cma: count free CMA pages
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
092cead6
KM
601/*
602 * free_page_mlock() -- clean up attempts to free and mlocked() page.
603 * Page should not be on lru, so no need to fix that up.
604 * free_pages_check() will verify...
605 */
606static inline void free_page_mlock(struct page *page)
607{
092cead6
KM
608 __dec_zone_page_state(page, NR_MLOCK);
609 __count_vm_event(UNEVICTABLE_MLOCKFREED);
610}
092cead6 611
224abf92 612static inline int free_pages_check(struct page *page)
1da177e4 613{
92be2e33
NP
614 if (unlikely(page_mapcount(page) |
615 (page->mapping != NULL) |
a3af9c38 616 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
617 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
618 (mem_cgroup_bad_page_check(page)))) {
224abf92 619 bad_page(page);
79f4b7bf 620 return 1;
8cc3b392 621 }
79f4b7bf
HD
622 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
623 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
624 return 0;
1da177e4
LT
625}
626
627/*
5f8dcc21 628 * Frees a number of pages from the PCP lists
1da177e4 629 * Assumes all pages on list are in same zone, and of same order.
207f36ee 630 * count is the number of pages to free.
1da177e4
LT
631 *
632 * If the zone was previously in an "all pages pinned" state then look to
633 * see if this freeing clears that state.
634 *
635 * And clear the zone's pages_scanned counter, to hold off the "all pages are
636 * pinned" detection logic.
637 */
5f8dcc21
MG
638static void free_pcppages_bulk(struct zone *zone, int count,
639 struct per_cpu_pages *pcp)
1da177e4 640{
5f8dcc21 641 int migratetype = 0;
a6f9edd6 642 int batch_free = 0;
72853e29 643 int to_free = count;
5f8dcc21 644
c54ad30c 645 spin_lock(&zone->lock);
93e4a89a 646 zone->all_unreclaimable = 0;
1da177e4 647 zone->pages_scanned = 0;
f2260e6b 648
72853e29 649 while (to_free) {
48db57f8 650 struct page *page;
5f8dcc21
MG
651 struct list_head *list;
652
653 /*
a6f9edd6
MG
654 * Remove pages from lists in a round-robin fashion. A
655 * batch_free count is maintained that is incremented when an
656 * empty list is encountered. This is so more pages are freed
657 * off fuller lists instead of spinning excessively around empty
658 * lists
5f8dcc21
MG
659 */
660 do {
a6f9edd6 661 batch_free++;
5f8dcc21
MG
662 if (++migratetype == MIGRATE_PCPTYPES)
663 migratetype = 0;
664 list = &pcp->lists[migratetype];
665 } while (list_empty(list));
48db57f8 666
1d16871d
NK
667 /* This is the only non-empty list. Free them all. */
668 if (batch_free == MIGRATE_PCPTYPES)
669 batch_free = to_free;
670
a6f9edd6 671 do {
770c8aaa
BZ
672 int mt; /* migratetype of the to-be-freed page */
673
a6f9edd6
MG
674 page = list_entry(list->prev, struct page, lru);
675 /* must delete as __free_one_page list manipulates */
676 list_del(&page->lru);
770c8aaa 677 mt = page_private(page);
a7016235 678 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
679 __free_one_page(page, zone, 0, mt);
680 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
681 if (is_migrate_cma(mt))
682 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 683 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 684 }
72853e29 685 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 686 spin_unlock(&zone->lock);
1da177e4
LT
687}
688
ed0ae21d
MG
689static void free_one_page(struct zone *zone, struct page *page, int order,
690 int migratetype)
1da177e4 691{
006d22d9 692 spin_lock(&zone->lock);
93e4a89a 693 zone->all_unreclaimable = 0;
006d22d9 694 zone->pages_scanned = 0;
f2260e6b 695
ed0ae21d 696 __free_one_page(page, zone, order, migratetype);
2139cbe6 697 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 698 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 699 spin_unlock(&zone->lock);
48db57f8
NP
700}
701
ec95f53a 702static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 703{
1da177e4 704 int i;
8cc3b392 705 int bad = 0;
1da177e4 706
b413d48a 707 trace_mm_page_free(page, order);
b1eeab67
VN
708 kmemcheck_free_shadow(page, order);
709
8dd60a3a
AA
710 if (PageAnon(page))
711 page->mapping = NULL;
712 for (i = 0; i < (1 << order); i++)
713 bad += free_pages_check(page + i);
8cc3b392 714 if (bad)
ec95f53a 715 return false;
689bcebf 716
3ac7fe5a 717 if (!PageHighMem(page)) {
9858db50 718 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
719 debug_check_no_obj_freed(page_address(page),
720 PAGE_SIZE << order);
721 }
dafb1367 722 arch_free_page(page, order);
48db57f8 723 kernel_map_pages(page, 1 << order, 0);
dafb1367 724
ec95f53a
KM
725 return true;
726}
727
728static void __free_pages_ok(struct page *page, unsigned int order)
729{
730 unsigned long flags;
731 int wasMlocked = __TestClearPageMlocked(page);
732
733 if (!free_pages_prepare(page, order))
734 return;
735
c54ad30c 736 local_irq_save(flags);
c277331d 737 if (unlikely(wasMlocked))
da456f14 738 free_page_mlock(page);
f8891e5e 739 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
740 free_one_page(page_zone(page), page, order,
741 get_pageblock_migratetype(page));
c54ad30c 742 local_irq_restore(flags);
1da177e4
LT
743}
744
af370fb8 745void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 746{
c3993076
JW
747 unsigned int nr_pages = 1 << order;
748 unsigned int loop;
a226f6c8 749
c3993076
JW
750 prefetchw(page);
751 for (loop = 0; loop < nr_pages; loop++) {
752 struct page *p = &page[loop];
753
754 if (loop + 1 < nr_pages)
755 prefetchw(p + 1);
756 __ClearPageReserved(p);
757 set_page_count(p, 0);
a226f6c8 758 }
c3993076
JW
759
760 set_page_refcounted(page);
761 __free_pages(page, order);
a226f6c8
DH
762}
763
47118af0
MN
764#ifdef CONFIG_CMA
765/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
766void __init init_cma_reserved_pageblock(struct page *page)
767{
768 unsigned i = pageblock_nr_pages;
769 struct page *p = page;
770
771 do {
772 __ClearPageReserved(p);
773 set_page_count(p, 0);
774 } while (++p, --i);
775
776 set_page_refcounted(page);
777 set_pageblock_migratetype(page, MIGRATE_CMA);
778 __free_pages(page, pageblock_order);
779 totalram_pages += pageblock_nr_pages;
780}
781#endif
1da177e4
LT
782
783/*
784 * The order of subdivision here is critical for the IO subsystem.
785 * Please do not alter this order without good reasons and regression
786 * testing. Specifically, as large blocks of memory are subdivided,
787 * the order in which smaller blocks are delivered depends on the order
788 * they're subdivided in this function. This is the primary factor
789 * influencing the order in which pages are delivered to the IO
790 * subsystem according to empirical testing, and this is also justified
791 * by considering the behavior of a buddy system containing a single
792 * large block of memory acted on by a series of small allocations.
793 * This behavior is a critical factor in sglist merging's success.
794 *
795 * -- wli
796 */
085cc7d5 797static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
798 int low, int high, struct free_area *area,
799 int migratetype)
1da177e4
LT
800{
801 unsigned long size = 1 << high;
802
803 while (high > low) {
804 area--;
805 high--;
806 size >>= 1;
725d704e 807 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
808
809#ifdef CONFIG_DEBUG_PAGEALLOC
810 if (high < debug_guardpage_minorder()) {
811 /*
812 * Mark as guard pages (or page), that will allow to
813 * merge back to allocator when buddy will be freed.
814 * Corresponding page table entries will not be touched,
815 * pages will stay not present in virtual address space
816 */
817 INIT_LIST_HEAD(&page[size].lru);
818 set_page_guard_flag(&page[size]);
819 set_page_private(&page[size], high);
820 /* Guard pages are not available for any usage */
d1ce749a
BZ
821 __mod_zone_freepage_state(zone, -(1 << high),
822 migratetype);
c0a32fc5
SG
823 continue;
824 }
825#endif
b2a0ac88 826 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
827 area->nr_free++;
828 set_page_order(&page[size], high);
829 }
1da177e4
LT
830}
831
1da177e4
LT
832/*
833 * This page is about to be returned from the page allocator
834 */
2a7684a2 835static inline int check_new_page(struct page *page)
1da177e4 836{
92be2e33
NP
837 if (unlikely(page_mapcount(page) |
838 (page->mapping != NULL) |
a3af9c38 839 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
840 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
841 (mem_cgroup_bad_page_check(page)))) {
224abf92 842 bad_page(page);
689bcebf 843 return 1;
8cc3b392 844 }
2a7684a2
WF
845 return 0;
846}
847
848static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
849{
850 int i;
851
852 for (i = 0; i < (1 << order); i++) {
853 struct page *p = page + i;
854 if (unlikely(check_new_page(p)))
855 return 1;
856 }
689bcebf 857
4c21e2f2 858 set_page_private(page, 0);
7835e98b 859 set_page_refcounted(page);
cc102509
NP
860
861 arch_alloc_page(page, order);
1da177e4 862 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
863
864 if (gfp_flags & __GFP_ZERO)
865 prep_zero_page(page, order, gfp_flags);
866
867 if (order && (gfp_flags & __GFP_COMP))
868 prep_compound_page(page, order);
869
689bcebf 870 return 0;
1da177e4
LT
871}
872
56fd56b8
MG
873/*
874 * Go through the free lists for the given migratetype and remove
875 * the smallest available page from the freelists
876 */
728ec980
MG
877static inline
878struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
879 int migratetype)
880{
881 unsigned int current_order;
882 struct free_area * area;
883 struct page *page;
884
885 /* Find a page of the appropriate size in the preferred list */
886 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 area = &(zone->free_area[current_order]);
888 if (list_empty(&area->free_list[migratetype]))
889 continue;
890
891 page = list_entry(area->free_list[migratetype].next,
892 struct page, lru);
893 list_del(&page->lru);
894 rmv_page_order(page);
895 area->nr_free--;
56fd56b8
MG
896 expand(zone, page, order, current_order, area, migratetype);
897 return page;
898 }
899
900 return NULL;
901}
902
903
b2a0ac88
MG
904/*
905 * This array describes the order lists are fallen back to when
906 * the free lists for the desirable migrate type are depleted
907 */
47118af0
MN
908static int fallbacks[MIGRATE_TYPES][4] = {
909 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911#ifdef CONFIG_CMA
912 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
914#else
915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
916#endif
6d4a4916
MN
917 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
918 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
919};
920
c361be55
MG
921/*
922 * Move the free pages in a range to the free lists of the requested type.
d9c23400 923 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
924 * boundary. If alignment is required, use move_freepages_block()
925 */
b69a7288
AB
926static int move_freepages(struct zone *zone,
927 struct page *start_page, struct page *end_page,
928 int migratetype)
c361be55
MG
929{
930 struct page *page;
931 unsigned long order;
d100313f 932 int pages_moved = 0;
c361be55
MG
933
934#ifndef CONFIG_HOLES_IN_ZONE
935 /*
936 * page_zone is not safe to call in this context when
937 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
938 * anyway as we check zone boundaries in move_freepages_block().
