_migratetype(page, migratetype);
1da177e4 1826 local_irq_save(flags);
f8891e5e 1827 __count_vm_event(PGFREE);
da456f14 1828
5f8dcc21
MG
1829 /*
1830 * We only track unmovable, reclaimable and movable on pcp lists.
1831 * Free ISOLATE pages back to the allocator because they are being
1832 * offlined but treat RESERVE as movable pages so we can get those
1833 * areas back if necessary. Otherwise, we may have to free
1834 * excessively into the page allocator
1835 */
1836 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1837 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1838 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1839 goto out;
1840 }
1841 migratetype = MIGRATE_MOVABLE;
1842 }
1843
99dcc3e5 1844 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1845 if (!cold)
5f8dcc21 1846 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1847 else
1848 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1849 pcp->count++;
48db57f8 1850 if (pcp->count >= pcp->high) {
4db0c3c2 1851 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1852 free_pcppages_bulk(zone, batch, pcp);
1853 pcp->count -= batch;
48db57f8 1854 }
5f8dcc21
MG
1855
1856out:
1da177e4 1857 local_irq_restore(flags);
1da177e4
LT
1858}
1859
cc59850e
KK
1860/*
1861 * Free a list of 0-order pages
1862 */
b745bc85 1863void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1864{
1865 struct page *page, *next;
1866
1867 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1868 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1869 free_hot_cold_page(page, cold);
1870 }
1871}
1872
8dfcc9ba
NP
1873/*
1874 * split_page takes a non-compound higher-order page, and splits it into
1875 * n (1<<order) sub-pages: page[0..n]
1876 * Each sub-page must be freed individually.
1877 *
1878 * Note: this is probably too low level an operation for use in drivers.
1879 * Please consult with lkml before using this in your driver.
1880 */
1881void split_page(struct page *page, unsigned int order)
1882{
1883 int i;
1884
309381fe
SL
1885 VM_BUG_ON_PAGE(PageCompound(page), page);
1886 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1887
1888#ifdef CONFIG_KMEMCHECK
1889 /*
1890 * Split shadow pages too, because free(page[0]) would
1891 * otherwise free the whole shadow.
1892 */
1893 if (kmemcheck_page_is_tracked(page))
1894 split_page(virt_to_page(page[0].shadow), order);
1895#endif
1896
48c96a36
JK
1897 set_page_owner(page, 0, 0);
1898 for (i = 1; i < (1 << order); i++) {
7835e98b 1899 set_page_refcounted(page + i);
48c96a36
JK
1900 set_page_owner(page + i, 0, 0);
1901 }
8dfcc9ba 1902}
5853ff23 1903EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1904
3c605096 1905int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1906{
748446bb
MG
1907 unsigned long watermark;
1908 struct zone *zone;
2139cbe6 1909 int mt;
748446bb
MG
1910
1911 BUG_ON(!PageBuddy(page));
1912
1913 zone = page_zone(page);
2e30abd1 1914 mt = get_pageblock_migratetype(page);
748446bb 1915
194159fb 1916 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1917 /* Obey watermarks as if the page was being allocated */
1918 watermark = low_wmark_pages(zone) + (1 << order);
1919 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1920 return 0;
1921
8fb74b9f 1922 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1923 }
748446bb
MG
1924
1925 /* Remove page from free list */
1926 list_del(&page->lru);
1927 zone->free_area[order].nr_free--;
1928 rmv_page_order(page);
2139cbe6 1929
8fb74b9f 1930 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1931 if (order >= pageblock_order - 1) {
1932 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1933 for (; page < endpage; page += pageblock_nr_pages) {
1934 int mt = get_pageblock_migratetype(page);
194159fb 1935 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1936 set_pageblock_migratetype(page,
1937 MIGRATE_MOVABLE);
1938 }
748446bb
MG
1939 }
1940
48c96a36 1941 set_page_owner(page, order, 0);
8fb74b9f 1942 return 1UL << order;
1fb3f8ca
MG
1943}
1944
1945/*
1946 * Similar to split_page except the page is already free. As this is only
1947 * being used for migration, the migratetype of the block also changes.
1948 * As this is called with interrupts disabled, the caller is responsible
1949 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1950 * are enabled.
1951 *
1952 * Note: this is probably too low level an operation for use in drivers.
1953 * Please consult with lkml before using this in your driver.
1954 */
1955int split_free_page(struct page *page)
1956{
1957 unsigned int order;
1958 int nr_pages;
1959
1fb3f8ca
MG
1960 order = page_order(page);
1961
8fb74b9f 1962 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1963 if (!nr_pages)
1964 return 0;
1965
1966 /* Split into individual pages */
1967 set_page_refcounted(page);
1968 split_page(page, order);
1969 return nr_pages;
748446bb
MG
1970}
1971
1da177e4 1972/*
75379191 1973 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 1974 */
0a15c3e9
MG
1975static inline
1976struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
1977 struct zone *zone, unsigned int order,
1978 gfp_t gfp_flags, int migratetype)
1da177e4
LT
1979{
1980 unsigned long flags;
689bcebf 1981 struct page *page;
b745bc85 1982 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 1983
48db57f8 1984 if (likely(order == 0)) {
1da177e4 1985 struct per_cpu_pages *pcp;
5f8dcc21 1986 struct list_head *list;
1da177e4 1987
1da177e4 1988 local_irq_save(flags);
99dcc3e5
CL
1989 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1990 list = &pcp->lists[migratetype];
5f8dcc21 1991 if (list_empty(list)) {
535131e6 1992 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1993 pcp->batch, list,
e084b2d9 1994 migratetype, cold);
5f8dcc21 1995 if (unlikely(list_empty(list)))
6fb332fa 1996 goto failed;
535131e6 1997 }
b92a6edd 1998
5f8dcc21
MG
1999 if (cold)
2000 page = list_entry(list->prev, struct page, lru);
2001 else
2002 page = list_entry(list->next, struct page, lru);
2003
b92a6edd
MG
2004 list_del(&page->lru);
2005 pcp->count--;
7fb1d9fc 2006 } else {
dab48dab
AM
2007 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2008 /*
2009 * __GFP_NOFAIL is not to be used in new code.
2010 *
2011 * All __GFP_NOFAIL callers should be fixed so that they
2012 * properly detect and handle allocation failures.
2013 *
2014 * We most definitely don't want callers attempting to
4923abf9 2015 * allocate greater than order-1 page units with
dab48dab
AM
2016 * __GFP_NOFAIL.
2017 */
4923abf9 2018 WARN_ON_ONCE(order > 1);
dab48dab 2019 }
1da177e4 2020 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 2021 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2022 spin_unlock(&zone->lock);
2023 if (!page)
2024 goto failed;
d1ce749a 2025 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 2026 get_freepage_migratetype(page));
1da177e4
LT
2027 }
2028
3a025760 2029 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2030 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2031 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2032 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2033
f8891e5e 2034 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2035 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2036 local_irq_restore(flags);
1da177e4 2037
309381fe 2038 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2039 return page;
a74609fa
NP
2040
2041failed:
2042 local_irq_restore(flags);
a74609fa 2043 return NULL;
1da177e4
LT
2044}
2045
933e312e
AM
2046#ifdef CONFIG_FAIL_PAGE_ALLOC
2047
b2588c4b 2048static struct {
933e312e
AM
2049 struct fault_attr attr;
2050
2051 u32 ignore_gfp_highmem;
2052 u32 ignore_gfp_wait;
54114994 2053 u32 min_order;
933e312e
AM
2054} fail_page_alloc = {
2055 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
2056 .ignore_gfp_wait = 1,
2057 .ignore_gfp_highmem = 1,
54114994 2058 .min_order = 1,
933e312e
AM
2059};
2060
2061static int __init setup_fail_page_alloc(char *str)
2062{
2063 return setup_fault_attr(&fail_page_alloc.attr, str);
2064}
2065__setup("fail_page_alloc=", setup_fail_page_alloc);
2066
deaf386e 2067static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2068{
54114994 2069 if (order < fail_page_alloc.min_order)
deaf386e 2070 return false;
933e312e 2071 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2072 return false;
933e312e 2073 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2074 return false;
933e312e 2075 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 2076 return false;
933e312e
AM
2077
2078 return should_fail(&fail_page_alloc.attr, 1 << order);
2079}
2080
2081#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2082
2083static int __init fail_page_alloc_debugfs(void)
2084{
f4ae40a6 2085 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2086 struct dentry *dir;
933e312e 2087
dd48c085
AM
2088 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2089 &fail_page_alloc.attr);
2090 if (IS_ERR(dir))
2091 return PTR_ERR(dir);
933e312e 2092
b2588c4b
AM
2093 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2094 &fail_page_alloc.ignore_gfp_wait))
2095 goto fail;
2096 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2097 &fail_page_alloc.ignore_gfp_highmem))
2098 goto fail;
2099 if (!debugfs_create_u32("min-order", mode, dir,
2100 &fail_page_alloc.min_order))
2101 goto fail;
2102
2103 return 0;
2104fail:
dd48c085 2105 debugfs_remove_recursive(dir);
933e312e 2106
b2588c4b 2107 return -ENOMEM;
933e312e
AM
2108}
2109
2110late_initcall(fail_page_alloc_debugfs);
2111
2112#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2113
2114#else /* CONFIG_FAIL_PAGE_ALLOC */
2115
deaf386e 2116static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2117{
deaf386e 2118 return false;
933e312e
AM
2119}
2120
2121#endif /* CONFIG_FAIL_PAGE_ALLOC */
2122
1da177e4 2123/*
88f5acf8 2124 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2125 * of the allocation.
2126 */
7aeb09f9
MG
2127static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2128 unsigned long mark, int classzone_idx, int alloc_flags,
2129 long free_pages)
1da177e4 2130{
26086de3 2131 /* free_pages may go negative - that's OK */
d23ad423 2132 long min = mark;
1da177e4 2133 int o;
026b0814 2134 long free_cma = 0;
1da177e4 2135
df0a6daa 2136 free_pages -= (1 << order) - 1;
7fb1d9fc 2137 if (alloc_flags & ALLOC_HIGH)
1da177e4 2138 min -= min / 2;
7fb1d9fc 2139 if (alloc_flags & ALLOC_HARDER)
1da177e4 2140 min -= min / 4;
d95ea5d1
BZ
2141#ifdef CONFIG_CMA
2142 /* If allocation can't use CMA areas don't use free CMA pages */
2143 if (!(alloc_flags & ALLOC_CMA))
026b0814 2144 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2145#endif
026b0814 2146
3484b2de 2147 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2148 return false;
1da177e4
LT
2149 for (o = 0; o < order; o++) {
2150 /* At the next order, this order's pages become unavailable */
2151 free_pages -= z->free_area[o].nr_free << o;
2152
2153 /* Require fewer higher order pages to be free */
2154 min >>= 1;
2155
2156 if (free_pages <= min)
88f5acf8 2157 return false;
1da177e4 2158 }
88f5acf8
MG
2159 return true;
2160}
2161
7aeb09f9 2162bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2163 int classzone_idx, int alloc_flags)
2164{
2165 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2166 zone_page_state(z, NR_FREE_PAGES));
2167}
2168
7aeb09f9
MG
2169bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2170 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
2171{
2172 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2173
2174 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2175 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2176
2177 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2178 free_pages);
1da177e4
LT
2179}
2180
9276b1bc
PJ
2181#ifdef CONFIG_NUMA
2182/*
2183 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2184 * skip over zones that are not allowed by the cpuset, or that have
2185 * been recently (in last second) found to be nearly full. See further
2186 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 2187 * that have to skip over a lot of full or unallowed zones.
9276b1bc 2188 *
a1aeb65a 2189 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 2190 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 2191 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
2192 *
2193 * If the zonelist cache is not available for this zonelist, does
2194 * nothing and returns NULL.
2195 *
2196 * If the fullzones BITMAP in the zonelist cache is stale (more than
2197 * a second since last zap'd) then we zap it out (clear its bits.)
2198 *
2199 * We hold off even calling zlc_setup, until after we've checked the
2200 * first zone in the zonelist, on the theory that most allocations will
2201 * be satisfied from that first zone, so best to examine that zone as
2202 * quickly as we can.
2203 */
2204static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2205{
2206 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2207 nodemask_t *allowednodes; /* zonelist_cache approximation */
2208
2209 zlc = zonelist->zlcache_ptr;
2210 if (!zlc)
2211 return NULL;
2212
f05111f5 2213 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
2214 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2215 zlc->last_full_zap = jiffies;
2216 }
2217
2218 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2219 &cpuset_current_mems_allowed :
4b0ef1fe 2220 &node_states[N_MEMORY];
9276b1bc
PJ
2221 return allowednodes;
2222}
2223
2224/*
2225 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2226 * if it is worth looking at further for free memory:
2227 * 1) Check that the zone isn't thought to be full (doesn't have its
2228 * bit set in the zonelist_cache fullzones BITMAP).
2229 * 2) Check that the zones node (obtained from the zonelist_cache
2230 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2231 * Return true (non-zero) if zone is worth looking at further, or
2232 * else return false (zero) if it is not.
2233 *
2234 * This check -ignores- the distinction between various watermarks,
2235 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2236 * found to be full for any variation of these watermarks, it will
2237 * be considered full for up to one second by all requests, unless
2238 * we are so low on memory on all allowed nodes that we are forced
2239 * into the second scan of the zonelist.
2240 *
2241 * In the second scan we ignore this zonelist cache and exactly
2242 * apply the watermarks to all zones, even it is slower to do so.
2243 * We are low on memory in the second scan, and should leave no stone
2244 * unturned looking for a free page.
2245 */
dd1a239f 2246static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2247 nodemask_t *allowednodes)
2248{
2249 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2250 int i; /* index of *z in zonelist zones */
2251 int n; /* node that zone *z is on */
2252
2253 zlc = zonelist->zlcache_ptr;
2254 if (!zlc)
2255 return 1;
2256
dd1a239f 2257 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2258 n = zlc->z_to_n[i];
2259
2260 /* This zone is worth trying if it is allowed but not full */
2261 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2262}
2263
2264/*
2265 * Given 'z' scanning a zonelist, set the corresponding bit in
2266 * zlc->fullzones, so that subsequent attempts to allocate a page
2267 * from that zone don't waste time re-examining it.
2268 */
dd1a239f 2269static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2270{
2271 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2272 int i; /* index of *z in zonelist zones */
2273
2274 zlc = zonelist->zlcache_ptr;
2275 if (!zlc)
2276 return;
2277
dd1a239f 2278 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2279
2280 set_bit(i, zlc->fullzones);
2281}
2282
76d3fbf8
MG
2283/*
2284 * clear all zones full, called after direct reclaim makes progress so that
2285 * a zone that was recently full is not skipped over for up to a second
2286 */
2287static void zlc_clear_zones_full(struct zonelist *zonelist)
2288{
2289 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2290
2291 zlc = zonelist->zlcache_ptr;
2292 if (!zlc)
2293 return;
2294
2295 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2296}
2297
81c0a2bb
JW
2298static bool zone_local(struct zone *local_zone, struct zone *zone)
2299{
fff4068c 2300 return local_zone->node == zone->node;
81c0a2bb
JW
2301}
2302
957f822a
DR
2303static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2304{
5f7a75ac
MG
2305 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2306 RECLAIM_DISTANCE;
957f822a
DR
2307}
2308
9276b1bc
PJ
2309#else /* CONFIG_NUMA */
2310
2311static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2312{
2313 return NULL;
2314}
2315
dd1a239f 2316static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2317 nodemask_t *allowednodes)
2318{
2319 return 1;
2320}
2321
dd1a239f 2322static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2323{
2324}
76d3fbf8
MG
2325
2326static void zlc_clear_zones_full(struct zonelist *zonelist)
2327{
2328}
957f822a 2329
81c0a2bb
JW
2330static bool zone_local(struct zone *local_zone, struct zone *zone)
2331{
2332 return true;
2333}
2334
957f822a
DR
2335static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2336{
2337 return true;
2338}
2339
9276b1bc
PJ
2340#endif /* CONFIG_NUMA */
2341
4ffeaf35
MG
2342static void reset_alloc_batches(struct zone *preferred_zone)
2343{
2344 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2345
2346 do {
2347 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2348 high_wmark_pages(zone) - low_wmark_pages(zone) -
2349 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2350 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2351 } while (zone++ != preferred_zone);
2352}
2353
7fb1d9fc 2354/*
0798e519 2355 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2356 * a page.
2357 */
2358static struct page *
a9263751
VB
2359get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2360 const struct alloc_context *ac)
753ee728 2361{
a9263751 2362 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2363 struct zoneref *z;
7fb1d9fc 2364 struct page *page = NULL;
5117f45d 2365 struct zone *zone;
9276b1bc
PJ
2366 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2367 int zlc_active = 0; /* set if using zonelist_cache */
2368 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2369 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2370 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2371 int nr_fair_skipped = 0;
2372 bool zonelist_rescan;
54a6eb5c 2373
9276b1bc 2374zonelist_scan:
4ffeaf35
MG
2375 zonelist_rescan = false;
2376
7fb1d9fc 2377 /*
9276b1bc 2378 * Scan zonelist, looking for a zone with enough free.
344736f2 2379 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2380 */
a9263751
VB
2381 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2382 ac->nodemask) {
e085dbc5
JW
2383 unsigned long mark;
2384
e5adfffc 2385 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2386 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2387 continue;
664eedde
MG
2388 if (cpusets_enabled() &&
2389 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2390 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2391 continue;
81c0a2bb
JW
2392 /*
2393 * Distribute pages in proportion to the individual
2394 * zone size to ensure fair page aging. The zone a
2395 * page was allocated in should have no effect on the
2396 * time the page has in memory before being reclaimed.
81c0a2bb 2397 */
3a025760 2398 if (alloc_flags & ALLOC_FAIR) {
a9263751 2399 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2400 break;
57054651 2401 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2402 nr_fair_skipped++;
3a025760 2403 continue;
4ffeaf35 2404 }
81c0a2bb 2405 }
a756cf59
JW
2406 /*
2407 * When allocating a page cache page for writing, we
2408 * want to get it from a zone that is within its dirty
2409 * limit, such that no single zone holds more than its
2410 * proportional share of globally allowed dirty pages.
2411 * The dirty limits take into account the zone's
2412 * lowmem reserves and high watermark so that kswapd
2413 * should be able to balance it without having to
2414 * write pages from its LRU list.
2415 *
2416 * This may look like it could increase pressure on
2417 * lower zones by failing allocations in higher zones
2418 * before they are full. But the pages that do spill
2419 * over are limited as the lower zones are protected
2420 * by this very same mechanism. It should not become
2421 * a practical burden to them.
2422 *
2423 * XXX: For now, allow allocations to potentially
2424 * exceed the per-zone dirty limit in the slowpath
2425 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2426 * which is important when on a NUMA setup the allowed
2427 * zones are together not big enough to reach the
2428 * global limit. The proper fix for these situations
2429 * will require awareness of zones in the
2430 * dirty-throttling and the flusher threads.
2431 */
a6e21b14 2432 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2433 continue;
7fb1d9fc 2434
e085dbc5
JW
2435 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2436 if (!zone_watermark_ok(zone, order, mark,
a9263751 2437 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2438 int ret;
2439
5dab2911
MG
2440 /* Checked here to keep the fast path fast */
2441 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2442 if (alloc_flags & ALLOC_NO_WATERMARKS)
2443 goto try_this_zone;
2444
e5adfffc
KS
2445 if (IS_ENABLED(CONFIG_NUMA) &&
2446 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2447 /*
2448 * we do zlc_setup if there are multiple nodes
2449 * and before considering the first zone allowed
2450 * by the cpuset.
2451 */
2452 allowednodes = zlc_setup(zonelist, alloc_flags);
2453 zlc_active = 1;
2454 did_zlc_setup = 1;
2455 }
2456
957f822a 2457 if (zone_reclaim_mode == 0 ||
a9263751 2458 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2459 goto this_zone_full;
2460
cd38b115
MG
2461 /*
2462 * As we may have just activated ZLC, check if the first
2463 * eligible zone has failed zone_reclaim recently.
2464 */
e5adfffc 2465 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2466 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2467 continue;
2468
fa5e084e
MG
2469 ret = zone_reclaim(zone, gfp_mask, order);
2470 switch (ret) {
2471 case ZONE_RECLAIM_NOSCAN:
2472 /* did not scan */
cd38b115 2473 continue;
fa5e084e
MG
2474 case ZONE_RECLAIM_FULL:
2475 /* scanned but unreclaimable */
cd38b115 2476 continue;
fa5e084e
MG
2477 default:
2478 /* did we reclaim enough */
fed2719e 2479 if (zone_watermark_ok(zone, order, mark,
a9263751 2480 ac->classzone_idx, alloc_flags))
fed2719e
MG
2481 goto try_this_zone;
2482
2483 /*
2484 * Failed to reclaim enough to meet watermark.
