checkpatch: reduce git commit description style false positives
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
ff8e8116 535 pr_alert(
1e9e6365 536 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
ff8e8116 545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 546 current->comm, page_to_pfn(page));
ff8e8116
VB
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
4e462112 552 dump_page_owner(page);
3dc14741 553
4f31888c 554 print_modules();
1da177e4 555 dump_stack();
d936cf9b 556out:
8cc3b392 557 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 558 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
560}
561
1da177e4
LT
562/*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
1d798ca3 565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 566 *
1d798ca3
KS
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 569 *
1d798ca3
KS
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
1da177e4 572 *
1d798ca3 573 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 574 * This usage means that zero-order pages may not be compound.
1da177e4 575 */
d98c7a09 576
9a982250 577void free_compound_page(struct page *page)
d98c7a09 578{
d85f3385 579 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
580}
581
d00181b9 582void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
583{
584 int i;
585 int nr_pages = 1 << order;
586
f1e61557 587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
58a84aa9 592 set_page_count(p, 0);
1c290f64 593 p->mapping = TAIL_MAPPING;
1d798ca3 594 set_compound_head(p, page);
18229df5 595 }
53f9263b 596 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
597}
598
c0a32fc5
SG
599#ifdef CONFIG_DEBUG_PAGEALLOC
600unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
601bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 603EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
604bool _debug_guardpage_enabled __read_mostly;
605
031bc574
JK
606static int __init early_debug_pagealloc(char *buf)
607{
608 if (!buf)
609 return -EINVAL;
2a138dc7 610 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
611}
612early_param("debug_pagealloc", early_debug_pagealloc);
613
e30825f1
JK
614static bool need_debug_guardpage(void)
615{
031bc574
JK
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
e30825f1
JK
620 return true;
621}
622
623static void init_debug_guardpage(void)
624{
031bc574
JK
625 if (!debug_pagealloc_enabled())
626 return;
627
e30825f1
JK
628 _debug_guardpage_enabled = true;
629}
630
631struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
634};
c0a32fc5
SG
635
636static int __init debug_guardpage_minorder_setup(char *buf)
637{
638 unsigned long res;
639
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 641 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
642 return 0;
643 }
644 _debug_guardpage_minorder = res;
1170532b 645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
646 return 0;
647}
648__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
649
2847cf95
JK
650static inline void set_page_guard(struct zone *zone, struct page *page,
651 unsigned int order, int migratetype)
c0a32fc5 652{
e30825f1
JK
653 struct page_ext *page_ext;
654
655 if (!debug_guardpage_enabled())
656 return;
657
658 page_ext = lookup_page_ext(page);
f86e4271
YS
659 if (unlikely(!page_ext))
660 return;
661
e30825f1
JK
662 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
663
2847cf95
JK
664 INIT_LIST_HEAD(&page->lru);
665 set_page_private(page, order);
666 /* Guard pages are not available for any usage */
667 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
668}
669
2847cf95
JK
670static inline void clear_page_guard(struct zone *zone, struct page *page,
671 unsigned int order, int migratetype)
c0a32fc5 672{
e30825f1
JK
673 struct page_ext *page_ext;
674
675 if (!debug_guardpage_enabled())
676 return;
677
678 page_ext = lookup_page_ext(page);
f86e4271
YS
679 if (unlikely(!page_ext))
680 return;
681
e30825f1
JK
682 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
2847cf95
JK
684 set_page_private(page, 0);
685 if (!is_migrate_isolate(migratetype))
686 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
687}
688#else
e30825f1 689struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
690static inline void set_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
692static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
c0a32fc5
SG
694#endif
695
7aeb09f9 696static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 697{
4c21e2f2 698 set_page_private(page, order);
676165a8 699 __SetPageBuddy(page);
1da177e4
LT
700}
701
702static inline void rmv_page_order(struct page *page)
703{
676165a8 704 __ClearPageBuddy(page);
4c21e2f2 705 set_page_private(page, 0);
1da177e4
LT
706}
707
1da177e4
LT
708/*
709 * This function checks whether a page is free && is the buddy
710 * we can do coalesce a page and its buddy if
13e7444b 711 * (a) the buddy is not in a hole &&
676165a8 712 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
713 * (c) a page and its buddy have the same order &&
714 * (d) a page and its buddy are in the same zone.
676165a8 715 *
cf6fe945
WSH
716 * For recording whether a page is in the buddy system, we set ->_mapcount
717 * PAGE_BUDDY_MAPCOUNT_VALUE.
718 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
719 * serialized by zone->lock.
1da177e4 720 *
676165a8 721 * For recording page's order, we use page_private(page).
1da177e4 722 */
cb2b95e1 723static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 724 unsigned int order)
1da177e4 725{
14e07298 726 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 727 return 0;
13e7444b 728
c0a32fc5 729 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
4c5018ce
WY
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
c0a32fc5
SG
735 return 1;
736 }
737
cb2b95e1 738 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
4c5018ce
WY
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
6aa3001b 749 return 1;
676165a8 750 }
6aa3001b 751 return 0;
1da177e4
LT
752}
753
754/*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
767 * free pages of length of (1 << order) and marked with _mapcount
768 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
769 * field.
1da177e4 770 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
1da177e4 773 * If a block is freed, and its buddy is also free, then this
5f63b720 774 * triggers coalescing into a block of larger size.
1da177e4 775 *
6d49e352 776 * -- nyc
1da177e4
LT
777 */
778
48db57f8 779static inline void __free_one_page(struct page *page,
dc4b0caf 780 unsigned long pfn,
ed0ae21d
MG
781 struct zone *zone, unsigned int order,
782 int migratetype)
1da177e4
LT
783{
784 unsigned long page_idx;
6dda9d55 785 unsigned long combined_idx;
43506fad 786 unsigned long uninitialized_var(buddy_idx);
6dda9d55 787 struct page *buddy;
d9dddbf5
VB
788 unsigned int max_order;
789
790 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 791
d29bb978 792 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 793 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 794
ed0ae21d 795 VM_BUG_ON(migratetype == -1);
d9dddbf5 796 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 797 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 798
d9dddbf5 799 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 800
309381fe
SL
801 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
802 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 803
d9dddbf5 804continue_merging:
3c605096 805 while (order < max_order - 1) {
43506fad
KC
806 buddy_idx = __find_buddy_index(page_idx, order);
807 buddy = page + (buddy_idx - page_idx);
cb2b95e1 808 if (!page_is_buddy(page, buddy, order))
d9dddbf5 809 goto done_merging;
c0a32fc5
SG
810 /*
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
813 */
814 if (page_is_guard(buddy)) {
2847cf95 815 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
816 } else {
817 list_del(&buddy->lru);
818 zone->free_area[order].nr_free--;
819 rmv_page_order(buddy);
820 }
43506fad 821 combined_idx = buddy_idx & page_idx;
1da177e4
LT
822 page = page + (combined_idx - page_idx);
823 page_idx = combined_idx;
824 order++;
825 }
d9dddbf5
VB
826 if (max_order < MAX_ORDER) {
827 /* If we are here, it means order is >= pageblock_order.
828 * We want to prevent merge between freepages on isolate
829 * pageblock and normal pageblock. Without this, pageblock
830 * isolation could cause incorrect freepage or CMA accounting.
831 *
832 * We don't want to hit this code for the more frequent
833 * low-order merging.
834 */
835 if (unlikely(has_isolate_pageblock(zone))) {
836 int buddy_mt;
837
838 buddy_idx = __find_buddy_index(page_idx, order);
839 buddy = page + (buddy_idx - page_idx);
840 buddy_mt = get_pageblock_migratetype(buddy);
841
842 if (migratetype != buddy_mt
843 && (is_migrate_isolate(migratetype) ||
844 is_migrate_isolate(buddy_mt)))
845 goto done_merging;
846 }
847 max_order++;
848 goto continue_merging;
849 }
850
851done_merging:
1da177e4 852 set_page_order(page, order);
6dda9d55
CZ
853
854 /*
855 * If this is not the largest possible page, check if the buddy
856 * of the next-highest order is free. If it is, it's possible
857 * that pages are being freed that will coalesce soon. In case,
858 * that is happening, add the free page to the tail of the list
859 * so it's less likely to be used soon and more likely to be merged
860 * as a higher order page
861 */
b7f50cfa 862 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 863 struct page *higher_page, *higher_buddy;
43506fad
KC
864 combined_idx = buddy_idx & page_idx;
865 higher_page = page + (combined_idx - page_idx);
866 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 867 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
868 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876out:
1da177e4
LT
877 zone->free_area[order].nr_free++;
878}
879
7bfec6f4
MG
880/*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887{
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893#ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895#endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900}
901
bb552ac6 902static void free_pages_check_bad(struct page *page)
1da177e4 903{
7bfec6f4
MG
904 const char *bad_reason;
905 unsigned long bad_flags;
906
7bfec6f4
MG
907 bad_reason = NULL;
908 bad_flags = 0;
f0b791a3 909
53f9263b 910 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
fe896d18 914 if (unlikely(page_ref_count(page) != 0))
0139aa7b 915 bad_reason = "nonzero _refcount";
f0b791a3
DH
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
9edad6ea
JW
920#ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923#endif
7bfec6f4 924 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
925}
926
927static inline int free_pages_check(struct page *page)
928{
da838d4f 929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 930 return 0;
bb552ac6
MG
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
7bfec6f4 934 return 1;
1da177e4
LT
935}
936
4db7548c
MG
937static int free_tail_pages_check(struct page *head_page, struct page *page)
938{
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping is compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
962 * page_deferred_list().next -- ignore value.
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985}
986
e2769dbd
MG
987static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
4db7548c 989{
e2769dbd 990 int bad = 0;
4db7548c 991
4db7548c
MG
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
e2769dbd
MG
994 trace_mm_page_free(page, order);
995 kmemcheck_free_shadow(page, order);
e2769dbd
MG
996
997 /*
998 * Check tail pages before head page information is cleared to
999 * avoid checking PageCompound for order-0 pages.
1000 */
1001 if (unlikely(order)) {
1002 bool compound = PageCompound(page);
1003 int i;
1004
1005 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1006
e2769dbd
MG
1007 for (i = 1; i < (1 << order); i++) {
1008 if (compound)
1009 bad += free_tail_pages_check(page, page + i);
1010 if (unlikely(free_pages_check(page + i))) {
1011 bad++;
1012 continue;
1013 }
1014 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1015 }
1016 }
4db7548c
MG
1017 if (PageAnonHead(page))
1018 page->mapping = NULL;
e2769dbd
MG
1019 if (check_free)
1020 bad += free_pages_check(page);
1021 if (bad)
1022 return false;
4db7548c 1023
e2769dbd
MG
1024 page_cpupid_reset_last(page);
1025 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 reset_page_owner(page, order);
4db7548c
MG
1027
1028 if (!PageHighMem(page)) {
1029 debug_check_no_locks_freed(page_address(page),
e2769dbd 1030 PAGE_SIZE << order);
4db7548c 1031 debug_check_no_obj_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 }
e2769dbd
MG
1034 arch_free_page(page, order);
1035 kernel_poison_pages(page, 1 << order, 0);
1036 kernel_map_pages(page, 1 << order, 0);
29b52de1 1037 kasan_free_pages(page, order);
4db7548c 1038
4db7548c
MG
1039 return true;
1040}
1041
e2769dbd
MG
1042#ifdef CONFIG_DEBUG_VM
1043static inline bool free_pcp_prepare(struct page *page)
1044{
1045 return free_pages_prepare(page, 0, true);
1046}
1047
1048static inline bool bulkfree_pcp_prepare(struct page *page)
1049{
1050 return false;
1051}
1052#else
1053static bool free_pcp_prepare(struct page *page)
1054{
1055 return free_pages_prepare(page, 0, false);
1056}
1057
4db7548c
MG
1058static bool bulkfree_pcp_prepare(struct page *page)
1059{
1060 return free_pages_check(page);
1061}
1062#endif /* CONFIG_DEBUG_VM */
1063
1da177e4 1064/*
5f8dcc21 1065 * Frees a number of pages from the PCP lists
1da177e4 1066 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1067 * count is the number of pages to free.
1da177e4
LT
1068 *
1069 * If the zone was previously in an "all pages pinned" state then look to
1070 * see if this freeing clears that state.
1071 *
1072 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1073 * pinned" detection logic.
1074 */
5f8dcc21
MG
1075static void free_pcppages_bulk(struct zone *zone, int count,
1076 struct per_cpu_pages *pcp)
1da177e4 1077{
5f8dcc21 1078 int migratetype = 0;
a6f9edd6 1079 int batch_free = 0;
0d5d823a 1080 unsigned long nr_scanned;
3777999d 1081 bool isolated_pageblocks;
5f8dcc21 1082
c54ad30c 1083 spin_lock(&zone->lock);
3777999d 1084 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1085 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1086 if (nr_scanned)
1087 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1088
e5b31ac2 1089 while (count) {
48db57f8 1090 struct page *page;
5f8dcc21
MG
1091 struct list_head *list;
1092
1093 /*
a6f9edd6
MG
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1098 * lists
5f8dcc21
MG
1099 */
1100 do {
a6f9edd6 1101 batch_free++;
5f8dcc21
MG
1102 if (++migratetype == MIGRATE_PCPTYPES)
1103 migratetype = 0;
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
48db57f8 1106
1d16871d
NK
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1109 batch_free = count;
1d16871d 1110
a6f9edd6 1111 do {
770c8aaa
BZ
1112 int mt; /* migratetype of the to-be-freed page */
1113
a16601c5 1114 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1115 /* must delete as __free_one_page list manipulates */
1116 list_del(&page->lru);
aa016d14 1117
bb14c2c7 1118 mt = get_pcppage_migratetype(page);
aa016d14
VB
1119 /* MIGRATE_ISOLATE page should not go to pcplists */
1120 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1121 /* Pageblock could have been isolated meanwhile */
3777999d 1122 if (unlikely(isolated_pageblocks))
51bb1a40 1123 mt = get_pageblock_migratetype(page);
51bb1a40 1124
4db7548c
MG
1125 if (bulkfree_pcp_prepare(page))
1126 continue;
1127
dc4b0caf 1128 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1129 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1130 } while (--count && --batch_free && !list_empty(list));
1da177e4 1131 }
c54ad30c 1132 spin_unlock(&zone->lock);
1da177e4
LT
1133}
1134
dc4b0caf
MG
1135static void free_one_page(struct zone *zone,
1136 struct page *page, unsigned long pfn,
7aeb09f9 1137 unsigned int order,
ed0ae21d 1138 int migratetype)
1da177e4 1139{
0d5d823a 1140 unsigned long nr_scanned;
006d22d9 1141 spin_lock(&zone->lock);
0d5d823a
MG
1142 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1143 if (nr_scanned)
1144 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1145
ad53f92e
JK
1146 if (unlikely(has_isolate_pageblock(zone) ||
1147 is_migrate_isolate(migratetype))) {
1148 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1149 }
dc4b0caf 1150 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1151 spin_unlock(&zone->lock);
48db57f8
NP
1152}
1153
1e8ce83c
RH
1154static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1155 unsigned long zone, int nid)
1156{
1e8ce83c 1157 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1158 init_page_count(page);
1159 page_mapcount_reset(page);
1160 page_cpupid_reset_last(page);
1e8ce83c 1161
1e8ce83c
RH
1162 INIT_LIST_HEAD(&page->lru);
1163#ifdef WANT_PAGE_VIRTUAL
1164 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1165 if (!is_highmem_idx(zone))
1166 set_page_address(page, __va(pfn << PAGE_SHIFT));
1167#endif
1168}
1169
1170static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1171 int nid)
1172{
1173 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1174}
1175
7e18adb4
MG
1176#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1177static void init_reserved_page(unsigned long pfn)
1178{
1179 pg_data_t *pgdat;
1180 int nid, zid;
1181
1182 if (!early_page_uninitialised(pfn))
1183 return;
1184
1185 nid = early_pfn_to_nid(pfn);
1186 pgdat = NODE_DATA(nid);
1187
1188 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1189 struct zone *zone = &pgdat->node_zones[zid];
1190
1191 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1192 break;
1193 }
1194 __init_single_pfn(pfn, zid, nid);
1195}
1196#else
1197static inline void init_reserved_page(unsigned long pfn)
1198{
1199}
1200#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1201
92923ca3
NZ
1202/*
1203 * Initialised pages do not have PageReserved set. This function is
1204 * called for each range allocated by the bootmem allocator and
1205 * marks the pages PageReserved. The remaining valid pages are later
1206 * sent to the buddy page allocator.
1207 */
4b50bcc7 1208void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1209{
1210 unsigned long start_pfn = PFN_DOWN(start);
1211 unsigned long end_pfn = PFN_UP(end);
1212
7e18adb4
MG
1213 for (; start_pfn < end_pfn; start_pfn++) {
1214 if (pfn_valid(start_pfn)) {
1215 struct page *page = pfn_to_page(start_pfn);
1216
1217 init_reserved_page(start_pfn);
1d798ca3
KS
1218
1219 /* Avoid false-positive PageTail() */
1220 INIT_LIST_HEAD(&page->lru);
1221
7e18adb4
MG
1222 SetPageReserved(page);
1223 }
1224 }
92923ca3
NZ
1225}
1226
ec95f53a
KM
1227static void __free_pages_ok(struct page *page, unsigned int order)
1228{
1229 unsigned long flags;
95e34412 1230 int migratetype;
dc4b0caf 1231 unsigned long pfn = page_to_pfn(page);
ec95f53a 1232
e2769dbd 1233 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1234 return;
1235
cfc47a28 1236 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1237 local_irq_save(flags);
f8891e5e 1238 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1239 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1240 local_irq_restore(flags);
1da177e4
LT
1241}
1242
949698a3 1243static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1244{
c3993076 1245 unsigned int nr_pages = 1 << order;
e2d0bd2b 1246 struct page *p = page;
c3993076 1247 unsigned int loop;
a226f6c8 1248
e2d0bd2b
YL
1249 prefetchw(p);
1250 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1251 prefetchw(p + 1);
c3993076
JW
1252 __ClearPageReserved(p);
1253 set_page_count(p, 0);
a226f6c8 1254 }
e2d0bd2b
YL
1255 __ClearPageReserved(p);
1256 set_page_count(p, 0);
c3993076 1257
e2d0bd2b 1258 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1259 set_page_refcounted(page);
1260 __free_pages(page, order);
a226f6c8
DH
1261}
1262
75a592a4
MG
1263#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1264 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1265
75a592a4
MG
1266static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1267
1268int __meminit early_pfn_to_nid(unsigned long pfn)
1269{
7ace9917 1270 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1271 int nid;
1272
7ace9917 1273 spin_lock(&early_pfn_lock);
75a592a4 1274 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1275 if (nid < 0)
1276 nid = 0;
1277 spin_unlock(&early_pfn_lock);
1278
1279 return nid;
75a592a4
MG
1280}
1281#endif
1282
1283#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1284static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1285 struct mminit_pfnnid_cache *state)
1286{
1287 int nid;
1288
1289 nid = __early_pfn_to_nid(pfn, state);
1290 if (nid >= 0 && nid != node)
1291 return false;
1292 return true;
1293}
1294
1295/* Only safe to use early in boot when initialisation is single-threaded */
1296static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1297{
1298 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1299}
1300
1301#else
1302
1303static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304{
1305 return true;
1306}
1307static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1308 struct mminit_pfnnid_cache *state)
1309{
1310 return true;
1311}
1312#endif
1313
1314
0e1cc95b 1315void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1316 unsigned int order)
1317{
1318 if (early_page_uninitialised(pfn))
1319 return;
949698a3 1320 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1321}
1322
7cf91a98
JK
1323/*
1324 * Check that the whole (or subset of) a pageblock given by the interval of
1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326 * with the migration of free compaction scanner. The scanners then need to
1327 * use only pfn_valid_within() check for arches that allow holes within
1328 * pageblocks.
1329 *
1330 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1331 *
1332 * It's possible on some configurations to have a setup like node0 node1 node0
1333 * i.e. it's possible that all pages within a zones range of pages do not
1334 * belong to a single zone. We assume that a border between node0 and node1
1335 * can occur within a single pageblock, but not a node0 node1 node0
1336 * interleaving within a single pageblock. It is therefore sufficient to check
1337 * the first and last page of a pageblock and avoid checking each individual
1338 * page in a pageblock.
1339 */
1340struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1341 unsigned long end_pfn, struct zone *zone)
1342{
1343 struct page *start_page;
1344 struct page *end_page;
1345
1346 /* end_pfn is one past the range we are checking */
1347 end_pfn--;
1348
1349 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1350 return NULL;
1351
1352 start_page = pfn_to_page(start_pfn);
1353
1354 if (page_zone(start_page) != zone)
1355 return NULL;
1356
1357 end_page = pfn_to_page(end_pfn);
1358
1359 /* This gives a shorter code than deriving page_zone(end_page) */
1360 if (page_zone_id(start_page) != page_zone_id(end_page))
1361 return NULL;
1362
1363 return start_page;
1364}
1365
1366void set_zone_contiguous(struct zone *zone)
1367{
1368 unsigned long block_start_pfn = zone->zone_start_pfn;
1369 unsigned long block_end_pfn;
1370
1371 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1372 for (; block_start_pfn < zone_end_pfn(zone);
1373 block_start_pfn = block_end_pfn,
1374 block_end_pfn += pageblock_nr_pages) {
1375
1376 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1377
1378 if (!__pageblock_pfn_to_page(block_start_pfn,
1379 block_end_pfn, zone))
1380 return;
1381 }
1382
1383 /* We confirm that there is no hole */
1384 zone->contiguous = true;
1385}
1386
1387void clear_zone_contiguous(struct zone *zone)
1388{
1389 zone->contiguous = false;
1390}
1391
7e18adb4 1392#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1393static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1394 unsigned long pfn, int nr_pages)
1395{
1396 int i;
1397
1398 if (!page)
1399 return;
1400
1401 /* Free a large naturally-aligned chunk if possible */
1402 if (nr_pages == MAX_ORDER_NR_PAGES &&
1403 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1404 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1405 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1406 return;
1407 }
1408
949698a3
LZ
1409 for (i = 0; i < nr_pages; i++, page++)
1410 __free_pages_boot_core(page, 0);
a4de83dd
MG
1411}
1412
d3cd131d
NS
1413/* Completion tracking for deferred_init_memmap() threads */
1414static atomic_t pgdat_init_n_undone __initdata;
1415static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1416
1417static inline void __init pgdat_init_report_one_done(void)
1418{
1419 if (atomic_dec_and_test(&pgdat_init_n_undone))
1420 complete(&pgdat_init_all_done_comp);
1421}
0e1cc95b 1422
7e18adb4 1423/* Initialise remaining memory on a node */
0e1cc95b 1424static int __init deferred_init_memmap(void *data)
7e18adb4 1425{
0e1cc95b
MG
1426 pg_data_t *pgdat = data;
1427 int nid = pgdat->node_id;
7e18adb4
MG
1428 struct mminit_pfnnid_cache nid_init_state = { };
1429 unsigned long start = jiffies;
1430 unsigned long nr_pages = 0;
1431 unsigned long walk_start, walk_end;
1432 int i, zid;
1433 struct zone *zone;
7e18adb4 1434 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1435 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1436
0e1cc95b 1437 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1438 pgdat_init_report_one_done();
0e1cc95b
MG
1439 return 0;
1440 }
1441
1442 /* Bind memory initialisation thread to a local node if possible */
1443 if (!cpumask_empty(cpumask))
1444 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1445
1446 /* Sanity check boundaries */
1447 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1448 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1449 pgdat->first_deferred_pfn = ULONG_MAX;
1450
1451 /* Only the highest zone is deferred so find it */
1452 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1453 zone = pgdat->node_zones + zid;
1454 if (first_init_pfn < zone_end_pfn(zone))
1455 break;
1456 }
1457
1458 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1459 unsigned long pfn, end_pfn;
54608c3f 1460 struct page *page = NULL;
a4de83dd
MG
1461 struct page *free_base_page = NULL;
1462 unsigned long free_base_pfn = 0;
1463 int nr_to_free = 0;
7e18adb4
MG
1464
1465 end_pfn = min(walk_end, zone_end_pfn(zone));
1466 pfn = first_init_pfn;
1467 if (pfn < walk_start)
1468 pfn = walk_start;
1469 if (pfn < zone->zone_start_pfn)
1470 pfn = zone->zone_start_pfn;
1471
1472 for (; pfn < end_pfn; pfn++) {
54608c3f 1473 if (!pfn_valid_within(pfn))
a4de83dd 1474 goto free_range;
7e18adb4 1475
54608c3f
MG
1476 /*
1477 * Ensure pfn_valid is checked every
1478 * MAX_ORDER_NR_PAGES for memory holes
1479 */
1480 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1481 if (!pfn_valid(pfn)) {
1482 page = NULL;
a4de83dd 1483 goto free_range;
54608c3f
MG
1484 }
1485 }
1486
1487 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1488 page = NULL;
a4de83dd 1489 goto free_range;
54608c3f
MG
1490 }
1491
1492 /* Minimise pfn page lookups and scheduler checks */
1493 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1494 page++;
1495 } else {
a4de83dd
MG
1496 nr_pages += nr_to_free;
1497 deferred_free_range(free_base_page,
1498 free_base_pfn, nr_to_free);
1499 free_base_page = NULL;
1500 free_base_pfn = nr_to_free = 0;
1501
54608c3f
MG
1502 page = pfn_to_page(pfn);
1503 cond_resched();
1504 }
7e18adb4
MG
1505
1506 if (page->flags) {
1507 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1508 goto free_range;
7e18adb4
MG
1509 }
1510
1511 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1512 if (!free_base_page) {
1513 free_base_page = page;
1514 free_base_pfn = pfn;
1515 nr_to_free = 0;
1516 }
1517 nr_to_free++;
1518
1519 /* Where possible, batch up pages for a single free */
1520 continue;
1521free_range:
1522 /* Free the current block of pages to allocator */
1523 nr_pages += nr_to_free;
1524 deferred_free_range(free_base_page, free_base_pfn,
1525 nr_to_free);
1526 free_base_page = NULL;
1527 free_base_pfn = nr_to_free = 0;
7e18adb4 1528 }
a4de83dd 1529
7e18adb4
MG
1530 first_init_pfn = max(end_pfn, first_init_pfn);
1531 }
1532
1533 /* Sanity check that the next zone really is unpopulated */
1534 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1535
0e1cc95b 1536 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1537 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1538
1539 pgdat_init_report_one_done();
0e1cc95b
MG
1540 return 0;
1541}
7cf91a98 1542#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1543
1544void __init page_alloc_init_late(void)
1545{
7cf91a98
JK
1546 struct zone *zone;
1547
1548#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1549 int nid;
1550
d3cd131d
NS
1551 /* There will be num_node_state(N_MEMORY) threads */
1552 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1553 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1554 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1555 }
1556
1557 /* Block until all are initialised */
d3cd131d 1558 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1559
1560 /* Reinit limits that are based on free pages after the kernel is up */
1561 files_maxfiles_init();
7cf91a98
JK
1562#endif
1563
1564 for_each_populated_zone(zone)
1565 set_zone_contiguous(zone);
7e18adb4 1566}
7e18adb4 1567
47118af0 1568#ifdef CONFIG_CMA
9cf510a5 1569/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1570void __init init_cma_reserved_pageblock(struct page *page)
1571{
1572 unsigned i = pageblock_nr_pages;
1573 struct page *p = page;
1574
1575 do {
1576 __ClearPageReserved(p);
1577 set_page_count(p, 0);
1578 } while (++p, --i);
1579
47118af0 1580 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1581
1582 if (pageblock_order >= MAX_ORDER) {
1583 i = pageblock_nr_pages;
1584 p = page;
1585 do {
1586 set_page_refcounted(p);
1587 __free_pages(p, MAX_ORDER - 1);
1588 p += MAX_ORDER_NR_PAGES;
1589 } while (i -= MAX_ORDER_NR_PAGES);
1590 } else {
1591 set_page_refcounted(page);
1592 __free_pages(page, pageblock_order);
1593 }
1594
3dcc0571 1595 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1596}
1597#endif
1da177e4
LT
1598
1599/*
1600 * The order of subdivision here is critical for the IO subsystem.
