[PATCH] Use Zoned VM Counters for NUMA statistics
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
6811378e 40#include <linux/stop_machine.h>
1da177e4
LT
41
42#include <asm/tlbflush.h>
ac924c60 43#include <asm/div64.h>
1da177e4
LT
44#include "internal.h"
45
46/*
47 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 * initializer cleaner
49 */
c3d8c141 50nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 51EXPORT_SYMBOL(node_online_map);
c3d8c141 52nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 53EXPORT_SYMBOL(node_possible_map);
6c231b7b
RT
54unsigned long totalram_pages __read_mostly;
55unsigned long totalhigh_pages __read_mostly;
cb45b0e9 56unsigned long totalreserve_pages __read_mostly;
1da177e4 57long nr_swap_pages;
8ad4b1fb 58int percpu_pagelist_fraction;
1da177e4 59
d98c7a09 60static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 61
1da177e4
LT
62/*
63 * results with 256, 32 in the lowmem_reserve sysctl:
64 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
65 * 1G machine -> (16M dma, 784M normal, 224M high)
66 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
67 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
68 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
69 *
70 * TBD: should special case ZONE_DMA32 machines here - in those we normally
71 * don't need any ZONE_NORMAL reservation
1da177e4 72 */
a2f1b424 73int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
74
75EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
76
77/*
78 * Used by page_zone() to look up the address of the struct zone whose
79 * id is encoded in the upper bits of page->flags
80 */
c3d8c141 81struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
82EXPORT_SYMBOL(zone_table);
83
a2f1b424 84static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
85int min_free_kbytes = 1024;
86
86356ab1
YG
87unsigned long __meminitdata nr_kernel_pages;
88unsigned long __meminitdata nr_all_pages;
1da177e4 89
13e7444b 90#ifdef CONFIG_DEBUG_VM
c6a57e19 91static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 92{
bdc8cb98
DH
93 int ret = 0;
94 unsigned seq;
95 unsigned long pfn = page_to_pfn(page);
c6a57e19 96
bdc8cb98
DH
97 do {
98 seq = zone_span_seqbegin(zone);
99 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
100 ret = 1;
101 else if (pfn < zone->zone_start_pfn)
102 ret = 1;
103 } while (zone_span_seqretry(zone, seq));
104
105 return ret;
c6a57e19
DH
106}
107
108static int page_is_consistent(struct zone *zone, struct page *page)
109{
1da177e4
LT
110#ifdef CONFIG_HOLES_IN_ZONE
111 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 112 return 0;
1da177e4
LT
113#endif
114 if (zone != page_zone(page))
c6a57e19
DH
115 return 0;
116
117 return 1;
118}
119/*
120 * Temporary debugging check for pages not lying within a given zone.
121 */
122static int bad_range(struct zone *zone, struct page *page)
123{
124 if (page_outside_zone_boundaries(zone, page))
1da177e4 125 return 1;
c6a57e19
DH
126 if (!page_is_consistent(zone, page))
127 return 1;
128
1da177e4
LT
129 return 0;
130}
131
13e7444b
NP
132#else
133static inline int bad_range(struct zone *zone, struct page *page)
134{
135 return 0;
136}
137#endif
138
224abf92 139static void bad_page(struct page *page)
1da177e4 140{
224abf92 141 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
142 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
143 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
144 KERN_EMERG "Backtrace:\n",
224abf92
NP
145 current->comm, page, (int)(2*sizeof(unsigned long)),
146 (unsigned long)page->flags, page->mapping,
147 page_mapcount(page), page_count(page));
1da177e4 148 dump_stack();
334795ec
HD
149 page->flags &= ~(1 << PG_lru |
150 1 << PG_private |
1da177e4 151 1 << PG_locked |
1da177e4
LT
152 1 << PG_active |
153 1 << PG_dirty |
334795ec
HD
154 1 << PG_reclaim |
155 1 << PG_slab |
1da177e4 156 1 << PG_swapcache |
676165a8
NP
157 1 << PG_writeback |
158 1 << PG_buddy );
1da177e4
LT
159 set_page_count(page, 0);
160 reset_page_mapcount(page);
161 page->mapping = NULL;
9f158333 162 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
163}
164
1da177e4
LT
165/*
166 * Higher-order pages are called "compound pages". They are structured thusly:
167 *
168 * The first PAGE_SIZE page is called the "head page".
169 *
170 * The remaining PAGE_SIZE pages are called "tail pages".
171 *
172 * All pages have PG_compound set. All pages have their ->private pointing at
173 * the head page (even the head page has this).
174 *
41d78ba5
HD
175 * The first tail page's ->lru.next holds the address of the compound page's
176 * put_page() function. Its ->lru.prev holds the order of allocation.
177 * This usage means that zero-order pages may not be compound.
1da177e4 178 */
d98c7a09
HD
179
180static void free_compound_page(struct page *page)
181{
182 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
183}
184
1da177e4
LT
185static void prep_compound_page(struct page *page, unsigned long order)
186{
187 int i;
188 int nr_pages = 1 << order;
189
d98c7a09 190 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 191 page[1].lru.prev = (void *)order;
1da177e4
LT
192 for (i = 0; i < nr_pages; i++) {
193 struct page *p = page + i;
194
5e9dace8 195 __SetPageCompound(p);
4c21e2f2 196 set_page_private(p, (unsigned long)page);
1da177e4
LT
197 }
198}
199
200static void destroy_compound_page(struct page *page, unsigned long order)
201{
202 int i;
203 int nr_pages = 1 << order;
204
41d78ba5 205 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 206 bad_page(page);
1da177e4
LT
207
208 for (i = 0; i < nr_pages; i++) {
209 struct page *p = page + i;
210
224abf92
NP
211 if (unlikely(!PageCompound(p) |
212 (page_private(p) != (unsigned long)page)))
213 bad_page(page);
5e9dace8 214 __ClearPageCompound(p);
1da177e4
LT
215 }
216}
1da177e4 217
17cf4406
NP
218static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
219{
220 int i;
221
222 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
223 /*
224 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
225 * and __GFP_HIGHMEM from hard or soft interrupt context.
226 */
227 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
228 for (i = 0; i < (1 << order); i++)
229 clear_highpage(page + i);
230}
231
1da177e4
LT
232/*
233 * function for dealing with page's order in buddy system.
234 * zone->lock is already acquired when we use these.
235 * So, we don't need atomic page->flags operations here.
236 */
6aa3001b
AM
237static inline unsigned long page_order(struct page *page)
238{
4c21e2f2 239 return page_private(page);
1da177e4
LT
240}
241
6aa3001b
AM
242static inline void set_page_order(struct page *page, int order)
243{
4c21e2f2 244 set_page_private(page, order);
676165a8 245 __SetPageBuddy(page);
1da177e4
LT
246}
247
248static inline void rmv_page_order(struct page *page)
249{
676165a8 250 __ClearPageBuddy(page);
4c21e2f2 251 set_page_private(page, 0);
1da177e4
LT
252}
253
254/*
255 * Locate the struct page for both the matching buddy in our
256 * pair (buddy1) and the combined O(n+1) page they form (page).
257 *
258 * 1) Any buddy B1 will have an order O twin B2 which satisfies
259 * the following equation:
260 * B2 = B1 ^ (1 << O)
261 * For example, if the starting buddy (buddy2) is #8 its order
262 * 1 buddy is #10:
263 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
264 *
265 * 2) Any buddy B will have an order O+1 parent P which
266 * satisfies the following equation:
267 * P = B & ~(1 << O)
268 *
d6e05edc 269 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
270 */
271static inline struct page *
272__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
273{
274 unsigned long buddy_idx = page_idx ^ (1 << order);
275
276 return page + (buddy_idx - page_idx);
277}
278
279static inline unsigned long
280__find_combined_index(unsigned long page_idx, unsigned int order)
281{
282 return (page_idx & ~(1 << order));
283}
284
285/*
286 * This function checks whether a page is free && is the buddy
287 * we can do coalesce a page and its buddy if
13e7444b 288 * (a) the buddy is not in a hole &&
676165a8 289 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
290 * (c) a page and its buddy have the same order &&
291 * (d) a page and its buddy are in the same zone.
676165a8
NP
292 *
293 * For recording whether a page is in the buddy system, we use PG_buddy.
294 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 295 *
676165a8 296 * For recording page's order, we use page_private(page).
1da177e4 297 */
cb2b95e1
AW
298static inline int page_is_buddy(struct page *page, struct page *buddy,
299 int order)
1da177e4 300{
13e7444b 301#ifdef CONFIG_HOLES_IN_ZONE
cb2b95e1 302 if (!pfn_valid(page_to_pfn(buddy)))
13e7444b
NP
303 return 0;
304#endif
305
cb2b95e1
AW
306 if (page_zone_id(page) != page_zone_id(buddy))
307 return 0;
308
309 if (PageBuddy(buddy) && page_order(buddy) == order) {
310 BUG_ON(page_count(buddy) != 0);
6aa3001b 311 return 1;
676165a8 312 }
6aa3001b 313 return 0;
1da177e4
LT
314}
315
316/*
317 * Freeing function for a buddy system allocator.
318 *
319 * The concept of a buddy system is to maintain direct-mapped table
320 * (containing bit values) for memory blocks of various "orders".
321 * The bottom level table contains the map for the smallest allocatable
322 * units of memory (here, pages), and each level above it describes
323 * pairs of units from the levels below, hence, "buddies".
324 * At a high level, all that happens here is marking the table entry
325 * at the bottom level available, and propagating the changes upward
326 * as necessary, plus some accounting needed to play nicely with other
327 * parts of the VM system.
328 * At each level, we keep a list of pages, which are heads of continuous
676165a8 329 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 330 * order is recorded in page_private(page) field.