2485 * Only mark the zone full if checking the min
2486 * watermark or if we failed to reclaim just
2487 * 1<<order pages or else the page allocator
2488 * fastpath will prematurely mark zones full
2489 * when the watermark is between the low and
2490 * min watermarks.
2491 */
2492 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2493 ret == ZONE_RECLAIM_SOME)
9276b1bc 2494 goto this_zone_full;
fed2719e
MG
2495
2496 continue;
0798e519 2497 }
7fb1d9fc
RS
2498 }
2499
fa5e084e 2500try_this_zone:
a9263751
VB
2501 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2502 gfp_mask, ac->migratetype);
75379191
VB
2503 if (page) {
2504 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2505 goto try_this_zone;
2506 return page;
2507 }
9276b1bc 2508this_zone_full:
65bb3719 2509 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2510 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2511 }
9276b1bc 2512
4ffeaf35
MG
2513 /*
2514 * The first pass makes sure allocations are spread fairly within the
2515 * local node. However, the local node might have free pages left
2516 * after the fairness batches are exhausted, and remote zones haven't
2517 * even been considered yet. Try once more without fairness, and
2518 * include remote zones now, before entering the slowpath and waking
2519 * kswapd: prefer spilling to a remote zone over swapping locally.
2520 */
2521 if (alloc_flags & ALLOC_FAIR) {
2522 alloc_flags &= ~ALLOC_FAIR;
2523 if (nr_fair_skipped) {
2524 zonelist_rescan = true;
a9263751 2525 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2526 }
2527 if (nr_online_nodes > 1)
2528 zonelist_rescan = true;
2529 }
2530
2531 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2532 /* Disable zlc cache for second zonelist scan */
2533 zlc_active = 0;
2534 zonelist_rescan = true;
2535 }
2536
2537 if (zonelist_rescan)
2538 goto zonelist_scan;
2539
2540 return NULL;
753ee728
MH
2541}
2542
29423e77
DR
2543/*
2544 * Large machines with many possible nodes should not always dump per-node
2545 * meminfo in irq context.
2546 */
2547static inline bool should_suppress_show_mem(void)
2548{
2549 bool ret = false;
2550
2551#if NODES_SHIFT > 8
2552 ret = in_interrupt();
2553#endif
2554 return ret;
2555}
2556
a238ab5b
DH
2557static DEFINE_RATELIMIT_STATE(nopage_rs,
2558 DEFAULT_RATELIMIT_INTERVAL,
2559 DEFAULT_RATELIMIT_BURST);
2560
2561void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2562{
a238ab5b
DH
2563 unsigned int filter = SHOW_MEM_FILTER_NODES;
2564
c0a32fc5
SG
2565 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2566 debug_guardpage_minorder() > 0)
a238ab5b
DH
2567 return;
2568
2569 /*
2570 * This documents exceptions given to allocations in certain
2571 * contexts that are allowed to allocate outside current's set
2572 * of allowed nodes.
2573 */
2574 if (!(gfp_mask & __GFP_NOMEMALLOC))
2575 if (test_thread_flag(TIF_MEMDIE) ||
2576 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2577 filter &= ~SHOW_MEM_FILTER_NODES;
2578 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2579 filter &= ~SHOW_MEM_FILTER_NODES;
2580
2581 if (fmt) {
3ee9a4f0
JP
2582 struct va_format vaf;
2583 va_list args;
2584
a238ab5b 2585 va_start(args, fmt);
3ee9a4f0
JP
2586
2587 vaf.fmt = fmt;
2588 vaf.va = &args;
2589
2590 pr_warn("%pV", &vaf);
2591
a238ab5b
DH
2592 va_end(args);
2593 }
2594
3ee9a4f0
JP
2595 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2596 current->comm, order, gfp_mask);
a238ab5b
DH
2597
2598 dump_stack();
2599 if (!should_suppress_show_mem())
2600 show_mem(filter);
2601}
2602
11e33f6a
MG
2603static inline struct page *
2604__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2605 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2606{
2607 struct page *page;
2608
9879de73
JW
2609 *did_some_progress = 0;
2610
9879de73 2611 /*
dc56401f
JW
2612 * Acquire the oom lock. If that fails, somebody else is
2613 * making progress for us.
9879de73 2614 */
dc56401f 2615 if (!mutex_trylock(&oom_lock)) {
9879de73 2616 *did_some_progress = 1;
11e33f6a 2617 schedule_timeout_uninterruptible(1);
1da177e4
LT
2618 return NULL;
2619 }
6b1de916 2620
11e33f6a
MG
2621 /*
2622 * Go through the zonelist yet one more time, keep very high watermark
2623 * here, this is only to catch a parallel oom killing, we must fail if
2624 * we're still under heavy pressure.
2625 */
a9263751
VB
2626 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2627 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2628 if (page)
11e33f6a
MG
2629 goto out;
2630
4365a567 2631 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2632 /* Coredumps can quickly deplete all memory reserves */
2633 if (current->flags & PF_DUMPCORE)
2634 goto out;
4365a567
KH
2635 /* The OOM killer will not help higher order allocs */
2636 if (order > PAGE_ALLOC_COSTLY_ORDER)
2637 goto out;
03668b3c 2638 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2639 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2640 goto out;
9083905a 2641 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2642 if (!(gfp_mask & __GFP_FS)) {
2643 /*
2644 * XXX: Page reclaim didn't yield anything,
2645 * and the OOM killer can't be invoked, but
9083905a 2646 * keep looping as per tradition.
cc873177
JW
2647 */
2648 *did_some_progress = 1;
9879de73 2649 goto out;
cc873177 2650 }
9083905a
JW
2651 if (pm_suspended_storage())
2652 goto out;
4167e9b2 2653 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2654 if (gfp_mask & __GFP_THISNODE)
2655 goto out;
2656 }
11e33f6a 2657 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2658 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2659 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2660 *did_some_progress = 1;
11e33f6a 2661out:
dc56401f 2662 mutex_unlock(&oom_lock);
11e33f6a
MG
2663 return page;
2664}
2665
56de7263
MG
2666#ifdef CONFIG_COMPACTION
2667/* Try memory compaction for high-order allocations before reclaim */
2668static struct page *
2669__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2670 int alloc_flags, const struct alloc_context *ac,
2671 enum migrate_mode mode, int *contended_compaction,
2672 bool *deferred_compaction)
56de7263 2673{
53853e2d 2674 unsigned long compact_result;
98dd3b48 2675 struct page *page;
53853e2d
VB
2676
2677 if (!order)
66199712 2678 return NULL;
66199712 2679
c06b1fca 2680 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2681 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2682 mode, contended_compaction);
c06b1fca 2683 current->flags &= ~PF_MEMALLOC;
56de7263 2684
98dd3b48
VB
2685 switch (compact_result) {
2686 case COMPACT_DEFERRED:
53853e2d 2687 *deferred_compaction = true;
98dd3b48
VB
2688 /* fall-through */
2689 case COMPACT_SKIPPED:
2690 return NULL;
2691 default:
2692 break;
2693 }
53853e2d 2694
98dd3b48
VB
2695 /*
2696 * At least in one zone compaction wasn't deferred or skipped, so let's
2697 * count a compaction stall
2698 */
2699 count_vm_event(COMPACTSTALL);
8fb74b9f 2700
a9263751
VB
2701 page = get_page_from_freelist(gfp_mask, order,
2702 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2703
98dd3b48
VB
2704 if (page) {
2705 struct zone *zone = page_zone(page);
53853e2d 2706
98dd3b48
VB
2707 zone->compact_blockskip_flush = false;
2708 compaction_defer_reset(zone, order, true);
2709 count_vm_event(COMPACTSUCCESS);
2710 return page;
2711 }
56de7263 2712
98dd3b48
VB
2713 /*
2714 * It's bad if compaction run occurs and fails. The most likely reason
2715 * is that pages exist, but not enough to satisfy watermarks.
2716 */
2717 count_vm_event(COMPACTFAIL);
66199712 2718
98dd3b48 2719 cond_resched();
56de7263
MG
2720
2721 return NULL;
2722}
2723#else
2724static inline struct page *
2725__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2726 int alloc_flags, const struct alloc_context *ac,
2727 enum migrate_mode mode, int *contended_compaction,
2728 bool *deferred_compaction)
56de7263
MG
2729{
2730 return NULL;
2731}
2732#endif /* CONFIG_COMPACTION */
2733
bba90710
MS
2734/* Perform direct synchronous page reclaim */
2735static int
a9263751
VB
2736__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2737 const struct alloc_context *ac)
11e33f6a 2738{
11e33f6a 2739 struct reclaim_state reclaim_state;
bba90710 2740 int progress;
11e33f6a
MG
2741
2742 cond_resched();
2743
2744 /* We now go into synchronous reclaim */
2745 cpuset_memory_pressure_bump();
c06b1fca 2746 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2747 lockdep_set_current_reclaim_state(gfp_mask);
2748 reclaim_state.reclaimed_slab = 0;
c06b1fca 2749 current->reclaim_state = &reclaim_state;
11e33f6a 2750
a9263751
VB
2751 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2752 ac->nodemask);
11e33f6a 2753
c06b1fca 2754 current->reclaim_state = NULL;
11e33f6a 2755 lockdep_clear_current_reclaim_state();
c06b1fca 2756 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2757
2758 cond_resched();
2759
bba90710
MS
2760 return progress;
2761}
2762
2763/* The really slow allocator path where we enter direct reclaim */
2764static inline struct page *
2765__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2766 int alloc_flags, const struct alloc_context *ac,
2767 unsigned long *did_some_progress)
bba90710
MS
2768{
2769 struct page *page = NULL;
2770 bool drained = false;
2771
a9263751 2772 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2773 if (unlikely(!(*did_some_progress)))
2774 return NULL;
11e33f6a 2775
76d3fbf8 2776 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2777 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2778 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2779
9ee493ce 2780retry:
a9263751
VB
2781 page = get_page_from_freelist(gfp_mask, order,
2782 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2783
2784 /*
2785 * If an allocation failed after direct reclaim, it could be because
2786 * pages are pinned on the per-cpu lists. Drain them and try again
2787 */
2788 if (!page && !drained) {
93481ff0 2789 drain_all_pages(NULL);
9ee493ce
MG
2790 drained = true;
2791 goto retry;
2792 }
2793
11e33f6a
MG
2794 return page;
2795}
2796
1da177e4 2797/*
11e33f6a
MG
2798 * This is called in the allocator slow-path if the allocation request is of
2799 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2800 */
11e33f6a
MG
2801static inline struct page *
2802__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2803 const struct alloc_context *ac)
11e33f6a
MG
2804{
2805 struct page *page;
2806
2807 do {
a9263751
VB
2808 page = get_page_from_freelist(gfp_mask, order,
2809 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2810
2811 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2812 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2813 HZ/50);
11e33f6a
MG
2814 } while (!page && (gfp_mask & __GFP_NOFAIL));
2815
2816 return page;
2817}
2818
a9263751 2819static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2820{
2821 struct zoneref *z;
2822 struct zone *zone;
2823
a9263751
VB
2824 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2825 ac->high_zoneidx, ac->nodemask)
2826 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2827}
2828
341ce06f
PZ
2829static inline int
2830gfp_to_alloc_flags(gfp_t gfp_mask)
2831{
341ce06f 2832 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2833 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2834
a56f57ff 2835 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2836 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2837
341ce06f
PZ
2838 /*
2839 * The caller may dip into page reserves a bit more if the caller
2840 * cannot run direct reclaim, or if the caller has realtime scheduling
2841 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2842 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2843 */
e6223a3b 2844 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2845
b104a35d 2846 if (atomic) {
5c3240d9 2847 /*
b104a35d
DR
2848 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2849 * if it can't schedule.
5c3240d9 2850 */
b104a35d 2851 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2852 alloc_flags |= ALLOC_HARDER;
523b9458 2853 /*
b104a35d 2854 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2855 * comment for __cpuset_node_allowed().
523b9458 2856 */
341ce06f 2857 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2858 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2859 alloc_flags |= ALLOC_HARDER;
2860
b37f1dd0
MG
2861 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2862 if (gfp_mask & __GFP_MEMALLOC)
2863 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2864 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2865 alloc_flags |= ALLOC_NO_WATERMARKS;
2866 else if (!in_interrupt() &&
2867 ((current->flags & PF_MEMALLOC) ||
2868 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2869 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2870 }
d95ea5d1 2871#ifdef CONFIG_CMA
43e7a34d 2872 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2873 alloc_flags |= ALLOC_CMA;
2874#endif
341ce06f
PZ
2875 return alloc_flags;
2876}
2877
072bb0aa
MG
2878bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2879{
b37f1dd0 2880 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2881}
2882
11e33f6a
MG
2883static inline struct page *
2884__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2885 struct alloc_context *ac)
11e33f6a
MG
2886{
2887 const gfp_t wait = gfp_mask & __GFP_WAIT;
2888 struct page *page = NULL;
2889 int alloc_flags;
2890 unsigned long pages_reclaimed = 0;
2891 unsigned long did_some_progress;
e0b9daeb 2892 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2893 bool deferred_compaction = false;
1f9efdef 2894 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2895
72807a74
MG
2896 /*
2897 * In the slowpath, we sanity check order to avoid ever trying to
2898 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2899 * be using allocators in order of preference for an area that is
2900 * too large.
2901 */
1fc28b70
MG
2902 if (order >= MAX_ORDER) {
2903 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2904 return NULL;
1fc28b70 2905 }
1da177e4 2906
952f3b51 2907 /*
4167e9b2
DR
2908 * If this allocation cannot block and it is for a specific node, then
2909 * fail early. There's no need to wakeup kswapd or retry for a
2910 * speculative node-specific allocation.
952f3b51 2911 */
4167e9b2 2912 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
2913 goto nopage;
2914
9879de73 2915retry:
3a025760 2916 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2917 wake_all_kswapds(order, ac);
1da177e4 2918
9bf2229f 2919 /*
7fb1d9fc
RS
2920 * OK, we're below the kswapd watermark and have kicked background
2921 * reclaim. Now things get more complex, so set up alloc_flags according
2922 * to how we want to proceed.
9bf2229f 2923 */
341ce06f 2924 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2925
f33261d7
DR
2926 /*
2927 * Find the true preferred zone if the allocation is unconstrained by
2928 * cpusets.
2929 */
a9263751 2930 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2931 struct zoneref *preferred_zoneref;
a9263751
VB
2932 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2933 ac->high_zoneidx, NULL, &ac->preferred_zone);
2934 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2935 }
f33261d7 2936
341ce06f 2937 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2938 page = get_page_from_freelist(gfp_mask, order,
2939 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2940 if (page)
2941 goto got_pg;
1da177e4 2942
11e33f6a 2943 /* Allocate without watermarks if the context allows */
341ce06f 2944 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2945 /*
2946 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2947 * the allocation is high priority and these type of
2948 * allocations are system rather than user orientated
2949 */
a9263751
VB
2950 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2951
2952 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2953
cfd19c5a 2954 if (page) {
341ce06f 2955 goto got_pg;
cfd19c5a 2956 }
1da177e4
LT
2957 }
2958
2959 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
2960 if (!wait) {
2961 /*
2962 * All existing users of the deprecated __GFP_NOFAIL are
2963 * blockable, so warn of any new users that actually allow this
2964 * type of allocation to fail.
2965 */
2966 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 2967 goto nopage;
aed0a0e3 2968 }
1da177e4 2969
341ce06f 2970 /* Avoid recursion of direct reclaim */
c06b1fca 2971 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2972 goto nopage;
2973
6583bb64
DR
2974 /* Avoid allocations with no watermarks from looping endlessly */
2975 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2976 goto nopage;
2977
77f1fe6b
MG
2978 /*
2979 * Try direct compaction. The first pass is asynchronous. Subsequent
2980 * attempts after direct reclaim are synchronous
2981 */
a9263751
VB
2982 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2983 migration_mode,
2984 &contended_compaction,
53853e2d 2985 &deferred_compaction);
56de7263
MG
2986 if (page)
2987 goto got_pg;
75f30861 2988
1f9efdef
VB
2989 /* Checks for THP-specific high-order allocations */
2990 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2991 /*
2992 * If compaction is deferred for high-order allocations, it is
2993 * because sync compaction recently failed. If this is the case
2994 * and the caller requested a THP allocation, we do not want
2995 * to heavily disrupt the system, so we fail the allocation
2996 * instead of entering direct reclaim.
2997 */
2998 if (deferred_compaction)
2999 goto nopage;
3000
3001 /*
3002 * In all zones where compaction was attempted (and not
3003 * deferred or skipped), lock contention has been detected.
3004 * For THP allocation we do not want to disrupt the others
3005 * so we fallback to base pages instead.
3006 */
3007 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3008 goto nopage;
3009
3010 /*
3011 * If compaction was aborted due to need_resched(), we do not
3012 * want to further increase allocation latency, unless it is
3013 * khugepaged trying to collapse.
3014 */
3015 if (contended_compaction == COMPACT_CONTENDED_SCHED
3016 && !(current->flags & PF_KTHREAD))
3017 goto nopage;
3018 }
66199712 3019
8fe78048
DR
3020 /*
3021 * It can become very expensive to allocate transparent hugepages at
3022 * fault, so use asynchronous memory compaction for THP unless it is
3023 * khugepaged trying to collapse.
3024 */
3025 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3026 (current->flags & PF_KTHREAD))
3027 migration_mode = MIGRATE_SYNC_LIGHT;
3028
11e33f6a 3029 /* Try direct reclaim and then allocating */
a9263751
VB
3030 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3031 &did_some_progress);
11e33f6a
MG
3032 if (page)
3033 goto got_pg;
1da177e4 3034
9083905a
JW
3035 /* Do not loop if specifically requested */
3036 if (gfp_mask & __GFP_NORETRY)
3037 goto noretry;
3038
3039 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3040 pages_reclaimed += did_some_progress;
9083905a
JW
3041 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3042 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3043 /* Wait for some write requests to complete then retry */
a9263751 3044 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3045 goto retry;
1da177e4
LT
3046 }
3047
9083905a
JW
3048 /* Reclaim has failed us, start killing things */
3049 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3050 if (page)
3051 goto got_pg;
3052
3053 /* Retry as long as the OOM killer is making progress */
3054 if (did_some_progress)
3055 goto retry;
3056
3057noretry:
3058 /*
3059 * High-order allocations do not necessarily loop after
3060 * direct reclaim and reclaim/compaction depends on compaction
3061 * being called after reclaim so call directly if necessary
3062 */
3063 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3064 ac, migration_mode,
3065 &contended_compaction,
3066 &deferred_compaction);
3067 if (page)
3068 goto got_pg;
1da177e4 3069nopage:
a238ab5b 3070 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3071got_pg:
072bb0aa 3072 return page;
1da177e4 3073}
11e33f6a
MG
3074
3075/*
3076 * This is the 'heart' of the zoned buddy allocator.
3077 */
3078struct page *
3079__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3080 struct zonelist *zonelist, nodemask_t *nodemask)
3081{
d8846374 3082 struct zoneref *preferred_zoneref;
cc9a6c87 3083 struct page *page = NULL;
cc9a6c87 3084 unsigned int cpuset_mems_cookie;
3a025760 3085 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3086 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3087 struct alloc_context ac = {
3088 .high_zoneidx = gfp_zone(gfp_mask),
3089 .nodemask = nodemask,
3090 .migratetype = gfpflags_to_migratetype(gfp_mask),
3091 };
11e33f6a 3092
dcce284a
BH
3093 gfp_mask &= gfp_allowed_mask;
3094
11e33f6a
MG
3095 lockdep_trace_alloc(gfp_mask);
3096
3097 might_sleep_if(gfp_mask & __GFP_WAIT);
3098
3099 if (should_fail_alloc_page(gfp_mask, order))
3100 return NULL;
3101
3102 /*
3103 * Check the zones suitable for the gfp_mask contain at least one
3104 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3105 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3106 */
3107 if (unlikely(!zonelist->_zonerefs->zone))
3108 return NULL;
3109
a9263751 3110 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3111 alloc_flags |= ALLOC_CMA;
3112
cc9a6c87 3113retry_cpuset:
d26914d1 3114 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3115
a9263751
VB
3116 /* We set it here, as __alloc_pages_slowpath might have changed it */
3117 ac.zonelist = zonelist;
5117f45d 3118 /* The preferred zone is used for statistics later */
a9263751
VB
3119 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3120 ac.nodemask ? : &cpuset_current_mems_allowed,
3121 &ac.preferred_zone);
3122 if (!ac.preferred_zone)
cc9a6c87 3123 goto out;
a9263751 3124 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3125
3126 /* First allocation attempt */
91fbdc0f 3127 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3128 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3129 if (unlikely(!page)) {
3130 /*
3131 * Runtime PM, block IO and its error handling path
3132 * can deadlock because I/O on the device might not
3133 * complete.