1601 * Please do not alter this order without good reasons and regression
1602 * testing. Specifically, as large blocks of memory are subdivided,
1603 * the order in which smaller blocks are delivered depends on the order
1604 * they're subdivided in this function. This is the primary factor
1605 * influencing the order in which pages are delivered to the IO
1606 * subsystem according to empirical testing, and this is also justified
1607 * by considering the behavior of a buddy system containing a single
1608 * large block of memory acted on by a series of small allocations.
1609 * This behavior is a critical factor in sglist merging's success.
1610 *
6d49e352 1611 * -- nyc
1da177e4 1612 */
085cc7d5 1613static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1614 int low, int high, struct free_area *area,
1615 int migratetype)
1da177e4
LT
1616{
1617 unsigned long size = 1 << high;
1618
1619 while (high > low) {
1620 area--;
1621 high--;
1622 size >>= 1;
309381fe 1623 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1624
2847cf95 1625 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1626 debug_guardpage_enabled() &&
2847cf95 1627 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1628 /*
1629 * Mark as guard pages (or page), that will allow to
1630 * merge back to allocator when buddy will be freed.
1631 * Corresponding page table entries will not be touched,
1632 * pages will stay not present in virtual address space
1633 */
2847cf95 1634 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1635 continue;
1636 }
b2a0ac88 1637 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1638 area->nr_free++;
1639 set_page_order(&page[size], high);
1640 }
1da177e4
LT
1641}
1642
4e611801 1643static void check_new_page_bad(struct page *page)
1da177e4 1644{
4e611801
VB
1645 const char *bad_reason = NULL;
1646 unsigned long bad_flags = 0;
7bfec6f4 1647
53f9263b 1648 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1649 bad_reason = "nonzero mapcount";
1650 if (unlikely(page->mapping != NULL))
1651 bad_reason = "non-NULL mapping";
fe896d18 1652 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1653 bad_reason = "nonzero _count";
f4c18e6f
NH
1654 if (unlikely(page->flags & __PG_HWPOISON)) {
1655 bad_reason = "HWPoisoned (hardware-corrupted)";
1656 bad_flags = __PG_HWPOISON;
e570f56c
NH
1657 /* Don't complain about hwpoisoned pages */
1658 page_mapcount_reset(page); /* remove PageBuddy */
1659 return;
f4c18e6f 1660 }
f0b791a3
DH
1661 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1662 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1663 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1664 }
9edad6ea
JW
1665#ifdef CONFIG_MEMCG
1666 if (unlikely(page->mem_cgroup))
1667 bad_reason = "page still charged to cgroup";
1668#endif
4e611801
VB
1669 bad_page(page, bad_reason, bad_flags);
1670}
1671
1672/*
1673 * This page is about to be returned from the page allocator
1674 */
1675static inline int check_new_page(struct page *page)
1676{
1677 if (likely(page_expected_state(page,
1678 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1679 return 0;
1680
1681 check_new_page_bad(page);
1682 return 1;
2a7684a2
WF
1683}
1684
1414c7f4
LA
1685static inline bool free_pages_prezeroed(bool poisoned)
1686{
1687 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1688 page_poisoning_enabled() && poisoned;
1689}
1690
479f854a
MG
1691#ifdef CONFIG_DEBUG_VM
1692static bool check_pcp_refill(struct page *page)
1693{
1694 return false;
1695}
1696
1697static bool check_new_pcp(struct page *page)
1698{
1699 return check_new_page(page);
1700}
1701#else
1702static bool check_pcp_refill(struct page *page)
1703{
1704 return check_new_page(page);
1705}
1706static bool check_new_pcp(struct page *page)
1707{
1708 return false;
1709}
1710#endif /* CONFIG_DEBUG_VM */
1711
1712static bool check_new_pages(struct page *page, unsigned int order)
1713{
1714 int i;
1715 for (i = 0; i < (1 << order); i++) {
1716 struct page *p = page + i;
1717
1718 if (unlikely(check_new_page(p)))
1719 return true;
1720 }
1721
1722 return false;
1723}
1724
1725static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1726 unsigned int alloc_flags)
2a7684a2
WF
1727{
1728 int i;
1414c7f4 1729 bool poisoned = true;
2a7684a2
WF
1730
1731 for (i = 0; i < (1 << order); i++) {
1732 struct page *p = page + i;
1414c7f4
LA
1733 if (poisoned)
1734 poisoned &= page_is_poisoned(p);
2a7684a2 1735 }
689bcebf 1736
4c21e2f2 1737 set_page_private(page, 0);
7835e98b 1738 set_page_refcounted(page);
cc102509
NP
1739
1740 arch_alloc_page(page, order);
1da177e4 1741 kernel_map_pages(page, 1 << order, 1);
8823b1db 1742 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1743 kasan_alloc_pages(page, order);
17cf4406 1744
1414c7f4 1745 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1746 for (i = 0; i < (1 << order); i++)
1747 clear_highpage(page + i);
17cf4406
NP
1748
1749 if (order && (gfp_flags & __GFP_COMP))
1750 prep_compound_page(page, order);
1751
48c96a36
JK
1752 set_page_owner(page, order, gfp_flags);
1753
75379191 1754 /*
2f064f34 1755 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1756 * allocate the page. The expectation is that the caller is taking
1757 * steps that will free more memory. The caller should avoid the page
1758 * being used for !PFMEMALLOC purposes.
1759 */
2f064f34
MH
1760 if (alloc_flags & ALLOC_NO_WATERMARKS)
1761 set_page_pfmemalloc(page);
1762 else
1763 clear_page_pfmemalloc(page);
1da177e4
LT
1764}
1765
56fd56b8
MG
1766/*
1767 * Go through the free lists for the given migratetype and remove
1768 * the smallest available page from the freelists
1769 */
728ec980
MG
1770static inline
1771struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1772 int migratetype)
1773{
1774 unsigned int current_order;
b8af2941 1775 struct free_area *area;
56fd56b8
MG
1776 struct page *page;
1777
1778 /* Find a page of the appropriate size in the preferred list */
1779 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1780 area = &(zone->free_area[current_order]);
a16601c5 1781 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1782 struct page, lru);
a16601c5
GT
1783 if (!page)
1784 continue;
56fd56b8
MG
1785 list_del(&page->lru);
1786 rmv_page_order(page);
1787 area->nr_free--;
56fd56b8 1788 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1789 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1790 return page;
1791 }
1792
1793 return NULL;
1794}
1795
1796
b2a0ac88
MG
1797/*
1798 * This array describes the order lists are fallen back to when
1799 * the free lists for the desirable migrate type are depleted
1800 */
47118af0 1801static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1802 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1803 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1805#ifdef CONFIG_CMA
974a786e 1806 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1807#endif
194159fb 1808#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1809 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1810#endif
b2a0ac88
MG
1811};
1812
dc67647b
JK
1813#ifdef CONFIG_CMA
1814static struct page *__rmqueue_cma_fallback(struct zone *zone,
1815 unsigned int order)
1816{
1817 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1818}
1819#else
1820static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 unsigned int order) { return NULL; }
1822#endif
1823
c361be55
MG
1824/*
1825 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1826 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1827 * boundary. If alignment is required, use move_freepages_block()
1828 */
435b405c 1829int move_freepages(struct zone *zone,
b69a7288
AB
1830 struct page *start_page, struct page *end_page,
1831 int migratetype)
c361be55
MG
1832{
1833 struct page *page;
d00181b9 1834 unsigned int order;
d100313f 1835 int pages_moved = 0;
c361be55
MG
1836
1837#ifndef CONFIG_HOLES_IN_ZONE
1838 /*
1839 * page_zone is not safe to call in this context when
1840 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1841 * anyway as we check zone boundaries in move_freepages_block().
1842 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1843 * grouping pages by mobility
c361be55 1844 */
97ee4ba7 1845 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1846#endif
1847
1848 for (page = start_page; page <= end_page;) {
344c790e 1849 /* Make sure we are not inadvertently changing nodes */
309381fe 1850 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1851
c361be55
MG
1852 if (!pfn_valid_within(page_to_pfn(page))) {
1853 page++;
1854 continue;
1855 }
1856
1857 if (!PageBuddy(page)) {
1858 page++;
1859 continue;
1860 }
1861
1862 order = page_order(page);
84be48d8
KS
1863 list_move(&page->lru,
1864 &zone->free_area[order].free_list[migratetype]);
c361be55 1865 page += 1 << order;
d100313f 1866 pages_moved += 1 << order;
c361be55
MG
1867 }
1868
d100313f 1869 return pages_moved;
c361be55
MG
1870}
1871
ee6f509c 1872int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1873 int migratetype)
c361be55
MG
1874{
1875 unsigned long start_pfn, end_pfn;
1876 struct page *start_page, *end_page;
1877
1878 start_pfn = page_to_pfn(page);
d9c23400 1879 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1880 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1881 end_page = start_page + pageblock_nr_pages - 1;
1882 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1883
1884 /* Do not cross zone boundaries */
108bcc96 1885 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1886 start_page = page;
108bcc96 1887 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1888 return 0;
1889
1890 return move_freepages(zone, start_page, end_page, migratetype);
1891}
1892
2f66a68f
MG
1893static void change_pageblock_range(struct page *pageblock_page,
1894 int start_order, int migratetype)
1895{
1896 int nr_pageblocks = 1 << (start_order - pageblock_order);
1897
1898 while (nr_pageblocks--) {
1899 set_pageblock_migratetype(pageblock_page, migratetype);
1900 pageblock_page += pageblock_nr_pages;
1901 }
1902}
1903
fef903ef 1904/*
9c0415eb
VB
1905 * When we are falling back to another migratetype during allocation, try to
1906 * steal extra free pages from the same pageblocks to satisfy further
1907 * allocations, instead of polluting multiple pageblocks.
1908 *
1909 * If we are stealing a relatively large buddy page, it is likely there will
1910 * be more free pages in the pageblock, so try to steal them all. For
1911 * reclaimable and unmovable allocations, we steal regardless of page size,
1912 * as fragmentation caused by those allocations polluting movable pageblocks
1913 * is worse than movable allocations stealing from unmovable and reclaimable
1914 * pageblocks.
fef903ef 1915 */
4eb7dce6
JK
1916static bool can_steal_fallback(unsigned int order, int start_mt)
1917{
1918 /*
1919 * Leaving this order check is intended, although there is
1920 * relaxed order check in next check. The reason is that
1921 * we can actually steal whole pageblock if this condition met,
1922 * but, below check doesn't guarantee it and that is just heuristic
1923 * so could be changed anytime.
1924 */
1925 if (order >= pageblock_order)
1926 return true;
1927
1928 if (order >= pageblock_order / 2 ||
1929 start_mt == MIGRATE_RECLAIMABLE ||
1930 start_mt == MIGRATE_UNMOVABLE ||
1931 page_group_by_mobility_disabled)
1932 return true;
1933
1934 return false;
1935}
1936
1937/*
1938 * This function implements actual steal behaviour. If order is large enough,
1939 * we can steal whole pageblock. If not, we first move freepages in this
1940 * pageblock and check whether half of pages are moved or not. If half of
1941 * pages are moved, we can change migratetype of pageblock and permanently
1942 * use it's pages as requested migratetype in the future.
1943 */
1944static void steal_suitable_fallback(struct zone *zone, struct page *page,
1945 int start_type)
fef903ef 1946{
d00181b9 1947 unsigned int current_order = page_order(page);
4eb7dce6 1948 int pages;
fef903ef 1949
fef903ef
SB
1950 /* Take ownership for orders >= pageblock_order */
1951 if (current_order >= pageblock_order) {
1952 change_pageblock_range(page, current_order, start_type);
3a1086fb 1953 return;
fef903ef
SB
1954 }
1955
4eb7dce6 1956 pages = move_freepages_block(zone, page, start_type);
fef903ef 1957
4eb7dce6
JK
1958 /* Claim the whole block if over half of it is free */
1959 if (pages >= (1 << (pageblock_order-1)) ||
1960 page_group_by_mobility_disabled)
1961 set_pageblock_migratetype(page, start_type);
1962}
1963
2149cdae
JK
1964/*
1965 * Check whether there is a suitable fallback freepage with requested order.
1966 * If only_stealable is true, this function returns fallback_mt only if
1967 * we can steal other freepages all together. This would help to reduce
1968 * fragmentation due to mixed migratetype pages in one pageblock.
1969 */
1970int find_suitable_fallback(struct free_area *area, unsigned int order,
1971 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1972{
1973 int i;
1974 int fallback_mt;
1975
1976 if (area->nr_free == 0)
1977 return -1;
1978
1979 *can_steal = false;
1980 for (i = 0;; i++) {
1981 fallback_mt = fallbacks[migratetype][i];
974a786e 1982 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1983 break;
1984
1985 if (list_empty(&area->free_list[fallback_mt]))
1986 continue;
fef903ef 1987
4eb7dce6
JK
1988 if (can_steal_fallback(order, migratetype))
1989 *can_steal = true;
1990
2149cdae
JK
1991 if (!only_stealable)
1992 return fallback_mt;
1993
1994 if (*can_steal)
1995 return fallback_mt;
fef903ef 1996 }
4eb7dce6
JK
1997
1998 return -1;
fef903ef
SB
1999}
2000
0aaa29a5
MG
2001/*
2002 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2003 * there are no empty page blocks that contain a page with a suitable order
2004 */
2005static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2006 unsigned int alloc_order)
2007{
2008 int mt;
2009 unsigned long max_managed, flags;
2010
2011 /*
2012 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2013 * Check is race-prone but harmless.
2014 */
2015 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2016 if (zone->nr_reserved_highatomic >= max_managed)
2017 return;
2018
2019 spin_lock_irqsave(&zone->lock, flags);
2020
2021 /* Recheck the nr_reserved_highatomic limit under the lock */
2022 if (zone->nr_reserved_highatomic >= max_managed)
2023 goto out_unlock;
2024
2025 /* Yoink! */
2026 mt = get_pageblock_migratetype(page);
2027 if (mt != MIGRATE_HIGHATOMIC &&
2028 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2029 zone->nr_reserved_highatomic += pageblock_nr_pages;
2030 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2031 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2032 }
2033
2034out_unlock:
2035 spin_unlock_irqrestore(&zone->lock, flags);
2036}
2037
2038/*
2039 * Used when an allocation is about to fail under memory pressure. This
2040 * potentially hurts the reliability of high-order allocations when under
2041 * intense memory pressure but failed atomic allocations should be easier
2042 * to recover from than an OOM.
2043 */
2044static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2045{
2046 struct zonelist *zonelist = ac->zonelist;
2047 unsigned long flags;
2048 struct zoneref *z;
2049 struct zone *zone;
2050 struct page *page;
2051 int order;
2052
2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 ac->nodemask) {
2055 /* Preserve at least one pageblock */
2056 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2057 continue;
2058
2059 spin_lock_irqsave(&zone->lock, flags);
2060 for (order = 0; order < MAX_ORDER; order++) {
2061 struct free_area *area = &(zone->free_area[order]);
2062
a16601c5
GT
2063 page = list_first_entry_or_null(
2064 &area->free_list[MIGRATE_HIGHATOMIC],
2065 struct page, lru);
2066 if (!page)
0aaa29a5
MG
2067 continue;
2068
0aaa29a5
MG
2069 /*
2070 * It should never happen but changes to locking could
2071 * inadvertently allow a per-cpu drain to add pages
2072 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2073 * and watch for underflows.
2074 */
2075 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2076 zone->nr_reserved_highatomic);
2077
2078 /*
2079 * Convert to ac->migratetype and avoid the normal
2080 * pageblock stealing heuristics. Minimally, the caller
2081 * is doing the work and needs the pages. More
2082 * importantly, if the block was always converted to
2083 * MIGRATE_UNMOVABLE or another type then the number
2084 * of pageblocks that cannot be completely freed
2085 * may increase.
2086 */
2087 set_pageblock_migratetype(page, ac->migratetype);
2088 move_freepages_block(zone, page, ac->migratetype);
2089 spin_unlock_irqrestore(&zone->lock, flags);
2090 return;
2091 }
2092 spin_unlock_irqrestore(&zone->lock, flags);
2093 }
2094}
2095
b2a0ac88 2096/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2097static inline struct page *
7aeb09f9 2098__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2099{
b8af2941 2100 struct free_area *area;
7aeb09f9 2101 unsigned int current_order;
b2a0ac88 2102 struct page *page;
4eb7dce6
JK
2103 int fallback_mt;
2104 bool can_steal;
b2a0ac88
MG
2105
2106 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2107 for (current_order = MAX_ORDER-1;
2108 current_order >= order && current_order <= MAX_ORDER-1;
2109 --current_order) {
4eb7dce6
JK
2110 area = &(zone->free_area[current_order]);
2111 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2112 start_migratetype, false, &can_steal);
4eb7dce6
JK
2113 if (fallback_mt == -1)
2114 continue;
b2a0ac88 2115
a16601c5 2116 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2117 struct page, lru);
2118 if (can_steal)
2119 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2120
4eb7dce6
JK
2121 /* Remove the page from the freelists */
2122 area->nr_free--;
2123 list_del(&page->lru);
2124 rmv_page_order(page);
3a1086fb 2125
4eb7dce6
JK
2126 expand(zone, page, order, current_order, area,
2127 start_migratetype);
2128 /*
bb14c2c7 2129 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2130 * migratetype depending on the decisions in
bb14c2c7
VB
2131 * find_suitable_fallback(). This is OK as long as it does not
2132 * differ for MIGRATE_CMA pageblocks. Those can be used as
2133 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2134 */
bb14c2c7 2135 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2136
4eb7dce6
JK
2137 trace_mm_page_alloc_extfrag(page, order, current_order,
2138 start_migratetype, fallback_mt);
e0fff1bd 2139
4eb7dce6 2140 return page;
b2a0ac88
MG
2141 }
2142
728ec980 2143 return NULL;
b2a0ac88
MG
2144}
2145
56fd56b8 2146/*
1da177e4
LT
2147 * Do the hard work of removing an element from the buddy allocator.
2148 * Call me with the zone->lock already held.
2149 */
b2a0ac88 2150static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2151 int migratetype)
1da177e4 2152{
1da177e4
LT
2153 struct page *page;
2154
56fd56b8 2155 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2156 if (unlikely(!page)) {
dc67647b
JK
2157 if (migratetype == MIGRATE_MOVABLE)
2158 page = __rmqueue_cma_fallback(zone, order);
2159
2160 if (!page)
2161 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2162 }
2163
0d3d062a 2164 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2165 return page;
1da177e4
LT
2166}
2167
5f63b720 2168/*
1da177e4
LT
2169 * Obtain a specified number of elements from the buddy allocator, all under
2170 * a single hold of the lock, for efficiency. Add them to the supplied list.
2171 * Returns the number of new pages which were placed at *list.
2172 */
5f63b720 2173static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2174 unsigned long count, struct list_head *list,
b745bc85 2175 int migratetype, bool cold)
1da177e4 2176{
5bcc9f86 2177 int i;
5f63b720 2178
c54ad30c 2179 spin_lock(&zone->lock);
1da177e4 2180 for (i = 0; i < count; ++i) {
6ac0206b 2181 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2182 if (unlikely(page == NULL))
1da177e4 2183 break;
81eabcbe 2184
479f854a
MG
2185 if (unlikely(check_pcp_refill(page)))
2186 continue;
2187
81eabcbe
MG
2188 /*
2189 * Split buddy pages returned by expand() are received here
2190 * in physical page order. The page is added to the callers and
2191 * list and the list head then moves forward. From the callers
2192 * perspective, the linked list is ordered by page number in
2193 * some conditions. This is useful for IO devices that can
2194 * merge IO requests if the physical pages are ordered
2195 * properly.
2196 */
b745bc85 2197 if (likely(!cold))
e084b2d9
MG
2198 list_add(&page->lru, list);
2199 else
2200 list_add_tail(&page->lru, list);
81eabcbe 2201 list = &page->lru;
bb14c2c7 2202 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2203 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2204 -(1 << order));
1da177e4 2205 }
f2260e6b 2206 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2207 spin_unlock(&zone->lock);
085cc7d5 2208 return i;
1da177e4
LT
2209}
2210
4ae7c039 2211#ifdef CONFIG_NUMA
8fce4d8e 2212/*
4037d452
CL
2213 * Called from the vmstat counter updater to drain pagesets of this
2214 * currently executing processor on remote nodes after they have
2215 * expired.
2216 *
879336c3
CL
2217 * Note that this function must be called with the thread pinned to
2218 * a single processor.
8fce4d8e 2219 */
4037d452 2220void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2221{
4ae7c039 2222 unsigned long flags;
7be12fc9 2223 int to_drain, batch;
4ae7c039 2224
4037d452 2225 local_irq_save(flags);
4db0c3c2 2226 batch = READ_ONCE(pcp->batch);
7be12fc9 2227 to_drain = min(pcp->count, batch);
2a13515c
KM
2228 if (to_drain > 0) {
2229 free_pcppages_bulk(zone, to_drain, pcp);
2230 pcp->count -= to_drain;
2231 }
4037d452 2232 local_irq_restore(flags);
4ae7c039
CL
2233}
2234#endif
2235
9f8f2172 2236/*
93481ff0 2237 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2238 *
2239 * The processor must either be the current processor and the
2240 * thread pinned to the current processor or a processor that
2241 * is not online.
2242 */
93481ff0 2243static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2244{
c54ad30c 2245 unsigned long flags;
93481ff0
VB
2246 struct per_cpu_pageset *pset;
2247 struct per_cpu_pages *pcp;
1da177e4 2248
93481ff0
VB
2249 local_irq_save(flags);
2250 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2251
93481ff0
VB
2252 pcp = &pset->pcp;
2253 if (pcp->count) {
2254 free_pcppages_bulk(zone, pcp->count, pcp);
2255 pcp->count = 0;
2256 }
2257 local_irq_restore(flags);
2258}
3dfa5721 2259
93481ff0
VB
2260/*
2261 * Drain pcplists of all zones on the indicated processor.
2262 *
2263 * The processor must either be the current processor and the
2264 * thread pinned to the current processor or a processor that
2265 * is not online.
2266 */
2267static void drain_pages(unsigned int cpu)
2268{
2269 struct zone *zone;
2270
2271 for_each_populated_zone(zone) {
2272 drain_pages_zone(cpu, zone);
1da177e4
LT
2273 }
2274}
1da177e4 2275
9f8f2172
CL
2276/*
2277 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2278 *
2279 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2280 * the single zone's pages.
9f8f2172 2281 */
93481ff0 2282void drain_local_pages(struct zone *zone)
9f8f2172 2283{
93481ff0
VB
2284 int cpu = smp_processor_id();
2285
2286 if (zone)
2287 drain_pages_zone(cpu, zone);
2288 else
2289 drain_pages(cpu);
9f8f2172
CL
2290}
2291
2292/*
74046494
GBY
2293 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2294 *
93481ff0
VB
2295 * When zone parameter is non-NULL, spill just the single zone's pages.
2296 *
74046494
GBY
2297 * Note that this code is protected against sending an IPI to an offline
2298 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2299 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2300 * nothing keeps CPUs from showing up after we populated the cpumask and
2301 * before the call to on_each_cpu_mask().
9f8f2172 2302 */
93481ff0 2303void drain_all_pages(struct zone *zone)
9f8f2172 2304{
74046494 2305 int cpu;
74046494
GBY
2306
2307 /*
2308 * Allocate in the BSS so we wont require allocation in
2309 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2310 */
2311 static cpumask_t cpus_with_pcps;
2312
2313 /*
2314 * We don't care about racing with CPU hotplug event
2315 * as offline notification will cause the notified
2316 * cpu to drain that CPU pcps and on_each_cpu_mask
2317 * disables preemption as part of its processing
2318 */
2319 for_each_online_cpu(cpu) {
93481ff0
VB
2320 struct per_cpu_pageset *pcp;
2321 struct zone *z;
74046494 2322 bool has_pcps = false;
93481ff0
VB
2323
2324 if (zone) {
74046494 2325 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2326 if (pcp->pcp.count)
74046494 2327 has_pcps = true;
93481ff0
VB
2328 } else {
2329 for_each_populated_zone(z) {
2330 pcp = per_cpu_ptr(z->pageset, cpu);
2331 if (pcp->pcp.count) {
2332 has_pcps = true;
2333 break;
2334 }
74046494
GBY
2335 }
2336 }
93481ff0 2337
74046494
GBY
2338 if (has_pcps)
2339 cpumask_set_cpu(cpu, &cpus_with_pcps);
2340 else
2341 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2342 }
93481ff0
VB
2343 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2344 zone, 1);
9f8f2172
CL
2345}
2346
296699de 2347#ifdef CONFIG_HIBERNATION
1da177e4
LT
2348
2349void mark_free_pages(struct zone *zone)
2350{
f623f0db
RW
2351 unsigned long pfn, max_zone_pfn;
2352 unsigned long flags;
7aeb09f9 2353 unsigned int order, t;
86760a2c 2354 struct page *page;
1da177e4 2355
8080fc03 2356 if (zone_is_empty(zone))
1da177e4
LT
2357 return;
2358
2359 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2360
108bcc96 2361 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2362 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2363 if (pfn_valid(pfn)) {
86760a2c 2364 page = pfn_to_page(pfn);
ba6b0979
JK
2365
2366 if (page_zone(page) != zone)
2367 continue;
2368
7be98234
RW
2369 if (!swsusp_page_is_forbidden(page))
2370 swsusp_unset_page_free(page);
f623f0db 2371 }
1da177e4 2372
b2a0ac88 2373 for_each_migratetype_order(order, t) {
86760a2c
GT
2374 list_for_each_entry(page,
2375 &zone->free_area[order].free_list[t], lru) {
f623f0db 2376 unsigned long i;
1da177e4 2377
86760a2c 2378 pfn = page_to_pfn(page);
f623f0db 2379 for (i = 0; i < (1UL << order); i++)
7be98234 2380 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2381 }
b2a0ac88 2382 }
1da177e4
LT
2383 spin_unlock_irqrestore(&zone->lock, flags);
2384}
e2c55dc8 2385#endif /* CONFIG_PM */
1da177e4 2386
1da177e4
LT
2387/*
2388 * Free a 0-order page
b745bc85 2389 * cold == true ? free a cold page : free a hot page
1da177e4 2390 */
b745bc85 2391void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2392{
2393 struct zone *zone = page_zone(page);
2394 struct per_cpu_pages *pcp;
2395 unsigned long flags;
dc4b0caf 2396 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2397 int migratetype;
1da177e4 2398
4db7548c 2399 if (!free_pcp_prepare(page))
689bcebf
HD
2400 return;
2401
dc4b0caf 2402 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2403 set_pcppage_migratetype(page, migratetype);
1da177e4 2404 local_irq_save(flags);
f8891e5e 2405 __count_vm_event(PGFREE);
da456f14 2406
5f8dcc21
MG
2407 /*
2408 * We only track unmovable, reclaimable and movable on pcp lists.
