mm/page_alloc: insert memory barriers to allow async update of pcp batch and high
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
1da177e4
LT
63
64#include <asm/tlbflush.h>
ac924c60 65#include <asm/div64.h>
1da177e4
LT
66#include "internal.h"
67
c8e251fa
CS
68/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69static DEFINE_MUTEX(pcp_batch_high_lock);
70
72812019
LS
71#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
72DEFINE_PER_CPU(int, numa_node);
73EXPORT_PER_CPU_SYMBOL(numa_node);
74#endif
75
7aac7898
LS
76#ifdef CONFIG_HAVE_MEMORYLESS_NODES
77/*
78 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
79 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
80 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
81 * defined in <linux/topology.h>.
82 */
83DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
84EXPORT_PER_CPU_SYMBOL(_numa_mem_);
85#endif
86
1da177e4 87/*
13808910 88 * Array of node states.
1da177e4 89 */
13808910
CL
90nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
91 [N_POSSIBLE] = NODE_MASK_ALL,
92 [N_ONLINE] = { { [0] = 1UL } },
93#ifndef CONFIG_NUMA
94 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
95#ifdef CONFIG_HIGHMEM
96 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
97#endif
98#ifdef CONFIG_MOVABLE_NODE
99 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
100#endif
101 [N_CPU] = { { [0] = 1UL } },
102#endif /* NUMA */
103};
104EXPORT_SYMBOL(node_states);
105
6c231b7b 106unsigned long totalram_pages __read_mostly;
cb45b0e9 107unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
108/*
109 * When calculating the number of globally allowed dirty pages, there
110 * is a certain number of per-zone reserves that should not be
111 * considered dirtyable memory. This is the sum of those reserves
112 * over all existing zones that contribute dirtyable memory.
113 */
114unsigned long dirty_balance_reserve __read_mostly;
115
1b76b02f 116int percpu_pagelist_fraction;
dcce284a 117gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 118
452aa699
RW
119#ifdef CONFIG_PM_SLEEP
120/*
121 * The following functions are used by the suspend/hibernate code to temporarily
122 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
123 * while devices are suspended. To avoid races with the suspend/hibernate code,
124 * they should always be called with pm_mutex held (gfp_allowed_mask also should
125 * only be modified with pm_mutex held, unless the suspend/hibernate code is
126 * guaranteed not to run in parallel with that modification).
127 */
c9e664f1
RW
128
129static gfp_t saved_gfp_mask;
130
131void pm_restore_gfp_mask(void)
452aa699
RW
132{
133 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
134 if (saved_gfp_mask) {
135 gfp_allowed_mask = saved_gfp_mask;
136 saved_gfp_mask = 0;
137 }
452aa699
RW
138}
139
c9e664f1 140void pm_restrict_gfp_mask(void)
452aa699 141{
452aa699 142 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
143 WARN_ON(saved_gfp_mask);
144 saved_gfp_mask = gfp_allowed_mask;
145 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 146}
f90ac398
MG
147
148bool pm_suspended_storage(void)
149{
150 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
151 return false;
152 return true;
153}
452aa699
RW
154#endif /* CONFIG_PM_SLEEP */
155
d9c23400
MG
156#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
157int pageblock_order __read_mostly;
158#endif
159
d98c7a09 160static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 161
1da177e4
LT
162/*
163 * results with 256, 32 in the lowmem_reserve sysctl:
164 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
165 * 1G machine -> (16M dma, 784M normal, 224M high)
166 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
167 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
168 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
169 *
170 * TBD: should special case ZONE_DMA32 machines here - in those we normally
171 * don't need any ZONE_NORMAL reservation
1da177e4 172 */
2f1b6248 173int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 174#ifdef CONFIG_ZONE_DMA
2f1b6248 175 256,
4b51d669 176#endif
fb0e7942 177#ifdef CONFIG_ZONE_DMA32
2f1b6248 178 256,
fb0e7942 179#endif
e53ef38d 180#ifdef CONFIG_HIGHMEM
2a1e274a 181 32,
e53ef38d 182#endif
2a1e274a 183 32,
2f1b6248 184};
1da177e4
LT
185
186EXPORT_SYMBOL(totalram_pages);
1da177e4 187
15ad7cdc 188static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 189#ifdef CONFIG_ZONE_DMA
2f1b6248 190 "DMA",
4b51d669 191#endif
fb0e7942 192#ifdef CONFIG_ZONE_DMA32
2f1b6248 193 "DMA32",
fb0e7942 194#endif
2f1b6248 195 "Normal",
e53ef38d 196#ifdef CONFIG_HIGHMEM
2a1e274a 197 "HighMem",
e53ef38d 198#endif
2a1e274a 199 "Movable",
2f1b6248
CL
200};
201
1da177e4
LT
202int min_free_kbytes = 1024;
203
2c85f51d
JB
204static unsigned long __meminitdata nr_kernel_pages;
205static unsigned long __meminitdata nr_all_pages;
a3142c8e 206static unsigned long __meminitdata dma_reserve;
1da177e4 207
0ee332c1
TH
208#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
209static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
210static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
211static unsigned long __initdata required_kernelcore;
212static unsigned long __initdata required_movablecore;
213static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
214
215/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
216int movable_zone;
217EXPORT_SYMBOL(movable_zone);
218#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 219
418508c1
MS
220#if MAX_NUMNODES > 1
221int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 222int nr_online_nodes __read_mostly = 1;
418508c1 223EXPORT_SYMBOL(nr_node_ids);
62bc62a8 224EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
225#endif
226
9ef9acb0
MG
227int page_group_by_mobility_disabled __read_mostly;
228
ee6f509c 229void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 230{
49255c61
MG
231
232 if (unlikely(page_group_by_mobility_disabled))
233 migratetype = MIGRATE_UNMOVABLE;
234
b2a0ac88
MG
235 set_pageblock_flags_group(page, (unsigned long)migratetype,
236 PB_migrate, PB_migrate_end);
237}
238
7f33d49a
RW
239bool oom_killer_disabled __read_mostly;
240
13e7444b 241#ifdef CONFIG_DEBUG_VM
c6a57e19 242static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 243{
bdc8cb98
DH
244 int ret = 0;
245 unsigned seq;
246 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 247 unsigned long sp, start_pfn;
c6a57e19 248
bdc8cb98
DH
249 do {
250 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
251 start_pfn = zone->zone_start_pfn;
252 sp = zone->spanned_pages;
108bcc96 253 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
254 ret = 1;
255 } while (zone_span_seqretry(zone, seq));
256
b5e6a5a2
CS
257 if (ret)
258 pr_err("page %lu outside zone [ %lu - %lu ]\n",
259 pfn, start_pfn, start_pfn + sp);
260
bdc8cb98 261 return ret;
c6a57e19
DH
262}
263
264static int page_is_consistent(struct zone *zone, struct page *page)
265{
14e07298 266 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 267 return 0;
1da177e4 268 if (zone != page_zone(page))
c6a57e19
DH
269 return 0;
270
271 return 1;
272}
273/*
274 * Temporary debugging check for pages not lying within a given zone.
275 */
276static int bad_range(struct zone *zone, struct page *page)
277{
278 if (page_outside_zone_boundaries(zone, page))
1da177e4 279 return 1;
c6a57e19
DH
280 if (!page_is_consistent(zone, page))
281 return 1;
282
1da177e4
LT
283 return 0;
284}
13e7444b
NP
285#else
286static inline int bad_range(struct zone *zone, struct page *page)
287{
288 return 0;
289}
290#endif
291
224abf92 292static void bad_page(struct page *page)
1da177e4 293{
d936cf9b
HD
294 static unsigned long resume;
295 static unsigned long nr_shown;
296 static unsigned long nr_unshown;
297
2a7684a2
WF
298 /* Don't complain about poisoned pages */
299 if (PageHWPoison(page)) {
22b751c3 300 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
301 return;
302 }
303
d936cf9b
HD
304 /*
305 * Allow a burst of 60 reports, then keep quiet for that minute;
306 * or allow a steady drip of one report per second.
307 */
308 if (nr_shown == 60) {
309 if (time_before(jiffies, resume)) {
310 nr_unshown++;
311 goto out;
312 }
313 if (nr_unshown) {
1e9e6365
HD
314 printk(KERN_ALERT
315 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
316 nr_unshown);
317 nr_unshown = 0;
318 }
319 nr_shown = 0;
320 }
321 if (nr_shown++ == 0)
322 resume = jiffies + 60 * HZ;
323
1e9e6365 324 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 325 current->comm, page_to_pfn(page));
718a3821 326 dump_page(page);
3dc14741 327
4f31888c 328 print_modules();
1da177e4 329 dump_stack();
d936cf9b 330out:
8cc3b392 331 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 332 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 333 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
334}
335
1da177e4
LT
336/*
337 * Higher-order pages are called "compound pages". They are structured thusly:
338 *
339 * The first PAGE_SIZE page is called the "head page".
340 *
341 * The remaining PAGE_SIZE pages are called "tail pages".
342 *
6416b9fa
WSH
343 * All pages have PG_compound set. All tail pages have their ->first_page
344 * pointing at the head page.
1da177e4 345 *
41d78ba5
HD
346 * The first tail page's ->lru.next holds the address of the compound page's
347 * put_page() function. Its ->lru.prev holds the order of allocation.
348 * This usage means that zero-order pages may not be compound.
1da177e4 349 */
d98c7a09
HD
350
351static void free_compound_page(struct page *page)
352{
d85f3385 353 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
354}
355
01ad1c08 356void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
357{
358 int i;
359 int nr_pages = 1 << order;
360
361 set_compound_page_dtor(page, free_compound_page);
362 set_compound_order(page, order);
363 __SetPageHead(page);
364 for (i = 1; i < nr_pages; i++) {
365 struct page *p = page + i;
18229df5 366 __SetPageTail(p);
58a84aa9 367 set_page_count(p, 0);
18229df5
AW
368 p->first_page = page;
369 }
370}
371
59ff4216 372/* update __split_huge_page_refcount if you change this function */
8cc3b392 373static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
374{
375 int i;
376 int nr_pages = 1 << order;
8cc3b392 377 int bad = 0;
1da177e4 378
0bb2c763 379 if (unlikely(compound_order(page) != order)) {
224abf92 380 bad_page(page);
8cc3b392
HD
381 bad++;
382 }
1da177e4 383
6d777953 384 __ClearPageHead(page);
8cc3b392 385
18229df5
AW
386 for (i = 1; i < nr_pages; i++) {
387 struct page *p = page + i;
1da177e4 388
e713a21d 389 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 390 bad_page(page);
8cc3b392
HD
391 bad++;
392 }
d85f3385 393 __ClearPageTail(p);
1da177e4 394 }
8cc3b392
HD
395
396 return bad;
1da177e4 397}
1da177e4 398
17cf4406
NP
399static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
400{
401 int i;
402
6626c5d5
AM
403 /*
404 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
405 * and __GFP_HIGHMEM from hard or soft interrupt context.
406 */
725d704e 407 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
408 for (i = 0; i < (1 << order); i++)
409 clear_highpage(page + i);
410}
411
c0a32fc5
SG
412#ifdef CONFIG_DEBUG_PAGEALLOC
413unsigned int _debug_guardpage_minorder;
414
415static int __init debug_guardpage_minorder_setup(char *buf)
416{
417 unsigned long res;
418
419 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
420 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
421 return 0;
422 }
423 _debug_guardpage_minorder = res;
424 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
425 return 0;
426}
427__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
428
429static inline void set_page_guard_flag(struct page *page)
430{
431 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432}
433
434static inline void clear_page_guard_flag(struct page *page)
435{
436 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437}
438#else
439static inline void set_page_guard_flag(struct page *page) { }
440static inline void clear_page_guard_flag(struct page *page) { }
441#endif
442
6aa3001b
AM
443static inline void set_page_order(struct page *page, int order)
444{
4c21e2f2 445 set_page_private(page, order);
676165a8 446 __SetPageBuddy(page);
1da177e4
LT
447}
448
449static inline void rmv_page_order(struct page *page)
450{
676165a8 451 __ClearPageBuddy(page);
4c21e2f2 452 set_page_private(page, 0);
1da177e4
LT
453}
454
455/*
456 * Locate the struct page for both the matching buddy in our
457 * pair (buddy1) and the combined O(n+1) page they form (page).
458 *
459 * 1) Any buddy B1 will have an order O twin B2 which satisfies
460 * the following equation:
461 * B2 = B1 ^ (1 << O)
462 * For example, if the starting buddy (buddy2) is #8 its order
463 * 1 buddy is #10:
464 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
465 *
466 * 2) Any buddy B will have an order O+1 parent P which
467 * satisfies the following equation:
468 * P = B & ~(1 << O)
469 *
d6e05edc 470 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 471 */
1da177e4 472static inline unsigned long
43506fad 473__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 474{
43506fad 475 return page_idx ^ (1 << order);
1da177e4
LT
476}
477
478/*
479 * This function checks whether a page is free && is the buddy
480 * we can do coalesce a page and its buddy if
13e7444b 481 * (a) the buddy is not in a hole &&
676165a8 482 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
483 * (c) a page and its buddy have the same order &&
484 * (d) a page and its buddy are in the same zone.
676165a8 485 *
5f24ce5f
AA
486 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
487 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 488 *
676165a8 489 * For recording page's order, we use page_private(page).
1da177e4 490 */
cb2b95e1
AW
491static inline int page_is_buddy(struct page *page, struct page *buddy,
492 int order)
1da177e4 493{
14e07298 494 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 495 return 0;
13e7444b 496
cb2b95e1
AW
497 if (page_zone_id(page) != page_zone_id(buddy))
498 return 0;
499
c0a32fc5
SG
500 if (page_is_guard(buddy) && page_order(buddy) == order) {
501 VM_BUG_ON(page_count(buddy) != 0);
502 return 1;
503 }
504
cb2b95e1 505 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 506 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 507 return 1;
676165a8 508 }
6aa3001b 509 return 0;
1da177e4
LT
510}
511
512/*
513 * Freeing function for a buddy system allocator.
514 *
515 * The concept of a buddy system is to maintain direct-mapped table
516 * (containing bit values) for memory blocks of various "orders".
517 * The bottom level table contains the map for the smallest allocatable
518 * units of memory (here, pages), and each level above it describes
519 * pairs of units from the levels below, hence, "buddies".
520 * At a high level, all that happens here is marking the table entry
521 * at the bottom level available, and propagating the changes upward
522 * as necessary, plus some accounting needed to play nicely with other
523 * parts of the VM system.
524 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 525 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 526 * order is recorded in page_private(page) field.
1da177e4 527 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
528 * other. That is, if we allocate a small block, and both were
529 * free, the remainder of the region must be split into blocks.
1da177e4 530 * If a block is freed, and its buddy is also free, then this
5f63b720 531 * triggers coalescing into a block of larger size.
1da177e4 532 *
6d49e352 533 * -- nyc
1da177e4
LT
534 */
535
48db57f8 536static inline void __free_one_page(struct page *page,
ed0ae21d
MG
537 struct zone *zone, unsigned int order,
538 int migratetype)
1da177e4
LT
539{
540 unsigned long page_idx;
6dda9d55 541 unsigned long combined_idx;
43506fad 542 unsigned long uninitialized_var(buddy_idx);
6dda9d55 543 struct page *buddy;
1da177e4 544
d29bb978
CS
545 VM_BUG_ON(!zone_is_initialized(zone));
546
224abf92 547 if (unlikely(PageCompound(page)))
8cc3b392
HD
548 if (unlikely(destroy_compound_page(page, order)))
549 return;
1da177e4 550
ed0ae21d
MG
551 VM_BUG_ON(migratetype == -1);
552
1da177e4
LT
553 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
554
f2260e6b 555 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 556 VM_BUG_ON(bad_range(zone, page));
1da177e4 557
1da177e4 558 while (order < MAX_ORDER-1) {
43506fad
KC
559 buddy_idx = __find_buddy_index(page_idx, order);
560 buddy = page + (buddy_idx - page_idx);
cb2b95e1 561 if (!page_is_buddy(page, buddy, order))
3c82d0ce 562 break;
c0a32fc5
SG
563 /*
564 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
565 * merge with it and move up one order.
566 */
567 if (page_is_guard(buddy)) {
568 clear_page_guard_flag(buddy);
569 set_page_private(page, 0);
d1ce749a
BZ
570 __mod_zone_freepage_state(zone, 1 << order,
571 migratetype);
c0a32fc5
SG
572 } else {
573 list_del(&buddy->lru);
574 zone->free_area[order].nr_free--;
575 rmv_page_order(buddy);
576 }
43506fad 577 combined_idx = buddy_idx & page_idx;
1da177e4
LT
578 page = page + (combined_idx - page_idx);
579 page_idx = combined_idx;
580 order++;
581 }
582 set_page_order(page, order);
6dda9d55
CZ
583
584 /*
585 * If this is not the largest possible page, check if the buddy
586 * of the next-highest order is free. If it is, it's possible
587 * that pages are being freed that will coalesce soon. In case,
588 * that is happening, add the free page to the tail of the list
589 * so it's less likely to be used soon and more likely to be merged
590 * as a higher order page
591 */
b7f50cfa 592 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 593 struct page *higher_page, *higher_buddy;
43506fad
KC
594 combined_idx = buddy_idx & page_idx;
595 higher_page = page + (combined_idx - page_idx);
596 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 597 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
598 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
599 list_add_tail(&page->lru,
600 &zone->free_area[order].free_list[migratetype]);
601 goto out;
602 }
603 }
604
605 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
606out:
1da177e4
LT
607 zone->free_area[order].nr_free++;
608}
609
224abf92 610static inline int free_pages_check(struct page *page)
1da177e4 611{
92be2e33
NP
612 if (unlikely(page_mapcount(page) |
613 (page->mapping != NULL) |
a3af9c38 614 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
615 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
616 (mem_cgroup_bad_page_check(page)))) {
224abf92 617 bad_page(page);
79f4b7bf 618 return 1;
8cc3b392 619 }
22b751c3 620 page_nid_reset_last(page);
79f4b7bf
HD
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
1da177e4
LT
624}
625
626/*
5f8dcc21 627 * Frees a number of pages from the PCP lists
1da177e4 628 * Assumes all pages on list are in same zone, and of same order.
207f36ee 629 * count is the number of pages to free.
1da177e4
LT
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
5f8dcc21
MG
637static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
1da177e4 639{
5f8dcc21 640 int migratetype = 0;
a6f9edd6 641 int batch_free = 0;
72853e29 642 int to_free = count;
5f8dcc21 643
c54ad30c 644 spin_lock(&zone->lock);
93e4a89a 645 zone->all_unreclaimable = 0;
1da177e4 646 zone->pages_scanned = 0;
f2260e6b 647
72853e29 648 while (to_free) {
48db57f8 649 struct page *page;
5f8dcc21
MG
650 struct list_head *list;
651
652 /*
a6f9edd6
MG
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
5f8dcc21
MG
658 */
659 do {
a6f9edd6 660 batch_free++;
5f8dcc21
MG
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
48db57f8 665
1d16871d
NK
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
a6f9edd6 670 do {
770c8aaa
BZ
671 int mt; /* migratetype of the to-be-freed page */
672
a6f9edd6
MG
673 page = list_entry(list->prev, struct page, lru);
674 /* must delete as __free_one_page list manipulates */
675 list_del(&page->lru);
b12c4ad1 676 mt = get_freepage_migratetype(page);
a7016235 677 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
678 __free_one_page(page, zone, 0, mt);
679 trace_mm_page_pcpu_drain(page, 0, mt);
194159fb 680 if (likely(!is_migrate_isolate_page(page))) {
97d0da22
WC
681 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
682 if (is_migrate_cma(mt))
683 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
684 }
72853e29 685 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 686 }
c54ad30c 687 spin_unlock(&zone->lock);
1da177e4
LT
688}
689
ed0ae21d
MG
690static void free_one_page(struct zone *zone, struct page *page, int order,
691 int migratetype)
1da177e4 692{
006d22d9 693 spin_lock(&zone->lock);
93e4a89a 694 zone->all_unreclaimable = 0;
006d22d9 695 zone->pages_scanned = 0;
f2260e6b 696
ed0ae21d 697 __free_one_page(page, zone, order, migratetype);
194159fb 698 if (unlikely(!is_migrate_isolate(migratetype)))
d1ce749a 699 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 700 spin_unlock(&zone->lock);
48db57f8
NP
701}
702
ec95f53a 703static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 704{
1da177e4 705 int i;
8cc3b392 706 int bad = 0;
1da177e4 707
b413d48a 708 trace_mm_page_free(page, order);
b1eeab67
VN
709 kmemcheck_free_shadow(page, order);
710
8dd60a3a
AA
711 if (PageAnon(page))
712 page->mapping = NULL;
713 for (i = 0; i < (1 << order); i++)
714 bad += free_pages_check(page + i);
8cc3b392 715 if (bad)
ec95f53a 716 return false;
689bcebf 717
3ac7fe5a 718 if (!PageHighMem(page)) {
9858db50 719 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
720 debug_check_no_obj_freed(page_address(page),
721 PAGE_SIZE << order);
722 }
dafb1367 723 arch_free_page(page, order);
48db57f8 724 kernel_map_pages(page, 1 << order, 0);
dafb1367 725
ec95f53a
KM
726 return true;
727}
728
729static void __free_pages_ok(struct page *page, unsigned int order)
730{
731 unsigned long flags;
95e34412 732 int migratetype;
ec95f53a
KM
733
734 if (!free_pages_prepare(page, order))
735 return;
736
c54ad30c 737 local_irq_save(flags);
f8891e5e 738 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
739 migratetype = get_pageblock_migratetype(page);
740 set_freepage_migratetype(page, migratetype);
741 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 742 local_irq_restore(flags);
1da177e4
LT
743}
744
9feedc9d
JL
745/*
746 * Read access to zone->managed_pages is safe because it's unsigned long,
747 * but we still need to serialize writers. Currently all callers of
748 * __free_pages_bootmem() except put_page_bootmem() should only be used
749 * at boot time. So for shorter boot time, we shift the burden to
750 * put_page_bootmem() to serialize writers.
751 */
af370fb8 752void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 753{
c3993076
JW
754 unsigned int nr_pages = 1 << order;
755 unsigned int loop;
a226f6c8 756
c3993076
JW
757 prefetchw(page);
758 for (loop = 0; loop < nr_pages; loop++) {
759 struct page *p = &page[loop];
760
761 if (loop + 1 < nr_pages)
762 prefetchw(p + 1);
763 __ClearPageReserved(p);
764 set_page_count(p, 0);
a226f6c8 765 }
c3993076 766
9feedc9d 767 page_zone(page)->managed_pages += 1 << order;
c3993076
JW
768 set_page_refcounted(page);
769 __free_pages(page, order);
a226f6c8
DH
770}
771
47118af0
MN
772#ifdef CONFIG_CMA
773/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
774void __init init_cma_reserved_pageblock(struct page *page)
775{
776 unsigned i = pageblock_nr_pages;
777 struct page *p = page;
778
779 do {
780 __ClearPageReserved(p);
781 set_page_count(p, 0);
782 } while (++p, --i);
783
784 set_page_refcounted(page);
785 set_pageblock_migratetype(page, MIGRATE_CMA);
786 __free_pages(page, pageblock_order);
787 totalram_pages += pageblock_nr_pages;
41a79734
MS
788#ifdef CONFIG_HIGHMEM
789 if (PageHighMem(page))
790 totalhigh_pages += pageblock_nr_pages;
791#endif
47118af0
MN
792}
793#endif
1da177e4
LT
794
795/*
796 * The order of subdivision here is critical for the IO subsystem.
797 * Please do not alter this order without good reasons and regression
798 * testing. Specifically, as large blocks of memory are subdivided,
799 * the order in which smaller blocks are delivered depends on the order
800 * they're subdivided in this function. This is the primary factor
801 * influencing the order in which pages are delivered to the IO
802 * subsystem according to empirical testing, and this is also justified
803 * by considering the behavior of a buddy system containing a single
804 * large block of memory acted on by a series of small allocations.
805 * This behavior is a critical factor in sglist merging's success.
806 *
6d49e352 807 * -- nyc
1da177e4 808 */
085cc7d5 809static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
810 int low, int high, struct free_area *area,
811 int migratetype)
1da177e4
LT
812{
813 unsigned long size = 1 << high;
814
815 while (high > low) {
816 area--;
817 high--;
818 size >>= 1;
725d704e 819 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
820
821#ifdef CONFIG_DEBUG_PAGEALLOC
822 if (high < debug_guardpage_minorder()) {
823 /*
824 * Mark as guard pages (or page), that will allow to
825 * merge back to allocator when buddy will be freed.