939 * Remove at a later date when no bug reports exist related to
ac0e5b7a 940 * grouping pages by mobility
c361be55
MG
941 */
942 BUG_ON(page_zone(start_page) != page_zone(end_page));
943#endif
944
945 for (page = start_page; page <= end_page;) {
344c790e
AL
946 /* Make sure we are not inadvertently changing nodes */
947 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
948
c361be55
MG
949 if (!pfn_valid_within(page_to_pfn(page))) {
950 page++;
951 continue;
952 }
953
954 if (!PageBuddy(page)) {
955 page++;
956 continue;
957 }
958
959 order = page_order(page);
84be48d8
KS
960 list_move(&page->lru,
961 &zone->free_area[order].free_list[migratetype]);
c361be55 962 page += 1 << order;
d100313f 963 pages_moved += 1 << order;
c361be55
MG
964 }
965
d100313f 966 return pages_moved;
c361be55
MG
967}
968
ee6f509c 969int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 970 int migratetype)
c361be55
MG
971{
972 unsigned long start_pfn, end_pfn;
973 struct page *start_page, *end_page;
974
975 start_pfn = page_to_pfn(page);
d9c23400 976 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 977 start_page = pfn_to_page(start_pfn);
d9c23400
MG
978 end_page = start_page + pageblock_nr_pages - 1;
979 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
980
981 /* Do not cross zone boundaries */
982 if (start_pfn < zone->zone_start_pfn)
983 start_page = page;
984 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
985 return 0;
986
987 return move_freepages(zone, start_page, end_page, migratetype);
988}
989
2f66a68f
MG
990static void change_pageblock_range(struct page *pageblock_page,
991 int start_order, int migratetype)
992{
993 int nr_pageblocks = 1 << (start_order - pageblock_order);
994
995 while (nr_pageblocks--) {
996 set_pageblock_migratetype(pageblock_page, migratetype);
997 pageblock_page += pageblock_nr_pages;
998 }
999}
1000
b2a0ac88 1001/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
1002static inline struct page *
1003__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
1004{
1005 struct free_area * area;
1006 int current_order;
1007 struct page *page;
1008 int migratetype, i;
1009
1010 /* Find the largest possible block of pages in the other list */
1011 for (current_order = MAX_ORDER-1; current_order >= order;
1012 --current_order) {
6d4a4916 1013 for (i = 0;; i++) {
b2a0ac88
MG
1014 migratetype = fallbacks[start_migratetype][i];
1015
56fd56b8
MG
1016 /* MIGRATE_RESERVE handled later if necessary */
1017 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1018 break;
e010487d 1019
b2a0ac88
MG
1020 area = &(zone->free_area[current_order]);
1021 if (list_empty(&area->free_list[migratetype]))
1022 continue;
1023
1024 page = list_entry(area->free_list[migratetype].next,
1025 struct page, lru);
1026 area->nr_free--;
1027
1028 /*
c361be55 1029 * If breaking a large block of pages, move all free
46dafbca
MG
1030 * pages to the preferred allocation list. If falling
1031 * back for a reclaimable kernel allocation, be more
25985edc 1032 * aggressive about taking ownership of free pages
47118af0
MN
1033 *
1034 * On the other hand, never change migration
1035 * type of MIGRATE_CMA pageblocks nor move CMA
1036 * pages on different free lists. We don't
1037 * want unmovable pages to be allocated from
1038 * MIGRATE_CMA areas.
b2a0ac88 1039 */
47118af0
MN
1040 if (!is_migrate_cma(migratetype) &&
1041 (unlikely(current_order >= pageblock_order / 2) ||
1042 start_migratetype == MIGRATE_RECLAIMABLE ||
1043 page_group_by_mobility_disabled)) {
1044 int pages;
46dafbca
MG
1045 pages = move_freepages_block(zone, page,
1046 start_migratetype);
1047
1048 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1049 if (pages >= (1 << (pageblock_order-1)) ||
1050 page_group_by_mobility_disabled)
46dafbca
MG
1051 set_pageblock_migratetype(page,
1052 start_migratetype);
1053
b2a0ac88 1054 migratetype = start_migratetype;
c361be55 1055 }
b2a0ac88
MG
1056
1057 /* Remove the page from the freelists */
1058 list_del(&page->lru);
1059 rmv_page_order(page);
b2a0ac88 1060
2f66a68f 1061 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1062 if (current_order >= pageblock_order &&
1063 !is_migrate_cma(migratetype))
2f66a68f 1064 change_pageblock_range(page, current_order,
b2a0ac88
MG
1065 start_migratetype);
1066
47118af0
MN
1067 expand(zone, page, order, current_order, area,
1068 is_migrate_cma(migratetype)
1069 ? migratetype : start_migratetype);
e0fff1bd
MG
1070
1071 trace_mm_page_alloc_extfrag(page, order, current_order,
1072 start_migratetype, migratetype);
1073
b2a0ac88
MG
1074 return page;
1075 }
1076 }
1077
728ec980 1078 return NULL;
b2a0ac88
MG
1079}
1080
56fd56b8 1081/*
1da177e4
LT
1082 * Do the hard work of removing an element from the buddy allocator.
1083 * Call me with the zone->lock already held.
1084 */
b2a0ac88
MG
1085static struct page *__rmqueue(struct zone *zone, unsigned int order,
1086 int migratetype)
1da177e4 1087{
1da177e4
LT
1088 struct page *page;
1089
728ec980 1090retry_reserve:
56fd56b8 1091 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1092
728ec980 1093 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1094 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1095
728ec980
MG
1096 /*
1097 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1098 * is used because __rmqueue_smallest is an inline function
1099 * and we want just one call site
1100 */
1101 if (!page) {
1102 migratetype = MIGRATE_RESERVE;
1103 goto retry_reserve;
1104 }
1105 }
1106
0d3d062a 1107 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1108 return page;
1da177e4
LT
1109}
1110
5f63b720 1111/*
1da177e4
LT
1112 * Obtain a specified number of elements from the buddy allocator, all under
1113 * a single hold of the lock, for efficiency. Add them to the supplied list.
1114 * Returns the number of new pages which were placed at *list.
1115 */
5f63b720 1116static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1117 unsigned long count, struct list_head *list,
e084b2d9 1118 int migratetype, int cold)
1da177e4 1119{
47118af0 1120 int mt = migratetype, i;
5f63b720 1121
c54ad30c 1122 spin_lock(&zone->lock);
1da177e4 1123 for (i = 0; i < count; ++i) {
b2a0ac88 1124 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1125 if (unlikely(page == NULL))
1da177e4 1126 break;
81eabcbe
MG
1127
1128 /*
1129 * Split buddy pages returned by expand() are received here
1130 * in physical page order. The page is added to the callers and
1131 * list and the list head then moves forward. From the callers
1132 * perspective, the linked list is ordered by page number in
1133 * some conditions. This is useful for IO devices that can
1134 * merge IO requests if the physical pages are ordered
1135 * properly.
1136 */
e084b2d9
MG
1137 if (likely(cold == 0))
1138 list_add(&page->lru, list);
1139 else
1140 list_add_tail(&page->lru, list);
47118af0
MN
1141 if (IS_ENABLED(CONFIG_CMA)) {
1142 mt = get_pageblock_migratetype(page);
1143 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1144 mt = migratetype;
1145 }
1146 set_page_private(page, mt);
81eabcbe 1147 list = &page->lru;
d1ce749a
BZ
1148 if (is_migrate_cma(mt))
1149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1150 -(1 << order));
1da177e4 1151 }
f2260e6b 1152 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1153 spin_unlock(&zone->lock);
085cc7d5 1154 return i;
1da177e4
LT
1155}
1156
4ae7c039 1157#ifdef CONFIG_NUMA
8fce4d8e 1158/*
4037d452
CL
1159 * Called from the vmstat counter updater to drain pagesets of this
1160 * currently executing processor on remote nodes after they have
1161 * expired.
1162 *
879336c3
CL
1163 * Note that this function must be called with the thread pinned to
1164 * a single processor.
8fce4d8e 1165 */
4037d452 1166void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1167{
4ae7c039 1168 unsigned long flags;
4037d452 1169 int to_drain;
4ae7c039 1170
4037d452
CL
1171 local_irq_save(flags);
1172 if (pcp->count >= pcp->batch)
1173 to_drain = pcp->batch;
1174 else
1175 to_drain = pcp->count;
2a13515c
KM
1176 if (to_drain > 0) {
1177 free_pcppages_bulk(zone, to_drain, pcp);
1178 pcp->count -= to_drain;
1179 }
4037d452 1180 local_irq_restore(flags);
4ae7c039
CL
1181}
1182#endif
1183
9f8f2172
CL
1184/*
1185 * Drain pages of the indicated processor.
1186 *
1187 * The processor must either be the current processor and the
1188 * thread pinned to the current processor or a processor that
1189 * is not online.
1190 */
1191static void drain_pages(unsigned int cpu)
1da177e4 1192{
c54ad30c 1193 unsigned long flags;
1da177e4 1194 struct zone *zone;
1da177e4 1195
ee99c71c 1196 for_each_populated_zone(zone) {
1da177e4 1197 struct per_cpu_pageset *pset;
3dfa5721 1198 struct per_cpu_pages *pcp;
1da177e4 1199
99dcc3e5
CL
1200 local_irq_save(flags);
1201 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1202
1203 pcp = &pset->pcp;
2ff754fa
DR
1204 if (pcp->count) {
1205 free_pcppages_bulk(zone, pcp->count, pcp);
1206 pcp->count = 0;
1207 }
3dfa5721 1208 local_irq_restore(flags);
1da177e4
LT
1209 }
1210}
1da177e4 1211
9f8f2172
CL
1212/*
1213 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1214 */
1215void drain_local_pages(void *arg)
1216{
1217 drain_pages(smp_processor_id());
1218}
1219
1220/*
74046494
GBY
1221 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1222 *
1223 * Note that this code is protected against sending an IPI to an offline
1224 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1225 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1226 * nothing keeps CPUs from showing up after we populated the cpumask and
1227 * before the call to on_each_cpu_mask().
9f8f2172
CL
1228 */
1229void drain_all_pages(void)
1230{
74046494
GBY
1231 int cpu;
1232 struct per_cpu_pageset *pcp;
1233 struct zone *zone;
1234
1235 /*
1236 * Allocate in the BSS so we wont require allocation in
1237 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1238 */
1239 static cpumask_t cpus_with_pcps;
1240
1241 /*
1242 * We don't care about racing with CPU hotplug event
1243 * as offline notification will cause the notified
1244 * cpu to drain that CPU pcps and on_each_cpu_mask
1245 * disables preemption as part of its processing
1246 */
1247 for_each_online_cpu(cpu) {
1248 bool has_pcps = false;
1249 for_each_populated_zone(zone) {
1250 pcp = per_cpu_ptr(zone->pageset, cpu);
1251 if (pcp->pcp.count) {
1252 has_pcps = true;
1253 break;
1254 }
1255 }
1256 if (has_pcps)
1257 cpumask_set_cpu(cpu, &cpus_with_pcps);
1258 else
1259 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1260 }
1261 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1262}
1263
296699de 1264#ifdef CONFIG_HIBERNATION
1da177e4
LT
1265
1266void mark_free_pages(struct zone *zone)
1267{
f623f0db
RW
1268 unsigned long pfn, max_zone_pfn;
1269 unsigned long flags;
b2a0ac88 1270 int order, t;
1da177e4
LT
1271 struct list_head *curr;
1272
1273 if (!zone->spanned_pages)
1274 return;
1275
1276 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1277
1278 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1279 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1280 if (pfn_valid(pfn)) {
1281 struct page *page = pfn_to_page(pfn);
1282
7be98234
RW
1283 if (!swsusp_page_is_forbidden(page))
1284 swsusp_unset_page_free(page);
f623f0db 1285 }
1da177e4 1286
b2a0ac88
MG
1287 for_each_migratetype_order(order, t) {
1288 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1289 unsigned long i;
1da177e4 1290
f623f0db
RW
1291 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1292 for (i = 0; i < (1UL << order); i++)
7be98234 1293 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1294 }
b2a0ac88 1295 }
1da177e4
LT
1296 spin_unlock_irqrestore(&zone->lock, flags);
1297}
e2c55dc8 1298#endif /* CONFIG_PM */
1da177e4 1299
1da177e4
LT
1300/*
1301 * Free a 0-order page
fc91668e 1302 * cold == 1 ? free a cold page : free a hot page
1da177e4 1303 */
fc91668e 1304void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1305{
1306 struct zone *zone = page_zone(page);
1307 struct per_cpu_pages *pcp;
1308 unsigned long flags;
5f8dcc21 1309 int migratetype;
451ea25d 1310 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1311
ec95f53a 1312 if (!free_pages_prepare(page, 0))
689bcebf
HD
1313 return;
1314
5f8dcc21
MG
1315 migratetype = get_pageblock_migratetype(page);
1316 set_page_private(page, migratetype);
1da177e4 1317 local_irq_save(flags);
c277331d 1318 if (unlikely(wasMlocked))
da456f14 1319 free_page_mlock(page);
f8891e5e 1320 __count_vm_event(PGFREE);
da456f14 1321
5f8dcc21
MG
1322 /*
1323 * We only track unmovable, reclaimable and movable on pcp lists.
1324 * Free ISOLATE pages back to the allocator because they are being
1325 * offlined but treat RESERVE as movable pages so we can get those
1326 * areas back if necessary. Otherwise, we may have to free
1327 * excessively into the page allocator
1328 */
1329 if (migratetype >= MIGRATE_PCPTYPES) {
1330 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1331 free_one_page(zone, page, 0, migratetype);
1332 goto out;
1333 }
1334 migratetype = MIGRATE_MOVABLE;
1335 }
1336
99dcc3e5 1337 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1338 if (cold)
5f8dcc21 1339 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1340 else
5f8dcc21 1341 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1342 pcp->count++;
48db57f8 1343 if (pcp->count >= pcp->high) {
5f8dcc21 1344 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1345 pcp->count -= pcp->batch;
1346 }
5f8dcc21
MG
1347
1348out:
1da177e4 1349 local_irq_restore(flags);
1da177e4
LT
1350}
1351
cc59850e
KK
1352/*
1353 * Free a list of 0-order pages
1354 */
1355void free_hot_cold_page_list(struct list_head *list, int cold)
1356{
1357 struct page *page, *next;
1358
1359 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1360 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1361 free_hot_cold_page(page, cold);
1362 }
1363}
1364
8dfcc9ba
NP
1365/*
1366 * split_page takes a non-compound higher-order page, and splits it into
1367 * n (1<<order) sub-pages: page[0..n]
1368 * Each sub-page must be freed individually.
1369 *
1370 * Note: this is probably too low level an operation for use in drivers.
1371 * Please consult with lkml before using this in your driver.