2409 * Free ISOLATE pages back to the allocator because they are being
2410 * offlined but treat RESERVE as movable pages so we can get those
2411 * areas back if necessary. Otherwise, we may have to free
2412 * excessively into the page allocator
2413 */
2414 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2415 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2416 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2417 goto out;
2418 }
2419 migratetype = MIGRATE_MOVABLE;
2420 }
2421
99dcc3e5 2422 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2423 if (!cold)
5f8dcc21 2424 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2425 else
2426 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2427 pcp->count++;
48db57f8 2428 if (pcp->count >= pcp->high) {
4db0c3c2 2429 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2430 free_pcppages_bulk(zone, batch, pcp);
2431 pcp->count -= batch;
48db57f8 2432 }
5f8dcc21
MG
2433
2434out:
1da177e4 2435 local_irq_restore(flags);
1da177e4
LT
2436}
2437
cc59850e
KK
2438/*
2439 * Free a list of 0-order pages
2440 */
b745bc85 2441void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2442{
2443 struct page *page, *next;
2444
2445 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2446 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2447 free_hot_cold_page(page, cold);
2448 }
2449}
2450
8dfcc9ba
NP
2451/*
2452 * split_page takes a non-compound higher-order page, and splits it into
2453 * n (1<<order) sub-pages: page[0..n]
2454 * Each sub-page must be freed individually.
2455 *
2456 * Note: this is probably too low level an operation for use in drivers.
2457 * Please consult with lkml before using this in your driver.
2458 */
2459void split_page(struct page *page, unsigned int order)
2460{
2461 int i;
e2cfc911 2462 gfp_t gfp_mask;
8dfcc9ba 2463
309381fe
SL
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2466
2467#ifdef CONFIG_KMEMCHECK
2468 /*
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2471 */
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474#endif
2475
e2cfc911
JK
2476 gfp_mask = get_page_owner_gfp(page);
2477 set_page_owner(page, 0, gfp_mask);
48c96a36 2478 for (i = 1; i < (1 << order); i++) {
7835e98b 2479 set_page_refcounted(page + i);
e2cfc911 2480 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2481 }
8dfcc9ba 2482}
5853ff23 2483EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2484
3c605096 2485int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2486{
748446bb
MG
2487 unsigned long watermark;
2488 struct zone *zone;
2139cbe6 2489 int mt;
748446bb
MG
2490
2491 BUG_ON(!PageBuddy(page));
2492
2493 zone = page_zone(page);
2e30abd1 2494 mt = get_pageblock_migratetype(page);
748446bb 2495
194159fb 2496 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2497 /* Obey watermarks as if the page was being allocated */
2498 watermark = low_wmark_pages(zone) + (1 << order);
2499 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2500 return 0;
2501
8fb74b9f 2502 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2503 }
748446bb
MG
2504
2505 /* Remove page from free list */
2506 list_del(&page->lru);
2507 zone->free_area[order].nr_free--;
2508 rmv_page_order(page);
2139cbe6 2509
e2cfc911 2510 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2511
8fb74b9f 2512 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2513 if (order >= pageblock_order - 1) {
2514 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2515 for (; page < endpage; page += pageblock_nr_pages) {
2516 int mt = get_pageblock_migratetype(page);
194159fb 2517 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2518 set_pageblock_migratetype(page,
2519 MIGRATE_MOVABLE);
2520 }
748446bb
MG
2521 }
2522
f3a14ced 2523
8fb74b9f 2524 return 1UL << order;
1fb3f8ca
MG
2525}
2526
2527/*
2528 * Similar to split_page except the page is already free. As this is only
2529 * being used for migration, the migratetype of the block also changes.
2530 * As this is called with interrupts disabled, the caller is responsible
2531 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2532 * are enabled.
2533 *
2534 * Note: this is probably too low level an operation for use in drivers.
2535 * Please consult with lkml before using this in your driver.
2536 */
2537int split_free_page(struct page *page)
2538{
2539 unsigned int order;
2540 int nr_pages;
2541
1fb3f8ca
MG
2542 order = page_order(page);
2543
8fb74b9f 2544 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2545 if (!nr_pages)
2546 return 0;
2547
2548 /* Split into individual pages */
2549 set_page_refcounted(page);
2550 split_page(page, order);
2551 return nr_pages;
748446bb
MG
2552}
2553
060e7417
MG
2554/*
2555 * Update NUMA hit/miss statistics
2556 *
2557 * Must be called with interrupts disabled.
2558 *
2559 * When __GFP_OTHER_NODE is set assume the node of the preferred
2560 * zone is the local node. This is useful for daemons who allocate
2561 * memory on behalf of other processes.
2562 */
2563static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2564 gfp_t flags)
2565{
2566#ifdef CONFIG_NUMA
2567 int local_nid = numa_node_id();
2568 enum zone_stat_item local_stat = NUMA_LOCAL;
2569
2570 if (unlikely(flags & __GFP_OTHER_NODE)) {
2571 local_stat = NUMA_OTHER;
2572 local_nid = preferred_zone->node;
2573 }
2574
2575 if (z->node == local_nid) {
2576 __inc_zone_state(z, NUMA_HIT);
2577 __inc_zone_state(z, local_stat);
2578 } else {
2579 __inc_zone_state(z, NUMA_MISS);
2580 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2581 }
2582#endif
2583}
2584
1da177e4 2585/*
75379191 2586 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2587 */
0a15c3e9
MG
2588static inline
2589struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2590 struct zone *zone, unsigned int order,
c603844b
MG
2591 gfp_t gfp_flags, unsigned int alloc_flags,
2592 int migratetype)
1da177e4
LT
2593{
2594 unsigned long flags;
689bcebf 2595 struct page *page;
b745bc85 2596 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2597
48db57f8 2598 if (likely(order == 0)) {
1da177e4 2599 struct per_cpu_pages *pcp;
5f8dcc21 2600 struct list_head *list;
1da177e4 2601
1da177e4 2602 local_irq_save(flags);
479f854a
MG
2603 do {
2604 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2605 list = &pcp->lists[migratetype];
2606 if (list_empty(list)) {
2607 pcp->count += rmqueue_bulk(zone, 0,
2608 pcp->batch, list,
2609 migratetype, cold);
2610 if (unlikely(list_empty(list)))
2611 goto failed;
2612 }
b92a6edd 2613
479f854a
MG
2614 if (cold)
2615 page = list_last_entry(list, struct page, lru);
2616 else
2617 page = list_first_entry(list, struct page, lru);
2618 } while (page && check_new_pcp(page));
5f8dcc21 2619
754078eb 2620 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2621 list_del(&page->lru);
2622 pcp->count--;
7fb1d9fc 2623 } else {
0f352e53
MH
2624 /*
2625 * We most definitely don't want callers attempting to
2626 * allocate greater than order-1 page units with __GFP_NOFAIL.
2627 */
2628 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2629 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2630
479f854a
MG
2631 do {
2632 page = NULL;
2633 if (alloc_flags & ALLOC_HARDER) {
2634 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2635 if (page)
2636 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2637 }
2638 if (!page)
2639 page = __rmqueue(zone, order, migratetype);
2640 } while (page && check_new_pages(page, order));
a74609fa
NP
2641 spin_unlock(&zone->lock);
2642 if (!page)
2643 goto failed;
754078eb 2644 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2645 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2646 get_pcppage_migratetype(page));
1da177e4
LT
2647 }
2648
abe5f972 2649 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2650 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2651 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2652
f8891e5e 2653 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2654 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2655 local_irq_restore(flags);
1da177e4 2656
309381fe 2657 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2658 return page;
a74609fa
NP
2659
2660failed:
2661 local_irq_restore(flags);
a74609fa 2662 return NULL;
1da177e4
LT
2663}
2664
933e312e
AM
2665#ifdef CONFIG_FAIL_PAGE_ALLOC
2666
b2588c4b 2667static struct {
933e312e
AM
2668 struct fault_attr attr;
2669
621a5f7a 2670 bool ignore_gfp_highmem;
71baba4b 2671 bool ignore_gfp_reclaim;
54114994 2672 u32 min_order;
933e312e
AM
2673} fail_page_alloc = {
2674 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2675 .ignore_gfp_reclaim = true,
621a5f7a 2676 .ignore_gfp_highmem = true,
54114994 2677 .min_order = 1,
933e312e
AM
2678};
2679
2680static int __init setup_fail_page_alloc(char *str)
2681{
2682 return setup_fault_attr(&fail_page_alloc.attr, str);
2683}
2684__setup("fail_page_alloc=", setup_fail_page_alloc);
2685
deaf386e 2686static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2687{
54114994 2688 if (order < fail_page_alloc.min_order)
deaf386e 2689 return false;
933e312e 2690 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2691 return false;
933e312e 2692 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2693 return false;
71baba4b
MG
2694 if (fail_page_alloc.ignore_gfp_reclaim &&
2695 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2696 return false;
933e312e
AM
2697
2698 return should_fail(&fail_page_alloc.attr, 1 << order);
2699}
2700
2701#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2702
2703static int __init fail_page_alloc_debugfs(void)
2704{
f4ae40a6 2705 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2706 struct dentry *dir;
933e312e 2707
dd48c085
AM
2708 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2709 &fail_page_alloc.attr);
2710 if (IS_ERR(dir))
2711 return PTR_ERR(dir);
933e312e 2712
b2588c4b 2713 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2714 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2715 goto fail;
2716 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2717 &fail_page_alloc.ignore_gfp_highmem))
2718 goto fail;
2719 if (!debugfs_create_u32("min-order", mode, dir,
2720 &fail_page_alloc.min_order))
2721 goto fail;
2722
2723 return 0;
2724fail:
dd48c085 2725 debugfs_remove_recursive(dir);
933e312e 2726
b2588c4b 2727 return -ENOMEM;
933e312e
AM
2728}
2729
2730late_initcall(fail_page_alloc_debugfs);
2731
2732#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2733
2734#else /* CONFIG_FAIL_PAGE_ALLOC */
2735
deaf386e 2736static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2737{
deaf386e 2738 return false;
933e312e
AM
2739}
2740
2741#endif /* CONFIG_FAIL_PAGE_ALLOC */
2742
1da177e4 2743/*
97a16fc8
MG
2744 * Return true if free base pages are above 'mark'. For high-order checks it
2745 * will return true of the order-0 watermark is reached and there is at least
2746 * one free page of a suitable size. Checking now avoids taking the zone lock
2747 * to check in the allocation paths if no pages are free.
1da177e4 2748 */
86a294a8
MH
2749bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2750 int classzone_idx, unsigned int alloc_flags,
2751 long free_pages)
1da177e4 2752{
d23ad423 2753 long min = mark;
1da177e4 2754 int o;
c603844b 2755 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2756
0aaa29a5 2757 /* free_pages may go negative - that's OK */
df0a6daa 2758 free_pages -= (1 << order) - 1;
0aaa29a5 2759
7fb1d9fc 2760 if (alloc_flags & ALLOC_HIGH)
1da177e4 2761 min -= min / 2;
0aaa29a5
MG
2762
2763 /*
2764 * If the caller does not have rights to ALLOC_HARDER then subtract
2765 * the high-atomic reserves. This will over-estimate the size of the
2766 * atomic reserve but it avoids a search.
2767 */
97a16fc8 2768 if (likely(!alloc_harder))
0aaa29a5
MG
2769 free_pages -= z->nr_reserved_highatomic;
2770 else
1da177e4 2771 min -= min / 4;
e2b19197 2772
d95ea5d1
BZ
2773#ifdef CONFIG_CMA
2774 /* If allocation can't use CMA areas don't use free CMA pages */
2775 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2776 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2777#endif
026b0814 2778
97a16fc8
MG
2779 /*
2780 * Check watermarks for an order-0 allocation request. If these
2781 * are not met, then a high-order request also cannot go ahead
2782 * even if a suitable page happened to be free.
2783 */
2784 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2785 return false;
1da177e4 2786
97a16fc8
MG
2787 /* If this is an order-0 request then the watermark is fine */
2788 if (!order)
2789 return true;
2790
2791 /* For a high-order request, check at least one suitable page is free */
2792 for (o = order; o < MAX_ORDER; o++) {
2793 struct free_area *area = &z->free_area[o];
2794 int mt;
2795
2796 if (!area->nr_free)
2797 continue;
2798
2799 if (alloc_harder)
2800 return true;
1da177e4 2801
97a16fc8
MG
2802 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2803 if (!list_empty(&area->free_list[mt]))
2804 return true;
2805 }
2806
2807#ifdef CONFIG_CMA
2808 if ((alloc_flags & ALLOC_CMA) &&
2809 !list_empty(&area->free_list[MIGRATE_CMA])) {
2810 return true;
2811 }
2812#endif
1da177e4 2813 }
97a16fc8 2814 return false;
88f5acf8
MG
2815}
2816
7aeb09f9 2817bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2818 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2819{
2820 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2821 zone_page_state(z, NR_FREE_PAGES));
2822}
2823
48ee5f36
MG
2824static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2825 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2826{
2827 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2828 long cma_pages = 0;
2829
2830#ifdef CONFIG_CMA
2831 /* If allocation can't use CMA areas don't use free CMA pages */
2832 if (!(alloc_flags & ALLOC_CMA))
2833 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2834#endif
2835
2836 /*
2837 * Fast check for order-0 only. If this fails then the reserves
2838 * need to be calculated. There is a corner case where the check
2839 * passes but only the high-order atomic reserve are free. If
2840 * the caller is !atomic then it'll uselessly search the free
2841 * list. That corner case is then slower but it is harmless.
2842 */
2843 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2844 return true;
2845
2846 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2847 free_pages);
2848}
2849
7aeb09f9 2850bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2851 unsigned long mark, int classzone_idx)
88f5acf8
MG
2852{
2853 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2854
2855 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2856 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2857
e2b19197 2858 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2859 free_pages);
1da177e4
LT
2860}
2861
9276b1bc 2862#ifdef CONFIG_NUMA
81c0a2bb
JW
2863static bool zone_local(struct zone *local_zone, struct zone *zone)
2864{
fff4068c 2865 return local_zone->node == zone->node;
81c0a2bb
JW
2866}
2867
957f822a
DR
2868static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2869{
5f7a75ac
MG
2870 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2871 RECLAIM_DISTANCE;
957f822a 2872}
9276b1bc 2873#else /* CONFIG_NUMA */
81c0a2bb
JW
2874static bool zone_local(struct zone *local_zone, struct zone *zone)
2875{
2876 return true;
2877}
2878
957f822a
DR
2879static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2880{
2881 return true;
2882}
9276b1bc
PJ
2883#endif /* CONFIG_NUMA */
2884
4ffeaf35
MG
2885static void reset_alloc_batches(struct zone *preferred_zone)
2886{
2887 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2888
2889 do {
2890 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2891 high_wmark_pages(zone) - low_wmark_pages(zone) -
2892 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2893 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2894 } while (zone++ != preferred_zone);
2895}
2896
7fb1d9fc 2897/*
0798e519 2898 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2899 * a page.
2900 */
2901static struct page *
a9263751
VB
2902get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2903 const struct alloc_context *ac)
753ee728 2904{
c33d6c06 2905 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2906 struct zone *zone;
30534755
MG
2907 bool fair_skipped = false;
2908 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2909
9276b1bc 2910zonelist_scan:
7fb1d9fc 2911 /*
9276b1bc 2912 * Scan zonelist, looking for a zone with enough free.
344736f2 2913 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2914 */
c33d6c06 2915 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2916 ac->nodemask) {
be06af00 2917 struct page *page;
e085dbc5
JW
2918 unsigned long mark;
2919
664eedde
MG
2920 if (cpusets_enabled() &&
2921 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2922 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2923 continue;
81c0a2bb
JW
2924 /*
2925 * Distribute pages in proportion to the individual
2926 * zone size to ensure fair page aging. The zone a
2927 * page was allocated in should have no effect on the
2928 * time the page has in memory before being reclaimed.
81c0a2bb 2929 */
30534755 2930 if (apply_fair) {
57054651 2931 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2932 fair_skipped = true;
3a025760 2933 continue;
4ffeaf35 2934 }
c33d6c06 2935 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2936 if (fair_skipped)
2937 goto reset_fair;
2938 apply_fair = false;
2939 }
81c0a2bb 2940 }
a756cf59
JW
2941 /*
2942 * When allocating a page cache page for writing, we
2943 * want to get it from a zone that is within its dirty
2944 * limit, such that no single zone holds more than its
2945 * proportional share of globally allowed dirty pages.
2946 * The dirty limits take into account the zone's
2947 * lowmem reserves and high watermark so that kswapd
2948 * should be able to balance it without having to
2949 * write pages from its LRU list.
2950 *
2951 * This may look like it could increase pressure on
2952 * lower zones by failing allocations in higher zones
2953 * before they are full. But the pages that do spill
2954 * over are limited as the lower zones are protected
2955 * by this very same mechanism. It should not become
2956 * a practical burden to them.
2957 *
2958 * XXX: For now, allow allocations to potentially
2959 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2960 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2961 * which is important when on a NUMA setup the allowed
2962 * zones are together not big enough to reach the
2963 * global limit. The proper fix for these situations
2964 * will require awareness of zones in the
2965 * dirty-throttling and the flusher threads.
2966 */
c9ab0c4f 2967 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2968 continue;
7fb1d9fc 2969
e085dbc5 2970 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2971 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2972 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2973 int ret;
2974
5dab2911
MG
2975 /* Checked here to keep the fast path fast */
2976 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2977 if (alloc_flags & ALLOC_NO_WATERMARKS)
2978 goto try_this_zone;
2979
957f822a 2980 if (zone_reclaim_mode == 0 ||
c33d6c06 2981 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2982 continue;
2983
fa5e084e
MG
2984 ret = zone_reclaim(zone, gfp_mask, order);
2985 switch (ret) {
2986 case ZONE_RECLAIM_NOSCAN:
2987 /* did not scan */
cd38b115 2988 continue;
fa5e084e
MG
2989 case ZONE_RECLAIM_FULL:
2990 /* scanned but unreclaimable */
cd38b115 2991 continue;
fa5e084e
MG
2992 default:
2993 /* did we reclaim enough */
fed2719e 2994 if (zone_watermark_ok(zone, order, mark,
93ea9964 2995 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2996 goto try_this_zone;
2997
fed2719e 2998 continue;
0798e519 2999 }
7fb1d9fc
RS
3000 }
3001
fa5e084e 3002try_this_zone:
c33d6c06 3003 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3004 gfp_mask, alloc_flags, ac->migratetype);
75379191 3005 if (page) {
479f854a 3006 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3007
3008 /*
3009 * If this is a high-order atomic allocation then check
3010 * if the pageblock should be reserved for the future
3011 */
3012 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3013 reserve_highatomic_pageblock(page, zone, order);
3014
75379191
VB
3015 return page;
3016 }
54a6eb5c 3017 }
9276b1bc 3018
4ffeaf35
MG
3019 /*
3020 * The first pass makes sure allocations are spread fairly within the
3021 * local node. However, the local node might have free pages left
3022 * after the fairness batches are exhausted, and remote zones haven't
3023 * even been considered yet. Try once more without fairness, and
3024 * include remote zones now, before entering the slowpath and waking
3025 * kswapd: prefer spilling to a remote zone over swapping locally.
3026 */
30534755
MG
3027 if (fair_skipped) {
3028reset_fair:
3029 apply_fair = false;
3030 fair_skipped = false;
c33d6c06 3031 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 3032 goto zonelist_scan;
30534755 3033 }
4ffeaf35
MG
3034
3035 return NULL;
753ee728
MH
3036}
3037
29423e77
DR
3038/*
3039 * Large machines with many possible nodes should not always dump per-node
3040 * meminfo in irq context.
3041 */
3042static inline bool should_suppress_show_mem(void)
3043{
3044 bool ret = false;
3045
3046#if NODES_SHIFT > 8
3047 ret = in_interrupt();
3048#endif
3049 return ret;
3050}
3051
a238ab5b
DH
3052static DEFINE_RATELIMIT_STATE(nopage_rs,
3053 DEFAULT_RATELIMIT_INTERVAL,
3054 DEFAULT_RATELIMIT_BURST);
3055
d00181b9 3056void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3057{
a238ab5b
DH
3058 unsigned int filter = SHOW_MEM_FILTER_NODES;
3059
c0a32fc5
SG
3060 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3061 debug_guardpage_minorder() > 0)
a238ab5b
DH
3062 return;
3063
3064 /*
3065 * This documents exceptions given to allocations in certain
3066 * contexts that are allowed to allocate outside current's set
3067 * of allowed nodes.
3068 */
3069 if (!(gfp_mask & __GFP_NOMEMALLOC))
3070 if (test_thread_flag(TIF_MEMDIE) ||
3071 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3072 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3073 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3074 filter &= ~SHOW_MEM_FILTER_NODES;
3075
3076 if (fmt) {
3ee9a4f0
JP
3077 struct va_format vaf;
3078 va_list args;
3079
a238ab5b 3080 va_start(args, fmt);
3ee9a4f0
JP
3081
3082 vaf.fmt = fmt;
3083 vaf.va = &args;
3084
3085 pr_warn("%pV", &vaf);
3086
a238ab5b
DH
3087 va_end(args);
3088 }
3089
c5c990e8
VB
3090 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3091 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3092 dump_stack();
3093 if (!should_suppress_show_mem())
3094 show_mem(filter);
3095}
3096
11e33f6a
MG
3097static inline struct page *
3098__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3099 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3100{
6e0fc46d
DR
3101 struct oom_control oc = {
3102 .zonelist = ac->zonelist,
3103 .nodemask = ac->nodemask,
3104 .gfp_mask = gfp_mask,
3105 .order = order,
6e0fc46d 3106 };
11e33f6a
MG
3107 struct page *page;
3108
9879de73
JW
3109 *did_some_progress = 0;
3110
9879de73 3111 /*
dc56401f
JW
3112 * Acquire the oom lock. If that fails, somebody else is
3113 * making progress for us.
9879de73 3114 */
dc56401f 3115 if (!mutex_trylock(&oom_lock)) {
9879de73 3116 *did_some_progress = 1;
11e33f6a 3117 schedule_timeout_uninterruptible(1);
1da177e4
LT
3118 return NULL;
3119 }
6b1de916 3120
11e33f6a
MG
3121 /*
3122 * Go through the zonelist yet one more time, keep very high watermark
3123 * here, this is only to catch a parallel oom killing, we must fail if
3124 * we're still under heavy pressure.
3125 */
a9263751
VB
3126 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3127 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3128 if (page)
11e33f6a
MG
3129 goto out;
3130
4365a567 3131 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3132 /* Coredumps can quickly deplete all memory reserves */
3133 if (current->flags & PF_DUMPCORE)
3134 goto out;
4365a567
KH
3135 /* The OOM killer will not help higher order allocs */
3136 if (order > PAGE_ALLOC_COSTLY_ORDER)
3137 goto out;
03668b3c 3138 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3139 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3140 goto out;
9083905a
JW
3141 if (pm_suspended_storage())
3142 goto out;
3da88fb3
MH
3143 /*
3144 * XXX: GFP_NOFS allocations should rather fail than rely on
3145 * other request to make a forward progress.
3146 * We are in an unfortunate situation where out_of_memory cannot
3147 * do much for this context but let's try it to at least get
3148 * access to memory reserved if the current task is killed (see
3149 * out_of_memory). Once filesystems are ready to handle allocation
3150 * failures more gracefully we should just bail out here.
3151 */
3152
4167e9b2 3153 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3154 if (gfp_mask & __GFP_THISNODE)
3155 goto out;
3156 }
11e33f6a 3157 /* Exhausted what can be done so it's blamo time */
5020e285 3158 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3159 *did_some_progress = 1;
5020e285
MH
3160
3161 if (gfp_mask & __GFP_NOFAIL) {
3162 page = get_page_from_freelist(gfp_mask, order,
3163 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3164 /*
3165 * fallback to ignore cpuset restriction if our nodes
3166 * are depleted
3167 */
3168 if (!page)
3169 page = get_page_from_freelist(gfp_mask, order,
3170 ALLOC_NO_WATERMARKS, ac);
3171 }
3172 }
11e33f6a 3173out:
dc56401f 3174 mutex_unlock(&oom_lock);
11e33f6a
MG
3175 return page;
3176}
3177
33c2d214
MH
3178
3179/*
3180 * Maximum number of compaction retries wit a progress before OOM
3181 * killer is consider as the only way to move forward.
3182 */
3183#define MAX_COMPACT_RETRIES 16
3184
56de7263
MG
3185#ifdef CONFIG_COMPACTION
3186/* Try memory compaction for high-order allocations before reclaim */
3187static struct page *
3188__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3189 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3190 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3191{
98dd3b48 3192 struct page *page;
c5d01d0d 3193 int contended_compaction;
53853e2d
VB
3194
3195 if (!order)
66199712 3196 return NULL;
66199712 3197
c06b1fca 3198 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3199 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3200 mode, &contended_compaction);
c06b1fca 3201 current->flags &= ~PF_MEMALLOC;
56de7263 3202
c5d01d0d 3203 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3204 return NULL;
53853e2d 3205
98dd3b48
VB
3206 /*
3207 * At least in one zone compaction wasn't deferred or skipped, so let's
3208 * count a compaction stall
3209 */
3210 count_vm_event(COMPACTSTALL);
8fb74b9f 3211
a9263751
VB
3212 page = get_page_from_freelist(gfp_mask, order,
3213 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3214
98dd3b48
VB
3215 if (page) {
3216 struct zone *zone = page_zone(page);
53853e2d 3217
98dd3b48
VB
3218 zone->compact_blockskip_flush = false;
3219 compaction_defer_reset(zone, order, true);
3220 count_vm_event(COMPACTSUCCESS);
3221 return page;
3222 }
56de7263 3223
98dd3b48
VB
3224 /*
3225 * It's bad if compaction run occurs and fails. The most likely reason
3226 * is that pages exist, but not enough to satisfy watermarks.
3227 */
3228 count_vm_event(COMPACTFAIL);
66199712 3229
c5d01d0d
MH
3230 /*
3231 * In all zones where compaction was attempted (and not
3232 * deferred or skipped), lock contention has been detected.
3233 * For THP allocation we do not want to disrupt the others
3234 * so we fallback to base pages instead.
3235 */
3236 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3237 *compact_result = COMPACT_CONTENDED;
3238
3239 /*
3240 * If compaction was aborted due to need_resched(), we do not
3241 * want to further increase allocation latency, unless it is
3242 * khugepaged trying to collapse.
3243 */
3244 if (contended_compaction == COMPACT_CONTENDED_SCHED
3245 && !(current->flags & PF_KTHREAD))
3246 *compact_result = COMPACT_CONTENDED;
3247
98dd3b48 3248 cond_resched();
56de7263
MG
3249
3250 return NULL;
3251}
33c2d214
MH
3252
3253static inline bool
86a294a8
MH
3254should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3255 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3256 int compaction_retries)
3257{
7854ea6c
MH
3258 int max_retries = MAX_COMPACT_RETRIES;
3259
33c2d214
MH
3260 if (!order)
3261 return false;
3262
3263 /*
3264 * compaction considers all the zone as desperately out of memory
3265 * so it doesn't really make much sense to retry except when the
3266 * failure could be caused by weak migration mode.
3267 */
3268 if (compaction_failed(compact_result)) {
3269 if (*migrate_mode == MIGRATE_ASYNC) {
3270 *migrate_mode = MIGRATE_SYNC_LIGHT;
3271 return true;
3272 }
3273 return false;
3274 }
3275
3276 /*
7854ea6c
MH
3277 * make sure the compaction wasn't deferred or didn't bail out early
3278 * due to locks contention before we declare that we should give up.
86a294a8
MH
3279 * But do not retry if the given zonelist is not suitable for
3280 * compaction.