1da177e4
LT
331 * So when we are allocating or freeing one, we can derive the state of the
332 * other. That is, if we allocate a small block, and both were
333 * free, the remainder of the region must be split into blocks.
334 * If a block is freed, and its buddy is also free, then this
335 * triggers coalescing into a block of larger size.
336 *
337 * -- wli
338 */
339
48db57f8 340static inline void __free_one_page(struct page *page,
1da177e4
LT
341 struct zone *zone, unsigned int order)
342{
343 unsigned long page_idx;
344 int order_size = 1 << order;
345
224abf92 346 if (unlikely(PageCompound(page)))
1da177e4
LT
347 destroy_compound_page(page, order);
348
349 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
350
351 BUG_ON(page_idx & (order_size - 1));
352 BUG_ON(bad_range(zone, page));
353
354 zone->free_pages += order_size;
355 while (order < MAX_ORDER-1) {
356 unsigned long combined_idx;
357 struct free_area *area;
358 struct page *buddy;
359
1da177e4 360 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 361 if (!page_is_buddy(page, buddy, order))
1da177e4 362 break; /* Move the buddy up one level. */
13e7444b 363
1da177e4
LT
364 list_del(&buddy->lru);
365 area = zone->free_area + order;
366 area->nr_free--;
367 rmv_page_order(buddy);
13e7444b 368 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
369 page = page + (combined_idx - page_idx);
370 page_idx = combined_idx;
371 order++;
372 }
373 set_page_order(page, order);
374 list_add(&page->lru, &zone->free_area[order].free_list);
375 zone->free_area[order].nr_free++;
376}
377
224abf92 378static inline int free_pages_check(struct page *page)
1da177e4 379{
92be2e33
NP
380 if (unlikely(page_mapcount(page) |
381 (page->mapping != NULL) |
382 (page_count(page) != 0) |
1da177e4
LT
383 (page->flags & (
384 1 << PG_lru |
385 1 << PG_private |
386 1 << PG_locked |
387 1 << PG_active |
388 1 << PG_reclaim |
389 1 << PG_slab |
390 1 << PG_swapcache |
b5810039 391 1 << PG_writeback |
676165a8
NP
392 1 << PG_reserved |
393 1 << PG_buddy ))))
224abf92 394 bad_page(page);
1da177e4 395 if (PageDirty(page))
242e5468 396 __ClearPageDirty(page);
689bcebf
HD
397 /*
398 * For now, we report if PG_reserved was found set, but do not
399 * clear it, and do not free the page. But we shall soon need
400 * to do more, for when the ZERO_PAGE count wraps negative.
401 */
402 return PageReserved(page);
1da177e4
LT
403}
404
405/*
406 * Frees a list of pages.
407 * Assumes all pages on list are in same zone, and of same order.
207f36ee 408 * count is the number of pages to free.
1da177e4
LT
409 *
410 * If the zone was previously in an "all pages pinned" state then look to
411 * see if this freeing clears that state.
412 *
413 * And clear the zone's pages_scanned counter, to hold off the "all pages are
414 * pinned" detection logic.
415 */
48db57f8
NP
416static void free_pages_bulk(struct zone *zone, int count,
417 struct list_head *list, int order)
1da177e4 418{
c54ad30c 419 spin_lock(&zone->lock);
1da177e4
LT
420 zone->all_unreclaimable = 0;
421 zone->pages_scanned = 0;
48db57f8
NP
422 while (count--) {
423 struct page *page;
424
425 BUG_ON(list_empty(list));
1da177e4 426 page = list_entry(list->prev, struct page, lru);
48db57f8 427 /* have to delete it as __free_one_page list manipulates */
1da177e4 428 list_del(&page->lru);
48db57f8 429 __free_one_page(page, zone, order);
1da177e4 430 }
c54ad30c 431 spin_unlock(&zone->lock);
1da177e4
LT
432}
433
48db57f8 434static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
435{
436 LIST_HEAD(list);
48db57f8
NP
437 list_add(&page->lru, &list);
438 free_pages_bulk(zone, 1, &list, order);
439}
440
441static void __free_pages_ok(struct page *page, unsigned int order)
442{
443 unsigned long flags;
1da177e4 444 int i;
689bcebf 445 int reserved = 0;
1da177e4
LT
446
447 arch_free_page(page, order);
de5097c2 448 if (!PageHighMem(page))
f9b8404c
IM
449 debug_check_no_locks_freed(page_address(page),
450 PAGE_SIZE<<order);
1da177e4 451
1da177e4 452 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 453 reserved += free_pages_check(page + i);
689bcebf
HD
454 if (reserved)
455 return;
456
48db57f8 457 kernel_map_pages(page, 1 << order, 0);
c54ad30c 458 local_irq_save(flags);
a74609fa 459 __mod_page_state(pgfree, 1 << order);
48db57f8 460 free_one_page(page_zone(page), page, order);
c54ad30c 461 local_irq_restore(flags);
1da177e4
LT
462}
463
a226f6c8
DH
464/*
465 * permit the bootmem allocator to evade page validation on high-order frees
466 */
467void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
468{
469 if (order == 0) {
470 __ClearPageReserved(page);
471 set_page_count(page, 0);
7835e98b 472 set_page_refcounted(page);
545b1ea9 473 __free_page(page);
a226f6c8 474 } else {
a226f6c8
DH
475 int loop;
476
545b1ea9 477 prefetchw(page);
a226f6c8
DH
478 for (loop = 0; loop < BITS_PER_LONG; loop++) {
479 struct page *p = &page[loop];
480
545b1ea9
NP
481 if (loop + 1 < BITS_PER_LONG)
482 prefetchw(p + 1);
a226f6c8
DH
483 __ClearPageReserved(p);
484 set_page_count(p, 0);
485 }
486
7835e98b 487 set_page_refcounted(page);
545b1ea9 488 __free_pages(page, order);
a226f6c8
DH
489 }
490}
491
1da177e4
LT
492
493/*
494 * The order of subdivision here is critical for the IO subsystem.
495 * Please do not alter this order without good reasons and regression
496 * testing. Specifically, as large blocks of memory are subdivided,
497 * the order in which smaller blocks are delivered depends on the order
498 * they're subdivided in this function. This is the primary factor
499 * influencing the order in which pages are delivered to the IO
500 * subsystem according to empirical testing, and this is also justified
501 * by considering the behavior of a buddy system containing a single
502 * large block of memory acted on by a series of small allocations.
503 * This behavior is a critical factor in sglist merging's success.
504 *
505 * -- wli
506 */
085cc7d5 507static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
508 int low, int high, struct free_area *area)
509{
510 unsigned long size = 1 << high;
511
512 while (high > low) {
513 area--;
514 high--;
515 size >>= 1;
516 BUG_ON(bad_range(zone, &page[size]));
517 list_add(&page[size].lru, &area->free_list);
518 area->nr_free++;
519 set_page_order(&page[size], high);
520 }
1da177e4
LT
521}
522
1da177e4
LT
523/*
524 * This page is about to be returned from the page allocator
525 */
17cf4406 526static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 527{
92be2e33
NP
528 if (unlikely(page_mapcount(page) |
529 (page->mapping != NULL) |
530 (page_count(page) != 0) |
334795ec
HD
531 (page->flags & (
532 1 << PG_lru |
1da177e4
LT
533 1 << PG_private |
534 1 << PG_locked |
1da177e4
LT
535 1 << PG_active |
536 1 << PG_dirty |
537 1 << PG_reclaim |
334795ec 538 1 << PG_slab |
1da177e4 539 1 << PG_swapcache |
b5810039 540 1 << PG_writeback |
676165a8
NP
541 1 << PG_reserved |
542 1 << PG_buddy ))))
224abf92 543 bad_page(page);
1da177e4 544
689bcebf
HD
545 /*
546 * For now, we report if PG_reserved was found set, but do not
547 * clear it, and do not allocate the page: as a safety net.
548 */
549 if (PageReserved(page))
550 return 1;
551
1da177e4
LT
552 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
553 1 << PG_referenced | 1 << PG_arch_1 |
554 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 555 set_page_private(page, 0);
7835e98b 556 set_page_refcounted(page);
1da177e4 557 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
558
559 if (gfp_flags & __GFP_ZERO)
560 prep_zero_page(page, order, gfp_flags);
561
562 if (order && (gfp_flags & __GFP_COMP))
563 prep_compound_page(page, order);
564
689bcebf 565 return 0;
1da177e4
LT
566}
567
568/*
569 * Do the hard work of removing an element from the buddy allocator.
570 * Call me with the zone->lock already held.
571 */
572static struct page *__rmqueue(struct zone *zone, unsigned int order)
573{
574 struct free_area * area;
575 unsigned int current_order;
576 struct page *page;
577
578 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
579 area = zone->free_area + current_order;
580 if (list_empty(&area->free_list))
581 continue;
582
583 page = list_entry(area->free_list.next, struct page, lru);
584 list_del(&page->lru);
585 rmv_page_order(page);
586 area->nr_free--;
587 zone->free_pages -= 1UL << order;
085cc7d5
NP
588 expand(zone, page, order, current_order, area);
589 return page;
1da177e4
LT
590 }
591
592 return NULL;
593}
594
595/*
596 * Obtain a specified number of elements from the buddy allocator, all under
597 * a single hold of the lock, for efficiency. Add them to the supplied list.
598 * Returns the number of new pages which were placed at *list.
599 */
600static int rmqueue_bulk(struct zone *zone, unsigned int order,
601 unsigned long count, struct list_head *list)
602{
1da177e4 603 int i;
1da177e4 604
c54ad30c 605 spin_lock(&zone->lock);
1da177e4 606 for (i = 0; i < count; ++i) {
085cc7d5
NP
607 struct page *page = __rmqueue(zone, order);
608 if (unlikely(page == NULL))
1da177e4 609 break;
1da177e4
LT
610 list_add_tail(&page->lru, list);
611 }
c54ad30c 612 spin_unlock(&zone->lock);
085cc7d5 613 return i;
1da177e4
LT
614}
615
4ae7c039 616#ifdef CONFIG_NUMA
8fce4d8e
CL
617/*
618 * Called from the slab reaper to drain pagesets on a particular node that
619 * belong to the currently executing processor.