1372 */
1373void split_page(struct page *page, unsigned int order)
1374{
1375 int i;
1376
725d704e
NP
1377 VM_BUG_ON(PageCompound(page));
1378 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1379
1380#ifdef CONFIG_KMEMCHECK
1381 /*
1382 * Split shadow pages too, because free(page[0]) would
1383 * otherwise free the whole shadow.
1384 */
1385 if (kmemcheck_page_is_tracked(page))
1386 split_page(virt_to_page(page[0].shadow), order);
1387#endif
1388
7835e98b
NP
1389 for (i = 1; i < (1 << order); i++)
1390 set_page_refcounted(page + i);
8dfcc9ba 1391}
8dfcc9ba 1392
748446bb 1393/*
1fb3f8ca
MG
1394 * Similar to the split_page family of functions except that the page
1395 * required at the given order and being isolated now to prevent races
1396 * with parallel allocators
748446bb 1397 */
1fb3f8ca 1398int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1399{
1400 unsigned int order;
1401 unsigned long watermark;
1402 struct zone *zone;
2139cbe6 1403 int mt;
748446bb
MG
1404
1405 BUG_ON(!PageBuddy(page));
1406
1407 zone = page_zone(page);
1408 order = page_order(page);
1409
1410 /* Obey watermarks as if the page was being allocated */
1411 watermark = low_wmark_pages(zone) + (1 << order);
1412 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1413 return 0;
1414
1415 /* Remove page from free list */
1416 list_del(&page->lru);
1417 zone->free_area[order].nr_free--;
1418 rmv_page_order(page);
2139cbe6
BZ
1419
1420 mt = get_pageblock_migratetype(page);
1421 if (unlikely(mt != MIGRATE_ISOLATE))
d1ce749a 1422 __mod_zone_freepage_state(zone, -(1UL << order), mt);
748446bb 1423
1fb3f8ca
MG
1424 if (alloc_order != order)
1425 expand(zone, page, alloc_order, order,
1426 &zone->free_area[order], migratetype);
748446bb 1427
1fb3f8ca 1428 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
748446bb
MG
1437 }
1438
1fb3f8ca
MG
1439 return 1UL << order;
1440}
1441
1442/*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452int split_free_page(struct page *page)
1453{
1454 unsigned int order;
1455 int nr_pages;
1456
1457 BUG_ON(!PageBuddy(page));
1458 order = page_order(page);
1459
1460 nr_pages = capture_free_page(page, order, 0);
1461 if (!nr_pages)
1462 return 0;
1463
1464 /* Split into individual pages */
1465 set_page_refcounted(page);
1466 split_page(page, order);
1467 return nr_pages;
748446bb
MG
1468}
1469
1da177e4
LT
1470/*
1471 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1472 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1473 * or two.
1474 */
0a15c3e9
MG
1475static inline
1476struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1477 struct zone *zone, int order, gfp_t gfp_flags,
1478 int migratetype)
1da177e4
LT
1479{
1480 unsigned long flags;
689bcebf 1481 struct page *page;
1da177e4
LT
1482 int cold = !!(gfp_flags & __GFP_COLD);
1483
689bcebf 1484again:
48db57f8 1485 if (likely(order == 0)) {
1da177e4 1486 struct per_cpu_pages *pcp;
5f8dcc21 1487 struct list_head *list;
1da177e4 1488
1da177e4 1489 local_irq_save(flags);
99dcc3e5
CL
1490 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 list = &pcp->lists[migratetype];
5f8dcc21 1492 if (list_empty(list)) {
535131e6 1493 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1494 pcp->batch, list,
e084b2d9 1495 migratetype, cold);
5f8dcc21 1496 if (unlikely(list_empty(list)))
6fb332fa 1497 goto failed;
535131e6 1498 }
b92a6edd 1499
5f8dcc21
MG
1500 if (cold)
1501 page = list_entry(list->prev, struct page, lru);
1502 else
1503 page = list_entry(list->next, struct page, lru);
1504
b92a6edd
MG
1505 list_del(&page->lru);
1506 pcp->count--;
7fb1d9fc 1507 } else {
dab48dab
AM
1508 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 /*
1510 * __GFP_NOFAIL is not to be used in new code.
1511 *
1512 * All __GFP_NOFAIL callers should be fixed so that they
1513 * properly detect and handle allocation failures.
1514 *
1515 * We most definitely don't want callers attempting to
4923abf9 1516 * allocate greater than order-1 page units with
dab48dab
AM
1517 * __GFP_NOFAIL.
1518 */
4923abf9 1519 WARN_ON_ONCE(order > 1);
dab48dab 1520 }
1da177e4 1521 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1522 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1523 spin_unlock(&zone->lock);
1524 if (!page)
1525 goto failed;
d1ce749a
BZ
1526 __mod_zone_freepage_state(zone, -(1 << order),
1527 get_pageblock_migratetype(page));
1da177e4
LT
1528 }
1529
f8891e5e 1530 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1531 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1532 local_irq_restore(flags);
1da177e4 1533
725d704e 1534 VM_BUG_ON(bad_range(zone, page));
17cf4406 1535 if (prep_new_page(page, order, gfp_flags))
a74609fa 1536 goto again;
1da177e4 1537 return page;
a74609fa
NP
1538
1539failed:
1540 local_irq_restore(flags);
a74609fa 1541 return NULL;
1da177e4
LT
1542}
1543
41858966
MG
1544/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1545#define ALLOC_WMARK_MIN WMARK_MIN
1546#define ALLOC_WMARK_LOW WMARK_LOW
1547#define ALLOC_WMARK_HIGH WMARK_HIGH
1548#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1549
1550/* Mask to get the watermark bits */
1551#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1552
3148890b
NP
1553#define ALLOC_HARDER 0x10 /* try to alloc harder */
1554#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1555#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1556
933e312e
AM
1557#ifdef CONFIG_FAIL_PAGE_ALLOC
1558
b2588c4b 1559static struct {
933e312e
AM
1560 struct fault_attr attr;
1561
1562 u32 ignore_gfp_highmem;
1563 u32 ignore_gfp_wait;
54114994 1564 u32 min_order;
933e312e
AM
1565} fail_page_alloc = {
1566 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1567 .ignore_gfp_wait = 1,
1568 .ignore_gfp_highmem = 1,
54114994 1569 .min_order = 1,
933e312e
AM
1570};
1571
1572static int __init setup_fail_page_alloc(char *str)
1573{
1574 return setup_fault_attr(&fail_page_alloc.attr, str);
1575}
1576__setup("fail_page_alloc=", setup_fail_page_alloc);
1577
deaf386e 1578static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1579{
54114994 1580 if (order < fail_page_alloc.min_order)
deaf386e 1581 return false;
933e312e 1582 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1583 return false;
933e312e 1584 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1585 return false;
933e312e 1586 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1587 return false;
933e312e
AM
1588
1589 return should_fail(&fail_page_alloc.attr, 1 << order);
1590}
1591
1592#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1593
1594static int __init fail_page_alloc_debugfs(void)
1595{
f4ae40a6 1596 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1597 struct dentry *dir;
933e312e 1598
dd48c085
AM
1599 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1600 &fail_page_alloc.attr);
1601 if (IS_ERR(dir))
1602 return PTR_ERR(dir);
933e312e 1603
b2588c4b
AM
1604 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1605 &fail_page_alloc.ignore_gfp_wait))
1606 goto fail;
1607 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1608 &fail_page_alloc.ignore_gfp_highmem))
1609 goto fail;
1610 if (!debugfs_create_u32("min-order", mode, dir,
1611 &fail_page_alloc.min_order))
1612 goto fail;
1613
1614 return 0;
1615fail:
dd48c085 1616 debugfs_remove_recursive(dir);
933e312e 1617
b2588c4b 1618 return -ENOMEM;
933e312e
AM
1619}
1620
1621late_initcall(fail_page_alloc_debugfs);
1622
1623#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1624
1625#else /* CONFIG_FAIL_PAGE_ALLOC */
1626
deaf386e 1627static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1628{
deaf386e 1629 return false;
933e312e
AM
1630}
1631
1632#endif /* CONFIG_FAIL_PAGE_ALLOC */
1633
1da177e4 1634/*
88f5acf8 1635 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1636 * of the allocation.
1637 */
88f5acf8
MG
1638static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1639 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1640{
1641 /* free_pages my go negative - that's OK */
d23ad423 1642 long min = mark;
2cfed075 1643 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1644 int o;
1645
df0a6daa 1646 free_pages -= (1 << order) - 1;
7fb1d9fc 1647 if (alloc_flags & ALLOC_HIGH)
1da177e4 1648 min -= min / 2;
7fb1d9fc 1649 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1650 min -= min / 4;
1651
2cfed075 1652 if (free_pages <= min + lowmem_reserve)
88f5acf8 1653 return false;
1da177e4
LT
1654 for (o = 0; o < order; o++) {
1655 /* At the next order, this order's pages become unavailable */
1656 free_pages -= z->free_area[o].nr_free << o;
1657
1658 /* Require fewer higher order pages to be free */
1659 min >>= 1;
1660
1661 if (free_pages <= min)
88f5acf8 1662 return false;
1da177e4 1663 }
88f5acf8
MG
1664 return true;
1665}
1666
702d1a6e
MK
1667#ifdef CONFIG_MEMORY_ISOLATION
1668static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1669{
1670 if (unlikely(zone->nr_pageblock_isolate))
1671 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1672 return 0;
1673}
1674#else
1675static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1676{
1677 return 0;
1678}
1679#endif
1680
88f5acf8
MG
1681bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 int classzone_idx, int alloc_flags)
1683{
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 zone_page_state(z, NR_FREE_PAGES));
1686}
1687
1688bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags)
1690{
1691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692
1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695
702d1a6e
MK
1696 /*
1697 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1698 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1699 * sleep although it could do so. But this is more desirable for memory
1700 * hotplug than sleeping which can cause a livelock in the direct
1701 * reclaim path.
1702 */
1703 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1704 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1705 free_pages);
1da177e4
LT
1706}
1707
9276b1bc
PJ
1708#ifdef CONFIG_NUMA
1709/*
1710 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1711 * skip over zones that are not allowed by the cpuset, or that have
1712 * been recently (in last second) found to be nearly full. See further
1713 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1714 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1715 *
1716 * If the zonelist cache is present in the passed in zonelist, then
1717 * returns a pointer to the allowed node mask (either the current
37b07e41 1718 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1719 *
1720 * If the zonelist cache is not available for this zonelist, does
1721 * nothing and returns NULL.
1722 *
1723 * If the fullzones BITMAP in the zonelist cache is stale (more than
1724 * a second since last zap'd) then we zap it out (clear its bits.)
1725 *
1726 * We hold off even calling zlc_setup, until after we've checked the
1727 * first zone in the zonelist, on the theory that most allocations will
1728 * be satisfied from that first zone, so best to examine that zone as
1729 * quickly as we can.
1730 */
1731static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1732{
1733 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1734 nodemask_t *allowednodes; /* zonelist_cache approximation */
1735
1736 zlc = zonelist->zlcache_ptr;
1737 if (!zlc)
1738 return NULL;
1739
f05111f5 1740 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1741 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1742 zlc->last_full_zap = jiffies;
1743 }
1744
1745 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1746 &cpuset_current_mems_allowed :
37b07e41 1747 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1748 return allowednodes;
1749}
1750
1751/*
1752 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1753 * if it is worth looking at further for free memory:
1754 * 1) Check that the zone isn't thought to be full (doesn't have its
1755 * bit set in the zonelist_cache fullzones BITMAP).
1756 * 2) Check that the zones node (obtained from the zonelist_cache
1757 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1758 * Return true (non-zero) if zone is worth looking at further, or
1759 * else return false (zero) if it is not.
1760 *
1761 * This check -ignores- the distinction between various watermarks,
1762 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1763 * found to be full for any variation of these watermarks, it will
1764 * be considered full for up to one second by all requests, unless
1765 * we are so low on memory on all allowed nodes that we are forced
1766 * into the second scan of the zonelist.
1767 *
1768 * In the second scan we ignore this zonelist cache and exactly
1769 * apply the watermarks to all zones, even it is slower to do so.
1770 * We are low on memory in the second scan, and should leave no stone
1771 * unturned looking for a free page.
1772 */
dd1a239f 1773static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1774 nodemask_t *allowednodes)
1775{
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777 int i; /* index of *z in zonelist zones */
1778 int n; /* node that zone *z is on */
1779
1780 zlc = zonelist->zlcache_ptr;
1781 if (!zlc)
1782 return 1;
1783
dd1a239f 1784 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1785 n = zlc->z_to_n[i];
1786
1787 /* This zone is worth trying if it is allowed but not full */
1788 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1789}
1790
1791/*
1792 * Given 'z' scanning a zonelist, set the corresponding bit in
1793 * zlc->fullzones, so that subsequent attempts to allocate a page
1794 * from that zone don't waste time re-examining it.