33c2d214 3281 */
7854ea6c 3282 if (compaction_withdrawn(compact_result))
86a294a8 3283 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3284
3285 /*
3286 * !costly requests are much more important than __GFP_REPEAT
3287 * costly ones because they are de facto nofail and invoke OOM
3288 * killer to move on while costly can fail and users are ready
3289 * to cope with that. 1/4 retries is rather arbitrary but we
3290 * would need much more detailed feedback from compaction to
3291 * make a better decision.
3292 */
3293 if (order > PAGE_ALLOC_COSTLY_ORDER)
3294 max_retries /= 4;
3295 if (compaction_retries <= max_retries)
3296 return true;
33c2d214
MH
3297
3298 return false;
3299}
56de7263
MG
3300#else
3301static inline struct page *
3302__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3303 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3304 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3305{
33c2d214 3306 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3307 return NULL;
3308}
33c2d214
MH
3309
3310static inline bool
86a294a8
MH
3311should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3312 enum compact_result compact_result,
33c2d214
MH
3313 enum migrate_mode *migrate_mode,
3314 int compaction_retries)
3315{
31e49bfd
MH
3316 struct zone *zone;
3317 struct zoneref *z;
3318
3319 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3320 return false;
3321
3322 /*
3323 * There are setups with compaction disabled which would prefer to loop
3324 * inside the allocator rather than hit the oom killer prematurely.
3325 * Let's give them a good hope and keep retrying while the order-0
3326 * watermarks are OK.
3327 */
3328 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3329 ac->nodemask) {
3330 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3331 ac_classzone_idx(ac), alloc_flags))
3332 return true;
3333 }
33c2d214
MH
3334 return false;
3335}
56de7263
MG
3336#endif /* CONFIG_COMPACTION */
3337
bba90710
MS
3338/* Perform direct synchronous page reclaim */
3339static int
a9263751
VB
3340__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3341 const struct alloc_context *ac)
11e33f6a 3342{
11e33f6a 3343 struct reclaim_state reclaim_state;
bba90710 3344 int progress;
11e33f6a
MG
3345
3346 cond_resched();
3347
3348 /* We now go into synchronous reclaim */
3349 cpuset_memory_pressure_bump();
c06b1fca 3350 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3351 lockdep_set_current_reclaim_state(gfp_mask);
3352 reclaim_state.reclaimed_slab = 0;
c06b1fca 3353 current->reclaim_state = &reclaim_state;
11e33f6a 3354
a9263751
VB
3355 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3356 ac->nodemask);
11e33f6a 3357
c06b1fca 3358 current->reclaim_state = NULL;
11e33f6a 3359 lockdep_clear_current_reclaim_state();
c06b1fca 3360 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3361
3362 cond_resched();
3363
bba90710
MS
3364 return progress;
3365}
3366
3367/* The really slow allocator path where we enter direct reclaim */
3368static inline struct page *
3369__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3370 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3371 unsigned long *did_some_progress)
bba90710
MS
3372{
3373 struct page *page = NULL;
3374 bool drained = false;
3375
a9263751 3376 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3377 if (unlikely(!(*did_some_progress)))
3378 return NULL;
11e33f6a 3379
9ee493ce 3380retry:
a9263751
VB
3381 page = get_page_from_freelist(gfp_mask, order,
3382 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3383
3384 /*
3385 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3386 * pages are pinned on the per-cpu lists or in high alloc reserves.
3387 * Shrink them them and try again
9ee493ce
MG
3388 */
3389 if (!page && !drained) {
0aaa29a5 3390 unreserve_highatomic_pageblock(ac);
93481ff0 3391 drain_all_pages(NULL);
9ee493ce
MG
3392 drained = true;
3393 goto retry;
3394 }
3395
11e33f6a
MG
3396 return page;
3397}
3398
a9263751 3399static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3400{
3401 struct zoneref *z;
3402 struct zone *zone;
3403
a9263751
VB
3404 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3405 ac->high_zoneidx, ac->nodemask)
93ea9964 3406 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3407}
3408
c603844b 3409static inline unsigned int
341ce06f
PZ
3410gfp_to_alloc_flags(gfp_t gfp_mask)
3411{
c603844b 3412 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3413
a56f57ff 3414 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3415 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3416
341ce06f
PZ
3417 /*
3418 * The caller may dip into page reserves a bit more if the caller
3419 * cannot run direct reclaim, or if the caller has realtime scheduling
3420 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3421 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3422 */
e6223a3b 3423 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3424
d0164adc 3425 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3426 /*
b104a35d
DR
3427 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3428 * if it can't schedule.
5c3240d9 3429 */
b104a35d 3430 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3431 alloc_flags |= ALLOC_HARDER;
523b9458 3432 /*
b104a35d 3433 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3434 * comment for __cpuset_node_allowed().
523b9458 3435 */
341ce06f 3436 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3437 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3438 alloc_flags |= ALLOC_HARDER;
3439
b37f1dd0
MG
3440 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3441 if (gfp_mask & __GFP_MEMALLOC)
3442 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3443 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3444 alloc_flags |= ALLOC_NO_WATERMARKS;
3445 else if (!in_interrupt() &&
3446 ((current->flags & PF_MEMALLOC) ||
3447 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3448 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3449 }
d95ea5d1 3450#ifdef CONFIG_CMA
43e7a34d 3451 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3452 alloc_flags |= ALLOC_CMA;
3453#endif
341ce06f
PZ
3454 return alloc_flags;
3455}
3456
072bb0aa
MG
3457bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3458{
b37f1dd0 3459 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3460}
3461
d0164adc
MG
3462static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3463{
3464 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3465}
3466
0a0337e0
MH
3467/*
3468 * Maximum number of reclaim retries without any progress before OOM killer
3469 * is consider as the only way to move forward.
3470 */
3471#define MAX_RECLAIM_RETRIES 16
3472
3473/*
3474 * Checks whether it makes sense to retry the reclaim to make a forward progress
3475 * for the given allocation request.
3476 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3477 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3478 * any progress in a row) is considered as well as the reclaimable pages on the
3479 * applicable zone list (with a backoff mechanism which is a function of
3480 * no_progress_loops).
0a0337e0
MH
3481 *
3482 * Returns true if a retry is viable or false to enter the oom path.
3483 */
3484static inline bool
3485should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3486 struct alloc_context *ac, int alloc_flags,
7854ea6c 3487 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3488{
3489 struct zone *zone;
3490 struct zoneref *z;
3491
3492 /*
3493 * Make sure we converge to OOM if we cannot make any progress
3494 * several times in the row.
3495 */
3496 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3497 return false;
3498
0a0337e0
MH
3499 /*
3500 * Keep reclaiming pages while there is a chance this will lead somewhere.
3501 * If none of the target zones can satisfy our allocation request even
3502 * if all reclaimable pages are considered then we are screwed and have
3503 * to go OOM.
3504 */
3505 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3506 ac->nodemask) {
3507 unsigned long available;
ede37713 3508 unsigned long reclaimable;
0a0337e0 3509
ede37713 3510 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3511 available -= DIV_ROUND_UP(no_progress_loops * available,
3512 MAX_RECLAIM_RETRIES);
3513 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3514
3515 /*
3516 * Would the allocation succeed if we reclaimed the whole
3517 * available?
3518 */
3519 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3520 ac_classzone_idx(ac), alloc_flags, available)) {
3521 /*
3522 * If we didn't make any progress and have a lot of
3523 * dirty + writeback pages then we should wait for
3524 * an IO to complete to slow down the reclaim and
3525 * prevent from pre mature OOM
3526 */
3527 if (!did_some_progress) {
3528 unsigned long writeback;
3529 unsigned long dirty;
3530
3531 writeback = zone_page_state_snapshot(zone,
3532 NR_WRITEBACK);
3533 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3534
3535 if (2*(writeback + dirty) > reclaimable) {
3536 congestion_wait(BLK_RW_ASYNC, HZ/10);
3537 return true;
3538 }
3539 }
3540
3541 /*
3542 * Memory allocation/reclaim might be called from a WQ
3543 * context and the current implementation of the WQ
3544 * concurrency control doesn't recognize that
3545 * a particular WQ is congested if the worker thread is
3546 * looping without ever sleeping. Therefore we have to
3547 * do a short sleep here rather than calling
3548 * cond_resched().
3549 */
3550 if (current->flags & PF_WQ_WORKER)
3551 schedule_timeout_uninterruptible(1);
3552 else
3553 cond_resched();
3554
0a0337e0
MH
3555 return true;
3556 }
3557 }
3558
3559 return false;
3560}
3561
11e33f6a
MG
3562static inline struct page *
3563__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3564 struct alloc_context *ac)
11e33f6a 3565{
d0164adc 3566 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3567 struct page *page = NULL;
c603844b 3568 unsigned int alloc_flags;
11e33f6a 3569 unsigned long did_some_progress;
e0b9daeb 3570 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3571 enum compact_result compact_result;
33c2d214 3572 int compaction_retries = 0;
0a0337e0 3573 int no_progress_loops = 0;
1da177e4 3574
72807a74
MG
3575 /*
3576 * In the slowpath, we sanity check order to avoid ever trying to
3577 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3578 * be using allocators in order of preference for an area that is
3579 * too large.
3580 */
1fc28b70
MG
3581 if (order >= MAX_ORDER) {
3582 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3583 return NULL;
1fc28b70 3584 }
1da177e4 3585
d0164adc
MG
3586 /*
3587 * We also sanity check to catch abuse of atomic reserves being used by
3588 * callers that are not in atomic context.
3589 */
3590 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3591 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3592 gfp_mask &= ~__GFP_ATOMIC;
3593
9879de73 3594retry:
d0164adc 3595 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3596 wake_all_kswapds(order, ac);
1da177e4 3597
9bf2229f 3598 /*
7fb1d9fc
RS
3599 * OK, we're below the kswapd watermark and have kicked background
3600 * reclaim. Now things get more complex, so set up alloc_flags according
3601 * to how we want to proceed.
9bf2229f 3602 */
341ce06f 3603 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3604
341ce06f 3605 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3606 page = get_page_from_freelist(gfp_mask, order,
3607 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3608 if (page)
3609 goto got_pg;
1da177e4 3610
11e33f6a 3611 /* Allocate without watermarks if the context allows */
341ce06f 3612 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3613 /*
3614 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3615 * the allocation is high priority and these type of
3616 * allocations are system rather than user orientated
3617 */
a9263751 3618 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3619 page = get_page_from_freelist(gfp_mask, order,
3620 ALLOC_NO_WATERMARKS, ac);
3621 if (page)
3622 goto got_pg;
1da177e4
LT
3623 }
3624
d0164adc
MG
3625 /* Caller is not willing to reclaim, we can't balance anything */
3626 if (!can_direct_reclaim) {
aed0a0e3 3627 /*
33d53103
MH
3628 * All existing users of the __GFP_NOFAIL are blockable, so warn
3629 * of any new users that actually allow this type of allocation
3630 * to fail.
aed0a0e3
DR
3631 */
3632 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3633 goto nopage;
aed0a0e3 3634 }
1da177e4 3635
341ce06f 3636 /* Avoid recursion of direct reclaim */
33d53103
MH
3637 if (current->flags & PF_MEMALLOC) {
3638 /*
3639 * __GFP_NOFAIL request from this context is rather bizarre
3640 * because we cannot reclaim anything and only can loop waiting
3641 * for somebody to do a work for us.
3642 */
3643 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3644 cond_resched();
3645 goto retry;
3646 }
341ce06f 3647 goto nopage;
33d53103 3648 }
341ce06f 3649
6583bb64
DR
3650 /* Avoid allocations with no watermarks from looping endlessly */
3651 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3652 goto nopage;
3653
77f1fe6b
MG
3654 /*
3655 * Try direct compaction. The first pass is asynchronous. Subsequent
3656 * attempts after direct reclaim are synchronous
3657 */
a9263751
VB
3658 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3659 migration_mode,
c5d01d0d 3660 &compact_result);
56de7263
MG
3661 if (page)
3662 goto got_pg;
75f30861 3663
1f9efdef 3664 /* Checks for THP-specific high-order allocations */
d0164adc 3665 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3666 /*
3667 * If compaction is deferred for high-order allocations, it is
3668 * because sync compaction recently failed. If this is the case
3669 * and the caller requested a THP allocation, we do not want
3670 * to heavily disrupt the system, so we fail the allocation
3671 * instead of entering direct reclaim.
3672 */
c5d01d0d 3673 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3674 goto nopage;
3675
3676 /*
c5d01d0d
MH
3677 * Compaction is contended so rather back off than cause
3678 * excessive stalls.
1f9efdef 3679 */
c5d01d0d 3680 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3681 goto nopage;
3682 }
66199712 3683
33c2d214
MH
3684 if (order && compaction_made_progress(compact_result))
3685 compaction_retries++;
8fe78048 3686
11e33f6a 3687 /* Try direct reclaim and then allocating */
a9263751
VB
3688 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3689 &did_some_progress);
11e33f6a
MG
3690 if (page)
3691 goto got_pg;
1da177e4 3692
9083905a
JW
3693 /* Do not loop if specifically requested */
3694 if (gfp_mask & __GFP_NORETRY)
3695 goto noretry;
3696
0a0337e0
MH
3697 /*
3698 * Do not retry costly high order allocations unless they are
3699 * __GFP_REPEAT
3700 */
3701 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3702 goto noretry;
3703
7854ea6c
MH
3704 /*
3705 * Costly allocations might have made a progress but this doesn't mean
3706 * their order will become available due to high fragmentation so
3707 * always increment the no progress counter for them
3708 */
3709 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3710 no_progress_loops = 0;
7854ea6c 3711 else
0a0337e0 3712 no_progress_loops++;
1da177e4 3713
0a0337e0 3714 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3715 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3716 goto retry;
3717
33c2d214
MH
3718 /*
3719 * It doesn't make any sense to retry for the compaction if the order-0
3720 * reclaim is not able to make any progress because the current
3721 * implementation of the compaction depends on the sufficient amount
3722 * of free memory (see __compaction_suitable)
3723 */
3724 if (did_some_progress > 0 &&
86a294a8
MH
3725 should_compact_retry(ac, order, alloc_flags,
3726 compact_result, &migration_mode,
3727 compaction_retries))
33c2d214
MH
3728 goto retry;
3729
9083905a
JW
3730 /* Reclaim has failed us, start killing things */
3731 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3732 if (page)
3733 goto got_pg;
3734
3735 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3736 if (did_some_progress) {
3737 no_progress_loops = 0;
9083905a 3738 goto retry;
0a0337e0 3739 }
9083905a
JW
3740
3741noretry:
3742 /*
33c2d214
MH
3743 * High-order allocations do not necessarily loop after direct reclaim
3744 * and reclaim/compaction depends on compaction being called after
3745 * reclaim so call directly if necessary.
3746 * It can become very expensive to allocate transparent hugepages at
3747 * fault, so use asynchronous memory compaction for THP unless it is
3748 * khugepaged trying to collapse. All other requests should tolerate
3749 * at least light sync migration.
9083905a 3750 */
33c2d214
MH
3751 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3752 migration_mode = MIGRATE_ASYNC;
3753 else
3754 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3755 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3756 ac, migration_mode,
c5d01d0d 3757 &compact_result);
9083905a
JW
3758 if (page)
3759 goto got_pg;
1da177e4 3760nopage:
a238ab5b 3761 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3762got_pg:
072bb0aa 3763 return page;
1da177e4 3764}
11e33f6a
MG
3765
3766/*
3767 * This is the 'heart' of the zoned buddy allocator.
3768 */
3769struct page *
3770__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3771 struct zonelist *zonelist, nodemask_t *nodemask)
3772{
5bb1b169 3773 struct page *page;
cc9a6c87 3774 unsigned int cpuset_mems_cookie;
c603844b 3775 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3776 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3777 struct alloc_context ac = {
3778 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3779 .zonelist = zonelist,
a9263751
VB
3780 .nodemask = nodemask,
3781 .migratetype = gfpflags_to_migratetype(gfp_mask),
3782 };
11e33f6a 3783
682a3385 3784 if (cpusets_enabled()) {
83d4ca81 3785 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3786 alloc_flags |= ALLOC_CPUSET;
3787 if (!ac.nodemask)
3788 ac.nodemask = &cpuset_current_mems_allowed;
3789 }
3790
dcce284a
BH
3791 gfp_mask &= gfp_allowed_mask;
3792
11e33f6a
MG
3793 lockdep_trace_alloc(gfp_mask);
3794
d0164adc 3795 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3796
3797 if (should_fail_alloc_page(gfp_mask, order))
3798 return NULL;
3799
3800 /*
3801 * Check the zones suitable for the gfp_mask contain at least one
3802 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3803 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3804 */
3805 if (unlikely(!zonelist->_zonerefs->zone))
3806 return NULL;
3807
a9263751 3808 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3809 alloc_flags |= ALLOC_CMA;
3810
cc9a6c87 3811retry_cpuset:
d26914d1 3812 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3813
c9ab0c4f
MG
3814 /* Dirty zone balancing only done in the fast path */
3815 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3816
5117f45d 3817 /* The preferred zone is used for statistics later */
c33d6c06
MG
3818 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3819 ac.high_zoneidx, ac.nodemask);
3820 if (!ac.preferred_zoneref) {
5bb1b169 3821 page = NULL;
4fcb0971 3822 goto no_zone;
5bb1b169
MG
3823 }
3824
5117f45d 3825 /* First allocation attempt */
a9263751 3826 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3827 if (likely(page))
3828 goto out;
11e33f6a 3829
4fcb0971
MG
3830 /*
3831 * Runtime PM, block IO and its error handling path can deadlock
3832 * because I/O on the device might not complete.
3833 */
3834 alloc_mask = memalloc_noio_flags(gfp_mask);
3835 ac.spread_dirty_pages = false;
23f086f9 3836
4741526b
MG
3837 /*
3838 * Restore the original nodemask if it was potentially replaced with
3839 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3840 */
3841 if (cpusets_enabled())
3842 ac.nodemask = nodemask;
4fcb0971 3843 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3844
4fcb0971 3845no_zone:
cc9a6c87
MG
3846 /*
3847 * When updating a task's mems_allowed, it is possible to race with
3848 * parallel threads in such a way that an allocation can fail while
3849 * the mask is being updated. If a page allocation is about to fail,
3850 * check if the cpuset changed during allocation and if so, retry.
3851 */
83d4ca81
MG
3852 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3853 alloc_mask = gfp_mask;
cc9a6c87 3854 goto retry_cpuset;
83d4ca81 3855 }
cc9a6c87 3856
4fcb0971
MG
3857out:
3858 if (kmemcheck_enabled && page)
3859 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3860
3861 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3862
11e33f6a 3863 return page;
1da177e4 3864}
d239171e 3865EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3866
3867/*
3868 * Common helper functions.
3869 */
920c7a5d 3870unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3871{
945a1113
AM
3872 struct page *page;
3873
3874 /*
3875 * __get_free_pages() returns a 32-bit address, which cannot represent
3876 * a highmem page
3877 */
3878 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3879
1da177e4
LT
3880 page = alloc_pages(gfp_mask, order);
3881 if (!page)
3882 return 0;
3883 return (unsigned long) page_address(page);
3884}
1da177e4
LT
3885EXPORT_SYMBOL(__get_free_pages);
3886
920c7a5d 3887unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3888{
945a1113 3889 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3890}
1da177e4
LT
3891EXPORT_SYMBOL(get_zeroed_page);
3892
920c7a5d 3893void __free_pages(struct page *page, unsigned int order)
1da177e4 3894{
b5810039 3895 if (put_page_testzero(page)) {
1da177e4 3896 if (order == 0)
b745bc85 3897 free_hot_cold_page(page, false);
1da177e4
LT
3898 else
3899 __free_pages_ok(page, order);
3900 }
3901}
3902
3903EXPORT_SYMBOL(__free_pages);
3904
920c7a5d 3905void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3906{
3907 if (addr != 0) {
725d704e 3908 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3909 __free_pages(virt_to_page((void *)addr), order);
3910 }
3911}
3912
3913EXPORT_SYMBOL(free_pages);
3914
b63ae8ca
AD
3915/*
3916 * Page Fragment:
3917 * An arbitrary-length arbitrary-offset area of memory which resides
3918 * within a 0 or higher order page. Multiple fragments within that page
3919 * are individually refcounted, in the page's reference counter.
3920 *
3921 * The page_frag functions below provide a simple allocation framework for
3922 * page fragments. This is used by the network stack and network device
3923 * drivers to provide a backing region of memory for use as either an
3924 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3925 */
3926static struct page *__page_frag_refill(struct page_frag_cache *nc,
3927 gfp_t gfp_mask)
3928{
3929 struct page *page = NULL;
3930 gfp_t gfp = gfp_mask;
3931
3932#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3933 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3934 __GFP_NOMEMALLOC;
3935 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3936 PAGE_FRAG_CACHE_MAX_ORDER);
3937 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3938#endif
3939 if (unlikely(!page))
3940 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3941
3942 nc->va = page ? page_address(page) : NULL;
3943
3944 return page;
3945}
3946
3947void *__alloc_page_frag(struct page_frag_cache *nc,
3948 unsigned int fragsz, gfp_t gfp_mask)
3949{
3950 unsigned int size = PAGE_SIZE;
3951 struct page *page;
3952 int offset;
3953
3954 if (unlikely(!nc->va)) {
3955refill:
3956 page = __page_frag_refill(nc, gfp_mask);
3957 if (!page)
3958 return NULL;
3959
3960#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3961 /* if size can vary use size else just use PAGE_SIZE */
3962 size = nc->size;
3963#endif
3964 /* Even if we own the page, we do not use atomic_set().
3965 * This would break get_page_unless_zero() users.
3966 */
fe896d18 3967 page_ref_add(page, size - 1);
b63ae8ca
AD
3968
3969 /* reset page count bias and offset to start of new frag */
2f064f34 3970 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3971 nc->pagecnt_bias = size;
3972 nc->offset = size;
3973 }
3974
3975 offset = nc->offset - fragsz;
3976 if (unlikely(offset < 0)) {
3977 page = virt_to_page(nc->va);
3978
fe896d18 3979 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3980 goto refill;
3981
3982#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3983 /* if size can vary use size else just use PAGE_SIZE */
3984 size = nc->size;
3985#endif
3986 /* OK, page count is 0, we can safely set it */
fe896d18 3987 set_page_count(page, size);
b63ae8ca
AD
3988
3989 /* reset page count bias and offset to start of new frag */
3990 nc->pagecnt_bias = size;
3991 offset = size - fragsz;
3992 }
3993
3994 nc->pagecnt_bias--;
3995 nc->offset = offset;
3996
3997 return nc->va + offset;
3998}
3999EXPORT_SYMBOL(__alloc_page_frag);
4000
4001/*
4002 * Frees a page fragment allocated out of either a compound or order 0 page.
4003 */
4004void __free_page_frag(void *addr)
4005{
4006 struct page *page = virt_to_head_page(addr);
4007
4008 if (unlikely(put_page_testzero(page)))
4009 __free_pages_ok(page, compound_order(page));
4010}
4011EXPORT_SYMBOL(__free_page_frag);
4012
6a1a0d3b 4013/*
52383431 4014 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
4015 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4016 * equivalent to alloc_pages.
6a1a0d3b 4017 *
52383431
VD
4018 * It should be used when the caller would like to use kmalloc, but since the
4019 * allocation is large, it has to fall back to the page allocator.
4020 */
4021struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4022{
4023 struct page *page;
52383431 4024
52383431 4025 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4026 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4027 __free_pages(page, order);
4028 page = NULL;
4029 }
52383431
VD
4030 return page;
4031}
4032
4033struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4034{
4035 struct page *page;
52383431 4036
52383431 4037 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4038 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4039 __free_pages(page, order);
4040 page = NULL;
4041 }
52383431
VD
4042 return page;
4043}
4044
4045/*
4046 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4047 * alloc_kmem_pages.
6a1a0d3b 4048 */
52383431 4049void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4050{
d05e83a6 4051 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4052 __free_pages(page, order);
4053}
4054
52383431 4055void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4056{
4057 if (addr != 0) {
4058 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4059 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4060 }
4061}
4062
d00181b9
KS
4063static void *make_alloc_exact(unsigned long addr, unsigned int order,
4064 size_t size)
ee85c2e1
AK
4065{
4066 if (addr) {
4067 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4068 unsigned long used = addr + PAGE_ALIGN(size);
4069
4070 split_page(virt_to_page((void *)addr), order);
4071 while (used < alloc_end) {
4072 free_page(used);
4073 used += PAGE_SIZE;
4074 }
4075 }
4076 return (void *)addr;
4077}
4078
2be0ffe2
TT
4079/**
4080 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4081 * @size: the number of bytes to allocate
4082 * @gfp_mask: GFP flags for the allocation
4083 *
4084 * This function is similar to alloc_pages(), except that it allocates the
4085 * minimum number of pages to satisfy the request. alloc_pages() can only
4086 * allocate memory in power-of-two pages.
4087 *
4088 * This function is also limited by MAX_ORDER.
4089 *
4090 * Memory allocated by this function must be released by free_pages_exact().
4091 */
4092void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4093{
4094 unsigned int order = get_order(size);
4095 unsigned long addr;
4096
4097 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4098 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4099}
4100EXPORT_SYMBOL(alloc_pages_exact);
4101
ee85c2e1
AK
4102/**
4103 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4104 * pages on a node.
b5e6ab58 4105 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4106 * @size: the number of bytes to allocate
4107 * @gfp_mask: GFP flags for the allocation
4108 *
4109 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4110 * back.
ee85c2e1 4111 */
e1931811 4112void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4113{
d00181b9 4114 unsigned int order = get_order(size);
ee85c2e1
AK
4115 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4116 if (!p)
4117 return NULL;
4118 return make_alloc_exact((unsigned long)page_address(p), order, size);
4119}
ee85c2e1 4120
2be0ffe2
TT
4121/**
4122 * free_pages_exact - release memory allocated via alloc_pages_exact()
4123 * @virt: the value returned by alloc_pages_exact.
4124 * @size: size of allocation, same value as passed to alloc_pages_exact().
4125 *
4126 * Release the memory allocated by a previous call to alloc_pages_exact.
4127 */
4128void free_pages_exact(void *virt, size_t size)
4129{
4130 unsigned long addr = (unsigned long)virt;
4131 unsigned long end = addr + PAGE_ALIGN(size);
4132
4133 while (addr < end) {
4134 free_page(addr);
4135 addr += PAGE_SIZE;
4136 }
4137}
4138EXPORT_SYMBOL(free_pages_exact);
4139
e0fb5815
ZY
4140/**
4141 * nr_free_zone_pages - count number of pages beyond high watermark
4142 * @offset: The zone index of the highest zone
4143 *
4144 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4145 * high watermark within all zones at or below a given zone index. For each
4146 * zone, the number of pages is calculated as:
834405c3 4147 * managed_pages - high_pages
e0fb5815 4148 */
ebec3862 4149static unsigned long nr_free_zone_pages(int offset)
1da177e4 4150{
dd1a239f 4151 struct zoneref *z;
54a6eb5c
MG
4152 struct zone *zone;
4153
e310fd43 4154 /* Just pick one node, since fallback list is circular */
ebec3862 4155 unsigned long sum = 0;
1da177e4 4156
0e88460d 4157 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4158
54a6eb5c 4159 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4160 unsigned long size = zone->managed_pages;
41858966 4161 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4162 if (size > high)
4163 sum += size - high;
1da177e4
LT
4164 }
4165
4166 return sum;
4167}
4168
e0fb5815
ZY
4169/**
4170 * nr_free_buffer_pages - count number of pages beyond high watermark
4171 *
4172 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4173 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4174 */
ebec3862 4175unsigned long nr_free_buffer_pages(void)
1da177e4 4176{
af4ca457 4177 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4178}
c2f1a551 4179EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4180
e0fb5815
ZY
4181/**
4182 * nr_free_pagecache_pages - count number of pages beyond high watermark
4183 *
4184 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4185 * high watermark within all zones.