826 * Corresponding page table entries will not be touched,
827 * pages will stay not present in virtual address space
828 */
829 INIT_LIST_HEAD(&page[size].lru);
830 set_page_guard_flag(&page[size]);
831 set_page_private(&page[size], high);
832 /* Guard pages are not available for any usage */
d1ce749a
BZ
833 __mod_zone_freepage_state(zone, -(1 << high),
834 migratetype);
c0a32fc5
SG
835 continue;
836 }
837#endif
b2a0ac88 838 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
839 area->nr_free++;
840 set_page_order(&page[size], high);
841 }
1da177e4
LT
842}
843
1da177e4
LT
844/*
845 * This page is about to be returned from the page allocator
846 */
2a7684a2 847static inline int check_new_page(struct page *page)
1da177e4 848{
92be2e33
NP
849 if (unlikely(page_mapcount(page) |
850 (page->mapping != NULL) |
a3af9c38 851 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
852 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
853 (mem_cgroup_bad_page_check(page)))) {
224abf92 854 bad_page(page);
689bcebf 855 return 1;
8cc3b392 856 }
2a7684a2
WF
857 return 0;
858}
859
860static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
861{
862 int i;
863
864 for (i = 0; i < (1 << order); i++) {
865 struct page *p = page + i;
866 if (unlikely(check_new_page(p)))
867 return 1;
868 }
689bcebf 869
4c21e2f2 870 set_page_private(page, 0);
7835e98b 871 set_page_refcounted(page);
cc102509
NP
872
873 arch_alloc_page(page, order);
1da177e4 874 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
875
876 if (gfp_flags & __GFP_ZERO)
877 prep_zero_page(page, order, gfp_flags);
878
879 if (order && (gfp_flags & __GFP_COMP))
880 prep_compound_page(page, order);
881
689bcebf 882 return 0;
1da177e4
LT
883}
884
56fd56b8
MG
885/*
886 * Go through the free lists for the given migratetype and remove
887 * the smallest available page from the freelists
888 */
728ec980
MG
889static inline
890struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
891 int migratetype)
892{
893 unsigned int current_order;
894 struct free_area * area;
895 struct page *page;
896
897 /* Find a page of the appropriate size in the preferred list */
898 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
899 area = &(zone->free_area[current_order]);
900 if (list_empty(&area->free_list[migratetype]))
901 continue;
902
903 page = list_entry(area->free_list[migratetype].next,
904 struct page, lru);
905 list_del(&page->lru);
906 rmv_page_order(page);
907 area->nr_free--;
56fd56b8
MG
908 expand(zone, page, order, current_order, area, migratetype);
909 return page;
910 }
911
912 return NULL;
913}
914
915
b2a0ac88
MG
916/*
917 * This array describes the order lists are fallen back to when
918 * the free lists for the desirable migrate type are depleted
919 */
47118af0
MN
920static int fallbacks[MIGRATE_TYPES][4] = {
921 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
923#ifdef CONFIG_CMA
924 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
926#else
927 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
928#endif
6d4a4916 929 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 930#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 931 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 932#endif
b2a0ac88
MG
933};
934
c361be55
MG
935/*
936 * Move the free pages in a range to the free lists of the requested type.
d9c23400 937 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
938 * boundary. If alignment is required, use move_freepages_block()
939 */
435b405c 940int move_freepages(struct zone *zone,
b69a7288
AB
941 struct page *start_page, struct page *end_page,
942 int migratetype)
c361be55
MG
943{
944 struct page *page;
945 unsigned long order;
d100313f 946 int pages_moved = 0;
c361be55
MG
947
948#ifndef CONFIG_HOLES_IN_ZONE
949 /*
950 * page_zone is not safe to call in this context when
951 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
952 * anyway as we check zone boundaries in move_freepages_block().
953 * Remove at a later date when no bug reports exist related to
ac0e5b7a 954 * grouping pages by mobility
c361be55
MG
955 */
956 BUG_ON(page_zone(start_page) != page_zone(end_page));
957#endif
958
959 for (page = start_page; page <= end_page;) {
344c790e
AL
960 /* Make sure we are not inadvertently changing nodes */
961 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
962
c361be55
MG
963 if (!pfn_valid_within(page_to_pfn(page))) {
964 page++;
965 continue;
966 }
967
968 if (!PageBuddy(page)) {
969 page++;
970 continue;
971 }
972
973 order = page_order(page);
84be48d8
KS
974 list_move(&page->lru,
975 &zone->free_area[order].free_list[migratetype]);
95e34412 976 set_freepage_migratetype(page, migratetype);
c361be55 977 page += 1 << order;
d100313f 978 pages_moved += 1 << order;
c361be55
MG
979 }
980
d100313f 981 return pages_moved;
c361be55
MG
982}
983
ee6f509c 984int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 985 int migratetype)
c361be55
MG
986{
987 unsigned long start_pfn, end_pfn;
988 struct page *start_page, *end_page;
989
990 start_pfn = page_to_pfn(page);
d9c23400 991 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 992 start_page = pfn_to_page(start_pfn);
d9c23400
MG
993 end_page = start_page + pageblock_nr_pages - 1;
994 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
995
996 /* Do not cross zone boundaries */
108bcc96 997 if (!zone_spans_pfn(zone, start_pfn))
c361be55 998 start_page = page;
108bcc96 999 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1000 return 0;
1001
1002 return move_freepages(zone, start_page, end_page, migratetype);
1003}
1004
2f66a68f
MG
1005static void change_pageblock_range(struct page *pageblock_page,
1006 int start_order, int migratetype)
1007{
1008 int nr_pageblocks = 1 << (start_order - pageblock_order);
1009
1010 while (nr_pageblocks--) {
1011 set_pageblock_migratetype(pageblock_page, migratetype);
1012 pageblock_page += pageblock_nr_pages;
1013 }
1014}
1015
b2a0ac88 1016/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1017static inline struct page *
1018__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1019{
1020 struct free_area * area;
1021 int current_order;
1022 struct page *page;
1023 int migratetype, i;
1024
1025 /* Find the largest possible block of pages in the other list */
1026 for (current_order = MAX_ORDER-1; current_order >= order;
1027 --current_order) {
6d4a4916 1028 for (i = 0;; i++) {
b2a0ac88
MG
1029 migratetype = fallbacks[start_migratetype][i];
1030
56fd56b8
MG
1031 /* MIGRATE_RESERVE handled later if necessary */
1032 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1033 break;
e010487d 1034
b2a0ac88
MG
1035 area = &(zone->free_area[current_order]);
1036 if (list_empty(&area->free_list[migratetype]))
1037 continue;
1038
1039 page = list_entry(area->free_list[migratetype].next,
1040 struct page, lru);
1041 area->nr_free--;
1042
1043 /*
c361be55 1044 * If breaking a large block of pages, move all free
46dafbca
MG
1045 * pages to the preferred allocation list. If falling
1046 * back for a reclaimable kernel allocation, be more
25985edc 1047 * aggressive about taking ownership of free pages
47118af0
MN
1048 *
1049 * On the other hand, never change migration
1050 * type of MIGRATE_CMA pageblocks nor move CMA
1051 * pages on different free lists. We don't
1052 * want unmovable pages to be allocated from
1053 * MIGRATE_CMA areas.
b2a0ac88 1054 */
47118af0
MN
1055 if (!is_migrate_cma(migratetype) &&
1056 (unlikely(current_order >= pageblock_order / 2) ||
1057 start_migratetype == MIGRATE_RECLAIMABLE ||
1058 page_group_by_mobility_disabled)) {
1059 int pages;
46dafbca
MG
1060 pages = move_freepages_block(zone, page,
1061 start_migratetype);
1062
1063 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1064 if (pages >= (1 << (pageblock_order-1)) ||
1065 page_group_by_mobility_disabled)
46dafbca
MG
1066 set_pageblock_migratetype(page,
1067 start_migratetype);
1068
b2a0ac88 1069 migratetype = start_migratetype;
c361be55 1070 }
b2a0ac88
MG
1071
1072 /* Remove the page from the freelists */
1073 list_del(&page->lru);
1074 rmv_page_order(page);
b2a0ac88 1075
2f66a68f 1076 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1077 if (current_order >= pageblock_order &&
1078 !is_migrate_cma(migratetype))
2f66a68f 1079 change_pageblock_range(page, current_order,
b2a0ac88
MG
1080 start_migratetype);
1081
47118af0
MN
1082 expand(zone, page, order, current_order, area,
1083 is_migrate_cma(migratetype)
1084 ? migratetype : start_migratetype);
e0fff1bd
MG
1085
1086 trace_mm_page_alloc_extfrag(page, order, current_order,
1087 start_migratetype, migratetype);
1088
b2a0ac88
MG
1089 return page;
1090 }
1091 }
1092
728ec980 1093 return NULL;
b2a0ac88
MG
1094}
1095
56fd56b8 1096/*
1da177e4
LT
1097 * Do the hard work of removing an element from the buddy allocator.
1098 * Call me with the zone->lock already held.
1099 */
b2a0ac88
MG
1100static struct page *__rmqueue(struct zone *zone, unsigned int order,
1101 int migratetype)
1da177e4 1102{
1da177e4
LT
1103 struct page *page;
1104
728ec980 1105retry_reserve:
56fd56b8 1106 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1107
728ec980 1108 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1109 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1110
728ec980
MG
1111 /*
1112 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1113 * is used because __rmqueue_smallest is an inline function
1114 * and we want just one call site
1115 */
1116 if (!page) {
1117 migratetype = MIGRATE_RESERVE;
1118 goto retry_reserve;
1119 }
1120 }
1121
0d3d062a 1122 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1123 return page;
1da177e4
LT
1124}
1125
5f63b720 1126/*
1da177e4
LT
1127 * Obtain a specified number of elements from the buddy allocator, all under
1128 * a single hold of the lock, for efficiency. Add them to the supplied list.
1129 * Returns the number of new pages which were placed at *list.
1130 */
5f63b720 1131static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1132 unsigned long count, struct list_head *list,
e084b2d9 1133 int migratetype, int cold)
1da177e4 1134{
47118af0 1135 int mt = migratetype, i;
5f63b720 1136
c54ad30c 1137 spin_lock(&zone->lock);
1da177e4 1138 for (i = 0; i < count; ++i) {
b2a0ac88 1139 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1140 if (unlikely(page == NULL))
1da177e4 1141 break;
81eabcbe
MG
1142
1143 /*
1144 * Split buddy pages returned by expand() are received here
1145 * in physical page order. The page is added to the callers and
1146 * list and the list head then moves forward. From the callers
1147 * perspective, the linked list is ordered by page number in
1148 * some conditions. This is useful for IO devices that can
1149 * merge IO requests if the physical pages are ordered
1150 * properly.
1151 */
e084b2d9
MG
1152 if (likely(cold == 0))
1153 list_add(&page->lru, list);
1154 else
1155 list_add_tail(&page->lru, list);
47118af0
MN
1156 if (IS_ENABLED(CONFIG_CMA)) {
1157 mt = get_pageblock_migratetype(page);
194159fb 1158 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
47118af0
MN
1159 mt = migratetype;
1160 }
b12c4ad1 1161 set_freepage_migratetype(page, mt);
81eabcbe 1162 list = &page->lru;
d1ce749a
BZ
1163 if (is_migrate_cma(mt))
1164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1165 -(1 << order));
1da177e4 1166 }
f2260e6b 1167 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1168 spin_unlock(&zone->lock);
085cc7d5 1169 return i;
1da177e4
LT
1170}
1171
4ae7c039 1172#ifdef CONFIG_NUMA
8fce4d8e 1173/*
4037d452
CL
1174 * Called from the vmstat counter updater to drain pagesets of this
1175 * currently executing processor on remote nodes after they have
1176 * expired.
1177 *
879336c3
CL
1178 * Note that this function must be called with the thread pinned to
1179 * a single processor.
8fce4d8e 1180 */
4037d452 1181void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1182{
4ae7c039 1183 unsigned long flags;
4037d452 1184 int to_drain;
4ae7c039 1185
4037d452
CL
1186 local_irq_save(flags);
1187 if (pcp->count >= pcp->batch)
1188 to_drain = pcp->batch;
1189 else
1190 to_drain = pcp->count;
2a13515c
KM
1191 if (to_drain > 0) {
1192 free_pcppages_bulk(zone, to_drain, pcp);
1193 pcp->count -= to_drain;
1194 }
4037d452 1195 local_irq_restore(flags);
4ae7c039
CL
1196}
1197#endif
1198
9f8f2172
CL
1199/*
1200 * Drain pages of the indicated processor.
1201 *
1202 * The processor must either be the current processor and the
1203 * thread pinned to the current processor or a processor that
1204 * is not online.
1205 */
1206static void drain_pages(unsigned int cpu)
1da177e4 1207{
c54ad30c 1208 unsigned long flags;
1da177e4 1209 struct zone *zone;
1da177e4 1210
ee99c71c 1211 for_each_populated_zone(zone) {
1da177e4 1212 struct per_cpu_pageset *pset;
3dfa5721 1213 struct per_cpu_pages *pcp;
1da177e4 1214
99dcc3e5
CL
1215 local_irq_save(flags);
1216 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1217
1218 pcp = &pset->pcp;
2ff754fa
DR
1219 if (pcp->count) {
1220 free_pcppages_bulk(zone, pcp->count, pcp);
1221 pcp->count = 0;
1222 }
3dfa5721 1223 local_irq_restore(flags);
1da177e4
LT
1224 }
1225}
1da177e4 1226
9f8f2172
CL
1227/*
1228 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1229 */
1230void drain_local_pages(void *arg)
1231{
1232 drain_pages(smp_processor_id());
1233}
1234
1235/*
74046494
GBY
1236 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1237 *
1238 * Note that this code is protected against sending an IPI to an offline
1239 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1240 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1241 * nothing keeps CPUs from showing up after we populated the cpumask and
1242 * before the call to on_each_cpu_mask().
9f8f2172
CL
1243 */
1244void drain_all_pages(void)
1245{
74046494
GBY
1246 int cpu;
1247 struct per_cpu_pageset *pcp;
1248 struct zone *zone;
1249
1250 /*
1251 * Allocate in the BSS so we wont require allocation in
1252 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1253 */
1254 static cpumask_t cpus_with_pcps;
1255
1256 /*
1257 * We don't care about racing with CPU hotplug event
1258 * as offline notification will cause the notified
1259 * cpu to drain that CPU pcps and on_each_cpu_mask
1260 * disables preemption as part of its processing
1261 */
1262 for_each_online_cpu(cpu) {
1263 bool has_pcps = false;
1264 for_each_populated_zone(zone) {
1265 pcp = per_cpu_ptr(zone->pageset, cpu);
1266 if (pcp->pcp.count) {
1267 has_pcps = true;
1268 break;
1269 }
1270 }
1271 if (has_pcps)
1272 cpumask_set_cpu(cpu, &cpus_with_pcps);
1273 else
1274 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1275 }
1276 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1277}
1278
296699de 1279#ifdef CONFIG_HIBERNATION
1da177e4
LT
1280
1281void mark_free_pages(struct zone *zone)
1282{
f623f0db
RW
1283 unsigned long pfn, max_zone_pfn;
1284 unsigned long flags;
b2a0ac88 1285 int order, t;
1da177e4
LT
1286 struct list_head *curr;
1287
1288 if (!zone->spanned_pages)
1289 return;
1290
1291 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1292
108bcc96 1293 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1294 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1295 if (pfn_valid(pfn)) {
1296 struct page *page = pfn_to_page(pfn);
1297
7be98234
RW
1298 if (!swsusp_page_is_forbidden(page))
1299 swsusp_unset_page_free(page);
f623f0db 1300 }
1da177e4 1301
b2a0ac88
MG
1302 for_each_migratetype_order(order, t) {
1303 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1304 unsigned long i;
1da177e4 1305
f623f0db
RW
1306 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1307 for (i = 0; i < (1UL << order); i++)
7be98234 1308 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1309 }
b2a0ac88 1310 }
1da177e4
LT
1311 spin_unlock_irqrestore(&zone->lock, flags);
1312}
e2c55dc8 1313#endif /* CONFIG_PM */
1da177e4 1314
1da177e4
LT
1315/*
1316 * Free a 0-order page
fc91668e 1317 * cold == 1 ? free a cold page : free a hot page
1da177e4 1318 */
fc91668e 1319void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1320{
1321 struct zone *zone = page_zone(page);
1322 struct per_cpu_pages *pcp;
1323 unsigned long flags;
5f8dcc21 1324 int migratetype;
1da177e4 1325
ec95f53a 1326 if (!free_pages_prepare(page, 0))
689bcebf
HD
1327 return;
1328
5f8dcc21 1329 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1330 set_freepage_migratetype(page, migratetype);
1da177e4 1331 local_irq_save(flags);
f8891e5e 1332 __count_vm_event(PGFREE);
da456f14 1333
5f8dcc21
MG
1334 /*
1335 * We only track unmovable, reclaimable and movable on pcp lists.
1336 * Free ISOLATE pages back to the allocator because they are being
1337 * offlined but treat RESERVE as movable pages so we can get those
1338 * areas back if necessary. Otherwise, we may have to free
1339 * excessively into the page allocator
1340 */
1341 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1342 if (unlikely(is_migrate_isolate(migratetype))) {
5f8dcc21
MG
1343 free_one_page(zone, page, 0, migratetype);
1344 goto out;
1345 }
1346 migratetype = MIGRATE_MOVABLE;
1347 }
1348
99dcc3e5 1349 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1350 if (cold)
5f8dcc21 1351 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1352 else
5f8dcc21 1353 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1354 pcp->count++;
48db57f8 1355 if (pcp->count >= pcp->high) {
5f8dcc21 1356 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1357 pcp->count -= pcp->batch;
1358 }
5f8dcc21
MG
1359
1360out:
1da177e4 1361 local_irq_restore(flags);
1da177e4
LT
1362}
1363
cc59850e
KK
1364/*
1365 * Free a list of 0-order pages
1366 */
1367void free_hot_cold_page_list(struct list_head *list, int cold)
1368{
1369 struct page *page, *next;
1370
1371 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1372 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1373 free_hot_cold_page(page, cold);
1374 }
1375}
1376
8dfcc9ba
NP
1377/*
1378 * split_page takes a non-compound higher-order page, and splits it into
1379 * n (1<<order) sub-pages: page[0..n]
1380 * Each sub-page must be freed individually.
1381 *
1382 * Note: this is probably too low level an operation for use in drivers.
1383 * Please consult with lkml before using this in your driver.
1384 */
1385void split_page(struct page *page, unsigned int order)
1386{
1387 int i;
1388
725d704e
NP
1389 VM_BUG_ON(PageCompound(page));
1390 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1391
1392#ifdef CONFIG_KMEMCHECK
1393 /*
1394 * Split shadow pages too, because free(page[0]) would
1395 * otherwise free the whole shadow.
1396 */
1397 if (kmemcheck_page_is_tracked(page))
1398 split_page(virt_to_page(page[0].shadow), order);
1399#endif
1400
7835e98b
NP
1401 for (i = 1; i < (1 << order); i++)
1402 set_page_refcounted(page + i);
8dfcc9ba 1403}
5853ff23 1404EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1405
8fb74b9f 1406static int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1407{
748446bb
MG
1408 unsigned long watermark;
1409 struct zone *zone;
2139cbe6 1410 int mt;
748446bb
MG
1411
1412 BUG_ON(!PageBuddy(page));
1413
1414 zone = page_zone(page);
2e30abd1 1415 mt = get_pageblock_migratetype(page);
748446bb 1416
194159fb 1417 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1418 /* Obey watermarks as if the page was being allocated */
1419 watermark = low_wmark_pages(zone) + (1 << order);
1420 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1421 return 0;
1422
8fb74b9f 1423 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1424 }
748446bb
MG
1425
1426 /* Remove page from free list */
1427 list_del(&page->lru);
1428 zone->free_area[order].nr_free--;
1429 rmv_page_order(page);
2139cbe6 1430
8fb74b9f 1431 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1432 if (order >= pageblock_order - 1) {
1433 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1434 for (; page < endpage; page += pageblock_nr_pages) {
1435 int mt = get_pageblock_migratetype(page);
194159fb 1436 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1437 set_pageblock_migratetype(page,
1438 MIGRATE_MOVABLE);
1439 }
748446bb
MG
1440 }
1441
8fb74b9f 1442 return 1UL << order;
1fb3f8ca
MG
1443}
1444
1445/*
1446 * Similar to split_page except the page is already free. As this is only
1447 * being used for migration, the migratetype of the block also changes.
1448 * As this is called with interrupts disabled, the caller is responsible
1449 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1450 * are enabled.
1451 *
1452 * Note: this is probably too low level an operation for use in drivers.
1453 * Please consult with lkml before using this in your driver.
1454 */
1455int split_free_page(struct page *page)
1456{
1457 unsigned int order;
1458 int nr_pages;
1459
1fb3f8ca
MG
1460 order = page_order(page);
1461
8fb74b9f 1462 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
1463 if (!nr_pages)
1464 return 0;
1465
1466 /* Split into individual pages */
1467 set_page_refcounted(page);
1468 split_page(page, order);
1469 return nr_pages;
748446bb
MG
1470}
1471
1da177e4
LT
1472/*
1473 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1474 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1475 * or two.
1476 */
0a15c3e9
MG
1477static inline
1478struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1479 struct zone *zone, int order, gfp_t gfp_flags,
1480 int migratetype)
1da177e4
LT
1481{
1482 unsigned long flags;
689bcebf 1483 struct page *page;
1da177e4
LT
1484 int cold = !!(gfp_flags & __GFP_COLD);
1485
689bcebf 1486again:
48db57f8 1487 if (likely(order == 0)) {
1da177e4 1488 struct per_cpu_pages *pcp;
5f8dcc21 1489 struct list_head *list;
1da177e4 1490
1da177e4 1491 local_irq_save(flags);
99dcc3e5
CL
1492 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1493 list = &pcp->lists[migratetype];
5f8dcc21 1494 if (list_empty(list)) {
535131e6 1495 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1496 pcp->batch, list,
e084b2d9 1497 migratetype, cold);
5f8dcc21 1498 if (unlikely(list_empty(list)))
6fb332fa 1499 goto failed;
535131e6 1500 }
b92a6edd 1501
5f8dcc21
MG
1502 if (cold)
1503 page = list_entry(list->prev, struct page, lru);
1504 else
1505 page = list_entry(list->next, struct page, lru);
1506
b92a6edd
MG
1507 list_del(&page->lru);
1508 pcp->count--;
7fb1d9fc 1509 } else {
dab48dab
AM
1510 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1511 /*
1512 * __GFP_NOFAIL is not to be used in new code.
1513 *
1514 * All __GFP_NOFAIL callers should be fixed so that they
1515 * properly detect and handle allocation failures.
1516 *
1517 * We most definitely don't want callers attempting to
4923abf9 1518 * allocate greater than order-1 page units with
dab48dab
AM
1519 * __GFP_NOFAIL.
1520 */
4923abf9 1521 WARN_ON_ONCE(order > 1);
dab48dab 1522 }
1da177e4 1523 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1524 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1525 spin_unlock(&zone->lock);
1526 if (!page)
1527 goto failed;
d1ce749a
BZ
1528 __mod_zone_freepage_state(zone, -(1 << order),
1529 get_pageblock_migratetype(page));
1da177e4
LT
1530 }
1531
f8891e5e 1532 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1533 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1534 local_irq_restore(flags);
1da177e4 1535
725d704e 1536 VM_BUG_ON(bad_range(zone, page));
17cf4406 1537 if (prep_new_page(page, order, gfp_flags))
a74609fa 1538 goto again;
1da177e4 1539 return page;
a74609fa
NP
1540
1541failed:
1542 local_irq_restore(flags);
a74609fa 1543 return NULL;
1da177e4
LT
1544}
1545
933e312e
AM
1546#ifdef CONFIG_FAIL_PAGE_ALLOC
1547
b2588c4b 1548static struct {
933e312e
AM
1549 struct fault_attr attr;
1550
1551 u32 ignore_gfp_highmem;
1552 u32 ignore_gfp_wait;
54114994 1553 u32 min_order;
933e312e
AM
1554} fail_page_alloc = {
1555 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1556 .ignore_gfp_wait = 1,
1557 .ignore_gfp_highmem = 1,
54114994 1558 .min_order = 1,
933e312e
AM
1559};
1560
1561static int __init setup_fail_page_alloc(char *str)
1562{
1563 return setup_fault_attr(&fail_page_alloc.attr, str);
1564}
1565__setup("fail_page_alloc=", setup_fail_page_alloc);
1566
deaf386e 1567static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1568{
54114994 1569 if (order < fail_page_alloc.min_order)
deaf386e 1570 return false;
933e312e 1571 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1572 return false;
933e312e 1573 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1574 return false;
933e312e 1575 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1576 return false;
933e312e
AM
1577
1578 return should_fail(&fail_page_alloc.attr, 1 << order);
1579}
1580
1581#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1582
1583static int __init fail_page_alloc_debugfs(void)
1584{
f4ae40a6 1585 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1586 struct dentry *dir;
933e312e 1587
dd48c085
AM
1588 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1589 &fail_page_alloc.attr);
1590 if (IS_ERR(dir))
1591 return PTR_ERR(dir);
933e312e 1592
b2588c4b
AM
1593 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1594 &fail_page_alloc.ignore_gfp_wait))
1595 goto fail;
1596 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1597 &fail_page_alloc.ignore_gfp_highmem))
1598 goto fail;
1599 if (!debugfs_create_u32("min-order", mode, dir,
1600 &fail_page_alloc.min_order))
1601 goto fail;
1602
1603 return 0;
1604fail:
dd48c085 1605 debugfs_remove_recursive(dir);
933e312e 1606
b2588c4b 1607 return -ENOMEM;
933e312e
AM
1608}
1609
1610late_initcall(fail_page_alloc_debugfs);
1611
1612#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1613
1614#else /* CONFIG_FAIL_PAGE_ALLOC */
1615
deaf386e 1616static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1617{
deaf386e 1618 return false;
933e312e
AM
1619}
1620
1621#endif /* CONFIG_FAIL_PAGE_ALLOC */
1622
1da177e4 1623/*
88f5acf8 1624 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1625 * of the allocation.