1795 */
dd1a239f 1796static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1797{
1798 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1799 int i; /* index of *z in zonelist zones */
1800
1801 zlc = zonelist->zlcache_ptr;
1802 if (!zlc)
1803 return;
1804
dd1a239f 1805 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1806
1807 set_bit(i, zlc->fullzones);
1808}
1809
76d3fbf8
MG
1810/*
1811 * clear all zones full, called after direct reclaim makes progress so that
1812 * a zone that was recently full is not skipped over for up to a second
1813 */
1814static void zlc_clear_zones_full(struct zonelist *zonelist)
1815{
1816 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1817
1818 zlc = zonelist->zlcache_ptr;
1819 if (!zlc)
1820 return;
1821
1822 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1823}
1824
9276b1bc
PJ
1825#else /* CONFIG_NUMA */
1826
1827static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1828{
1829 return NULL;
1830}
1831
dd1a239f 1832static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1833 nodemask_t *allowednodes)
1834{
1835 return 1;
1836}
1837
dd1a239f 1838static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1839{
1840}
76d3fbf8
MG
1841
1842static void zlc_clear_zones_full(struct zonelist *zonelist)
1843{
1844}
9276b1bc
PJ
1845#endif /* CONFIG_NUMA */
1846
7fb1d9fc 1847/*
0798e519 1848 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1849 * a page.
1850 */
1851static struct page *
19770b32 1852get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1853 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1854 struct zone *preferred_zone, int migratetype)
753ee728 1855{
dd1a239f 1856 struct zoneref *z;
7fb1d9fc 1857 struct page *page = NULL;
54a6eb5c 1858 int classzone_idx;
5117f45d 1859 struct zone *zone;
9276b1bc
PJ
1860 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1861 int zlc_active = 0; /* set if using zonelist_cache */
1862 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1863
19770b32 1864 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1865zonelist_scan:
7fb1d9fc 1866 /*
9276b1bc 1867 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1868 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1869 */
19770b32
MG
1870 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1871 high_zoneidx, nodemask) {
9276b1bc
PJ
1872 if (NUMA_BUILD && zlc_active &&
1873 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1874 continue;
7fb1d9fc 1875 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1876 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1877 continue;
a756cf59
JW
1878 /*
1879 * When allocating a page cache page for writing, we
1880 * want to get it from a zone that is within its dirty
1881 * limit, such that no single zone holds more than its
1882 * proportional share of globally allowed dirty pages.
1883 * The dirty limits take into account the zone's
1884 * lowmem reserves and high watermark so that kswapd
1885 * should be able to balance it without having to
1886 * write pages from its LRU list.
1887 *
1888 * This may look like it could increase pressure on
1889 * lower zones by failing allocations in higher zones
1890 * before they are full. But the pages that do spill
1891 * over are limited as the lower zones are protected
1892 * by this very same mechanism. It should not become
1893 * a practical burden to them.
1894 *
1895 * XXX: For now, allow allocations to potentially
1896 * exceed the per-zone dirty limit in the slowpath
1897 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1898 * which is important when on a NUMA setup the allowed
1899 * zones are together not big enough to reach the
1900 * global limit. The proper fix for these situations
1901 * will require awareness of zones in the
1902 * dirty-throttling and the flusher threads.
1903 */
1904 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1905 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1906 goto this_zone_full;
7fb1d9fc 1907
41858966 1908 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1909 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1910 unsigned long mark;
fa5e084e
MG
1911 int ret;
1912
41858966 1913 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1914 if (zone_watermark_ok(zone, order, mark,
1915 classzone_idx, alloc_flags))
1916 goto try_this_zone;
1917
cd38b115
MG
1918 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1919 /*
1920 * we do zlc_setup if there are multiple nodes
1921 * and before considering the first zone allowed
1922 * by the cpuset.
1923 */
1924 allowednodes = zlc_setup(zonelist, alloc_flags);
1925 zlc_active = 1;
1926 did_zlc_setup = 1;
1927 }
1928
fa5e084e
MG
1929 if (zone_reclaim_mode == 0)
1930 goto this_zone_full;
1931
cd38b115
MG
1932 /*
1933 * As we may have just activated ZLC, check if the first
1934 * eligible zone has failed zone_reclaim recently.
1935 */
1936 if (NUMA_BUILD && zlc_active &&
1937 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1938 continue;
1939
fa5e084e
MG
1940 ret = zone_reclaim(zone, gfp_mask, order);
1941 switch (ret) {
1942 case ZONE_RECLAIM_NOSCAN:
1943 /* did not scan */
cd38b115 1944 continue;
fa5e084e
MG
1945 case ZONE_RECLAIM_FULL:
1946 /* scanned but unreclaimable */
cd38b115 1947 continue;
fa5e084e
MG
1948 default:
1949 /* did we reclaim enough */
1950 if (!zone_watermark_ok(zone, order, mark,
1951 classzone_idx, alloc_flags))
9276b1bc 1952 goto this_zone_full;
0798e519 1953 }
7fb1d9fc
RS
1954 }
1955
fa5e084e 1956try_this_zone:
3dd28266
MG
1957 page = buffered_rmqueue(preferred_zone, zone, order,
1958 gfp_mask, migratetype);
0798e519 1959 if (page)
7fb1d9fc 1960 break;
9276b1bc
PJ
1961this_zone_full:
1962 if (NUMA_BUILD)
1963 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1964 }
9276b1bc
PJ
1965
1966 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1967 /* Disable zlc cache for second zonelist scan */
1968 zlc_active = 0;
1969 goto zonelist_scan;
1970 }
b121186a
AS
1971
1972 if (page)
1973 /*
1974 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1975 * necessary to allocate the page. The expectation is
1976 * that the caller is taking steps that will free more
1977 * memory. The caller should avoid the page being used
1978 * for !PFMEMALLOC purposes.
1979 */
1980 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1981
7fb1d9fc 1982 return page;
753ee728
MH
1983}
1984
29423e77
DR
1985/*
1986 * Large machines with many possible nodes should not always dump per-node
1987 * meminfo in irq context.
1988 */
1989static inline bool should_suppress_show_mem(void)
1990{
1991 bool ret = false;
1992
1993#if NODES_SHIFT > 8
1994 ret = in_interrupt();
1995#endif
1996 return ret;
1997}
1998
a238ab5b
DH
1999static DEFINE_RATELIMIT_STATE(nopage_rs,
2000 DEFAULT_RATELIMIT_INTERVAL,
2001 DEFAULT_RATELIMIT_BURST);
2002
2003void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2004{
a238ab5b
DH
2005 unsigned int filter = SHOW_MEM_FILTER_NODES;
2006
c0a32fc5
SG
2007 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2008 debug_guardpage_minorder() > 0)
a238ab5b
DH
2009 return;
2010
2011 /*
2012 * This documents exceptions given to allocations in certain
2013 * contexts that are allowed to allocate outside current's set
2014 * of allowed nodes.
2015 */
2016 if (!(gfp_mask & __GFP_NOMEMALLOC))
2017 if (test_thread_flag(TIF_MEMDIE) ||
2018 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2019 filter &= ~SHOW_MEM_FILTER_NODES;
2020 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2021 filter &= ~SHOW_MEM_FILTER_NODES;
2022
2023 if (fmt) {
3ee9a4f0
JP
2024 struct va_format vaf;
2025 va_list args;
2026
a238ab5b 2027 va_start(args, fmt);
3ee9a4f0
JP
2028
2029 vaf.fmt = fmt;
2030 vaf.va = &args;
2031
2032 pr_warn("%pV", &vaf);
2033
a238ab5b
DH
2034 va_end(args);
2035 }
2036
3ee9a4f0
JP
2037 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2038 current->comm, order, gfp_mask);
a238ab5b
DH
2039
2040 dump_stack();
2041 if (!should_suppress_show_mem())
2042 show_mem(filter);
2043}
2044
11e33f6a
MG
2045static inline int
2046should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2047 unsigned long did_some_progress,
11e33f6a 2048 unsigned long pages_reclaimed)
1da177e4 2049{
11e33f6a
MG
2050 /* Do not loop if specifically requested */
2051 if (gfp_mask & __GFP_NORETRY)
2052 return 0;
1da177e4 2053
f90ac398
MG
2054 /* Always retry if specifically requested */
2055 if (gfp_mask & __GFP_NOFAIL)
2056 return 1;
2057
2058 /*
2059 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2060 * making forward progress without invoking OOM. Suspend also disables
2061 * storage devices so kswapd will not help. Bail if we are suspending.
2062 */
2063 if (!did_some_progress && pm_suspended_storage())
2064 return 0;
2065
11e33f6a
MG
2066 /*
2067 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2068 * means __GFP_NOFAIL, but that may not be true in other
2069 * implementations.
2070 */
2071 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2072 return 1;
2073
2074 /*
2075 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2076 * specified, then we retry until we no longer reclaim any pages
2077 * (above), or we've reclaimed an order of pages at least as
2078 * large as the allocation's order. In both cases, if the
2079 * allocation still fails, we stop retrying.
2080 */
2081 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2082 return 1;
cf40bd16 2083
11e33f6a
MG
2084 return 0;
2085}
933e312e 2086
11e33f6a
MG
2087static inline struct page *
2088__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2089 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2090 nodemask_t *nodemask, struct zone *preferred_zone,
2091 int migratetype)
11e33f6a
MG
2092{
2093 struct page *page;
2094
2095 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2096 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2097 schedule_timeout_uninterruptible(1);
1da177e4
LT
2098 return NULL;
2099 }
6b1de916 2100
11e33f6a
MG
2101 /*
2102 * Go through the zonelist yet one more time, keep very high watermark
2103 * here, this is only to catch a parallel oom killing, we must fail if
2104 * we're still under heavy pressure.
2105 */
2106 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2107 order, zonelist, high_zoneidx,
5117f45d 2108 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2109 preferred_zone, migratetype);
7fb1d9fc 2110 if (page)
11e33f6a
MG
2111 goto out;
2112
4365a567
KH
2113 if (!(gfp_mask & __GFP_NOFAIL)) {
2114 /* The OOM killer will not help higher order allocs */
2115 if (order > PAGE_ALLOC_COSTLY_ORDER)
2116 goto out;
03668b3c
DR
2117 /* The OOM killer does not needlessly kill tasks for lowmem */
2118 if (high_zoneidx < ZONE_NORMAL)
2119 goto out;
4365a567
KH
2120 /*
2121 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2122 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2123 * The caller should handle page allocation failure by itself if
2124 * it specifies __GFP_THISNODE.
2125 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2126 */
2127 if (gfp_mask & __GFP_THISNODE)
2128 goto out;
2129 }
11e33f6a 2130 /* Exhausted what can be done so it's blamo time */
08ab9b10 2131 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2132
2133out:
2134 clear_zonelist_oom(zonelist, gfp_mask);
2135 return page;
2136}
2137
56de7263
MG
2138#ifdef CONFIG_COMPACTION
2139/* Try memory compaction for high-order allocations before reclaim */
2140static struct page *
2141__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2142 struct zonelist *zonelist, enum zone_type high_zoneidx,
2143 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2144 int migratetype, bool sync_migration,
c67fe375 2145 bool *contended_compaction, bool *deferred_compaction,
66199712 2146 unsigned long *did_some_progress)
56de7263 2147{
1fb3f8ca 2148 struct page *page = NULL;
56de7263 2149
66199712 2150 if (!order)
56de7263
MG
2151 return NULL;
2152
aff62249 2153 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2154 *deferred_compaction = true;
2155 return NULL;
2156 }
2157
c06b1fca 2158 current->flags |= PF_MEMALLOC;
56de7263 2159 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2160 nodemask, sync_migration,
1fb3f8ca 2161 contended_compaction, &page);
c06b1fca 2162 current->flags &= ~PF_MEMALLOC;
56de7263 2163
1fb3f8ca
MG
2164 /* If compaction captured a page, prep and use it */
2165 if (page) {
2166 prep_new_page(page, order, gfp_mask);
2167 goto got_page;
2168 }
2169
2170 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2171 /* Page migration frees to the PCP lists but we want merging */
2172 drain_pages(get_cpu());
2173 put_cpu();
2174
2175 page = get_page_from_freelist(gfp_mask, nodemask,
2176 order, zonelist, high_zoneidx,
cfd19c5a
MG
2177 alloc_flags & ~ALLOC_NO_WATERMARKS,
2178 preferred_zone, migratetype);
56de7263 2179 if (page) {
1fb3f8ca 2180got_page:
4f92e258
MG
2181 preferred_zone->compact_considered = 0;
2182 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2183 if (order >= preferred_zone->compact_order_failed)
2184 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2185 count_vm_event(COMPACTSUCCESS);
2186 return page;
2187 }
2188
2189 /*
2190 * It's bad if compaction run occurs and fails.
2191 * The most likely reason is that pages exist,
2192 * but not enough to satisfy watermarks.
2193 */
2194 count_vm_event(COMPACTFAIL);
66199712
MG
2195
2196 /*
2197 * As async compaction considers a subset of pageblocks, only
2198 * defer if the failure was a sync compaction failure.