1da177e4 4186 */
ebec3862 4187unsigned long nr_free_pagecache_pages(void)
1da177e4 4188{
2a1e274a 4189 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4190}
08e0f6a9
CL
4191
4192static inline void show_node(struct zone *zone)
1da177e4 4193{
e5adfffc 4194 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4195 printk("Node %d ", zone_to_nid(zone));
1da177e4 4196}
1da177e4 4197
d02bd27b
IR
4198long si_mem_available(void)
4199{
4200 long available;
4201 unsigned long pagecache;
4202 unsigned long wmark_low = 0;
4203 unsigned long pages[NR_LRU_LISTS];
4204 struct zone *zone;
4205 int lru;
4206
4207 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4208 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4209
4210 for_each_zone(zone)
4211 wmark_low += zone->watermark[WMARK_LOW];
4212
4213 /*
4214 * Estimate the amount of memory available for userspace allocations,
4215 * without causing swapping.
4216 */
4217 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4218
4219 /*
4220 * Not all the page cache can be freed, otherwise the system will
4221 * start swapping. Assume at least half of the page cache, or the
4222 * low watermark worth of cache, needs to stay.
4223 */
4224 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4225 pagecache -= min(pagecache / 2, wmark_low);
4226 available += pagecache;
4227
4228 /*
4229 * Part of the reclaimable slab consists of items that are in use,
4230 * and cannot be freed. Cap this estimate at the low watermark.
4231 */
4232 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4233 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4234
4235 if (available < 0)
4236 available = 0;
4237 return available;
4238}
4239EXPORT_SYMBOL_GPL(si_mem_available);
4240
1da177e4
LT
4241void si_meminfo(struct sysinfo *val)
4242{
4243 val->totalram = totalram_pages;
cc7452b6 4244 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4245 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4246 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4247 val->totalhigh = totalhigh_pages;
4248 val->freehigh = nr_free_highpages();
1da177e4
LT
4249 val->mem_unit = PAGE_SIZE;
4250}
4251
4252EXPORT_SYMBOL(si_meminfo);
4253
4254#ifdef CONFIG_NUMA
4255void si_meminfo_node(struct sysinfo *val, int nid)
4256{
cdd91a77
JL
4257 int zone_type; /* needs to be signed */
4258 unsigned long managed_pages = 0;
fc2bd799
JK
4259 unsigned long managed_highpages = 0;
4260 unsigned long free_highpages = 0;
1da177e4
LT
4261 pg_data_t *pgdat = NODE_DATA(nid);
4262
cdd91a77
JL
4263 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4264 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4265 val->totalram = managed_pages;
cc7452b6 4266 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4267 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4268#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4269 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4270 struct zone *zone = &pgdat->node_zones[zone_type];
4271
4272 if (is_highmem(zone)) {
4273 managed_highpages += zone->managed_pages;
4274 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4275 }
4276 }
4277 val->totalhigh = managed_highpages;
4278 val->freehigh = free_highpages;
98d2b0eb 4279#else
fc2bd799
JK
4280 val->totalhigh = managed_highpages;
4281 val->freehigh = free_highpages;
98d2b0eb 4282#endif
1da177e4
LT
4283 val->mem_unit = PAGE_SIZE;
4284}
4285#endif
4286
ddd588b5 4287/*
7bf02ea2
DR
4288 * Determine whether the node should be displayed or not, depending on whether
4289 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4290 */
7bf02ea2 4291bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4292{
4293 bool ret = false;
cc9a6c87 4294 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4295
4296 if (!(flags & SHOW_MEM_FILTER_NODES))
4297 goto out;
4298
cc9a6c87 4299 do {
d26914d1 4300 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4301 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4302 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4303out:
4304 return ret;
4305}
4306
1da177e4
LT
4307#define K(x) ((x) << (PAGE_SHIFT-10))
4308
377e4f16
RV
4309static void show_migration_types(unsigned char type)
4310{
4311 static const char types[MIGRATE_TYPES] = {
4312 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4313 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4314 [MIGRATE_RECLAIMABLE] = 'E',
4315 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4316#ifdef CONFIG_CMA
4317 [MIGRATE_CMA] = 'C',
4318#endif
194159fb 4319#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4320 [MIGRATE_ISOLATE] = 'I',
194159fb 4321#endif
377e4f16
RV
4322 };
4323 char tmp[MIGRATE_TYPES + 1];
4324 char *p = tmp;
4325 int i;
4326
4327 for (i = 0; i < MIGRATE_TYPES; i++) {
4328 if (type & (1 << i))
4329 *p++ = types[i];
4330 }
4331
4332 *p = '\0';
4333 printk("(%s) ", tmp);
4334}
4335
1da177e4
LT
4336/*
4337 * Show free area list (used inside shift_scroll-lock stuff)
4338 * We also calculate the percentage fragmentation. We do this by counting the
4339 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4340 *
4341 * Bits in @filter:
4342 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4343 * cpuset.
1da177e4 4344 */
7bf02ea2 4345void show_free_areas(unsigned int filter)
1da177e4 4346{
d1bfcdb8 4347 unsigned long free_pcp = 0;
c7241913 4348 int cpu;
1da177e4
LT
4349 struct zone *zone;
4350
ee99c71c 4351 for_each_populated_zone(zone) {
7bf02ea2 4352 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4353 continue;
d1bfcdb8 4354
761b0677
KK
4355 for_each_online_cpu(cpu)
4356 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4357 }
4358
a731286d
KM
4359 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4360 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4361 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4362 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4363 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4364 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4365 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4366 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4367 global_page_state(NR_ISOLATED_ANON),
4368 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4369 global_page_state(NR_INACTIVE_FILE),
a731286d 4370 global_page_state(NR_ISOLATED_FILE),
7b854121 4371 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4372 global_page_state(NR_FILE_DIRTY),
ce866b34 4373 global_page_state(NR_WRITEBACK),
fd39fc85 4374 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4375 global_page_state(NR_SLAB_RECLAIMABLE),
4376 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4377 global_page_state(NR_FILE_MAPPED),
4b02108a 4378 global_page_state(NR_SHMEM),
a25700a5 4379 global_page_state(NR_PAGETABLE),
d1ce749a 4380 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4381 global_page_state(NR_FREE_PAGES),
4382 free_pcp,
d1ce749a 4383 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4384
ee99c71c 4385 for_each_populated_zone(zone) {
1da177e4
LT
4386 int i;
4387
7bf02ea2 4388 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4389 continue;
d1bfcdb8
KK
4390
4391 free_pcp = 0;
4392 for_each_online_cpu(cpu)
4393 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4394
1da177e4
LT
4395 show_node(zone);
4396 printk("%s"
4397 " free:%lukB"
4398 " min:%lukB"
4399 " low:%lukB"
4400 " high:%lukB"
4f98a2fe
RR
4401 " active_anon:%lukB"
4402 " inactive_anon:%lukB"
4403 " active_file:%lukB"
4404 " inactive_file:%lukB"
7b854121 4405 " unevictable:%lukB"
a731286d
KM
4406 " isolated(anon):%lukB"
4407 " isolated(file):%lukB"
1da177e4 4408 " present:%lukB"
9feedc9d 4409 " managed:%lukB"
4a0aa73f
KM
4410 " mlocked:%lukB"
4411 " dirty:%lukB"
4412 " writeback:%lukB"
4413 " mapped:%lukB"
4b02108a 4414 " shmem:%lukB"
4a0aa73f
KM
4415 " slab_reclaimable:%lukB"
4416 " slab_unreclaimable:%lukB"
c6a7f572 4417 " kernel_stack:%lukB"
4a0aa73f
KM
4418 " pagetables:%lukB"
4419 " unstable:%lukB"
4420 " bounce:%lukB"
d1bfcdb8
KK
4421 " free_pcp:%lukB"
4422 " local_pcp:%ukB"
d1ce749a 4423 " free_cma:%lukB"
4a0aa73f 4424 " writeback_tmp:%lukB"
1da177e4
LT
4425 " pages_scanned:%lu"
4426 " all_unreclaimable? %s"
4427 "\n",
4428 zone->name,
88f5acf8 4429 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4430 K(min_wmark_pages(zone)),
4431 K(low_wmark_pages(zone)),
4432 K(high_wmark_pages(zone)),
4f98a2fe
RR
4433 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4434 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4435 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4436 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4437 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4438 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4439 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4440 K(zone->present_pages),
9feedc9d 4441 K(zone->managed_pages),
4a0aa73f
KM
4442 K(zone_page_state(zone, NR_MLOCK)),
4443 K(zone_page_state(zone, NR_FILE_DIRTY)),
4444 K(zone_page_state(zone, NR_WRITEBACK)),
4445 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4446 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4447 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4448 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4449 zone_page_state(zone, NR_KERNEL_STACK) *
4450 THREAD_SIZE / 1024,
4a0aa73f
KM
4451 K(zone_page_state(zone, NR_PAGETABLE)),
4452 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4453 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4454 K(free_pcp),
4455 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4456 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4457 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4458 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4459 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4460 );
4461 printk("lowmem_reserve[]:");
4462 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4463 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4464 printk("\n");
4465 }
4466
ee99c71c 4467 for_each_populated_zone(zone) {
d00181b9
KS
4468 unsigned int order;
4469 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4470 unsigned char types[MAX_ORDER];
1da177e4 4471
7bf02ea2 4472 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4473 continue;
1da177e4
LT
4474 show_node(zone);
4475 printk("%s: ", zone->name);
1da177e4
LT
4476
4477 spin_lock_irqsave(&zone->lock, flags);
4478 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4479 struct free_area *area = &zone->free_area[order];
4480 int type;
4481
4482 nr[order] = area->nr_free;
8f9de51a 4483 total += nr[order] << order;
377e4f16
RV
4484
4485 types[order] = 0;
4486 for (type = 0; type < MIGRATE_TYPES; type++) {
4487 if (!list_empty(&area->free_list[type]))
4488 types[order] |= 1 << type;
4489 }
1da177e4
LT
4490 }
4491 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4492 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4493 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4494 if (nr[order])
4495 show_migration_types(types[order]);
4496 }
1da177e4
LT
4497 printk("= %lukB\n", K(total));
4498 }
4499
949f7ec5
DR
4500 hugetlb_show_meminfo();
4501
e6f3602d
LW
4502 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4503
1da177e4
LT
4504 show_swap_cache_info();
4505}
4506
19770b32
MG
4507static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4508{
4509 zoneref->zone = zone;
4510 zoneref->zone_idx = zone_idx(zone);
4511}
4512
1da177e4
LT
4513/*
4514 * Builds allocation fallback zone lists.
1a93205b
CL
4515 *
4516 * Add all populated zones of a node to the zonelist.
1da177e4 4517 */
f0c0b2b8 4518static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4519 int nr_zones)
1da177e4 4520{
1a93205b 4521 struct zone *zone;
bc732f1d 4522 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4523
4524 do {
2f6726e5 4525 zone_type--;
070f8032 4526 zone = pgdat->node_zones + zone_type;
1a93205b 4527 if (populated_zone(zone)) {
dd1a239f
MG
4528 zoneref_set_zone(zone,
4529 &zonelist->_zonerefs[nr_zones++]);
070f8032 4530 check_highest_zone(zone_type);
1da177e4 4531 }
2f6726e5 4532 } while (zone_type);
bc732f1d 4533
070f8032 4534 return nr_zones;
1da177e4
LT
4535}
4536
f0c0b2b8
KH
4537
4538/*
4539 * zonelist_order:
4540 * 0 = automatic detection of better ordering.
4541 * 1 = order by ([node] distance, -zonetype)
4542 * 2 = order by (-zonetype, [node] distance)
4543 *
4544 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4545 * the same zonelist. So only NUMA can configure this param.
4546 */
4547#define ZONELIST_ORDER_DEFAULT 0
4548#define ZONELIST_ORDER_NODE 1
4549#define ZONELIST_ORDER_ZONE 2
4550
4551/* zonelist order in the kernel.
4552 * set_zonelist_order() will set this to NODE or ZONE.
4553 */
4554static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4555static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4556
4557
1da177e4 4558#ifdef CONFIG_NUMA
f0c0b2b8
KH
4559/* The value user specified ....changed by config */
4560static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4561/* string for sysctl */
4562#define NUMA_ZONELIST_ORDER_LEN 16
4563char numa_zonelist_order[16] = "default";
4564
4565/*
4566 * interface for configure zonelist ordering.
4567 * command line option "numa_zonelist_order"
4568 * = "[dD]efault - default, automatic configuration.
4569 * = "[nN]ode - order by node locality, then by zone within node
4570 * = "[zZ]one - order by zone, then by locality within zone
4571 */
4572
4573static int __parse_numa_zonelist_order(char *s)
4574{
4575 if (*s == 'd' || *s == 'D') {
4576 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4577 } else if (*s == 'n' || *s == 'N') {
4578 user_zonelist_order = ZONELIST_ORDER_NODE;
4579 } else if (*s == 'z' || *s == 'Z') {
4580 user_zonelist_order = ZONELIST_ORDER_ZONE;
4581 } else {
1170532b 4582 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4583 return -EINVAL;
4584 }
4585 return 0;
4586}
4587
4588static __init int setup_numa_zonelist_order(char *s)
4589{
ecb256f8
VL
4590 int ret;
4591
4592 if (!s)
4593 return 0;
4594
4595 ret = __parse_numa_zonelist_order(s);
4596 if (ret == 0)
4597 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4598
4599 return ret;
f0c0b2b8
KH
4600}
4601early_param("numa_zonelist_order", setup_numa_zonelist_order);
4602
4603/*
4604 * sysctl handler for numa_zonelist_order
4605 */
cccad5b9 4606int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4607 void __user *buffer, size_t *length,
f0c0b2b8
KH
4608 loff_t *ppos)
4609{
4610 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4611 int ret;
443c6f14 4612 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4613
443c6f14 4614 mutex_lock(&zl_order_mutex);
dacbde09
CG
4615 if (write) {
4616 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4617 ret = -EINVAL;
4618 goto out;
4619 }
4620 strcpy(saved_string, (char *)table->data);
4621 }
8d65af78 4622 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4623 if (ret)
443c6f14 4624 goto out;
f0c0b2b8
KH
4625 if (write) {
4626 int oldval = user_zonelist_order;
dacbde09
CG
4627
4628 ret = __parse_numa_zonelist_order((char *)table->data);
4629 if (ret) {
f0c0b2b8
KH
4630 /*
4631 * bogus value. restore saved string
4632 */
dacbde09 4633 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4634 NUMA_ZONELIST_ORDER_LEN);
4635 user_zonelist_order = oldval;
4eaf3f64
HL
4636 } else if (oldval != user_zonelist_order) {
4637 mutex_lock(&zonelists_mutex);
9adb62a5 4638 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4639 mutex_unlock(&zonelists_mutex);
4640 }
f0c0b2b8 4641 }
443c6f14
AK
4642out:
4643 mutex_unlock(&zl_order_mutex);
4644 return ret;
f0c0b2b8
KH
4645}
4646
4647
62bc62a8 4648#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4649static int node_load[MAX_NUMNODES];
4650
1da177e4 4651/**
4dc3b16b 4652 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4653 * @node: node whose fallback list we're appending
4654 * @used_node_mask: nodemask_t of already used nodes
4655 *
4656 * We use a number of factors to determine which is the next node that should
4657 * appear on a given node's fallback list. The node should not have appeared
4658 * already in @node's fallback list, and it should be the next closest node
4659 * according to the distance array (which contains arbitrary distance values
4660 * from each node to each node in the system), and should also prefer nodes
4661 * with no CPUs, since presumably they'll have very little allocation pressure
4662 * on them otherwise.
4663 * It returns -1 if no node is found.
4664 */
f0c0b2b8 4665static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4666{
4cf808eb 4667 int n, val;
1da177e4 4668 int min_val = INT_MAX;
00ef2d2f 4669 int best_node = NUMA_NO_NODE;
a70f7302 4670 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4671
4cf808eb
LT
4672 /* Use the local node if we haven't already */
4673 if (!node_isset(node, *used_node_mask)) {
4674 node_set(node, *used_node_mask);
4675 return node;
4676 }
1da177e4 4677
4b0ef1fe 4678 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4679
4680 /* Don't want a node to appear more than once */
4681 if (node_isset(n, *used_node_mask))
4682 continue;
4683
1da177e4
LT
4684 /* Use the distance array to find the distance */
4685 val = node_distance(node, n);
4686
4cf808eb
LT
4687 /* Penalize nodes under us ("prefer the next node") */
4688 val += (n < node);
4689
1da177e4 4690 /* Give preference to headless and unused nodes */
a70f7302
RR
4691 tmp = cpumask_of_node(n);
4692 if (!cpumask_empty(tmp))
1da177e4
LT
4693 val += PENALTY_FOR_NODE_WITH_CPUS;
4694
4695 /* Slight preference for less loaded node */
4696 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4697 val += node_load[n];
4698
4699 if (val < min_val) {
4700 min_val = val;
4701 best_node = n;
4702 }
4703 }
4704
4705 if (best_node >= 0)
4706 node_set(best_node, *used_node_mask);
4707
4708 return best_node;
4709}
4710
f0c0b2b8
KH
4711
4712/*
4713 * Build zonelists ordered by node and zones within node.
4714 * This results in maximum locality--normal zone overflows into local
4715 * DMA zone, if any--but risks exhausting DMA zone.
4716 */
4717static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4718{
f0c0b2b8 4719 int j;
1da177e4 4720 struct zonelist *zonelist;
f0c0b2b8 4721
54a6eb5c 4722 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4723 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4724 ;
bc732f1d 4725 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4726 zonelist->_zonerefs[j].zone = NULL;
4727 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4728}
4729
523b9458
CL
4730/*
4731 * Build gfp_thisnode zonelists
4732 */
4733static void build_thisnode_zonelists(pg_data_t *pgdat)
4734{
523b9458
CL
4735 int j;
4736 struct zonelist *zonelist;
4737
54a6eb5c 4738 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4739 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4740 zonelist->_zonerefs[j].zone = NULL;
4741 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4742}
4743
f0c0b2b8
KH
4744/*
4745 * Build zonelists ordered by zone and nodes within zones.
4746 * This results in conserving DMA zone[s] until all Normal memory is
4747 * exhausted, but results in overflowing to remote node while memory
4748 * may still exist in local DMA zone.
4749 */
4750static int node_order[MAX_NUMNODES];
4751
4752static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4753{
f0c0b2b8
KH
4754 int pos, j, node;
4755 int zone_type; /* needs to be signed */
4756 struct zone *z;
4757 struct zonelist *zonelist;
4758
54a6eb5c
MG
4759 zonelist = &pgdat->node_zonelists[0];
4760 pos = 0;
4761 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4762 for (j = 0; j < nr_nodes; j++) {
4763 node = node_order[j];
4764 z = &NODE_DATA(node)->node_zones[zone_type];
4765 if (populated_zone(z)) {
dd1a239f
MG
4766 zoneref_set_zone(z,
4767 &zonelist->_zonerefs[pos++]);
54a6eb5c 4768 check_highest_zone(zone_type);
f0c0b2b8
KH
4769 }
4770 }
f0c0b2b8 4771 }
dd1a239f
MG
4772 zonelist->_zonerefs[pos].zone = NULL;
4773 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4774}
4775
3193913c
MG
4776#if defined(CONFIG_64BIT)
4777/*
4778 * Devices that require DMA32/DMA are relatively rare and do not justify a
4779 * penalty to every machine in case the specialised case applies. Default
4780 * to Node-ordering on 64-bit NUMA machines
4781 */
4782static int default_zonelist_order(void)
4783{
4784 return ZONELIST_ORDER_NODE;
4785}
4786#else
4787/*
4788 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4789 * by the kernel. If processes running on node 0 deplete the low memory zone
4790 * then reclaim will occur more frequency increasing stalls and potentially
4791 * be easier to OOM if a large percentage of the zone is under writeback or
4792 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4793 * Hence, default to zone ordering on 32-bit.
4794 */
f0c0b2b8
KH
4795static int default_zonelist_order(void)
4796{
f0c0b2b8
KH
4797 return ZONELIST_ORDER_ZONE;
4798}
3193913c 4799#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4800
4801static void set_zonelist_order(void)
4802{
4803 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4804 current_zonelist_order = default_zonelist_order();
4805 else
4806 current_zonelist_order = user_zonelist_order;
4807}
4808
4809static void build_zonelists(pg_data_t *pgdat)
4810{
c00eb15a 4811 int i, node, load;
1da177e4 4812 nodemask_t used_mask;
f0c0b2b8
KH
4813 int local_node, prev_node;
4814 struct zonelist *zonelist;
d00181b9 4815 unsigned int order = current_zonelist_order;
1da177e4
LT
4816
4817 /* initialize zonelists */
523b9458 4818 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4819 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4820 zonelist->_zonerefs[0].zone = NULL;
4821 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4822 }
4823
4824 /* NUMA-aware ordering of nodes */
4825 local_node = pgdat->node_id;
62bc62a8 4826 load = nr_online_nodes;
1da177e4
LT
4827 prev_node = local_node;
4828 nodes_clear(used_mask);
f0c0b2b8 4829
f0c0b2b8 4830 memset(node_order, 0, sizeof(node_order));
c00eb15a 4831 i = 0;
f0c0b2b8 4832
1da177e4
LT
4833 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4834 /*
4835 * We don't want to pressure a particular node.
4836 * So adding penalty to the first node in same
4837 * distance group to make it round-robin.
4838 */
957f822a
DR
4839 if (node_distance(local_node, node) !=
4840 node_distance(local_node, prev_node))
f0c0b2b8
KH
4841 node_load[node] = load;
4842
1da177e4
LT
4843 prev_node = node;
4844 load--;
f0c0b2b8
KH
4845 if (order == ZONELIST_ORDER_NODE)
4846 build_zonelists_in_node_order(pgdat, node);
4847 else
c00eb15a 4848 node_order[i++] = node; /* remember order */
f0c0b2b8 4849 }
1da177e4 4850
f0c0b2b8
KH
4851 if (order == ZONELIST_ORDER_ZONE) {
4852 /* calculate node order -- i.e., DMA last! */
c00eb15a 4853 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4854 }
523b9458
CL
4855
4856 build_thisnode_zonelists(pgdat);
1da177e4
LT
4857}
4858
7aac7898
LS
4859#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4860/*
4861 * Return node id of node used for "local" allocations.
4862 * I.e., first node id of first zone in arg node's generic zonelist.
4863 * Used for initializing percpu 'numa_mem', which is used primarily
4864 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4865 */
4866int local_memory_node(int node)
4867{
c33d6c06 4868 struct zoneref *z;
7aac7898 4869
c33d6c06 4870 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4871 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4872 NULL);
4873 return z->zone->node;
7aac7898
LS
4874}
4875#endif
f0c0b2b8 4876
1da177e4
LT
4877#else /* CONFIG_NUMA */
4878
f0c0b2b8
KH
4879static void set_zonelist_order(void)
4880{
4881 current_zonelist_order = ZONELIST_ORDER_ZONE;
4882}
4883
4884static void build_zonelists(pg_data_t *pgdat)
1da177e4 4885{
19655d34 4886 int node, local_node;
54a6eb5c
MG
4887 enum zone_type j;
4888 struct zonelist *zonelist;
1da177e4
LT
4889
4890 local_node = pgdat->node_id;
1da177e4 4891
54a6eb5c 4892 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4893 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4894
54a6eb5c
MG
4895 /*
4896 * Now we build the zonelist so that it contains the zones
4897 * of all the other nodes.
4898 * We don't want to pressure a particular node, so when
4899 * building the zones for node N, we make sure that the
4900 * zones coming right after the local ones are those from
4901 * node N+1 (modulo N)
4902 */
4903 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4904 if (!node_online(node))
4905 continue;
bc732f1d 4906 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4907 }
54a6eb5c
MG
4908 for (node = 0; node < local_node; node++) {
4909 if (!node_online(node))
4910 continue;
bc732f1d 4911 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4912 }
4913
dd1a239f
MG
4914 zonelist->_zonerefs[j].zone = NULL;
4915 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4916}
4917
4918#endif /* CONFIG_NUMA */
4919
99dcc3e5
CL
4920/*
4921 * Boot pageset table. One per cpu which is going to be used for all
4922 * zones and all nodes. The parameters will be set in such a way
4923 * that an item put on a list will immediately be handed over to
4924 * the buddy list. This is safe since pageset manipulation is done
4925 * with interrupts disabled.
4926 *
4927 * The boot_pagesets must be kept even after bootup is complete for
4928 * unused processors and/or zones. They do play a role for bootstrapping
4929 * hotplugged processors.
4930 *
4931 * zoneinfo_show() and maybe other functions do
4932 * not check if the processor is online before following the pageset pointer.
4933 * Other parts of the kernel may not check if the zone is available.
4934 */
4935static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4936static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4937static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4938
4eaf3f64
HL
4939/*
4940 * Global mutex to protect against size modification of zonelists
4941 * as well as to serialize pageset setup for the new populated zone.
4942 */
4943DEFINE_MUTEX(zonelists_mutex);
4944
9b1a4d38 4945/* return values int ....just for stop_machine() */
4ed7e022 4946static int __build_all_zonelists(void *data)
1da177e4 4947{
6811378e 4948 int nid;
99dcc3e5 4949 int cpu;
9adb62a5 4950 pg_data_t *self = data;
9276b1bc 4951
7f9cfb31
BL
4952#ifdef CONFIG_NUMA
4953 memset(node_load, 0, sizeof(node_load));
4954#endif
9adb62a5
JL
4955
4956 if (self && !node_online(self->node_id)) {
4957 build_zonelists(self);
9adb62a5
JL
4958 }
4959
9276b1bc 4960 for_each_online_node(nid) {
7ea1530a
CL
4961 pg_data_t *pgdat = NODE_DATA(nid);
4962
4963 build_zonelists(pgdat);
9276b1bc 4964 }
99dcc3e5
CL
4965
4966 /*
4967 * Initialize the boot_pagesets that are going to be used
4968 * for bootstrapping processors. The real pagesets for
4969 * each zone will be allocated later when the per cpu
4970 * allocator is available.
4971 *
4972 * boot_pagesets are used also for bootstrapping offline
4973 * cpus if the system is already booted because the pagesets
4974 * are needed to initialize allocators on a specific cpu too.
4975 * F.e. the percpu allocator needs the page allocator which
4976 * needs the percpu allocator in order to allocate its pagesets
4977 * (a chicken-egg dilemma).
4978 */
7aac7898 4979 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4980 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4981
7aac7898
LS
4982#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4983 /*
4984 * We now know the "local memory node" for each node--
4985 * i.e., the node of the first zone in the generic zonelist.
4986 * Set up numa_mem percpu variable for on-line cpus. During
4987 * boot, only the boot cpu should be on-line; we'll init the
4988 * secondary cpus' numa_mem as they come on-line. During
4989 * node/memory hotplug, we'll fixup all on-line cpus.
4990 */
4991 if (cpu_online(cpu))
4992 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4993#endif
4994 }
4995
6811378e
YG
4996 return 0;
4997}
4998
061f67bc
RV
4999static noinline void __init
5000build_all_zonelists_init(void)
5001{
5002 __build_all_zonelists(NULL);
5003 mminit_verify_zonelist();
5004 cpuset_init_current_mems_allowed();
5005}
5006
4eaf3f64
HL
5007/*
5008 * Called with zonelists_mutex held always
5009 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5010 *
5011 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5012 * [we're only called with non-NULL zone through __meminit paths] and
5013 * (2) call of __init annotated helper build_all_zonelists_init
5014 * [protected by SYSTEM_BOOTING].