1626 */
88f5acf8
MG
1627static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1628 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1629{
1630 /* free_pages my go negative - that's OK */
d23ad423 1631 long min = mark;
2cfed075 1632 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4 1633 int o;
026b0814 1634 long free_cma = 0;
1da177e4 1635
df0a6daa 1636 free_pages -= (1 << order) - 1;
7fb1d9fc 1637 if (alloc_flags & ALLOC_HIGH)
1da177e4 1638 min -= min / 2;
7fb1d9fc 1639 if (alloc_flags & ALLOC_HARDER)
1da177e4 1640 min -= min / 4;
d95ea5d1
BZ
1641#ifdef CONFIG_CMA
1642 /* If allocation can't use CMA areas don't use free CMA pages */
1643 if (!(alloc_flags & ALLOC_CMA))
026b0814 1644 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 1645#endif
026b0814
TS
1646
1647 if (free_pages - free_cma <= min + lowmem_reserve)
88f5acf8 1648 return false;
1da177e4
LT
1649 for (o = 0; o < order; o++) {
1650 /* At the next order, this order's pages become unavailable */
1651 free_pages -= z->free_area[o].nr_free << o;
1652
1653 /* Require fewer higher order pages to be free */
1654 min >>= 1;
1655
1656 if (free_pages <= min)
88f5acf8 1657 return false;
1da177e4 1658 }
88f5acf8
MG
1659 return true;
1660}
1661
1662bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1663 int classzone_idx, int alloc_flags)
1664{
1665 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1666 zone_page_state(z, NR_FREE_PAGES));
1667}
1668
1669bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1670 int classzone_idx, int alloc_flags)
1671{
1672 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1673
1674 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1675 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1676
1677 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1678 free_pages);
1da177e4
LT
1679}
1680
9276b1bc
PJ
1681#ifdef CONFIG_NUMA
1682/*
1683 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1684 * skip over zones that are not allowed by the cpuset, or that have
1685 * been recently (in last second) found to be nearly full. See further
1686 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1687 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1688 *
1689 * If the zonelist cache is present in the passed in zonelist, then
1690 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 1691 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
1692 *
1693 * If the zonelist cache is not available for this zonelist, does
1694 * nothing and returns NULL.
1695 *
1696 * If the fullzones BITMAP in the zonelist cache is stale (more than
1697 * a second since last zap'd) then we zap it out (clear its bits.)
1698 *
1699 * We hold off even calling zlc_setup, until after we've checked the
1700 * first zone in the zonelist, on the theory that most allocations will
1701 * be satisfied from that first zone, so best to examine that zone as
1702 * quickly as we can.
1703 */
1704static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1705{
1706 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1707 nodemask_t *allowednodes; /* zonelist_cache approximation */
1708
1709 zlc = zonelist->zlcache_ptr;
1710 if (!zlc)
1711 return NULL;
1712
f05111f5 1713 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1714 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1715 zlc->last_full_zap = jiffies;
1716 }
1717
1718 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1719 &cpuset_current_mems_allowed :
4b0ef1fe 1720 &node_states[N_MEMORY];
9276b1bc
PJ
1721 return allowednodes;
1722}
1723
1724/*
1725 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1726 * if it is worth looking at further for free memory:
1727 * 1) Check that the zone isn't thought to be full (doesn't have its
1728 * bit set in the zonelist_cache fullzones BITMAP).
1729 * 2) Check that the zones node (obtained from the zonelist_cache
1730 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1731 * Return true (non-zero) if zone is worth looking at further, or
1732 * else return false (zero) if it is not.
1733 *
1734 * This check -ignores- the distinction between various watermarks,
1735 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1736 * found to be full for any variation of these watermarks, it will
1737 * be considered full for up to one second by all requests, unless
1738 * we are so low on memory on all allowed nodes that we are forced
1739 * into the second scan of the zonelist.
1740 *
1741 * In the second scan we ignore this zonelist cache and exactly
1742 * apply the watermarks to all zones, even it is slower to do so.
1743 * We are low on memory in the second scan, and should leave no stone
1744 * unturned looking for a free page.
1745 */
dd1a239f 1746static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1747 nodemask_t *allowednodes)
1748{
1749 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1750 int i; /* index of *z in zonelist zones */
1751 int n; /* node that zone *z is on */
1752
1753 zlc = zonelist->zlcache_ptr;
1754 if (!zlc)
1755 return 1;
1756
dd1a239f 1757 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1758 n = zlc->z_to_n[i];
1759
1760 /* This zone is worth trying if it is allowed but not full */
1761 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1762}
1763
1764/*
1765 * Given 'z' scanning a zonelist, set the corresponding bit in
1766 * zlc->fullzones, so that subsequent attempts to allocate a page
1767 * from that zone don't waste time re-examining it.
1768 */
dd1a239f 1769static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1770{
1771 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1772 int i; /* index of *z in zonelist zones */
1773
1774 zlc = zonelist->zlcache_ptr;
1775 if (!zlc)
1776 return;
1777
dd1a239f 1778 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1779
1780 set_bit(i, zlc->fullzones);
1781}
1782
76d3fbf8
MG
1783/*
1784 * clear all zones full, called after direct reclaim makes progress so that
1785 * a zone that was recently full is not skipped over for up to a second
1786 */
1787static void zlc_clear_zones_full(struct zonelist *zonelist)
1788{
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790
1791 zlc = zonelist->zlcache_ptr;
1792 if (!zlc)
1793 return;
1794
1795 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1796}
1797
957f822a
DR
1798static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1799{
1800 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1801}
1802
1803static void __paginginit init_zone_allows_reclaim(int nid)
1804{
1805 int i;
1806
1807 for_each_online_node(i)
6b187d02 1808 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1809 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1810 else
957f822a 1811 zone_reclaim_mode = 1;
957f822a
DR
1812}
1813
9276b1bc
PJ
1814#else /* CONFIG_NUMA */
1815
1816static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1817{
1818 return NULL;
1819}
1820
dd1a239f 1821static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1822 nodemask_t *allowednodes)
1823{
1824 return 1;
1825}
1826
dd1a239f 1827static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1828{
1829}
76d3fbf8
MG
1830
1831static void zlc_clear_zones_full(struct zonelist *zonelist)
1832{
1833}
957f822a
DR
1834
1835static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1836{
1837 return true;
1838}
1839
1840static inline void init_zone_allows_reclaim(int nid)
1841{
1842}
9276b1bc
PJ
1843#endif /* CONFIG_NUMA */
1844
7fb1d9fc 1845/*
0798e519 1846 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1847 * a page.
1848 */
1849static struct page *
19770b32 1850get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1851 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1852 struct zone *preferred_zone, int migratetype)
753ee728 1853{
dd1a239f 1854 struct zoneref *z;
7fb1d9fc 1855 struct page *page = NULL;
54a6eb5c 1856 int classzone_idx;
5117f45d 1857 struct zone *zone;
9276b1bc
PJ
1858 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1859 int zlc_active = 0; /* set if using zonelist_cache */
1860 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1861
19770b32 1862 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1863zonelist_scan:
7fb1d9fc 1864 /*
9276b1bc 1865 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1866 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1867 */
19770b32
MG
1868 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1869 high_zoneidx, nodemask) {
e5adfffc 1870 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
1871 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1872 continue;
7fb1d9fc 1873 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1874 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1875 continue;
a756cf59
JW
1876 /*
1877 * When allocating a page cache page for writing, we
1878 * want to get it from a zone that is within its dirty
1879 * limit, such that no single zone holds more than its
1880 * proportional share of globally allowed dirty pages.
1881 * The dirty limits take into account the zone's
1882 * lowmem reserves and high watermark so that kswapd
1883 * should be able to balance it without having to
1884 * write pages from its LRU list.
1885 *
1886 * This may look like it could increase pressure on
1887 * lower zones by failing allocations in higher zones
1888 * before they are full. But the pages that do spill
1889 * over are limited as the lower zones are protected
1890 * by this very same mechanism. It should not become
1891 * a practical burden to them.
1892 *
1893 * XXX: For now, allow allocations to potentially
1894 * exceed the per-zone dirty limit in the slowpath
1895 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1896 * which is important when on a NUMA setup the allowed
1897 * zones are together not big enough to reach the
1898 * global limit. The proper fix for these situations
1899 * will require awareness of zones in the
1900 * dirty-throttling and the flusher threads.
1901 */
1902 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1903 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1904 goto this_zone_full;
7fb1d9fc 1905
41858966 1906 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1907 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1908 unsigned long mark;
fa5e084e
MG
1909 int ret;
1910
41858966 1911 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1912 if (zone_watermark_ok(zone, order, mark,
1913 classzone_idx, alloc_flags))
1914 goto try_this_zone;
1915
e5adfffc
KS
1916 if (IS_ENABLED(CONFIG_NUMA) &&
1917 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
1918 /*
1919 * we do zlc_setup if there are multiple nodes
1920 * and before considering the first zone allowed
1921 * by the cpuset.
1922 */
1923 allowednodes = zlc_setup(zonelist, alloc_flags);
1924 zlc_active = 1;
1925 did_zlc_setup = 1;
1926 }
1927
957f822a
DR
1928 if (zone_reclaim_mode == 0 ||
1929 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1930 goto this_zone_full;
1931
cd38b115
MG
1932 /*
1933 * As we may have just activated ZLC, check if the first
1934 * eligible zone has failed zone_reclaim recently.
1935 */
e5adfffc 1936 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
1937 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1938 continue;
1939
fa5e084e
MG
1940 ret = zone_reclaim(zone, gfp_mask, order);
1941 switch (ret) {
1942 case ZONE_RECLAIM_NOSCAN:
1943 /* did not scan */
cd38b115 1944 continue;
fa5e084e
MG
1945 case ZONE_RECLAIM_FULL:
1946 /* scanned but unreclaimable */
cd38b115 1947 continue;
fa5e084e
MG
1948 default:
1949 /* did we reclaim enough */
fed2719e 1950 if (zone_watermark_ok(zone, order, mark,
fa5e084e 1951 classzone_idx, alloc_flags))
fed2719e
MG
1952 goto try_this_zone;
1953
1954 /*
1955 * Failed to reclaim enough to meet watermark.
1956 * Only mark the zone full if checking the min
1957 * watermark or if we failed to reclaim just
1958 * 1<<order pages or else the page allocator
1959 * fastpath will prematurely mark zones full
1960 * when the watermark is between the low and
1961 * min watermarks.
1962 */
1963 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1964 ret == ZONE_RECLAIM_SOME)
9276b1bc 1965 goto this_zone_full;
fed2719e
MG
1966
1967 continue;
0798e519 1968 }
7fb1d9fc
RS
1969 }
1970
fa5e084e 1971try_this_zone:
3dd28266
MG
1972 page = buffered_rmqueue(preferred_zone, zone, order,
1973 gfp_mask, migratetype);
0798e519 1974 if (page)
7fb1d9fc 1975 break;
9276b1bc 1976this_zone_full:
e5adfffc 1977 if (IS_ENABLED(CONFIG_NUMA))
9276b1bc 1978 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1979 }
9276b1bc 1980
e5adfffc 1981 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
9276b1bc
PJ
1982 /* Disable zlc cache for second zonelist scan */
1983 zlc_active = 0;
1984 goto zonelist_scan;
1985 }
b121186a
AS
1986
1987 if (page)
1988 /*
1989 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1990 * necessary to allocate the page. The expectation is
1991 * that the caller is taking steps that will free more
1992 * memory. The caller should avoid the page being used
1993 * for !PFMEMALLOC purposes.
1994 */
1995 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1996
7fb1d9fc 1997 return page;
753ee728
MH
1998}
1999
29423e77
DR
2000/*
2001 * Large machines with many possible nodes should not always dump per-node
2002 * meminfo in irq context.
2003 */
2004static inline bool should_suppress_show_mem(void)
2005{
2006 bool ret = false;
2007
2008#if NODES_SHIFT > 8
2009 ret = in_interrupt();
2010#endif
2011 return ret;
2012}
2013
a238ab5b
DH
2014static DEFINE_RATELIMIT_STATE(nopage_rs,
2015 DEFAULT_RATELIMIT_INTERVAL,
2016 DEFAULT_RATELIMIT_BURST);
2017
2018void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2019{
a238ab5b
DH
2020 unsigned int filter = SHOW_MEM_FILTER_NODES;
2021
c0a32fc5
SG
2022 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2023 debug_guardpage_minorder() > 0)
a238ab5b
DH
2024 return;
2025
4b59e6c4
DR
2026 /*
2027 * Walking all memory to count page types is very expensive and should
2028 * be inhibited in non-blockable contexts.
2029 */
2030 if (!(gfp_mask & __GFP_WAIT))
2031 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2032
a238ab5b
DH
2033 /*
2034 * This documents exceptions given to allocations in certain
2035 * contexts that are allowed to allocate outside current's set
2036 * of allowed nodes.
2037 */
2038 if (!(gfp_mask & __GFP_NOMEMALLOC))
2039 if (test_thread_flag(TIF_MEMDIE) ||
2040 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2041 filter &= ~SHOW_MEM_FILTER_NODES;
2042 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2043 filter &= ~SHOW_MEM_FILTER_NODES;
2044
2045 if (fmt) {
3ee9a4f0
JP
2046 struct va_format vaf;
2047 va_list args;
2048
a238ab5b 2049 va_start(args, fmt);
3ee9a4f0
JP
2050
2051 vaf.fmt = fmt;
2052 vaf.va = &args;
2053
2054 pr_warn("%pV", &vaf);
2055
a238ab5b
DH
2056 va_end(args);
2057 }
2058
3ee9a4f0
JP
2059 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2060 current->comm, order, gfp_mask);
a238ab5b
DH
2061
2062 dump_stack();
2063 if (!should_suppress_show_mem())
2064 show_mem(filter);
2065}
2066
11e33f6a
MG
2067static inline int
2068should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2069 unsigned long did_some_progress,
11e33f6a 2070 unsigned long pages_reclaimed)
1da177e4 2071{
11e33f6a
MG
2072 /* Do not loop if specifically requested */
2073 if (gfp_mask & __GFP_NORETRY)
2074 return 0;
1da177e4 2075
f90ac398
MG
2076 /* Always retry if specifically requested */
2077 if (gfp_mask & __GFP_NOFAIL)
2078 return 1;
2079
2080 /*
2081 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2082 * making forward progress without invoking OOM. Suspend also disables
2083 * storage devices so kswapd will not help. Bail if we are suspending.
2084 */
2085 if (!did_some_progress && pm_suspended_storage())
2086 return 0;
2087
11e33f6a
MG
2088 /*
2089 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2090 * means __GFP_NOFAIL, but that may not be true in other
2091 * implementations.
2092 */
2093 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2094 return 1;
2095
2096 /*
2097 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2098 * specified, then we retry until we no longer reclaim any pages
2099 * (above), or we've reclaimed an order of pages at least as
2100 * large as the allocation's order. In both cases, if the
2101 * allocation still fails, we stop retrying.
2102 */
2103 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2104 return 1;
cf40bd16 2105
11e33f6a
MG
2106 return 0;
2107}
933e312e 2108
11e33f6a
MG
2109static inline struct page *
2110__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2111 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2112 nodemask_t *nodemask, struct zone *preferred_zone,
2113 int migratetype)
11e33f6a
MG
2114{
2115 struct page *page;
2116
2117 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2118 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2119 schedule_timeout_uninterruptible(1);
1da177e4
LT
2120 return NULL;
2121 }
6b1de916 2122
11e33f6a
MG
2123 /*
2124 * Go through the zonelist yet one more time, keep very high watermark
2125 * here, this is only to catch a parallel oom killing, we must fail if
2126 * we're still under heavy pressure.
2127 */
2128 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2129 order, zonelist, high_zoneidx,
5117f45d 2130 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2131 preferred_zone, migratetype);
7fb1d9fc 2132 if (page)
11e33f6a
MG
2133 goto out;
2134
4365a567
KH
2135 if (!(gfp_mask & __GFP_NOFAIL)) {
2136 /* The OOM killer will not help higher order allocs */
2137 if (order > PAGE_ALLOC_COSTLY_ORDER)
2138 goto out;
03668b3c
DR
2139 /* The OOM killer does not needlessly kill tasks for lowmem */
2140 if (high_zoneidx < ZONE_NORMAL)
2141 goto out;
4365a567
KH
2142 /*
2143 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2144 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2145 * The caller should handle page allocation failure by itself if
2146 * it specifies __GFP_THISNODE.
2147 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2148 */
2149 if (gfp_mask & __GFP_THISNODE)
2150 goto out;
2151 }
11e33f6a 2152 /* Exhausted what can be done so it's blamo time */
08ab9b10 2153 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2154
2155out:
2156 clear_zonelist_oom(zonelist, gfp_mask);
2157 return page;
2158}
2159
56de7263
MG
2160#ifdef CONFIG_COMPACTION
2161/* Try memory compaction for high-order allocations before reclaim */
2162static struct page *
2163__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2164 struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2166 int migratetype, bool sync_migration,
c67fe375 2167 bool *contended_compaction, bool *deferred_compaction,
66199712 2168 unsigned long *did_some_progress)
56de7263 2169{
66199712 2170 if (!order)
56de7263
MG
2171 return NULL;
2172
aff62249 2173 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2174 *deferred_compaction = true;
2175 return NULL;
2176 }
2177
c06b1fca 2178 current->flags |= PF_MEMALLOC;
56de7263 2179 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2180 nodemask, sync_migration,
8fb74b9f 2181 contended_compaction);
c06b1fca 2182 current->flags &= ~PF_MEMALLOC;
56de7263 2183
1fb3f8ca 2184 if (*did_some_progress != COMPACT_SKIPPED) {
8fb74b9f
MG
2185 struct page *page;
2186
56de7263
MG
2187 /* Page migration frees to the PCP lists but we want merging */
2188 drain_pages(get_cpu());
2189 put_cpu();
2190
2191 page = get_page_from_freelist(gfp_mask, nodemask,
2192 order, zonelist, high_zoneidx,
cfd19c5a
MG
2193 alloc_flags & ~ALLOC_NO_WATERMARKS,
2194 preferred_zone, migratetype);
56de7263 2195 if (page) {
62997027 2196 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2197 preferred_zone->compact_considered = 0;
2198 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2199 if (order >= preferred_zone->compact_order_failed)
2200 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2201 count_vm_event(COMPACTSUCCESS);
2202 return page;
2203 }
2204
2205 /*
2206 * It's bad if compaction run occurs and fails.
2207 * The most likely reason is that pages exist,
2208 * but not enough to satisfy watermarks.
2209 */
2210 count_vm_event(COMPACTFAIL);
66199712
MG
2211
2212 /*
2213 * As async compaction considers a subset of pageblocks, only
2214 * defer if the failure was a sync compaction failure.
2215 */
2216 if (sync_migration)
aff62249 2217 defer_compaction(preferred_zone, order);
56de7263
MG
2218
2219 cond_resched();
2220 }
2221
2222 return NULL;
2223}
2224#else
2225static inline struct page *
2226__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2227 struct zonelist *zonelist, enum zone_type high_zoneidx,
2228 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2229 int migratetype, bool sync_migration,
c67fe375 2230 bool *contended_compaction, bool *deferred_compaction,
66199712 2231 unsigned long *did_some_progress)
56de7263
MG
2232{
2233 return NULL;
2234}
2235#endif /* CONFIG_COMPACTION */
2236
bba90710
MS
2237/* Perform direct synchronous page reclaim */
2238static int
2239__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2240 nodemask_t *nodemask)
11e33f6a 2241{
11e33f6a 2242 struct reclaim_state reclaim_state;
bba90710 2243 int progress;
11e33f6a
MG
2244
2245 cond_resched();
2246
2247 /* We now go into synchronous reclaim */
2248 cpuset_memory_pressure_bump();
c06b1fca 2249 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2250 lockdep_set_current_reclaim_state(gfp_mask);
2251 reclaim_state.reclaimed_slab = 0;
c06b1fca 2252 current->reclaim_state = &reclaim_state;
11e33f6a 2253
bba90710 2254 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2255
c06b1fca 2256 current->reclaim_state = NULL;
11e33f6a 2257 lockdep_clear_current_reclaim_state();
c06b1fca 2258 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2259
2260 cond_resched();
2261
bba90710
MS
2262 return progress;
2263}
2264
2265/* The really slow allocator path where we enter direct reclaim */
2266static inline struct page *
2267__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2268 struct zonelist *zonelist, enum zone_type high_zoneidx,
2269 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2270 int migratetype, unsigned long *did_some_progress)
2271{
2272 struct page *page = NULL;
2273 bool drained = false;
2274
2275 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2276 nodemask);
9ee493ce
MG
2277 if (unlikely(!(*did_some_progress)))
2278 return NULL;
11e33f6a 2279
76d3fbf8 2280 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2281 if (IS_ENABLED(CONFIG_NUMA))
76d3fbf8
MG
2282 zlc_clear_zones_full(zonelist);
2283
9ee493ce
MG
2284retry:
2285 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2286 zonelist, high_zoneidx,
cfd19c5a
MG
2287 alloc_flags & ~ALLOC_NO_WATERMARKS,
2288 preferred_zone, migratetype);
9ee493ce
MG
2289
2290 /*
2291 * If an allocation failed after direct reclaim, it could be because
2292 * pages are pinned on the per-cpu lists. Drain them and try again
2293 */
2294 if (!page && !drained) {
2295 drain_all_pages();
2296 drained = true;
2297 goto retry;
2298 }
2299
11e33f6a
MG
2300 return page;
2301}
2302
1da177e4 2303/*
11e33f6a
MG
2304 * This is called in the allocator slow-path if the allocation request is of
2305 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2306 */
11e33f6a
MG
2307static inline struct page *
2308__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2309 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2310 nodemask_t *nodemask, struct zone *preferred_zone,
2311 int migratetype)
11e33f6a
MG
2312{
2313 struct page *page;
2314
2315 do {
2316 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2317 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2318 preferred_zone, migratetype);
11e33f6a
MG
2319
2320 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2321 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2322 } while (!page && (gfp_mask & __GFP_NOFAIL));
2323
2324 return page;
2325}
2326
2327static inline
2328void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2329 enum zone_type high_zoneidx,
2330 enum zone_type classzone_idx)
1da177e4 2331{
dd1a239f
MG
2332 struct zoneref *z;
2333 struct zone *zone;
1da177e4 2334
11e33f6a 2335 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2336 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2337}
cf40bd16 2338
341ce06f
PZ
2339static inline int
2340gfp_to_alloc_flags(gfp_t gfp_mask)
2341{
341ce06f
PZ
2342 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2343 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2344
a56f57ff 2345 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2346 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2347
341ce06f
PZ
2348 /*
2349 * The caller may dip into page reserves a bit more if the caller
2350 * cannot run direct reclaim, or if the caller has realtime scheduling
2351 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2352 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2353 */
e6223a3b 2354 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2355
341ce06f 2356 if (!wait) {
5c3240d9
AA
2357 /*
2358 * Not worth trying to allocate harder for
2359 * __GFP_NOMEMALLOC even if it can't schedule.
2360 */
2361 if (!(gfp_mask & __GFP_NOMEMALLOC))
2362 alloc_flags |= ALLOC_HARDER;
523b9458 2363 /*
341ce06f
PZ
2364 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2365 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2366 */
341ce06f 2367 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2368 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2369 alloc_flags |= ALLOC_HARDER;
2370
b37f1dd0
MG
2371 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2372 if (gfp_mask & __GFP_MEMALLOC)
2373 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2374 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2375 alloc_flags |= ALLOC_NO_WATERMARKS;
2376 else if (!in_interrupt() &&
2377 ((current->flags & PF_MEMALLOC) ||
2378 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2379 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2380 }
d95ea5d1
BZ
2381#ifdef CONFIG_CMA
2382 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2383 alloc_flags |= ALLOC_CMA;
2384#endif
341ce06f
PZ
2385 return alloc_flags;
2386}
2387
072bb0aa
MG
2388bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2389{
b37f1dd0 2390 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2391}
2392
11e33f6a
MG
2393static inline struct page *
2394__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2395 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2396 nodemask_t *nodemask, struct zone *preferred_zone,
2397 int migratetype)
11e33f6a
MG
2398{
2399 const gfp_t wait = gfp_mask & __GFP_WAIT;
2400 struct page *page = NULL;
2401 int alloc_flags;
2402 unsigned long pages_reclaimed = 0;
2403 unsigned long did_some_progress;
77f1fe6b 2404 bool sync_migration = false;
66199712 2405 bool deferred_compaction = false;
c67fe375 2406 bool contended_compaction = false;
1da177e4 2407
72807a74
MG
2408 /*
2409 * In the slowpath, we sanity check order to avoid ever trying to
2410 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2411 * be using allocators in order of preference for an area that is
2412 * too large.
2413 */
1fc28b70
MG
2414 if (order >= MAX_ORDER) {
2415 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2416 return NULL;
1fc28b70 2417 }
1da177e4 2418
952f3b51
CL
2419 /*
2420 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2421 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2422 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2423 * using a larger set of nodes after it has established that the
2424 * allowed per node queues are empty and that nodes are
2425 * over allocated.