879336c3
CL
620 * Note that this function must be called with the thread pinned to
621 * a single processor.
8fce4d8e
CL
622 */
623void drain_node_pages(int nodeid)
4ae7c039 624{
8fce4d8e 625 int i, z;
4ae7c039
CL
626 unsigned long flags;
627
8fce4d8e
CL
628 for (z = 0; z < MAX_NR_ZONES; z++) {
629 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
630 struct per_cpu_pageset *pset;
631
23316bc8 632 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
633 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
634 struct per_cpu_pages *pcp;
635
636 pcp = &pset->pcp[i];
879336c3
CL
637 if (pcp->count) {
638 local_irq_save(flags);
639 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
640 pcp->count = 0;
641 local_irq_restore(flags);
642 }
4ae7c039
CL
643 }
644 }
4ae7c039
CL
645}
646#endif
647
1da177e4
LT
648#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
649static void __drain_pages(unsigned int cpu)
650{
c54ad30c 651 unsigned long flags;
1da177e4
LT
652 struct zone *zone;
653 int i;
654
655 for_each_zone(zone) {
656 struct per_cpu_pageset *pset;
657
e7c8d5c9 658 pset = zone_pcp(zone, cpu);
1da177e4
LT
659 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
660 struct per_cpu_pages *pcp;
661
662 pcp = &pset->pcp[i];
c54ad30c 663 local_irq_save(flags);
48db57f8
NP
664 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
665 pcp->count = 0;
c54ad30c 666 local_irq_restore(flags);
1da177e4
LT
667 }
668 }
669}
670#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
671
672#ifdef CONFIG_PM
673
674void mark_free_pages(struct zone *zone)
675{
676 unsigned long zone_pfn, flags;
677 int order;
678 struct list_head *curr;
679
680 if (!zone->spanned_pages)
681 return;
682
683 spin_lock_irqsave(&zone->lock, flags);
684 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
685 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
686
687 for (order = MAX_ORDER - 1; order >= 0; --order)
688 list_for_each(curr, &zone->free_area[order].free_list) {
689 unsigned long start_pfn, i;
690
691 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
692
693 for (i=0; i < (1<<order); i++)
694 SetPageNosaveFree(pfn_to_page(start_pfn+i));
695 }
696 spin_unlock_irqrestore(&zone->lock, flags);
697}
698
699/*
700 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
701 */
702void drain_local_pages(void)
703{
704 unsigned long flags;
705
706 local_irq_save(flags);
707 __drain_pages(smp_processor_id());
708 local_irq_restore(flags);
709}
710#endif /* CONFIG_PM */
711
1da177e4
LT
712/*
713 * Free a 0-order page
714 */
1da177e4
LT
715static void fastcall free_hot_cold_page(struct page *page, int cold)
716{
717 struct zone *zone = page_zone(page);
718 struct per_cpu_pages *pcp;
719 unsigned long flags;
720
721 arch_free_page(page, 0);
722
1da177e4
LT
723 if (PageAnon(page))
724 page->mapping = NULL;
224abf92 725 if (free_pages_check(page))
689bcebf
HD
726 return;
727
689bcebf
HD
728 kernel_map_pages(page, 1, 0);
729
e7c8d5c9 730 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 731 local_irq_save(flags);
a74609fa 732 __inc_page_state(pgfree);
1da177e4
LT
733 list_add(&page->lru, &pcp->list);
734 pcp->count++;
48db57f8
NP
735 if (pcp->count >= pcp->high) {
736 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
737 pcp->count -= pcp->batch;
738 }
1da177e4
LT
739 local_irq_restore(flags);
740 put_cpu();
741}
742
743void fastcall free_hot_page(struct page *page)
744{
745 free_hot_cold_page(page, 0);
746}
747
748void fastcall free_cold_page(struct page *page)
749{
750 free_hot_cold_page(page, 1);
751}
752
8dfcc9ba
NP
753/*
754 * split_page takes a non-compound higher-order page, and splits it into
755 * n (1<<order) sub-pages: page[0..n]
756 * Each sub-page must be freed individually.
757 *
758 * Note: this is probably too low level an operation for use in drivers.
759 * Please consult with lkml before using this in your driver.
760 */
761void split_page(struct page *page, unsigned int order)
762{
763 int i;
764
765 BUG_ON(PageCompound(page));
766 BUG_ON(!page_count(page));
7835e98b
NP
767 for (i = 1; i < (1 << order); i++)
768 set_page_refcounted(page + i);
8dfcc9ba 769}
8dfcc9ba 770
1da177e4
LT
771/*
772 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
773 * we cheat by calling it from here, in the order > 0 path. Saves a branch
774 * or two.
775 */
a74609fa
NP
776static struct page *buffered_rmqueue(struct zonelist *zonelist,
777 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
778{
779 unsigned long flags;
689bcebf 780 struct page *page;
1da177e4 781 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 782 int cpu;
1da177e4 783
689bcebf 784again:
a74609fa 785 cpu = get_cpu();
48db57f8 786 if (likely(order == 0)) {
1da177e4
LT
787 struct per_cpu_pages *pcp;
788
a74609fa 789 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 790 local_irq_save(flags);
a74609fa 791 if (!pcp->count) {
1da177e4
LT
792 pcp->count += rmqueue_bulk(zone, 0,
793 pcp->batch, &pcp->list);
a74609fa
NP
794 if (unlikely(!pcp->count))
795 goto failed;
1da177e4 796 }
a74609fa
NP
797 page = list_entry(pcp->list.next, struct page, lru);
798 list_del(&page->lru);
799 pcp->count--;
7fb1d9fc 800 } else {
1da177e4
LT
801 spin_lock_irqsave(&zone->lock, flags);
802 page = __rmqueue(zone, order);
a74609fa
NP
803 spin_unlock(&zone->lock);
804 if (!page)
805 goto failed;
1da177e4
LT
806 }
807
a74609fa 808 __mod_page_state_zone(zone, pgalloc, 1 << order);
ca889e6c 809 zone_statistics(zonelist, zone);
a74609fa
NP
810 local_irq_restore(flags);
811 put_cpu();
1da177e4 812
a74609fa 813 BUG_ON(bad_range(zone, page));
17cf4406 814 if (prep_new_page(page, order, gfp_flags))
a74609fa 815 goto again;
1da177e4 816 return page;
a74609fa
NP
817
818failed:
819 local_irq_restore(flags);
820 put_cpu();
821 return NULL;
1da177e4
LT
822}
823
7fb1d9fc 824#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
825#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
826#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
827#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
828#define ALLOC_HARDER 0x10 /* try to alloc harder */
829#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
830#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 831
1da177e4
LT
832/*
833 * Return 1 if free pages are above 'mark'. This takes into account the order
834 * of the allocation.
835 */
836int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 837 int classzone_idx, int alloc_flags)
1da177e4
LT
838{
839 /* free_pages my go negative - that's OK */
840 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
841 int o;
842
7fb1d9fc 843 if (alloc_flags & ALLOC_HIGH)
1da177e4 844 min -= min / 2;
7fb1d9fc 845 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
846 min -= min / 4;
847
848 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
849 return 0;
850 for (o = 0; o < order; o++) {
851 /* At the next order, this order's pages become unavailable */
852 free_pages -= z->free_area[o].nr_free << o;
853
854 /* Require fewer higher order pages to be free */
855 min >>= 1;
856
857 if (free_pages <= min)
858 return 0;
859 }
860 return 1;
861}
862
7fb1d9fc
RS
863/*
864 * get_page_from_freeliest goes through the zonelist trying to allocate
865 * a page.
866 */
867static struct page *
868get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
869 struct zonelist *zonelist, int alloc_flags)
753ee728 870{
7fb1d9fc
RS
871 struct zone **z = zonelist->zones;
872 struct page *page = NULL;
873 int classzone_idx = zone_idx(*z);
874
875 /*
876 * Go through the zonelist once, looking for a zone with enough free.
877 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
878 */
879 do {
880 if ((alloc_flags & ALLOC_CPUSET) &&
881 !cpuset_zone_allowed(*z, gfp_mask))
882 continue;
883
884 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
885 unsigned long mark;
886 if (alloc_flags & ALLOC_WMARK_MIN)
887 mark = (*z)->pages_min;
888 else if (alloc_flags & ALLOC_WMARK_LOW)
889 mark = (*z)->pages_low;
890 else
891 mark = (*z)->pages_high;
892 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 893 classzone_idx, alloc_flags))
9eeff239
CL
894 if (!zone_reclaim_mode ||
895 !zone_reclaim(*z, gfp_mask, order))
896 continue;
7fb1d9fc
RS
897 }
898
a74609fa 899 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 900 if (page) {
7fb1d9fc
RS
901 break;
902 }
903 } while (*(++z) != NULL);
904 return page;
753ee728
MH
905}
906
1da177e4
LT
907/*
908 * This is the 'heart' of the zoned buddy allocator.