4eaf3f64 5015 */
9adb62a5 5016void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5017{
f0c0b2b8
KH
5018 set_zonelist_order();
5019
6811378e 5020 if (system_state == SYSTEM_BOOTING) {
061f67bc 5021 build_all_zonelists_init();
6811378e 5022 } else {
e9959f0f 5023#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5024 if (zone)
5025 setup_zone_pageset(zone);
e9959f0f 5026#endif
dd1895e2
CS
5027 /* we have to stop all cpus to guarantee there is no user
5028 of zonelist */
9adb62a5 5029 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5030 /* cpuset refresh routine should be here */
5031 }
bd1e22b8 5032 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5033 /*
5034 * Disable grouping by mobility if the number of pages in the
5035 * system is too low to allow the mechanism to work. It would be
5036 * more accurate, but expensive to check per-zone. This check is
5037 * made on memory-hotadd so a system can start with mobility
5038 * disabled and enable it later
5039 */
d9c23400 5040 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5041 page_group_by_mobility_disabled = 1;
5042 else
5043 page_group_by_mobility_disabled = 0;
5044
756a025f
JP
5045 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5046 nr_online_nodes,
5047 zonelist_order_name[current_zonelist_order],
5048 page_group_by_mobility_disabled ? "off" : "on",
5049 vm_total_pages);
f0c0b2b8 5050#ifdef CONFIG_NUMA
f88dfff5 5051 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5052#endif
1da177e4
LT
5053}
5054
5055/*
5056 * Helper functions to size the waitqueue hash table.
5057 * Essentially these want to choose hash table sizes sufficiently
5058 * large so that collisions trying to wait on pages are rare.
5059 * But in fact, the number of active page waitqueues on typical
5060 * systems is ridiculously low, less than 200. So this is even
5061 * conservative, even though it seems large.
5062 *
5063 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5064 * waitqueues, i.e. the size of the waitq table given the number of pages.
5065 */
5066#define PAGES_PER_WAITQUEUE 256
5067
cca448fe 5068#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5069static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5070{
5071 unsigned long size = 1;
5072
5073 pages /= PAGES_PER_WAITQUEUE;
5074
5075 while (size < pages)
5076 size <<= 1;
5077
5078 /*
5079 * Once we have dozens or even hundreds of threads sleeping
5080 * on IO we've got bigger problems than wait queue collision.
5081 * Limit the size of the wait table to a reasonable size.
5082 */
5083 size = min(size, 4096UL);
5084
5085 return max(size, 4UL);
5086}
cca448fe
YG
5087#else
5088/*
5089 * A zone's size might be changed by hot-add, so it is not possible to determine
5090 * a suitable size for its wait_table. So we use the maximum size now.
5091 *
5092 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5093 *
5094 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5095 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5096 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5097 *
5098 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5099 * or more by the traditional way. (See above). It equals:
5100 *
5101 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5102 * ia64(16K page size) : = ( 8G + 4M)byte.
5103 * powerpc (64K page size) : = (32G +16M)byte.
5104 */
5105static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5106{
5107 return 4096UL;
5108}
5109#endif
1da177e4
LT
5110
5111/*
5112 * This is an integer logarithm so that shifts can be used later
5113 * to extract the more random high bits from the multiplicative
5114 * hash function before the remainder is taken.
5115 */
5116static inline unsigned long wait_table_bits(unsigned long size)
5117{
5118 return ffz(~size);
5119}
5120
1da177e4
LT
5121/*
5122 * Initially all pages are reserved - free ones are freed
5123 * up by free_all_bootmem() once the early boot process is
5124 * done. Non-atomic initialization, single-pass.
5125 */
c09b4240 5126void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5127 unsigned long start_pfn, enum memmap_context context)
1da177e4 5128{
4b94ffdc 5129 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5130 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5131 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5132 unsigned long pfn;
3a80a7fa 5133 unsigned long nr_initialised = 0;
342332e6
TI
5134#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5135 struct memblock_region *r = NULL, *tmp;
5136#endif
1da177e4 5137
22b31eec
HD
5138 if (highest_memmap_pfn < end_pfn - 1)
5139 highest_memmap_pfn = end_pfn - 1;
5140
4b94ffdc
DW
5141 /*
5142 * Honor reservation requested by the driver for this ZONE_DEVICE
5143 * memory
5144 */
5145 if (altmap && start_pfn == altmap->base_pfn)
5146 start_pfn += altmap->reserve;
5147
cbe8dd4a 5148 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5149 /*
b72d0ffb
AM
5150 * There can be holes in boot-time mem_map[]s handed to this
5151 * function. They do not exist on hotplugged memory.
a2f3aa02 5152 */
b72d0ffb
AM
5153 if (context != MEMMAP_EARLY)
5154 goto not_early;
5155
5156 if (!early_pfn_valid(pfn))
5157 continue;
5158 if (!early_pfn_in_nid(pfn, nid))
5159 continue;
5160 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5161 break;
342332e6
TI
5162
5163#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5164 /*
5165 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5166 * from zone_movable_pfn[nid] to end of each node should be
5167 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5168 */
5169 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5170 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5171 continue;
342332e6 5172
b72d0ffb
AM
5173 /*
5174 * Check given memblock attribute by firmware which can affect
5175 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5176 * mirrored, it's an overlapped memmap init. skip it.
5177 */
5178 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5179 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5180 for_each_memblock(memory, tmp)
5181 if (pfn < memblock_region_memory_end_pfn(tmp))
5182 break;
5183 r = tmp;
5184 }
5185 if (pfn >= memblock_region_memory_base_pfn(r) &&
5186 memblock_is_mirror(r)) {
5187 /* already initialized as NORMAL */
5188 pfn = memblock_region_memory_end_pfn(r);
5189 continue;
342332e6 5190 }
a2f3aa02 5191 }
b72d0ffb 5192#endif
ac5d2539 5193
b72d0ffb 5194not_early:
ac5d2539
MG
5195 /*
5196 * Mark the block movable so that blocks are reserved for
5197 * movable at startup. This will force kernel allocations
5198 * to reserve their blocks rather than leaking throughout
5199 * the address space during boot when many long-lived
974a786e 5200 * kernel allocations are made.
ac5d2539
MG
5201 *
5202 * bitmap is created for zone's valid pfn range. but memmap
5203 * can be created for invalid pages (for alignment)
5204 * check here not to call set_pageblock_migratetype() against
5205 * pfn out of zone.
5206 */
5207 if (!(pfn & (pageblock_nr_pages - 1))) {
5208 struct page *page = pfn_to_page(pfn);
5209
5210 __init_single_page(page, pfn, zone, nid);
5211 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5212 } else {
5213 __init_single_pfn(pfn, zone, nid);
5214 }
1da177e4
LT
5215 }
5216}
5217
1e548deb 5218static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5219{
7aeb09f9 5220 unsigned int order, t;
b2a0ac88
MG
5221 for_each_migratetype_order(order, t) {
5222 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5223 zone->free_area[order].nr_free = 0;
5224 }
5225}
5226
5227#ifndef __HAVE_ARCH_MEMMAP_INIT
5228#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5229 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5230#endif
5231
7cd2b0a3 5232static int zone_batchsize(struct zone *zone)
e7c8d5c9 5233{
3a6be87f 5234#ifdef CONFIG_MMU
e7c8d5c9
CL
5235 int batch;
5236
5237 /*
5238 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5239 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5240 *
5241 * OK, so we don't know how big the cache is. So guess.
5242 */
b40da049 5243 batch = zone->managed_pages / 1024;
ba56e91c
SR
5244 if (batch * PAGE_SIZE > 512 * 1024)
5245 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5246 batch /= 4; /* We effectively *= 4 below */
5247 if (batch < 1)
5248 batch = 1;
5249
5250 /*
0ceaacc9
NP
5251 * Clamp the batch to a 2^n - 1 value. Having a power
5252 * of 2 value was found to be more likely to have
5253 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5254 *
0ceaacc9
NP
5255 * For example if 2 tasks are alternately allocating
5256 * batches of pages, one task can end up with a lot
5257 * of pages of one half of the possible page colors
5258 * and the other with pages of the other colors.
e7c8d5c9 5259 */
9155203a 5260 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5261
e7c8d5c9 5262 return batch;
3a6be87f
DH
5263
5264#else
5265 /* The deferral and batching of frees should be suppressed under NOMMU
5266 * conditions.
5267 *
5268 * The problem is that NOMMU needs to be able to allocate large chunks
5269 * of contiguous memory as there's no hardware page translation to
5270 * assemble apparent contiguous memory from discontiguous pages.
5271 *
5272 * Queueing large contiguous runs of pages for batching, however,
5273 * causes the pages to actually be freed in smaller chunks. As there
5274 * can be a significant delay between the individual batches being
5275 * recycled, this leads to the once large chunks of space being
5276 * fragmented and becoming unavailable for high-order allocations.
5277 */
5278 return 0;
5279#endif
e7c8d5c9
CL
5280}
5281
8d7a8fa9
CS
5282/*
5283 * pcp->high and pcp->batch values are related and dependent on one another:
5284 * ->batch must never be higher then ->high.
5285 * The following function updates them in a safe manner without read side
5286 * locking.
5287 *
5288 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5289 * those fields changing asynchronously (acording the the above rule).
5290 *
5291 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5292 * outside of boot time (or some other assurance that no concurrent updaters
5293 * exist).
5294 */
5295static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5296 unsigned long batch)
5297{
5298 /* start with a fail safe value for batch */
5299 pcp->batch = 1;
5300 smp_wmb();
5301
5302 /* Update high, then batch, in order */
5303 pcp->high = high;
5304 smp_wmb();
5305
5306 pcp->batch = batch;
5307}
5308
3664033c 5309/* a companion to pageset_set_high() */
4008bab7
CS
5310static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5311{
8d7a8fa9 5312 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5313}
5314
88c90dbc 5315static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5316{
5317 struct per_cpu_pages *pcp;
5f8dcc21 5318 int migratetype;
2caaad41 5319
1c6fe946
MD
5320 memset(p, 0, sizeof(*p));
5321
3dfa5721 5322 pcp = &p->pcp;
2caaad41 5323 pcp->count = 0;
5f8dcc21
MG
5324 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5325 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5326}
5327
88c90dbc
CS
5328static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5329{
5330 pageset_init(p);
5331 pageset_set_batch(p, batch);
5332}
5333
8ad4b1fb 5334/*
3664033c 5335 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5336 * to the value high for the pageset p.
5337 */
3664033c 5338static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5339 unsigned long high)
5340{
8d7a8fa9
CS
5341 unsigned long batch = max(1UL, high / 4);
5342 if ((high / 4) > (PAGE_SHIFT * 8))
5343 batch = PAGE_SHIFT * 8;
8ad4b1fb 5344
8d7a8fa9 5345 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5346}
5347
7cd2b0a3
DR
5348static void pageset_set_high_and_batch(struct zone *zone,
5349 struct per_cpu_pageset *pcp)
56cef2b8 5350{
56cef2b8 5351 if (percpu_pagelist_fraction)
3664033c 5352 pageset_set_high(pcp,
56cef2b8
CS
5353 (zone->managed_pages /
5354 percpu_pagelist_fraction));
5355 else
5356 pageset_set_batch(pcp, zone_batchsize(zone));
5357}
5358
169f6c19
CS
5359static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5360{
5361 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5362
5363 pageset_init(pcp);
5364 pageset_set_high_and_batch(zone, pcp);
5365}
5366
4ed7e022 5367static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5368{
5369 int cpu;
319774e2 5370 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5371 for_each_possible_cpu(cpu)
5372 zone_pageset_init(zone, cpu);
319774e2
WF
5373}
5374
2caaad41 5375/*
99dcc3e5
CL
5376 * Allocate per cpu pagesets and initialize them.
5377 * Before this call only boot pagesets were available.
e7c8d5c9 5378 */
99dcc3e5 5379void __init setup_per_cpu_pageset(void)
e7c8d5c9 5380{
99dcc3e5 5381 struct zone *zone;
e7c8d5c9 5382
319774e2
WF
5383 for_each_populated_zone(zone)
5384 setup_zone_pageset(zone);
e7c8d5c9
CL
5385}
5386
577a32f6 5387static noinline __init_refok
cca448fe 5388int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5389{
5390 int i;
cca448fe 5391 size_t alloc_size;
ed8ece2e
DH
5392
5393 /*
5394 * The per-page waitqueue mechanism uses hashed waitqueues
5395 * per zone.
5396 */
02b694de
YG
5397 zone->wait_table_hash_nr_entries =
5398 wait_table_hash_nr_entries(zone_size_pages);
5399 zone->wait_table_bits =
5400 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5401 alloc_size = zone->wait_table_hash_nr_entries
5402 * sizeof(wait_queue_head_t);
5403
cd94b9db 5404 if (!slab_is_available()) {
cca448fe 5405 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5406 memblock_virt_alloc_node_nopanic(
5407 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5408 } else {
5409 /*
5410 * This case means that a zone whose size was 0 gets new memory
5411 * via memory hot-add.
5412 * But it may be the case that a new node was hot-added. In
5413 * this case vmalloc() will not be able to use this new node's
5414 * memory - this wait_table must be initialized to use this new
5415 * node itself as well.
5416 * To use this new node's memory, further consideration will be
5417 * necessary.
5418 */
8691f3a7 5419 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5420 }
5421 if (!zone->wait_table)
5422 return -ENOMEM;
ed8ece2e 5423
b8af2941 5424 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5425 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5426
5427 return 0;
ed8ece2e
DH
5428}
5429
c09b4240 5430static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5431{
99dcc3e5
CL
5432 /*
5433 * per cpu subsystem is not up at this point. The following code
5434 * relies on the ability of the linker to provide the
5435 * offset of a (static) per cpu variable into the per cpu area.
5436 */
5437 zone->pageset = &boot_pageset;
ed8ece2e 5438
b38a8725 5439 if (populated_zone(zone))
99dcc3e5
CL
5440 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5441 zone->name, zone->present_pages,
5442 zone_batchsize(zone));
ed8ece2e
DH
5443}
5444
4ed7e022 5445int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5446 unsigned long zone_start_pfn,
b171e409 5447 unsigned long size)
ed8ece2e
DH
5448{
5449 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5450 int ret;
5451 ret = zone_wait_table_init(zone, size);
5452 if (ret)
5453 return ret;
ed8ece2e
DH
5454 pgdat->nr_zones = zone_idx(zone) + 1;
5455
ed8ece2e
DH
5456 zone->zone_start_pfn = zone_start_pfn;
5457
708614e6
MG
5458 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5459 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5460 pgdat->node_id,
5461 (unsigned long)zone_idx(zone),
5462 zone_start_pfn, (zone_start_pfn + size));
5463
1e548deb 5464 zone_init_free_lists(zone);
718127cc
YG
5465
5466 return 0;
ed8ece2e
DH
5467}
5468
0ee332c1 5469#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5470#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5471
c713216d
MG
5472/*
5473 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5474 */
8a942fde
MG
5475int __meminit __early_pfn_to_nid(unsigned long pfn,
5476 struct mminit_pfnnid_cache *state)
c713216d 5477{
c13291a5 5478 unsigned long start_pfn, end_pfn;
e76b63f8 5479 int nid;
7c243c71 5480
8a942fde
MG
5481 if (state->last_start <= pfn && pfn < state->last_end)
5482 return state->last_nid;
c713216d 5483
e76b63f8
YL
5484 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5485 if (nid != -1) {
8a942fde
MG
5486 state->last_start = start_pfn;
5487 state->last_end = end_pfn;
5488 state->last_nid = nid;
e76b63f8
YL
5489 }
5490
5491 return nid;
c713216d
MG
5492}
5493#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5494
c713216d 5495/**
6782832e 5496 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5497 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5498 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5499 *
7d018176
ZZ
5500 * If an architecture guarantees that all ranges registered contain no holes
5501 * and may be freed, this this function may be used instead of calling
5502 * memblock_free_early_nid() manually.
c713216d 5503 */
c13291a5 5504void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5505{
c13291a5
TH
5506 unsigned long start_pfn, end_pfn;
5507 int i, this_nid;
edbe7d23 5508
c13291a5
TH
5509 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5510 start_pfn = min(start_pfn, max_low_pfn);
5511 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5512
c13291a5 5513 if (start_pfn < end_pfn)
6782832e
SS
5514 memblock_free_early_nid(PFN_PHYS(start_pfn),
5515 (end_pfn - start_pfn) << PAGE_SHIFT,
5516 this_nid);
edbe7d23 5517 }
edbe7d23 5518}
edbe7d23 5519
c713216d
MG
5520/**
5521 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5522 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5523 *
7d018176
ZZ
5524 * If an architecture guarantees that all ranges registered contain no holes and may
5525 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5526 */
5527void __init sparse_memory_present_with_active_regions(int nid)
5528{
c13291a5
TH
5529 unsigned long start_pfn, end_pfn;
5530 int i, this_nid;
c713216d 5531
c13291a5
TH
5532 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5533 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5534}
5535
5536/**
5537 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5538 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5539 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5540 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5541 *
5542 * It returns the start and end page frame of a node based on information
7d018176 5543 * provided by memblock_set_node(). If called for a node
c713216d 5544 * with no available memory, a warning is printed and the start and end
88ca3b94 5545 * PFNs will be 0.
c713216d 5546 */
a3142c8e 5547void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5548 unsigned long *start_pfn, unsigned long *end_pfn)
5549{
c13291a5 5550 unsigned long this_start_pfn, this_end_pfn;
c713216d 5551 int i;
c13291a5 5552
c713216d
MG
5553 *start_pfn = -1UL;
5554 *end_pfn = 0;
5555
c13291a5
TH
5556 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5557 *start_pfn = min(*start_pfn, this_start_pfn);
5558 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5559 }
5560
633c0666 5561 if (*start_pfn == -1UL)
c713216d 5562 *start_pfn = 0;
c713216d
MG
5563}
5564
2a1e274a
MG
5565/*
5566 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5567 * assumption is made that zones within a node are ordered in monotonic
5568 * increasing memory addresses so that the "highest" populated zone is used
5569 */
b69a7288 5570static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5571{
5572 int zone_index;
5573 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5574 if (zone_index == ZONE_MOVABLE)
5575 continue;
5576
5577 if (arch_zone_highest_possible_pfn[zone_index] >
5578 arch_zone_lowest_possible_pfn[zone_index])
5579 break;
5580 }
5581
5582 VM_BUG_ON(zone_index == -1);
5583 movable_zone = zone_index;
5584}
5585
5586/*
5587 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5588 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5589 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5590 * in each node depending on the size of each node and how evenly kernelcore
5591 * is distributed. This helper function adjusts the zone ranges
5592 * provided by the architecture for a given node by using the end of the
5593 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5594 * zones within a node are in order of monotonic increases memory addresses
5595 */
b69a7288 5596static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5597 unsigned long zone_type,
5598 unsigned long node_start_pfn,
5599 unsigned long node_end_pfn,
5600 unsigned long *zone_start_pfn,
5601 unsigned long *zone_end_pfn)
5602{
5603 /* Only adjust if ZONE_MOVABLE is on this node */
5604 if (zone_movable_pfn[nid]) {
5605 /* Size ZONE_MOVABLE */
5606 if (zone_type == ZONE_MOVABLE) {
5607 *zone_start_pfn = zone_movable_pfn[nid];
5608 *zone_end_pfn = min(node_end_pfn,
5609 arch_zone_highest_possible_pfn[movable_zone]);
5610
2a1e274a
MG
5611 /* Check if this whole range is within ZONE_MOVABLE */
5612 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5613 *zone_start_pfn = *zone_end_pfn;
5614 }
5615}
5616
c713216d
MG
5617/*
5618 * Return the number of pages a zone spans in a node, including holes
5619 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5620 */
6ea6e688 5621static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5622 unsigned long zone_type,
7960aedd
ZY
5623 unsigned long node_start_pfn,
5624 unsigned long node_end_pfn,
d91749c1
TI
5625 unsigned long *zone_start_pfn,
5626 unsigned long *zone_end_pfn,
c713216d
MG
5627 unsigned long *ignored)
5628{
b5685e92 5629 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5630 if (!node_start_pfn && !node_end_pfn)
5631 return 0;
5632
7960aedd 5633 /* Get the start and end of the zone */
d91749c1
TI
5634 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5635 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5636 adjust_zone_range_for_zone_movable(nid, zone_type,
5637 node_start_pfn, node_end_pfn,
d91749c1 5638 zone_start_pfn, zone_end_pfn);
c713216d
MG
5639
5640 /* Check that this node has pages within the zone's required range */
d91749c1 5641 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5642 return 0;
5643
5644 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5645 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5646 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5647
5648 /* Return the spanned pages */
d91749c1 5649 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5650}
5651
5652/*
5653 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5654 * then all holes in the requested range will be accounted for.
c713216d 5655 */
32996250 5656unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5657 unsigned long range_start_pfn,
5658 unsigned long range_end_pfn)
5659{
96e907d1
TH
5660 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5661 unsigned long start_pfn, end_pfn;
5662 int i;
c713216d 5663
96e907d1
TH
5664 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5665 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5666 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5667 nr_absent -= end_pfn - start_pfn;
c713216d 5668 }
96e907d1 5669 return nr_absent;
c713216d
MG
5670}
5671
5672/**
5673 * absent_pages_in_range - Return number of page frames in holes within a range
5674 * @start_pfn: The start PFN to start searching for holes
5675 * @end_pfn: The end PFN to stop searching for holes
5676 *
88ca3b94 5677 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5678 */
5679unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5680 unsigned long end_pfn)
5681{
5682 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5683}
5684
5685/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5686static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5687 unsigned long zone_type,
7960aedd
ZY
5688 unsigned long node_start_pfn,
5689 unsigned long node_end_pfn,
c713216d
MG
5690 unsigned long *ignored)
5691{
96e907d1
TH
5692 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5693 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5694 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5695 unsigned long nr_absent;
9c7cd687 5696
b5685e92 5697 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5698 if (!node_start_pfn && !node_end_pfn)
5699 return 0;
5700
96e907d1
TH
5701 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5702 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5703
2a1e274a
MG
5704 adjust_zone_range_for_zone_movable(nid, zone_type,
5705 node_start_pfn, node_end_pfn,
5706 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5707 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5708
5709 /*
5710 * ZONE_MOVABLE handling.
5711 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5712 * and vice versa.
5713 */
5714 if (zone_movable_pfn[nid]) {
5715 if (mirrored_kernelcore) {
5716 unsigned long start_pfn, end_pfn;
5717 struct memblock_region *r;
5718
5719 for_each_memblock(memory, r) {
5720 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5721 zone_start_pfn, zone_end_pfn);
5722 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5723 zone_start_pfn, zone_end_pfn);
5724
5725 if (zone_type == ZONE_MOVABLE &&
5726 memblock_is_mirror(r))
5727 nr_absent += end_pfn - start_pfn;
5728
5729 if (zone_type == ZONE_NORMAL &&
5730 !memblock_is_mirror(r))
5731 nr_absent += end_pfn - start_pfn;
5732 }
5733 } else {
5734 if (zone_type == ZONE_NORMAL)
5735 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5736 }
5737 }
5738
5739 return nr_absent;
c713216d 5740}
0e0b864e 5741
0ee332c1 5742#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5743static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5744 unsigned long zone_type,
7960aedd
ZY
5745 unsigned long node_start_pfn,
5746 unsigned long node_end_pfn,
d91749c1
TI
5747 unsigned long *zone_start_pfn,
5748 unsigned long *zone_end_pfn,
c713216d
MG
5749 unsigned long *zones_size)
5750{
d91749c1
TI
5751 unsigned int zone;
5752
5753 *zone_start_pfn = node_start_pfn;
5754 for (zone = 0; zone < zone_type; zone++)
5755 *zone_start_pfn += zones_size[zone];
5756
5757 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5758
c713216d
MG
5759 return zones_size[zone_type];
5760}
5761
6ea6e688 5762static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5763 unsigned long zone_type,
7960aedd
ZY
5764 unsigned long node_start_pfn,
5765 unsigned long node_end_pfn,
c713216d
MG
5766 unsigned long *zholes_size)
5767{
5768 if (!zholes_size)
5769 return 0;
5770
5771 return zholes_size[zone_type];
5772}
20e6926d 5773
0ee332c1 5774#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5775
a3142c8e 5776static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5777 unsigned long node_start_pfn,
5778 unsigned long node_end_pfn,
5779 unsigned long *zones_size,
5780 unsigned long *zholes_size)
c713216d 5781{
febd5949 5782 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5783 enum zone_type i;
5784
febd5949
GZ
5785 for (i = 0; i < MAX_NR_ZONES; i++) {
5786 struct zone *zone = pgdat->node_zones + i;
d91749c1 5787 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5788 unsigned long size, real_size;
c713216d 5789
febd5949
GZ
5790 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5791 node_start_pfn,
5792 node_end_pfn,
d91749c1
TI
5793 &zone_start_pfn,
5794 &zone_end_pfn,
febd5949
GZ
5795 zones_size);
5796 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5797 node_start_pfn, node_end_pfn,
5798 zholes_size);
d91749c1
TI
5799 if (size)
5800 zone->zone_start_pfn = zone_start_pfn;
5801 else
5802 zone->zone_start_pfn = 0;
febd5949
GZ
5803 zone->spanned_pages = size;
5804 zone->present_pages = real_size;
5805
5806 totalpages += size;
5807 realtotalpages += real_size;
5808 }
5809
5810 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5811 pgdat->node_present_pages = realtotalpages;
5812 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5813 realtotalpages);
5814}
5815
835c134e
MG
5816#ifndef CONFIG_SPARSEMEM
5817/*
5818 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5819 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5820 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5821 * round what is now in bits to nearest long in bits, then return it in
5822 * bytes.
5823 */
7c45512d 5824static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5825{
5826 unsigned long usemapsize;
5827
7c45512d 5828 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5829 usemapsize = roundup(zonesize, pageblock_nr_pages);
5830 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5831 usemapsize *= NR_PAGEBLOCK_BITS;
5832 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5833
5834 return usemapsize / 8;
5835}
5836
5837static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5838 struct zone *zone,
5839 unsigned long zone_start_pfn,
5840 unsigned long zonesize)
835c134e 5841{
7c45512d 5842 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5843 zone->pageblock_flags = NULL;
58a01a45 5844 if (usemapsize)
6782832e
SS
5845 zone->pageblock_flags =
5846 memblock_virt_alloc_node_nopanic(usemapsize,
5847 pgdat->node_id);
835c134e
MG
5848}
5849#else
7c45512d
LT
5850static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5851 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5852#endif /* CONFIG_SPARSEMEM */
5853
d9c23400 5854#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5855
d9c23400 5856/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5857void __paginginit set_pageblock_order(void)
d9c23400 5858{
955c1cd7
AM
5859 unsigned int order;
5860
d9c23400
MG
5861 /* Check that pageblock_nr_pages has not already been setup */
5862 if (pageblock_order)
5863 return;
5864
955c1cd7
AM
5865 if (HPAGE_SHIFT > PAGE_SHIFT)
5866 order = HUGETLB_PAGE_ORDER;
5867 else
5868 order = MAX_ORDER - 1;
5869
d9c23400
MG
5870 /*
5871 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5872 * This value may be variable depending on boot parameters on IA64 and
5873 * powerpc.
d9c23400
MG
5874 */
5875 pageblock_order = order;
5876}
5877#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5878
ba72cb8c
MG
5879/*
5880 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5881 * is unused as pageblock_order is set at compile-time. See
5882 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5883 * the kernel config
ba72cb8c 5884 */
15ca220e 5885void __paginginit set_pageblock_order(void)
ba72cb8c 5886{
ba72cb8c 5887}
d9c23400
MG
5888
5889#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5890
01cefaef
JL
5891static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5892 unsigned long present_pages)
5893{
5894 unsigned long pages = spanned_pages;
5895
5896 /*
5897 * Provide a more accurate estimation if there are holes within
5898 * the zone and SPARSEMEM is in use. If there are holes within the
5899 * zone, each populated memory region may cost us one or two extra
5900 * memmap pages due to alignment because memmap pages for each
5901 * populated regions may not naturally algined on page boundary.