2426 */
e5adfffc
KS
2427 if (IS_ENABLED(CONFIG_NUMA) &&
2428 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
952f3b51
CL
2429 goto nopage;
2430
cc4a6851 2431restart:
caf49191
LT
2432 if (!(gfp_mask & __GFP_NO_KSWAPD))
2433 wake_all_kswapd(order, zonelist, high_zoneidx,
2434 zone_idx(preferred_zone));
1da177e4 2435
9bf2229f 2436 /*
7fb1d9fc
RS
2437 * OK, we're below the kswapd watermark and have kicked background
2438 * reclaim. Now things get more complex, so set up alloc_flags according
2439 * to how we want to proceed.
9bf2229f 2440 */
341ce06f 2441 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2442
f33261d7
DR
2443 /*
2444 * Find the true preferred zone if the allocation is unconstrained by
2445 * cpusets.
2446 */
2447 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2448 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2449 &preferred_zone);
2450
cfa54a0f 2451rebalance:
341ce06f 2452 /* This is the last chance, in general, before the goto nopage. */
19770b32 2453 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2454 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2455 preferred_zone, migratetype);
7fb1d9fc
RS
2456 if (page)
2457 goto got_pg;
1da177e4 2458
11e33f6a 2459 /* Allocate without watermarks if the context allows */
341ce06f 2460 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2461 /*
2462 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2463 * the allocation is high priority and these type of
2464 * allocations are system rather than user orientated
2465 */
2466 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2467
341ce06f
PZ
2468 page = __alloc_pages_high_priority(gfp_mask, order,
2469 zonelist, high_zoneidx, nodemask,
2470 preferred_zone, migratetype);
cfd19c5a 2471 if (page) {
341ce06f 2472 goto got_pg;
cfd19c5a 2473 }
1da177e4
LT
2474 }
2475
2476 /* Atomic allocations - we can't balance anything */
2477 if (!wait)
2478 goto nopage;
2479
341ce06f 2480 /* Avoid recursion of direct reclaim */
c06b1fca 2481 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2482 goto nopage;
2483
6583bb64
DR
2484 /* Avoid allocations with no watermarks from looping endlessly */
2485 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2486 goto nopage;
2487
77f1fe6b
MG
2488 /*
2489 * Try direct compaction. The first pass is asynchronous. Subsequent
2490 * attempts after direct reclaim are synchronous
2491 */
56de7263
MG
2492 page = __alloc_pages_direct_compact(gfp_mask, order,
2493 zonelist, high_zoneidx,
2494 nodemask,
2495 alloc_flags, preferred_zone,
66199712 2496 migratetype, sync_migration,
c67fe375 2497 &contended_compaction,
66199712
MG
2498 &deferred_compaction,
2499 &did_some_progress);
56de7263
MG
2500 if (page)
2501 goto got_pg;
c6a140bf 2502 sync_migration = true;
56de7263 2503
31f8d42d
LT
2504 /*
2505 * If compaction is deferred for high-order allocations, it is because
2506 * sync compaction recently failed. In this is the case and the caller
2507 * requested a movable allocation that does not heavily disrupt the
2508 * system then fail the allocation instead of entering direct reclaim.
2509 */
2510 if ((deferred_compaction || contended_compaction) &&
caf49191 2511 (gfp_mask & __GFP_NO_KSWAPD))
31f8d42d 2512 goto nopage;
66199712 2513
11e33f6a
MG
2514 /* Try direct reclaim and then allocating */
2515 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2516 zonelist, high_zoneidx,
2517 nodemask,
5117f45d 2518 alloc_flags, preferred_zone,
3dd28266 2519 migratetype, &did_some_progress);
11e33f6a
MG
2520 if (page)
2521 goto got_pg;
1da177e4 2522
e33c3b5e 2523 /*
11e33f6a
MG
2524 * If we failed to make any progress reclaiming, then we are
2525 * running out of options and have to consider going OOM
e33c3b5e 2526 */
11e33f6a
MG
2527 if (!did_some_progress) {
2528 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2529 if (oom_killer_disabled)
2530 goto nopage;
29fd66d2
DR
2531 /* Coredumps can quickly deplete all memory reserves */
2532 if ((current->flags & PF_DUMPCORE) &&
2533 !(gfp_mask & __GFP_NOFAIL))
2534 goto nopage;
11e33f6a
MG
2535 page = __alloc_pages_may_oom(gfp_mask, order,
2536 zonelist, high_zoneidx,
3dd28266
MG
2537 nodemask, preferred_zone,
2538 migratetype);
11e33f6a
MG
2539 if (page)
2540 goto got_pg;
1da177e4 2541
03668b3c
DR
2542 if (!(gfp_mask & __GFP_NOFAIL)) {
2543 /*
2544 * The oom killer is not called for high-order
2545 * allocations that may fail, so if no progress
2546 * is being made, there are no other options and
2547 * retrying is unlikely to help.
2548 */
2549 if (order > PAGE_ALLOC_COSTLY_ORDER)
2550 goto nopage;
2551 /*
2552 * The oom killer is not called for lowmem
2553 * allocations to prevent needlessly killing
2554 * innocent tasks.
2555 */
2556 if (high_zoneidx < ZONE_NORMAL)
2557 goto nopage;
2558 }
e2c55dc8 2559
ff0ceb9d
DR
2560 goto restart;
2561 }
1da177e4
LT
2562 }
2563
11e33f6a 2564 /* Check if we should retry the allocation */
a41f24ea 2565 pages_reclaimed += did_some_progress;
f90ac398
MG
2566 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2567 pages_reclaimed)) {
11e33f6a 2568 /* Wait for some write requests to complete then retry */
0e093d99 2569 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2570 goto rebalance;
3e7d3449
MG
2571 } else {
2572 /*
2573 * High-order allocations do not necessarily loop after
2574 * direct reclaim and reclaim/compaction depends on compaction
2575 * being called after reclaim so call directly if necessary
2576 */
2577 page = __alloc_pages_direct_compact(gfp_mask, order,
2578 zonelist, high_zoneidx,
2579 nodemask,
2580 alloc_flags, preferred_zone,
66199712 2581 migratetype, sync_migration,
c67fe375 2582 &contended_compaction,
66199712
MG
2583 &deferred_compaction,
2584 &did_some_progress);
3e7d3449
MG
2585 if (page)
2586 goto got_pg;
1da177e4
LT
2587 }
2588
2589nopage:
a238ab5b 2590 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2591 return page;
1da177e4 2592got_pg:
b1eeab67
VN
2593 if (kmemcheck_enabled)
2594 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2595
072bb0aa 2596 return page;
1da177e4 2597}
11e33f6a
MG
2598
2599/*
2600 * This is the 'heart' of the zoned buddy allocator.
2601 */
2602struct page *
2603__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2604 struct zonelist *zonelist, nodemask_t *nodemask)
2605{
2606 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2607 struct zone *preferred_zone;
cc9a6c87 2608 struct page *page = NULL;
3dd28266 2609 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2610 unsigned int cpuset_mems_cookie;
d95ea5d1 2611 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
6a1a0d3b 2612 struct mem_cgroup *memcg = NULL;
11e33f6a 2613
dcce284a
BH
2614 gfp_mask &= gfp_allowed_mask;
2615
11e33f6a
MG
2616 lockdep_trace_alloc(gfp_mask);
2617
2618 might_sleep_if(gfp_mask & __GFP_WAIT);
2619
2620 if (should_fail_alloc_page(gfp_mask, order))
2621 return NULL;
2622
2623 /*
2624 * Check the zones suitable for the gfp_mask contain at least one
2625 * valid zone. It's possible to have an empty zonelist as a result
2626 * of GFP_THISNODE and a memoryless node
2627 */
2628 if (unlikely(!zonelist->_zonerefs->zone))
2629 return NULL;
2630
6a1a0d3b
GC
2631 /*
2632 * Will only have any effect when __GFP_KMEMCG is set. This is
2633 * verified in the (always inline) callee
2634 */
2635 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2636 return NULL;
2637
cc9a6c87
MG
2638retry_cpuset:
2639 cpuset_mems_cookie = get_mems_allowed();
2640
5117f45d 2641 /* The preferred zone is used for statistics later */
f33261d7
DR
2642 first_zones_zonelist(zonelist, high_zoneidx,
2643 nodemask ? : &cpuset_current_mems_allowed,
2644 &preferred_zone);
cc9a6c87
MG
2645 if (!preferred_zone)
2646 goto out;
5117f45d 2647
d95ea5d1
BZ
2648#ifdef CONFIG_CMA
2649 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2650 alloc_flags |= ALLOC_CMA;
2651#endif
5117f45d 2652 /* First allocation attempt */
11e33f6a 2653 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2654 zonelist, high_zoneidx, alloc_flags,
3dd28266 2655 preferred_zone, migratetype);
21caf2fc
ML
2656 if (unlikely(!page)) {
2657 /*
2658 * Runtime PM, block IO and its error handling path
2659 * can deadlock because I/O on the device might not
2660 * complete.
2661 */
2662 gfp_mask = memalloc_noio_flags(gfp_mask);
11e33f6a 2663 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2664 zonelist, high_zoneidx, nodemask,
3dd28266 2665 preferred_zone, migratetype);
21caf2fc 2666 }
11e33f6a 2667
4b4f278c 2668 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2669
2670out:
2671 /*
2672 * When updating a task's mems_allowed, it is possible to race with
2673 * parallel threads in such a way that an allocation can fail while
2674 * the mask is being updated. If a page allocation is about to fail,
2675 * check if the cpuset changed during allocation and if so, retry.
2676 */
2677 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2678 goto retry_cpuset;
2679
6a1a0d3b
GC
2680 memcg_kmem_commit_charge(page, memcg, order);
2681
11e33f6a 2682 return page;
1da177e4 2683}
d239171e 2684EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2685
2686/*
2687 * Common helper functions.
2688 */
920c7a5d 2689unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2690{
945a1113
AM
2691 struct page *page;
2692
2693 /*
2694 * __get_free_pages() returns a 32-bit address, which cannot represent
2695 * a highmem page
2696 */
2697 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2698
1da177e4
LT
2699 page = alloc_pages(gfp_mask, order);
2700 if (!page)
2701 return 0;
2702 return (unsigned long) page_address(page);
2703}
1da177e4
LT
2704EXPORT_SYMBOL(__get_free_pages);
2705
920c7a5d 2706unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2707{
945a1113 2708 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2709}
1da177e4
LT
2710EXPORT_SYMBOL(get_zeroed_page);
2711
920c7a5d 2712void __free_pages(struct page *page, unsigned int order)
1da177e4 2713{
b5810039 2714 if (put_page_testzero(page)) {
1da177e4 2715 if (order == 0)
fc91668e 2716 free_hot_cold_page(page, 0);
1da177e4
LT
2717 else
2718 __free_pages_ok(page, order);
2719 }
2720}
2721
2722EXPORT_SYMBOL(__free_pages);
2723
920c7a5d 2724void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2725{
2726 if (addr != 0) {
725d704e 2727 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2728 __free_pages(virt_to_page((void *)addr), order);
2729 }
2730}
2731
2732EXPORT_SYMBOL(free_pages);
2733
6a1a0d3b
GC
2734/*
2735 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2736 * pages allocated with __GFP_KMEMCG.
2737 *
2738 * Those pages are accounted to a particular memcg, embedded in the
2739 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2740 * for that information only to find out that it is NULL for users who have no
2741 * interest in that whatsoever, we provide these functions.
2742 *
2743 * The caller knows better which flags it relies on.
2744 */
2745void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2746{
2747 memcg_kmem_uncharge_pages(page, order);
2748 __free_pages(page, order);
2749}
2750
2751void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2752{
2753 if (addr != 0) {
2754 VM_BUG_ON(!virt_addr_valid((void *)addr));
2755 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2756 }
2757}
2758
ee85c2e1
AK
2759static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2760{
2761 if (addr) {
2762 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2763 unsigned long used = addr + PAGE_ALIGN(size);
2764
2765 split_page(virt_to_page((void *)addr), order);
2766 while (used < alloc_end) {
2767 free_page(used);
2768 used += PAGE_SIZE;
2769 }
2770 }
2771 return (void *)addr;
2772}
2773
2be0ffe2
TT
2774/**
2775 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2776 * @size: the number of bytes to allocate
2777 * @gfp_mask: GFP flags for the allocation
2778 *
2779 * This function is similar to alloc_pages(), except that it allocates the
2780 * minimum number of pages to satisfy the request. alloc_pages() can only
2781 * allocate memory in power-of-two pages.
2782 *
2783 * This function is also limited by MAX_ORDER.
2784 *
2785 * Memory allocated by this function must be released by free_pages_exact().
2786 */
2787void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2788{
2789 unsigned int order = get_order(size);
2790 unsigned long addr;
2791
2792 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2793 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2794}
2795EXPORT_SYMBOL(alloc_pages_exact);
2796
ee85c2e1
AK
2797/**
2798 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2799 * pages on a node.
b5e6ab58 2800 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2801 * @size: the number of bytes to allocate
2802 * @gfp_mask: GFP flags for the allocation
2803 *
2804 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2805 * back.
2806 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2807 * but is not exact.
2808 */
2809void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2810{
2811 unsigned order = get_order(size);
2812 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2813 if (!p)
2814 return NULL;
2815 return make_alloc_exact((unsigned long)page_address(p), order, size);
2816}
2817EXPORT_SYMBOL(alloc_pages_exact_nid);
2818
2be0ffe2
TT
2819/**
2820 * free_pages_exact - release memory allocated via alloc_pages_exact()
2821 * @virt: the value returned by alloc_pages_exact.
2822 * @size: size of allocation, same value as passed to alloc_pages_exact().
2823 *
2824 * Release the memory allocated by a previous call to alloc_pages_exact.
2825 */
2826void free_pages_exact(void *virt, size_t size)
2827{
2828 unsigned long addr = (unsigned long)virt;
2829 unsigned long end = addr + PAGE_ALIGN(size);
2830
2831 while (addr < end) {
2832 free_page(addr);
2833 addr += PAGE_SIZE;
2834 }
2835}
2836EXPORT_SYMBOL(free_pages_exact);
2837
e0fb5815
ZY
2838/**
2839 * nr_free_zone_pages - count number of pages beyond high watermark
2840 * @offset: The zone index of the highest zone
2841 *
2842 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2843 * high watermark within all zones at or below a given zone index. For each
2844 * zone, the number of pages is calculated as:
2845 * present_pages - high_pages
2846 */
ebec3862 2847static unsigned long nr_free_zone_pages(int offset)
1da177e4 2848{
dd1a239f 2849 struct zoneref *z;
54a6eb5c
MG
2850 struct zone *zone;
2851
e310fd43 2852 /* Just pick one node, since fallback list is circular */
ebec3862 2853 unsigned long sum = 0;
1da177e4 2854
0e88460d 2855 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2856
54a6eb5c 2857 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 2858 unsigned long size = zone->managed_pages;
41858966 2859 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2860 if (size > high)
2861 sum += size - high;
1da177e4
LT
2862 }
2863
2864 return sum;
2865}
2866
e0fb5815
ZY
2867/**
2868 * nr_free_buffer_pages - count number of pages beyond high watermark
2869 *
2870 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2871 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 2872 */
ebec3862 2873unsigned long nr_free_buffer_pages(void)
1da177e4 2874{
af4ca457 2875 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2876}
c2f1a551 2877EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 2878
e0fb5815
ZY
2879/**
2880 * nr_free_pagecache_pages - count number of pages beyond high watermark
2881 *
2882 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2883 * high watermark within all zones.
1da177e4 2884 */
ebec3862 2885unsigned long nr_free_pagecache_pages(void)
1da177e4 2886{
2a1e274a 2887 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2888}
08e0f6a9
CL
2889
2890static inline void show_node(struct zone *zone)
1da177e4 2891{
e5adfffc 2892 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 2893 printk("Node %d ", zone_to_nid(zone));
1da177e4 2894}
1da177e4 2895
1da177e4
LT
2896void si_meminfo(struct sysinfo *val)
2897{
2898 val->totalram = totalram_pages;
2899 val->sharedram = 0;
d23ad423 2900 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2901 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2902 val->totalhigh = totalhigh_pages;
2903 val->freehigh = nr_free_highpages();
1da177e4
LT
2904 val->mem_unit = PAGE_SIZE;
2905}
2906
2907EXPORT_SYMBOL(si_meminfo);
2908
2909#ifdef CONFIG_NUMA
2910void si_meminfo_node(struct sysinfo *val, int nid)
2911{
2912 pg_data_t *pgdat = NODE_DATA(nid);
2913
2914 val->totalram = pgdat->node_present_pages;
d23ad423 2915 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2916#ifdef CONFIG_HIGHMEM
b40da049 2917 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
2918 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2919 NR_FREE_PAGES);
98d2b0eb
CL
2920#else
2921 val->totalhigh = 0;
2922 val->freehigh = 0;
2923#endif
1da177e4
LT
2924 val->mem_unit = PAGE_SIZE;
2925}
2926#endif
2927
ddd588b5 2928/*
7bf02ea2
DR
2929 * Determine whether the node should be displayed or not, depending on whether
2930 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2931 */
7bf02ea2 2932bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2933{
2934 bool ret = false;
cc9a6c87 2935 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2936
2937 if (!(flags & SHOW_MEM_FILTER_NODES))
2938 goto out;
2939
cc9a6c87
MG
2940 do {
2941 cpuset_mems_cookie = get_mems_allowed();
2942 ret = !node_isset(nid, cpuset_current_mems_allowed);
2943 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2944out:
2945 return ret;
2946}
2947
1da177e4
LT
2948#define K(x) ((x) << (PAGE_SHIFT-10))
2949
377e4f16
RV
2950static void show_migration_types(unsigned char type)
2951{
2952 static const char types[MIGRATE_TYPES] = {
2953 [MIGRATE_UNMOVABLE] = 'U',
2954 [MIGRATE_RECLAIMABLE] = 'E',
2955 [MIGRATE_MOVABLE] = 'M',
2956 [MIGRATE_RESERVE] = 'R',
2957#ifdef CONFIG_CMA
2958 [MIGRATE_CMA] = 'C',
2959#endif
194159fb 2960#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 2961 [MIGRATE_ISOLATE] = 'I',
194159fb 2962#endif
377e4f16
RV
2963 };
2964 char tmp[MIGRATE_TYPES + 1];
2965 char *p = tmp;
2966 int i;
2967
2968 for (i = 0; i < MIGRATE_TYPES; i++) {
2969 if (type & (1 << i))
2970 *p++ = types[i];
2971 }
2972
2973 *p = '\0';
2974 printk("(%s) ", tmp);
2975}
2976
1da177e4
LT
2977/*
2978 * Show free area list (used inside shift_scroll-lock stuff)
2979 * We also calculate the percentage fragmentation. We do this by counting the
2980 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2981 * Suppresses nodes that are not allowed by current's cpuset if
2982 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2983 */
7bf02ea2 2984void show_free_areas(unsigned int filter)
1da177e4 2985{
c7241913 2986 int cpu;
1da177e4
LT
2987 struct zone *zone;
2988
ee99c71c 2989 for_each_populated_zone(zone) {
7bf02ea2 2990 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2991 continue;
c7241913
JS
2992 show_node(zone);
2993 printk("%s per-cpu:\n", zone->name);
1da177e4 2994
6b482c67 2995 for_each_online_cpu(cpu) {
1da177e4
LT
2996 struct per_cpu_pageset *pageset;
2997
99dcc3e5 2998 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2999
3dfa5721
CL
3000 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3001 cpu, pageset->pcp.high,
3002 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
3003 }
3004 }
3005
a731286d
KM
3006 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3007 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 3008 " unevictable:%lu"
b76146ed 3009 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 3010 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
3011 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3012 " free_cma:%lu\n",
4f98a2fe 3013 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3014 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3015 global_page_state(NR_ISOLATED_ANON),
3016 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3017 global_page_state(NR_INACTIVE_FILE),
a731286d 3018 global_page_state(NR_ISOLATED_FILE),
7b854121 3019 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3020 global_page_state(NR_FILE_DIRTY),
ce866b34 3021 global_page_state(NR_WRITEBACK),
fd39fc85 3022 global_page_state(NR_UNSTABLE_NFS),
d23ad423 3023 global_page_state(NR_FREE_PAGES),
3701b033
KM
3024 global_page_state(NR_SLAB_RECLAIMABLE),
3025 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3026 global_page_state(NR_FILE_MAPPED),
4b02108a 3027 global_page_state(NR_SHMEM),
a25700a5 3028 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
3029 global_page_state(NR_BOUNCE),
3030 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3031
ee99c71c 3032 for_each_populated_zone(zone) {
1da177e4
LT
3033 int i;
3034
7bf02ea2 3035 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3036 continue;
1da177e4
LT
3037 show_node(zone);
3038 printk("%s"
3039 " free:%lukB"
3040 " min:%lukB"
3041 " low:%lukB"
3042 " high:%lukB"
4f98a2fe
RR
3043 " active_anon:%lukB"
3044 " inactive_anon:%lukB"
3045 " active_file:%lukB"
3046 " inactive_file:%lukB"
7b854121 3047 " unevictable:%lukB"
a731286d
KM
3048 " isolated(anon):%lukB"
3049 " isolated(file):%lukB"
1da177e4 3050 " present:%lukB"
9feedc9d 3051 " managed:%lukB"
4a0aa73f
KM
3052 " mlocked:%lukB"
3053 " dirty:%lukB"
3054 " writeback:%lukB"
3055 " mapped:%lukB"
4b02108a 3056 " shmem:%lukB"
4a0aa73f
KM
3057 " slab_reclaimable:%lukB"
3058 " slab_unreclaimable:%lukB"
c6a7f572 3059 " kernel_stack:%lukB"
4a0aa73f
KM
3060 " pagetables:%lukB"
3061 " unstable:%lukB"
3062 " bounce:%lukB"
d1ce749a 3063 " free_cma:%lukB"
4a0aa73f 3064 " writeback_tmp:%lukB"
1da177e4
LT
3065 " pages_scanned:%lu"
3066 " all_unreclaimable? %s"
3067 "\n",
3068 zone->name,
88f5acf8 3069 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3070 K(min_wmark_pages(zone)),
3071 K(low_wmark_pages(zone)),
3072 K(high_wmark_pages(zone)),
4f98a2fe
RR
3073 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3074 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3075 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3076 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3077 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3078 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3079 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3080 K(zone->present_pages),
9feedc9d 3081 K(zone->managed_pages),
4a0aa73f
KM
3082 K(zone_page_state(zone, NR_MLOCK)),
3083 K(zone_page_state(zone, NR_FILE_DIRTY)),
3084 K(zone_page_state(zone, NR_WRITEBACK)),
3085 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3086 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3087 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3088 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3089 zone_page_state(zone, NR_KERNEL_STACK) *
3090 THREAD_SIZE / 1024,
4a0aa73f
KM
3091 K(zone_page_state(zone, NR_PAGETABLE)),
3092 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3093 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3094 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3095 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3096 zone->pages_scanned,
93e4a89a 3097 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3098 );
3099 printk("lowmem_reserve[]:");
3100 for (i = 0; i < MAX_NR_ZONES; i++)
3101 printk(" %lu", zone->lowmem_reserve[i]);
3102 printk("\n");
3103 }
3104
ee99c71c 3105 for_each_populated_zone(zone) {
8f9de51a 3106 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3107 unsigned char types[MAX_ORDER];
1da177e4 3108
7bf02ea2 3109 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3110 continue;
1da177e4
LT
3111 show_node(zone);
3112 printk("%s: ", zone->name);
1da177e4
LT
3113
3114 spin_lock_irqsave(&zone->lock, flags);
3115 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3116 struct free_area *area = &zone->free_area[order];
3117 int type;
3118
3119 nr[order] = area->nr_free;
8f9de51a 3120 total += nr[order] << order;
377e4f16
RV
3121
3122 types[order] = 0;
3123 for (type = 0; type < MIGRATE_TYPES; type++) {
3124 if (!list_empty(&area->free_list[type]))
3125 types[order] |= 1 << type;
3126 }
1da177e4
LT
3127 }
3128 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3129 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3130 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3131 if (nr[order])
3132 show_migration_types(types[order]);
3133 }
1da177e4
LT
3134 printk("= %lukB\n", K(total));
3135 }
3136
949f7ec5
DR
3137 hugetlb_show_meminfo();
3138
e6f3602d
LW
3139 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3140
1da177e4
LT
3141 show_swap_cache_info();
3142}
3143
19770b32
MG
3144static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3145{
3146 zoneref->zone = zone;
3147 zoneref->zone_idx = zone_idx(zone);
3148}
3149
1da177e4
LT
3150/*
3151 * Builds allocation fallback zone lists.
1a93205b
CL
3152 *
3153 * Add all populated zones of a node to the zonelist.
1da177e4 3154 */
f0c0b2b8
KH
3155static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3156 int nr_zones, enum zone_type zone_type)
1da177e4 3157{
1a93205b
CL
3158 struct zone *zone;
3159
98d2b0eb 3160 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3161 zone_type++;
02a68a5e
CL
3162
3163 do {
2f6726e5 3164 zone_type--;
070f8032 3165 zone = pgdat->node_zones + zone_type;
1a93205b 3166 if (populated_zone(zone)) {
dd1a239f
MG
3167 zoneref_set_zone(zone,
3168 &zonelist->_zonerefs[nr_zones++]);
070f8032 3169 check_highest_zone(zone_type);
1da177e4 3170 }
02a68a5e 3171
2f6726e5 3172 } while (zone_type);
070f8032 3173 return nr_zones;
1da177e4
LT
3174}
3175
f0c0b2b8
KH
3176
3177/*
3178 * zonelist_order:
3179 * 0 = automatic detection of better ordering.