3134 */
91fbdc0f
AM
3135 alloc_mask = memalloc_noio_flags(gfp_mask);
3136
a9263751 3137 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3138 }
11e33f6a 3139
23f086f9
XQ
3140 if (kmemcheck_enabled && page)
3141 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3142
a9263751 3143 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3144
3145out:
3146 /*
3147 * When updating a task's mems_allowed, it is possible to race with
3148 * parallel threads in such a way that an allocation can fail while
3149 * the mask is being updated. If a page allocation is about to fail,
3150 * check if the cpuset changed during allocation and if so, retry.
3151 */
d26914d1 3152 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3153 goto retry_cpuset;
3154
11e33f6a 3155 return page;
1da177e4 3156}
d239171e 3157EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3158
3159/*
3160 * Common helper functions.
3161 */
920c7a5d 3162unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3163{
945a1113
AM
3164 struct page *page;
3165
3166 /*
3167 * __get_free_pages() returns a 32-bit address, which cannot represent
3168 * a highmem page
3169 */
3170 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3171
1da177e4
LT
3172 page = alloc_pages(gfp_mask, order);
3173 if (!page)
3174 return 0;
3175 return (unsigned long) page_address(page);
3176}
1da177e4
LT
3177EXPORT_SYMBOL(__get_free_pages);
3178
920c7a5d 3179unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3180{
945a1113 3181 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3182}
1da177e4
LT
3183EXPORT_SYMBOL(get_zeroed_page);
3184
920c7a5d 3185void __free_pages(struct page *page, unsigned int order)
1da177e4 3186{
b5810039 3187 if (put_page_testzero(page)) {
1da177e4 3188 if (order == 0)
b745bc85 3189 free_hot_cold_page(page, false);
1da177e4
LT
3190 else
3191 __free_pages_ok(page, order);
3192 }
3193}
3194
3195EXPORT_SYMBOL(__free_pages);
3196
920c7a5d 3197void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3198{
3199 if (addr != 0) {
725d704e 3200 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3201 __free_pages(virt_to_page((void *)addr), order);
3202 }
3203}
3204
3205EXPORT_SYMBOL(free_pages);
3206
b63ae8ca
AD
3207/*
3208 * Page Fragment:
3209 * An arbitrary-length arbitrary-offset area of memory which resides
3210 * within a 0 or higher order page. Multiple fragments within that page
3211 * are individually refcounted, in the page's reference counter.
3212 *
3213 * The page_frag functions below provide a simple allocation framework for
3214 * page fragments. This is used by the network stack and network device
3215 * drivers to provide a backing region of memory for use as either an
3216 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3217 */
3218static struct page *__page_frag_refill(struct page_frag_cache *nc,
3219 gfp_t gfp_mask)
3220{
3221 struct page *page = NULL;
3222 gfp_t gfp = gfp_mask;
3223
3224#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3225 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3226 __GFP_NOMEMALLOC;
3227 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3228 PAGE_FRAG_CACHE_MAX_ORDER);
3229 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3230#endif
3231 if (unlikely(!page))
3232 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3233
3234 nc->va = page ? page_address(page) : NULL;
3235
3236 return page;
3237}
3238
3239void *__alloc_page_frag(struct page_frag_cache *nc,
3240 unsigned int fragsz, gfp_t gfp_mask)
3241{
3242 unsigned int size = PAGE_SIZE;
3243 struct page *page;
3244 int offset;
3245
3246 if (unlikely(!nc->va)) {
3247refill:
3248 page = __page_frag_refill(nc, gfp_mask);
3249 if (!page)
3250 return NULL;
3251
3252#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3253 /* if size can vary use size else just use PAGE_SIZE */
3254 size = nc->size;
3255#endif
3256 /* Even if we own the page, we do not use atomic_set().
3257 * This would break get_page_unless_zero() users.
3258 */
3259 atomic_add(size - 1, &page->_count);
3260
3261 /* reset page count bias and offset to start of new frag */
3262 nc->pfmemalloc = page->pfmemalloc;
3263 nc->pagecnt_bias = size;
3264 nc->offset = size;
3265 }
3266
3267 offset = nc->offset - fragsz;
3268 if (unlikely(offset < 0)) {
3269 page = virt_to_page(nc->va);
3270
3271 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3272 goto refill;
3273
3274#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3275 /* if size can vary use size else just use PAGE_SIZE */
3276 size = nc->size;
3277#endif
3278 /* OK, page count is 0, we can safely set it */
3279 atomic_set(&page->_count, size);
3280
3281 /* reset page count bias and offset to start of new frag */
3282 nc->pagecnt_bias = size;
3283 offset = size - fragsz;
3284 }
3285
3286 nc->pagecnt_bias--;
3287 nc->offset = offset;
3288
3289 return nc->va + offset;
3290}
3291EXPORT_SYMBOL(__alloc_page_frag);
3292
3293/*
3294 * Frees a page fragment allocated out of either a compound or order 0 page.
3295 */
3296void __free_page_frag(void *addr)
3297{
3298 struct page *page = virt_to_head_page(addr);
3299
3300 if (unlikely(put_page_testzero(page)))
3301 __free_pages_ok(page, compound_order(page));
3302}
3303EXPORT_SYMBOL(__free_page_frag);
3304
6a1a0d3b 3305/*
52383431
VD
3306 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3307 * of the current memory cgroup.
6a1a0d3b 3308 *
52383431
VD
3309 * It should be used when the caller would like to use kmalloc, but since the
3310 * allocation is large, it has to fall back to the page allocator.
3311 */
3312struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3313{
3314 struct page *page;
3315 struct mem_cgroup *memcg = NULL;
3316
3317 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3318 return NULL;
3319 page = alloc_pages(gfp_mask, order);
3320 memcg_kmem_commit_charge(page, memcg, order);
3321 return page;
3322}
3323
3324struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3325{
3326 struct page *page;
3327 struct mem_cgroup *memcg = NULL;
3328
3329 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3330 return NULL;
3331 page = alloc_pages_node(nid, gfp_mask, order);
3332 memcg_kmem_commit_charge(page, memcg, order);
3333 return page;
3334}
3335
3336/*
3337 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3338 * alloc_kmem_pages.
6a1a0d3b 3339 */
52383431 3340void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3341{
3342 memcg_kmem_uncharge_pages(page, order);
3343 __free_pages(page, order);
3344}
3345
52383431 3346void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3347{
3348 if (addr != 0) {
3349 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3350 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3351 }
3352}
3353
ee85c2e1
AK
3354static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3355{
3356 if (addr) {
3357 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3358 unsigned long used = addr + PAGE_ALIGN(size);
3359
3360 split_page(virt_to_page((void *)addr), order);
3361 while (used < alloc_end) {
3362 free_page(used);
3363 used += PAGE_SIZE;
3364 }
3365 }
3366 return (void *)addr;
3367}
3368
2be0ffe2
TT
3369/**
3370 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3371 * @size: the number of bytes to allocate
3372 * @gfp_mask: GFP flags for the allocation
3373 *
3374 * This function is similar to alloc_pages(), except that it allocates the
3375 * minimum number of pages to satisfy the request. alloc_pages() can only
3376 * allocate memory in power-of-two pages.
3377 *
3378 * This function is also limited by MAX_ORDER.
3379 *
3380 * Memory allocated by this function must be released by free_pages_exact().
3381 */
3382void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3383{
3384 unsigned int order = get_order(size);
3385 unsigned long addr;
3386
3387 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3388 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3389}
3390EXPORT_SYMBOL(alloc_pages_exact);
3391
ee85c2e1
AK
3392/**
3393 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3394 * pages on a node.
b5e6ab58 3395 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3396 * @size: the number of bytes to allocate
3397 * @gfp_mask: GFP flags for the allocation
3398 *
3399 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3400 * back.
3401 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3402 * but is not exact.
3403 */
e1931811 3404void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3405{
3406 unsigned order = get_order(size);
3407 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3408 if (!p)
3409 return NULL;
3410 return make_alloc_exact((unsigned long)page_address(p), order, size);
3411}
ee85c2e1 3412
2be0ffe2
TT
3413/**
3414 * free_pages_exact - release memory allocated via alloc_pages_exact()
3415 * @virt: the value returned by alloc_pages_exact.
3416 * @size: size of allocation, same value as passed to alloc_pages_exact().
3417 *
3418 * Release the memory allocated by a previous call to alloc_pages_exact.
3419 */
3420void free_pages_exact(void *virt, size_t size)
3421{
3422 unsigned long addr = (unsigned long)virt;
3423 unsigned long end = addr + PAGE_ALIGN(size);
3424
3425 while (addr < end) {
3426 free_page(addr);
3427 addr += PAGE_SIZE;
3428 }
3429}
3430EXPORT_SYMBOL(free_pages_exact);
3431
e0fb5815
ZY
3432/**
3433 * nr_free_zone_pages - count number of pages beyond high watermark
3434 * @offset: The zone index of the highest zone
3435 *
3436 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3437 * high watermark within all zones at or below a given zone index. For each
3438 * zone, the number of pages is calculated as:
834405c3 3439 * managed_pages - high_pages
e0fb5815 3440 */
ebec3862 3441static unsigned long nr_free_zone_pages(int offset)
1da177e4 3442{
dd1a239f 3443 struct zoneref *z;
54a6eb5c
MG
3444 struct zone *zone;
3445
e310fd43 3446 /* Just pick one node, since fallback list is circular */
ebec3862 3447 unsigned long sum = 0;
1da177e4 3448
0e88460d 3449 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3450
54a6eb5c 3451 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3452 unsigned long size = zone->managed_pages;
41858966 3453 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3454 if (size > high)
3455 sum += size - high;
1da177e4
LT
3456 }
3457
3458 return sum;
3459}
3460
e0fb5815
ZY
3461/**
3462 * nr_free_buffer_pages - count number of pages beyond high watermark
3463 *
3464 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3465 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3466 */
ebec3862 3467unsigned long nr_free_buffer_pages(void)
1da177e4 3468{
af4ca457 3469 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3470}
c2f1a551 3471EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3472
e0fb5815
ZY
3473/**
3474 * nr_free_pagecache_pages - count number of pages beyond high watermark
3475 *
3476 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3477 * high watermark within all zones.
1da177e4 3478 */
ebec3862 3479unsigned long nr_free_pagecache_pages(void)
1da177e4 3480{
2a1e274a 3481 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3482}
08e0f6a9
CL
3483
3484static inline void show_node(struct zone *zone)
1da177e4 3485{
e5adfffc 3486 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3487 printk("Node %d ", zone_to_nid(zone));
1da177e4 3488}
1da177e4 3489
1da177e4
LT
3490void si_meminfo(struct sysinfo *val)
3491{
3492 val->totalram = totalram_pages;
cc7452b6 3493 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3494 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3495 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3496 val->totalhigh = totalhigh_pages;
3497 val->freehigh = nr_free_highpages();
1da177e4
LT
3498 val->mem_unit = PAGE_SIZE;
3499}
3500
3501EXPORT_SYMBOL(si_meminfo);
3502
3503#ifdef CONFIG_NUMA
3504void si_meminfo_node(struct sysinfo *val, int nid)
3505{
cdd91a77
JL
3506 int zone_type; /* needs to be signed */
3507 unsigned long managed_pages = 0;
1da177e4
LT
3508 pg_data_t *pgdat = NODE_DATA(nid);
3509
cdd91a77
JL
3510 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3511 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3512 val->totalram = managed_pages;
cc7452b6 3513 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3514 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3515#ifdef CONFIG_HIGHMEM
b40da049 3516 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3517 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3518 NR_FREE_PAGES);
98d2b0eb
CL
3519#else
3520 val->totalhigh = 0;
3521 val->freehigh = 0;
3522#endif
1da177e4
LT
3523 val->mem_unit = PAGE_SIZE;
3524}
3525#endif
3526
ddd588b5 3527/*
7bf02ea2
DR
3528 * Determine whether the node should be displayed or not, depending on whether
3529 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3530 */
7bf02ea2 3531bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3532{
3533 bool ret = false;
cc9a6c87 3534 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3535
3536 if (!(flags & SHOW_MEM_FILTER_NODES))
3537 goto out;
3538
cc9a6c87 3539 do {
d26914d1 3540 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3541 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3542 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3543out:
3544 return ret;
3545}
3546
1da177e4
LT
3547#define K(x) ((x) << (PAGE_SHIFT-10))
3548
377e4f16
RV
3549static void show_migration_types(unsigned char type)
3550{
3551 static const char types[MIGRATE_TYPES] = {
3552 [MIGRATE_UNMOVABLE] = 'U',
3553 [MIGRATE_RECLAIMABLE] = 'E',
3554 [MIGRATE_MOVABLE] = 'M',
3555 [MIGRATE_RESERVE] = 'R',
3556#ifdef CONFIG_CMA
3557 [MIGRATE_CMA] = 'C',
3558#endif
194159fb 3559#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3560 [MIGRATE_ISOLATE] = 'I',
194159fb 3561#endif
377e4f16
RV
3562 };
3563 char tmp[MIGRATE_TYPES + 1];
3564 char *p = tmp;
3565 int i;
3566
3567 for (i = 0; i < MIGRATE_TYPES; i++) {
3568 if (type & (1 << i))
3569 *p++ = types[i];
3570 }
3571
3572 *p = '\0';
3573 printk("(%s) ", tmp);
3574}
3575
1da177e4
LT
3576/*
3577 * Show free area list (used inside shift_scroll-lock stuff)
3578 * We also calculate the percentage fragmentation. We do this by counting the
3579 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3580 *
3581 * Bits in @filter:
3582 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3583 * cpuset.
1da177e4 3584 */
7bf02ea2 3585void show_free_areas(unsigned int filter)
1da177e4 3586{
d1bfcdb8 3587 unsigned long free_pcp = 0;
c7241913 3588 int cpu;
1da177e4
LT
3589 struct zone *zone;
3590
ee99c71c 3591 for_each_populated_zone(zone) {
7bf02ea2 3592 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3593 continue;
d1bfcdb8 3594
761b0677
KK
3595 for_each_online_cpu(cpu)
3596 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3597 }
3598
a731286d
KM
3599 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3600 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3601 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3602 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3603 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3604 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3605 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3606 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3607 global_page_state(NR_ISOLATED_ANON),
3608 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3609 global_page_state(NR_INACTIVE_FILE),
a731286d 3610 global_page_state(NR_ISOLATED_FILE),
7b854121 3611 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3612 global_page_state(NR_FILE_DIRTY),
ce866b34 3613 global_page_state(NR_WRITEBACK),
fd39fc85 3614 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3615 global_page_state(NR_SLAB_RECLAIMABLE),
3616 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3617 global_page_state(NR_FILE_MAPPED),
4b02108a 3618 global_page_state(NR_SHMEM),
a25700a5 3619 global_page_state(NR_PAGETABLE),
d1ce749a 3620 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3621 global_page_state(NR_FREE_PAGES),
3622 free_pcp,
d1ce749a 3623 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3624
ee99c71c 3625 for_each_populated_zone(zone) {
1da177e4
LT
3626 int i;
3627
7bf02ea2 3628 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3629 continue;
d1bfcdb8
KK
3630
3631 free_pcp = 0;
3632 for_each_online_cpu(cpu)
3633 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3634
1da177e4
LT
3635 show_node(zone);
3636 printk("%s"
3637 " free:%lukB"
3638 " min:%lukB"
3639 " low:%lukB"
3640 " high:%lukB"
4f98a2fe
RR
3641 " active_anon:%lukB"
3642 " inactive_anon:%lukB"
3643 " active_file:%lukB"
3644 " inactive_file:%lukB"
7b854121 3645 " unevictable:%lukB"
a731286d
KM
3646 " isolated(anon):%lukB"
3647 " isolated(file):%lukB"
1da177e4 3648 " present:%lukB"
9feedc9d 3649 " managed:%lukB"
4a0aa73f
KM
3650 " mlocked:%lukB"
3651 " dirty:%lukB"
3652 " writeback:%lukB"
3653 " mapped:%lukB"
4b02108a 3654 " shmem:%lukB"
4a0aa73f
KM
3655 " slab_reclaimable:%lukB"
3656 " slab_unreclaimable:%lukB"
c6a7f572 3657 " kernel_stack:%lukB"
4a0aa73f
KM
3658 " pagetables:%lukB"
3659 " unstable:%lukB"
3660 " bounce:%lukB"
d1bfcdb8
KK
3661 " free_pcp:%lukB"
3662 " local_pcp:%ukB"
d1ce749a 3663 " free_cma:%lukB"
4a0aa73f 3664 " writeback_tmp:%lukB"
1da177e4
LT
3665 " pages_scanned:%lu"
3666 " all_unreclaimable? %s"
3667 "\n",
3668 zone->name,
88f5acf8 3669 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3670 K(min_wmark_pages(zone)),
3671 K(low_wmark_pages(zone)),
3672 K(high_wmark_pages(zone)),
4f98a2fe
RR
3673 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3674 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3675 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3676 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3677 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3678 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3679 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3680 K(zone->present_pages),
9feedc9d 3681 K(zone->managed_pages),
4a0aa73f
KM
3682 K(zone_page_state(zone, NR_MLOCK)),
3683 K(zone_page_state(zone, NR_FILE_DIRTY)),
3684 K(zone_page_state(zone, NR_WRITEBACK)),
3685 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3686 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3687 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3688 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3689 zone_page_state(zone, NR_KERNEL_STACK) *
3690 THREAD_SIZE / 1024,
4a0aa73f
KM
3691 K(zone_page_state(zone, NR_PAGETABLE)),
3692 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3693 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3694 K(free_pcp),
3695 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3696 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3697 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3698 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3699 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3700 );
3701 printk("lowmem_reserve[]:");
3702 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3703 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3704 printk("\n");
3705 }
3706
ee99c71c 3707 for_each_populated_zone(zone) {
b8af2941 3708 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3709 unsigned char types[MAX_ORDER];
1da177e4 3710
7bf02ea2 3711 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3712 continue;
1da177e4
LT
3713 show_node(zone);
3714 printk("%s: ", zone->name);
1da177e4
LT
3715
3716 spin_lock_irqsave(&zone->lock, flags);
3717 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3718 struct free_area *area = &zone->free_area[order];
3719 int type;
3720
3721 nr[order] = area->nr_free;
8f9de51a 3722 total += nr[order] << order;
377e4f16
RV
3723
3724 types[order] = 0;
3725 for (type = 0; type < MIGRATE_TYPES; type++) {
3726 if (!list_empty(&area->free_list[type]))
3727 types[order] |= 1 << type;
3728 }
1da177e4
LT
3729 }
3730 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3731 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3732 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3733 if (nr[order])
3734 show_migration_types(types[order]);
3735 }
1da177e4
LT
3736 printk("= %lukB\n", K(total));
3737 }
3738
949f7ec5
DR
3739 hugetlb_show_meminfo();
3740
e6f3602d
LW
3741 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3742
1da177e4
LT
3743 show_swap_cache_info();
3744}
3745
19770b32
MG
3746static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3747{
3748 zoneref->zone = zone;
3749 zoneref->zone_idx = zone_idx(zone);
3750}
3751
1da177e4
LT
3752/*
3753 * Builds allocation fallback zone lists.
1a93205b
CL
3754 *
3755 * Add all populated zones of a node to the zonelist.
1da177e4 3756 */
f0c0b2b8 3757static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3758 int nr_zones)
1da177e4 3759{
1a93205b 3760 struct zone *zone;
bc732f1d 3761 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3762
3763 do {
2f6726e5 3764 zone_type--;
070f8032 3765 zone = pgdat->node_zones + zone_type;
1a93205b 3766 if (populated_zone(zone)) {
dd1a239f
MG
3767 zoneref_set_zone(zone,
3768 &zonelist->_zonerefs[nr_zones++]);
070f8032 3769 check_highest_zone(zone_type);
1da177e4 3770 }
2f6726e5 3771 } while (zone_type);
bc732f1d 3772
070f8032 3773 return nr_zones;
1da177e4
LT
3774}
3775
f0c0b2b8
KH
3776
3777/*
3778 * zonelist_order:
3779 * 0 = automatic detection of better ordering.