5902 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5903 */
5904 if (spanned_pages > present_pages + (present_pages >> 4) &&
5905 IS_ENABLED(CONFIG_SPARSEMEM))
5906 pages = present_pages;
5907
5908 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5909}
5910
1da177e4
LT
5911/*
5912 * Set up the zone data structures:
5913 * - mark all pages reserved
5914 * - mark all memory queues empty
5915 * - clear the memory bitmaps
6527af5d
MK
5916 *
5917 * NOTE: pgdat should get zeroed by caller.
1da177e4 5918 */
7f3eb55b 5919static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5920{
2f1b6248 5921 enum zone_type j;
ed8ece2e 5922 int nid = pgdat->node_id;
718127cc 5923 int ret;
1da177e4 5924
208d54e5 5925 pgdat_resize_init(pgdat);
8177a420
AA
5926#ifdef CONFIG_NUMA_BALANCING
5927 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5928 pgdat->numabalancing_migrate_nr_pages = 0;
5929 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5930#endif
5931#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5932 spin_lock_init(&pgdat->split_queue_lock);
5933 INIT_LIST_HEAD(&pgdat->split_queue);
5934 pgdat->split_queue_len = 0;
8177a420 5935#endif
1da177e4 5936 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5937 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5938#ifdef CONFIG_COMPACTION
5939 init_waitqueue_head(&pgdat->kcompactd_wait);
5940#endif
eefa864b 5941 pgdat_page_ext_init(pgdat);
5f63b720 5942
1da177e4
LT
5943 for (j = 0; j < MAX_NR_ZONES; j++) {
5944 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5945 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5946 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5947
febd5949
GZ
5948 size = zone->spanned_pages;
5949 realsize = freesize = zone->present_pages;
1da177e4 5950
0e0b864e 5951 /*
9feedc9d 5952 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5953 * is used by this zone for memmap. This affects the watermark
5954 * and per-cpu initialisations
5955 */
01cefaef 5956 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5957 if (!is_highmem_idx(j)) {
5958 if (freesize >= memmap_pages) {
5959 freesize -= memmap_pages;
5960 if (memmap_pages)
5961 printk(KERN_DEBUG
5962 " %s zone: %lu pages used for memmap\n",
5963 zone_names[j], memmap_pages);
5964 } else
1170532b 5965 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5966 zone_names[j], memmap_pages, freesize);
5967 }
0e0b864e 5968
6267276f 5969 /* Account for reserved pages */
9feedc9d
JL
5970 if (j == 0 && freesize > dma_reserve) {
5971 freesize -= dma_reserve;
d903ef9f 5972 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5973 zone_names[0], dma_reserve);
0e0b864e
MG
5974 }
5975
98d2b0eb 5976 if (!is_highmem_idx(j))
9feedc9d 5977 nr_kernel_pages += freesize;
01cefaef
JL
5978 /* Charge for highmem memmap if there are enough kernel pages */
5979 else if (nr_kernel_pages > memmap_pages * 2)
5980 nr_kernel_pages -= memmap_pages;
9feedc9d 5981 nr_all_pages += freesize;
1da177e4 5982
9feedc9d
JL
5983 /*
5984 * Set an approximate value for lowmem here, it will be adjusted
5985 * when the bootmem allocator frees pages into the buddy system.
5986 * And all highmem pages will be managed by the buddy system.
5987 */
5988 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5989#ifdef CONFIG_NUMA
d5f541ed 5990 zone->node = nid;
9feedc9d 5991 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5992 / 100;
9feedc9d 5993 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5994#endif
1da177e4
LT
5995 zone->name = zone_names[j];
5996 spin_lock_init(&zone->lock);
5997 spin_lock_init(&zone->lru_lock);
bdc8cb98 5998 zone_seqlock_init(zone);
1da177e4 5999 zone->zone_pgdat = pgdat;
ed8ece2e 6000 zone_pcp_init(zone);
81c0a2bb
JW
6001
6002 /* For bootup, initialized properly in watermark setup */
6003 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6004
bea8c150 6005 lruvec_init(&zone->lruvec);
1da177e4
LT
6006 if (!size)
6007 continue;
6008
955c1cd7 6009 set_pageblock_order();
7c45512d 6010 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6011 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6012 BUG_ON(ret);
76cdd58e 6013 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6014 }
6015}
6016
577a32f6 6017static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6018{
b0aeba74 6019 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6020 unsigned long __maybe_unused offset = 0;
6021
1da177e4
LT
6022 /* Skip empty nodes */
6023 if (!pgdat->node_spanned_pages)
6024 return;
6025
d41dee36 6026#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6027 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6028 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6029 /* ia64 gets its own node_mem_map, before this, without bootmem */
6030 if (!pgdat->node_mem_map) {
b0aeba74 6031 unsigned long size, end;
d41dee36
AW
6032 struct page *map;
6033
e984bb43
BP
6034 /*
6035 * The zone's endpoints aren't required to be MAX_ORDER
6036 * aligned but the node_mem_map endpoints must be in order
6037 * for the buddy allocator to function correctly.
6038 */
108bcc96 6039 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6040 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6041 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6042 map = alloc_remap(pgdat->node_id, size);
6043 if (!map)
6782832e
SS
6044 map = memblock_virt_alloc_node_nopanic(size,
6045 pgdat->node_id);
a1c34a3b 6046 pgdat->node_mem_map = map + offset;
1da177e4 6047 }
12d810c1 6048#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6049 /*
6050 * With no DISCONTIG, the global mem_map is just set as node 0's
6051 */
c713216d 6052 if (pgdat == NODE_DATA(0)) {
1da177e4 6053 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6054#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6055 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6056 mem_map -= offset;
0ee332c1 6057#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6058 }
1da177e4 6059#endif
d41dee36 6060#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6061}
6062
9109fb7b
JW
6063void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6064 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6065{
9109fb7b 6066 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6067 unsigned long start_pfn = 0;
6068 unsigned long end_pfn = 0;
9109fb7b 6069
88fdf75d 6070 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6071 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6072
3a80a7fa 6073 reset_deferred_meminit(pgdat);
1da177e4
LT
6074 pgdat->node_id = nid;
6075 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6076#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6077 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6078 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6079 (u64)start_pfn << PAGE_SHIFT,
6080 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6081#else
6082 start_pfn = node_start_pfn;
7960aedd
ZY
6083#endif
6084 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6085 zones_size, zholes_size);
1da177e4
LT
6086
6087 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6088#ifdef CONFIG_FLAT_NODE_MEM_MAP
6089 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6090 nid, (unsigned long)pgdat,
6091 (unsigned long)pgdat->node_mem_map);
6092#endif
1da177e4 6093
7f3eb55b 6094 free_area_init_core(pgdat);
1da177e4
LT
6095}
6096
0ee332c1 6097#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6098
6099#if MAX_NUMNODES > 1
6100/*
6101 * Figure out the number of possible node ids.
6102 */
f9872caf 6103void __init setup_nr_node_ids(void)
418508c1 6104{
904a9553 6105 unsigned int highest;
418508c1 6106
904a9553 6107 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6108 nr_node_ids = highest + 1;
6109}
418508c1
MS
6110#endif
6111
1e01979c
TH
6112/**
6113 * node_map_pfn_alignment - determine the maximum internode alignment
6114 *
6115 * This function should be called after node map is populated and sorted.
6116 * It calculates the maximum power of two alignment which can distinguish
6117 * all the nodes.
6118 *
6119 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6120 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6121 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6122 * shifted, 1GiB is enough and this function will indicate so.
6123 *
6124 * This is used to test whether pfn -> nid mapping of the chosen memory
6125 * model has fine enough granularity to avoid incorrect mapping for the
6126 * populated node map.
6127 *
6128 * Returns the determined alignment in pfn's. 0 if there is no alignment
6129 * requirement (single node).
6130 */
6131unsigned long __init node_map_pfn_alignment(void)
6132{
6133 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6134 unsigned long start, end, mask;
1e01979c 6135 int last_nid = -1;
c13291a5 6136 int i, nid;
1e01979c 6137
c13291a5 6138 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6139 if (!start || last_nid < 0 || last_nid == nid) {
6140 last_nid = nid;
6141 last_end = end;
6142 continue;
6143 }
6144
6145 /*
6146 * Start with a mask granular enough to pin-point to the
6147 * start pfn and tick off bits one-by-one until it becomes
6148 * too coarse to separate the current node from the last.
6149 */
6150 mask = ~((1 << __ffs(start)) - 1);
6151 while (mask && last_end <= (start & (mask << 1)))
6152 mask <<= 1;
6153
6154 /* accumulate all internode masks */
6155 accl_mask |= mask;
6156 }
6157
6158 /* convert mask to number of pages */
6159 return ~accl_mask + 1;
6160}
6161
a6af2bc3 6162/* Find the lowest pfn for a node */
b69a7288 6163static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6164{
a6af2bc3 6165 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6166 unsigned long start_pfn;
6167 int i;
1abbfb41 6168
c13291a5
TH
6169 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6170 min_pfn = min(min_pfn, start_pfn);
c713216d 6171
a6af2bc3 6172 if (min_pfn == ULONG_MAX) {
1170532b 6173 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6174 return 0;
6175 }
6176
6177 return min_pfn;
c713216d
MG
6178}
6179
6180/**
6181 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6182 *
6183 * It returns the minimum PFN based on information provided via
7d018176 6184 * memblock_set_node().
c713216d
MG
6185 */
6186unsigned long __init find_min_pfn_with_active_regions(void)
6187{
6188 return find_min_pfn_for_node(MAX_NUMNODES);
6189}
6190
37b07e41
LS
6191/*
6192 * early_calculate_totalpages()
6193 * Sum pages in active regions for movable zone.
4b0ef1fe 6194 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6195 */
484f51f8 6196static unsigned long __init early_calculate_totalpages(void)
7e63efef 6197{
7e63efef 6198 unsigned long totalpages = 0;
c13291a5
TH
6199 unsigned long start_pfn, end_pfn;
6200 int i, nid;
6201
6202 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6203 unsigned long pages = end_pfn - start_pfn;
7e63efef 6204
37b07e41
LS
6205 totalpages += pages;
6206 if (pages)
4b0ef1fe 6207 node_set_state(nid, N_MEMORY);
37b07e41 6208 }
b8af2941 6209 return totalpages;
7e63efef
MG
6210}
6211
2a1e274a
MG
6212/*
6213 * Find the PFN the Movable zone begins in each node. Kernel memory
6214 * is spread evenly between nodes as long as the nodes have enough
6215 * memory. When they don't, some nodes will have more kernelcore than
6216 * others
6217 */
b224ef85 6218static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6219{
6220 int i, nid;
6221 unsigned long usable_startpfn;
6222 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6223 /* save the state before borrow the nodemask */
4b0ef1fe 6224 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6225 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6226 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6227 struct memblock_region *r;
b2f3eebe
TC
6228
6229 /* Need to find movable_zone earlier when movable_node is specified. */
6230 find_usable_zone_for_movable();
6231
6232 /*
6233 * If movable_node is specified, ignore kernelcore and movablecore
6234 * options.
6235 */
6236 if (movable_node_is_enabled()) {
136199f0
EM
6237 for_each_memblock(memory, r) {
6238 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6239 continue;
6240
136199f0 6241 nid = r->nid;
b2f3eebe 6242
136199f0 6243 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6244 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6245 min(usable_startpfn, zone_movable_pfn[nid]) :
6246 usable_startpfn;
6247 }
6248
6249 goto out2;
6250 }
2a1e274a 6251
342332e6
TI
6252 /*
6253 * If kernelcore=mirror is specified, ignore movablecore option
6254 */
6255 if (mirrored_kernelcore) {
6256 bool mem_below_4gb_not_mirrored = false;
6257
6258 for_each_memblock(memory, r) {
6259 if (memblock_is_mirror(r))
6260 continue;
6261
6262 nid = r->nid;
6263
6264 usable_startpfn = memblock_region_memory_base_pfn(r);
6265
6266 if (usable_startpfn < 0x100000) {
6267 mem_below_4gb_not_mirrored = true;
6268 continue;
6269 }
6270
6271 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6272 min(usable_startpfn, zone_movable_pfn[nid]) :
6273 usable_startpfn;
6274 }
6275
6276 if (mem_below_4gb_not_mirrored)
6277 pr_warn("This configuration results in unmirrored kernel memory.");
6278
6279 goto out2;
6280 }
6281
7e63efef 6282 /*
b2f3eebe 6283 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6284 * kernelcore that corresponds so that memory usable for
6285 * any allocation type is evenly spread. If both kernelcore
6286 * and movablecore are specified, then the value of kernelcore
6287 * will be used for required_kernelcore if it's greater than
6288 * what movablecore would have allowed.
6289 */
6290 if (required_movablecore) {
7e63efef
MG
6291 unsigned long corepages;
6292
6293 /*
6294 * Round-up so that ZONE_MOVABLE is at least as large as what
6295 * was requested by the user
6296 */
6297 required_movablecore =
6298 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6299 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6300 corepages = totalpages - required_movablecore;
6301
6302 required_kernelcore = max(required_kernelcore, corepages);
6303 }
6304
bde304bd
XQ
6305 /*
6306 * If kernelcore was not specified or kernelcore size is larger
6307 * than totalpages, there is no ZONE_MOVABLE.
6308 */
6309 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6310 goto out;
2a1e274a
MG
6311
6312 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6313 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6314
6315restart:
6316 /* Spread kernelcore memory as evenly as possible throughout nodes */
6317 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6318 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6319 unsigned long start_pfn, end_pfn;
6320
2a1e274a
MG
6321 /*
6322 * Recalculate kernelcore_node if the division per node
6323 * now exceeds what is necessary to satisfy the requested
6324 * amount of memory for the kernel
6325 */
6326 if (required_kernelcore < kernelcore_node)
6327 kernelcore_node = required_kernelcore / usable_nodes;
6328
6329 /*
6330 * As the map is walked, we track how much memory is usable
6331 * by the kernel using kernelcore_remaining. When it is
6332 * 0, the rest of the node is usable by ZONE_MOVABLE
6333 */
6334 kernelcore_remaining = kernelcore_node;
6335
6336 /* Go through each range of PFNs within this node */
c13291a5 6337 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6338 unsigned long size_pages;
6339
c13291a5 6340 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6341 if (start_pfn >= end_pfn)
6342 continue;
6343
6344 /* Account for what is only usable for kernelcore */
6345 if (start_pfn < usable_startpfn) {
6346 unsigned long kernel_pages;
6347 kernel_pages = min(end_pfn, usable_startpfn)
6348 - start_pfn;
6349
6350 kernelcore_remaining -= min(kernel_pages,
6351 kernelcore_remaining);
6352 required_kernelcore -= min(kernel_pages,
6353 required_kernelcore);
6354
6355 /* Continue if range is now fully accounted */
6356 if (end_pfn <= usable_startpfn) {
6357
6358 /*
6359 * Push zone_movable_pfn to the end so
6360 * that if we have to rebalance
6361 * kernelcore across nodes, we will
6362 * not double account here
6363 */
6364 zone_movable_pfn[nid] = end_pfn;
6365 continue;
6366 }
6367 start_pfn = usable_startpfn;
6368 }
6369
6370 /*
6371 * The usable PFN range for ZONE_MOVABLE is from
6372 * start_pfn->end_pfn. Calculate size_pages as the
6373 * number of pages used as kernelcore
6374 */
6375 size_pages = end_pfn - start_pfn;
6376 if (size_pages > kernelcore_remaining)
6377 size_pages = kernelcore_remaining;
6378 zone_movable_pfn[nid] = start_pfn + size_pages;
6379
6380 /*
6381 * Some kernelcore has been met, update counts and
6382 * break if the kernelcore for this node has been
b8af2941 6383 * satisfied
2a1e274a
MG
6384 */
6385 required_kernelcore -= min(required_kernelcore,
6386 size_pages);
6387 kernelcore_remaining -= size_pages;
6388 if (!kernelcore_remaining)
6389 break;
6390 }
6391 }
6392
6393 /*
6394 * If there is still required_kernelcore, we do another pass with one
6395 * less node in the count. This will push zone_movable_pfn[nid] further
6396 * along on the nodes that still have memory until kernelcore is
b8af2941 6397 * satisfied
2a1e274a
MG
6398 */
6399 usable_nodes--;
6400 if (usable_nodes && required_kernelcore > usable_nodes)
6401 goto restart;
6402
b2f3eebe 6403out2:
2a1e274a
MG
6404 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6405 for (nid = 0; nid < MAX_NUMNODES; nid++)
6406 zone_movable_pfn[nid] =
6407 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6408
20e6926d 6409out:
66918dcd 6410 /* restore the node_state */
4b0ef1fe 6411 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6412}
6413
4b0ef1fe
LJ
6414/* Any regular or high memory on that node ? */
6415static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6416{
37b07e41
LS
6417 enum zone_type zone_type;
6418
4b0ef1fe
LJ
6419 if (N_MEMORY == N_NORMAL_MEMORY)
6420 return;
6421
6422 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6423 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6424 if (populated_zone(zone)) {
4b0ef1fe
LJ
6425 node_set_state(nid, N_HIGH_MEMORY);
6426 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6427 zone_type <= ZONE_NORMAL)
6428 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6429 break;
6430 }
37b07e41 6431 }
37b07e41
LS
6432}
6433
c713216d
MG
6434/**
6435 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6436 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6437 *
6438 * This will call free_area_init_node() for each active node in the system.
7d018176 6439 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6440 * zone in each node and their holes is calculated. If the maximum PFN
6441 * between two adjacent zones match, it is assumed that the zone is empty.
6442 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6443 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6444 * starts where the previous one ended. For example, ZONE_DMA32 starts
6445 * at arch_max_dma_pfn.
6446 */
6447void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6448{
c13291a5
TH
6449 unsigned long start_pfn, end_pfn;
6450 int i, nid;
a6af2bc3 6451
c713216d
MG
6452 /* Record where the zone boundaries are */
6453 memset(arch_zone_lowest_possible_pfn, 0,
6454 sizeof(arch_zone_lowest_possible_pfn));
6455 memset(arch_zone_highest_possible_pfn, 0,
6456 sizeof(arch_zone_highest_possible_pfn));
6457 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6458 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6459 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6460 if (i == ZONE_MOVABLE)
6461 continue;
c713216d
MG
6462 arch_zone_lowest_possible_pfn[i] =
6463 arch_zone_highest_possible_pfn[i-1];
6464 arch_zone_highest_possible_pfn[i] =
6465 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6466 }
2a1e274a
MG
6467 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6468 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6469
6470 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6471 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6472 find_zone_movable_pfns_for_nodes();
c713216d 6473
c713216d 6474 /* Print out the zone ranges */
f88dfff5 6475 pr_info("Zone ranges:\n");
2a1e274a
MG
6476 for (i = 0; i < MAX_NR_ZONES; i++) {
6477 if (i == ZONE_MOVABLE)
6478 continue;
f88dfff5 6479 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6480 if (arch_zone_lowest_possible_pfn[i] ==
6481 arch_zone_highest_possible_pfn[i])
f88dfff5 6482 pr_cont("empty\n");
72f0ba02 6483 else
8d29e18a
JG
6484 pr_cont("[mem %#018Lx-%#018Lx]\n",
6485 (u64)arch_zone_lowest_possible_pfn[i]
6486 << PAGE_SHIFT,
6487 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6488 << PAGE_SHIFT) - 1);
2a1e274a
MG
6489 }
6490
6491 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6492 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6493 for (i = 0; i < MAX_NUMNODES; i++) {
6494 if (zone_movable_pfn[i])
8d29e18a
JG
6495 pr_info(" Node %d: %#018Lx\n", i,
6496 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6497 }
c713216d 6498
f2d52fe5 6499 /* Print out the early node map */
f88dfff5 6500 pr_info("Early memory node ranges\n");
c13291a5 6501 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6502 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6503 (u64)start_pfn << PAGE_SHIFT,
6504 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6505
6506 /* Initialise every node */
708614e6 6507 mminit_verify_pageflags_layout();
8ef82866 6508 setup_nr_node_ids();
c713216d
MG
6509 for_each_online_node(nid) {
6510 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6511 free_area_init_node(nid, NULL,
c713216d 6512 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6513
6514 /* Any memory on that node */
6515 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6516 node_set_state(nid, N_MEMORY);
6517 check_for_memory(pgdat, nid);
c713216d
MG
6518 }
6519}
2a1e274a 6520
7e63efef 6521static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6522{
6523 unsigned long long coremem;
6524 if (!p)
6525 return -EINVAL;
6526
6527 coremem = memparse(p, &p);
7e63efef 6528 *core = coremem >> PAGE_SHIFT;
2a1e274a 6529
7e63efef 6530 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6531 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6532
6533 return 0;
6534}
ed7ed365 6535
7e63efef
MG
6536/*
6537 * kernelcore=size sets the amount of memory for use for allocations that
6538 * cannot be reclaimed or migrated.
6539 */
6540static int __init cmdline_parse_kernelcore(char *p)
6541{
342332e6
TI
6542 /* parse kernelcore=mirror */
6543 if (parse_option_str(p, "mirror")) {
6544 mirrored_kernelcore = true;
6545 return 0;
6546 }
6547
7e63efef
MG
6548 return cmdline_parse_core(p, &required_kernelcore);
6549}
6550
6551/*
6552 * movablecore=size sets the amount of memory for use for allocations that
6553 * can be reclaimed or migrated.
6554 */
6555static int __init cmdline_parse_movablecore(char *p)
6556{
6557 return cmdline_parse_core(p, &required_movablecore);
6558}
6559
ed7ed365 6560early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6561early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6562
0ee332c1 6563#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6564
c3d5f5f0
JL
6565void adjust_managed_page_count(struct page *page, long count)
6566{
6567 spin_lock(&managed_page_count_lock);
6568 page_zone(page)->managed_pages += count;
6569 totalram_pages += count;
3dcc0571
JL
6570#ifdef CONFIG_HIGHMEM
6571 if (PageHighMem(page))
6572 totalhigh_pages += count;
6573#endif
c3d5f5f0
JL
6574 spin_unlock(&managed_page_count_lock);
6575}
3dcc0571 6576EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6577
11199692 6578unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6579{
11199692
JL
6580 void *pos;
6581 unsigned long pages = 0;
69afade7 6582
11199692
JL
6583 start = (void *)PAGE_ALIGN((unsigned long)start);
6584 end = (void *)((unsigned long)end & PAGE_MASK);
6585 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6586 if ((unsigned int)poison <= 0xFF)
11199692
JL
6587 memset(pos, poison, PAGE_SIZE);
6588 free_reserved_page(virt_to_page(pos));
69afade7
JL
6589 }
6590
6591 if (pages && s)
11199692 6592 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6593 s, pages << (PAGE_SHIFT - 10), start, end);
6594
6595 return pages;
6596}
11199692 6597EXPORT_SYMBOL(free_reserved_area);
69afade7 6598
cfa11e08
JL
6599#ifdef CONFIG_HIGHMEM
6600void free_highmem_page(struct page *page)
6601{
6602 __free_reserved_page(page);
6603 totalram_pages++;
7b4b2a0d 6604 page_zone(page)->managed_pages++;
cfa11e08
JL
6605 totalhigh_pages++;
6606}
6607#endif
6608
7ee3d4e8
JL
6609
6610void __init mem_init_print_info(const char *str)
6611{
6612 unsigned long physpages, codesize, datasize, rosize, bss_size;
6613 unsigned long init_code_size, init_data_size;
6614
6615 physpages = get_num_physpages();
6616 codesize = _etext - _stext;
6617 datasize = _edata - _sdata;
6618 rosize = __end_rodata - __start_rodata;
6619 bss_size = __bss_stop - __bss_start;
6620 init_data_size = __init_end - __init_begin;
6621 init_code_size = _einittext - _sinittext;
6622
6623 /*
6624 * Detect special cases and adjust section sizes accordingly:
6625 * 1) .init.* may be embedded into .data sections
6626 * 2) .init.text.* may be out of [__init_begin, __init_end],
6627 * please refer to arch/tile/kernel/vmlinux.lds.S.
6628 * 3) .rodata.* may be embedded into .text or .data sections.
6629 */
6630#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6631 do { \
6632 if (start <= pos && pos < end && size > adj) \
6633 size -= adj; \
6634 } while (0)
7ee3d4e8
JL
6635
6636 adj_init_size(__init_begin, __init_end, init_data_size,
6637 _sinittext, init_code_size);
6638 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6639 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6640 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6641 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6642
6643#undef adj_init_size
6644
756a025f 6645 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6646#ifdef CONFIG_HIGHMEM
756a025f 6647 ", %luK highmem"
7ee3d4e8 6648#endif
756a025f
JP
6649 "%s%s)\n",
6650 nr_free_pages() << (PAGE_SHIFT - 10),
6651 physpages << (PAGE_SHIFT - 10),
6652 codesize >> 10, datasize >> 10, rosize >> 10,
6653 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6654 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6655 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6656#ifdef CONFIG_HIGHMEM
756a025f 6657 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6658#endif
756a025f 6659 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6660}
6661
0e0b864e 6662/**
88ca3b94
RD
6663 * set_dma_reserve - set the specified number of pages reserved in the first zone
6664 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6665 *
013110a7 6666 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6667 * In the DMA zone, a significant percentage may be consumed by kernel image
6668 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6669 * function may optionally be used to account for unfreeable pages in the
6670 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6671 * smaller per-cpu batchsize.
0e0b864e
MG
6672 */
6673void __init set_dma_reserve(unsigned long new_dma_reserve)
6674{
6675 dma_reserve = new_dma_reserve;
6676}
6677
1da177e4
LT
6678void __init free_area_init(unsigned long *zones_size)
6679{
9109fb7b 6680 free_area_init_node(0, zones_size,
1da177e4
LT
6681 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6682}
1da177e4 6683
1da177e4
LT
6684static int page_alloc_cpu_notify(struct notifier_block *self,
6685 unsigned long action, void *hcpu)
6686{
6687 int cpu = (unsigned long)hcpu;
1da177e4 6688
8bb78442 6689 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6690 lru_add_drain_cpu(cpu);
9f8f2172
CL
6691 drain_pages(cpu);
6692
6693 /*
6694 * Spill the event counters of the dead processor
6695 * into the current processors event counters.
6696 * This artificially elevates the count of the current
6697 * processor.
6698 */
f8891e5e 6699 vm_events_fold_cpu(cpu);
9f8f2172
CL
6700
6701 /*
6702 * Zero the differential counters of the dead processor
6703 * so that the vm statistics are consistent.
6704 *
6705 * This is only okay since the processor is dead and cannot
6706 * race with what we are doing.
6707 */
2bb921e5 6708 cpu_vm_stats_fold(cpu);
1da177e4
LT
6709 }
6710 return NOTIFY_OK;
6711}
1da177e4
LT
6712
6713void __init page_alloc_init(void)
6714{
6715 hotcpu_notifier(page_alloc_cpu_notify, 0);
6716}
6717
cb45b0e9 6718/*
34b10060 6719 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6720 * or min_free_kbytes changes.