3180 * 1 = order by ([node] distance, -zonetype)
3181 * 2 = order by (-zonetype, [node] distance)
3182 *
3183 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3184 * the same zonelist. So only NUMA can configure this param.
3185 */
3186#define ZONELIST_ORDER_DEFAULT 0
3187#define ZONELIST_ORDER_NODE 1
3188#define ZONELIST_ORDER_ZONE 2
3189
3190/* zonelist order in the kernel.
3191 * set_zonelist_order() will set this to NODE or ZONE.
3192 */
3193static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3194static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3195
3196
1da177e4 3197#ifdef CONFIG_NUMA
f0c0b2b8
KH
3198/* The value user specified ....changed by config */
3199static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3200/* string for sysctl */
3201#define NUMA_ZONELIST_ORDER_LEN 16
3202char numa_zonelist_order[16] = "default";
3203
3204/*
3205 * interface for configure zonelist ordering.
3206 * command line option "numa_zonelist_order"
3207 * = "[dD]efault - default, automatic configuration.
3208 * = "[nN]ode - order by node locality, then by zone within node
3209 * = "[zZ]one - order by zone, then by locality within zone
3210 */
3211
3212static int __parse_numa_zonelist_order(char *s)
3213{
3214 if (*s == 'd' || *s == 'D') {
3215 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3216 } else if (*s == 'n' || *s == 'N') {
3217 user_zonelist_order = ZONELIST_ORDER_NODE;
3218 } else if (*s == 'z' || *s == 'Z') {
3219 user_zonelist_order = ZONELIST_ORDER_ZONE;
3220 } else {
3221 printk(KERN_WARNING
3222 "Ignoring invalid numa_zonelist_order value: "
3223 "%s\n", s);
3224 return -EINVAL;
3225 }
3226 return 0;
3227}
3228
3229static __init int setup_numa_zonelist_order(char *s)
3230{
ecb256f8
VL
3231 int ret;
3232
3233 if (!s)
3234 return 0;
3235
3236 ret = __parse_numa_zonelist_order(s);
3237 if (ret == 0)
3238 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3239
3240 return ret;
f0c0b2b8
KH
3241}
3242early_param("numa_zonelist_order", setup_numa_zonelist_order);
3243
3244/*
3245 * sysctl handler for numa_zonelist_order
3246 */
3247int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3248 void __user *buffer, size_t *length,
f0c0b2b8
KH
3249 loff_t *ppos)
3250{
3251 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3252 int ret;
443c6f14 3253 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3254
443c6f14 3255 mutex_lock(&zl_order_mutex);
f0c0b2b8 3256 if (write)
443c6f14 3257 strcpy(saved_string, (char*)table->data);
8d65af78 3258 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3259 if (ret)
443c6f14 3260 goto out;
f0c0b2b8
KH
3261 if (write) {
3262 int oldval = user_zonelist_order;
3263 if (__parse_numa_zonelist_order((char*)table->data)) {
3264 /*
3265 * bogus value. restore saved string
3266 */
3267 strncpy((char*)table->data, saved_string,
3268 NUMA_ZONELIST_ORDER_LEN);
3269 user_zonelist_order = oldval;
4eaf3f64
HL
3270 } else if (oldval != user_zonelist_order) {
3271 mutex_lock(&zonelists_mutex);
9adb62a5 3272 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3273 mutex_unlock(&zonelists_mutex);
3274 }
f0c0b2b8 3275 }
443c6f14
AK
3276out:
3277 mutex_unlock(&zl_order_mutex);
3278 return ret;
f0c0b2b8
KH
3279}
3280
3281
62bc62a8 3282#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3283static int node_load[MAX_NUMNODES];
3284
1da177e4 3285/**
4dc3b16b 3286 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3287 * @node: node whose fallback list we're appending
3288 * @used_node_mask: nodemask_t of already used nodes
3289 *
3290 * We use a number of factors to determine which is the next node that should
3291 * appear on a given node's fallback list. The node should not have appeared
3292 * already in @node's fallback list, and it should be the next closest node
3293 * according to the distance array (which contains arbitrary distance values
3294 * from each node to each node in the system), and should also prefer nodes
3295 * with no CPUs, since presumably they'll have very little allocation pressure
3296 * on them otherwise.
3297 * It returns -1 if no node is found.
3298 */
f0c0b2b8 3299static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3300{
4cf808eb 3301 int n, val;
1da177e4 3302 int min_val = INT_MAX;
00ef2d2f 3303 int best_node = NUMA_NO_NODE;
a70f7302 3304 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3305
4cf808eb
LT
3306 /* Use the local node if we haven't already */
3307 if (!node_isset(node, *used_node_mask)) {
3308 node_set(node, *used_node_mask);
3309 return node;
3310 }
1da177e4 3311
4b0ef1fe 3312 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3313
3314 /* Don't want a node to appear more than once */
3315 if (node_isset(n, *used_node_mask))
3316 continue;
3317
1da177e4
LT
3318 /* Use the distance array to find the distance */
3319 val = node_distance(node, n);
3320
4cf808eb
LT
3321 /* Penalize nodes under us ("prefer the next node") */
3322 val += (n < node);
3323
1da177e4 3324 /* Give preference to headless and unused nodes */
a70f7302
RR
3325 tmp = cpumask_of_node(n);
3326 if (!cpumask_empty(tmp))
1da177e4
LT
3327 val += PENALTY_FOR_NODE_WITH_CPUS;
3328
3329 /* Slight preference for less loaded node */
3330 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3331 val += node_load[n];
3332
3333 if (val < min_val) {
3334 min_val = val;
3335 best_node = n;
3336 }
3337 }
3338
3339 if (best_node >= 0)
3340 node_set(best_node, *used_node_mask);
3341
3342 return best_node;
3343}
3344
f0c0b2b8
KH
3345
3346/*
3347 * Build zonelists ordered by node and zones within node.
3348 * This results in maximum locality--normal zone overflows into local
3349 * DMA zone, if any--but risks exhausting DMA zone.
3350 */
3351static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3352{
f0c0b2b8 3353 int j;
1da177e4 3354 struct zonelist *zonelist;
f0c0b2b8 3355
54a6eb5c 3356 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3357 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3358 ;
3359 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3360 MAX_NR_ZONES - 1);
dd1a239f
MG
3361 zonelist->_zonerefs[j].zone = NULL;
3362 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3363}
3364
523b9458
CL
3365/*
3366 * Build gfp_thisnode zonelists
3367 */
3368static void build_thisnode_zonelists(pg_data_t *pgdat)
3369{
523b9458
CL
3370 int j;
3371 struct zonelist *zonelist;
3372
54a6eb5c
MG
3373 zonelist = &pgdat->node_zonelists[1];
3374 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3375 zonelist->_zonerefs[j].zone = NULL;
3376 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3377}
3378
f0c0b2b8
KH
3379/*
3380 * Build zonelists ordered by zone and nodes within zones.
3381 * This results in conserving DMA zone[s] until all Normal memory is
3382 * exhausted, but results in overflowing to remote node while memory
3383 * may still exist in local DMA zone.
3384 */
3385static int node_order[MAX_NUMNODES];
3386
3387static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3388{
f0c0b2b8
KH
3389 int pos, j, node;
3390 int zone_type; /* needs to be signed */
3391 struct zone *z;
3392 struct zonelist *zonelist;
3393
54a6eb5c
MG
3394 zonelist = &pgdat->node_zonelists[0];
3395 pos = 0;
3396 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3397 for (j = 0; j < nr_nodes; j++) {
3398 node = node_order[j];
3399 z = &NODE_DATA(node)->node_zones[zone_type];
3400 if (populated_zone(z)) {
dd1a239f
MG
3401 zoneref_set_zone(z,
3402 &zonelist->_zonerefs[pos++]);
54a6eb5c 3403 check_highest_zone(zone_type);
f0c0b2b8
KH
3404 }
3405 }
f0c0b2b8 3406 }
dd1a239f
MG
3407 zonelist->_zonerefs[pos].zone = NULL;
3408 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3409}
3410
3411static int default_zonelist_order(void)
3412{
3413 int nid, zone_type;
3414 unsigned long low_kmem_size,total_size;
3415 struct zone *z;
3416 int average_size;
3417 /*
88393161 3418 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3419 * If they are really small and used heavily, the system can fall
3420 * into OOM very easily.
e325c90f 3421 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3422 */
3423 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3424 low_kmem_size = 0;
3425 total_size = 0;
3426 for_each_online_node(nid) {
3427 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3428 z = &NODE_DATA(nid)->node_zones[zone_type];
3429 if (populated_zone(z)) {
3430 if (zone_type < ZONE_NORMAL)
3431 low_kmem_size += z->present_pages;
3432 total_size += z->present_pages;
e325c90f
DR
3433 } else if (zone_type == ZONE_NORMAL) {
3434 /*
3435 * If any node has only lowmem, then node order
3436 * is preferred to allow kernel allocations
3437 * locally; otherwise, they can easily infringe
3438 * on other nodes when there is an abundance of
3439 * lowmem available to allocate from.
3440 */
3441 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3442 }
3443 }
3444 }
3445 if (!low_kmem_size || /* there are no DMA area. */
3446 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3447 return ZONELIST_ORDER_NODE;
3448 /*
3449 * look into each node's config.
3450 * If there is a node whose DMA/DMA32 memory is very big area on
3451 * local memory, NODE_ORDER may be suitable.
3452 */
37b07e41 3453 average_size = total_size /
4b0ef1fe 3454 (nodes_weight(node_states[N_MEMORY]) + 1);
f0c0b2b8
KH
3455 for_each_online_node(nid) {
3456 low_kmem_size = 0;
3457 total_size = 0;
3458 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3459 z = &NODE_DATA(nid)->node_zones[zone_type];
3460 if (populated_zone(z)) {
3461 if (zone_type < ZONE_NORMAL)
3462 low_kmem_size += z->present_pages;
3463 total_size += z->present_pages;
3464 }
3465 }
3466 if (low_kmem_size &&
3467 total_size > average_size && /* ignore small node */
3468 low_kmem_size > total_size * 70/100)
3469 return ZONELIST_ORDER_NODE;
3470 }
3471 return ZONELIST_ORDER_ZONE;
3472}
3473
3474static void set_zonelist_order(void)
3475{
3476 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3477 current_zonelist_order = default_zonelist_order();
3478 else
3479 current_zonelist_order = user_zonelist_order;
3480}
3481
3482static void build_zonelists(pg_data_t *pgdat)
3483{
3484 int j, node, load;
3485 enum zone_type i;
1da177e4 3486 nodemask_t used_mask;
f0c0b2b8
KH
3487 int local_node, prev_node;
3488 struct zonelist *zonelist;
3489 int order = current_zonelist_order;
1da177e4
LT
3490
3491 /* initialize zonelists */
523b9458 3492 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3493 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3494 zonelist->_zonerefs[0].zone = NULL;
3495 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3496 }
3497
3498 /* NUMA-aware ordering of nodes */
3499 local_node = pgdat->node_id;
62bc62a8 3500 load = nr_online_nodes;
1da177e4
LT
3501 prev_node = local_node;
3502 nodes_clear(used_mask);
f0c0b2b8 3503
f0c0b2b8
KH
3504 memset(node_order, 0, sizeof(node_order));
3505 j = 0;
3506
1da177e4
LT
3507 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3508 /*
3509 * We don't want to pressure a particular node.
3510 * So adding penalty to the first node in same
3511 * distance group to make it round-robin.
3512 */
957f822a
DR
3513 if (node_distance(local_node, node) !=
3514 node_distance(local_node, prev_node))
f0c0b2b8
KH
3515 node_load[node] = load;
3516
1da177e4
LT
3517 prev_node = node;
3518 load--;
f0c0b2b8
KH
3519 if (order == ZONELIST_ORDER_NODE)
3520 build_zonelists_in_node_order(pgdat, node);
3521 else
3522 node_order[j++] = node; /* remember order */
3523 }
1da177e4 3524
f0c0b2b8
KH
3525 if (order == ZONELIST_ORDER_ZONE) {
3526 /* calculate node order -- i.e., DMA last! */
3527 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3528 }
523b9458
CL
3529
3530 build_thisnode_zonelists(pgdat);
1da177e4
LT
3531}
3532
9276b1bc 3533/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3534static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3535{
54a6eb5c
MG
3536 struct zonelist *zonelist;
3537 struct zonelist_cache *zlc;
dd1a239f 3538 struct zoneref *z;
9276b1bc 3539
54a6eb5c
MG
3540 zonelist = &pgdat->node_zonelists[0];
3541 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3542 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3543 for (z = zonelist->_zonerefs; z->zone; z++)
3544 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3545}
3546
7aac7898
LS
3547#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3548/*
3549 * Return node id of node used for "local" allocations.
3550 * I.e., first node id of first zone in arg node's generic zonelist.
3551 * Used for initializing percpu 'numa_mem', which is used primarily
3552 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3553 */
3554int local_memory_node(int node)
3555{
3556 struct zone *zone;
3557
3558 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3559 gfp_zone(GFP_KERNEL),
3560 NULL,
3561 &zone);
3562 return zone->node;
3563}
3564#endif
f0c0b2b8 3565
1da177e4
LT
3566#else /* CONFIG_NUMA */
3567
f0c0b2b8
KH
3568static void set_zonelist_order(void)
3569{
3570 current_zonelist_order = ZONELIST_ORDER_ZONE;
3571}
3572
3573static void build_zonelists(pg_data_t *pgdat)
1da177e4 3574{
19655d34 3575 int node, local_node;
54a6eb5c
MG
3576 enum zone_type j;
3577 struct zonelist *zonelist;
1da177e4
LT
3578
3579 local_node = pgdat->node_id;
1da177e4 3580
54a6eb5c
MG
3581 zonelist = &pgdat->node_zonelists[0];
3582 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3583
54a6eb5c
MG
3584 /*
3585 * Now we build the zonelist so that it contains the zones
3586 * of all the other nodes.
3587 * We don't want to pressure a particular node, so when
3588 * building the zones for node N, we make sure that the
3589 * zones coming right after the local ones are those from
3590 * node N+1 (modulo N)
3591 */
3592 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3593 if (!node_online(node))
3594 continue;
3595 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3596 MAX_NR_ZONES - 1);
1da177e4 3597 }
54a6eb5c
MG
3598 for (node = 0; node < local_node; node++) {
3599 if (!node_online(node))
3600 continue;
3601 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3602 MAX_NR_ZONES - 1);
3603 }
3604
dd1a239f
MG
3605 zonelist->_zonerefs[j].zone = NULL;
3606 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3607}
3608
9276b1bc 3609/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3610static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3611{
54a6eb5c 3612 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3613}
3614
1da177e4
LT
3615#endif /* CONFIG_NUMA */
3616
99dcc3e5
CL
3617/*
3618 * Boot pageset table. One per cpu which is going to be used for all
3619 * zones and all nodes. The parameters will be set in such a way
3620 * that an item put on a list will immediately be handed over to
3621 * the buddy list. This is safe since pageset manipulation is done
3622 * with interrupts disabled.
3623 *
3624 * The boot_pagesets must be kept even after bootup is complete for
3625 * unused processors and/or zones. They do play a role for bootstrapping
3626 * hotplugged processors.
3627 *
3628 * zoneinfo_show() and maybe other functions do
3629 * not check if the processor is online before following the pageset pointer.
3630 * Other parts of the kernel may not check if the zone is available.
3631 */
3632static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3633static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3634static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3635
4eaf3f64
HL
3636/*
3637 * Global mutex to protect against size modification of zonelists
3638 * as well as to serialize pageset setup for the new populated zone.
3639 */
3640DEFINE_MUTEX(zonelists_mutex);
3641
9b1a4d38 3642/* return values int ....just for stop_machine() */
4ed7e022 3643static int __build_all_zonelists(void *data)
1da177e4 3644{
6811378e 3645 int nid;
99dcc3e5 3646 int cpu;
9adb62a5 3647 pg_data_t *self = data;
9276b1bc 3648
7f9cfb31
BL
3649#ifdef CONFIG_NUMA
3650 memset(node_load, 0, sizeof(node_load));
3651#endif
9adb62a5
JL
3652
3653 if (self && !node_online(self->node_id)) {
3654 build_zonelists(self);
3655 build_zonelist_cache(self);
3656 }
3657
9276b1bc 3658 for_each_online_node(nid) {
7ea1530a
CL
3659 pg_data_t *pgdat = NODE_DATA(nid);
3660
3661 build_zonelists(pgdat);
3662 build_zonelist_cache(pgdat);
9276b1bc 3663 }
99dcc3e5
CL
3664
3665 /*
3666 * Initialize the boot_pagesets that are going to be used
3667 * for bootstrapping processors. The real pagesets for
3668 * each zone will be allocated later when the per cpu
3669 * allocator is available.
3670 *
3671 * boot_pagesets are used also for bootstrapping offline
3672 * cpus if the system is already booted because the pagesets
3673 * are needed to initialize allocators on a specific cpu too.
3674 * F.e. the percpu allocator needs the page allocator which
3675 * needs the percpu allocator in order to allocate its pagesets
3676 * (a chicken-egg dilemma).
3677 */
7aac7898 3678 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3679 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3680
7aac7898
LS
3681#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3682 /*
3683 * We now know the "local memory node" for each node--
3684 * i.e., the node of the first zone in the generic zonelist.
3685 * Set up numa_mem percpu variable for on-line cpus. During
3686 * boot, only the boot cpu should be on-line; we'll init the
3687 * secondary cpus' numa_mem as they come on-line. During
3688 * node/memory hotplug, we'll fixup all on-line cpus.
3689 */
3690 if (cpu_online(cpu))
3691 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3692#endif
3693 }
3694
6811378e
YG
3695 return 0;
3696}
3697
4eaf3f64
HL
3698/*
3699 * Called with zonelists_mutex held always
3700 * unless system_state == SYSTEM_BOOTING.
3701 */
9adb62a5 3702void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3703{
f0c0b2b8
KH
3704 set_zonelist_order();
3705
6811378e 3706 if (system_state == SYSTEM_BOOTING) {
423b41d7 3707 __build_all_zonelists(NULL);
68ad8df4 3708 mminit_verify_zonelist();
6811378e
YG
3709 cpuset_init_current_mems_allowed();
3710 } else {
183ff22b 3711 /* we have to stop all cpus to guarantee there is no user
6811378e 3712 of zonelist */
e9959f0f 3713#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3714 if (zone)
3715 setup_zone_pageset(zone);
e9959f0f 3716#endif
9adb62a5 3717 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3718 /* cpuset refresh routine should be here */
3719 }
bd1e22b8 3720 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3721 /*
3722 * Disable grouping by mobility if the number of pages in the
3723 * system is too low to allow the mechanism to work. It would be
3724 * more accurate, but expensive to check per-zone. This check is
3725 * made on memory-hotadd so a system can start with mobility
3726 * disabled and enable it later
3727 */
d9c23400 3728 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3729 page_group_by_mobility_disabled = 1;
3730 else
3731 page_group_by_mobility_disabled = 0;
3732
3733 printk("Built %i zonelists in %s order, mobility grouping %s. "
3734 "Total pages: %ld\n",
62bc62a8 3735 nr_online_nodes,
f0c0b2b8 3736 zonelist_order_name[current_zonelist_order],
9ef9acb0 3737 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3738 vm_total_pages);
3739#ifdef CONFIG_NUMA
3740 printk("Policy zone: %s\n", zone_names[policy_zone]);
3741#endif
1da177e4
LT
3742}
3743
3744/*
3745 * Helper functions to size the waitqueue hash table.
3746 * Essentially these want to choose hash table sizes sufficiently
3747 * large so that collisions trying to wait on pages are rare.
3748 * But in fact, the number of active page waitqueues on typical
3749 * systems is ridiculously low, less than 200. So this is even
3750 * conservative, even though it seems large.
3751 *
3752 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3753 * waitqueues, i.e. the size of the waitq table given the number of pages.
3754 */
3755#define PAGES_PER_WAITQUEUE 256
3756
cca448fe 3757#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3758static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3759{
3760 unsigned long size = 1;
3761
3762 pages /= PAGES_PER_WAITQUEUE;
3763
3764 while (size < pages)
3765 size <<= 1;
3766
3767 /*
3768 * Once we have dozens or even hundreds of threads sleeping
3769 * on IO we've got bigger problems than wait queue collision.
3770 * Limit the size of the wait table to a reasonable size.
3771 */
3772 size = min(size, 4096UL);
3773
3774 return max(size, 4UL);
3775}
cca448fe
YG
3776#else
3777/*
3778 * A zone's size might be changed by hot-add, so it is not possible to determine
3779 * a suitable size for its wait_table. So we use the maximum size now.
3780 *
3781 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3782 *
3783 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3784 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3785 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3786 *
3787 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3788 * or more by the traditional way. (See above). It equals:
3789 *
3790 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3791 * ia64(16K page size) : = ( 8G + 4M)byte.
3792 * powerpc (64K page size) : = (32G +16M)byte.
3793 */
3794static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3795{
3796 return 4096UL;
3797}
3798#endif
1da177e4
LT
3799
3800/*
3801 * This is an integer logarithm so that shifts can be used later
3802 * to extract the more random high bits from the multiplicative
3803 * hash function before the remainder is taken.
3804 */
3805static inline unsigned long wait_table_bits(unsigned long size)
3806{
3807 return ffz(~size);
3808}
3809
3810#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3811
6d3163ce
AH
3812/*
3813 * Check if a pageblock contains reserved pages
3814 */
3815static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3816{
3817 unsigned long pfn;
3818
3819 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3820 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3821 return 1;
3822 }
3823 return 0;
3824}
3825
56fd56b8 3826/*
d9c23400 3827 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3828 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3829 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3830 * higher will lead to a bigger reserve which will get freed as contiguous
3831 * blocks as reclaim kicks in
3832 */
3833static void setup_zone_migrate_reserve(struct zone *zone)
3834{
6d3163ce 3835 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3836 struct page *page;
78986a67
MG
3837 unsigned long block_migratetype;
3838 int reserve;
56fd56b8 3839
d0215638
MH
3840 /*
3841 * Get the start pfn, end pfn and the number of blocks to reserve
3842 * We have to be careful to be aligned to pageblock_nr_pages to
3843 * make sure that we always check pfn_valid for the first page in
3844 * the block.
3845 */
56fd56b8 3846 start_pfn = zone->zone_start_pfn;
108bcc96 3847 end_pfn = zone_end_pfn(zone);
d0215638 3848 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3849 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3850 pageblock_order;
56fd56b8 3851
78986a67
MG
3852 /*
3853 * Reserve blocks are generally in place to help high-order atomic
3854 * allocations that are short-lived. A min_free_kbytes value that
3855 * would result in more than 2 reserve blocks for atomic allocations
3856 * is assumed to be in place to help anti-fragmentation for the
3857 * future allocation of hugepages at runtime.
3858 */
3859 reserve = min(2, reserve);
3860
d9c23400 3861 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3862 if (!pfn_valid(pfn))
3863 continue;
3864 page = pfn_to_page(pfn);
3865
344c790e
AL
3866 /* Watch out for overlapping nodes */
3867 if (page_to_nid(page) != zone_to_nid(zone))
3868 continue;
3869
56fd56b8
MG
3870 block_migratetype = get_pageblock_migratetype(page);
3871
938929f1
MG
3872 /* Only test what is necessary when the reserves are not met */
3873 if (reserve > 0) {
3874 /*
3875 * Blocks with reserved pages will never free, skip
3876 * them.
3877 */
3878 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3879 if (pageblock_is_reserved(pfn, block_end_pfn))
3880 continue;
56fd56b8 3881
938929f1
MG
3882 /* If this block is reserved, account for it */
3883 if (block_migratetype == MIGRATE_RESERVE) {
3884 reserve--;
3885 continue;
3886 }
3887
3888 /* Suitable for reserving if this block is movable */
3889 if (block_migratetype == MIGRATE_MOVABLE) {
3890 set_pageblock_migratetype(page,
3891 MIGRATE_RESERVE);
3892 move_freepages_block(zone, page,
3893 MIGRATE_RESERVE);
3894 reserve--;
3895 continue;
3896 }
56fd56b8
MG
3897 }
3898
3899 /*
3900 * If the reserve is met and this is a previous reserved block,
3901 * take it back
3902 */
3903 if (block_migratetype == MIGRATE_RESERVE) {
3904 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3905 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3906 }
3907 }
3908}
ac0e5b7a 3909
1da177e4
LT
3910/*
3911 * Initially all pages are reserved - free ones are freed
3912 * up by free_all_bootmem() once the early boot process is
3913 * done. Non-atomic initialization, single-pass.
3914 */
c09b4240 3915void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3916 unsigned long start_pfn, enum memmap_context context)
1da177e4 3917{
1da177e4 3918 struct page *page;
29751f69
AW
3919 unsigned long end_pfn = start_pfn + size;
3920 unsigned long pfn;
86051ca5 3921 struct zone *z;
1da177e4 3922
22b31eec
HD
3923 if (highest_memmap_pfn < end_pfn - 1)
3924 highest_memmap_pfn = end_pfn - 1;
3925
86051ca5 3926 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3927 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3928 /*
3929 * There can be holes in boot-time mem_map[]s
3930 * handed to this function. They do not
3931 * exist on hotplugged memory.