3780 * 1 = order by ([node] distance, -zonetype)
3781 * 2 = order by (-zonetype, [node] distance)
3782 *
3783 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3784 * the same zonelist. So only NUMA can configure this param.
3785 */
3786#define ZONELIST_ORDER_DEFAULT 0
3787#define ZONELIST_ORDER_NODE 1
3788#define ZONELIST_ORDER_ZONE 2
3789
3790/* zonelist order in the kernel.
3791 * set_zonelist_order() will set this to NODE or ZONE.
3792 */
3793static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3794static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3795
3796
1da177e4 3797#ifdef CONFIG_NUMA
f0c0b2b8
KH
3798/* The value user specified ....changed by config */
3799static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3800/* string for sysctl */
3801#define NUMA_ZONELIST_ORDER_LEN 16
3802char numa_zonelist_order[16] = "default";
3803
3804/*
3805 * interface for configure zonelist ordering.
3806 * command line option "numa_zonelist_order"
3807 * = "[dD]efault - default, automatic configuration.
3808 * = "[nN]ode - order by node locality, then by zone within node
3809 * = "[zZ]one - order by zone, then by locality within zone
3810 */
3811
3812static int __parse_numa_zonelist_order(char *s)
3813{
3814 if (*s == 'd' || *s == 'D') {
3815 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3816 } else if (*s == 'n' || *s == 'N') {
3817 user_zonelist_order = ZONELIST_ORDER_NODE;
3818 } else if (*s == 'z' || *s == 'Z') {
3819 user_zonelist_order = ZONELIST_ORDER_ZONE;
3820 } else {
3821 printk(KERN_WARNING
3822 "Ignoring invalid numa_zonelist_order value: "
3823 "%s\n", s);
3824 return -EINVAL;
3825 }
3826 return 0;
3827}
3828
3829static __init int setup_numa_zonelist_order(char *s)
3830{
ecb256f8
VL
3831 int ret;
3832
3833 if (!s)
3834 return 0;
3835
3836 ret = __parse_numa_zonelist_order(s);
3837 if (ret == 0)
3838 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3839
3840 return ret;
f0c0b2b8
KH
3841}
3842early_param("numa_zonelist_order", setup_numa_zonelist_order);
3843
3844/*
3845 * sysctl handler for numa_zonelist_order
3846 */
cccad5b9 3847int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3848 void __user *buffer, size_t *length,
f0c0b2b8
KH
3849 loff_t *ppos)
3850{
3851 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3852 int ret;
443c6f14 3853 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3854
443c6f14 3855 mutex_lock(&zl_order_mutex);
dacbde09
CG
3856 if (write) {
3857 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3858 ret = -EINVAL;
3859 goto out;
3860 }
3861 strcpy(saved_string, (char *)table->data);
3862 }
8d65af78 3863 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3864 if (ret)
443c6f14 3865 goto out;
f0c0b2b8
KH
3866 if (write) {
3867 int oldval = user_zonelist_order;
dacbde09
CG
3868
3869 ret = __parse_numa_zonelist_order((char *)table->data);
3870 if (ret) {
f0c0b2b8
KH
3871 /*
3872 * bogus value. restore saved string
3873 */
dacbde09 3874 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3875 NUMA_ZONELIST_ORDER_LEN);
3876 user_zonelist_order = oldval;
4eaf3f64
HL
3877 } else if (oldval != user_zonelist_order) {
3878 mutex_lock(&zonelists_mutex);
9adb62a5 3879 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3880 mutex_unlock(&zonelists_mutex);
3881 }
f0c0b2b8 3882 }
443c6f14
AK
3883out:
3884 mutex_unlock(&zl_order_mutex);
3885 return ret;
f0c0b2b8
KH
3886}
3887
3888
62bc62a8 3889#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3890static int node_load[MAX_NUMNODES];
3891
1da177e4 3892/**
4dc3b16b 3893 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3894 * @node: node whose fallback list we're appending
3895 * @used_node_mask: nodemask_t of already used nodes
3896 *
3897 * We use a number of factors to determine which is the next node that should
3898 * appear on a given node's fallback list. The node should not have appeared
3899 * already in @node's fallback list, and it should be the next closest node
3900 * according to the distance array (which contains arbitrary distance values
3901 * from each node to each node in the system), and should also prefer nodes
3902 * with no CPUs, since presumably they'll have very little allocation pressure
3903 * on them otherwise.
3904 * It returns -1 if no node is found.
3905 */
f0c0b2b8 3906static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3907{
4cf808eb 3908 int n, val;
1da177e4 3909 int min_val = INT_MAX;
00ef2d2f 3910 int best_node = NUMA_NO_NODE;
a70f7302 3911 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3912
4cf808eb
LT
3913 /* Use the local node if we haven't already */
3914 if (!node_isset(node, *used_node_mask)) {
3915 node_set(node, *used_node_mask);
3916 return node;
3917 }
1da177e4 3918
4b0ef1fe 3919 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3920
3921 /* Don't want a node to appear more than once */
3922 if (node_isset(n, *used_node_mask))
3923 continue;
3924
1da177e4
LT
3925 /* Use the distance array to find the distance */
3926 val = node_distance(node, n);
3927
4cf808eb
LT
3928 /* Penalize nodes under us ("prefer the next node") */
3929 val += (n < node);
3930
1da177e4 3931 /* Give preference to headless and unused nodes */
a70f7302
RR
3932 tmp = cpumask_of_node(n);
3933 if (!cpumask_empty(tmp))
1da177e4
LT
3934 val += PENALTY_FOR_NODE_WITH_CPUS;
3935
3936 /* Slight preference for less loaded node */
3937 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3938 val += node_load[n];
3939
3940 if (val < min_val) {
3941 min_val = val;
3942 best_node = n;
3943 }
3944 }
3945
3946 if (best_node >= 0)
3947 node_set(best_node, *used_node_mask);
3948
3949 return best_node;
3950}
3951
f0c0b2b8
KH
3952
3953/*
3954 * Build zonelists ordered by node and zones within node.
3955 * This results in maximum locality--normal zone overflows into local
3956 * DMA zone, if any--but risks exhausting DMA zone.
3957 */
3958static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3959{
f0c0b2b8 3960 int j;
1da177e4 3961 struct zonelist *zonelist;
f0c0b2b8 3962
54a6eb5c 3963 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3964 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 3965 ;
bc732f1d 3966 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
3967 zonelist->_zonerefs[j].zone = NULL;
3968 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3969}
3970
523b9458
CL
3971/*
3972 * Build gfp_thisnode zonelists
3973 */
3974static void build_thisnode_zonelists(pg_data_t *pgdat)
3975{
523b9458
CL
3976 int j;
3977 struct zonelist *zonelist;
3978
54a6eb5c 3979 zonelist = &pgdat->node_zonelists[1];
bc732f1d 3980 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
3981 zonelist->_zonerefs[j].zone = NULL;
3982 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3983}
3984
f0c0b2b8
KH
3985/*
3986 * Build zonelists ordered by zone and nodes within zones.
3987 * This results in conserving DMA zone[s] until all Normal memory is
3988 * exhausted, but results in overflowing to remote node while memory
3989 * may still exist in local DMA zone.
3990 */
3991static int node_order[MAX_NUMNODES];
3992
3993static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3994{
f0c0b2b8
KH
3995 int pos, j, node;
3996 int zone_type; /* needs to be signed */
3997 struct zone *z;
3998 struct zonelist *zonelist;
3999
54a6eb5c
MG
4000 zonelist = &pgdat->node_zonelists[0];
4001 pos = 0;
4002 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4003 for (j = 0; j < nr_nodes; j++) {
4004 node = node_order[j];
4005 z = &NODE_DATA(node)->node_zones[zone_type];
4006 if (populated_zone(z)) {
dd1a239f
MG
4007 zoneref_set_zone(z,
4008 &zonelist->_zonerefs[pos++]);
54a6eb5c 4009 check_highest_zone(zone_type);
f0c0b2b8
KH
4010 }
4011 }
f0c0b2b8 4012 }
dd1a239f
MG
4013 zonelist->_zonerefs[pos].zone = NULL;
4014 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4015}
4016
3193913c
MG
4017#if defined(CONFIG_64BIT)
4018/*
4019 * Devices that require DMA32/DMA are relatively rare and do not justify a
4020 * penalty to every machine in case the specialised case applies. Default
4021 * to Node-ordering on 64-bit NUMA machines
4022 */
4023static int default_zonelist_order(void)
4024{
4025 return ZONELIST_ORDER_NODE;
4026}
4027#else
4028/*
4029 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4030 * by the kernel. If processes running on node 0 deplete the low memory zone
4031 * then reclaim will occur more frequency increasing stalls and potentially
4032 * be easier to OOM if a large percentage of the zone is under writeback or
4033 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4034 * Hence, default to zone ordering on 32-bit.
4035 */
f0c0b2b8
KH
4036static int default_zonelist_order(void)
4037{
f0c0b2b8
KH
4038 return ZONELIST_ORDER_ZONE;
4039}
3193913c 4040#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4041
4042static void set_zonelist_order(void)
4043{
4044 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4045 current_zonelist_order = default_zonelist_order();
4046 else
4047 current_zonelist_order = user_zonelist_order;
4048}
4049
4050static void build_zonelists(pg_data_t *pgdat)
4051{
4052 int j, node, load;
4053 enum zone_type i;
1da177e4 4054 nodemask_t used_mask;
f0c0b2b8
KH
4055 int local_node, prev_node;
4056 struct zonelist *zonelist;
4057 int order = current_zonelist_order;
1da177e4
LT
4058
4059 /* initialize zonelists */
523b9458 4060 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4061 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4062 zonelist->_zonerefs[0].zone = NULL;
4063 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4064 }
4065
4066 /* NUMA-aware ordering of nodes */
4067 local_node = pgdat->node_id;
62bc62a8 4068 load = nr_online_nodes;
1da177e4
LT
4069 prev_node = local_node;
4070 nodes_clear(used_mask);
f0c0b2b8 4071
f0c0b2b8
KH
4072 memset(node_order, 0, sizeof(node_order));
4073 j = 0;
4074
1da177e4
LT
4075 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4076 /*
4077 * We don't want to pressure a particular node.
4078 * So adding penalty to the first node in same
4079 * distance group to make it round-robin.
4080 */
957f822a
DR
4081 if (node_distance(local_node, node) !=
4082 node_distance(local_node, prev_node))
f0c0b2b8
KH
4083 node_load[node] = load;
4084
1da177e4
LT
4085 prev_node = node;
4086 load--;
f0c0b2b8
KH
4087 if (order == ZONELIST_ORDER_NODE)
4088 build_zonelists_in_node_order(pgdat, node);
4089 else
4090 node_order[j++] = node; /* remember order */
4091 }
1da177e4 4092
f0c0b2b8
KH
4093 if (order == ZONELIST_ORDER_ZONE) {
4094 /* calculate node order -- i.e., DMA last! */
4095 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4096 }
523b9458
CL
4097
4098 build_thisnode_zonelists(pgdat);
1da177e4
LT
4099}
4100
9276b1bc 4101/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 4102static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4103{
54a6eb5c
MG
4104 struct zonelist *zonelist;
4105 struct zonelist_cache *zlc;
dd1a239f 4106 struct zoneref *z;
9276b1bc 4107
54a6eb5c
MG
4108 zonelist = &pgdat->node_zonelists[0];
4109 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4110 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
4111 for (z = zonelist->_zonerefs; z->zone; z++)
4112 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
4113}
4114
7aac7898
LS
4115#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4116/*
4117 * Return node id of node used for "local" allocations.
4118 * I.e., first node id of first zone in arg node's generic zonelist.
4119 * Used for initializing percpu 'numa_mem', which is used primarily
4120 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4121 */
4122int local_memory_node(int node)
4123{
4124 struct zone *zone;
4125
4126 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4127 gfp_zone(GFP_KERNEL),
4128 NULL,
4129 &zone);
4130 return zone->node;
4131}
4132#endif
f0c0b2b8 4133
1da177e4
LT
4134#else /* CONFIG_NUMA */
4135
f0c0b2b8
KH
4136static void set_zonelist_order(void)
4137{
4138 current_zonelist_order = ZONELIST_ORDER_ZONE;
4139}
4140
4141static void build_zonelists(pg_data_t *pgdat)
1da177e4 4142{
19655d34 4143 int node, local_node;
54a6eb5c
MG
4144 enum zone_type j;
4145 struct zonelist *zonelist;
1da177e4
LT
4146
4147 local_node = pgdat->node_id;
1da177e4 4148
54a6eb5c 4149 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4150 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4151
54a6eb5c
MG
4152 /*
4153 * Now we build the zonelist so that it contains the zones
4154 * of all the other nodes.
4155 * We don't want to pressure a particular node, so when
4156 * building the zones for node N, we make sure that the
4157 * zones coming right after the local ones are those from
4158 * node N+1 (modulo N)
4159 */
4160 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4161 if (!node_online(node))
4162 continue;
bc732f1d 4163 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4164 }
54a6eb5c
MG
4165 for (node = 0; node < local_node; node++) {
4166 if (!node_online(node))
4167 continue;
bc732f1d 4168 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4169 }
4170
dd1a239f
MG
4171 zonelist->_zonerefs[j].zone = NULL;
4172 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4173}
4174
9276b1bc 4175/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 4176static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4177{
54a6eb5c 4178 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
4179}
4180
1da177e4
LT
4181#endif /* CONFIG_NUMA */
4182
99dcc3e5
CL
4183/*
4184 * Boot pageset table. One per cpu which is going to be used for all
4185 * zones and all nodes. The parameters will be set in such a way
4186 * that an item put on a list will immediately be handed over to
4187 * the buddy list. This is safe since pageset manipulation is done
4188 * with interrupts disabled.
4189 *
4190 * The boot_pagesets must be kept even after bootup is complete for
4191 * unused processors and/or zones. They do play a role for bootstrapping
4192 * hotplugged processors.
4193 *
4194 * zoneinfo_show() and maybe other functions do
4195 * not check if the processor is online before following the pageset pointer.
4196 * Other parts of the kernel may not check if the zone is available.
4197 */
4198static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4199static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4200static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4201
4eaf3f64
HL
4202/*
4203 * Global mutex to protect against size modification of zonelists
4204 * as well as to serialize pageset setup for the new populated zone.
4205 */
4206DEFINE_MUTEX(zonelists_mutex);
4207
9b1a4d38 4208/* return values int ....just for stop_machine() */
4ed7e022 4209static int __build_all_zonelists(void *data)
1da177e4 4210{
6811378e 4211 int nid;
99dcc3e5 4212 int cpu;
9adb62a5 4213 pg_data_t *self = data;
9276b1bc 4214
7f9cfb31
BL
4215#ifdef CONFIG_NUMA
4216 memset(node_load, 0, sizeof(node_load));
4217#endif
9adb62a5
JL
4218
4219 if (self && !node_online(self->node_id)) {
4220 build_zonelists(self);
4221 build_zonelist_cache(self);
4222 }
4223
9276b1bc 4224 for_each_online_node(nid) {
7ea1530a
CL
4225 pg_data_t *pgdat = NODE_DATA(nid);
4226
4227 build_zonelists(pgdat);
4228 build_zonelist_cache(pgdat);
9276b1bc 4229 }
99dcc3e5
CL
4230
4231 /*
4232 * Initialize the boot_pagesets that are going to be used
4233 * for bootstrapping processors. The real pagesets for
4234 * each zone will be allocated later when the per cpu
4235 * allocator is available.
4236 *
4237 * boot_pagesets are used also for bootstrapping offline
4238 * cpus if the system is already booted because the pagesets
4239 * are needed to initialize allocators on a specific cpu too.
4240 * F.e. the percpu allocator needs the page allocator which
4241 * needs the percpu allocator in order to allocate its pagesets
4242 * (a chicken-egg dilemma).
4243 */
7aac7898 4244 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4245 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4246
7aac7898
LS
4247#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4248 /*
4249 * We now know the "local memory node" for each node--
4250 * i.e., the node of the first zone in the generic zonelist.
4251 * Set up numa_mem percpu variable for on-line cpus. During
4252 * boot, only the boot cpu should be on-line; we'll init the
4253 * secondary cpus' numa_mem as they come on-line. During
4254 * node/memory hotplug, we'll fixup all on-line cpus.
4255 */
4256 if (cpu_online(cpu))
4257 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4258#endif
4259 }
4260
6811378e
YG
4261 return 0;
4262}
4263
061f67bc
RV
4264static noinline void __init
4265build_all_zonelists_init(void)
4266{
4267 __build_all_zonelists(NULL);
4268 mminit_verify_zonelist();
4269 cpuset_init_current_mems_allowed();
4270}
4271
4eaf3f64
HL
4272/*
4273 * Called with zonelists_mutex held always
4274 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4275 *
4276 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4277 * [we're only called with non-NULL zone through __meminit paths] and
4278 * (2) call of __init annotated helper build_all_zonelists_init
4279 * [protected by SYSTEM_BOOTING].
4eaf3f64 4280 */
9adb62a5 4281void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4282{
f0c0b2b8
KH
4283 set_zonelist_order();
4284
6811378e 4285 if (system_state == SYSTEM_BOOTING) {
061f67bc 4286 build_all_zonelists_init();
6811378e 4287 } else {
e9959f0f 4288#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4289 if (zone)
4290 setup_zone_pageset(zone);
e9959f0f 4291#endif
dd1895e2
CS
4292 /* we have to stop all cpus to guarantee there is no user
4293 of zonelist */
9adb62a5 4294 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4295 /* cpuset refresh routine should be here */
4296 }
bd1e22b8 4297 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4298 /*
4299 * Disable grouping by mobility if the number of pages in the
4300 * system is too low to allow the mechanism to work. It would be
4301 * more accurate, but expensive to check per-zone. This check is
4302 * made on memory-hotadd so a system can start with mobility
4303 * disabled and enable it later
4304 */
d9c23400 4305 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4306 page_group_by_mobility_disabled = 1;
4307 else
4308 page_group_by_mobility_disabled = 0;
4309
f88dfff5 4310 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4311 "Total pages: %ld\n",
62bc62a8 4312 nr_online_nodes,
f0c0b2b8 4313 zonelist_order_name[current_zonelist_order],
9ef9acb0 4314 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4315 vm_total_pages);
4316#ifdef CONFIG_NUMA
f88dfff5 4317 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4318#endif
1da177e4
LT
4319}
4320
4321/*
4322 * Helper functions to size the waitqueue hash table.
4323 * Essentially these want to choose hash table sizes sufficiently
4324 * large so that collisions trying to wait on pages are rare.
4325 * But in fact, the number of active page waitqueues on typical
4326 * systems is ridiculously low, less than 200. So this is even
4327 * conservative, even though it seems large.
4328 *
4329 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4330 * waitqueues, i.e. the size of the waitq table given the number of pages.
4331 */
4332#define PAGES_PER_WAITQUEUE 256
4333
cca448fe 4334#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4335static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4336{
4337 unsigned long size = 1;
4338
4339 pages /= PAGES_PER_WAITQUEUE;
4340
4341 while (size < pages)
4342 size <<= 1;
4343
4344 /*
4345 * Once we have dozens or even hundreds of threads sleeping
4346 * on IO we've got bigger problems than wait queue collision.
4347 * Limit the size of the wait table to a reasonable size.
4348 */
4349 size = min(size, 4096UL);
4350
4351 return max(size, 4UL);
4352}
cca448fe
YG
4353#else
4354/*
4355 * A zone's size might be changed by hot-add, so it is not possible to determine
4356 * a suitable size for its wait_table. So we use the maximum size now.
4357 *
4358 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4359 *
4360 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4361 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4362 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4363 *
4364 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4365 * or more by the traditional way. (See above). It equals:
4366 *
4367 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4368 * ia64(16K page size) : = ( 8G + 4M)byte.
4369 * powerpc (64K page size) : = (32G +16M)byte.
4370 */
4371static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4372{
4373 return 4096UL;
4374}
4375#endif
1da177e4
LT
4376
4377/*
4378 * This is an integer logarithm so that shifts can be used later
4379 * to extract the more random high bits from the multiplicative
4380 * hash function before the remainder is taken.