909 */
910struct page * fastcall
dd0fc66f 911__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
912 struct zonelist *zonelist)
913{
260b2367 914 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 915 struct zone **z;
1da177e4
LT
916 struct page *page;
917 struct reclaim_state reclaim_state;
918 struct task_struct *p = current;
1da177e4 919 int do_retry;
7fb1d9fc 920 int alloc_flags;
1da177e4
LT
921 int did_some_progress;
922
923 might_sleep_if(wait);
924
6b1de916 925restart:
7fb1d9fc 926 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 927
7fb1d9fc 928 if (unlikely(*z == NULL)) {
1da177e4
LT
929 /* Should this ever happen?? */
930 return NULL;
931 }
6b1de916 932
7fb1d9fc 933 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 934 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
935 if (page)
936 goto got_pg;
1da177e4 937
6b1de916 938 do {
43b0bc00 939 wakeup_kswapd(*z, order);
6b1de916 940 } while (*(++z));
1da177e4 941
9bf2229f 942 /*
7fb1d9fc
RS
943 * OK, we're below the kswapd watermark and have kicked background
944 * reclaim. Now things get more complex, so set up alloc_flags according
945 * to how we want to proceed.
946 *
947 * The caller may dip into page reserves a bit more if the caller
948 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
949 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
950 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 951 */
3148890b 952 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
953 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
954 alloc_flags |= ALLOC_HARDER;
955 if (gfp_mask & __GFP_HIGH)
956 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
957 if (wait)
958 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
959
960 /*
961 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 962 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
963 *
964 * This is the last chance, in general, before the goto nopage.
965 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 966 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 967 */
7fb1d9fc
RS
968 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
969 if (page)
970 goto got_pg;
1da177e4
LT
971
972 /* This allocation should allow future memory freeing. */
b84a35be
NP
973
974 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
975 && !in_interrupt()) {
976 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 977nofail_alloc:
b84a35be 978 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 979 page = get_page_from_freelist(gfp_mask, order,
47f3a867 980 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
981 if (page)
982 goto got_pg;
885036d3
KK
983 if (gfp_mask & __GFP_NOFAIL) {
984 blk_congestion_wait(WRITE, HZ/50);
985 goto nofail_alloc;
986 }
1da177e4
LT
987 }
988 goto nopage;
989 }
990
991 /* Atomic allocations - we can't balance anything */
992 if (!wait)
993 goto nopage;
994
995rebalance:
996 cond_resched();
997
998 /* We now go into synchronous reclaim */
3e0d98b9 999 cpuset_memory_pressure_bump();
1da177e4
LT
1000 p->flags |= PF_MEMALLOC;
1001 reclaim_state.reclaimed_slab = 0;
1002 p->reclaim_state = &reclaim_state;
1003
7fb1d9fc 1004 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1005
1006 p->reclaim_state = NULL;
1007 p->flags &= ~PF_MEMALLOC;
1008
1009 cond_resched();
1010
1011 if (likely(did_some_progress)) {
7fb1d9fc
RS
1012 page = get_page_from_freelist(gfp_mask, order,
1013 zonelist, alloc_flags);
1014 if (page)
1015 goto got_pg;
1da177e4
LT
1016 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1017 /*
1018 * Go through the zonelist yet one more time, keep
1019 * very high watermark here, this is only to catch
1020 * a parallel oom killing, we must fail if we're still
1021 * under heavy pressure.
1022 */
7fb1d9fc 1023 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1024 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1025 if (page)
1026 goto got_pg;
1da177e4 1027
9b0f8b04 1028 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1029 goto restart;
1030 }
1031
1032 /*
1033 * Don't let big-order allocations loop unless the caller explicitly
1034 * requests that. Wait for some write requests to complete then retry.
1035 *
1036 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1037 * <= 3, but that may not be true in other implementations.
1038 */
1039 do_retry = 0;
1040 if (!(gfp_mask & __GFP_NORETRY)) {
1041 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1042 do_retry = 1;
1043 if (gfp_mask & __GFP_NOFAIL)
1044 do_retry = 1;
1045 }
1046 if (do_retry) {
1047 blk_congestion_wait(WRITE, HZ/50);
1048 goto rebalance;
1049 }
1050
1051nopage:
1052 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1053 printk(KERN_WARNING "%s: page allocation failure."
1054 " order:%d, mode:0x%x\n",
1055 p->comm, order, gfp_mask);
1056 dump_stack();
578c2fd6 1057 show_mem();
1da177e4 1058 }
1da177e4 1059got_pg:
1da177e4
LT
1060 return page;
1061}
1062
1063EXPORT_SYMBOL(__alloc_pages);
1064
1065/*
1066 * Common helper functions.
1067 */
dd0fc66f 1068fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1069{
1070 struct page * page;
1071 page = alloc_pages(gfp_mask, order);
1072 if (!page)
1073 return 0;
1074 return (unsigned long) page_address(page);
1075}
1076
1077EXPORT_SYMBOL(__get_free_pages);
1078
dd0fc66f 1079fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1080{
1081 struct page * page;
1082
1083 /*
1084 * get_zeroed_page() returns a 32-bit address, which cannot represent
1085 * a highmem page
1086 */
260b2367 1087 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1088
1089 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1090 if (page)
1091 return (unsigned long) page_address(page);
1092 return 0;
1093}
1094
1095EXPORT_SYMBOL(get_zeroed_page);
1096
1097void __pagevec_free(struct pagevec *pvec)
1098{
1099 int i = pagevec_count(pvec);
1100
1101 while (--i >= 0)
1102 free_hot_cold_page(pvec->pages[i], pvec->cold);
1103}
1104
1105fastcall void __free_pages(struct page *page, unsigned int order)
1106{
b5810039 1107 if (put_page_testzero(page)) {
1da177e4
LT
1108 if (order == 0)
1109 free_hot_page(page);
1110 else
1111 __free_pages_ok(page, order);
1112 }
1113}
1114
1115EXPORT_SYMBOL(__free_pages);
1116
1117fastcall void free_pages(unsigned long addr, unsigned int order)
1118{
1119 if (addr != 0) {
1120 BUG_ON(!virt_addr_valid((void *)addr));
1121 __free_pages(virt_to_page((void *)addr), order);
1122 }
1123}
1124
1125EXPORT_SYMBOL(free_pages);
1126
1127/*
1128 * Total amount of free (allocatable) RAM:
1129 */
1130unsigned int nr_free_pages(void)
1131{
1132 unsigned int sum = 0;
1133 struct zone *zone;
1134
1135 for_each_zone(zone)
1136 sum += zone->free_pages;
1137
1138 return sum;
1139}
1140
1141EXPORT_SYMBOL(nr_free_pages);
1142
1143#ifdef CONFIG_NUMA
1144unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1145{
1146 unsigned int i, sum = 0;
1147
1148 for (i = 0; i < MAX_NR_ZONES; i++)
1149 sum += pgdat->node_zones[i].free_pages;
1150
1151 return sum;
1152}
1153#endif
1154
1155static unsigned int nr_free_zone_pages(int offset)
1156{
e310fd43
MB
1157 /* Just pick one node, since fallback list is circular */
1158 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1159 unsigned int sum = 0;
1160
e310fd43
MB
1161 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1162 struct zone **zonep = zonelist->zones;
1163 struct zone *zone;
1da177e4 1164
e310fd43
MB
1165 for (zone = *zonep++; zone; zone = *zonep++) {
1166 unsigned long size = zone->present_pages;
1167 unsigned long high = zone->pages_high;
1168 if (size > high)
1169 sum += size - high;
1da177e4
LT
1170 }
1171
1172 return sum;
1173}
1174
1175/*
1176 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1177 */
1178unsigned int nr_free_buffer_pages(void)
1179{
af4ca457 1180 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1181}
1182
1183/*
1184 * Amount of free RAM allocatable within all zones
1185 */
1186unsigned int nr_free_pagecache_pages(void)
1187{
af4ca457 1188 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1189}
1190
1191#ifdef CONFIG_HIGHMEM
1192unsigned int nr_free_highpages (void)
1193{
1194 pg_data_t *pgdat;
1195 unsigned int pages = 0;
1196
ec936fc5 1197 for_each_online_pgdat(pgdat)
1da177e4
LT
1198 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1199
1200 return pages;
1201}
1202#endif
1203
1204#ifdef CONFIG_NUMA
1205static void show_node(struct zone *zone)
1206{
1207 printk("Node %d ", zone->zone_pgdat->node_id);
1208}
1209#else
1210#define show_node(zone) do { } while (0)
1211#endif
1212
1da177e4
LT
1213void si_meminfo(struct sysinfo *val)
1214{
1215 val->totalram = totalram_pages;
1216 val->sharedram = 0;
1217 val->freeram = nr_free_pages();
1218 val->bufferram = nr_blockdev_pages();
1219#ifdef CONFIG_HIGHMEM
1220 val->totalhigh = totalhigh_pages;
1221 val->freehigh = nr_free_highpages();
1222#else
1223 val->totalhigh = 0;
1224 val->freehigh = 0;
1225#endif
1226 val->mem_unit = PAGE_SIZE;
1227}
1228
1229EXPORT_SYMBOL(si_meminfo);
1230
1231#ifdef CONFIG_NUMA
1232void si_meminfo_node(struct sysinfo *val, int nid)
1233{
1234 pg_data_t *pgdat = NODE_DATA(nid);
1235
1236 val->totalram = pgdat->node_present_pages;
1237 val->freeram = nr_free_pages_pgdat(pgdat);
1238 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1239 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1240 val->mem_unit = PAGE_SIZE;
1241}
1242#endif
1243
1244#define K(x) ((x) << (PAGE_SHIFT-10))
1245
1246/*
1247 * Show free area list (used inside shift_scroll-lock stuff)
1248 * We also calculate the percentage fragmentation. We do this by counting the
1249 * memory on each free list with the exception of the first item on the list.