3932 */
3933 if (context == MEMMAP_EARLY) {
3934 if (!early_pfn_valid(pfn))
3935 continue;
3936 if (!early_pfn_in_nid(pfn, nid))
3937 continue;
3938 }
d41dee36
AW
3939 page = pfn_to_page(pfn);
3940 set_page_links(page, zone, nid, pfn);
708614e6 3941 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3942 init_page_count(page);
22b751c3
MG
3943 page_mapcount_reset(page);
3944 page_nid_reset_last(page);
1da177e4 3945 SetPageReserved(page);
b2a0ac88
MG
3946 /*
3947 * Mark the block movable so that blocks are reserved for
3948 * movable at startup. This will force kernel allocations
3949 * to reserve their blocks rather than leaking throughout
3950 * the address space during boot when many long-lived
56fd56b8
MG
3951 * kernel allocations are made. Later some blocks near
3952 * the start are marked MIGRATE_RESERVE by
3953 * setup_zone_migrate_reserve()
86051ca5
KH
3954 *
3955 * bitmap is created for zone's valid pfn range. but memmap
3956 * can be created for invalid pages (for alignment)
3957 * check here not to call set_pageblock_migratetype() against
3958 * pfn out of zone.
b2a0ac88 3959 */
86051ca5 3960 if ((z->zone_start_pfn <= pfn)
108bcc96 3961 && (pfn < zone_end_pfn(z))
86051ca5 3962 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3963 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3964
1da177e4
LT
3965 INIT_LIST_HEAD(&page->lru);
3966#ifdef WANT_PAGE_VIRTUAL
3967 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3968 if (!is_highmem_idx(zone))
3212c6be 3969 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3970#endif
1da177e4
LT
3971 }
3972}
3973
1e548deb 3974static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3975{
b2a0ac88
MG
3976 int order, t;
3977 for_each_migratetype_order(order, t) {
3978 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3979 zone->free_area[order].nr_free = 0;
3980 }
3981}
3982
3983#ifndef __HAVE_ARCH_MEMMAP_INIT
3984#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3985 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3986#endif
3987
4ed7e022 3988static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3989{
3a6be87f 3990#ifdef CONFIG_MMU
e7c8d5c9
CL
3991 int batch;
3992
3993 /*
3994 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3995 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3996 *
3997 * OK, so we don't know how big the cache is. So guess.
3998 */
b40da049 3999 batch = zone->managed_pages / 1024;
ba56e91c
SR
4000 if (batch * PAGE_SIZE > 512 * 1024)
4001 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4002 batch /= 4; /* We effectively *= 4 below */
4003 if (batch < 1)
4004 batch = 1;
4005
4006 /*
0ceaacc9
NP
4007 * Clamp the batch to a 2^n - 1 value. Having a power
4008 * of 2 value was found to be more likely to have
4009 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4010 *
0ceaacc9
NP
4011 * For example if 2 tasks are alternately allocating
4012 * batches of pages, one task can end up with a lot
4013 * of pages of one half of the possible page colors
4014 * and the other with pages of the other colors.
e7c8d5c9 4015 */
9155203a 4016 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4017
e7c8d5c9 4018 return batch;
3a6be87f
DH
4019
4020#else
4021 /* The deferral and batching of frees should be suppressed under NOMMU
4022 * conditions.
4023 *
4024 * The problem is that NOMMU needs to be able to allocate large chunks
4025 * of contiguous memory as there's no hardware page translation to
4026 * assemble apparent contiguous memory from discontiguous pages.
4027 *
4028 * Queueing large contiguous runs of pages for batching, however,
4029 * causes the pages to actually be freed in smaller chunks. As there
4030 * can be a significant delay between the individual batches being
4031 * recycled, this leads to the once large chunks of space being
4032 * fragmented and becoming unavailable for high-order allocations.
4033 */
4034 return 0;
4035#endif
e7c8d5c9
CL
4036}
4037
8d7a8fa9
CS
4038/*
4039 * pcp->high and pcp->batch values are related and dependent on one another:
4040 * ->batch must never be higher then ->high.
4041 * The following function updates them in a safe manner without read side
4042 * locking.
4043 *
4044 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4045 * those fields changing asynchronously (acording the the above rule).
4046 *
4047 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4048 * outside of boot time (or some other assurance that no concurrent updaters
4049 * exist).
4050 */
4051static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4052 unsigned long batch)
4053{
4054 /* start with a fail safe value for batch */
4055 pcp->batch = 1;
4056 smp_wmb();
4057
4058 /* Update high, then batch, in order */
4059 pcp->high = high;
4060 smp_wmb();
4061
4062 pcp->batch = batch;
4063}
4064
4008bab7
CS
4065/* a companion to setup_pagelist_highmark() */
4066static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4067{
8d7a8fa9 4068 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4069}
4070
b69a7288 4071static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
4072{
4073 struct per_cpu_pages *pcp;
5f8dcc21 4074 int migratetype;
2caaad41 4075
1c6fe946
MD
4076 memset(p, 0, sizeof(*p));
4077
3dfa5721 4078 pcp = &p->pcp;
2caaad41 4079 pcp->count = 0;
4008bab7 4080 pageset_set_batch(p, batch);
5f8dcc21
MG
4081 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4082 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4083}
4084
8ad4b1fb
RS
4085/*
4086 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4087 * to the value high for the pageset p.
4088 */
8ad4b1fb
RS
4089static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4090 unsigned long high)
4091{
8d7a8fa9
CS
4092 unsigned long batch = max(1UL, high / 4);
4093 if ((high / 4) > (PAGE_SHIFT * 8))
4094 batch = PAGE_SHIFT * 8;
8ad4b1fb 4095
8d7a8fa9 4096 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4097}
4098
4ed7e022 4099static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4100{
4101 int cpu;
4102
4103 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4104
4105 for_each_possible_cpu(cpu) {
4106 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4107
4108 setup_pageset(pcp, zone_batchsize(zone));
4109
4110 if (percpu_pagelist_fraction)
4111 setup_pagelist_highmark(pcp,
b40da049 4112 (zone->managed_pages /
319774e2
WF
4113 percpu_pagelist_fraction));
4114 }
4115}
4116
2caaad41 4117/*
99dcc3e5
CL
4118 * Allocate per cpu pagesets and initialize them.
4119 * Before this call only boot pagesets were available.
e7c8d5c9 4120 */
99dcc3e5 4121void __init setup_per_cpu_pageset(void)
e7c8d5c9 4122{
99dcc3e5 4123 struct zone *zone;
e7c8d5c9 4124
319774e2
WF
4125 for_each_populated_zone(zone)
4126 setup_zone_pageset(zone);
e7c8d5c9
CL
4127}
4128
577a32f6 4129static noinline __init_refok
cca448fe 4130int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4131{
4132 int i;
4133 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4134 size_t alloc_size;
ed8ece2e
DH
4135
4136 /*
4137 * The per-page waitqueue mechanism uses hashed waitqueues
4138 * per zone.
4139 */
02b694de
YG
4140 zone->wait_table_hash_nr_entries =
4141 wait_table_hash_nr_entries(zone_size_pages);
4142 zone->wait_table_bits =
4143 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4144 alloc_size = zone->wait_table_hash_nr_entries
4145 * sizeof(wait_queue_head_t);
4146
cd94b9db 4147 if (!slab_is_available()) {
cca448fe 4148 zone->wait_table = (wait_queue_head_t *)
8f389a99 4149 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4150 } else {
4151 /*
4152 * This case means that a zone whose size was 0 gets new memory
4153 * via memory hot-add.
4154 * But it may be the case that a new node was hot-added. In
4155 * this case vmalloc() will not be able to use this new node's
4156 * memory - this wait_table must be initialized to use this new
4157 * node itself as well.
4158 * To use this new node's memory, further consideration will be
4159 * necessary.
4160 */
8691f3a7 4161 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4162 }
4163 if (!zone->wait_table)
4164 return -ENOMEM;
ed8ece2e 4165
02b694de 4166 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4167 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4168
4169 return 0;
ed8ece2e
DH
4170}
4171
c09b4240 4172static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4173{
99dcc3e5
CL
4174 /*
4175 * per cpu subsystem is not up at this point. The following code
4176 * relies on the ability of the linker to provide the
4177 * offset of a (static) per cpu variable into the per cpu area.
4178 */
4179 zone->pageset = &boot_pageset;
ed8ece2e 4180
f5335c0f 4181 if (zone->present_pages)
99dcc3e5
CL
4182 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4183 zone->name, zone->present_pages,
4184 zone_batchsize(zone));
ed8ece2e
DH
4185}
4186
4ed7e022 4187int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4188 unsigned long zone_start_pfn,
a2f3aa02
DH
4189 unsigned long size,
4190 enum memmap_context context)
ed8ece2e
DH
4191{
4192 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4193 int ret;
4194 ret = zone_wait_table_init(zone, size);
4195 if (ret)
4196 return ret;
ed8ece2e
DH
4197 pgdat->nr_zones = zone_idx(zone) + 1;
4198
ed8ece2e
DH
4199 zone->zone_start_pfn = zone_start_pfn;
4200
708614e6
MG
4201 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4202 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4203 pgdat->node_id,
4204 (unsigned long)zone_idx(zone),
4205 zone_start_pfn, (zone_start_pfn + size));
4206
1e548deb 4207 zone_init_free_lists(zone);
718127cc
YG
4208
4209 return 0;
ed8ece2e
DH
4210}
4211
0ee332c1 4212#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4213#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4214/*
4215 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4216 * Architectures may implement their own version but if add_active_range()
4217 * was used and there are no special requirements, this is a convenient
4218 * alternative
4219 */
f2dbcfa7 4220int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4221{
c13291a5
TH
4222 unsigned long start_pfn, end_pfn;
4223 int i, nid;
7c243c71
RA
4224 /*
4225 * NOTE: The following SMP-unsafe globals are only used early in boot
4226 * when the kernel is running single-threaded.
4227 */
4228 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4229 static int __meminitdata last_nid;
4230
4231 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4232 return last_nid;
c713216d 4233
c13291a5 4234 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7c243c71
RA
4235 if (start_pfn <= pfn && pfn < end_pfn) {
4236 last_start_pfn = start_pfn;
4237 last_end_pfn = end_pfn;
4238 last_nid = nid;
c13291a5 4239 return nid;
7c243c71 4240 }
cc2559bc
KH
4241 /* This is a memory hole */
4242 return -1;
c713216d
MG
4243}
4244#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4245
f2dbcfa7
KH
4246int __meminit early_pfn_to_nid(unsigned long pfn)
4247{
cc2559bc
KH
4248 int nid;
4249
4250 nid = __early_pfn_to_nid(pfn);
4251 if (nid >= 0)
4252 return nid;
4253 /* just returns 0 */
4254 return 0;
f2dbcfa7
KH
4255}
4256
cc2559bc
KH
4257#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4258bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4259{
4260 int nid;
4261
4262 nid = __early_pfn_to_nid(pfn);
4263 if (nid >= 0 && nid != node)
4264 return false;
4265 return true;
4266}
4267#endif
f2dbcfa7 4268
c713216d
MG
4269/**
4270 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4271 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4272 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4273 *
4274 * If an architecture guarantees that all ranges registered with
4275 * add_active_ranges() contain no holes and may be freed, this
4276 * this function may be used instead of calling free_bootmem() manually.
4277 */
c13291a5 4278void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4279{
c13291a5
TH
4280 unsigned long start_pfn, end_pfn;
4281 int i, this_nid;
edbe7d23 4282
c13291a5
TH
4283 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4284 start_pfn = min(start_pfn, max_low_pfn);
4285 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4286
c13291a5
TH
4287 if (start_pfn < end_pfn)
4288 free_bootmem_node(NODE_DATA(this_nid),
4289 PFN_PHYS(start_pfn),
4290 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4291 }
edbe7d23 4292}
edbe7d23 4293
c713216d
MG
4294/**
4295 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4296 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4297 *
4298 * If an architecture guarantees that all ranges registered with
4299 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4300 * function may be used instead of calling memory_present() manually.
c713216d
MG
4301 */
4302void __init sparse_memory_present_with_active_regions(int nid)
4303{
c13291a5
TH
4304 unsigned long start_pfn, end_pfn;
4305 int i, this_nid;
c713216d 4306
c13291a5
TH
4307 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4308 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4309}
4310
4311/**
4312 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4313 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4314 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4315 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4316 *
4317 * It returns the start and end page frame of a node based on information
4318 * provided by an arch calling add_active_range(). If called for a node
4319 * with no available memory, a warning is printed and the start and end
88ca3b94 4320 * PFNs will be 0.
c713216d 4321 */
a3142c8e 4322void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4323 unsigned long *start_pfn, unsigned long *end_pfn)
4324{
c13291a5 4325 unsigned long this_start_pfn, this_end_pfn;
c713216d 4326 int i;
c13291a5 4327
c713216d
MG
4328 *start_pfn = -1UL;
4329 *end_pfn = 0;
4330
c13291a5
TH
4331 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4332 *start_pfn = min(*start_pfn, this_start_pfn);
4333 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4334 }
4335
633c0666 4336 if (*start_pfn == -1UL)
c713216d 4337 *start_pfn = 0;
c713216d
MG
4338}
4339
2a1e274a
MG
4340/*
4341 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4342 * assumption is made that zones within a node are ordered in monotonic
4343 * increasing memory addresses so that the "highest" populated zone is used
4344 */
b69a7288 4345static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4346{
4347 int zone_index;
4348 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4349 if (zone_index == ZONE_MOVABLE)
4350 continue;
4351
4352 if (arch_zone_highest_possible_pfn[zone_index] >
4353 arch_zone_lowest_possible_pfn[zone_index])
4354 break;
4355 }
4356
4357 VM_BUG_ON(zone_index == -1);
4358 movable_zone = zone_index;
4359}
4360
4361/*
4362 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4363 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4364 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4365 * in each node depending on the size of each node and how evenly kernelcore
4366 * is distributed. This helper function adjusts the zone ranges
4367 * provided by the architecture for a given node by using the end of the
4368 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4369 * zones within a node are in order of monotonic increases memory addresses
4370 */
b69a7288 4371static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4372 unsigned long zone_type,
4373 unsigned long node_start_pfn,
4374 unsigned long node_end_pfn,
4375 unsigned long *zone_start_pfn,
4376 unsigned long *zone_end_pfn)
4377{
4378 /* Only adjust if ZONE_MOVABLE is on this node */
4379 if (zone_movable_pfn[nid]) {
4380 /* Size ZONE_MOVABLE */
4381 if (zone_type == ZONE_MOVABLE) {
4382 *zone_start_pfn = zone_movable_pfn[nid];
4383 *zone_end_pfn = min(node_end_pfn,
4384 arch_zone_highest_possible_pfn[movable_zone]);
4385
4386 /* Adjust for ZONE_MOVABLE starting within this range */
4387 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4388 *zone_end_pfn > zone_movable_pfn[nid]) {
4389 *zone_end_pfn = zone_movable_pfn[nid];
4390
4391 /* Check if this whole range is within ZONE_MOVABLE */
4392 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4393 *zone_start_pfn = *zone_end_pfn;
4394 }
4395}
4396
c713216d
MG
4397/*
4398 * Return the number of pages a zone spans in a node, including holes
4399 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4400 */
6ea6e688 4401static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4402 unsigned long zone_type,
4403 unsigned long *ignored)
4404{
4405 unsigned long node_start_pfn, node_end_pfn;
4406 unsigned long zone_start_pfn, zone_end_pfn;
4407
4408 /* Get the start and end of the node and zone */
4409 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4410 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4411 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4412 adjust_zone_range_for_zone_movable(nid, zone_type,
4413 node_start_pfn, node_end_pfn,
4414 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4415
4416 /* Check that this node has pages within the zone's required range */
4417 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4418 return 0;
4419
4420 /* Move the zone boundaries inside the node if necessary */
4421 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4422 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4423
4424 /* Return the spanned pages */
4425 return zone_end_pfn - zone_start_pfn;
4426}
4427
4428/*
4429 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4430 * then all holes in the requested range will be accounted for.
c713216d 4431 */
32996250 4432unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4433 unsigned long range_start_pfn,
4434 unsigned long range_end_pfn)
4435{
96e907d1
TH
4436 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4437 unsigned long start_pfn, end_pfn;
4438 int i;
c713216d 4439
96e907d1
TH
4440 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4441 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4442 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4443 nr_absent -= end_pfn - start_pfn;
c713216d 4444 }
96e907d1 4445 return nr_absent;
c713216d
MG
4446}
4447
4448/**
4449 * absent_pages_in_range - Return number of page frames in holes within a range
4450 * @start_pfn: The start PFN to start searching for holes
4451 * @end_pfn: The end PFN to stop searching for holes
4452 *
88ca3b94 4453 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4454 */
4455unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4456 unsigned long end_pfn)
4457{
4458 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4459}
4460
4461/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4462static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4463 unsigned long zone_type,
4464 unsigned long *ignored)
4465{
96e907d1
TH
4466 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4467 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4468 unsigned long node_start_pfn, node_end_pfn;
4469 unsigned long zone_start_pfn, zone_end_pfn;
4470
4471 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4472 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4473 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4474
2a1e274a
MG
4475 adjust_zone_range_for_zone_movable(nid, zone_type,
4476 node_start_pfn, node_end_pfn,
4477 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4478 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4479}
0e0b864e 4480
0ee332c1 4481#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4482static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4483 unsigned long zone_type,
4484 unsigned long *zones_size)
4485{
4486 return zones_size[zone_type];
4487}
4488
6ea6e688 4489static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4490 unsigned long zone_type,
4491 unsigned long *zholes_size)
4492{
4493 if (!zholes_size)
4494 return 0;
4495
4496 return zholes_size[zone_type];
4497}
20e6926d 4498
0ee332c1 4499#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4500
a3142c8e 4501static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4502 unsigned long *zones_size, unsigned long *zholes_size)
4503{
4504 unsigned long realtotalpages, totalpages = 0;
4505 enum zone_type i;
4506
4507 for (i = 0; i < MAX_NR_ZONES; i++)
4508 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4509 zones_size);
4510 pgdat->node_spanned_pages = totalpages;
4511
4512 realtotalpages = totalpages;
4513 for (i = 0; i < MAX_NR_ZONES; i++)
4514 realtotalpages -=
4515 zone_absent_pages_in_node(pgdat->node_id, i,
4516 zholes_size);
4517 pgdat->node_present_pages = realtotalpages;
4518 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4519 realtotalpages);
4520}
4521
835c134e
MG
4522#ifndef CONFIG_SPARSEMEM
4523/*
4524 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4525 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4526 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4527 * round what is now in bits to nearest long in bits, then return it in
4528 * bytes.
4529 */
7c45512d 4530static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
4531{
4532 unsigned long usemapsize;
4533
7c45512d 4534 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
4535 usemapsize = roundup(zonesize, pageblock_nr_pages);
4536 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4537 usemapsize *= NR_PAGEBLOCK_BITS;
4538 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4539
4540 return usemapsize / 8;
4541}
4542
4543static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
4544 struct zone *zone,
4545 unsigned long zone_start_pfn,
4546 unsigned long zonesize)
835c134e 4547{
7c45512d 4548 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 4549 zone->pageblock_flags = NULL;
58a01a45 4550 if (usemapsize)
8f389a99
YL
4551 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4552 usemapsize);
835c134e
MG
4553}
4554#else
7c45512d
LT
4555static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4556 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
4557#endif /* CONFIG_SPARSEMEM */
4558
d9c23400 4559#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4560
d9c23400 4561/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4562void __init set_pageblock_order(void)
d9c23400 4563{
955c1cd7
AM
4564 unsigned int order;
4565
d9c23400
MG
4566 /* Check that pageblock_nr_pages has not already been setup */
4567 if (pageblock_order)
4568 return;
4569
955c1cd7
AM
4570 if (HPAGE_SHIFT > PAGE_SHIFT)
4571 order = HUGETLB_PAGE_ORDER;
4572 else
4573 order = MAX_ORDER - 1;
4574
d9c23400
MG
4575 /*
4576 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4577 * This value may be variable depending on boot parameters on IA64 and
4578 * powerpc.
d9c23400
MG
4579 */
4580 pageblock_order = order;
4581}
4582#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4583
ba72cb8c
MG
4584/*
4585 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4586 * is unused as pageblock_order is set at compile-time. See
4587 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4588 * the kernel config
ba72cb8c 4589 */
ca57df79 4590void __init set_pageblock_order(void)
ba72cb8c 4591{
ba72cb8c 4592}
d9c23400
MG
4593
4594#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4595
01cefaef
JL
4596static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4597 unsigned long present_pages)
4598{
4599 unsigned long pages = spanned_pages;
4600
4601 /*
4602 * Provide a more accurate estimation if there are holes within
4603 * the zone and SPARSEMEM is in use. If there are holes within the
4604 * zone, each populated memory region may cost us one or two extra
4605 * memmap pages due to alignment because memmap pages for each
4606 * populated regions may not naturally algined on page boundary.
4607 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4608 */
4609 if (spanned_pages > present_pages + (present_pages >> 4) &&
4610 IS_ENABLED(CONFIG_SPARSEMEM))
4611 pages = present_pages;
4612
4613 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4614}
4615
1da177e4
LT
4616/*
4617 * Set up the zone data structures:
4618 * - mark all pages reserved
4619 * - mark all memory queues empty
4620 * - clear the memory bitmaps
6527af5d
MK
4621 *
4622 * NOTE: pgdat should get zeroed by caller.
1da177e4 4623 */
b5a0e011 4624static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4625 unsigned long *zones_size, unsigned long *zholes_size)
4626{
2f1b6248 4627 enum zone_type j;
ed8ece2e 4628 int nid = pgdat->node_id;
1da177e4 4629 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4630 int ret;
1da177e4 4631
208d54e5 4632 pgdat_resize_init(pgdat);
8177a420
AA
4633#ifdef CONFIG_NUMA_BALANCING
4634 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4635 pgdat->numabalancing_migrate_nr_pages = 0;
4636 pgdat->numabalancing_migrate_next_window = jiffies;
4637#endif
1da177e4 4638 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4639 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4640 pgdat_page_cgroup_init(pgdat);
5f63b720 4641
1da177e4
LT
4642 for (j = 0; j < MAX_NR_ZONES; j++) {
4643 struct zone *zone = pgdat->node_zones + j;
9feedc9d 4644 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 4645
c713216d 4646 size = zone_spanned_pages_in_node(nid, j, zones_size);
9feedc9d 4647 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
c713216d 4648 zholes_size);
1da177e4 4649
0e0b864e 4650 /*
9feedc9d 4651 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
4652 * is used by this zone for memmap. This affects the watermark
4653 * and per-cpu initialisations
4654 */
01cefaef 4655 memmap_pages = calc_memmap_size(size, realsize);
9feedc9d
JL
4656 if (freesize >= memmap_pages) {
4657 freesize -= memmap_pages;
5594c8c8
YL
4658 if (memmap_pages)
4659 printk(KERN_DEBUG
4660 " %s zone: %lu pages used for memmap\n",
4661 zone_names[j], memmap_pages);
0e0b864e
MG
4662 } else
4663 printk(KERN_WARNING
9feedc9d
JL
4664 " %s zone: %lu pages exceeds freesize %lu\n",
4665 zone_names[j], memmap_pages, freesize);
0e0b864e 4666
6267276f 4667 /* Account for reserved pages */
9feedc9d
JL
4668 if (j == 0 && freesize > dma_reserve) {
4669 freesize -= dma_reserve;
d903ef9f 4670 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4671 zone_names[0], dma_reserve);
0e0b864e
MG
4672 }
4673
98d2b0eb 4674 if (!is_highmem_idx(j))
9feedc9d 4675 nr_kernel_pages += freesize;
01cefaef
JL
4676 /* Charge for highmem memmap if there are enough kernel pages */
4677 else if (nr_kernel_pages > memmap_pages * 2)
4678 nr_kernel_pages -= memmap_pages;
9feedc9d 4679 nr_all_pages += freesize;
1da177e4
LT
4680
4681 zone->spanned_pages = size;
306f2e9e 4682 zone->present_pages = realsize;
9feedc9d
JL
4683 /*
4684 * Set an approximate value for lowmem here, it will be adjusted
4685 * when the bootmem allocator frees pages into the buddy system.
4686 * And all highmem pages will be managed by the buddy system.
4687 */
4688 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 4689#ifdef CONFIG_NUMA
d5f541ed 4690 zone->node = nid;
9feedc9d 4691 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 4692 / 100;
9feedc9d 4693 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 4694#endif
1da177e4
LT
4695 zone->name = zone_names[j];
4696 spin_lock_init(&zone->lock);
4697 spin_lock_init(&zone->lru_lock);
bdc8cb98 4698 zone_seqlock_init(zone);
1da177e4 4699 zone->zone_pgdat = pgdat;
1da177e4 4700
ed8ece2e 4701 zone_pcp_init(zone);
bea8c150 4702 lruvec_init(&zone->lruvec);
1da177e4
LT
4703 if (!size)
4704 continue;
4705
955c1cd7 4706 set_pageblock_order();
7c45512d 4707 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
4708 ret = init_currently_empty_zone(zone, zone_start_pfn,
4709 size, MEMMAP_EARLY);
718127cc 4710 BUG_ON(ret);
76cdd58e 4711 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4712 zone_start_pfn += size;
1da177e4
LT
4713 }
4714}
4715
577a32f6 4716static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4717{
1da177e4
LT
4718 /* Skip empty nodes */
4719 if (!pgdat->node_spanned_pages)
4720 return;
4721
d41dee36 4722#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4723 /* ia64 gets its own node_mem_map, before this, without bootmem */
4724 if (!pgdat->node_mem_map) {
e984bb43 4725 unsigned long size, start, end;
d41dee36
AW
4726 struct page *map;
4727
e984bb43
BP
4728 /*
4729 * The zone's endpoints aren't required to be MAX_ORDER
4730 * aligned but the node_mem_map endpoints must be in order
4731 * for the buddy allocator to function correctly.