2199 */
2200 if (sync_migration)
aff62249 2201 defer_compaction(preferred_zone, order);
56de7263
MG
2202
2203 cond_resched();
2204 }
2205
2206 return NULL;
2207}
2208#else
2209static inline struct page *
2210__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2211 struct zonelist *zonelist, enum zone_type high_zoneidx,
2212 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2213 int migratetype, bool sync_migration,
c67fe375 2214 bool *contended_compaction, bool *deferred_compaction,
66199712 2215 unsigned long *did_some_progress)
56de7263
MG
2216{
2217 return NULL;
2218}
2219#endif /* CONFIG_COMPACTION */
2220
bba90710
MS
2221/* Perform direct synchronous page reclaim */
2222static int
2223__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2224 nodemask_t *nodemask)
11e33f6a 2225{
11e33f6a 2226 struct reclaim_state reclaim_state;
bba90710 2227 int progress;
11e33f6a
MG
2228
2229 cond_resched();
2230
2231 /* We now go into synchronous reclaim */
2232 cpuset_memory_pressure_bump();
c06b1fca 2233 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2234 lockdep_set_current_reclaim_state(gfp_mask);
2235 reclaim_state.reclaimed_slab = 0;
c06b1fca 2236 current->reclaim_state = &reclaim_state;
11e33f6a 2237
bba90710 2238 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2239
c06b1fca 2240 current->reclaim_state = NULL;
11e33f6a 2241 lockdep_clear_current_reclaim_state();
c06b1fca 2242 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2243
2244 cond_resched();
2245
bba90710
MS
2246 return progress;
2247}
2248
2249/* The really slow allocator path where we enter direct reclaim */
2250static inline struct page *
2251__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2252 struct zonelist *zonelist, enum zone_type high_zoneidx,
2253 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2254 int migratetype, unsigned long *did_some_progress)
2255{
2256 struct page *page = NULL;
2257 bool drained = false;
2258
2259 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2260 nodemask);
9ee493ce
MG
2261 if (unlikely(!(*did_some_progress)))
2262 return NULL;
11e33f6a 2263
76d3fbf8
MG
2264 /* After successful reclaim, reconsider all zones for allocation */
2265 if (NUMA_BUILD)
2266 zlc_clear_zones_full(zonelist);
2267
9ee493ce
MG
2268retry:
2269 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2270 zonelist, high_zoneidx,
cfd19c5a
MG
2271 alloc_flags & ~ALLOC_NO_WATERMARKS,
2272 preferred_zone, migratetype);
9ee493ce
MG
2273
2274 /*
2275 * If an allocation failed after direct reclaim, it could be because
2276 * pages are pinned on the per-cpu lists. Drain them and try again
2277 */
2278 if (!page && !drained) {
2279 drain_all_pages();
2280 drained = true;
2281 goto retry;
2282 }
2283
11e33f6a
MG
2284 return page;
2285}
2286
1da177e4 2287/*
11e33f6a
MG
2288 * This is called in the allocator slow-path if the allocation request is of
2289 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2290 */
11e33f6a
MG
2291static inline struct page *
2292__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2293 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2294 nodemask_t *nodemask, struct zone *preferred_zone,
2295 int migratetype)
11e33f6a
MG
2296{
2297 struct page *page;
2298
2299 do {
2300 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2301 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2302 preferred_zone, migratetype);
11e33f6a
MG
2303
2304 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2305 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2306 } while (!page && (gfp_mask & __GFP_NOFAIL));
2307
2308 return page;
2309}
2310
2311static inline
2312void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2313 enum zone_type high_zoneidx,
2314 enum zone_type classzone_idx)
1da177e4 2315{
dd1a239f
MG
2316 struct zoneref *z;
2317 struct zone *zone;
1da177e4 2318
11e33f6a 2319 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2320 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2321}
cf40bd16 2322
341ce06f
PZ
2323static inline int
2324gfp_to_alloc_flags(gfp_t gfp_mask)
2325{
341ce06f
PZ
2326 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2327 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2328
a56f57ff 2329 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2330 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2331
341ce06f
PZ
2332 /*
2333 * The caller may dip into page reserves a bit more if the caller
2334 * cannot run direct reclaim, or if the caller has realtime scheduling
2335 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2336 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2337 */
e6223a3b 2338 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2339
341ce06f 2340 if (!wait) {
5c3240d9
AA
2341 /*
2342 * Not worth trying to allocate harder for
2343 * __GFP_NOMEMALLOC even if it can't schedule.
2344 */
2345 if (!(gfp_mask & __GFP_NOMEMALLOC))
2346 alloc_flags |= ALLOC_HARDER;
523b9458 2347 /*
341ce06f
PZ
2348 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2349 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2350 */
341ce06f 2351 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2352 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2353 alloc_flags |= ALLOC_HARDER;
2354
b37f1dd0
MG
2355 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2356 if (gfp_mask & __GFP_MEMALLOC)
2357 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2358 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2359 alloc_flags |= ALLOC_NO_WATERMARKS;
2360 else if (!in_interrupt() &&
2361 ((current->flags & PF_MEMALLOC) ||
2362 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2363 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2364 }
6b1de916 2365
341ce06f
PZ
2366 return alloc_flags;
2367}
2368
072bb0aa
MG
2369bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2370{
b37f1dd0 2371 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2372}
2373
11e33f6a
MG
2374static inline struct page *
2375__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2376 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2377 nodemask_t *nodemask, struct zone *preferred_zone,
2378 int migratetype)
11e33f6a
MG
2379{
2380 const gfp_t wait = gfp_mask & __GFP_WAIT;
2381 struct page *page = NULL;
2382 int alloc_flags;
2383 unsigned long pages_reclaimed = 0;
2384 unsigned long did_some_progress;
77f1fe6b 2385 bool sync_migration = false;
66199712 2386 bool deferred_compaction = false;
c67fe375 2387 bool contended_compaction = false;
1da177e4 2388
72807a74
MG
2389 /*
2390 * In the slowpath, we sanity check order to avoid ever trying to
2391 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2392 * be using allocators in order of preference for an area that is
2393 * too large.
2394 */
1fc28b70
MG
2395 if (order >= MAX_ORDER) {
2396 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2397 return NULL;
1fc28b70 2398 }
1da177e4 2399
952f3b51
CL
2400 /*
2401 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2402 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2403 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2404 * using a larger set of nodes after it has established that the
2405 * allowed per node queues are empty and that nodes are
2406 * over allocated.
2407 */
2408 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2409 goto nopage;
2410
cc4a6851 2411restart:
c6543459
RR
2412 wake_all_kswapd(order, zonelist, high_zoneidx,
2413 zone_idx(preferred_zone));
1da177e4 2414
9bf2229f 2415 /*
7fb1d9fc
RS
2416 * OK, we're below the kswapd watermark and have kicked background
2417 * reclaim. Now things get more complex, so set up alloc_flags according
2418 * to how we want to proceed.
9bf2229f 2419 */
341ce06f 2420 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2421
f33261d7
DR
2422 /*
2423 * Find the true preferred zone if the allocation is unconstrained by
2424 * cpusets.
2425 */
2426 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2427 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2428 &preferred_zone);
2429
cfa54a0f 2430rebalance:
341ce06f 2431 /* This is the last chance, in general, before the goto nopage. */
19770b32 2432 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2433 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2434 preferred_zone, migratetype);
7fb1d9fc
RS
2435 if (page)
2436 goto got_pg;
1da177e4 2437
11e33f6a 2438 /* Allocate without watermarks if the context allows */
341ce06f 2439 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2440 /*
2441 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2442 * the allocation is high priority and these type of
2443 * allocations are system rather than user orientated
2444 */
2445 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2446
341ce06f
PZ
2447 page = __alloc_pages_high_priority(gfp_mask, order,
2448 zonelist, high_zoneidx, nodemask,
2449 preferred_zone, migratetype);
cfd19c5a 2450 if (page) {
341ce06f 2451 goto got_pg;
cfd19c5a 2452 }
1da177e4
LT
2453 }
2454
2455 /* Atomic allocations - we can't balance anything */
2456 if (!wait)
2457 goto nopage;
2458
341ce06f 2459 /* Avoid recursion of direct reclaim */
c06b1fca 2460 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2461 goto nopage;
2462
6583bb64
DR
2463 /* Avoid allocations with no watermarks from looping endlessly */
2464 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2465 goto nopage;
2466
77f1fe6b
MG
2467 /*
2468 * Try direct compaction. The first pass is asynchronous. Subsequent
2469 * attempts after direct reclaim are synchronous
2470 */
56de7263
MG
2471 page = __alloc_pages_direct_compact(gfp_mask, order,
2472 zonelist, high_zoneidx,
2473 nodemask,
2474 alloc_flags, preferred_zone,
66199712 2475 migratetype, sync_migration,
c67fe375 2476 &contended_compaction,
66199712
MG
2477 &deferred_compaction,
2478 &did_some_progress);
56de7263
MG
2479 if (page)
2480 goto got_pg;
c6a140bf 2481 sync_migration = true;
56de7263 2482
66199712
MG
2483 /*
2484 * If compaction is deferred for high-order allocations, it is because
2485 * sync compaction recently failed. In this is the case and the caller
c67fe375
MG
2486 * requested a movable allocation that does not heavily disrupt the
2487 * system then fail the allocation instead of entering direct reclaim.
66199712 2488 */
c67fe375 2489 if ((deferred_compaction || contended_compaction) &&
c6543459 2490 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
66199712
MG
2491 goto nopage;
2492
11e33f6a
MG
2493 /* Try direct reclaim and then allocating */
2494 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2495 zonelist, high_zoneidx,
2496 nodemask,
5117f45d 2497 alloc_flags, preferred_zone,
3dd28266 2498 migratetype, &did_some_progress);
11e33f6a
MG
2499 if (page)
2500 goto got_pg;
1da177e4 2501
e33c3b5e 2502 /*
11e33f6a
MG
2503 * If we failed to make any progress reclaiming, then we are
2504 * running out of options and have to consider going OOM
e33c3b5e 2505 */
11e33f6a
MG
2506 if (!did_some_progress) {
2507 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2508 if (oom_killer_disabled)
2509 goto nopage;
29fd66d2
DR
2510 /* Coredumps can quickly deplete all memory reserves */
2511 if ((current->flags & PF_DUMPCORE) &&
2512 !(gfp_mask & __GFP_NOFAIL))
2513 goto nopage;
11e33f6a
MG
2514 page = __alloc_pages_may_oom(gfp_mask, order,
2515 zonelist, high_zoneidx,
3dd28266
MG
2516 nodemask, preferred_zone,
2517 migratetype);
11e33f6a
MG
2518 if (page)
2519 goto got_pg;
1da177e4 2520
03668b3c
DR
2521 if (!(gfp_mask & __GFP_NOFAIL)) {
2522 /*
2523 * The oom killer is not called for high-order
2524 * allocations that may fail, so if no progress
2525 * is being made, there are no other options and
2526 * retrying is unlikely to help.
2527 */
2528 if (order > PAGE_ALLOC_COSTLY_ORDER)
2529 goto nopage;
2530 /*
2531 * The oom killer is not called for lowmem
2532 * allocations to prevent needlessly killing
2533 * innocent tasks.
2534 */
2535 if (high_zoneidx < ZONE_NORMAL)
2536 goto nopage;
2537 }
e2c55dc8 2538
ff0ceb9d
DR
2539 goto restart;
2540 }
1da177e4
LT
2541 }
2542
11e33f6a 2543 /* Check if we should retry the allocation */
a41f24ea 2544 pages_reclaimed += did_some_progress;
f90ac398
MG
2545 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2546 pages_reclaimed)) {
11e33f6a 2547 /* Wait for some write requests to complete then retry */
0e093d99 2548 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2549 goto rebalance;
3e7d3449
MG
2550 } else {
2551 /*
2552 * High-order allocations do not necessarily loop after
2553 * direct reclaim and reclaim/compaction depends on compaction
2554 * being called after reclaim so call directly if necessary
2555 */
2556 page = __alloc_pages_direct_compact(gfp_mask, order,
2557 zonelist, high_zoneidx,
2558 nodemask,
2559 alloc_flags, preferred_zone,
66199712 2560 migratetype, sync_migration,
c67fe375 2561 &contended_compaction,
66199712
MG
2562 &deferred_compaction,
2563 &did_some_progress);
3e7d3449
MG
2564 if (page)
2565 goto got_pg;
1da177e4
LT
2566 }
2567
2568nopage:
a238ab5b 2569 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2570 return page;
1da177e4 2571got_pg:
b1eeab67
VN
2572 if (kmemcheck_enabled)
2573 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2574
072bb0aa 2575 return page;
1da177e4 2576}
11e33f6a
MG
2577
2578/*
2579 * This is the 'heart' of the zoned buddy allocator.