1250 */
1251void show_free_areas(void)
1252{
1da177e4
LT
1253 int cpu, temperature;
1254 unsigned long active;
1255 unsigned long inactive;
1256 unsigned long free;
1257 struct zone *zone;
1258
1259 for_each_zone(zone) {
1260 show_node(zone);
1261 printk("%s per-cpu:", zone->name);
1262
f3fe6512 1263 if (!populated_zone(zone)) {
1da177e4
LT
1264 printk(" empty\n");
1265 continue;
1266 } else
1267 printk("\n");
1268
6b482c67 1269 for_each_online_cpu(cpu) {
1da177e4
LT
1270 struct per_cpu_pageset *pageset;
1271
e7c8d5c9 1272 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1273
1274 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1275 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1276 cpu,
1277 temperature ? "cold" : "hot",
1da177e4 1278 pageset->pcp[temperature].high,
4ae7c039
CL
1279 pageset->pcp[temperature].batch,
1280 pageset->pcp[temperature].count);
1da177e4
LT
1281 }
1282 }
1283
1da177e4
LT
1284 get_zone_counts(&active, &inactive, &free);
1285
c0d62219 1286 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1287 K(nr_free_pages()),
1288 K(nr_free_highpages()));
1289
1290 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1291 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1292 active,
1293 inactive,
b1e7a8fd 1294 global_page_state(NR_FILE_DIRTY),
ce866b34 1295 global_page_state(NR_WRITEBACK),
fd39fc85 1296 global_page_state(NR_UNSTABLE_NFS),
1da177e4 1297 nr_free_pages(),
9a865ffa 1298 global_page_state(NR_SLAB),
65ba55f5 1299 global_page_state(NR_FILE_MAPPED),
df849a15 1300 global_page_state(NR_PAGETABLE));
1da177e4
LT
1301
1302 for_each_zone(zone) {
1303 int i;
1304
1305 show_node(zone);
1306 printk("%s"
1307 " free:%lukB"
1308 " min:%lukB"
1309 " low:%lukB"
1310 " high:%lukB"
1311 " active:%lukB"
1312 " inactive:%lukB"
1313 " present:%lukB"
1314 " pages_scanned:%lu"
1315 " all_unreclaimable? %s"
1316 "\n",
1317 zone->name,
1318 K(zone->free_pages),
1319 K(zone->pages_min),
1320 K(zone->pages_low),
1321 K(zone->pages_high),
1322 K(zone->nr_active),
1323 K(zone->nr_inactive),
1324 K(zone->present_pages),
1325 zone->pages_scanned,
1326 (zone->all_unreclaimable ? "yes" : "no")
1327 );
1328 printk("lowmem_reserve[]:");
1329 for (i = 0; i < MAX_NR_ZONES; i++)
1330 printk(" %lu", zone->lowmem_reserve[i]);
1331 printk("\n");
1332 }
1333
1334 for_each_zone(zone) {
8f9de51a 1335 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
1336
1337 show_node(zone);
1338 printk("%s: ", zone->name);
f3fe6512 1339 if (!populated_zone(zone)) {
1da177e4
LT
1340 printk("empty\n");
1341 continue;
1342 }
1343
1344 spin_lock_irqsave(&zone->lock, flags);
1345 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1346 nr[order] = zone->free_area[order].nr_free;
1347 total += nr[order] << order;
1da177e4
LT
1348 }
1349 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1350 for (order = 0; order < MAX_ORDER; order++)
1351 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1352 printk("= %lukB\n", K(total));
1353 }
1354
1355 show_swap_cache_info();
1356}
1357
1358/*
1359 * Builds allocation fallback zone lists.
1a93205b
CL
1360 *
1361 * Add all populated zones of a node to the zonelist.
1da177e4 1362 */
86356ab1 1363static int __meminit build_zonelists_node(pg_data_t *pgdat,
070f8032 1364 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1365{
1a93205b
CL
1366 struct zone *zone;
1367
070f8032 1368 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1369
1370 do {
070f8032 1371 zone = pgdat->node_zones + zone_type;
1a93205b 1372 if (populated_zone(zone)) {
1da177e4 1373#ifndef CONFIG_HIGHMEM
070f8032 1374 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1375#endif
070f8032
CL
1376 zonelist->zones[nr_zones++] = zone;
1377 check_highest_zone(zone_type);
1da177e4 1378 }
070f8032 1379 zone_type--;
02a68a5e 1380
070f8032
CL
1381 } while (zone_type >= 0);
1382 return nr_zones;
1da177e4
LT
1383}
1384
260b2367
AV
1385static inline int highest_zone(int zone_bits)
1386{
1387 int res = ZONE_NORMAL;
1388 if (zone_bits & (__force int)__GFP_HIGHMEM)
1389 res = ZONE_HIGHMEM;
a2f1b424
AK
1390 if (zone_bits & (__force int)__GFP_DMA32)
1391 res = ZONE_DMA32;
260b2367
AV
1392 if (zone_bits & (__force int)__GFP_DMA)
1393 res = ZONE_DMA;
1394 return res;
1395}
1396
1da177e4
LT
1397#ifdef CONFIG_NUMA
1398#define MAX_NODE_LOAD (num_online_nodes())
86356ab1 1399static int __meminitdata node_load[MAX_NUMNODES];
1da177e4 1400/**
4dc3b16b 1401 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1402 * @node: node whose fallback list we're appending
1403 * @used_node_mask: nodemask_t of already used nodes
1404 *
1405 * We use a number of factors to determine which is the next node that should
1406 * appear on a given node's fallback list. The node should not have appeared
1407 * already in @node's fallback list, and it should be the next closest node
1408 * according to the distance array (which contains arbitrary distance values
1409 * from each node to each node in the system), and should also prefer nodes
1410 * with no CPUs, since presumably they'll have very little allocation pressure
1411 * on them otherwise.
1412 * It returns -1 if no node is found.
1413 */
86356ab1 1414static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1415{
4cf808eb 1416 int n, val;
1da177e4
LT
1417 int min_val = INT_MAX;
1418 int best_node = -1;
1419
4cf808eb
LT
1420 /* Use the local node if we haven't already */
1421 if (!node_isset(node, *used_node_mask)) {
1422 node_set(node, *used_node_mask);
1423 return node;
1424 }
1da177e4 1425
4cf808eb
LT
1426 for_each_online_node(n) {
1427 cpumask_t tmp;
1da177e4
LT
1428
1429 /* Don't want a node to appear more than once */
1430 if (node_isset(n, *used_node_mask))
1431 continue;
1432
1da177e4
LT
1433 /* Use the distance array to find the distance */
1434 val = node_distance(node, n);
1435
4cf808eb
LT
1436 /* Penalize nodes under us ("prefer the next node") */
1437 val += (n < node);
1438
1da177e4
LT
1439 /* Give preference to headless and unused nodes */
1440 tmp = node_to_cpumask(n);
1441 if (!cpus_empty(tmp))
1442 val += PENALTY_FOR_NODE_WITH_CPUS;
1443
1444 /* Slight preference for less loaded node */
1445 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1446 val += node_load[n];
1447
1448 if (val < min_val) {
1449 min_val = val;
1450 best_node = n;
1451 }
1452 }
1453
1454 if (best_node >= 0)
1455 node_set(best_node, *used_node_mask);
1456
1457 return best_node;
1458}
1459
86356ab1 1460static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4
LT
1461{
1462 int i, j, k, node, local_node;
1463 int prev_node, load;
1464 struct zonelist *zonelist;
1465 nodemask_t used_mask;
1466
1467 /* initialize zonelists */
1468 for (i = 0; i < GFP_ZONETYPES; i++) {
1469 zonelist = pgdat->node_zonelists + i;
1470 zonelist->zones[0] = NULL;
1471 }
1472
1473 /* NUMA-aware ordering of nodes */
1474 local_node = pgdat->node_id;
1475 load = num_online_nodes();
1476 prev_node = local_node;
1477 nodes_clear(used_mask);
1478 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1479 int distance = node_distance(local_node, node);
1480
1481 /*
1482 * If another node is sufficiently far away then it is better
1483 * to reclaim pages in a zone before going off node.
1484 */
1485 if (distance > RECLAIM_DISTANCE)
1486 zone_reclaim_mode = 1;
1487
1da177e4
LT
1488 /*
1489 * We don't want to pressure a particular node.
1490 * So adding penalty to the first node in same
1491 * distance group to make it round-robin.
1492 */
9eeff239
CL
1493
1494 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1495 node_load[node] += load;
1496 prev_node = node;
1497 load--;
1498 for (i = 0; i < GFP_ZONETYPES; i++) {
1499 zonelist = pgdat->node_zonelists + i;
1500 for (j = 0; zonelist->zones[j] != NULL; j++);
1501
260b2367 1502 k = highest_zone(i);
1da177e4
LT
1503
1504 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1505 zonelist->zones[j] = NULL;
1506 }
1507 }
1508}
1509
1510#else /* CONFIG_NUMA */
1511
86356ab1 1512static void __meminit build_zonelists(pg_data_t *pgdat)
1da177e4
LT
1513{
1514 int i, j, k, node, local_node;
1515
1516 local_node = pgdat->node_id;
1517 for (i = 0; i < GFP_ZONETYPES; i++) {
1518 struct zonelist *zonelist;
1519
1520 zonelist = pgdat->node_zonelists + i;
1521
1522 j = 0;
260b2367 1523 k = highest_zone(i);
1da177e4
LT
1524 j = build_zonelists_node(pgdat, zonelist, j, k);
1525 /*
1526 * Now we build the zonelist so that it contains the zones
1527 * of all the other nodes.