4381 */
4382static inline unsigned long wait_table_bits(unsigned long size)
4383{
4384 return ffz(~size);
4385}
4386
6d3163ce
AH
4387/*
4388 * Check if a pageblock contains reserved pages
4389 */
4390static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4391{
4392 unsigned long pfn;
4393
4394 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4395 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4396 return 1;
4397 }
4398 return 0;
4399}
4400
56fd56b8 4401/*
d9c23400 4402 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4403 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4404 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4405 * higher will lead to a bigger reserve which will get freed as contiguous
4406 * blocks as reclaim kicks in
4407 */
4408static void setup_zone_migrate_reserve(struct zone *zone)
4409{
6d3163ce 4410 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4411 struct page *page;
78986a67
MG
4412 unsigned long block_migratetype;
4413 int reserve;
943dca1a 4414 int old_reserve;
56fd56b8 4415
d0215638
MH
4416 /*
4417 * Get the start pfn, end pfn and the number of blocks to reserve
4418 * We have to be careful to be aligned to pageblock_nr_pages to
4419 * make sure that we always check pfn_valid for the first page in
4420 * the block.
4421 */
56fd56b8 4422 start_pfn = zone->zone_start_pfn;
108bcc96 4423 end_pfn = zone_end_pfn(zone);
d0215638 4424 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4425 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4426 pageblock_order;
56fd56b8 4427
78986a67
MG
4428 /*
4429 * Reserve blocks are generally in place to help high-order atomic
4430 * allocations that are short-lived. A min_free_kbytes value that
4431 * would result in more than 2 reserve blocks for atomic allocations
4432 * is assumed to be in place to help anti-fragmentation for the
4433 * future allocation of hugepages at runtime.
4434 */
4435 reserve = min(2, reserve);
943dca1a
YI
4436 old_reserve = zone->nr_migrate_reserve_block;
4437
4438 /* When memory hot-add, we almost always need to do nothing */
4439 if (reserve == old_reserve)
4440 return;
4441 zone->nr_migrate_reserve_block = reserve;
78986a67 4442
d9c23400 4443 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
7e18adb4
MG
4444 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4445 return;
4446
56fd56b8
MG
4447 if (!pfn_valid(pfn))
4448 continue;
4449 page = pfn_to_page(pfn);
4450
344c790e
AL
4451 /* Watch out for overlapping nodes */
4452 if (page_to_nid(page) != zone_to_nid(zone))
4453 continue;
4454
56fd56b8
MG
4455 block_migratetype = get_pageblock_migratetype(page);
4456
938929f1
MG
4457 /* Only test what is necessary when the reserves are not met */
4458 if (reserve > 0) {
4459 /*
4460 * Blocks with reserved pages will never free, skip
4461 * them.
4462 */
4463 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4464 if (pageblock_is_reserved(pfn, block_end_pfn))
4465 continue;
56fd56b8 4466
938929f1
MG
4467 /* If this block is reserved, account for it */
4468 if (block_migratetype == MIGRATE_RESERVE) {
4469 reserve--;
4470 continue;
4471 }
4472
4473 /* Suitable for reserving if this block is movable */
4474 if (block_migratetype == MIGRATE_MOVABLE) {
4475 set_pageblock_migratetype(page,
4476 MIGRATE_RESERVE);
4477 move_freepages_block(zone, page,
4478 MIGRATE_RESERVE);
4479 reserve--;
4480 continue;
4481 }
943dca1a
YI
4482 } else if (!old_reserve) {
4483 /*
4484 * At boot time we don't need to scan the whole zone
4485 * for turning off MIGRATE_RESERVE.
4486 */
4487 break;
56fd56b8
MG
4488 }
4489
4490 /*
4491 * If the reserve is met and this is a previous reserved block,
4492 * take it back
4493 */
4494 if (block_migratetype == MIGRATE_RESERVE) {
4495 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4496 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4497 }
4498 }
4499}
ac0e5b7a 4500
1da177e4
LT
4501/*
4502 * Initially all pages are reserved - free ones are freed
4503 * up by free_all_bootmem() once the early boot process is
4504 * done. Non-atomic initialization, single-pass.
4505 */
c09b4240 4506void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4507 unsigned long start_pfn, enum memmap_context context)
1da177e4 4508{
3a80a7fa 4509 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4510 unsigned long end_pfn = start_pfn + size;
4511 unsigned long pfn;
86051ca5 4512 struct zone *z;
3a80a7fa 4513 unsigned long nr_initialised = 0;
1da177e4 4514
22b31eec
HD
4515 if (highest_memmap_pfn < end_pfn - 1)
4516 highest_memmap_pfn = end_pfn - 1;
4517
3a80a7fa 4518 z = &pgdat->node_zones[zone];
cbe8dd4a 4519 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4520 /*
4521 * There can be holes in boot-time mem_map[]s
4522 * handed to this function. They do not
4523 * exist on hotplugged memory.
4524 */
4525 if (context == MEMMAP_EARLY) {
4526 if (!early_pfn_valid(pfn))
4527 continue;
4528 if (!early_pfn_in_nid(pfn, nid))
4529 continue;
3a80a7fa
MG
4530 if (!update_defer_init(pgdat, pfn, end_pfn,
4531 &nr_initialised))
4532 break;
a2f3aa02 4533 }
1e8ce83c 4534 __init_single_pfn(pfn, zone, nid);
1da177e4
LT
4535 }
4536}
4537
1e548deb 4538static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4539{
7aeb09f9 4540 unsigned int order, t;
b2a0ac88
MG
4541 for_each_migratetype_order(order, t) {
4542 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4543 zone->free_area[order].nr_free = 0;
4544 }
4545}
4546
4547#ifndef __HAVE_ARCH_MEMMAP_INIT
4548#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4549 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4550#endif
4551
7cd2b0a3 4552static int zone_batchsize(struct zone *zone)
e7c8d5c9 4553{
3a6be87f 4554#ifdef CONFIG_MMU
e7c8d5c9
CL
4555 int batch;
4556
4557 /*
4558 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4559 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4560 *
4561 * OK, so we don't know how big the cache is. So guess.
4562 */
b40da049 4563 batch = zone->managed_pages / 1024;
ba56e91c
SR
4564 if (batch * PAGE_SIZE > 512 * 1024)
4565 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4566 batch /= 4; /* We effectively *= 4 below */
4567 if (batch < 1)
4568 batch = 1;
4569
4570 /*
0ceaacc9
NP
4571 * Clamp the batch to a 2^n - 1 value. Having a power
4572 * of 2 value was found to be more likely to have
4573 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4574 *
0ceaacc9
NP
4575 * For example if 2 tasks are alternately allocating
4576 * batches of pages, one task can end up with a lot
4577 * of pages of one half of the possible page colors
4578 * and the other with pages of the other colors.
e7c8d5c9 4579 */
9155203a 4580 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4581
e7c8d5c9 4582 return batch;
3a6be87f
DH
4583
4584#else
4585 /* The deferral and batching of frees should be suppressed under NOMMU
4586 * conditions.
4587 *
4588 * The problem is that NOMMU needs to be able to allocate large chunks
4589 * of contiguous memory as there's no hardware page translation to
4590 * assemble apparent contiguous memory from discontiguous pages.
4591 *
4592 * Queueing large contiguous runs of pages for batching, however,
4593 * causes the pages to actually be freed in smaller chunks. As there
4594 * can be a significant delay between the individual batches being
4595 * recycled, this leads to the once large chunks of space being
4596 * fragmented and becoming unavailable for high-order allocations.
4597 */
4598 return 0;
4599#endif
e7c8d5c9
CL
4600}
4601
8d7a8fa9
CS
4602/*
4603 * pcp->high and pcp->batch values are related and dependent on one another:
4604 * ->batch must never be higher then ->high.
4605 * The following function updates them in a safe manner without read side
4606 * locking.
4607 *
4608 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4609 * those fields changing asynchronously (acording the the above rule).
4610 *
4611 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4612 * outside of boot time (or some other assurance that no concurrent updaters
4613 * exist).
4614 */
4615static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4616 unsigned long batch)
4617{
4618 /* start with a fail safe value for batch */
4619 pcp->batch = 1;
4620 smp_wmb();
4621
4622 /* Update high, then batch, in order */
4623 pcp->high = high;
4624 smp_wmb();
4625
4626 pcp->batch = batch;
4627}
4628
3664033c 4629/* a companion to pageset_set_high() */
4008bab7
CS
4630static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4631{
8d7a8fa9 4632 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4633}
4634
88c90dbc 4635static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4636{
4637 struct per_cpu_pages *pcp;
5f8dcc21 4638 int migratetype;
2caaad41 4639
1c6fe946
MD
4640 memset(p, 0, sizeof(*p));
4641
3dfa5721 4642 pcp = &p->pcp;
2caaad41 4643 pcp->count = 0;
5f8dcc21
MG
4644 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4645 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4646}
4647
88c90dbc
CS
4648static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4649{
4650 pageset_init(p);
4651 pageset_set_batch(p, batch);
4652}
4653
8ad4b1fb 4654/*
3664033c 4655 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4656 * to the value high for the pageset p.
4657 */
3664033c 4658static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4659 unsigned long high)
4660{
8d7a8fa9
CS
4661 unsigned long batch = max(1UL, high / 4);
4662 if ((high / 4) > (PAGE_SHIFT * 8))
4663 batch = PAGE_SHIFT * 8;
8ad4b1fb 4664
8d7a8fa9 4665 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4666}
4667
7cd2b0a3
DR
4668static void pageset_set_high_and_batch(struct zone *zone,
4669 struct per_cpu_pageset *pcp)
56cef2b8 4670{
56cef2b8 4671 if (percpu_pagelist_fraction)
3664033c 4672 pageset_set_high(pcp,
56cef2b8
CS
4673 (zone->managed_pages /
4674 percpu_pagelist_fraction));
4675 else
4676 pageset_set_batch(pcp, zone_batchsize(zone));
4677}
4678
169f6c19
CS
4679static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4680{
4681 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4682
4683 pageset_init(pcp);
4684 pageset_set_high_and_batch(zone, pcp);
4685}
4686
4ed7e022 4687static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4688{
4689 int cpu;
319774e2 4690 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4691 for_each_possible_cpu(cpu)
4692 zone_pageset_init(zone, cpu);
319774e2
WF
4693}
4694
2caaad41 4695/*
99dcc3e5
CL
4696 * Allocate per cpu pagesets and initialize them.
4697 * Before this call only boot pagesets were available.
e7c8d5c9 4698 */
99dcc3e5 4699void __init setup_per_cpu_pageset(void)
e7c8d5c9 4700{
99dcc3e5 4701 struct zone *zone;
e7c8d5c9 4702
319774e2
WF
4703 for_each_populated_zone(zone)
4704 setup_zone_pageset(zone);
e7c8d5c9
CL
4705}
4706
577a32f6 4707static noinline __init_refok
cca448fe 4708int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4709{
4710 int i;
cca448fe 4711 size_t alloc_size;
ed8ece2e
DH
4712
4713 /*
4714 * The per-page waitqueue mechanism uses hashed waitqueues
4715 * per zone.
4716 */
02b694de
YG
4717 zone->wait_table_hash_nr_entries =
4718 wait_table_hash_nr_entries(zone_size_pages);
4719 zone->wait_table_bits =
4720 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4721 alloc_size = zone->wait_table_hash_nr_entries
4722 * sizeof(wait_queue_head_t);
4723
cd94b9db 4724 if (!slab_is_available()) {
cca448fe 4725 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4726 memblock_virt_alloc_node_nopanic(
4727 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4728 } else {
4729 /*
4730 * This case means that a zone whose size was 0 gets new memory
4731 * via memory hot-add.
4732 * But it may be the case that a new node was hot-added. In
4733 * this case vmalloc() will not be able to use this new node's
4734 * memory - this wait_table must be initialized to use this new
4735 * node itself as well.
4736 * To use this new node's memory, further consideration will be
4737 * necessary.
4738 */
8691f3a7 4739 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4740 }
4741 if (!zone->wait_table)
4742 return -ENOMEM;
ed8ece2e 4743
b8af2941 4744 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4745 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4746
4747 return 0;
ed8ece2e
DH
4748}
4749
c09b4240 4750static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4751{
99dcc3e5
CL
4752 /*
4753 * per cpu subsystem is not up at this point. The following code
4754 * relies on the ability of the linker to provide the
4755 * offset of a (static) per cpu variable into the per cpu area.
4756 */
4757 zone->pageset = &boot_pageset;
ed8ece2e 4758
b38a8725 4759 if (populated_zone(zone))
99dcc3e5
CL
4760 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4761 zone->name, zone->present_pages,
4762 zone_batchsize(zone));
ed8ece2e
DH
4763}
4764
4ed7e022 4765int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4766 unsigned long zone_start_pfn,
a2f3aa02
DH
4767 unsigned long size,
4768 enum memmap_context context)
ed8ece2e
DH
4769{
4770 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4771 int ret;
4772 ret = zone_wait_table_init(zone, size);
4773 if (ret)
4774 return ret;
ed8ece2e
DH
4775 pgdat->nr_zones = zone_idx(zone) + 1;
4776
ed8ece2e
DH
4777 zone->zone_start_pfn = zone_start_pfn;
4778
708614e6
MG
4779 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4780 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4781 pgdat->node_id,
4782 (unsigned long)zone_idx(zone),
4783 zone_start_pfn, (zone_start_pfn + size));
4784
1e548deb 4785 zone_init_free_lists(zone);
718127cc
YG
4786
4787 return 0;
ed8ece2e
DH
4788}
4789
0ee332c1 4790#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4791#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4792
c713216d
MG
4793/*
4794 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4795 */
8a942fde
MG
4796int __meminit __early_pfn_to_nid(unsigned long pfn,
4797 struct mminit_pfnnid_cache *state)
c713216d 4798{
c13291a5 4799 unsigned long start_pfn, end_pfn;
e76b63f8 4800 int nid;
7c243c71 4801
8a942fde
MG
4802 if (state->last_start <= pfn && pfn < state->last_end)
4803 return state->last_nid;
c713216d 4804
e76b63f8
YL
4805 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4806 if (nid != -1) {
8a942fde
MG
4807 state->last_start = start_pfn;
4808 state->last_end = end_pfn;
4809 state->last_nid = nid;
e76b63f8
YL
4810 }
4811
4812 return nid;
c713216d
MG
4813}
4814#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4815
c713216d 4816/**
6782832e 4817 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4818 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4819 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4820 *
7d018176
ZZ
4821 * If an architecture guarantees that all ranges registered contain no holes
4822 * and may be freed, this this function may be used instead of calling
4823 * memblock_free_early_nid() manually.
c713216d 4824 */
c13291a5 4825void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4826{
c13291a5
TH
4827 unsigned long start_pfn, end_pfn;
4828 int i, this_nid;
edbe7d23 4829
c13291a5
TH
4830 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4831 start_pfn = min(start_pfn, max_low_pfn);
4832 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4833
c13291a5 4834 if (start_pfn < end_pfn)
6782832e
SS
4835 memblock_free_early_nid(PFN_PHYS(start_pfn),
4836 (end_pfn - start_pfn) << PAGE_SHIFT,
4837 this_nid);
edbe7d23 4838 }
edbe7d23 4839}
edbe7d23 4840
c713216d
MG
4841/**
4842 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4843 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4844 *
7d018176
ZZ
4845 * If an architecture guarantees that all ranges registered contain no holes and may
4846 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4847 */
4848void __init sparse_memory_present_with_active_regions(int nid)
4849{
c13291a5
TH
4850 unsigned long start_pfn, end_pfn;
4851 int i, this_nid;
c713216d 4852
c13291a5
TH
4853 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4854 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4855}
4856
4857/**
4858 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4859 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4860 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4861 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4862 *
4863 * It returns the start and end page frame of a node based on information
7d018176 4864 * provided by memblock_set_node(). If called for a node
c713216d 4865 * with no available memory, a warning is printed and the start and end
88ca3b94 4866 * PFNs will be 0.
c713216d 4867 */
a3142c8e 4868void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4869 unsigned long *start_pfn, unsigned long *end_pfn)
4870{
c13291a5 4871 unsigned long this_start_pfn, this_end_pfn;
c713216d 4872 int i;
c13291a5 4873
c713216d
MG
4874 *start_pfn = -1UL;
4875 *end_pfn = 0;
4876
c13291a5
TH
4877 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4878 *start_pfn = min(*start_pfn, this_start_pfn);
4879 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4880 }
4881
633c0666 4882 if (*start_pfn == -1UL)
c713216d 4883 *start_pfn = 0;
c713216d
MG
4884}
4885
2a1e274a
MG
4886/*
4887 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4888 * assumption is made that zones within a node are ordered in monotonic
4889 * increasing memory addresses so that the "highest" populated zone is used
4890 */
b69a7288 4891static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4892{
4893 int zone_index;
4894 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4895 if (zone_index == ZONE_MOVABLE)
4896 continue;
4897
4898 if (arch_zone_highest_possible_pfn[zone_index] >
4899 arch_zone_lowest_possible_pfn[zone_index])
4900 break;
4901 }
4902
4903 VM_BUG_ON(zone_index == -1);
4904 movable_zone = zone_index;
4905}
4906
4907/*
4908 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4909 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4910 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4911 * in each node depending on the size of each node and how evenly kernelcore
4912 * is distributed. This helper function adjusts the zone ranges
4913 * provided by the architecture for a given node by using the end of the
4914 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4915 * zones within a node are in order of monotonic increases memory addresses
4916 */
b69a7288 4917static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4918 unsigned long zone_type,
4919 unsigned long node_start_pfn,
4920 unsigned long node_end_pfn,
4921 unsigned long *zone_start_pfn,
4922 unsigned long *zone_end_pfn)
4923{
4924 /* Only adjust if ZONE_MOVABLE is on this node */
4925 if (zone_movable_pfn[nid]) {
4926 /* Size ZONE_MOVABLE */
4927 if (zone_type == ZONE_MOVABLE) {
4928 *zone_start_pfn = zone_movable_pfn[nid];
4929 *zone_end_pfn = min(node_end_pfn,
4930 arch_zone_highest_possible_pfn[movable_zone]);
4931
4932 /* Adjust for ZONE_MOVABLE starting within this range */
4933 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4934 *zone_end_pfn > zone_movable_pfn[nid]) {
4935 *zone_end_pfn = zone_movable_pfn[nid];
4936
4937 /* Check if this whole range is within ZONE_MOVABLE */
4938 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4939 *zone_start_pfn = *zone_end_pfn;
4940 }
4941}
4942
c713216d
MG
4943/*
4944 * Return the number of pages a zone spans in a node, including holes
4945 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4946 */
6ea6e688 4947static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4948 unsigned long zone_type,
7960aedd
ZY
4949 unsigned long node_start_pfn,
4950 unsigned long node_end_pfn,
c713216d
MG
4951 unsigned long *ignored)
4952{
c713216d
MG
4953 unsigned long zone_start_pfn, zone_end_pfn;
4954
7960aedd 4955 /* Get the start and end of the zone */
c713216d
MG
4956 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4957 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4958 adjust_zone_range_for_zone_movable(nid, zone_type,
4959 node_start_pfn, node_end_pfn,
4960 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4961
4962 /* Check that this node has pages within the zone's required range */
4963 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4964 return 0;
4965
4966 /* Move the zone boundaries inside the node if necessary */
4967 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4968 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4969
4970 /* Return the spanned pages */
4971 return zone_end_pfn - zone_start_pfn;
4972}
4973
4974/*
4975 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4976 * then all holes in the requested range will be accounted for.
c713216d 4977 */
32996250 4978unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4979 unsigned long range_start_pfn,
4980 unsigned long range_end_pfn)
4981{
96e907d1
TH
4982 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4983 unsigned long start_pfn, end_pfn;
4984 int i;
c713216d 4985
96e907d1
TH
4986 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4987 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4988 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4989 nr_absent -= end_pfn - start_pfn;
c713216d 4990 }
96e907d1 4991 return nr_absent;
c713216d
MG
4992}
4993
4994/**
4995 * absent_pages_in_range - Return number of page frames in holes within a range
4996 * @start_pfn: The start PFN to start searching for holes
4997 * @end_pfn: The end PFN to stop searching for holes
4998 *
88ca3b94 4999 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5000 */
5001unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5002 unsigned long end_pfn)
5003{
5004 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5005}
5006
5007/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5008static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5009 unsigned long zone_type,
7960aedd
ZY
5010 unsigned long node_start_pfn,
5011 unsigned long node_end_pfn,
c713216d
MG
5012 unsigned long *ignored)
5013{
96e907d1
TH
5014 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5015 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5016 unsigned long zone_start_pfn, zone_end_pfn;
5017
96e907d1
TH
5018 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5019 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5020
2a1e274a
MG
5021 adjust_zone_range_for_zone_movable(nid, zone_type,
5022 node_start_pfn, node_end_pfn,
5023 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5024 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5025}
0e0b864e 5026
0ee332c1 5027#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5028static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5029 unsigned long zone_type,
7960aedd
ZY
5030 unsigned long node_start_pfn,
5031 unsigned long node_end_pfn,
c713216d
MG
5032 unsigned long *zones_size)
5033{
5034 return zones_size[zone_type];
5035}
5036
6ea6e688 5037static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5038 unsigned long zone_type,
7960aedd
ZY
5039 unsigned long node_start_pfn,
5040 unsigned long node_end_pfn,
c713216d
MG
5041 unsigned long *zholes_size)
5042{
5043 if (!zholes_size)
5044 return 0;
5045
5046 return zholes_size[zone_type];
5047}
20e6926d 5048
0ee332c1 5049#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5050
a3142c8e 5051static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5052 unsigned long node_start_pfn,
5053 unsigned long node_end_pfn,
5054 unsigned long *zones_size,
5055 unsigned long *zholes_size)
c713216d 5056{
febd5949 5057 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5058 enum zone_type i;
5059
febd5949
GZ
5060 for (i = 0; i < MAX_NR_ZONES; i++) {
5061 struct zone *zone = pgdat->node_zones + i;
5062 unsigned long size, real_size;
c713216d 5063
febd5949
GZ
5064 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5065 node_start_pfn,
5066 node_end_pfn,
5067 zones_size);
5068 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5069 node_start_pfn, node_end_pfn,
5070 zholes_size);
febd5949
GZ
5071 zone->spanned_pages = size;
5072 zone->present_pages = real_size;
5073
5074 totalpages += size;
5075 realtotalpages += real_size;
5076 }
5077
5078 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5079 pgdat->node_present_pages = realtotalpages;
5080 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5081 realtotalpages);
5082}
5083
835c134e
MG
5084#ifndef CONFIG_SPARSEMEM
5085/*
5086 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5087 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5088 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5089 * round what is now in bits to nearest long in bits, then return it in
5090 * bytes.