4732 */
4733 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 4734 end = pgdat_end_pfn(pgdat);
e984bb43
BP
4735 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4736 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4737 map = alloc_remap(pgdat->node_id, size);
4738 if (!map)
8f389a99 4739 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4740 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4741 }
12d810c1 4742#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4743 /*
4744 * With no DISCONTIG, the global mem_map is just set as node 0's
4745 */
c713216d 4746 if (pgdat == NODE_DATA(0)) {
1da177e4 4747 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4748#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4749 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4750 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4751#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4752 }
1da177e4 4753#endif
d41dee36 4754#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4755}
4756
9109fb7b
JW
4757void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4758 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4759{
9109fb7b
JW
4760 pg_data_t *pgdat = NODE_DATA(nid);
4761
88fdf75d 4762 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4763 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4764
1da177e4
LT
4765 pgdat->node_id = nid;
4766 pgdat->node_start_pfn = node_start_pfn;
957f822a 4767 init_zone_allows_reclaim(nid);
c713216d 4768 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4769
4770 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4771#ifdef CONFIG_FLAT_NODE_MEM_MAP
4772 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4773 nid, (unsigned long)pgdat,
4774 (unsigned long)pgdat->node_mem_map);
4775#endif
1da177e4
LT
4776
4777 free_area_init_core(pgdat, zones_size, zholes_size);
4778}
4779
0ee332c1 4780#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4781
4782#if MAX_NUMNODES > 1
4783/*
4784 * Figure out the number of possible node ids.
4785 */
f9872caf 4786void __init setup_nr_node_ids(void)
418508c1
MS
4787{
4788 unsigned int node;
4789 unsigned int highest = 0;
4790
4791 for_each_node_mask(node, node_possible_map)
4792 highest = node;
4793 nr_node_ids = highest + 1;
4794}
418508c1
MS
4795#endif
4796
1e01979c
TH
4797/**
4798 * node_map_pfn_alignment - determine the maximum internode alignment
4799 *
4800 * This function should be called after node map is populated and sorted.
4801 * It calculates the maximum power of two alignment which can distinguish
4802 * all the nodes.
4803 *
4804 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4805 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4806 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4807 * shifted, 1GiB is enough and this function will indicate so.
4808 *
4809 * This is used to test whether pfn -> nid mapping of the chosen memory
4810 * model has fine enough granularity to avoid incorrect mapping for the
4811 * populated node map.
4812 *
4813 * Returns the determined alignment in pfn's. 0 if there is no alignment
4814 * requirement (single node).
4815 */
4816unsigned long __init node_map_pfn_alignment(void)
4817{
4818 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4819 unsigned long start, end, mask;
1e01979c 4820 int last_nid = -1;
c13291a5 4821 int i, nid;
1e01979c 4822
c13291a5 4823 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4824 if (!start || last_nid < 0 || last_nid == nid) {
4825 last_nid = nid;
4826 last_end = end;
4827 continue;
4828 }
4829
4830 /*
4831 * Start with a mask granular enough to pin-point to the
4832 * start pfn and tick off bits one-by-one until it becomes
4833 * too coarse to separate the current node from the last.
4834 */
4835 mask = ~((1 << __ffs(start)) - 1);
4836 while (mask && last_end <= (start & (mask << 1)))
4837 mask <<= 1;
4838
4839 /* accumulate all internode masks */
4840 accl_mask |= mask;
4841 }
4842
4843 /* convert mask to number of pages */
4844 return ~accl_mask + 1;
4845}
4846
a6af2bc3 4847/* Find the lowest pfn for a node */
b69a7288 4848static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4849{
a6af2bc3 4850 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4851 unsigned long start_pfn;
4852 int i;
1abbfb41 4853
c13291a5
TH
4854 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4855 min_pfn = min(min_pfn, start_pfn);
c713216d 4856
a6af2bc3
MG
4857 if (min_pfn == ULONG_MAX) {
4858 printk(KERN_WARNING
2bc0d261 4859 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4860 return 0;
4861 }
4862
4863 return min_pfn;
c713216d
MG
4864}
4865
4866/**
4867 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4868 *
4869 * It returns the minimum PFN based on information provided via
88ca3b94 4870 * add_active_range().
c713216d
MG
4871 */
4872unsigned long __init find_min_pfn_with_active_regions(void)
4873{
4874 return find_min_pfn_for_node(MAX_NUMNODES);
4875}
4876
37b07e41
LS
4877/*
4878 * early_calculate_totalpages()
4879 * Sum pages in active regions for movable zone.
4b0ef1fe 4880 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 4881 */
484f51f8 4882static unsigned long __init early_calculate_totalpages(void)
7e63efef 4883{
7e63efef 4884 unsigned long totalpages = 0;
c13291a5
TH
4885 unsigned long start_pfn, end_pfn;
4886 int i, nid;
4887
4888 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4889 unsigned long pages = end_pfn - start_pfn;
7e63efef 4890
37b07e41
LS
4891 totalpages += pages;
4892 if (pages)
4b0ef1fe 4893 node_set_state(nid, N_MEMORY);
37b07e41
LS
4894 }
4895 return totalpages;
7e63efef
MG
4896}
4897
2a1e274a
MG
4898/*
4899 * Find the PFN the Movable zone begins in each node. Kernel memory
4900 * is spread evenly between nodes as long as the nodes have enough
4901 * memory. When they don't, some nodes will have more kernelcore than
4902 * others
4903 */
b224ef85 4904static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4905{
4906 int i, nid;
4907 unsigned long usable_startpfn;
4908 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 4909 /* save the state before borrow the nodemask */
4b0ef1fe 4910 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 4911 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 4912 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
2a1e274a 4913
7e63efef
MG
4914 /*
4915 * If movablecore was specified, calculate what size of
4916 * kernelcore that corresponds so that memory usable for
4917 * any allocation type is evenly spread. If both kernelcore
4918 * and movablecore are specified, then the value of kernelcore
4919 * will be used for required_kernelcore if it's greater than
4920 * what movablecore would have allowed.
4921 */
4922 if (required_movablecore) {
7e63efef
MG
4923 unsigned long corepages;
4924
4925 /*
4926 * Round-up so that ZONE_MOVABLE is at least as large as what
4927 * was requested by the user
4928 */
4929 required_movablecore =
4930 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4931 corepages = totalpages - required_movablecore;
4932
4933 required_kernelcore = max(required_kernelcore, corepages);
4934 }
4935
20e6926d
YL
4936 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4937 if (!required_kernelcore)
66918dcd 4938 goto out;
2a1e274a
MG
4939
4940 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
20e6926d 4941 find_usable_zone_for_movable();
2a1e274a
MG
4942 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4943
4944restart:
4945 /* Spread kernelcore memory as evenly as possible throughout nodes */
4946 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 4947 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
4948 unsigned long start_pfn, end_pfn;
4949
2a1e274a
MG
4950 /*
4951 * Recalculate kernelcore_node if the division per node
4952 * now exceeds what is necessary to satisfy the requested
4953 * amount of memory for the kernel
4954 */
4955 if (required_kernelcore < kernelcore_node)
4956 kernelcore_node = required_kernelcore / usable_nodes;
4957
4958 /*
4959 * As the map is walked, we track how much memory is usable
4960 * by the kernel using kernelcore_remaining. When it is
4961 * 0, the rest of the node is usable by ZONE_MOVABLE
4962 */
4963 kernelcore_remaining = kernelcore_node;
4964
4965 /* Go through each range of PFNs within this node */
c13291a5 4966 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4967 unsigned long size_pages;
4968
c13291a5 4969 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4970 if (start_pfn >= end_pfn)
4971 continue;
4972
4973 /* Account for what is only usable for kernelcore */
4974 if (start_pfn < usable_startpfn) {
4975 unsigned long kernel_pages;
4976 kernel_pages = min(end_pfn, usable_startpfn)
4977 - start_pfn;
4978
4979 kernelcore_remaining -= min(kernel_pages,
4980 kernelcore_remaining);
4981 required_kernelcore -= min(kernel_pages,
4982 required_kernelcore);
4983
4984 /* Continue if range is now fully accounted */
4985 if (end_pfn <= usable_startpfn) {
4986
4987 /*
4988 * Push zone_movable_pfn to the end so
4989 * that if we have to rebalance
4990 * kernelcore across nodes, we will
4991 * not double account here
4992 */
4993 zone_movable_pfn[nid] = end_pfn;
4994 continue;
4995 }
4996 start_pfn = usable_startpfn;
4997 }
4998
4999 /*
5000 * The usable PFN range for ZONE_MOVABLE is from
5001 * start_pfn->end_pfn. Calculate size_pages as the
5002 * number of pages used as kernelcore
5003 */
5004 size_pages = end_pfn - start_pfn;
5005 if (size_pages > kernelcore_remaining)
5006 size_pages = kernelcore_remaining;
5007 zone_movable_pfn[nid] = start_pfn + size_pages;
5008
5009 /*
5010 * Some kernelcore has been met, update counts and
5011 * break if the kernelcore for this node has been
5012 * satisified
5013 */
5014 required_kernelcore -= min(required_kernelcore,
5015 size_pages);
5016 kernelcore_remaining -= size_pages;
5017 if (!kernelcore_remaining)
5018 break;
5019 }
5020 }
5021
5022 /*
5023 * If there is still required_kernelcore, we do another pass with one
5024 * less node in the count. This will push zone_movable_pfn[nid] further
5025 * along on the nodes that still have memory until kernelcore is
5026 * satisified
5027 */
5028 usable_nodes--;
5029 if (usable_nodes && required_kernelcore > usable_nodes)
5030 goto restart;
5031
5032 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5033 for (nid = 0; nid < MAX_NUMNODES; nid++)
5034 zone_movable_pfn[nid] =
5035 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5036
20e6926d 5037out:
66918dcd 5038 /* restore the node_state */
4b0ef1fe 5039 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5040}
5041
4b0ef1fe
LJ
5042/* Any regular or high memory on that node ? */
5043static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5044{
37b07e41
LS
5045 enum zone_type zone_type;
5046
4b0ef1fe
LJ
5047 if (N_MEMORY == N_NORMAL_MEMORY)
5048 return;
5049
5050 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5051 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 5052 if (zone->present_pages) {
4b0ef1fe
LJ
5053 node_set_state(nid, N_HIGH_MEMORY);
5054 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5055 zone_type <= ZONE_NORMAL)
5056 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5057 break;
5058 }
37b07e41 5059 }
37b07e41
LS
5060}
5061
c713216d
MG
5062/**
5063 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5064 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5065 *
5066 * This will call free_area_init_node() for each active node in the system.
5067 * Using the page ranges provided by add_active_range(), the size of each
5068 * zone in each node and their holes is calculated. If the maximum PFN
5069 * between two adjacent zones match, it is assumed that the zone is empty.
5070 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5071 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5072 * starts where the previous one ended. For example, ZONE_DMA32 starts
5073 * at arch_max_dma_pfn.
5074 */
5075void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5076{
c13291a5
TH
5077 unsigned long start_pfn, end_pfn;
5078 int i, nid;
a6af2bc3 5079
c713216d
MG
5080 /* Record where the zone boundaries are */
5081 memset(arch_zone_lowest_possible_pfn, 0,
5082 sizeof(arch_zone_lowest_possible_pfn));
5083 memset(arch_zone_highest_possible_pfn, 0,
5084 sizeof(arch_zone_highest_possible_pfn));
5085 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5086 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5087 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5088 if (i == ZONE_MOVABLE)
5089 continue;
c713216d
MG
5090 arch_zone_lowest_possible_pfn[i] =
5091 arch_zone_highest_possible_pfn[i-1];
5092 arch_zone_highest_possible_pfn[i] =
5093 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5094 }
2a1e274a
MG
5095 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5096 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5097
5098 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5099 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5100 find_zone_movable_pfns_for_nodes();
c713216d 5101
c713216d 5102 /* Print out the zone ranges */
a62e2f4f 5103 printk("Zone ranges:\n");
2a1e274a
MG
5104 for (i = 0; i < MAX_NR_ZONES; i++) {
5105 if (i == ZONE_MOVABLE)
5106 continue;
155cbfc8 5107 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
5108 if (arch_zone_lowest_possible_pfn[i] ==
5109 arch_zone_highest_possible_pfn[i])
155cbfc8 5110 printk(KERN_CONT "empty\n");
72f0ba02 5111 else
a62e2f4f
BH
5112 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5113 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5114 (arch_zone_highest_possible_pfn[i]
5115 << PAGE_SHIFT) - 1);
2a1e274a
MG
5116 }
5117
5118 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 5119 printk("Movable zone start for each node\n");
2a1e274a
MG
5120 for (i = 0; i < MAX_NUMNODES; i++) {
5121 if (zone_movable_pfn[i])
a62e2f4f
BH
5122 printk(" Node %d: %#010lx\n", i,
5123 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5124 }
c713216d 5125
f2d52fe5 5126 /* Print out the early node map */
a62e2f4f 5127 printk("Early memory node ranges\n");
c13291a5 5128 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
5129 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5130 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5131
5132 /* Initialise every node */
708614e6 5133 mminit_verify_pageflags_layout();
8ef82866 5134 setup_nr_node_ids();
c713216d
MG
5135 for_each_online_node(nid) {
5136 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5137 free_area_init_node(nid, NULL,
c713216d 5138 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5139
5140 /* Any memory on that node */
5141 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5142 node_set_state(nid, N_MEMORY);
5143 check_for_memory(pgdat, nid);
c713216d
MG
5144 }
5145}
2a1e274a 5146
7e63efef 5147static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5148{
5149 unsigned long long coremem;
5150 if (!p)
5151 return -EINVAL;
5152
5153 coremem = memparse(p, &p);
7e63efef 5154 *core = coremem >> PAGE_SHIFT;
2a1e274a 5155
7e63efef 5156 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5157 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5158
5159 return 0;
5160}
ed7ed365 5161
7e63efef
MG
5162/*
5163 * kernelcore=size sets the amount of memory for use for allocations that
5164 * cannot be reclaimed or migrated.
5165 */
5166static int __init cmdline_parse_kernelcore(char *p)
5167{
5168 return cmdline_parse_core(p, &required_kernelcore);
5169}
5170
5171/*
5172 * movablecore=size sets the amount of memory for use for allocations that
5173 * can be reclaimed or migrated.
5174 */
5175static int __init cmdline_parse_movablecore(char *p)
5176{
5177 return cmdline_parse_core(p, &required_movablecore);
5178}
5179
ed7ed365 5180early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5181early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5182
0ee332c1 5183#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5184
69afade7
JL
5185unsigned long free_reserved_area(unsigned long start, unsigned long end,
5186 int poison, char *s)
5187{
5188 unsigned long pages, pos;
5189
5190 pos = start = PAGE_ALIGN(start);
5191 end &= PAGE_MASK;
5192 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5193 if (poison)
5194 memset((void *)pos, poison, PAGE_SIZE);
bb3ec6b0 5195 free_reserved_page(virt_to_page((void *)pos));
69afade7
JL
5196 }
5197
5198 if (pages && s)
5199 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5200 s, pages << (PAGE_SHIFT - 10), start, end);
5201
5202 return pages;
5203}
5204
cfa11e08
JL
5205#ifdef CONFIG_HIGHMEM
5206void free_highmem_page(struct page *page)
5207{
5208 __free_reserved_page(page);
5209 totalram_pages++;
5210 totalhigh_pages++;
5211}
5212#endif
5213
0e0b864e 5214/**
88ca3b94
RD
5215 * set_dma_reserve - set the specified number of pages reserved in the first zone
5216 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5217 *
5218 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5219 * In the DMA zone, a significant percentage may be consumed by kernel image
5220 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5221 * function may optionally be used to account for unfreeable pages in the
5222 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5223 * smaller per-cpu batchsize.
0e0b864e
MG
5224 */
5225void __init set_dma_reserve(unsigned long new_dma_reserve)
5226{
5227 dma_reserve = new_dma_reserve;
5228}
5229
1da177e4
LT
5230void __init free_area_init(unsigned long *zones_size)
5231{
9109fb7b 5232 free_area_init_node(0, zones_size,
1da177e4
LT
5233 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5234}
1da177e4 5235
1da177e4
LT
5236static int page_alloc_cpu_notify(struct notifier_block *self,
5237 unsigned long action, void *hcpu)
5238{
5239 int cpu = (unsigned long)hcpu;
1da177e4 5240
8bb78442 5241 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5242 lru_add_drain_cpu(cpu);
9f8f2172
CL
5243 drain_pages(cpu);
5244
5245 /*
5246 * Spill the event counters of the dead processor
5247 * into the current processors event counters.
5248 * This artificially elevates the count of the current
5249 * processor.
5250 */
f8891e5e 5251 vm_events_fold_cpu(cpu);
9f8f2172
CL
5252
5253 /*
5254 * Zero the differential counters of the dead processor
5255 * so that the vm statistics are consistent.
5256 *
5257 * This is only okay since the processor is dead and cannot
5258 * race with what we are doing.
5259 */
2244b95a 5260 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5261 }
5262 return NOTIFY_OK;
5263}
1da177e4
LT
5264
5265void __init page_alloc_init(void)
5266{
5267 hotcpu_notifier(page_alloc_cpu_notify, 0);
5268}
5269
cb45b0e9
HA
5270/*
5271 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5272 * or min_free_kbytes changes.
5273 */
5274static void calculate_totalreserve_pages(void)
5275{
5276 struct pglist_data *pgdat;
5277 unsigned long reserve_pages = 0;
2f6726e5 5278 enum zone_type i, j;
cb45b0e9
HA
5279
5280 for_each_online_pgdat(pgdat) {
5281 for (i = 0; i < MAX_NR_ZONES; i++) {
5282 struct zone *zone = pgdat->node_zones + i;
5283 unsigned long max = 0;
5284
5285 /* Find valid and maximum lowmem_reserve in the zone */
5286 for (j = i; j < MAX_NR_ZONES; j++) {
5287 if (zone->lowmem_reserve[j] > max)
5288 max = zone->lowmem_reserve[j];
5289 }
5290
41858966
MG
5291 /* we treat the high watermark as reserved pages. */
5292 max += high_wmark_pages(zone);
cb45b0e9 5293
b40da049
JL
5294 if (max > zone->managed_pages)
5295 max = zone->managed_pages;
cb45b0e9 5296 reserve_pages += max;
ab8fabd4
JW
5297 /*
5298 * Lowmem reserves are not available to
5299 * GFP_HIGHUSER page cache allocations and
5300 * kswapd tries to balance zones to their high
5301 * watermark. As a result, neither should be
5302 * regarded as dirtyable memory, to prevent a
5303 * situation where reclaim has to clean pages
5304 * in order to balance the zones.
5305 */
5306 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5307 }
5308 }
ab8fabd4 5309 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5310 totalreserve_pages = reserve_pages;
5311}
5312
1da177e4
LT
5313/*
5314 * setup_per_zone_lowmem_reserve - called whenever
5315 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5316 * has a correct pages reserved value, so an adequate number of
5317 * pages are left in the zone after a successful __alloc_pages().
5318 */
5319static void setup_per_zone_lowmem_reserve(void)
5320{
5321 struct pglist_data *pgdat;
2f6726e5 5322 enum zone_type j, idx;
1da177e4 5323
ec936fc5 5324 for_each_online_pgdat(pgdat) {
1da177e4
LT
5325 for (j = 0; j < MAX_NR_ZONES; j++) {
5326 struct zone *zone = pgdat->node_zones + j;
b40da049 5327 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5328
5329 zone->lowmem_reserve[j] = 0;
5330
2f6726e5
CL
5331 idx = j;
5332 while (idx) {
1da177e4
LT
5333 struct zone *lower_zone;
5334
2f6726e5
CL
5335 idx--;
5336
1da177e4
LT
5337 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5338 sysctl_lowmem_reserve_ratio[idx] = 1;
5339
5340 lower_zone = pgdat->node_zones + idx;
b40da049 5341 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5342 sysctl_lowmem_reserve_ratio[idx];
b40da049 5343 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5344 }
5345 }
5346 }
cb45b0e9
HA
5347
5348 /* update totalreserve_pages */
5349 calculate_totalreserve_pages();
1da177e4
LT
5350}
5351
cfd3da1e 5352static void __setup_per_zone_wmarks(void)
1da177e4
LT
5353{
5354 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5355 unsigned long lowmem_pages = 0;
5356 struct zone *zone;
5357 unsigned long flags;
5358
5359 /* Calculate total number of !ZONE_HIGHMEM pages */
5360 for_each_zone(zone) {
5361 if (!is_highmem(zone))
b40da049 5362 lowmem_pages += zone->managed_pages;
1da177e4
LT
5363 }
5364
5365 for_each_zone(zone) {
ac924c60
AM
5366 u64 tmp;
5367
1125b4e3 5368 spin_lock_irqsave(&zone->lock, flags);
b40da049 5369 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 5370 do_div(tmp, lowmem_pages);
1da177e4
LT
5371 if (is_highmem(zone)) {
5372 /*
669ed175
NP
5373 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5374 * need highmem pages, so cap pages_min to a small
5375 * value here.
5376 *
41858966 5377 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5378 * deltas controls asynch page reclaim, and so should
5379 * not be capped for highmem.
1da177e4 5380 */
90ae8d67 5381 unsigned long min_pages;
1da177e4 5382
b40da049 5383 min_pages = zone->managed_pages / 1024;
90ae8d67 5384 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 5385 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5386 } else {
669ed175
NP
5387 /*
5388 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5389 * proportionate to the zone's size.
5390 */
41858966 5391 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5392 }
5393
41858966
MG
5394 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5395 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 5396
56fd56b8 5397 setup_zone_migrate_reserve(zone);
1125b4e3 5398 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5399 }
cb45b0e9
HA
5400
5401 /* update totalreserve_pages */
5402 calculate_totalreserve_pages();
1da177e4
LT
5403}
5404
cfd3da1e
MG
5405/**
5406 * setup_per_zone_wmarks - called when min_free_kbytes changes
5407 * or when memory is hot-{added|removed}
5408 *
5409 * Ensures that the watermark[min,low,high] values for each zone are set
5410 * correctly with respect to min_free_kbytes.
5411 */
5412void setup_per_zone_wmarks(void)
5413{
5414 mutex_lock(&zonelists_mutex);
5415 __setup_per_zone_wmarks();
5416 mutex_unlock(&zonelists_mutex);
5417}
5418
55a4462a 5419/*
556adecb
RR
5420 * The inactive anon list should be small enough that the VM never has to
5421 * do too much work, but large enough that each inactive page has a chance
5422 * to be referenced again before it is swapped out.
5423 *
5424 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5425 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5426 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5427 * the anonymous pages are kept on the inactive list.
5428 *
5429 * total target max
5430 * memory ratio inactive anon
5431 * -------------------------------------
5432 * 10MB 1 5MB
5433 * 100MB 1 50MB
5434 * 1GB 3 250MB
5435 * 10GB 10 0.9GB
5436 * 100GB 31 3GB
5437 * 1TB 101 10GB
5438 * 10TB 320 32GB
5439 */
1b79acc9 5440static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5441{
96cb4df5 5442 unsigned int gb, ratio;
556adecb 5443
96cb4df5 5444 /* Zone size in gigabytes */
b40da049 5445 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 5446 if (gb)
556adecb 5447 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5448 else
5449 ratio = 1;
556adecb 5450
96cb4df5
MK
5451 zone->inactive_ratio = ratio;
5452}
556adecb 5453
839a4fcc 5454static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5455{
5456 struct zone *zone;
5457
5458 for_each_zone(zone)
5459 calculate_zone_inactive_ratio(zone);
556adecb
RR
5460}
5461
1da177e4
LT
5462/*
5463 * Initialise min_free_kbytes.
5464 *
5465 * For small machines we want it small (128k min). For large machines
5466 * we want it large (64MB max). But it is not linear, because network
5467 * bandwidth does not increase linearly with machine size. We use
5468 *
5469 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5470 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5471 *
5472 * which yields
5473 *
5474 * 16MB: 512k
5475 * 32MB: 724k
5476 * 64MB: 1024k
5477 * 128MB: 1448k
5478 * 256MB: 2048k
5479 * 512MB: 2896k
5480 * 1024MB: 4096k
5481 * 2048MB: 5792k
5482 * 4096MB: 8192k
5483 * 8192MB: 11584k
5484 * 16384MB: 16384k
5485 */
1b79acc9 5486int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5487{
5488 unsigned long lowmem_kbytes;
5489
5490 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5491
5492 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5493 if (min_free_kbytes < 128)
5494 min_free_kbytes = 128;
5495 if (min_free_kbytes > 65536)
5496 min_free_kbytes = 65536;
bc75d33f 5497 setup_per_zone_wmarks();
a6cccdc3 5498 refresh_zone_stat_thresholds();
1da177e4 5499 setup_per_zone_lowmem_reserve();
556adecb 5500 setup_per_zone_inactive_ratio();
1da177e4
LT
5501 return 0;
5502}
bc75d33f 5503module_init(init_per_zone_wmark_min)
1da177e4
LT
5504
5505/*
5506 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5507 * that we can call two helper functions whenever min_free_kbytes
5508 * changes.