1528 * We don't want to pressure a particular node, so when
1529 * building the zones for node N, we make sure that the
1530 * zones coming right after the local ones are those from
1531 * node N+1 (modulo N)
1532 */
1533 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1534 if (!node_online(node))
1535 continue;
1536 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1537 }
1538 for (node = 0; node < local_node; node++) {
1539 if (!node_online(node))
1540 continue;
1541 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1542 }
1543
1544 zonelist->zones[j] = NULL;
1545 }
1546}
1547
1548#endif /* CONFIG_NUMA */
1549
6811378e
YG
1550/* return values int ....just for stop_machine_run() */
1551static int __meminit __build_all_zonelists(void *dummy)
1da177e4 1552{
6811378e
YG
1553 int nid;
1554 for_each_online_node(nid)
1555 build_zonelists(NODE_DATA(nid));
1556 return 0;
1557}
1558
1559void __meminit build_all_zonelists(void)
1560{
1561 if (system_state == SYSTEM_BOOTING) {
1562 __build_all_zonelists(0);
1563 cpuset_init_current_mems_allowed();
1564 } else {
1565 /* we have to stop all cpus to guaranntee there is no user
1566 of zonelist */
1567 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1568 /* cpuset refresh routine should be here */
1569 }
bd1e22b8
AM
1570 vm_total_pages = nr_free_pagecache_pages();
1571 printk("Built %i zonelists. Total pages: %ld\n",
1572 num_online_nodes(), vm_total_pages);
1da177e4
LT
1573}
1574
1575/*
1576 * Helper functions to size the waitqueue hash table.
1577 * Essentially these want to choose hash table sizes sufficiently
1578 * large so that collisions trying to wait on pages are rare.
1579 * But in fact, the number of active page waitqueues on typical
1580 * systems is ridiculously low, less than 200. So this is even
1581 * conservative, even though it seems large.
1582 *
1583 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1584 * waitqueues, i.e. the size of the waitq table given the number of pages.
1585 */
1586#define PAGES_PER_WAITQUEUE 256
1587
cca448fe 1588#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 1589static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
1590{
1591 unsigned long size = 1;
1592
1593 pages /= PAGES_PER_WAITQUEUE;
1594
1595 while (size < pages)
1596 size <<= 1;
1597
1598 /*
1599 * Once we have dozens or even hundreds of threads sleeping
1600 * on IO we've got bigger problems than wait queue collision.
1601 * Limit the size of the wait table to a reasonable size.
1602 */
1603 size = min(size, 4096UL);
1604
1605 return max(size, 4UL);
1606}
cca448fe
YG
1607#else
1608/*
1609 * A zone's size might be changed by hot-add, so it is not possible to determine
1610 * a suitable size for its wait_table. So we use the maximum size now.
1611 *
1612 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1613 *
1614 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1615 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1616 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1617 *
1618 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1619 * or more by the traditional way. (See above). It equals:
1620 *
1621 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1622 * ia64(16K page size) : = ( 8G + 4M)byte.
1623 * powerpc (64K page size) : = (32G +16M)byte.
1624 */
1625static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1626{
1627 return 4096UL;
1628}
1629#endif
1da177e4
LT
1630
1631/*
1632 * This is an integer logarithm so that shifts can be used later
1633 * to extract the more random high bits from the multiplicative
1634 * hash function before the remainder is taken.
1635 */
1636static inline unsigned long wait_table_bits(unsigned long size)
1637{
1638 return ffz(~size);
1639}
1640
1641#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1642
1643static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1644 unsigned long *zones_size, unsigned long *zholes_size)
1645{
1646 unsigned long realtotalpages, totalpages = 0;
1647 int i;
1648
1649 for (i = 0; i < MAX_NR_ZONES; i++)
1650 totalpages += zones_size[i];
1651 pgdat->node_spanned_pages = totalpages;
1652
1653 realtotalpages = totalpages;
1654 if (zholes_size)
1655 for (i = 0; i < MAX_NR_ZONES; i++)
1656 realtotalpages -= zholes_size[i];
1657 pgdat->node_present_pages = realtotalpages;
1658 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1659}
1660
1661
1662/*
1663 * Initially all pages are reserved - free ones are freed
1664 * up by free_all_bootmem() once the early boot process is
1665 * done. Non-atomic initialization, single-pass.
1666 */
c09b4240 1667void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1668 unsigned long start_pfn)
1669{
1da177e4 1670 struct page *page;
29751f69
AW
1671 unsigned long end_pfn = start_pfn + size;
1672 unsigned long pfn;
1da177e4 1673
cbe8dd4a 1674 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1675 if (!early_pfn_valid(pfn))
1676 continue;
1677 page = pfn_to_page(pfn);
1678 set_page_links(page, zone, nid, pfn);
7835e98b 1679 init_page_count(page);
1da177e4
LT
1680 reset_page_mapcount(page);
1681 SetPageReserved(page);
1682 INIT_LIST_HEAD(&page->lru);
1683#ifdef WANT_PAGE_VIRTUAL
1684 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1685 if (!is_highmem_idx(zone))
3212c6be 1686 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1687#endif
1da177e4
LT
1688 }
1689}
1690
1691void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1692 unsigned long size)
1693{
1694 int order;
1695 for (order = 0; order < MAX_ORDER ; order++) {
1696 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1697 zone->free_area[order].nr_free = 0;
1698 }
1699}
1700
d41dee36
AW
1701#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1702void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1703 unsigned long size)
1704{
1705 unsigned long snum = pfn_to_section_nr(pfn);
1706 unsigned long end = pfn_to_section_nr(pfn + size);
1707
1708 if (FLAGS_HAS_NODE)
1709 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1710 else
1711 for (; snum <= end; snum++)
1712 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1713}
1714
1da177e4
LT
1715#ifndef __HAVE_ARCH_MEMMAP_INIT
1716#define memmap_init(size, nid, zone, start_pfn) \
1717 memmap_init_zone((size), (nid), (zone), (start_pfn))
1718#endif
1719
6292d9aa 1720static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1721{
1722 int batch;
1723
1724 /*
1725 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1726 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1727 *
1728 * OK, so we don't know how big the cache is. So guess.
1729 */
1730 batch = zone->present_pages / 1024;
ba56e91c
SR
1731 if (batch * PAGE_SIZE > 512 * 1024)
1732 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1733 batch /= 4; /* We effectively *= 4 below */
1734 if (batch < 1)
1735 batch = 1;
1736
1737 /*
0ceaacc9
NP
1738 * Clamp the batch to a 2^n - 1 value. Having a power
1739 * of 2 value was found to be more likely to have
1740 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1741 *
0ceaacc9
NP
1742 * For example if 2 tasks are alternately allocating
1743 * batches of pages, one task can end up with a lot
1744 * of pages of one half of the possible page colors
1745 * and the other with pages of the other colors.
e7c8d5c9 1746 */
0ceaacc9 1747 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1748
e7c8d5c9
CL
1749 return batch;
1750}
1751
2caaad41
CL
1752inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1753{
1754 struct per_cpu_pages *pcp;
1755
1c6fe946
MD
1756 memset(p, 0, sizeof(*p));
1757
2caaad41
CL
1758 pcp = &p->pcp[0]; /* hot */
1759 pcp->count = 0;
2caaad41
CL
1760 pcp->high = 6 * batch;
1761 pcp->batch = max(1UL, 1 * batch);
1762 INIT_LIST_HEAD(&pcp->list);
1763
1764 pcp = &p->pcp[1]; /* cold*/
1765 pcp->count = 0;
2caaad41 1766 pcp->high = 2 * batch;
e46a5e28 1767 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1768 INIT_LIST_HEAD(&pcp->list);
1769}
1770
8ad4b1fb
RS
1771/*
1772 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1773 * to the value high for the pageset p.
1774 */
1775
1776static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1777 unsigned long high)
1778{
1779 struct per_cpu_pages *pcp;
1780
1781 pcp = &p->pcp[0]; /* hot list */
1782 pcp->high = high;
1783 pcp->batch = max(1UL, high/4);
1784 if ((high/4) > (PAGE_SHIFT * 8))
1785 pcp->batch = PAGE_SHIFT * 8;
1786}
1787
1788
e7c8d5c9
CL
1789#ifdef CONFIG_NUMA
1790/*
2caaad41
CL
1791 * Boot pageset table. One per cpu which is going to be used for all
1792 * zones and all nodes. The parameters will be set in such a way
1793 * that an item put on a list will immediately be handed over to
1794 * the buddy list. This is safe since pageset manipulation is done
1795 * with interrupts disabled.
1796 *
1797 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1798 *
1799 * The boot_pagesets must be kept even after bootup is complete for
1800 * unused processors and/or zones. They do play a role for bootstrapping
1801 * hotplugged processors.
1802 *
1803 * zoneinfo_show() and maybe other functions do
1804 * not check if the processor is online before following the pageset pointer.
1805 * Other parts of the kernel may not check if the zone is available.
2caaad41 1806 */
88a2a4ac 1807static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1808
1809/*
1810 * Dynamically allocate memory for the
e7c8d5c9
CL
1811 * per cpu pageset array in struct zone.
1812 */
6292d9aa 1813static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1814{
1815 struct zone *zone, *dzone;
e7c8d5c9
CL
1816
1817 for_each_zone(zone) {
e7c8d5c9 1818
23316bc8 1819 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1820 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1821 if (!zone_pcp(zone, cpu))
e7c8d5c9 1822 goto bad;
e7c8d5c9 1823
23316bc8 1824 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1825
1826 if (percpu_pagelist_fraction)
1827 setup_pagelist_highmark(zone_pcp(zone, cpu),
1828 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1829 }
1830
1831 return 0;
1832bad:
1833 for_each_zone(dzone) {
1834 if (dzone == zone)
1835 break;
23316bc8
NP
1836 kfree(zone_pcp(dzone, cpu));
1837 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1838 }
1839 return -ENOMEM;
1840}
1841
1842static inline void free_zone_pagesets(int cpu)
1843{
e7c8d5c9
CL
1844 struct zone *zone;
1845
1846 for_each_zone(zone) {
1847 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1848
1849 zone_pcp(zone, cpu) = NULL;
1850 kfree(pset);
1851 }
e7c8d5c9
CL
1852}
1853
9c7b216d 1854static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1855 unsigned long action,
1856 void *hcpu)
1857{
1858 int cpu = (long)hcpu;
1859 int ret = NOTIFY_OK;
1860
1861 switch (action) {
1862 case CPU_UP_PREPARE:
1863 if (process_zones(cpu))
1864 ret = NOTIFY_BAD;
1865 break;
b0d41693 1866 case CPU_UP_CANCELED:
e7c8d5c9
CL
1867 case CPU_DEAD:
1868 free_zone_pagesets(cpu);
1869 break;
e7c8d5c9
CL
1870 default:
1871 break;
1872 }
1873 return ret;
1874}
1875
74b85f37 1876static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
1877 { &pageset_cpuup_callback, NULL, 0 };
1878
78d9955b 1879void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1880{
1881 int err;
1882
1883 /* Initialize per_cpu_pageset for cpu 0.