6721 */
6722static void calculate_totalreserve_pages(void)
6723{
6724 struct pglist_data *pgdat;
6725 unsigned long reserve_pages = 0;
2f6726e5 6726 enum zone_type i, j;
cb45b0e9
HA
6727
6728 for_each_online_pgdat(pgdat) {
6729 for (i = 0; i < MAX_NR_ZONES; i++) {
6730 struct zone *zone = pgdat->node_zones + i;
3484b2de 6731 long max = 0;
cb45b0e9
HA
6732
6733 /* Find valid and maximum lowmem_reserve in the zone */
6734 for (j = i; j < MAX_NR_ZONES; j++) {
6735 if (zone->lowmem_reserve[j] > max)
6736 max = zone->lowmem_reserve[j];
6737 }
6738
41858966
MG
6739 /* we treat the high watermark as reserved pages. */
6740 max += high_wmark_pages(zone);
cb45b0e9 6741
b40da049
JL
6742 if (max > zone->managed_pages)
6743 max = zone->managed_pages;
a8d01437
JW
6744
6745 zone->totalreserve_pages = max;
6746
cb45b0e9
HA
6747 reserve_pages += max;
6748 }
6749 }
6750 totalreserve_pages = reserve_pages;
6751}
6752
1da177e4
LT
6753/*
6754 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6755 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6756 * has a correct pages reserved value, so an adequate number of
6757 * pages are left in the zone after a successful __alloc_pages().
6758 */
6759static void setup_per_zone_lowmem_reserve(void)
6760{
6761 struct pglist_data *pgdat;
2f6726e5 6762 enum zone_type j, idx;
1da177e4 6763
ec936fc5 6764 for_each_online_pgdat(pgdat) {
1da177e4
LT
6765 for (j = 0; j < MAX_NR_ZONES; j++) {
6766 struct zone *zone = pgdat->node_zones + j;
b40da049 6767 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6768
6769 zone->lowmem_reserve[j] = 0;
6770
2f6726e5
CL
6771 idx = j;
6772 while (idx) {
1da177e4
LT
6773 struct zone *lower_zone;
6774
2f6726e5
CL
6775 idx--;
6776
1da177e4
LT
6777 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6778 sysctl_lowmem_reserve_ratio[idx] = 1;
6779
6780 lower_zone = pgdat->node_zones + idx;
b40da049 6781 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6782 sysctl_lowmem_reserve_ratio[idx];
b40da049 6783 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6784 }
6785 }
6786 }
cb45b0e9
HA
6787
6788 /* update totalreserve_pages */
6789 calculate_totalreserve_pages();
1da177e4
LT
6790}
6791
cfd3da1e 6792static void __setup_per_zone_wmarks(void)
1da177e4
LT
6793{
6794 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6795 unsigned long lowmem_pages = 0;
6796 struct zone *zone;
6797 unsigned long flags;
6798
6799 /* Calculate total number of !ZONE_HIGHMEM pages */
6800 for_each_zone(zone) {
6801 if (!is_highmem(zone))
b40da049 6802 lowmem_pages += zone->managed_pages;
1da177e4
LT
6803 }
6804
6805 for_each_zone(zone) {
ac924c60
AM
6806 u64 tmp;
6807
1125b4e3 6808 spin_lock_irqsave(&zone->lock, flags);
b40da049 6809 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6810 do_div(tmp, lowmem_pages);
1da177e4
LT
6811 if (is_highmem(zone)) {
6812 /*
669ed175
NP
6813 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6814 * need highmem pages, so cap pages_min to a small
6815 * value here.
6816 *
41858966 6817 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6818 * deltas control asynch page reclaim, and so should
669ed175 6819 * not be capped for highmem.
1da177e4 6820 */
90ae8d67 6821 unsigned long min_pages;
1da177e4 6822
b40da049 6823 min_pages = zone->managed_pages / 1024;
90ae8d67 6824 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6825 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6826 } else {
669ed175
NP
6827 /*
6828 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6829 * proportionate to the zone's size.
6830 */
41858966 6831 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6832 }
6833
795ae7a0
JW
6834 /*
6835 * Set the kswapd watermarks distance according to the
6836 * scale factor in proportion to available memory, but
6837 * ensure a minimum size on small systems.
6838 */
6839 tmp = max_t(u64, tmp >> 2,
6840 mult_frac(zone->managed_pages,
6841 watermark_scale_factor, 10000));
6842
6843 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6844 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6845
81c0a2bb 6846 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6847 high_wmark_pages(zone) - low_wmark_pages(zone) -
6848 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6849
1125b4e3 6850 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6851 }
cb45b0e9
HA
6852
6853 /* update totalreserve_pages */
6854 calculate_totalreserve_pages();
1da177e4
LT
6855}
6856
cfd3da1e
MG
6857/**
6858 * setup_per_zone_wmarks - called when min_free_kbytes changes
6859 * or when memory is hot-{added|removed}
6860 *
6861 * Ensures that the watermark[min,low,high] values for each zone are set
6862 * correctly with respect to min_free_kbytes.
6863 */
6864void setup_per_zone_wmarks(void)
6865{
6866 mutex_lock(&zonelists_mutex);
6867 __setup_per_zone_wmarks();
6868 mutex_unlock(&zonelists_mutex);
6869}
6870
1da177e4
LT
6871/*
6872 * Initialise min_free_kbytes.
6873 *
6874 * For small machines we want it small (128k min). For large machines
6875 * we want it large (64MB max). But it is not linear, because network
6876 * bandwidth does not increase linearly with machine size. We use
6877 *
b8af2941 6878 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6879 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6880 *
6881 * which yields
6882 *
6883 * 16MB: 512k
6884 * 32MB: 724k
6885 * 64MB: 1024k
6886 * 128MB: 1448k
6887 * 256MB: 2048k
6888 * 512MB: 2896k
6889 * 1024MB: 4096k
6890 * 2048MB: 5792k
6891 * 4096MB: 8192k
6892 * 8192MB: 11584k
6893 * 16384MB: 16384k
6894 */
1b79acc9 6895int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6896{
6897 unsigned long lowmem_kbytes;
5f12733e 6898 int new_min_free_kbytes;
1da177e4
LT
6899
6900 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6901 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6902
6903 if (new_min_free_kbytes > user_min_free_kbytes) {
6904 min_free_kbytes = new_min_free_kbytes;
6905 if (min_free_kbytes < 128)
6906 min_free_kbytes = 128;
6907 if (min_free_kbytes > 65536)
6908 min_free_kbytes = 65536;
6909 } else {
6910 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6911 new_min_free_kbytes, user_min_free_kbytes);
6912 }
bc75d33f 6913 setup_per_zone_wmarks();
a6cccdc3 6914 refresh_zone_stat_thresholds();
1da177e4
LT
6915 setup_per_zone_lowmem_reserve();
6916 return 0;
6917}
bc22af74 6918core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6919
6920/*
b8af2941 6921 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6922 * that we can call two helper functions whenever min_free_kbytes
6923 * changes.
6924 */
cccad5b9 6925int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6926 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6927{
da8c757b
HP
6928 int rc;
6929
6930 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6931 if (rc)
6932 return rc;
6933
5f12733e
MH
6934 if (write) {
6935 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6936 setup_per_zone_wmarks();
5f12733e 6937 }
1da177e4
LT
6938 return 0;
6939}
6940
795ae7a0
JW
6941int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6942 void __user *buffer, size_t *length, loff_t *ppos)
6943{
6944 int rc;
6945
6946 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6947 if (rc)
6948 return rc;
6949
6950 if (write)
6951 setup_per_zone_wmarks();
6952
6953 return 0;
6954}
6955
9614634f 6956#ifdef CONFIG_NUMA
cccad5b9 6957int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6958 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6959{
6960 struct zone *zone;
6961 int rc;
6962
8d65af78 6963 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6964 if (rc)
6965 return rc;
6966
6967 for_each_zone(zone)
b40da049 6968 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6969 sysctl_min_unmapped_ratio) / 100;
6970 return 0;
6971}
0ff38490 6972
cccad5b9 6973int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6974 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6975{
6976 struct zone *zone;
6977 int rc;
6978
8d65af78 6979 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6980 if (rc)
6981 return rc;
6982
6983 for_each_zone(zone)
b40da049 6984 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6985 sysctl_min_slab_ratio) / 100;
6986 return 0;
6987}
9614634f
CL
6988#endif
6989
1da177e4
LT
6990/*
6991 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6992 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6993 * whenever sysctl_lowmem_reserve_ratio changes.
6994 *
6995 * The reserve ratio obviously has absolutely no relation with the
41858966 6996 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6997 * if in function of the boot time zone sizes.
6998 */
cccad5b9 6999int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7000 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7001{
8d65af78 7002 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7003 setup_per_zone_lowmem_reserve();
7004 return 0;
7005}
7006
8ad4b1fb
RS
7007/*
7008 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7009 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7010 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7011 */
cccad5b9 7012int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7013 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7014{
7015 struct zone *zone;
7cd2b0a3 7016 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7017 int ret;
7018
7cd2b0a3
DR
7019 mutex_lock(&pcp_batch_high_lock);
7020 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7021
8d65af78 7022 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7023 if (!write || ret < 0)
7024 goto out;
7025
7026 /* Sanity checking to avoid pcp imbalance */
7027 if (percpu_pagelist_fraction &&
7028 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7029 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7030 ret = -EINVAL;
7031 goto out;
7032 }
7033
7034 /* No change? */
7035 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7036 goto out;
c8e251fa 7037
364df0eb 7038 for_each_populated_zone(zone) {
7cd2b0a3
DR
7039 unsigned int cpu;
7040
22a7f12b 7041 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7042 pageset_set_high_and_batch(zone,
7043 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7044 }
7cd2b0a3 7045out:
c8e251fa 7046 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7047 return ret;
8ad4b1fb
RS
7048}
7049
a9919c79 7050#ifdef CONFIG_NUMA
f034b5d4 7051int hashdist = HASHDIST_DEFAULT;
1da177e4 7052
1da177e4
LT
7053static int __init set_hashdist(char *str)
7054{
7055 if (!str)
7056 return 0;
7057 hashdist = simple_strtoul(str, &str, 0);
7058 return 1;
7059}
7060__setup("hashdist=", set_hashdist);
7061#endif
7062
7063/*
7064 * allocate a large system hash table from bootmem
7065 * - it is assumed that the hash table must contain an exact power-of-2
7066 * quantity of entries
7067 * - limit is the number of hash buckets, not the total allocation size
7068 */
7069void *__init alloc_large_system_hash(const char *tablename,
7070 unsigned long bucketsize,
7071 unsigned long numentries,
7072 int scale,
7073 int flags,
7074 unsigned int *_hash_shift,
7075 unsigned int *_hash_mask,
31fe62b9
TB
7076 unsigned long low_limit,
7077 unsigned long high_limit)
1da177e4 7078{
31fe62b9 7079 unsigned long long max = high_limit;
1da177e4
LT
7080 unsigned long log2qty, size;
7081 void *table = NULL;
7082
7083 /* allow the kernel cmdline to have a say */
7084 if (!numentries) {
7085 /* round applicable memory size up to nearest megabyte */
04903664 7086 numentries = nr_kernel_pages;
a7e83318
JZ
7087
7088 /* It isn't necessary when PAGE_SIZE >= 1MB */
7089 if (PAGE_SHIFT < 20)
7090 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7091
7092 /* limit to 1 bucket per 2^scale bytes of low memory */
7093 if (scale > PAGE_SHIFT)
7094 numentries >>= (scale - PAGE_SHIFT);
7095 else
7096 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7097
7098 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7099 if (unlikely(flags & HASH_SMALL)) {
7100 /* Makes no sense without HASH_EARLY */
7101 WARN_ON(!(flags & HASH_EARLY));
7102 if (!(numentries >> *_hash_shift)) {
7103 numentries = 1UL << *_hash_shift;
7104 BUG_ON(!numentries);
7105 }
7106 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7107 numentries = PAGE_SIZE / bucketsize;
1da177e4 7108 }
6e692ed3 7109 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7110
7111 /* limit allocation size to 1/16 total memory by default */
7112 if (max == 0) {
7113 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7114 do_div(max, bucketsize);
7115 }
074b8517 7116 max = min(max, 0x80000000ULL);
1da177e4 7117
31fe62b9
TB
7118 if (numentries < low_limit)
7119 numentries = low_limit;
1da177e4
LT
7120 if (numentries > max)
7121 numentries = max;
7122
f0d1b0b3 7123 log2qty = ilog2(numentries);
1da177e4
LT
7124
7125 do {
7126 size = bucketsize << log2qty;
7127 if (flags & HASH_EARLY)
6782832e 7128 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7129 else if (hashdist)
7130 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7131 else {
1037b83b
ED
7132 /*
7133 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7134 * some pages at the end of hash table which
7135 * alloc_pages_exact() automatically does
1037b83b 7136 */
264ef8a9 7137 if (get_order(size) < MAX_ORDER) {
a1dd268c 7138 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7139 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7140 }
1da177e4
LT
7141 }
7142 } while (!table && size > PAGE_SIZE && --log2qty);
7143
7144 if (!table)
7145 panic("Failed to allocate %s hash table\n", tablename);
7146
1170532b
JP
7147 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7148 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7149
7150 if (_hash_shift)
7151 *_hash_shift = log2qty;
7152 if (_hash_mask)
7153 *_hash_mask = (1 << log2qty) - 1;
7154
7155 return table;
7156}
a117e66e 7157
a5d76b54 7158/*
80934513
MK
7159 * This function checks whether pageblock includes unmovable pages or not.
7160 * If @count is not zero, it is okay to include less @count unmovable pages
7161 *
b8af2941 7162 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7163 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7164 * expect this function should be exact.
a5d76b54 7165 */
b023f468
WC
7166bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7167 bool skip_hwpoisoned_pages)
49ac8255
KH
7168{
7169 unsigned long pfn, iter, found;
47118af0
MN
7170 int mt;
7171
49ac8255
KH
7172 /*
7173 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7174 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7175 */
7176 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7177 return false;
47118af0
MN
7178 mt = get_pageblock_migratetype(page);
7179 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7180 return false;
49ac8255
KH
7181
7182 pfn = page_to_pfn(page);
7183 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7184 unsigned long check = pfn + iter;
7185
29723fcc 7186 if (!pfn_valid_within(check))
49ac8255 7187 continue;
29723fcc 7188
49ac8255 7189 page = pfn_to_page(check);
c8721bbb
NH
7190
7191 /*
7192 * Hugepages are not in LRU lists, but they're movable.
7193 * We need not scan over tail pages bacause we don't
7194 * handle each tail page individually in migration.
7195 */
7196 if (PageHuge(page)) {
7197 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7198 continue;
7199 }
7200
97d255c8
MK
7201 /*
7202 * We can't use page_count without pin a page
7203 * because another CPU can free compound page.
7204 * This check already skips compound tails of THP
0139aa7b 7205 * because their page->_refcount is zero at all time.
97d255c8 7206 */
fe896d18 7207 if (!page_ref_count(page)) {
49ac8255
KH
7208 if (PageBuddy(page))
7209 iter += (1 << page_order(page)) - 1;
7210 continue;
7211 }
97d255c8 7212
b023f468
WC
7213 /*
7214 * The HWPoisoned page may be not in buddy system, and
7215 * page_count() is not 0.
7216 */
7217 if (skip_hwpoisoned_pages && PageHWPoison(page))
7218 continue;
7219
49ac8255
KH
7220 if (!PageLRU(page))
7221 found++;
7222 /*
6b4f7799
JW
7223 * If there are RECLAIMABLE pages, we need to check
7224 * it. But now, memory offline itself doesn't call
7225 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7226 */
7227 /*
7228 * If the page is not RAM, page_count()should be 0.
7229 * we don't need more check. This is an _used_ not-movable page.
7230 *
7231 * The problematic thing here is PG_reserved pages. PG_reserved
7232 * is set to both of a memory hole page and a _used_ kernel
7233 * page at boot.
7234 */
7235 if (found > count)
80934513 7236 return true;
49ac8255 7237 }
80934513 7238 return false;
49ac8255
KH
7239}
7240
7241bool is_pageblock_removable_nolock(struct page *page)
7242{
656a0706
MH
7243 struct zone *zone;
7244 unsigned long pfn;
687875fb
MH
7245
7246 /*
7247 * We have to be careful here because we are iterating over memory
7248 * sections which are not zone aware so we might end up outside of
7249 * the zone but still within the section.
656a0706
MH
7250 * We have to take care about the node as well. If the node is offline
7251 * its NODE_DATA will be NULL - see page_zone.
687875fb 7252 */
656a0706
MH
7253 if (!node_online(page_to_nid(page)))
7254 return false;
7255
7256 zone = page_zone(page);
7257 pfn = page_to_pfn(page);
108bcc96 7258 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7259 return false;
7260
b023f468 7261 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7262}
0c0e6195 7263
080fe206 7264#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7265
7266static unsigned long pfn_max_align_down(unsigned long pfn)
7267{
7268 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7269 pageblock_nr_pages) - 1);
7270}
7271
7272static unsigned long pfn_max_align_up(unsigned long pfn)
7273{
7274 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7275 pageblock_nr_pages));
7276}
7277
041d3a8c 7278/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7279static int __alloc_contig_migrate_range(struct compact_control *cc,
7280 unsigned long start, unsigned long end)
041d3a8c
MN
7281{
7282 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7283 unsigned long nr_reclaimed;
041d3a8c
MN
7284 unsigned long pfn = start;
7285 unsigned int tries = 0;
7286 int ret = 0;
7287
be49a6e1 7288 migrate_prep();
041d3a8c 7289
bb13ffeb 7290 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7291 if (fatal_signal_pending(current)) {
7292 ret = -EINTR;
7293 break;
7294 }
7295
bb13ffeb
MG
7296 if (list_empty(&cc->migratepages)) {
7297 cc->nr_migratepages = 0;
edc2ca61 7298 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7299 if (!pfn) {
7300 ret = -EINTR;
7301 break;
7302 }
7303 tries = 0;
7304 } else if (++tries == 5) {
7305 ret = ret < 0 ? ret : -EBUSY;
7306 break;
7307 }
7308
beb51eaa
MK
7309 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7310 &cc->migratepages);
7311 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7312
9c620e2b 7313 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7314 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7315 }
2a6f5124
SP
7316 if (ret < 0) {
7317 putback_movable_pages(&cc->migratepages);
7318 return ret;
7319 }
7320 return 0;
041d3a8c
MN
7321}
7322
7323/**
7324 * alloc_contig_range() -- tries to allocate given range of pages
7325 * @start: start PFN to allocate
7326 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7327 * @migratetype: migratetype of the underlaying pageblocks (either
7328 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7329 * in range must have the same migratetype and it must
7330 * be either of the two.
041d3a8c
MN
7331 *
7332 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7333 * aligned, however it's the caller's responsibility to guarantee that
7334 * we are the only thread that changes migrate type of pageblocks the
7335 * pages fall in.
7336 *
7337 * The PFN range must belong to a single zone.
7338 *
7339 * Returns zero on success or negative error code. On success all
7340 * pages which PFN is in [start, end) are allocated for the caller and
7341 * need to be freed with free_contig_range().
7342 */
0815f3d8
MN
7343int alloc_contig_range(unsigned long start, unsigned long end,
7344 unsigned migratetype)
041d3a8c 7345{
041d3a8c 7346 unsigned long outer_start, outer_end;
d00181b9
KS
7347 unsigned int order;
7348 int ret = 0;
041d3a8c 7349
bb13ffeb
MG
7350 struct compact_control cc = {
7351 .nr_migratepages = 0,
7352 .order = -1,
7353 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7354 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7355 .ignore_skip_hint = true,
7356 };
7357 INIT_LIST_HEAD(&cc.migratepages);
7358
041d3a8c
MN
7359 /*
7360 * What we do here is we mark all pageblocks in range as
7361 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7362 * have different sizes, and due to the way page allocator
7363 * work, we align the range to biggest of the two pages so
7364 * that page allocator won't try to merge buddies from
7365 * different pageblocks and change MIGRATE_ISOLATE to some
7366 * other migration type.
7367 *
7368 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7369 * migrate the pages from an unaligned range (ie. pages that
7370 * we are interested in). This will put all the pages in
7371 * range back to page allocator as MIGRATE_ISOLATE.
7372 *
7373 * When this is done, we take the pages in range from page
7374 * allocator removing them from the buddy system. This way
7375 * page allocator will never consider using them.
7376 *
7377 * This lets us mark the pageblocks back as
7378 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7379 * aligned range but not in the unaligned, original range are
7380 * put back to page allocator so that buddy can use them.
7381 */
7382
7383 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7384 pfn_max_align_up(end), migratetype,
7385 false);
041d3a8c 7386 if (ret)
86a595f9 7387 return ret;
041d3a8c 7388
8ef5849f
JK
7389 /*
7390 * In case of -EBUSY, we'd like to know which page causes problem.
7391 * So, just fall through. We will check it in test_pages_isolated().
7392 */
bb13ffeb 7393 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7394 if (ret && ret != -EBUSY)
041d3a8c
MN
7395 goto done;
7396
7397 /*
7398 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7399 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7400 * more, all pages in [start, end) are free in page allocator.
7401 * What we are going to do is to allocate all pages from
7402 * [start, end) (that is remove them from page allocator).
7403 *
7404 * The only problem is that pages at the beginning and at the
7405 * end of interesting range may be not aligned with pages that
7406 * page allocator holds, ie. they can be part of higher order
7407 * pages. Because of this, we reserve the bigger range and
7408 * once this is done free the pages we are not interested in.
7409 *
7410 * We don't have to hold zone->lock here because the pages are
7411 * isolated thus they won't get removed from buddy.
7412 */
7413
7414 lru_add_drain_all();
510f5507 7415 drain_all_pages(cc.zone);
041d3a8c
MN
7416
7417 order = 0;
7418 outer_start = start;
7419 while (!PageBuddy(pfn_to_page(outer_start))) {
7420 if (++order >= MAX_ORDER) {
8ef5849f
JK
7421 outer_start = start;
7422 break;
041d3a8c
MN
7423 }
7424 outer_start &= ~0UL << order;
7425 }
7426
8ef5849f
JK
7427 if (outer_start != start) {
7428 order = page_order(pfn_to_page(outer_start));
7429
7430 /*
7431 * outer_start page could be small order buddy page and
7432 * it doesn't include start page. Adjust outer_start
7433 * in this case to report failed page properly
7434 * on tracepoint in test_pages_isolated()
7435 */
7436 if (outer_start + (1UL << order) <= start)
7437 outer_start = start;
7438 }
7439
041d3a8c 7440 /* Make sure the range is really isolated. */
b023f468 7441 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7442 pr_info("%s: [%lx, %lx) PFNs busy\n",
7443 __func__, outer_start, end);
041d3a8c
MN
7444 ret = -EBUSY;
7445 goto done;
7446 }
7447
49f223a9 7448 /* Grab isolated pages from freelists. */
bb13ffeb 7449 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7450 if (!outer_end) {
7451 ret = -EBUSY;
7452 goto done;
7453 }
7454
7455 /* Free head and tail (if any) */
7456 if (start != outer_start)
7457 free_contig_range(outer_start, start - outer_start);
7458 if (end != outer_end)
7459 free_contig_range(end, outer_end - end);
7460
7461done:
7462 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7463 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7464 return ret;
7465}
7466
7467void free_contig_range(unsigned long pfn, unsigned nr_pages)
7468{
bcc2b02f
MS
7469 unsigned int count = 0;
7470
7471 for (; nr_pages--; pfn++) {
7472 struct page *page = pfn_to_page(pfn);
7473
7474 count += page_count(page) != 1;
7475 __free_page(page);
7476 }
7477 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7478}
7479#endif
7480
4ed7e022 7481#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7482/*
7483 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7484 * page high values need to be recalulated.
7485 */
4ed7e022
JL
7486void __meminit zone_pcp_update(struct zone *zone)
7487{
0a647f38 7488 unsigned cpu;
c8e251fa 7489 mutex_lock(&pcp_batch_high_lock);
0a647f38 7490 for_each_possible_cpu(cpu)
169f6c19
CS
7491 pageset_set_high_and_batch(zone,
7492 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7493 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7494}
7495#endif
7496
340175b7
JL
7497void zone_pcp_reset(struct zone *zone)
7498{
7499 unsigned long flags;
5a883813
MK
7500 int cpu;
7501 struct per_cpu_pageset *pset;
340175b7
JL
7502
7503 /* avoid races with drain_pages() */
7504 local_irq_save(flags);
7505 if (zone->pageset != &boot_pageset) {
5a883813
MK
7506 for_each_online_cpu(cpu) {
7507 pset = per_cpu_ptr(zone->pageset, cpu);
7508 drain_zonestat(zone, pset);
7509 }
340175b7
JL
7510 free_percpu(zone->pageset);
7511 zone->pageset = &boot_pageset;
7512 }
7513 local_irq_restore(flags);
7514}
7515
6dcd73d7 7516#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7517/*
b9eb6319
JK
7518 * All pages in the range must be in a single zone and isolated
7519 * before calling this.
0c0e6195
KH
7520 */
7521void
7522__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7523{
7524 struct page *page;
7525 struct zone *zone;
7aeb09f9 7526 unsigned int order, i;
0c0e6195
KH
7527 unsigned long pfn;
7528 unsigned long flags;
7529 /* find the first valid pfn */
7530 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7531 if (pfn_valid(pfn))
7532 break;
7533 if (pfn == end_pfn)
7534 return;
7535 zone = page_zone(pfn_to_page(pfn));
7536 spin_lock_irqsave(&zone->lock, flags);
7537 pfn = start_pfn;
7538 while (pfn < end_pfn) {
7539 if (!pfn_valid(pfn)) {
7540 pfn++;
7541 continue;
7542 }
7543 page = pfn_to_page(pfn);
b023f468
WC
7544 /*
7545 * The HWPoisoned page may be not in buddy system, and
7546 * page_count() is not 0.
7547 */
7548 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7549 pfn++;
7550 SetPageReserved(page);
7551 continue;
7552 }
7553
0c0e6195
KH
7554 BUG_ON(page_count(page));
7555 BUG_ON(!PageBuddy(page));
7556 order = page_order(page);
7557#ifdef CONFIG_DEBUG_VM
1170532b
JP
7558 pr_info("remove from free list %lx %d %lx\n",
7559 pfn, 1 << order, end_pfn);
0c0e6195
KH
7560#endif
7561 list_del(&page->lru);
7562 rmv_page_order(page);
7563 zone->free_area[order].nr_free--;
0c0e6195
KH
7564 for (i = 0; i < (1 << order); i++)
7565 SetPageReserved((page+i));
7566 pfn += (1 << order);
7567 }
7568 spin_unlock_irqrestore(&zone->lock, flags);
7569}
7570#endif
8d22ba1b 7571
8d22ba1b
WF
7572bool is_free_buddy_page(struct page *page)
7573{
7574 struct zone *zone = page_zone(page);
7575 unsigned long pfn = page_to_pfn(page);
7576 unsigned long flags;
7aeb09f9 7577 unsigned int order;
8d22ba1b
WF
7578
7579 spin_lock_irqsave(&zone->lock, flags);
7580 for (order = 0; order < MAX_ORDER; order++) {
7581 struct page *page_head = page - (pfn & ((1 << order) - 1));
7582
7583 if (PageBuddy(page_head) && page_order(page_head) >= order)
7584 break;
7585 }
7586 spin_unlock_irqrestore(&zone->lock, flags);
7587
7588 return order < MAX_ORDER;
7589}
This page took 1.865022 seconds and 5 git commands to generate.