5091 */
7c45512d 5092static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5093{
5094 unsigned long usemapsize;
5095
7c45512d 5096 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5097 usemapsize = roundup(zonesize, pageblock_nr_pages);
5098 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5099 usemapsize *= NR_PAGEBLOCK_BITS;
5100 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5101
5102 return usemapsize / 8;
5103}
5104
5105static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5106 struct zone *zone,
5107 unsigned long zone_start_pfn,
5108 unsigned long zonesize)
835c134e 5109{
7c45512d 5110 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5111 zone->pageblock_flags = NULL;
58a01a45 5112 if (usemapsize)
6782832e
SS
5113 zone->pageblock_flags =
5114 memblock_virt_alloc_node_nopanic(usemapsize,
5115 pgdat->node_id);
835c134e
MG
5116}
5117#else
7c45512d
LT
5118static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5119 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5120#endif /* CONFIG_SPARSEMEM */
5121
d9c23400 5122#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5123
d9c23400 5124/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5125void __paginginit set_pageblock_order(void)
d9c23400 5126{
955c1cd7
AM
5127 unsigned int order;
5128
d9c23400
MG
5129 /* Check that pageblock_nr_pages has not already been setup */
5130 if (pageblock_order)
5131 return;
5132
955c1cd7
AM
5133 if (HPAGE_SHIFT > PAGE_SHIFT)
5134 order = HUGETLB_PAGE_ORDER;
5135 else
5136 order = MAX_ORDER - 1;
5137
d9c23400
MG
5138 /*
5139 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5140 * This value may be variable depending on boot parameters on IA64 and
5141 * powerpc.
d9c23400
MG
5142 */
5143 pageblock_order = order;
5144}
5145#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5146
ba72cb8c
MG
5147/*
5148 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5149 * is unused as pageblock_order is set at compile-time. See
5150 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5151 * the kernel config
ba72cb8c 5152 */
15ca220e 5153void __paginginit set_pageblock_order(void)
ba72cb8c 5154{
ba72cb8c 5155}
d9c23400
MG
5156
5157#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5158
01cefaef
JL
5159static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5160 unsigned long present_pages)
5161{
5162 unsigned long pages = spanned_pages;
5163
5164 /*
5165 * Provide a more accurate estimation if there are holes within
5166 * the zone and SPARSEMEM is in use. If there are holes within the
5167 * zone, each populated memory region may cost us one or two extra
5168 * memmap pages due to alignment because memmap pages for each
5169 * populated regions may not naturally algined on page boundary.
5170 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5171 */
5172 if (spanned_pages > present_pages + (present_pages >> 4) &&
5173 IS_ENABLED(CONFIG_SPARSEMEM))
5174 pages = present_pages;
5175
5176 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5177}
5178
1da177e4
LT
5179/*
5180 * Set up the zone data structures:
5181 * - mark all pages reserved
5182 * - mark all memory queues empty
5183 * - clear the memory bitmaps
6527af5d
MK
5184 *
5185 * NOTE: pgdat should get zeroed by caller.
1da177e4 5186 */
b5a0e011 5187static void __paginginit free_area_init_core(struct pglist_data *pgdat,
febd5949 5188 unsigned long node_start_pfn, unsigned long node_end_pfn)
1da177e4 5189{
2f1b6248 5190 enum zone_type j;
ed8ece2e 5191 int nid = pgdat->node_id;
1da177e4 5192 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5193 int ret;
1da177e4 5194
208d54e5 5195 pgdat_resize_init(pgdat);
8177a420
AA
5196#ifdef CONFIG_NUMA_BALANCING
5197 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5198 pgdat->numabalancing_migrate_nr_pages = 0;
5199 pgdat->numabalancing_migrate_next_window = jiffies;
5200#endif
1da177e4 5201 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5202 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5203 pgdat_page_ext_init(pgdat);
5f63b720 5204
1da177e4
LT
5205 for (j = 0; j < MAX_NR_ZONES; j++) {
5206 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5207 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5208
febd5949
GZ
5209 size = zone->spanned_pages;
5210 realsize = freesize = zone->present_pages;
1da177e4 5211
0e0b864e 5212 /*
9feedc9d 5213 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5214 * is used by this zone for memmap. This affects the watermark
5215 * and per-cpu initialisations
5216 */
01cefaef 5217 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5218 if (!is_highmem_idx(j)) {
5219 if (freesize >= memmap_pages) {
5220 freesize -= memmap_pages;
5221 if (memmap_pages)
5222 printk(KERN_DEBUG
5223 " %s zone: %lu pages used for memmap\n",
5224 zone_names[j], memmap_pages);
5225 } else
5226 printk(KERN_WARNING
5227 " %s zone: %lu pages exceeds freesize %lu\n",
5228 zone_names[j], memmap_pages, freesize);
5229 }
0e0b864e 5230
6267276f 5231 /* Account for reserved pages */
9feedc9d
JL
5232 if (j == 0 && freesize > dma_reserve) {
5233 freesize -= dma_reserve;
d903ef9f 5234 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5235 zone_names[0], dma_reserve);
0e0b864e
MG
5236 }
5237
98d2b0eb 5238 if (!is_highmem_idx(j))
9feedc9d 5239 nr_kernel_pages += freesize;
01cefaef
JL
5240 /* Charge for highmem memmap if there are enough kernel pages */
5241 else if (nr_kernel_pages > memmap_pages * 2)
5242 nr_kernel_pages -= memmap_pages;
9feedc9d 5243 nr_all_pages += freesize;
1da177e4 5244
9feedc9d
JL
5245 /*
5246 * Set an approximate value for lowmem here, it will be adjusted
5247 * when the bootmem allocator frees pages into the buddy system.
5248 * And all highmem pages will be managed by the buddy system.
5249 */
5250 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5251#ifdef CONFIG_NUMA
d5f541ed 5252 zone->node = nid;
9feedc9d 5253 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5254 / 100;
9feedc9d 5255 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5256#endif
1da177e4
LT
5257 zone->name = zone_names[j];
5258 spin_lock_init(&zone->lock);
5259 spin_lock_init(&zone->lru_lock);
bdc8cb98 5260 zone_seqlock_init(zone);
1da177e4 5261 zone->zone_pgdat = pgdat;
ed8ece2e 5262 zone_pcp_init(zone);
81c0a2bb
JW
5263
5264 /* For bootup, initialized properly in watermark setup */
5265 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5266
bea8c150 5267 lruvec_init(&zone->lruvec);
1da177e4
LT
5268 if (!size)
5269 continue;
5270
955c1cd7 5271 set_pageblock_order();
7c45512d 5272 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5273 ret = init_currently_empty_zone(zone, zone_start_pfn,
5274 size, MEMMAP_EARLY);
718127cc 5275 BUG_ON(ret);
76cdd58e 5276 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5277 zone_start_pfn += size;
1da177e4
LT
5278 }
5279}
5280
577a32f6 5281static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5282{
1da177e4
LT
5283 /* Skip empty nodes */
5284 if (!pgdat->node_spanned_pages)
5285 return;
5286
d41dee36 5287#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5288 /* ia64 gets its own node_mem_map, before this, without bootmem */
5289 if (!pgdat->node_mem_map) {
e984bb43 5290 unsigned long size, start, end;
d41dee36
AW
5291 struct page *map;
5292
e984bb43
BP
5293 /*
5294 * The zone's endpoints aren't required to be MAX_ORDER
5295 * aligned but the node_mem_map endpoints must be in order
5296 * for the buddy allocator to function correctly.
5297 */
5298 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5299 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5300 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5301 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5302 map = alloc_remap(pgdat->node_id, size);
5303 if (!map)
6782832e
SS
5304 map = memblock_virt_alloc_node_nopanic(size,
5305 pgdat->node_id);
e984bb43 5306 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5307 }
12d810c1 5308#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5309 /*
5310 * With no DISCONTIG, the global mem_map is just set as node 0's
5311 */
c713216d 5312 if (pgdat == NODE_DATA(0)) {
1da177e4 5313 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5314#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5315 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5316 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5317#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5318 }
1da177e4 5319#endif
d41dee36 5320#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5321}
5322
9109fb7b
JW
5323void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5324 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5325{
9109fb7b 5326 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5327 unsigned long start_pfn = 0;
5328 unsigned long end_pfn = 0;
9109fb7b 5329
88fdf75d 5330 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5331 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5332
3a80a7fa 5333 reset_deferred_meminit(pgdat);
1da177e4
LT
5334 pgdat->node_id = nid;
5335 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5336#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5337 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5338 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5339 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5340#endif
5341 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5342 zones_size, zholes_size);
1da177e4
LT
5343
5344 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5345#ifdef CONFIG_FLAT_NODE_MEM_MAP
5346 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5347 nid, (unsigned long)pgdat,
5348 (unsigned long)pgdat->node_mem_map);
5349#endif
1da177e4 5350
febd5949 5351 free_area_init_core(pgdat, start_pfn, end_pfn);
1da177e4
LT
5352}
5353
0ee332c1 5354#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5355
5356#if MAX_NUMNODES > 1
5357/*
5358 * Figure out the number of possible node ids.
5359 */
f9872caf 5360void __init setup_nr_node_ids(void)
418508c1
MS
5361{
5362 unsigned int node;
5363 unsigned int highest = 0;
5364
5365 for_each_node_mask(node, node_possible_map)
5366 highest = node;
5367 nr_node_ids = highest + 1;
5368}
418508c1
MS
5369#endif
5370
1e01979c
TH
5371/**
5372 * node_map_pfn_alignment - determine the maximum internode alignment
5373 *
5374 * This function should be called after node map is populated and sorted.
5375 * It calculates the maximum power of two alignment which can distinguish
5376 * all the nodes.
5377 *
5378 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5379 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5380 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5381 * shifted, 1GiB is enough and this function will indicate so.
5382 *
5383 * This is used to test whether pfn -> nid mapping of the chosen memory
5384 * model has fine enough granularity to avoid incorrect mapping for the
5385 * populated node map.
5386 *
5387 * Returns the determined alignment in pfn's. 0 if there is no alignment
5388 * requirement (single node).
5389 */
5390unsigned long __init node_map_pfn_alignment(void)
5391{
5392 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5393 unsigned long start, end, mask;
1e01979c 5394 int last_nid = -1;
c13291a5 5395 int i, nid;
1e01979c 5396
c13291a5 5397 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5398 if (!start || last_nid < 0 || last_nid == nid) {
5399 last_nid = nid;
5400 last_end = end;
5401 continue;
5402 }
5403
5404 /*
5405 * Start with a mask granular enough to pin-point to the
5406 * start pfn and tick off bits one-by-one until it becomes
5407 * too coarse to separate the current node from the last.
5408 */
5409 mask = ~((1 << __ffs(start)) - 1);
5410 while (mask && last_end <= (start & (mask << 1)))
5411 mask <<= 1;
5412
5413 /* accumulate all internode masks */
5414 accl_mask |= mask;
5415 }
5416
5417 /* convert mask to number of pages */
5418 return ~accl_mask + 1;
5419}
5420
a6af2bc3 5421/* Find the lowest pfn for a node */
b69a7288 5422static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5423{
a6af2bc3 5424 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5425 unsigned long start_pfn;
5426 int i;
1abbfb41 5427
c13291a5
TH
5428 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5429 min_pfn = min(min_pfn, start_pfn);
c713216d 5430
a6af2bc3
MG
5431 if (min_pfn == ULONG_MAX) {
5432 printk(KERN_WARNING
2bc0d261 5433 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5434 return 0;
5435 }
5436
5437 return min_pfn;
c713216d
MG
5438}
5439
5440/**
5441 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5442 *
5443 * It returns the minimum PFN based on information provided via
7d018176 5444 * memblock_set_node().
c713216d
MG
5445 */
5446unsigned long __init find_min_pfn_with_active_regions(void)
5447{
5448 return find_min_pfn_for_node(MAX_NUMNODES);
5449}
5450
37b07e41
LS
5451/*
5452 * early_calculate_totalpages()
5453 * Sum pages in active regions for movable zone.
4b0ef1fe 5454 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5455 */
484f51f8 5456static unsigned long __init early_calculate_totalpages(void)
7e63efef 5457{
7e63efef 5458 unsigned long totalpages = 0;
c13291a5
TH
5459 unsigned long start_pfn, end_pfn;
5460 int i, nid;
5461
5462 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5463 unsigned long pages = end_pfn - start_pfn;
7e63efef 5464
37b07e41
LS
5465 totalpages += pages;
5466 if (pages)
4b0ef1fe 5467 node_set_state(nid, N_MEMORY);
37b07e41 5468 }
b8af2941 5469 return totalpages;
7e63efef
MG
5470}
5471
2a1e274a
MG
5472/*
5473 * Find the PFN the Movable zone begins in each node. Kernel memory
5474 * is spread evenly between nodes as long as the nodes have enough
5475 * memory. When they don't, some nodes will have more kernelcore than
5476 * others
5477 */
b224ef85 5478static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5479{
5480 int i, nid;
5481 unsigned long usable_startpfn;
5482 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5483 /* save the state before borrow the nodemask */
4b0ef1fe 5484 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5485 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5486 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5487 struct memblock_region *r;
b2f3eebe
TC
5488
5489 /* Need to find movable_zone earlier when movable_node is specified. */
5490 find_usable_zone_for_movable();
5491
5492 /*
5493 * If movable_node is specified, ignore kernelcore and movablecore
5494 * options.
5495 */
5496 if (movable_node_is_enabled()) {
136199f0
EM
5497 for_each_memblock(memory, r) {
5498 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5499 continue;
5500
136199f0 5501 nid = r->nid;
b2f3eebe 5502
136199f0 5503 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5504 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5505 min(usable_startpfn, zone_movable_pfn[nid]) :
5506 usable_startpfn;
5507 }
5508
5509 goto out2;
5510 }
2a1e274a 5511
7e63efef 5512 /*
b2f3eebe 5513 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5514 * kernelcore that corresponds so that memory usable for
5515 * any allocation type is evenly spread. If both kernelcore
5516 * and movablecore are specified, then the value of kernelcore
5517 * will be used for required_kernelcore if it's greater than
5518 * what movablecore would have allowed.
5519 */
5520 if (required_movablecore) {
7e63efef
MG
5521 unsigned long corepages;
5522
5523 /*
5524 * Round-up so that ZONE_MOVABLE is at least as large as what
5525 * was requested by the user
5526 */
5527 required_movablecore =
5528 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5529 corepages = totalpages - required_movablecore;
5530
5531 required_kernelcore = max(required_kernelcore, corepages);
5532 }
5533
20e6926d
YL
5534 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5535 if (!required_kernelcore)
66918dcd 5536 goto out;
2a1e274a
MG
5537
5538 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5539 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5540
5541restart:
5542 /* Spread kernelcore memory as evenly as possible throughout nodes */
5543 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5544 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5545 unsigned long start_pfn, end_pfn;
5546
2a1e274a
MG
5547 /*
5548 * Recalculate kernelcore_node if the division per node
5549 * now exceeds what is necessary to satisfy the requested
5550 * amount of memory for the kernel
5551 */
5552 if (required_kernelcore < kernelcore_node)
5553 kernelcore_node = required_kernelcore / usable_nodes;
5554
5555 /*
5556 * As the map is walked, we track how much memory is usable
5557 * by the kernel using kernelcore_remaining. When it is
5558 * 0, the rest of the node is usable by ZONE_MOVABLE
5559 */
5560 kernelcore_remaining = kernelcore_node;
5561
5562 /* Go through each range of PFNs within this node */
c13291a5 5563 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5564 unsigned long size_pages;
5565
c13291a5 5566 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5567 if (start_pfn >= end_pfn)
5568 continue;
5569
5570 /* Account for what is only usable for kernelcore */
5571 if (start_pfn < usable_startpfn) {
5572 unsigned long kernel_pages;
5573 kernel_pages = min(end_pfn, usable_startpfn)
5574 - start_pfn;
5575
5576 kernelcore_remaining -= min(kernel_pages,
5577 kernelcore_remaining);
5578 required_kernelcore -= min(kernel_pages,
5579 required_kernelcore);
5580
5581 /* Continue if range is now fully accounted */
5582 if (end_pfn <= usable_startpfn) {
5583
5584 /*
5585 * Push zone_movable_pfn to the end so
5586 * that if we have to rebalance
5587 * kernelcore across nodes, we will
5588 * not double account here
5589 */
5590 zone_movable_pfn[nid] = end_pfn;
5591 continue;
5592 }
5593 start_pfn = usable_startpfn;
5594 }
5595
5596 /*
5597 * The usable PFN range for ZONE_MOVABLE is from
5598 * start_pfn->end_pfn. Calculate size_pages as the
5599 * number of pages used as kernelcore
5600 */
5601 size_pages = end_pfn - start_pfn;
5602 if (size_pages > kernelcore_remaining)
5603 size_pages = kernelcore_remaining;
5604 zone_movable_pfn[nid] = start_pfn + size_pages;
5605
5606 /*
5607 * Some kernelcore has been met, update counts and
5608 * break if the kernelcore for this node has been
b8af2941 5609 * satisfied
2a1e274a
MG
5610 */
5611 required_kernelcore -= min(required_kernelcore,
5612 size_pages);
5613 kernelcore_remaining -= size_pages;
5614 if (!kernelcore_remaining)
5615 break;
5616 }
5617 }
5618
5619 /*
5620 * If there is still required_kernelcore, we do another pass with one
5621 * less node in the count. This will push zone_movable_pfn[nid] further
5622 * along on the nodes that still have memory until kernelcore is
b8af2941 5623 * satisfied
2a1e274a
MG
5624 */
5625 usable_nodes--;
5626 if (usable_nodes && required_kernelcore > usable_nodes)
5627 goto restart;
5628
b2f3eebe 5629out2:
2a1e274a
MG
5630 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5631 for (nid = 0; nid < MAX_NUMNODES; nid++)
5632 zone_movable_pfn[nid] =
5633 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5634
20e6926d 5635out:
66918dcd 5636 /* restore the node_state */
4b0ef1fe 5637 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5638}
5639
4b0ef1fe
LJ
5640/* Any regular or high memory on that node ? */
5641static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5642{
37b07e41
LS
5643 enum zone_type zone_type;
5644
4b0ef1fe
LJ
5645 if (N_MEMORY == N_NORMAL_MEMORY)
5646 return;
5647
5648 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5649 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5650 if (populated_zone(zone)) {
4b0ef1fe
LJ
5651 node_set_state(nid, N_HIGH_MEMORY);
5652 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5653 zone_type <= ZONE_NORMAL)
5654 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5655 break;
5656 }
37b07e41 5657 }
37b07e41
LS
5658}
5659
c713216d
MG
5660/**
5661 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5662 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5663 *
5664 * This will call free_area_init_node() for each active node in the system.