2580 */
2581struct page *
2582__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2583 struct zonelist *zonelist, nodemask_t *nodemask)
2584{
2585 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2586 struct zone *preferred_zone;
cc9a6c87 2587 struct page *page = NULL;
3dd28266 2588 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2589 unsigned int cpuset_mems_cookie;
11e33f6a 2590
dcce284a
BH
2591 gfp_mask &= gfp_allowed_mask;
2592
11e33f6a
MG
2593 lockdep_trace_alloc(gfp_mask);
2594
2595 might_sleep_if(gfp_mask & __GFP_WAIT);
2596
2597 if (should_fail_alloc_page(gfp_mask, order))
2598 return NULL;
2599
2600 /*
2601 * Check the zones suitable for the gfp_mask contain at least one
2602 * valid zone. It's possible to have an empty zonelist as a result
2603 * of GFP_THISNODE and a memoryless node
2604 */
2605 if (unlikely(!zonelist->_zonerefs->zone))
2606 return NULL;
2607
cc9a6c87
MG
2608retry_cpuset:
2609 cpuset_mems_cookie = get_mems_allowed();
2610
5117f45d 2611 /* The preferred zone is used for statistics later */
f33261d7
DR
2612 first_zones_zonelist(zonelist, high_zoneidx,
2613 nodemask ? : &cpuset_current_mems_allowed,
2614 &preferred_zone);
cc9a6c87
MG
2615 if (!preferred_zone)
2616 goto out;
5117f45d
MG
2617
2618 /* First allocation attempt */
11e33f6a 2619 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2620 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2621 preferred_zone, migratetype);
11e33f6a
MG
2622 if (unlikely(!page))
2623 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2624 zonelist, high_zoneidx, nodemask,
3dd28266 2625 preferred_zone, migratetype);
11e33f6a 2626
4b4f278c 2627 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2628
2629out:
2630 /*
2631 * When updating a task's mems_allowed, it is possible to race with
2632 * parallel threads in such a way that an allocation can fail while
2633 * the mask is being updated. If a page allocation is about to fail,
2634 * check if the cpuset changed during allocation and if so, retry.
2635 */
2636 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2637 goto retry_cpuset;
2638
11e33f6a 2639 return page;
1da177e4 2640}
d239171e 2641EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2642
2643/*
2644 * Common helper functions.
2645 */
920c7a5d 2646unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2647{
945a1113
AM
2648 struct page *page;
2649
2650 /*
2651 * __get_free_pages() returns a 32-bit address, which cannot represent
2652 * a highmem page
2653 */
2654 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2655
1da177e4
LT
2656 page = alloc_pages(gfp_mask, order);
2657 if (!page)
2658 return 0;
2659 return (unsigned long) page_address(page);
2660}
1da177e4
LT
2661EXPORT_SYMBOL(__get_free_pages);
2662
920c7a5d 2663unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2664{
945a1113 2665 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2666}
1da177e4
LT
2667EXPORT_SYMBOL(get_zeroed_page);
2668
920c7a5d 2669void __free_pages(struct page *page, unsigned int order)
1da177e4 2670{
b5810039 2671 if (put_page_testzero(page)) {
1da177e4 2672 if (order == 0)
fc91668e 2673 free_hot_cold_page(page, 0);
1da177e4
LT
2674 else
2675 __free_pages_ok(page, order);
2676 }
2677}
2678
2679EXPORT_SYMBOL(__free_pages);
2680
920c7a5d 2681void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2682{
2683 if (addr != 0) {
725d704e 2684 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2685 __free_pages(virt_to_page((void *)addr), order);
2686 }
2687}
2688
2689EXPORT_SYMBOL(free_pages);
2690
ee85c2e1
AK
2691static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2692{
2693 if (addr) {
2694 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2695 unsigned long used = addr + PAGE_ALIGN(size);
2696
2697 split_page(virt_to_page((void *)addr), order);
2698 while (used < alloc_end) {
2699 free_page(used);
2700 used += PAGE_SIZE;
2701 }
2702 }
2703 return (void *)addr;
2704}
2705
2be0ffe2
TT
2706/**
2707 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2708 * @size: the number of bytes to allocate
2709 * @gfp_mask: GFP flags for the allocation
2710 *
2711 * This function is similar to alloc_pages(), except that it allocates the
2712 * minimum number of pages to satisfy the request. alloc_pages() can only
2713 * allocate memory in power-of-two pages.
2714 *
2715 * This function is also limited by MAX_ORDER.
2716 *
2717 * Memory allocated by this function must be released by free_pages_exact().
2718 */
2719void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2720{
2721 unsigned int order = get_order(size);
2722 unsigned long addr;
2723
2724 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2725 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2726}
2727EXPORT_SYMBOL(alloc_pages_exact);
2728
ee85c2e1
AK
2729/**
2730 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2731 * pages on a node.
b5e6ab58 2732 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2733 * @size: the number of bytes to allocate
2734 * @gfp_mask: GFP flags for the allocation
2735 *
2736 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2737 * back.
2738 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2739 * but is not exact.
2740 */
2741void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2742{
2743 unsigned order = get_order(size);
2744 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2745 if (!p)
2746 return NULL;
2747 return make_alloc_exact((unsigned long)page_address(p), order, size);
2748}
2749EXPORT_SYMBOL(alloc_pages_exact_nid);
2750
2be0ffe2
TT
2751/**
2752 * free_pages_exact - release memory allocated via alloc_pages_exact()
2753 * @virt: the value returned by alloc_pages_exact.
2754 * @size: size of allocation, same value as passed to alloc_pages_exact().
2755 *
2756 * Release the memory allocated by a previous call to alloc_pages_exact.
2757 */
2758void free_pages_exact(void *virt, size_t size)
2759{
2760 unsigned long addr = (unsigned long)virt;
2761 unsigned long end = addr + PAGE_ALIGN(size);
2762
2763 while (addr < end) {
2764 free_page(addr);
2765 addr += PAGE_SIZE;
2766 }
2767}
2768EXPORT_SYMBOL(free_pages_exact);
2769
1da177e4
LT
2770static unsigned int nr_free_zone_pages(int offset)
2771{
dd1a239f 2772 struct zoneref *z;
54a6eb5c
MG
2773 struct zone *zone;
2774
e310fd43 2775 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2776 unsigned int sum = 0;
2777
0e88460d 2778 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2779
54a6eb5c 2780 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2781 unsigned long size = zone->present_pages;
41858966 2782 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2783 if (size > high)
2784 sum += size - high;
1da177e4
LT
2785 }
2786
2787 return sum;
2788}
2789
2790/*
2791 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2792 */
2793unsigned int nr_free_buffer_pages(void)
2794{
af4ca457 2795 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2796}
c2f1a551 2797EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2798
2799/*
2800 * Amount of free RAM allocatable within all zones
2801 */
2802unsigned int nr_free_pagecache_pages(void)
2803{
2a1e274a 2804 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2805}
08e0f6a9
CL
2806
2807static inline void show_node(struct zone *zone)
1da177e4 2808{
08e0f6a9 2809 if (NUMA_BUILD)
25ba77c1 2810 printk("Node %d ", zone_to_nid(zone));
1da177e4 2811}
1da177e4 2812
1da177e4
LT
2813void si_meminfo(struct sysinfo *val)
2814{
2815 val->totalram = totalram_pages;
2816 val->sharedram = 0;
d23ad423 2817 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2818 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2819 val->totalhigh = totalhigh_pages;
2820 val->freehigh = nr_free_highpages();
1da177e4
LT
2821 val->mem_unit = PAGE_SIZE;
2822}
2823
2824EXPORT_SYMBOL(si_meminfo);
2825
2826#ifdef CONFIG_NUMA
2827void si_meminfo_node(struct sysinfo *val, int nid)
2828{
2829 pg_data_t *pgdat = NODE_DATA(nid);
2830
2831 val->totalram = pgdat->node_present_pages;
d23ad423 2832 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2833#ifdef CONFIG_HIGHMEM
1da177e4 2834 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2835 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2836 NR_FREE_PAGES);
98d2b0eb
CL
2837#else
2838 val->totalhigh = 0;
2839 val->freehigh = 0;
2840#endif
1da177e4
LT
2841 val->mem_unit = PAGE_SIZE;
2842}
2843#endif
2844
ddd588b5 2845/*
7bf02ea2
DR
2846 * Determine whether the node should be displayed or not, depending on whether
2847 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2848 */
7bf02ea2 2849bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2850{
2851 bool ret = false;
cc9a6c87 2852 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2853
2854 if (!(flags & SHOW_MEM_FILTER_NODES))
2855 goto out;
2856
cc9a6c87
MG
2857 do {
2858 cpuset_mems_cookie = get_mems_allowed();
2859 ret = !node_isset(nid, cpuset_current_mems_allowed);
2860 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2861out:
2862 return ret;
2863}
2864
1da177e4
LT
2865#define K(x) ((x) << (PAGE_SHIFT-10))
2866
2867/*
2868 * Show free area list (used inside shift_scroll-lock stuff)
2869 * We also calculate the percentage fragmentation. We do this by counting the
2870 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2871 * Suppresses nodes that are not allowed by current's cpuset if
2872 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2873 */
7bf02ea2 2874void show_free_areas(unsigned int filter)
1da177e4 2875{
c7241913 2876 int cpu;
1da177e4
LT
2877 struct zone *zone;
2878
ee99c71c 2879 for_each_populated_zone(zone) {
7bf02ea2 2880 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2881 continue;
c7241913
JS
2882 show_node(zone);
2883 printk("%s per-cpu:\n", zone->name);
1da177e4 2884
6b482c67 2885 for_each_online_cpu(cpu) {
1da177e4
LT
2886 struct per_cpu_pageset *pageset;
2887
99dcc3e5 2888 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2889
3dfa5721
CL
2890 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2891 cpu, pageset->pcp.high,
2892 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2893 }
2894 }
2895
a731286d
KM
2896 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2897 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2898 " unevictable:%lu"
b76146ed 2899 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2900 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2901 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2902 " free_cma:%lu\n",
4f98a2fe 2903 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2904 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2905 global_page_state(NR_ISOLATED_ANON),
2906 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2907 global_page_state(NR_INACTIVE_FILE),
a731286d 2908 global_page_state(NR_ISOLATED_FILE),
7b854121 2909 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2910 global_page_state(NR_FILE_DIRTY),
ce866b34 2911 global_page_state(NR_WRITEBACK),
fd39fc85 2912 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2913 global_page_state(NR_FREE_PAGES),
3701b033
KM
2914 global_page_state(NR_SLAB_RECLAIMABLE),
2915 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2916 global_page_state(NR_FILE_MAPPED),
4b02108a 2917 global_page_state(NR_SHMEM),
a25700a5 2918 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2919 global_page_state(NR_BOUNCE),
2920 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2921
ee99c71c 2922 for_each_populated_zone(zone) {
1da177e4
LT
2923 int i;
2924
7bf02ea2 2925 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2926 continue;
1da177e4
LT
2927 show_node(zone);
2928 printk("%s"
2929 " free:%lukB"
2930 " min:%lukB"
2931 " low:%lukB"
2932 " high:%lukB"
4f98a2fe
RR
2933 " active_anon:%lukB"
2934 " inactive_anon:%lukB"
2935 " active_file:%lukB"
2936 " inactive_file:%lukB"
7b854121 2937 " unevictable:%lukB"
a731286d
KM
2938 " isolated(anon):%lukB"
2939 " isolated(file):%lukB"
1da177e4 2940 " present:%lukB"
4a0aa73f
KM
2941 " mlocked:%lukB"
2942 " dirty:%lukB"
2943 " writeback:%lukB"
2944 " mapped:%lukB"
4b02108a 2945 " shmem:%lukB"
4a0aa73f
KM
2946 " slab_reclaimable:%lukB"
2947 " slab_unreclaimable:%lukB"
c6a7f572 2948 " kernel_stack:%lukB"
4a0aa73f
KM
2949 " pagetables:%lukB"
2950 " unstable:%lukB"
2951 " bounce:%lukB"
d1ce749a 2952 " free_cma:%lukB"
4a0aa73f 2953 " writeback_tmp:%lukB"
1da177e4
LT
2954 " pages_scanned:%lu"
2955 " all_unreclaimable? %s"
2956 "\n",
2957 zone->name,
88f5acf8 2958 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2959 K(min_wmark_pages(zone)),
2960 K(low_wmark_pages(zone)),
2961 K(high_wmark_pages(zone)),
4f98a2fe
RR
2962 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2963 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2964 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2965 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2966 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2967 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2968 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2969 K(zone->present_pages),
4a0aa73f
KM
2970 K(zone_page_state(zone, NR_MLOCK)),
2971 K(zone_page_state(zone, NR_FILE_DIRTY)),
2972 K(zone_page_state(zone, NR_WRITEBACK)),
2973 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2974 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2975 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2976 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2977 zone_page_state(zone, NR_KERNEL_STACK) *
2978 THREAD_SIZE / 1024,
4a0aa73f
KM
2979 K(zone_page_state(zone, NR_PAGETABLE)),
2980 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2981 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 2982 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 2983 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2984 zone->pages_scanned,
93e4a89a 2985 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2986 );
2987 printk("lowmem_reserve[]:");
2988 for (i = 0; i < MAX_NR_ZONES; i++)
2989 printk(" %lu", zone->lowmem_reserve[i]);
2990 printk("\n");
2991 }
2992
ee99c71c 2993 for_each_populated_zone(zone) {
8f9de51a 2994 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2995
7bf02ea2 2996 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2997 continue;
1da177e4
LT
2998 show_node(zone);
2999 printk("%s: ", zone->name);
1da177e4
LT
3000
3001 spin_lock_irqsave(&zone->lock, flags);
3002 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
3003 nr[order] = zone->free_area[order].nr_free;
3004 total += nr[order] << order;
1da177e4
LT
3005 }
3006 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
3007 for (order = 0; order < MAX_ORDER; order++)
3008 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
3009 printk("= %lukB\n", K(total));
3010 }
3011
e6f3602d
LW
3012 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3013
1da177e4
LT
3014 show_swap_cache_info();
3015}
3016
19770b32
MG
3017static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3018{
3019 zoneref->zone = zone;
3020 zoneref->zone_idx = zone_idx(zone);
3021}
3022
1da177e4
LT
3023/*
3024 * Builds allocation fallback zone lists.