5509 */
5510int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5511 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5512{
8d65af78 5513 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5514 if (write)
bc75d33f 5515 setup_per_zone_wmarks();
1da177e4
LT
5516 return 0;
5517}
5518
9614634f
CL
5519#ifdef CONFIG_NUMA
5520int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5521 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5522{
5523 struct zone *zone;
5524 int rc;
5525
8d65af78 5526 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5527 if (rc)
5528 return rc;
5529
5530 for_each_zone(zone)
b40da049 5531 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
5532 sysctl_min_unmapped_ratio) / 100;
5533 return 0;
5534}
0ff38490
CL
5535
5536int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5537 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5538{
5539 struct zone *zone;
5540 int rc;
5541
8d65af78 5542 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5543 if (rc)
5544 return rc;
5545
5546 for_each_zone(zone)
b40da049 5547 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
5548 sysctl_min_slab_ratio) / 100;
5549 return 0;
5550}
9614634f
CL
5551#endif
5552
1da177e4
LT
5553/*
5554 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5555 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5556 * whenever sysctl_lowmem_reserve_ratio changes.
5557 *
5558 * The reserve ratio obviously has absolutely no relation with the
41858966 5559 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5560 * if in function of the boot time zone sizes.
5561 */
5562int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5563 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5564{
8d65af78 5565 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5566 setup_per_zone_lowmem_reserve();
5567 return 0;
5568}
5569
8ad4b1fb
RS
5570/*
5571 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5572 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5573 * can have before it gets flushed back to buddy allocator.
5574 */
5575
5576int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5577 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5578{
5579 struct zone *zone;
5580 unsigned int cpu;
5581 int ret;
5582
8d65af78 5583 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5584 if (!write || (ret < 0))
8ad4b1fb 5585 return ret;
c8e251fa
CS
5586
5587 mutex_lock(&pcp_batch_high_lock);
364df0eb 5588 for_each_populated_zone(zone) {
99dcc3e5 5589 for_each_possible_cpu(cpu) {
8ad4b1fb 5590 unsigned long high;
b40da049 5591 high = zone->managed_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5592 setup_pagelist_highmark(
5593 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5594 }
5595 }
c8e251fa 5596 mutex_unlock(&pcp_batch_high_lock);
8ad4b1fb
RS
5597 return 0;
5598}
5599
f034b5d4 5600int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5601
5602#ifdef CONFIG_NUMA
5603static int __init set_hashdist(char *str)
5604{
5605 if (!str)
5606 return 0;
5607 hashdist = simple_strtoul(str, &str, 0);
5608 return 1;
5609}
5610__setup("hashdist=", set_hashdist);
5611#endif
5612
5613/*
5614 * allocate a large system hash table from bootmem
5615 * - it is assumed that the hash table must contain an exact power-of-2
5616 * quantity of entries
5617 * - limit is the number of hash buckets, not the total allocation size
5618 */
5619void *__init alloc_large_system_hash(const char *tablename,
5620 unsigned long bucketsize,
5621 unsigned long numentries,
5622 int scale,
5623 int flags,
5624 unsigned int *_hash_shift,
5625 unsigned int *_hash_mask,
31fe62b9
TB
5626 unsigned long low_limit,
5627 unsigned long high_limit)
1da177e4 5628{
31fe62b9 5629 unsigned long long max = high_limit;
1da177e4
LT
5630 unsigned long log2qty, size;
5631 void *table = NULL;
5632
5633 /* allow the kernel cmdline to have a say */
5634 if (!numentries) {
5635 /* round applicable memory size up to nearest megabyte */
04903664 5636 numentries = nr_kernel_pages;
1da177e4
LT
5637 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5638 numentries >>= 20 - PAGE_SHIFT;
5639 numentries <<= 20 - PAGE_SHIFT;
5640
5641 /* limit to 1 bucket per 2^scale bytes of low memory */
5642 if (scale > PAGE_SHIFT)
5643 numentries >>= (scale - PAGE_SHIFT);
5644 else
5645 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5646
5647 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5648 if (unlikely(flags & HASH_SMALL)) {
5649 /* Makes no sense without HASH_EARLY */
5650 WARN_ON(!(flags & HASH_EARLY));
5651 if (!(numentries >> *_hash_shift)) {
5652 numentries = 1UL << *_hash_shift;
5653 BUG_ON(!numentries);
5654 }
5655 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5656 numentries = PAGE_SIZE / bucketsize;
1da177e4 5657 }
6e692ed3 5658 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5659
5660 /* limit allocation size to 1/16 total memory by default */
5661 if (max == 0) {
5662 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5663 do_div(max, bucketsize);
5664 }
074b8517 5665 max = min(max, 0x80000000ULL);
1da177e4 5666
31fe62b9
TB
5667 if (numentries < low_limit)
5668 numentries = low_limit;
1da177e4
LT
5669 if (numentries > max)
5670 numentries = max;
5671
f0d1b0b3 5672 log2qty = ilog2(numentries);
1da177e4
LT
5673
5674 do {
5675 size = bucketsize << log2qty;
5676 if (flags & HASH_EARLY)
74768ed8 5677 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5678 else if (hashdist)
5679 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5680 else {
1037b83b
ED
5681 /*
5682 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5683 * some pages at the end of hash table which
5684 * alloc_pages_exact() automatically does
1037b83b 5685 */
264ef8a9 5686 if (get_order(size) < MAX_ORDER) {
a1dd268c 5687 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5688 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5689 }
1da177e4
LT
5690 }
5691 } while (!table && size > PAGE_SIZE && --log2qty);
5692
5693 if (!table)
5694 panic("Failed to allocate %s hash table\n", tablename);
5695
f241e660 5696 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5697 tablename,
f241e660 5698 (1UL << log2qty),
f0d1b0b3 5699 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5700 size);
5701
5702 if (_hash_shift)
5703 *_hash_shift = log2qty;
5704 if (_hash_mask)
5705 *_hash_mask = (1 << log2qty) - 1;
5706
5707 return table;
5708}
a117e66e 5709
835c134e
MG
5710/* Return a pointer to the bitmap storing bits affecting a block of pages */
5711static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5712 unsigned long pfn)
5713{
5714#ifdef CONFIG_SPARSEMEM
5715 return __pfn_to_section(pfn)->pageblock_flags;
5716#else
5717 return zone->pageblock_flags;
5718#endif /* CONFIG_SPARSEMEM */
5719}
5720
5721static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5722{
5723#ifdef CONFIG_SPARSEMEM
5724 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5725 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 5726#else
c060f943 5727 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 5728 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5729#endif /* CONFIG_SPARSEMEM */
5730}
5731
5732/**
d9c23400 5733 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5734 * @page: The page within the block of interest
5735 * @start_bitidx: The first bit of interest to retrieve
5736 * @end_bitidx: The last bit of interest
5737 * returns pageblock_bits flags
5738 */
5739unsigned long get_pageblock_flags_group(struct page *page,
5740 int start_bitidx, int end_bitidx)
5741{
5742 struct zone *zone;
5743 unsigned long *bitmap;
5744 unsigned long pfn, bitidx;
5745 unsigned long flags = 0;
5746 unsigned long value = 1;
5747
5748 zone = page_zone(page);
5749 pfn = page_to_pfn(page);
5750 bitmap = get_pageblock_bitmap(zone, pfn);
5751 bitidx = pfn_to_bitidx(zone, pfn);
5752
5753 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5754 if (test_bit(bitidx + start_bitidx, bitmap))
5755 flags |= value;
6220ec78 5756
835c134e
MG
5757 return flags;
5758}
5759
5760/**
d9c23400 5761 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5762 * @page: The page within the block of interest
5763 * @start_bitidx: The first bit of interest
5764 * @end_bitidx: The last bit of interest
5765 * @flags: The flags to set
5766 */
5767void set_pageblock_flags_group(struct page *page, unsigned long flags,
5768 int start_bitidx, int end_bitidx)
5769{
5770 struct zone *zone;
5771 unsigned long *bitmap;
5772 unsigned long pfn, bitidx;
5773 unsigned long value = 1;
5774
5775 zone = page_zone(page);
5776 pfn = page_to_pfn(page);
5777 bitmap = get_pageblock_bitmap(zone, pfn);
5778 bitidx = pfn_to_bitidx(zone, pfn);
108bcc96 5779 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
835c134e
MG
5780
5781 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5782 if (flags & value)
5783 __set_bit(bitidx + start_bitidx, bitmap);
5784 else
5785 __clear_bit(bitidx + start_bitidx, bitmap);
5786}
a5d76b54
KH
5787
5788/*
80934513
MK
5789 * This function checks whether pageblock includes unmovable pages or not.
5790 * If @count is not zero, it is okay to include less @count unmovable pages
5791 *
5792 * PageLRU check wihtout isolation or lru_lock could race so that
5793 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5794 * expect this function should be exact.
a5d76b54 5795 */
b023f468
WC
5796bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5797 bool skip_hwpoisoned_pages)
49ac8255
KH
5798{
5799 unsigned long pfn, iter, found;
47118af0
MN
5800 int mt;
5801
49ac8255
KH
5802 /*
5803 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5804 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5805 */
5806 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5807 return false;
47118af0
MN
5808 mt = get_pageblock_migratetype(page);
5809 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5810 return false;
49ac8255
KH
5811
5812 pfn = page_to_pfn(page);
5813 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5814 unsigned long check = pfn + iter;
5815
29723fcc 5816 if (!pfn_valid_within(check))
49ac8255 5817 continue;
29723fcc 5818
49ac8255 5819 page = pfn_to_page(check);
97d255c8
MK
5820 /*
5821 * We can't use page_count without pin a page
5822 * because another CPU can free compound page.
5823 * This check already skips compound tails of THP
5824 * because their page->_count is zero at all time.
5825 */
5826 if (!atomic_read(&page->_count)) {
49ac8255
KH
5827 if (PageBuddy(page))
5828 iter += (1 << page_order(page)) - 1;
5829 continue;
5830 }
97d255c8 5831
b023f468
WC
5832 /*
5833 * The HWPoisoned page may be not in buddy system, and
5834 * page_count() is not 0.
5835 */
5836 if (skip_hwpoisoned_pages && PageHWPoison(page))
5837 continue;
5838
49ac8255
KH
5839 if (!PageLRU(page))
5840 found++;
5841 /*
5842 * If there are RECLAIMABLE pages, we need to check it.
5843 * But now, memory offline itself doesn't call shrink_slab()
5844 * and it still to be fixed.
5845 */
5846 /*
5847 * If the page is not RAM, page_count()should be 0.
5848 * we don't need more check. This is an _used_ not-movable page.
5849 *
5850 * The problematic thing here is PG_reserved pages. PG_reserved
5851 * is set to both of a memory hole page and a _used_ kernel
5852 * page at boot.
5853 */
5854 if (found > count)
80934513 5855 return true;
49ac8255 5856 }
80934513 5857 return false;
49ac8255
KH
5858}
5859
5860bool is_pageblock_removable_nolock(struct page *page)
5861{
656a0706
MH
5862 struct zone *zone;
5863 unsigned long pfn;
687875fb
MH
5864
5865 /*
5866 * We have to be careful here because we are iterating over memory
5867 * sections which are not zone aware so we might end up outside of
5868 * the zone but still within the section.
656a0706
MH
5869 * We have to take care about the node as well. If the node is offline
5870 * its NODE_DATA will be NULL - see page_zone.
687875fb 5871 */
656a0706
MH
5872 if (!node_online(page_to_nid(page)))
5873 return false;
5874
5875 zone = page_zone(page);
5876 pfn = page_to_pfn(page);
108bcc96 5877 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
5878 return false;
5879
b023f468 5880 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 5881}
0c0e6195 5882
041d3a8c
MN
5883#ifdef CONFIG_CMA
5884
5885static unsigned long pfn_max_align_down(unsigned long pfn)
5886{
5887 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5888 pageblock_nr_pages) - 1);
5889}
5890
5891static unsigned long pfn_max_align_up(unsigned long pfn)
5892{
5893 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5894 pageblock_nr_pages));
5895}
5896
041d3a8c 5897/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5898static int __alloc_contig_migrate_range(struct compact_control *cc,
5899 unsigned long start, unsigned long end)
041d3a8c
MN
5900{
5901 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5902 unsigned long nr_reclaimed;
041d3a8c
MN
5903 unsigned long pfn = start;
5904 unsigned int tries = 0;
5905 int ret = 0;
5906
be49a6e1 5907 migrate_prep();
041d3a8c 5908
bb13ffeb 5909 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5910 if (fatal_signal_pending(current)) {
5911 ret = -EINTR;
5912 break;
5913 }
5914
bb13ffeb
MG
5915 if (list_empty(&cc->migratepages)) {
5916 cc->nr_migratepages = 0;
5917 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5918 pfn, end, true);
041d3a8c
MN
5919 if (!pfn) {
5920 ret = -EINTR;
5921 break;
5922 }
5923 tries = 0;
5924 } else if (++tries == 5) {
5925 ret = ret < 0 ? ret : -EBUSY;
5926 break;
5927 }
5928
beb51eaa
MK
5929 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5930 &cc->migratepages);
5931 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5932
9c620e2b
HD
5933 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5934 0, MIGRATE_SYNC, MR_CMA);
041d3a8c 5935 }
2a6f5124
SP
5936 if (ret < 0) {
5937 putback_movable_pages(&cc->migratepages);
5938 return ret;
5939 }
5940 return 0;
041d3a8c
MN
5941}
5942
5943/**
5944 * alloc_contig_range() -- tries to allocate given range of pages
5945 * @start: start PFN to allocate
5946 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5947 * @migratetype: migratetype of the underlaying pageblocks (either
5948 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5949 * in range must have the same migratetype and it must
5950 * be either of the two.
041d3a8c
MN
5951 *
5952 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5953 * aligned, however it's the caller's responsibility to guarantee that
5954 * we are the only thread that changes migrate type of pageblocks the
5955 * pages fall in.
5956 *
5957 * The PFN range must belong to a single zone.
5958 *
5959 * Returns zero on success or negative error code. On success all
5960 * pages which PFN is in [start, end) are allocated for the caller and
5961 * need to be freed with free_contig_range().
5962 */
0815f3d8
MN
5963int alloc_contig_range(unsigned long start, unsigned long end,
5964 unsigned migratetype)
041d3a8c 5965{
041d3a8c
MN
5966 unsigned long outer_start, outer_end;
5967 int ret = 0, order;
5968
bb13ffeb
MG
5969 struct compact_control cc = {
5970 .nr_migratepages = 0,
5971 .order = -1,
5972 .zone = page_zone(pfn_to_page(start)),
5973 .sync = true,
5974 .ignore_skip_hint = true,
5975 };
5976 INIT_LIST_HEAD(&cc.migratepages);
5977
041d3a8c
MN
5978 /*
5979 * What we do here is we mark all pageblocks in range as
5980 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5981 * have different sizes, and due to the way page allocator
5982 * work, we align the range to biggest of the two pages so
5983 * that page allocator won't try to merge buddies from
5984 * different pageblocks and change MIGRATE_ISOLATE to some
5985 * other migration type.
5986 *
5987 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5988 * migrate the pages from an unaligned range (ie. pages that
5989 * we are interested in). This will put all the pages in
5990 * range back to page allocator as MIGRATE_ISOLATE.
5991 *
5992 * When this is done, we take the pages in range from page
5993 * allocator removing them from the buddy system. This way
5994 * page allocator will never consider using them.
5995 *
5996 * This lets us mark the pageblocks back as
5997 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5998 * aligned range but not in the unaligned, original range are
5999 * put back to page allocator so that buddy can use them.
6000 */
6001
6002 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6003 pfn_max_align_up(end), migratetype,
6004 false);
041d3a8c 6005 if (ret)
86a595f9 6006 return ret;
041d3a8c 6007
bb13ffeb 6008 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6009 if (ret)
6010 goto done;
6011
6012 /*
6013 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6014 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6015 * more, all pages in [start, end) are free in page allocator.
6016 * What we are going to do is to allocate all pages from
6017 * [start, end) (that is remove them from page allocator).
6018 *
6019 * The only problem is that pages at the beginning and at the
6020 * end of interesting range may be not aligned with pages that
6021 * page allocator holds, ie. they can be part of higher order
6022 * pages. Because of this, we reserve the bigger range and
6023 * once this is done free the pages we are not interested in.
6024 *
6025 * We don't have to hold zone->lock here because the pages are
6026 * isolated thus they won't get removed from buddy.
6027 */
6028
6029 lru_add_drain_all();
6030 drain_all_pages();
6031
6032 order = 0;
6033 outer_start = start;
6034 while (!PageBuddy(pfn_to_page(outer_start))) {
6035 if (++order >= MAX_ORDER) {
6036 ret = -EBUSY;
6037 goto done;
6038 }
6039 outer_start &= ~0UL << order;
6040 }
6041
6042 /* Make sure the range is really isolated. */
b023f468 6043 if (test_pages_isolated(outer_start, end, false)) {
041d3a8c
MN
6044 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6045 outer_start, end);
6046 ret = -EBUSY;
6047 goto done;
6048 }
6049
49f223a9
MS
6050
6051 /* Grab isolated pages from freelists. */
bb13ffeb 6052 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6053 if (!outer_end) {
6054 ret = -EBUSY;
6055 goto done;
6056 }
6057
6058 /* Free head and tail (if any) */
6059 if (start != outer_start)
6060 free_contig_range(outer_start, start - outer_start);
6061 if (end != outer_end)
6062 free_contig_range(end, outer_end - end);
6063
6064done:
6065 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6066 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6067 return ret;
6068}
6069
6070void free_contig_range(unsigned long pfn, unsigned nr_pages)
6071{
bcc2b02f
MS
6072 unsigned int count = 0;
6073
6074 for (; nr_pages--; pfn++) {
6075 struct page *page = pfn_to_page(pfn);
6076
6077 count += page_count(page) != 1;
6078 __free_page(page);
6079 }
6080 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6081}
6082#endif
6083
4ed7e022
JL
6084#ifdef CONFIG_MEMORY_HOTPLUG
6085static int __meminit __zone_pcp_update(void *data)
6086{
6087 struct zone *zone = data;
6088 int cpu;
6089 unsigned long batch = zone_batchsize(zone), flags;
6090
6091 for_each_possible_cpu(cpu) {
6092 struct per_cpu_pageset *pset;
6093 struct per_cpu_pages *pcp;
6094
6095 pset = per_cpu_ptr(zone->pageset, cpu);
6096 pcp = &pset->pcp;
6097
6098 local_irq_save(flags);
6099 if (pcp->count > 0)
6100 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 6101 drain_zonestat(zone, pset);
4ed7e022
JL
6102 setup_pageset(pset, batch);
6103 local_irq_restore(flags);
6104 }
6105 return 0;
6106}
6107
6108void __meminit zone_pcp_update(struct zone *zone)
6109{
c8e251fa 6110 mutex_lock(&pcp_batch_high_lock);
4ed7e022 6111 stop_machine(__zone_pcp_update, zone, NULL);
c8e251fa 6112 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6113}
6114#endif
6115
340175b7
JL
6116void zone_pcp_reset(struct zone *zone)
6117{
6118 unsigned long flags;
5a883813
MK
6119 int cpu;
6120 struct per_cpu_pageset *pset;
340175b7
JL
6121
6122 /* avoid races with drain_pages() */
6123 local_irq_save(flags);
6124 if (zone->pageset != &boot_pageset) {
5a883813
MK
6125 for_each_online_cpu(cpu) {
6126 pset = per_cpu_ptr(zone->pageset, cpu);
6127 drain_zonestat(zone, pset);
6128 }
340175b7
JL
6129 free_percpu(zone->pageset);
6130 zone->pageset = &boot_pageset;
6131 }
6132 local_irq_restore(flags);
6133}
6134
6dcd73d7 6135#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6136/*
6137 * All pages in the range must be isolated before calling this.
6138 */
6139void
6140__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6141{
6142 struct page *page;
6143 struct zone *zone;
6144 int order, i;
6145 unsigned long pfn;
6146 unsigned long flags;
6147 /* find the first valid pfn */
6148 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6149 if (pfn_valid(pfn))
6150 break;
6151 if (pfn == end_pfn)
6152 return;
6153 zone = page_zone(pfn_to_page(pfn));
6154 spin_lock_irqsave(&zone->lock, flags);
6155 pfn = start_pfn;
6156 while (pfn < end_pfn) {
6157 if (!pfn_valid(pfn)) {
6158 pfn++;
6159 continue;
6160 }
6161 page = pfn_to_page(pfn);
b023f468
WC
6162 /*
6163 * The HWPoisoned page may be not in buddy system, and
6164 * page_count() is not 0.
6165 */
6166 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6167 pfn++;
6168 SetPageReserved(page);
6169 continue;
6170 }
6171
0c0e6195
KH
6172 BUG_ON(page_count(page));
6173 BUG_ON(!PageBuddy(page));
6174 order = page_order(page);
6175#ifdef CONFIG_DEBUG_VM
6176 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6177 pfn, 1 << order, end_pfn);
6178#endif
6179 list_del(&page->lru);
6180 rmv_page_order(page);
6181 zone->free_area[order].nr_free--;
0c0e6195
KH
6182 for (i = 0; i < (1 << order); i++)
6183 SetPageReserved((page+i));
6184 pfn += (1 << order);
6185 }
6186 spin_unlock_irqrestore(&zone->lock, flags);
6187}
6188#endif
8d22ba1b
WF
6189
6190#ifdef CONFIG_MEMORY_FAILURE
6191bool is_free_buddy_page(struct page *page)
6192{
6193 struct zone *zone = page_zone(page);
6194 unsigned long pfn = page_to_pfn(page);
6195 unsigned long flags;
6196 int order;
6197
6198 spin_lock_irqsave(&zone->lock, flags);
6199 for (order = 0; order < MAX_ORDER; order++) {
6200 struct page *page_head = page - (pfn & ((1 << order) - 1));
6201
6202 if (PageBuddy(page_head) && page_order(page_head) >= order)
6203 break;
6204 }
6205 spin_unlock_irqrestore(&zone->lock, flags);
6206
6207 return order < MAX_ORDER;
6208}
6209#endif
718a3821 6210
51300cef 6211static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6212 {1UL << PG_locked, "locked" },
6213 {1UL << PG_error, "error" },
6214 {1UL << PG_referenced, "referenced" },
6215 {1UL << PG_uptodate, "uptodate" },
6216 {1UL << PG_dirty, "dirty" },
6217 {1UL << PG_lru, "lru" },
6218 {1UL << PG_active, "active" },
6219 {1UL << PG_slab, "slab" },
6220 {1UL << PG_owner_priv_1, "owner_priv_1" },
6221 {1UL << PG_arch_1, "arch_1" },
6222 {1UL << PG_reserved, "reserved" },
6223 {1UL << PG_private, "private" },
6224 {1UL << PG_private_2, "private_2" },
6225 {1UL << PG_writeback, "writeback" },
6226#ifdef CONFIG_PAGEFLAGS_EXTENDED
6227 {1UL << PG_head, "head" },
6228 {1UL << PG_tail, "tail" },
6229#else
6230 {1UL << PG_compound, "compound" },
6231#endif
6232 {1UL << PG_swapcache, "swapcache" },
6233 {1UL << PG_mappedtodisk, "mappedtodisk" },
6234 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6235 {1UL << PG_swapbacked, "swapbacked" },
6236 {1UL << PG_unevictable, "unevictable" },
6237#ifdef CONFIG_MMU
6238 {1UL << PG_mlocked, "mlocked" },
6239#endif
6240#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6241 {1UL << PG_uncached, "uncached" },
6242#endif
6243#ifdef CONFIG_MEMORY_FAILURE
6244 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6245#endif
6246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6247 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6248#endif
718a3821
WF
6249};
6250
6251static void dump_page_flags(unsigned long flags)
6252{
6253 const char *delim = "";
6254 unsigned long mask;
6255 int i;
6256
51300cef 6257 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6258
718a3821
WF
6259 printk(KERN_ALERT "page flags: %#lx(", flags);
6260
6261 /* remove zone id */
6262 flags &= (1UL << NR_PAGEFLAGS) - 1;
6263
51300cef 6264 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6265
6266 mask = pageflag_names[i].mask;
6267 if ((flags & mask) != mask)
6268 continue;
6269
6270 flags &= ~mask;
6271 printk("%s%s", delim, pageflag_names[i].name);
6272 delim = "|";
6273 }
6274
6275 /* check for left over flags */
6276 if (flags)
6277 printk("%s%#lx", delim, flags);
6278
6279 printk(")\n");
6280}
6281
6282void dump_page(struct page *page)
6283{
6284 printk(KERN_ALERT
6285 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6286 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6287 page->mapping, page->index);
6288 dump_page_flags(page->flags);
f212ad7c 6289 mem_cgroup_print_bad_page(page);
718a3821 6290}
This page took 1.333627 seconds and 5 git commands to generate.