7d018176 5665 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5666 * zone in each node and their holes is calculated. If the maximum PFN
5667 * between two adjacent zones match, it is assumed that the zone is empty.
5668 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5669 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5670 * starts where the previous one ended. For example, ZONE_DMA32 starts
5671 * at arch_max_dma_pfn.
5672 */
5673void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5674{
c13291a5
TH
5675 unsigned long start_pfn, end_pfn;
5676 int i, nid;
a6af2bc3 5677
c713216d
MG
5678 /* Record where the zone boundaries are */
5679 memset(arch_zone_lowest_possible_pfn, 0,
5680 sizeof(arch_zone_lowest_possible_pfn));
5681 memset(arch_zone_highest_possible_pfn, 0,
5682 sizeof(arch_zone_highest_possible_pfn));
5683 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5684 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5685 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5686 if (i == ZONE_MOVABLE)
5687 continue;
c713216d
MG
5688 arch_zone_lowest_possible_pfn[i] =
5689 arch_zone_highest_possible_pfn[i-1];
5690 arch_zone_highest_possible_pfn[i] =
5691 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5692 }
2a1e274a
MG
5693 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5694 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5695
5696 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5697 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5698 find_zone_movable_pfns_for_nodes();
c713216d 5699
c713216d 5700 /* Print out the zone ranges */
f88dfff5 5701 pr_info("Zone ranges:\n");
2a1e274a
MG
5702 for (i = 0; i < MAX_NR_ZONES; i++) {
5703 if (i == ZONE_MOVABLE)
5704 continue;
f88dfff5 5705 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5706 if (arch_zone_lowest_possible_pfn[i] ==
5707 arch_zone_highest_possible_pfn[i])
f88dfff5 5708 pr_cont("empty\n");
72f0ba02 5709 else
8d29e18a
JG
5710 pr_cont("[mem %#018Lx-%#018Lx]\n",
5711 (u64)arch_zone_lowest_possible_pfn[i]
5712 << PAGE_SHIFT,
5713 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5714 << PAGE_SHIFT) - 1);
2a1e274a
MG
5715 }
5716
5717 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5718 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5719 for (i = 0; i < MAX_NUMNODES; i++) {
5720 if (zone_movable_pfn[i])
8d29e18a
JG
5721 pr_info(" Node %d: %#018Lx\n", i,
5722 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5723 }
c713216d 5724
f2d52fe5 5725 /* Print out the early node map */
f88dfff5 5726 pr_info("Early memory node ranges\n");
c13291a5 5727 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5728 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5729 (u64)start_pfn << PAGE_SHIFT,
5730 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5731
5732 /* Initialise every node */
708614e6 5733 mminit_verify_pageflags_layout();
8ef82866 5734 setup_nr_node_ids();
c713216d
MG
5735 for_each_online_node(nid) {
5736 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5737 free_area_init_node(nid, NULL,
c713216d 5738 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5739
5740 /* Any memory on that node */
5741 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5742 node_set_state(nid, N_MEMORY);
5743 check_for_memory(pgdat, nid);
c713216d
MG
5744 }
5745}
2a1e274a 5746
7e63efef 5747static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5748{
5749 unsigned long long coremem;
5750 if (!p)
5751 return -EINVAL;
5752
5753 coremem = memparse(p, &p);
7e63efef 5754 *core = coremem >> PAGE_SHIFT;
2a1e274a 5755
7e63efef 5756 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5757 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5758
5759 return 0;
5760}
ed7ed365 5761
7e63efef
MG
5762/*
5763 * kernelcore=size sets the amount of memory for use for allocations that
5764 * cannot be reclaimed or migrated.
5765 */
5766static int __init cmdline_parse_kernelcore(char *p)
5767{
5768 return cmdline_parse_core(p, &required_kernelcore);
5769}
5770
5771/*
5772 * movablecore=size sets the amount of memory for use for allocations that
5773 * can be reclaimed or migrated.
5774 */
5775static int __init cmdline_parse_movablecore(char *p)
5776{
5777 return cmdline_parse_core(p, &required_movablecore);
5778}
5779
ed7ed365 5780early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5781early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5782
0ee332c1 5783#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5784
c3d5f5f0
JL
5785void adjust_managed_page_count(struct page *page, long count)
5786{
5787 spin_lock(&managed_page_count_lock);
5788 page_zone(page)->managed_pages += count;
5789 totalram_pages += count;
3dcc0571
JL
5790#ifdef CONFIG_HIGHMEM
5791 if (PageHighMem(page))
5792 totalhigh_pages += count;
5793#endif
c3d5f5f0
JL
5794 spin_unlock(&managed_page_count_lock);
5795}
3dcc0571 5796EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5797
11199692 5798unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5799{
11199692
JL
5800 void *pos;
5801 unsigned long pages = 0;
69afade7 5802
11199692
JL
5803 start = (void *)PAGE_ALIGN((unsigned long)start);
5804 end = (void *)((unsigned long)end & PAGE_MASK);
5805 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5806 if ((unsigned int)poison <= 0xFF)
11199692
JL
5807 memset(pos, poison, PAGE_SIZE);
5808 free_reserved_page(virt_to_page(pos));
69afade7
JL
5809 }
5810
5811 if (pages && s)
11199692 5812 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5813 s, pages << (PAGE_SHIFT - 10), start, end);
5814
5815 return pages;
5816}
11199692 5817EXPORT_SYMBOL(free_reserved_area);
69afade7 5818
cfa11e08
JL
5819#ifdef CONFIG_HIGHMEM
5820void free_highmem_page(struct page *page)
5821{
5822 __free_reserved_page(page);
5823 totalram_pages++;
7b4b2a0d 5824 page_zone(page)->managed_pages++;
cfa11e08
JL
5825 totalhigh_pages++;
5826}
5827#endif
5828
7ee3d4e8
JL
5829
5830void __init mem_init_print_info(const char *str)
5831{
5832 unsigned long physpages, codesize, datasize, rosize, bss_size;
5833 unsigned long init_code_size, init_data_size;
5834
5835 physpages = get_num_physpages();
5836 codesize = _etext - _stext;
5837 datasize = _edata - _sdata;
5838 rosize = __end_rodata - __start_rodata;
5839 bss_size = __bss_stop - __bss_start;
5840 init_data_size = __init_end - __init_begin;
5841 init_code_size = _einittext - _sinittext;
5842
5843 /*
5844 * Detect special cases and adjust section sizes accordingly:
5845 * 1) .init.* may be embedded into .data sections
5846 * 2) .init.text.* may be out of [__init_begin, __init_end],
5847 * please refer to arch/tile/kernel/vmlinux.lds.S.
5848 * 3) .rodata.* may be embedded into .text or .data sections.
5849 */
5850#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5851 do { \
5852 if (start <= pos && pos < end && size > adj) \
5853 size -= adj; \
5854 } while (0)
7ee3d4e8
JL
5855
5856 adj_init_size(__init_begin, __init_end, init_data_size,
5857 _sinittext, init_code_size);
5858 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5859 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5860 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5861 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5862
5863#undef adj_init_size
5864
f88dfff5 5865 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5866 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5867 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5868#ifdef CONFIG_HIGHMEM
5869 ", %luK highmem"
5870#endif
5871 "%s%s)\n",
5872 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5873 codesize >> 10, datasize >> 10, rosize >> 10,
5874 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5875 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5876 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5877#ifdef CONFIG_HIGHMEM
5878 totalhigh_pages << (PAGE_SHIFT-10),
5879#endif
5880 str ? ", " : "", str ? str : "");
5881}
5882
0e0b864e 5883/**
88ca3b94
RD
5884 * set_dma_reserve - set the specified number of pages reserved in the first zone
5885 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5886 *
5887 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5888 * In the DMA zone, a significant percentage may be consumed by kernel image
5889 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5890 * function may optionally be used to account for unfreeable pages in the
5891 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5892 * smaller per-cpu batchsize.
0e0b864e
MG
5893 */
5894void __init set_dma_reserve(unsigned long new_dma_reserve)
5895{
5896 dma_reserve = new_dma_reserve;
5897}
5898
1da177e4
LT
5899void __init free_area_init(unsigned long *zones_size)
5900{
9109fb7b 5901 free_area_init_node(0, zones_size,
1da177e4
LT
5902 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5903}
1da177e4 5904
1da177e4
LT
5905static int page_alloc_cpu_notify(struct notifier_block *self,
5906 unsigned long action, void *hcpu)
5907{
5908 int cpu = (unsigned long)hcpu;
1da177e4 5909
8bb78442 5910 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5911 lru_add_drain_cpu(cpu);
9f8f2172
CL
5912 drain_pages(cpu);
5913
5914 /*
5915 * Spill the event counters of the dead processor
5916 * into the current processors event counters.
5917 * This artificially elevates the count of the current
5918 * processor.
5919 */
f8891e5e 5920 vm_events_fold_cpu(cpu);
9f8f2172
CL
5921
5922 /*
5923 * Zero the differential counters of the dead processor
5924 * so that the vm statistics are consistent.
5925 *
5926 * This is only okay since the processor is dead and cannot
5927 * race with what we are doing.
5928 */
2bb921e5 5929 cpu_vm_stats_fold(cpu);
1da177e4
LT
5930 }
5931 return NOTIFY_OK;
5932}
1da177e4
LT
5933
5934void __init page_alloc_init(void)
5935{
5936 hotcpu_notifier(page_alloc_cpu_notify, 0);
5937}
5938
cb45b0e9
HA
5939/*
5940 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5941 * or min_free_kbytes changes.
5942 */
5943static void calculate_totalreserve_pages(void)
5944{
5945 struct pglist_data *pgdat;
5946 unsigned long reserve_pages = 0;
2f6726e5 5947 enum zone_type i, j;
cb45b0e9
HA
5948
5949 for_each_online_pgdat(pgdat) {
5950 for (i = 0; i < MAX_NR_ZONES; i++) {
5951 struct zone *zone = pgdat->node_zones + i;
3484b2de 5952 long max = 0;
cb45b0e9
HA
5953
5954 /* Find valid and maximum lowmem_reserve in the zone */
5955 for (j = i; j < MAX_NR_ZONES; j++) {
5956 if (zone->lowmem_reserve[j] > max)
5957 max = zone->lowmem_reserve[j];
5958 }
5959
41858966
MG
5960 /* we treat the high watermark as reserved pages. */
5961 max += high_wmark_pages(zone);
cb45b0e9 5962
b40da049
JL
5963 if (max > zone->managed_pages)
5964 max = zone->managed_pages;
cb45b0e9 5965 reserve_pages += max;
ab8fabd4
JW
5966 /*
5967 * Lowmem reserves are not available to
5968 * GFP_HIGHUSER page cache allocations and
5969 * kswapd tries to balance zones to their high
5970 * watermark. As a result, neither should be
5971 * regarded as dirtyable memory, to prevent a
5972 * situation where reclaim has to clean pages
5973 * in order to balance the zones.
5974 */
5975 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5976 }
5977 }
ab8fabd4 5978 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5979 totalreserve_pages = reserve_pages;
5980}
5981
1da177e4
LT
5982/*
5983 * setup_per_zone_lowmem_reserve - called whenever
5984 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5985 * has a correct pages reserved value, so an adequate number of
5986 * pages are left in the zone after a successful __alloc_pages().
5987 */
5988static void setup_per_zone_lowmem_reserve(void)
5989{
5990 struct pglist_data *pgdat;
2f6726e5 5991 enum zone_type j, idx;
1da177e4 5992
ec936fc5 5993 for_each_online_pgdat(pgdat) {
1da177e4
LT
5994 for (j = 0; j < MAX_NR_ZONES; j++) {
5995 struct zone *zone = pgdat->node_zones + j;
b40da049 5996 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5997
5998 zone->lowmem_reserve[j] = 0;
5999
2f6726e5
CL
6000 idx = j;
6001 while (idx) {
1da177e4
LT
6002 struct zone *lower_zone;
6003
2f6726e5
CL
6004 idx--;
6005
1da177e4
LT
6006 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6007 sysctl_lowmem_reserve_ratio[idx] = 1;
6008
6009 lower_zone = pgdat->node_zones + idx;
b40da049 6010 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6011 sysctl_lowmem_reserve_ratio[idx];
b40da049 6012 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6013 }
6014 }
6015 }
cb45b0e9
HA
6016
6017 /* update totalreserve_pages */
6018 calculate_totalreserve_pages();
1da177e4
LT
6019}
6020
cfd3da1e 6021static void __setup_per_zone_wmarks(void)
1da177e4
LT
6022{
6023 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6024 unsigned long lowmem_pages = 0;
6025 struct zone *zone;
6026 unsigned long flags;
6027
6028 /* Calculate total number of !ZONE_HIGHMEM pages */
6029 for_each_zone(zone) {
6030 if (!is_highmem(zone))
b40da049 6031 lowmem_pages += zone->managed_pages;
1da177e4
LT
6032 }
6033
6034 for_each_zone(zone) {
ac924c60
AM
6035 u64 tmp;
6036
1125b4e3 6037 spin_lock_irqsave(&zone->lock, flags);
b40da049 6038 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6039 do_div(tmp, lowmem_pages);
1da177e4
LT
6040 if (is_highmem(zone)) {
6041 /*
669ed175
NP
6042 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6043 * need highmem pages, so cap pages_min to a small
6044 * value here.
6045 *
41858966 6046 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6047 * deltas control asynch page reclaim, and so should
669ed175 6048 * not be capped for highmem.
1da177e4 6049 */
90ae8d67 6050 unsigned long min_pages;
1da177e4 6051
b40da049 6052 min_pages = zone->managed_pages / 1024;
90ae8d67 6053 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6054 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6055 } else {
669ed175
NP
6056 /*
6057 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6058 * proportionate to the zone's size.
6059 */
41858966 6060 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6061 }
6062
41858966
MG
6063 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6064 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6065
81c0a2bb 6066 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6067 high_wmark_pages(zone) - low_wmark_pages(zone) -
6068 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6069
56fd56b8 6070 setup_zone_migrate_reserve(zone);
1125b4e3 6071 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6072 }
cb45b0e9
HA
6073
6074 /* update totalreserve_pages */
6075 calculate_totalreserve_pages();
1da177e4
LT
6076}
6077
cfd3da1e
MG
6078/**
6079 * setup_per_zone_wmarks - called when min_free_kbytes changes
6080 * or when memory is hot-{added|removed}
6081 *
6082 * Ensures that the watermark[min,low,high] values for each zone are set
6083 * correctly with respect to min_free_kbytes.
6084 */
6085void setup_per_zone_wmarks(void)
6086{
6087 mutex_lock(&zonelists_mutex);
6088 __setup_per_zone_wmarks();
6089 mutex_unlock(&zonelists_mutex);
6090}
6091
55a4462a 6092/*
556adecb
RR
6093 * The inactive anon list should be small enough that the VM never has to
6094 * do too much work, but large enough that each inactive page has a chance
6095 * to be referenced again before it is swapped out.
6096 *
6097 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6098 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6099 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6100 * the anonymous pages are kept on the inactive list.
6101 *
6102 * total target max
6103 * memory ratio inactive anon
6104 * -------------------------------------
6105 * 10MB 1 5MB
6106 * 100MB 1 50MB
6107 * 1GB 3 250MB
6108 * 10GB 10 0.9GB
6109 * 100GB 31 3GB
6110 * 1TB 101 10GB
6111 * 10TB 320 32GB
6112 */
1b79acc9 6113static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6114{
96cb4df5 6115 unsigned int gb, ratio;
556adecb 6116
96cb4df5 6117 /* Zone size in gigabytes */
b40da049 6118 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6119 if (gb)
556adecb 6120 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6121 else
6122 ratio = 1;
556adecb 6123
96cb4df5
MK
6124 zone->inactive_ratio = ratio;
6125}
556adecb 6126
839a4fcc 6127static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6128{
6129 struct zone *zone;
6130
6131 for_each_zone(zone)
6132 calculate_zone_inactive_ratio(zone);
556adecb
RR
6133}
6134
1da177e4
LT
6135/*
6136 * Initialise min_free_kbytes.
6137 *
6138 * For small machines we want it small (128k min). For large machines
6139 * we want it large (64MB max). But it is not linear, because network
6140 * bandwidth does not increase linearly with machine size. We use
6141 *
b8af2941 6142 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6143 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6144 *
6145 * which yields
6146 *
6147 * 16MB: 512k
6148 * 32MB: 724k
6149 * 64MB: 1024k
6150 * 128MB: 1448k
6151 * 256MB: 2048k
6152 * 512MB: 2896k
6153 * 1024MB: 4096k
6154 * 2048MB: 5792k
6155 * 4096MB: 8192k
6156 * 8192MB: 11584k
6157 * 16384MB: 16384k
6158 */
1b79acc9 6159int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6160{
6161 unsigned long lowmem_kbytes;
5f12733e 6162 int new_min_free_kbytes;
1da177e4
LT
6163
6164 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6165 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6166
6167 if (new_min_free_kbytes > user_min_free_kbytes) {
6168 min_free_kbytes = new_min_free_kbytes;
6169 if (min_free_kbytes < 128)
6170 min_free_kbytes = 128;
6171 if (min_free_kbytes > 65536)
6172 min_free_kbytes = 65536;
6173 } else {
6174 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6175 new_min_free_kbytes, user_min_free_kbytes);
6176 }
bc75d33f 6177 setup_per_zone_wmarks();
a6cccdc3 6178 refresh_zone_stat_thresholds();
1da177e4 6179 setup_per_zone_lowmem_reserve();
556adecb 6180 setup_per_zone_inactive_ratio();
1da177e4
LT
6181 return 0;
6182}
bc75d33f 6183module_init(init_per_zone_wmark_min)
1da177e4
LT
6184
6185/*
b8af2941 6186 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6187 * that we can call two helper functions whenever min_free_kbytes
6188 * changes.
6189 */
cccad5b9 6190int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6191 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6192{
da8c757b
HP
6193 int rc;
6194
6195 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6196 if (rc)
6197 return rc;
6198
5f12733e
MH
6199 if (write) {
6200 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6201 setup_per_zone_wmarks();
5f12733e 6202 }
1da177e4
LT
6203 return 0;
6204}
6205
9614634f 6206#ifdef CONFIG_NUMA
cccad5b9 6207int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6208 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6209{
6210 struct zone *zone;
6211 int rc;
6212
8d65af78 6213 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6214 if (rc)
6215 return rc;
6216
6217 for_each_zone(zone)
b40da049 6218 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6219 sysctl_min_unmapped_ratio) / 100;
6220 return 0;
6221}
0ff38490 6222
cccad5b9 6223int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6224 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6225{
6226 struct zone *zone;
6227 int rc;
6228
8d65af78 6229 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6230 if (rc)
6231 return rc;
6232
6233 for_each_zone(zone)
b40da049 6234 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6235 sysctl_min_slab_ratio) / 100;
6236 return 0;
6237}
9614634f
CL
6238#endif
6239
1da177e4
LT
6240/*
6241 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6242 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6243 * whenever sysctl_lowmem_reserve_ratio changes.
6244 *
6245 * The reserve ratio obviously has absolutely no relation with the
41858966 6246 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6247 * if in function of the boot time zone sizes.