1a93205b
CL
3025 *
3026 * Add all populated zones of a node to the zonelist.
1da177e4 3027 */
f0c0b2b8
KH
3028static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3029 int nr_zones, enum zone_type zone_type)
1da177e4 3030{
1a93205b
CL
3031 struct zone *zone;
3032
98d2b0eb 3033 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3034 zone_type++;
02a68a5e
CL
3035
3036 do {
2f6726e5 3037 zone_type--;
070f8032 3038 zone = pgdat->node_zones + zone_type;
1a93205b 3039 if (populated_zone(zone)) {
dd1a239f
MG
3040 zoneref_set_zone(zone,
3041 &zonelist->_zonerefs[nr_zones++]);
070f8032 3042 check_highest_zone(zone_type);
1da177e4 3043 }
02a68a5e 3044
2f6726e5 3045 } while (zone_type);
070f8032 3046 return nr_zones;
1da177e4
LT
3047}
3048
f0c0b2b8
KH
3049
3050/*
3051 * zonelist_order:
3052 * 0 = automatic detection of better ordering.
3053 * 1 = order by ([node] distance, -zonetype)
3054 * 2 = order by (-zonetype, [node] distance)
3055 *
3056 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3057 * the same zonelist. So only NUMA can configure this param.
3058 */
3059#define ZONELIST_ORDER_DEFAULT 0
3060#define ZONELIST_ORDER_NODE 1
3061#define ZONELIST_ORDER_ZONE 2
3062
3063/* zonelist order in the kernel.
3064 * set_zonelist_order() will set this to NODE or ZONE.
3065 */
3066static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3067static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3068
3069
1da177e4 3070#ifdef CONFIG_NUMA
f0c0b2b8
KH
3071/* The value user specified ....changed by config */
3072static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3073/* string for sysctl */
3074#define NUMA_ZONELIST_ORDER_LEN 16
3075char numa_zonelist_order[16] = "default";
3076
3077/*
3078 * interface for configure zonelist ordering.
3079 * command line option "numa_zonelist_order"
3080 * = "[dD]efault - default, automatic configuration.
3081 * = "[nN]ode - order by node locality, then by zone within node
3082 * = "[zZ]one - order by zone, then by locality within zone
3083 */
3084
3085static int __parse_numa_zonelist_order(char *s)
3086{
3087 if (*s == 'd' || *s == 'D') {
3088 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3089 } else if (*s == 'n' || *s == 'N') {
3090 user_zonelist_order = ZONELIST_ORDER_NODE;
3091 } else if (*s == 'z' || *s == 'Z') {
3092 user_zonelist_order = ZONELIST_ORDER_ZONE;
3093 } else {
3094 printk(KERN_WARNING
3095 "Ignoring invalid numa_zonelist_order value: "
3096 "%s\n", s);
3097 return -EINVAL;
3098 }
3099 return 0;
3100}
3101
3102static __init int setup_numa_zonelist_order(char *s)
3103{
ecb256f8
VL
3104 int ret;
3105
3106 if (!s)
3107 return 0;
3108
3109 ret = __parse_numa_zonelist_order(s);
3110 if (ret == 0)
3111 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3112
3113 return ret;
f0c0b2b8
KH
3114}
3115early_param("numa_zonelist_order", setup_numa_zonelist_order);
3116
3117/*
3118 * sysctl handler for numa_zonelist_order
3119 */
3120int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3121 void __user *buffer, size_t *length,
f0c0b2b8
KH
3122 loff_t *ppos)
3123{
3124 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3125 int ret;
443c6f14 3126 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3127
443c6f14 3128 mutex_lock(&zl_order_mutex);
f0c0b2b8 3129 if (write)
443c6f14 3130 strcpy(saved_string, (char*)table->data);
8d65af78 3131 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3132 if (ret)
443c6f14 3133 goto out;
f0c0b2b8
KH
3134 if (write) {
3135 int oldval = user_zonelist_order;
3136 if (__parse_numa_zonelist_order((char*)table->data)) {
3137 /*
3138 * bogus value. restore saved string
3139 */
3140 strncpy((char*)table->data, saved_string,
3141 NUMA_ZONELIST_ORDER_LEN);
3142 user_zonelist_order = oldval;
4eaf3f64
HL
3143 } else if (oldval != user_zonelist_order) {
3144 mutex_lock(&zonelists_mutex);
9adb62a5 3145 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3146 mutex_unlock(&zonelists_mutex);
3147 }
f0c0b2b8 3148 }
443c6f14
AK
3149out:
3150 mutex_unlock(&zl_order_mutex);
3151 return ret;
f0c0b2b8
KH
3152}
3153
3154
62bc62a8 3155#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3156static int node_load[MAX_NUMNODES];
3157
1da177e4 3158/**
4dc3b16b 3159 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3160 * @node: node whose fallback list we're appending
3161 * @used_node_mask: nodemask_t of already used nodes
3162 *
3163 * We use a number of factors to determine which is the next node that should
3164 * appear on a given node's fallback list. The node should not have appeared
3165 * already in @node's fallback list, and it should be the next closest node
3166 * according to the distance array (which contains arbitrary distance values
3167 * from each node to each node in the system), and should also prefer nodes
3168 * with no CPUs, since presumably they'll have very little allocation pressure
3169 * on them otherwise.
3170 * It returns -1 if no node is found.
3171 */
f0c0b2b8 3172static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3173{
4cf808eb 3174 int n, val;
1da177e4
LT
3175 int min_val = INT_MAX;
3176 int best_node = -1;
a70f7302 3177 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3178
4cf808eb
LT
3179 /* Use the local node if we haven't already */
3180 if (!node_isset(node, *used_node_mask)) {
3181 node_set(node, *used_node_mask);
3182 return node;
3183 }
1da177e4 3184
37b07e41 3185 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3186
3187 /* Don't want a node to appear more than once */
3188 if (node_isset(n, *used_node_mask))
3189 continue;
3190
1da177e4
LT
3191 /* Use the distance array to find the distance */
3192 val = node_distance(node, n);
3193
4cf808eb
LT
3194 /* Penalize nodes under us ("prefer the next node") */
3195 val += (n < node);
3196
1da177e4 3197 /* Give preference to headless and unused nodes */
a70f7302
RR
3198 tmp = cpumask_of_node(n);
3199 if (!cpumask_empty(tmp))
1da177e4
LT
3200 val += PENALTY_FOR_NODE_WITH_CPUS;
3201
3202 /* Slight preference for less loaded node */
3203 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3204 val += node_load[n];
3205
3206 if (val < min_val) {
3207 min_val = val;
3208 best_node = n;
3209 }
3210 }
3211
3212 if (best_node >= 0)
3213 node_set(best_node, *used_node_mask);
3214
3215 return best_node;
3216}
3217
f0c0b2b8
KH
3218
3219/*
3220 * Build zonelists ordered by node and zones within node.
3221 * This results in maximum locality--normal zone overflows into local
3222 * DMA zone, if any--but risks exhausting DMA zone.
3223 */
3224static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3225{
f0c0b2b8 3226 int j;
1da177e4 3227 struct zonelist *zonelist;
f0c0b2b8 3228
54a6eb5c 3229 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3230 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3231 ;
3232 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3233 MAX_NR_ZONES - 1);
dd1a239f
MG
3234 zonelist->_zonerefs[j].zone = NULL;
3235 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3236}
3237
523b9458
CL
3238/*
3239 * Build gfp_thisnode zonelists
3240 */
3241static void build_thisnode_zonelists(pg_data_t *pgdat)
3242{
523b9458
CL
3243 int j;
3244 struct zonelist *zonelist;
3245
54a6eb5c
MG
3246 zonelist = &pgdat->node_zonelists[1];
3247 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3248 zonelist->_zonerefs[j].zone = NULL;
3249 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3250}
3251
f0c0b2b8
KH
3252/*
3253 * Build zonelists ordered by zone and nodes within zones.
3254 * This results in conserving DMA zone[s] until all Normal memory is
3255 * exhausted, but results in overflowing to remote node while memory
3256 * may still exist in local DMA zone.
3257 */
3258static int node_order[MAX_NUMNODES];
3259
3260static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3261{
f0c0b2b8
KH
3262 int pos, j, node;
3263 int zone_type; /* needs to be signed */
3264 struct zone *z;
3265 struct zonelist *zonelist;
3266
54a6eb5c
MG
3267 zonelist = &pgdat->node_zonelists[0];
3268 pos = 0;
3269 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3270 for (j = 0; j < nr_nodes; j++) {
3271 node = node_order[j];
3272 z = &NODE_DATA(node)->node_zones[zone_type];
3273 if (populated_zone(z)) {
dd1a239f
MG
3274 zoneref_set_zone(z,
3275 &zonelist->_zonerefs[pos++]);
54a6eb5c 3276 check_highest_zone(zone_type);
f0c0b2b8
KH
3277 }
3278 }
f0c0b2b8 3279 }
dd1a239f
MG
3280 zonelist->_zonerefs[pos].zone = NULL;
3281 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3282}
3283
3284static int default_zonelist_order(void)
3285{
3286 int nid, zone_type;
3287 unsigned long low_kmem_size,total_size;
3288 struct zone *z;
3289 int average_size;
3290 /*
88393161 3291 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3292 * If they are really small and used heavily, the system can fall
3293 * into OOM very easily.
e325c90f 3294 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3295 */
3296 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3297 low_kmem_size = 0;
3298 total_size = 0;
3299 for_each_online_node(nid) {
3300 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3301 z = &NODE_DATA(nid)->node_zones[zone_type];
3302 if (populated_zone(z)) {
3303 if (zone_type < ZONE_NORMAL)
3304 low_kmem_size += z->present_pages;
3305 total_size += z->present_pages;
e325c90f
DR
3306 } else if (zone_type == ZONE_NORMAL) {
3307 /*
3308 * If any node has only lowmem, then node order
3309 * is preferred to allow kernel allocations
3310 * locally; otherwise, they can easily infringe
3311 * on other nodes when there is an abundance of
3312 * lowmem available to allocate from.
3313 */
3314 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3315 }
3316 }
3317 }
3318 if (!low_kmem_size || /* there are no DMA area. */
3319 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3320 return ZONELIST_ORDER_NODE;
3321 /*
3322 * look into each node's config.
3323 * If there is a node whose DMA/DMA32 memory is very big area on
3324 * local memory, NODE_ORDER may be suitable.
3325 */
37b07e41
LS
3326 average_size = total_size /
3327 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3328 for_each_online_node(nid) {
3329 low_kmem_size = 0;
3330 total_size = 0;
3331 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3332 z = &NODE_DATA(nid)->node_zones[zone_type];
3333 if (populated_zone(z)) {
3334 if (zone_type < ZONE_NORMAL)
3335 low_kmem_size += z->present_pages;
3336 total_size += z->present_pages;
3337 }
3338 }
3339 if (low_kmem_size &&
3340 total_size > average_size && /* ignore small node */
3341 low_kmem_size > total_size * 70/100)
3342 return ZONELIST_ORDER_NODE;
3343 }
3344 return ZONELIST_ORDER_ZONE;
3345}
3346
3347static void set_zonelist_order(void)
3348{
3349 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3350 current_zonelist_order = default_zonelist_order();
3351 else
3352 current_zonelist_order = user_zonelist_order;
3353}
3354
3355static void build_zonelists(pg_data_t *pgdat)
3356{
3357 int j, node, load;
3358 enum zone_type i;
1da177e4 3359 nodemask_t used_mask;
f0c0b2b8
KH
3360 int local_node, prev_node;
3361 struct zonelist *zonelist;
3362 int order = current_zonelist_order;
1da177e4
LT
3363
3364 /* initialize zonelists */
523b9458 3365 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3366 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3367 zonelist->_zonerefs[0].zone = NULL;
3368 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3369 }
3370
3371 /* NUMA-aware ordering of nodes */
3372 local_node = pgdat->node_id;
62bc62a8 3373 load = nr_online_nodes;
1da177e4
LT
3374 prev_node = local_node;
3375 nodes_clear(used_mask);
f0c0b2b8 3376
f0c0b2b8
KH
3377 memset(node_order, 0, sizeof(node_order));
3378 j = 0;
3379
1da177e4 3380 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3381 int distance = node_distance(local_node, node);
3382
3383 /*
3384 * If another node is sufficiently far away then it is better
3385 * to reclaim pages in a zone before going off node.
3386 */
3387 if (distance > RECLAIM_DISTANCE)
3388 zone_reclaim_mode = 1;
3389
1da177e4
LT
3390 /*
3391 * We don't want to pressure a particular node.
3392 * So adding penalty to the first node in same
3393 * distance group to make it round-robin.