1884 * A cpuup callback will do this for every cpu
1885 * as it comes online
1886 */
1887 err = process_zones(smp_processor_id());
1888 BUG_ON(err);
1889 register_cpu_notifier(&pageset_notifier);
1890}
1891
1892#endif
1893
c09b4240 1894static __meminit
cca448fe 1895int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
1896{
1897 int i;
1898 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 1899 size_t alloc_size;
ed8ece2e
DH
1900
1901 /*
1902 * The per-page waitqueue mechanism uses hashed waitqueues
1903 * per zone.
1904 */
02b694de
YG
1905 zone->wait_table_hash_nr_entries =
1906 wait_table_hash_nr_entries(zone_size_pages);
1907 zone->wait_table_bits =
1908 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
1909 alloc_size = zone->wait_table_hash_nr_entries
1910 * sizeof(wait_queue_head_t);
1911
1912 if (system_state == SYSTEM_BOOTING) {
1913 zone->wait_table = (wait_queue_head_t *)
1914 alloc_bootmem_node(pgdat, alloc_size);
1915 } else {
1916 /*
1917 * This case means that a zone whose size was 0 gets new memory
1918 * via memory hot-add.
1919 * But it may be the case that a new node was hot-added. In
1920 * this case vmalloc() will not be able to use this new node's
1921 * memory - this wait_table must be initialized to use this new
1922 * node itself as well.
1923 * To use this new node's memory, further consideration will be
1924 * necessary.
1925 */
1926 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1927 }
1928 if (!zone->wait_table)
1929 return -ENOMEM;
ed8ece2e 1930
02b694de 1931 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 1932 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
1933
1934 return 0;
ed8ece2e
DH
1935}
1936
c09b4240 1937static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
1938{
1939 int cpu;
1940 unsigned long batch = zone_batchsize(zone);
1941
1942 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1943#ifdef CONFIG_NUMA
1944 /* Early boot. Slab allocator not functional yet */
23316bc8 1945 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
1946 setup_pageset(&boot_pageset[cpu],0);
1947#else
1948 setup_pageset(zone_pcp(zone,cpu), batch);
1949#endif
1950 }
f5335c0f
AB
1951 if (zone->present_pages)
1952 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1953 zone->name, zone->present_pages, batch);
ed8ece2e
DH
1954}
1955
718127cc
YG
1956__meminit int init_currently_empty_zone(struct zone *zone,
1957 unsigned long zone_start_pfn,
1958 unsigned long size)
ed8ece2e
DH
1959{
1960 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
1961 int ret;
1962 ret = zone_wait_table_init(zone, size);
1963 if (ret)
1964 return ret;
ed8ece2e
DH
1965 pgdat->nr_zones = zone_idx(zone) + 1;
1966
ed8ece2e
DH
1967 zone->zone_start_pfn = zone_start_pfn;
1968
1969 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1970
1971 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
1972
1973 return 0;
ed8ece2e
DH
1974}
1975
1da177e4
LT
1976/*
1977 * Set up the zone data structures:
1978 * - mark all pages reserved
1979 * - mark all memory queues empty
1980 * - clear the memory bitmaps
1981 */
86356ab1 1982static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
1983 unsigned long *zones_size, unsigned long *zholes_size)
1984{
ed8ece2e
DH
1985 unsigned long j;
1986 int nid = pgdat->node_id;
1da177e4 1987 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 1988 int ret;
1da177e4 1989
208d54e5 1990 pgdat_resize_init(pgdat);
1da177e4
LT
1991 pgdat->nr_zones = 0;
1992 init_waitqueue_head(&pgdat->kswapd_wait);
1993 pgdat->kswapd_max_order = 0;
1994
1995 for (j = 0; j < MAX_NR_ZONES; j++) {
1996 struct zone *zone = pgdat->node_zones + j;
1997 unsigned long size, realsize;
1da177e4 1998
1da177e4
LT
1999 realsize = size = zones_size[j];
2000 if (zholes_size)
2001 realsize -= zholes_size[j];
2002
a2f1b424 2003 if (j < ZONE_HIGHMEM)
1da177e4
LT
2004 nr_kernel_pages += realsize;
2005 nr_all_pages += realsize;
2006
2007 zone->spanned_pages = size;
2008 zone->present_pages = realsize;
2009 zone->name = zone_names[j];
2010 spin_lock_init(&zone->lock);
2011 spin_lock_init(&zone->lru_lock);
bdc8cb98 2012 zone_seqlock_init(zone);
1da177e4
LT
2013 zone->zone_pgdat = pgdat;
2014 zone->free_pages = 0;
2015
2016 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2017
ed8ece2e 2018 zone_pcp_init(zone);
1da177e4
LT
2019 INIT_LIST_HEAD(&zone->active_list);
2020 INIT_LIST_HEAD(&zone->inactive_list);
2021 zone->nr_scan_active = 0;
2022 zone->nr_scan_inactive = 0;
2023 zone->nr_active = 0;
2024 zone->nr_inactive = 0;
2244b95a 2025 zap_zone_vm_stats(zone);
53e9a615 2026 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2027 if (!size)
2028 continue;
2029
d41dee36 2030 zonetable_add(zone, nid, j, zone_start_pfn, size);
718127cc
YG
2031 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2032 BUG_ON(ret);
1da177e4 2033 zone_start_pfn += size;
1da177e4
LT
2034 }
2035}
2036
2037static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2038{
1da177e4
LT
2039 /* Skip empty nodes */
2040 if (!pgdat->node_spanned_pages)
2041 return;
2042
d41dee36 2043#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2044 /* ia64 gets its own node_mem_map, before this, without bootmem */
2045 if (!pgdat->node_mem_map) {
e984bb43 2046 unsigned long size, start, end;
d41dee36
AW
2047 struct page *map;
2048
e984bb43
BP
2049 /*
2050 * The zone's endpoints aren't required to be MAX_ORDER
2051 * aligned but the node_mem_map endpoints must be in order
2052 * for the buddy allocator to function correctly.
2053 */
2054 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2055 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2056 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2057 size = (end - start) * sizeof(struct page);
6f167ec7
DH
2058 map = alloc_remap(pgdat->node_id, size);
2059 if (!map)
2060 map = alloc_bootmem_node(pgdat, size);
e984bb43 2061 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 2062 }
d41dee36 2063#ifdef CONFIG_FLATMEM
1da177e4
LT
2064 /*
2065 * With no DISCONTIG, the global mem_map is just set as node 0's
2066 */
2067 if (pgdat == NODE_DATA(0))
2068 mem_map = NODE_DATA(0)->node_mem_map;
2069#endif
d41dee36 2070#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2071}
2072
86356ab1 2073void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
2074 unsigned long *zones_size, unsigned long node_start_pfn,
2075 unsigned long *zholes_size)
2076{
2077 pgdat->node_id = nid;
2078 pgdat->node_start_pfn = node_start_pfn;
2079 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2080
2081 alloc_node_mem_map(pgdat);
2082
2083 free_area_init_core(pgdat, zones_size, zholes_size);
2084}
2085
93b7504e 2086#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2087static bootmem_data_t contig_bootmem_data;
2088struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2089
2090EXPORT_SYMBOL(contig_page_data);
93b7504e 2091#endif
1da177e4
LT
2092
2093void __init free_area_init(unsigned long *zones_size)
2094{
93b7504e 2095 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2096 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2097}
1da177e4 2098
1da177e4
LT
2099#ifdef CONFIG_HOTPLUG_CPU
2100static int page_alloc_cpu_notify(struct notifier_block *self,
2101 unsigned long action, void *hcpu)
2102{
2103 int cpu = (unsigned long)hcpu;
1da177e4
LT
2104 unsigned long *src, *dest;
2105
2106 if (action == CPU_DEAD) {
2107 int i;
2108
1da177e4
LT
2109 local_irq_disable();
2110 __drain_pages(cpu);
2111
2112 /* Add dead cpu's page_states to our own. */
2113 dest = (unsigned long *)&__get_cpu_var(page_states);
2114 src = (unsigned long *)&per_cpu(page_states, cpu);
2115
2116 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2117 i++) {
2118 dest[i] += src[i];
2119 src[i] = 0;
2120 }
2121
2122 local_irq_enable();
2244b95a 2123 refresh_cpu_vm_stats(cpu);
1da177e4
LT
2124 }
2125 return NOTIFY_OK;
2126}
2127#endif /* CONFIG_HOTPLUG_CPU */
2128
2129void __init page_alloc_init(void)
2130{
2131 hotcpu_notifier(page_alloc_cpu_notify, 0);
2132}
2133
cb45b0e9
HA
2134/*
2135 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2136 * or min_free_kbytes changes.