6248 */
cccad5b9 6249int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6250 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6251{
8d65af78 6252 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6253 setup_per_zone_lowmem_reserve();
6254 return 0;
6255}
6256
8ad4b1fb
RS
6257/*
6258 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6259 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6260 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6261 */
cccad5b9 6262int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6263 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6264{
6265 struct zone *zone;
7cd2b0a3 6266 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6267 int ret;
6268
7cd2b0a3
DR
6269 mutex_lock(&pcp_batch_high_lock);
6270 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6271
8d65af78 6272 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6273 if (!write || ret < 0)
6274 goto out;
6275
6276 /* Sanity checking to avoid pcp imbalance */
6277 if (percpu_pagelist_fraction &&
6278 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6279 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6280 ret = -EINVAL;
6281 goto out;
6282 }
6283
6284 /* No change? */
6285 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6286 goto out;
c8e251fa 6287
364df0eb 6288 for_each_populated_zone(zone) {
7cd2b0a3
DR
6289 unsigned int cpu;
6290
22a7f12b 6291 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6292 pageset_set_high_and_batch(zone,
6293 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6294 }
7cd2b0a3 6295out:
c8e251fa 6296 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6297 return ret;
8ad4b1fb
RS
6298}
6299
a9919c79 6300#ifdef CONFIG_NUMA
f034b5d4 6301int hashdist = HASHDIST_DEFAULT;
1da177e4 6302
1da177e4
LT
6303static int __init set_hashdist(char *str)
6304{
6305 if (!str)
6306 return 0;
6307 hashdist = simple_strtoul(str, &str, 0);
6308 return 1;
6309}
6310__setup("hashdist=", set_hashdist);
6311#endif
6312
6313/*
6314 * allocate a large system hash table from bootmem
6315 * - it is assumed that the hash table must contain an exact power-of-2
6316 * quantity of entries
6317 * - limit is the number of hash buckets, not the total allocation size
6318 */
6319void *__init alloc_large_system_hash(const char *tablename,
6320 unsigned long bucketsize,
6321 unsigned long numentries,
6322 int scale,
6323 int flags,
6324 unsigned int *_hash_shift,
6325 unsigned int *_hash_mask,
31fe62b9
TB
6326 unsigned long low_limit,
6327 unsigned long high_limit)
1da177e4 6328{
31fe62b9 6329 unsigned long long max = high_limit;
1da177e4
LT
6330 unsigned long log2qty, size;
6331 void *table = NULL;
6332
6333 /* allow the kernel cmdline to have a say */
6334 if (!numentries) {
6335 /* round applicable memory size up to nearest megabyte */
04903664 6336 numentries = nr_kernel_pages;
a7e83318
JZ
6337
6338 /* It isn't necessary when PAGE_SIZE >= 1MB */
6339 if (PAGE_SHIFT < 20)
6340 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6341
6342 /* limit to 1 bucket per 2^scale bytes of low memory */
6343 if (scale > PAGE_SHIFT)
6344 numentries >>= (scale - PAGE_SHIFT);
6345 else
6346 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6347
6348 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6349 if (unlikely(flags & HASH_SMALL)) {
6350 /* Makes no sense without HASH_EARLY */
6351 WARN_ON(!(flags & HASH_EARLY));
6352 if (!(numentries >> *_hash_shift)) {
6353 numentries = 1UL << *_hash_shift;
6354 BUG_ON(!numentries);
6355 }
6356 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6357 numentries = PAGE_SIZE / bucketsize;
1da177e4 6358 }
6e692ed3 6359 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6360
6361 /* limit allocation size to 1/16 total memory by default */
6362 if (max == 0) {
6363 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6364 do_div(max, bucketsize);
6365 }
074b8517 6366 max = min(max, 0x80000000ULL);
1da177e4 6367
31fe62b9
TB
6368 if (numentries < low_limit)
6369 numentries = low_limit;
1da177e4
LT
6370 if (numentries > max)
6371 numentries = max;
6372
f0d1b0b3 6373 log2qty = ilog2(numentries);
1da177e4
LT
6374
6375 do {
6376 size = bucketsize << log2qty;
6377 if (flags & HASH_EARLY)
6782832e 6378 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6379 else if (hashdist)
6380 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6381 else {
1037b83b
ED
6382 /*
6383 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6384 * some pages at the end of hash table which
6385 * alloc_pages_exact() automatically does
1037b83b 6386 */
264ef8a9 6387 if (get_order(size) < MAX_ORDER) {
a1dd268c 6388 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6389 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6390 }
1da177e4
LT
6391 }
6392 } while (!table && size > PAGE_SIZE && --log2qty);
6393
6394 if (!table)
6395 panic("Failed to allocate %s hash table\n", tablename);
6396
f241e660 6397 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6398 tablename,
f241e660 6399 (1UL << log2qty),
f0d1b0b3 6400 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6401 size);
6402
6403 if (_hash_shift)
6404 *_hash_shift = log2qty;
6405 if (_hash_mask)
6406 *_hash_mask = (1 << log2qty) - 1;
6407
6408 return table;
6409}
a117e66e 6410
835c134e
MG
6411/* Return a pointer to the bitmap storing bits affecting a block of pages */
6412static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6413 unsigned long pfn)
6414{
6415#ifdef CONFIG_SPARSEMEM
6416 return __pfn_to_section(pfn)->pageblock_flags;
6417#else
6418 return zone->pageblock_flags;
6419#endif /* CONFIG_SPARSEMEM */
6420}
6421
6422static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6423{
6424#ifdef CONFIG_SPARSEMEM
6425 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6426 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6427#else
c060f943 6428 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6429 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6430#endif /* CONFIG_SPARSEMEM */
6431}
6432
6433/**
1aab4d77 6434 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6435 * @page: The page within the block of interest
1aab4d77
RD
6436 * @pfn: The target page frame number
6437 * @end_bitidx: The last bit of interest to retrieve
6438 * @mask: mask of bits that the caller is interested in
6439 *
6440 * Return: pageblock_bits flags
835c134e 6441 */
dc4b0caf 6442unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6443 unsigned long end_bitidx,
6444 unsigned long mask)
835c134e
MG
6445{
6446 struct zone *zone;
6447 unsigned long *bitmap;
dc4b0caf 6448 unsigned long bitidx, word_bitidx;
e58469ba 6449 unsigned long word;
835c134e
MG
6450
6451 zone = page_zone(page);
835c134e
MG
6452 bitmap = get_pageblock_bitmap(zone, pfn);
6453 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6454 word_bitidx = bitidx / BITS_PER_LONG;
6455 bitidx &= (BITS_PER_LONG-1);
835c134e 6456
e58469ba
MG
6457 word = bitmap[word_bitidx];
6458 bitidx += end_bitidx;
6459 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6460}
6461
6462/**
dc4b0caf 6463 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6464 * @page: The page within the block of interest
835c134e 6465 * @flags: The flags to set
1aab4d77
RD
6466 * @pfn: The target page frame number
6467 * @end_bitidx: The last bit of interest
6468 * @mask: mask of bits that the caller is interested in
835c134e 6469 */
dc4b0caf
MG
6470void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6471 unsigned long pfn,
e58469ba
MG
6472 unsigned long end_bitidx,
6473 unsigned long mask)
835c134e
MG
6474{
6475 struct zone *zone;
6476 unsigned long *bitmap;
dc4b0caf 6477 unsigned long bitidx, word_bitidx;
e58469ba
MG
6478 unsigned long old_word, word;
6479
6480 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6481
6482 zone = page_zone(page);
835c134e
MG
6483 bitmap = get_pageblock_bitmap(zone, pfn);
6484 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6485 word_bitidx = bitidx / BITS_PER_LONG;
6486 bitidx &= (BITS_PER_LONG-1);
6487
309381fe 6488 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6489
e58469ba
MG
6490 bitidx += end_bitidx;
6491 mask <<= (BITS_PER_LONG - bitidx - 1);
6492 flags <<= (BITS_PER_LONG - bitidx - 1);
6493
4db0c3c2 6494 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6495 for (;;) {
6496 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6497 if (word == old_word)
6498 break;
6499 word = old_word;
6500 }
835c134e 6501}
a5d76b54
KH
6502
6503/*
80934513
MK
6504 * This function checks whether pageblock includes unmovable pages or not.
6505 * If @count is not zero, it is okay to include less @count unmovable pages
6506 *
b8af2941 6507 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6508 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6509 * expect this function should be exact.
a5d76b54 6510 */
b023f468
WC
6511bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6512 bool skip_hwpoisoned_pages)
49ac8255
KH
6513{
6514 unsigned long pfn, iter, found;
47118af0
MN
6515 int mt;
6516
49ac8255
KH
6517 /*
6518 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6519 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6520 */
6521 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6522 return false;
47118af0
MN
6523 mt = get_pageblock_migratetype(page);
6524 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6525 return false;
49ac8255
KH
6526
6527 pfn = page_to_pfn(page);
6528 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6529 unsigned long check = pfn + iter;
6530
29723fcc 6531 if (!pfn_valid_within(check))
49ac8255 6532 continue;
29723fcc 6533
49ac8255 6534 page = pfn_to_page(check);
c8721bbb
NH
6535
6536 /*
6537 * Hugepages are not in LRU lists, but they're movable.
6538 * We need not scan over tail pages bacause we don't
6539 * handle each tail page individually in migration.
6540 */
6541 if (PageHuge(page)) {
6542 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6543 continue;
6544 }
6545
97d255c8
MK
6546 /*
6547 * We can't use page_count without pin a page
6548 * because another CPU can free compound page.
6549 * This check already skips compound tails of THP
6550 * because their page->_count is zero at all time.
6551 */
6552 if (!atomic_read(&page->_count)) {
49ac8255
KH
6553 if (PageBuddy(page))
6554 iter += (1 << page_order(page)) - 1;
6555 continue;
6556 }
97d255c8 6557
b023f468
WC
6558 /*
6559 * The HWPoisoned page may be not in buddy system, and
6560 * page_count() is not 0.
6561 */
6562 if (skip_hwpoisoned_pages && PageHWPoison(page))
6563 continue;
6564
49ac8255
KH
6565 if (!PageLRU(page))
6566 found++;
6567 /*
6b4f7799
JW
6568 * If there are RECLAIMABLE pages, we need to check
6569 * it. But now, memory offline itself doesn't call
6570 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6571 */
6572 /*
6573 * If the page is not RAM, page_count()should be 0.
6574 * we don't need more check. This is an _used_ not-movable page.
6575 *
6576 * The problematic thing here is PG_reserved pages. PG_reserved
6577 * is set to both of a memory hole page and a _used_ kernel
6578 * page at boot.
6579 */
6580 if (found > count)
80934513 6581 return true;
49ac8255 6582 }
80934513 6583 return false;
49ac8255
KH
6584}
6585
6586bool is_pageblock_removable_nolock(struct page *page)
6587{
656a0706
MH
6588 struct zone *zone;
6589 unsigned long pfn;
687875fb
MH
6590
6591 /*
6592 * We have to be careful here because we are iterating over memory
6593 * sections which are not zone aware so we might end up outside of
6594 * the zone but still within the section.
656a0706
MH
6595 * We have to take care about the node as well. If the node is offline
6596 * its NODE_DATA will be NULL - see page_zone.
687875fb 6597 */
656a0706
MH
6598 if (!node_online(page_to_nid(page)))
6599 return false;
6600
6601 zone = page_zone(page);
6602 pfn = page_to_pfn(page);
108bcc96 6603 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6604 return false;
6605
b023f468 6606 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6607}
0c0e6195 6608
041d3a8c
MN
6609#ifdef CONFIG_CMA
6610
6611static unsigned long pfn_max_align_down(unsigned long pfn)
6612{
6613 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6614 pageblock_nr_pages) - 1);
6615}
6616
6617static unsigned long pfn_max_align_up(unsigned long pfn)
6618{
6619 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6620 pageblock_nr_pages));
6621}
6622
041d3a8c 6623/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6624static int __alloc_contig_migrate_range(struct compact_control *cc,
6625 unsigned long start, unsigned long end)
041d3a8c
MN
6626{
6627 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6628 unsigned long nr_reclaimed;
041d3a8c
MN
6629 unsigned long pfn = start;
6630 unsigned int tries = 0;
6631 int ret = 0;
6632
be49a6e1 6633 migrate_prep();
041d3a8c 6634
bb13ffeb 6635 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6636 if (fatal_signal_pending(current)) {
6637 ret = -EINTR;
6638 break;
6639 }
6640
bb13ffeb
MG
6641 if (list_empty(&cc->migratepages)) {
6642 cc->nr_migratepages = 0;
edc2ca61 6643 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6644 if (!pfn) {
6645 ret = -EINTR;
6646 break;
6647 }
6648 tries = 0;
6649 } else if (++tries == 5) {
6650 ret = ret < 0 ? ret : -EBUSY;
6651 break;
6652 }
6653
beb51eaa
MK
6654 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6655 &cc->migratepages);
6656 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6657
9c620e2b 6658 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6659 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6660 }
2a6f5124
SP
6661 if (ret < 0) {
6662 putback_movable_pages(&cc->migratepages);
6663 return ret;
6664 }
6665 return 0;
041d3a8c
MN
6666}
6667
6668/**
6669 * alloc_contig_range() -- tries to allocate given range of pages
6670 * @start: start PFN to allocate
6671 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6672 * @migratetype: migratetype of the underlaying pageblocks (either
6673 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6674 * in range must have the same migratetype and it must
6675 * be either of the two.
041d3a8c
MN
6676 *
6677 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6678 * aligned, however it's the caller's responsibility to guarantee that
6679 * we are the only thread that changes migrate type of pageblocks the
6680 * pages fall in.
6681 *
6682 * The PFN range must belong to a single zone.
6683 *
6684 * Returns zero on success or negative error code. On success all
6685 * pages which PFN is in [start, end) are allocated for the caller and
6686 * need to be freed with free_contig_range().
6687 */
0815f3d8
MN
6688int alloc_contig_range(unsigned long start, unsigned long end,
6689 unsigned migratetype)
041d3a8c 6690{
041d3a8c
MN
6691 unsigned long outer_start, outer_end;
6692 int ret = 0, order;
6693
bb13ffeb
MG
6694 struct compact_control cc = {
6695 .nr_migratepages = 0,
6696 .order = -1,
6697 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6698 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6699 .ignore_skip_hint = true,
6700 };
6701 INIT_LIST_HEAD(&cc.migratepages);
6702
041d3a8c
MN
6703 /*
6704 * What we do here is we mark all pageblocks in range as
6705 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6706 * have different sizes, and due to the way page allocator
6707 * work, we align the range to biggest of the two pages so
6708 * that page allocator won't try to merge buddies from
6709 * different pageblocks and change MIGRATE_ISOLATE to some
6710 * other migration type.
6711 *
6712 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6713 * migrate the pages from an unaligned range (ie. pages that
6714 * we are interested in). This will put all the pages in
6715 * range back to page allocator as MIGRATE_ISOLATE.
6716 *
6717 * When this is done, we take the pages in range from page
6718 * allocator removing them from the buddy system. This way
6719 * page allocator will never consider using them.
6720 *
6721 * This lets us mark the pageblocks back as
6722 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6723 * aligned range but not in the unaligned, original range are
6724 * put back to page allocator so that buddy can use them.
6725 */
6726
6727 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6728 pfn_max_align_up(end), migratetype,
6729 false);
041d3a8c 6730 if (ret)
86a595f9 6731 return ret;
041d3a8c 6732
bb13ffeb 6733 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6734 if (ret)
6735 goto done;
6736
6737 /*
6738 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6739 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6740 * more, all pages in [start, end) are free in page allocator.
6741 * What we are going to do is to allocate all pages from
6742 * [start, end) (that is remove them from page allocator).
6743 *
6744 * The only problem is that pages at the beginning and at the
6745 * end of interesting range may be not aligned with pages that
6746 * page allocator holds, ie. they can be part of higher order
6747 * pages. Because of this, we reserve the bigger range and
6748 * once this is done free the pages we are not interested in.
6749 *
6750 * We don't have to hold zone->lock here because the pages are
6751 * isolated thus they won't get removed from buddy.
6752 */
6753
6754 lru_add_drain_all();
510f5507 6755 drain_all_pages(cc.zone);
041d3a8c
MN
6756
6757 order = 0;
6758 outer_start = start;
6759 while (!PageBuddy(pfn_to_page(outer_start))) {
6760 if (++order >= MAX_ORDER) {
6761 ret = -EBUSY;
6762 goto done;
6763 }
6764 outer_start &= ~0UL << order;
6765 }
6766
6767 /* Make sure the range is really isolated. */
b023f468 6768 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6769 pr_info("%s: [%lx, %lx) PFNs busy\n",
6770 __func__, outer_start, end);
041d3a8c
MN
6771 ret = -EBUSY;
6772 goto done;
6773 }
6774
49f223a9 6775 /* Grab isolated pages from freelists. */
bb13ffeb 6776 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6777 if (!outer_end) {
6778 ret = -EBUSY;
6779 goto done;
6780 }
6781
6782 /* Free head and tail (if any) */
6783 if (start != outer_start)
6784 free_contig_range(outer_start, start - outer_start);
6785 if (end != outer_end)
6786 free_contig_range(end, outer_end - end);
6787
6788done:
6789 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6790 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6791 return ret;
6792}
6793
6794void free_contig_range(unsigned long pfn, unsigned nr_pages)
6795{
bcc2b02f
MS
6796 unsigned int count = 0;
6797
6798 for (; nr_pages--; pfn++) {
6799 struct page *page = pfn_to_page(pfn);
6800
6801 count += page_count(page) != 1;
6802 __free_page(page);
6803 }
6804 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6805}
6806#endif
6807
4ed7e022 6808#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6809/*
6810 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6811 * page high values need to be recalulated.
6812 */
4ed7e022
JL
6813void __meminit zone_pcp_update(struct zone *zone)
6814{
0a647f38 6815 unsigned cpu;
c8e251fa 6816 mutex_lock(&pcp_batch_high_lock);
0a647f38 6817 for_each_possible_cpu(cpu)
169f6c19
CS
6818 pageset_set_high_and_batch(zone,
6819 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6820 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6821}
6822#endif
6823
340175b7
JL
6824void zone_pcp_reset(struct zone *zone)
6825{
6826 unsigned long flags;
5a883813
MK
6827 int cpu;
6828 struct per_cpu_pageset *pset;
340175b7
JL
6829
6830 /* avoid races with drain_pages() */
6831 local_irq_save(flags);
6832 if (zone->pageset != &boot_pageset) {
5a883813
MK
6833 for_each_online_cpu(cpu) {
6834 pset = per_cpu_ptr(zone->pageset, cpu);
6835 drain_zonestat(zone, pset);
6836 }
340175b7
JL
6837 free_percpu(zone->pageset);
6838 zone->pageset = &boot_pageset;
6839 }
6840 local_irq_restore(flags);
6841}
6842
6dcd73d7 6843#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6844/*
6845 * All pages in the range must be isolated before calling this.
6846 */
6847void
6848__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6849{
6850 struct page *page;
6851 struct zone *zone;
7aeb09f9 6852 unsigned int order, i;
0c0e6195
KH
6853 unsigned long pfn;
6854 unsigned long flags;
6855 /* find the first valid pfn */
6856 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6857 if (pfn_valid(pfn))
6858 break;
6859 if (pfn == end_pfn)
6860 return;
6861 zone = page_zone(pfn_to_page(pfn));
6862 spin_lock_irqsave(&zone->lock, flags);
6863 pfn = start_pfn;
6864 while (pfn < end_pfn) {
6865 if (!pfn_valid(pfn)) {
6866 pfn++;
6867 continue;
6868 }
6869 page = pfn_to_page(pfn);
b023f468
WC
6870 /*
6871 * The HWPoisoned page may be not in buddy system, and
6872 * page_count() is not 0.
6873 */
6874 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6875 pfn++;
6876 SetPageReserved(page);
6877 continue;
6878 }
6879
0c0e6195
KH
6880 BUG_ON(page_count(page));
6881 BUG_ON(!PageBuddy(page));
6882 order = page_order(page);
6883#ifdef CONFIG_DEBUG_VM
6884 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6885 pfn, 1 << order, end_pfn);
6886#endif
6887 list_del(&page->lru);
6888 rmv_page_order(page);
6889 zone->free_area[order].nr_free--;
0c0e6195
KH
6890 for (i = 0; i < (1 << order); i++)
6891 SetPageReserved((page+i));
6892 pfn += (1 << order);
6893 }
6894 spin_unlock_irqrestore(&zone->lock, flags);
6895}
6896#endif
8d22ba1b
WF
6897
6898#ifdef CONFIG_MEMORY_FAILURE
6899bool is_free_buddy_page(struct page *page)
6900{
6901 struct zone *zone = page_zone(page);
6902 unsigned long pfn = page_to_pfn(page);
6903 unsigned long flags;
7aeb09f9 6904 unsigned int order;
8d22ba1b
WF
6905
6906 spin_lock_irqsave(&zone->lock, flags);
6907 for (order = 0; order < MAX_ORDER; order++) {
6908 struct page *page_head = page - (pfn & ((1 << order) - 1));
6909
6910 if (PageBuddy(page_head) && page_order(page_head) >= order)
6911 break;
6912 }
6913 spin_unlock_irqrestore(&zone->lock, flags);
6914
6915 return order < MAX_ORDER;
6916}
6917#endif
This page took 1.670846 seconds and 5 git commands to generate.