2137 */
2138static void calculate_totalreserve_pages(void)
2139{
2140 struct pglist_data *pgdat;
2141 unsigned long reserve_pages = 0;
2142 int i, j;
2143
2144 for_each_online_pgdat(pgdat) {
2145 for (i = 0; i < MAX_NR_ZONES; i++) {
2146 struct zone *zone = pgdat->node_zones + i;
2147 unsigned long max = 0;
2148
2149 /* Find valid and maximum lowmem_reserve in the zone */
2150 for (j = i; j < MAX_NR_ZONES; j++) {
2151 if (zone->lowmem_reserve[j] > max)
2152 max = zone->lowmem_reserve[j];
2153 }
2154
2155 /* we treat pages_high as reserved pages. */
2156 max += zone->pages_high;
2157
2158 if (max > zone->present_pages)
2159 max = zone->present_pages;
2160 reserve_pages += max;
2161 }
2162 }
2163 totalreserve_pages = reserve_pages;
2164}
2165
1da177e4
LT
2166/*
2167 * setup_per_zone_lowmem_reserve - called whenever
2168 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2169 * has a correct pages reserved value, so an adequate number of
2170 * pages are left in the zone after a successful __alloc_pages().
2171 */
2172static void setup_per_zone_lowmem_reserve(void)
2173{
2174 struct pglist_data *pgdat;
2175 int j, idx;
2176
ec936fc5 2177 for_each_online_pgdat(pgdat) {
1da177e4
LT
2178 for (j = 0; j < MAX_NR_ZONES; j++) {
2179 struct zone *zone = pgdat->node_zones + j;
2180 unsigned long present_pages = zone->present_pages;
2181
2182 zone->lowmem_reserve[j] = 0;
2183
2184 for (idx = j-1; idx >= 0; idx--) {
2185 struct zone *lower_zone;
2186
2187 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2188 sysctl_lowmem_reserve_ratio[idx] = 1;
2189
2190 lower_zone = pgdat->node_zones + idx;
2191 lower_zone->lowmem_reserve[j] = present_pages /
2192 sysctl_lowmem_reserve_ratio[idx];
2193 present_pages += lower_zone->present_pages;
2194 }
2195 }
2196 }
cb45b0e9
HA
2197
2198 /* update totalreserve_pages */
2199 calculate_totalreserve_pages();
1da177e4
LT
2200}
2201
2202/*
2203 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2204 * that the pages_{min,low,high} values for each zone are set correctly
2205 * with respect to min_free_kbytes.
2206 */
3947be19 2207void setup_per_zone_pages_min(void)
1da177e4
LT
2208{
2209 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2210 unsigned long lowmem_pages = 0;
2211 struct zone *zone;
2212 unsigned long flags;
2213
2214 /* Calculate total number of !ZONE_HIGHMEM pages */
2215 for_each_zone(zone) {
2216 if (!is_highmem(zone))
2217 lowmem_pages += zone->present_pages;
2218 }
2219
2220 for_each_zone(zone) {
ac924c60
AM
2221 u64 tmp;
2222
1da177e4 2223 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
2224 tmp = (u64)pages_min * zone->present_pages;
2225 do_div(tmp, lowmem_pages);
1da177e4
LT
2226 if (is_highmem(zone)) {
2227 /*
669ed175
NP
2228 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2229 * need highmem pages, so cap pages_min to a small
2230 * value here.
2231 *
2232 * The (pages_high-pages_low) and (pages_low-pages_min)
2233 * deltas controls asynch page reclaim, and so should
2234 * not be capped for highmem.
1da177e4
LT
2235 */
2236 int min_pages;
2237
2238 min_pages = zone->present_pages / 1024;
2239 if (min_pages < SWAP_CLUSTER_MAX)
2240 min_pages = SWAP_CLUSTER_MAX;
2241 if (min_pages > 128)
2242 min_pages = 128;
2243 zone->pages_min = min_pages;
2244 } else {
669ed175
NP
2245 /*
2246 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2247 * proportionate to the zone's size.
2248 */
669ed175 2249 zone->pages_min = tmp;
1da177e4
LT
2250 }
2251
ac924c60
AM
2252 zone->pages_low = zone->pages_min + (tmp >> 2);
2253 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
2254 spin_unlock_irqrestore(&zone->lru_lock, flags);
2255 }
cb45b0e9
HA
2256
2257 /* update totalreserve_pages */
2258 calculate_totalreserve_pages();
1da177e4
LT
2259}
2260
2261/*
2262 * Initialise min_free_kbytes.
2263 *
2264 * For small machines we want it small (128k min). For large machines
2265 * we want it large (64MB max). But it is not linear, because network
2266 * bandwidth does not increase linearly with machine size. We use
2267 *
2268 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2269 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2270 *
2271 * which yields
2272 *
2273 * 16MB: 512k
2274 * 32MB: 724k
2275 * 64MB: 1024k
2276 * 128MB: 1448k
2277 * 256MB: 2048k
2278 * 512MB: 2896k
2279 * 1024MB: 4096k
2280 * 2048MB: 5792k
2281 * 4096MB: 8192k
2282 * 8192MB: 11584k
2283 * 16384MB: 16384k
2284 */
2285static int __init init_per_zone_pages_min(void)
2286{
2287 unsigned long lowmem_kbytes;
2288
2289 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2290
2291 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2292 if (min_free_kbytes < 128)
2293 min_free_kbytes = 128;
2294 if (min_free_kbytes > 65536)
2295 min_free_kbytes = 65536;
2296 setup_per_zone_pages_min();
2297 setup_per_zone_lowmem_reserve();
2298 return 0;
2299}
2300module_init(init_per_zone_pages_min)
2301
2302/*
2303 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2304 * that we can call two helper functions whenever min_free_kbytes
2305 * changes.
2306 */
2307int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2308 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2309{
2310 proc_dointvec(table, write, file, buffer, length, ppos);
2311 setup_per_zone_pages_min();
2312 return 0;
2313}
2314
2315/*
2316 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2317 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2318 * whenever sysctl_lowmem_reserve_ratio changes.
2319 *
2320 * The reserve ratio obviously has absolutely no relation with the
2321 * pages_min watermarks. The lowmem reserve ratio can only make sense
2322 * if in function of the boot time zone sizes.
2323 */
2324int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2325 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2326{
2327 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2328 setup_per_zone_lowmem_reserve();
2329 return 0;
2330}
2331
8ad4b1fb
RS
2332/*
2333 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2334 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2335 * can have before it gets flushed back to buddy allocator.
2336 */
2337
2338int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2339 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2340{
2341 struct zone *zone;
2342 unsigned int cpu;
2343 int ret;
2344
2345 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2346 if (!write || (ret == -EINVAL))
2347 return ret;
2348 for_each_zone(zone) {
2349 for_each_online_cpu(cpu) {
2350 unsigned long high;
2351 high = zone->present_pages / percpu_pagelist_fraction;
2352 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2353 }
2354 }
2355 return 0;
2356}
2357
1da177e4
LT
2358__initdata int hashdist = HASHDIST_DEFAULT;
2359
2360#ifdef CONFIG_NUMA
2361static int __init set_hashdist(char *str)
2362{
2363 if (!str)
2364 return 0;
2365 hashdist = simple_strtoul(str, &str, 0);
2366 return 1;
2367}
2368__setup("hashdist=", set_hashdist);
2369#endif
2370
2371/*
2372 * allocate a large system hash table from bootmem
2373 * - it is assumed that the hash table must contain an exact power-of-2
2374 * quantity of entries
2375 * - limit is the number of hash buckets, not the total allocation size
2376 */
2377void *__init alloc_large_system_hash(const char *tablename,
2378 unsigned long bucketsize,
2379 unsigned long numentries,
2380 int scale,
2381 int flags,
2382 unsigned int *_hash_shift,
2383 unsigned int *_hash_mask,
2384 unsigned long limit)
2385{
2386 unsigned long long max = limit;
2387 unsigned long log2qty, size;
2388 void *table = NULL;
2389
2390 /* allow the kernel cmdline to have a say */
2391 if (!numentries) {
2392 /* round applicable memory size up to nearest megabyte */
2393 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2394 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2395 numentries >>= 20 - PAGE_SHIFT;
2396 numentries <<= 20 - PAGE_SHIFT;
2397
2398 /* limit to 1 bucket per 2^scale bytes of low memory */
2399 if (scale > PAGE_SHIFT)
2400 numentries >>= (scale - PAGE_SHIFT);
2401 else
2402 numentries <<= (PAGE_SHIFT - scale);
2403 }
6e692ed3 2404 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2405
2406 /* limit allocation size to 1/16 total memory by default */
2407 if (max == 0) {
2408 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2409 do_div(max, bucketsize);
2410 }
2411
2412 if (numentries > max)
2413 numentries = max;
2414
2415 log2qty = long_log2(numentries);
2416
2417 do {
2418 size = bucketsize << log2qty;
2419 if (flags & HASH_EARLY)
2420 table = alloc_bootmem(size);
2421 else if (hashdist)
2422 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2423 else {
2424 unsigned long order;
2425 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2426 ;
2427 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2428 }
2429 } while (!table && size > PAGE_SIZE && --log2qty);
2430
2431 if (!table)
2432 panic("Failed to allocate %s hash table\n", tablename);
2433
2434 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2435 tablename,
2436 (1U << log2qty),
2437 long_log2(size) - PAGE_SHIFT,
2438 size);
2439
2440 if (_hash_shift)
2441 *_hash_shift = log2qty;
2442 if (_hash_mask)
2443 *_hash_mask = (1 << log2qty) - 1;
2444
2445 return table;
2446}
a117e66e
KH
2447
2448#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
2449struct page *pfn_to_page(unsigned long pfn)
2450{
67de6482 2451 return __pfn_to_page(pfn);
a117e66e
KH
2452}
2453unsigned long page_to_pfn(struct page *page)
2454{
67de6482 2455 return __page_to_pfn(page);
a117e66e 2456}
a117e66e
KH
2457EXPORT_SYMBOL(pfn_to_page);
2458EXPORT_SYMBOL(page_to_pfn);
2459#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
This page took 0.297134 seconds and 5 git commands to generate.