3394 */
9eeff239 3395 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3396 node_load[node] = load;
3397
1da177e4
LT
3398 prev_node = node;
3399 load--;
f0c0b2b8
KH
3400 if (order == ZONELIST_ORDER_NODE)
3401 build_zonelists_in_node_order(pgdat, node);
3402 else
3403 node_order[j++] = node; /* remember order */
3404 }
1da177e4 3405
f0c0b2b8
KH
3406 if (order == ZONELIST_ORDER_ZONE) {
3407 /* calculate node order -- i.e., DMA last! */
3408 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3409 }
523b9458
CL
3410
3411 build_thisnode_zonelists(pgdat);
1da177e4
LT
3412}
3413
9276b1bc 3414/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3415static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3416{
54a6eb5c
MG
3417 struct zonelist *zonelist;
3418 struct zonelist_cache *zlc;
dd1a239f 3419 struct zoneref *z;
9276b1bc 3420
54a6eb5c
MG
3421 zonelist = &pgdat->node_zonelists[0];
3422 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3423 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3424 for (z = zonelist->_zonerefs; z->zone; z++)
3425 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3426}
3427
7aac7898
LS
3428#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3429/*
3430 * Return node id of node used for "local" allocations.
3431 * I.e., first node id of first zone in arg node's generic zonelist.
3432 * Used for initializing percpu 'numa_mem', which is used primarily
3433 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3434 */
3435int local_memory_node(int node)
3436{
3437 struct zone *zone;
3438
3439 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3440 gfp_zone(GFP_KERNEL),
3441 NULL,
3442 &zone);
3443 return zone->node;
3444}
3445#endif
f0c0b2b8 3446
1da177e4
LT
3447#else /* CONFIG_NUMA */
3448
f0c0b2b8
KH
3449static void set_zonelist_order(void)
3450{
3451 current_zonelist_order = ZONELIST_ORDER_ZONE;
3452}
3453
3454static void build_zonelists(pg_data_t *pgdat)
1da177e4 3455{
19655d34 3456 int node, local_node;
54a6eb5c
MG
3457 enum zone_type j;
3458 struct zonelist *zonelist;
1da177e4
LT
3459
3460 local_node = pgdat->node_id;
1da177e4 3461
54a6eb5c
MG
3462 zonelist = &pgdat->node_zonelists[0];
3463 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3464
54a6eb5c
MG
3465 /*
3466 * Now we build the zonelist so that it contains the zones
3467 * of all the other nodes.
3468 * We don't want to pressure a particular node, so when
3469 * building the zones for node N, we make sure that the
3470 * zones coming right after the local ones are those from
3471 * node N+1 (modulo N)
3472 */
3473 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3474 if (!node_online(node))
3475 continue;
3476 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3477 MAX_NR_ZONES - 1);
1da177e4 3478 }
54a6eb5c
MG
3479 for (node = 0; node < local_node; node++) {
3480 if (!node_online(node))
3481 continue;
3482 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3483 MAX_NR_ZONES - 1);
3484 }
3485
dd1a239f
MG
3486 zonelist->_zonerefs[j].zone = NULL;
3487 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3488}
3489
9276b1bc 3490/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3491static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3492{
54a6eb5c 3493 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3494}
3495
1da177e4
LT
3496#endif /* CONFIG_NUMA */
3497
99dcc3e5
CL
3498/*
3499 * Boot pageset table. One per cpu which is going to be used for all
3500 * zones and all nodes. The parameters will be set in such a way
3501 * that an item put on a list will immediately be handed over to
3502 * the buddy list. This is safe since pageset manipulation is done
3503 * with interrupts disabled.
3504 *
3505 * The boot_pagesets must be kept even after bootup is complete for
3506 * unused processors and/or zones. They do play a role for bootstrapping
3507 * hotplugged processors.
3508 *
3509 * zoneinfo_show() and maybe other functions do
3510 * not check if the processor is online before following the pageset pointer.
3511 * Other parts of the kernel may not check if the zone is available.
3512 */
3513static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3514static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3515static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3516
4eaf3f64
HL
3517/*
3518 * Global mutex to protect against size modification of zonelists
3519 * as well as to serialize pageset setup for the new populated zone.
3520 */
3521DEFINE_MUTEX(zonelists_mutex);
3522
9b1a4d38 3523/* return values int ....just for stop_machine() */
4ed7e022 3524static int __build_all_zonelists(void *data)
1da177e4 3525{
6811378e 3526 int nid;
99dcc3e5 3527 int cpu;
9adb62a5 3528 pg_data_t *self = data;
9276b1bc 3529
7f9cfb31
BL
3530#ifdef CONFIG_NUMA
3531 memset(node_load, 0, sizeof(node_load));
3532#endif
9adb62a5
JL
3533
3534 if (self && !node_online(self->node_id)) {
3535 build_zonelists(self);
3536 build_zonelist_cache(self);
3537 }
3538
9276b1bc 3539 for_each_online_node(nid) {
7ea1530a
CL
3540 pg_data_t *pgdat = NODE_DATA(nid);
3541
3542 build_zonelists(pgdat);
3543 build_zonelist_cache(pgdat);
9276b1bc 3544 }
99dcc3e5
CL
3545
3546 /*
3547 * Initialize the boot_pagesets that are going to be used
3548 * for bootstrapping processors. The real pagesets for
3549 * each zone will be allocated later when the per cpu
3550 * allocator is available.
3551 *
3552 * boot_pagesets are used also for bootstrapping offline
3553 * cpus if the system is already booted because the pagesets
3554 * are needed to initialize allocators on a specific cpu too.
3555 * F.e. the percpu allocator needs the page allocator which
3556 * needs the percpu allocator in order to allocate its pagesets
3557 * (a chicken-egg dilemma).
3558 */
7aac7898 3559 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3560 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3561
7aac7898
LS
3562#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3563 /*
3564 * We now know the "local memory node" for each node--
3565 * i.e., the node of the first zone in the generic zonelist.
3566 * Set up numa_mem percpu variable for on-line cpus. During
3567 * boot, only the boot cpu should be on-line; we'll init the
3568 * secondary cpus' numa_mem as they come on-line. During
3569 * node/memory hotplug, we'll fixup all on-line cpus.
3570 */
3571 if (cpu_online(cpu))
3572 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3573#endif
3574 }
3575
6811378e
YG
3576 return 0;
3577}
3578
4eaf3f64
HL
3579/*
3580 * Called with zonelists_mutex held always
3581 * unless system_state == SYSTEM_BOOTING.
3582 */
9adb62a5 3583void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3584{
f0c0b2b8
KH
3585 set_zonelist_order();
3586
6811378e 3587 if (system_state == SYSTEM_BOOTING) {
423b41d7 3588 __build_all_zonelists(NULL);
68ad8df4 3589 mminit_verify_zonelist();
6811378e
YG
3590 cpuset_init_current_mems_allowed();
3591 } else {
183ff22b 3592 /* we have to stop all cpus to guarantee there is no user
6811378e 3593 of zonelist */
e9959f0f 3594#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3595 if (zone)
3596 setup_zone_pageset(zone);
e9959f0f 3597#endif
9adb62a5 3598 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3599 /* cpuset refresh routine should be here */
3600 }
bd1e22b8 3601 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3602 /*
3603 * Disable grouping by mobility if the number of pages in the
3604 * system is too low to allow the mechanism to work. It would be
3605 * more accurate, but expensive to check per-zone. This check is
3606 * made on memory-hotadd so a system can start with mobility
3607 * disabled and enable it later
3608 */
d9c23400 3609 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3610 page_group_by_mobility_disabled = 1;
3611 else
3612 page_group_by_mobility_disabled = 0;
3613
3614 printk("Built %i zonelists in %s order, mobility grouping %s. "
3615 "Total pages: %ld\n",
62bc62a8 3616 nr_online_nodes,
f0c0b2b8 3617 zonelist_order_name[current_zonelist_order],
9ef9acb0 3618 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3619 vm_total_pages);
3620#ifdef CONFIG_NUMA
3621 printk("Policy zone: %s\n", zone_names[policy_zone]);
3622#endif
1da177e4
LT
3623}
3624
3625/*
3626 * Helper functions to size the waitqueue hash table.
3627 * Essentially these want to choose hash table sizes sufficiently
3628 * large so that collisions trying to wait on pages are rare.
3629 * But in fact, the number of active page waitqueues on typical
3630 * systems is ridiculously low, less than 200. So this is even
3631 * conservative, even though it seems large.
3632 *
3633 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3634 * waitqueues, i.e. the size of the waitq table given the number of pages.
3635 */
3636#define PAGES_PER_WAITQUEUE 256
3637
cca448fe 3638#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3639static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3640{
3641 unsigned long size = 1;
3642
3643 pages /= PAGES_PER_WAITQUEUE;
3644
3645 while (size < pages)
3646 size <<= 1;
3647
3648 /*
3649 * Once we have dozens or even hundreds of threads sleeping
3650 * on IO we've got bigger problems than wait queue collision.
3651 * Limit the size of the wait table to a reasonable size.
3652 */
3653 size = min(size, 4096UL);
3654
3655 return max(size, 4UL);
3656}
cca448fe
YG
3657#else
3658/*
3659 * A zone's size might be changed by hot-add, so it is not possible to determine
3660 * a suitable size for its wait_table. So we use the maximum size now.
3661 *
3662 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3663 *
3664 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3665 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3666 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3667 *
3668 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3669 * or more by the traditional way. (See above). It equals:
3670 *
3671 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3672 * ia64(16K page size) : = ( 8G + 4M)byte.
3673 * powerpc (64K page size) : = (32G +16M)byte.
3674 */
3675static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3676{
3677 return 4096UL;
3678}
3679#endif
1da177e4
LT
3680
3681/*
3682 * This is an integer logarithm so that shifts can be used later
3683 * to extract the more random high bits from the multiplicative
3684 * hash function before the remainder is taken.
3685 */
3686static inline unsigned long wait_table_bits(unsigned long size)
3687{
3688 return ffz(~size);
3689}
3690
3691#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3692
6d3163ce
AH
3693/*
3694 * Check if a pageblock contains reserved pages
3695 */
3696static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3697{
3698 unsigned long pfn;
3699
3700 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3701 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3702 return 1;
3703 }
3704 return 0;
3705}
3706
56fd56b8 3707/*
d9c23400 3708 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3709 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3710 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3711 * higher will lead to a bigger reserve which will get freed as contiguous
3712 * blocks as reclaim kicks in
3713 */
3714static void setup_zone_migrate_reserve(struct zone *zone)
3715{
6d3163ce 3716 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3717 struct page *page;
78986a67
MG
3718 unsigned long block_migratetype;
3719 int reserve;
56fd56b8 3720
d0215638
MH
3721 /*
3722 * Get the start pfn, end pfn and the number of blocks to reserve
3723 * We have to be careful to be aligned to pageblock_nr_pages to
3724 * make sure that we always check pfn_valid for the first page in
3725 * the block.
3726 */
56fd56b8
MG
3727 start_pfn = zone->zone_start_pfn;
3728 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3729 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3730 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3731 pageblock_order;
56fd56b8 3732
78986a67
MG
3733 /*
3734 * Reserve blocks are generally in place to help high-order atomic
3735 * allocations that are short-lived. A min_free_kbytes value that
3736 * would result in more than 2 reserve blocks for atomic allocations
3737 * is assumed to be in place to help anti-fragmentation for the
3738 * future allocation of hugepages at runtime.
3739 */
3740 reserve = min(2, reserve);
3741
d9c23400 3742 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3743 if (!pfn_valid(pfn))
3744 continue;
3745 page = pfn_to_page(pfn);
3746
344c790e
AL
3747 /* Watch out for overlapping nodes */
3748 if (page_to_nid(page) != zone_to_nid(zone))
3749 continue;
3750
56fd56b8
MG
3751 block_migratetype = get_pageblock_migratetype(page);
3752
938929f1
MG
3753 /* Only test what is necessary when the reserves are not met */
3754 if (reserve > 0) {
3755 /*
3756 * Blocks with reserved pages will never free, skip
3757 * them.
3758 */
3759 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3760 if (pageblock_is_reserved(pfn, block_end_pfn))
3761 continue;
56fd56b8 3762
938929f1
MG
3763 /* If this block is reserved, account for it */
3764 if (block_migratetype == MIGRATE_RESERVE) {
3765 reserve--;
3766 continue;
3767 }
3768
3769 /* Suitable for reserving if this block is movable */
3770 if (block_migratetype == MIGRATE_MOVABLE) {
3771 set_pageblock_migratetype(page,
3772 MIGRATE_RESERVE);
3773 move_freepages_block(zone, page,
3774 MIGRATE_RESERVE);
3775 reserve--;
3776 continue;
3777 }
56fd56b8
MG
3778 }
3779
3780 /*
3781 * If the reserve is met and this is a previous reserved block,
3782 * take it back
3783 */
3784 if (block_migratetype == MIGRATE_RESERVE) {
3785 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3786 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3787 }
3788 }
3789}
ac0e5b7a 3790
1da177e4
LT
3791/*
3792 * Initially all pages are reserved - free ones are freed
3793 * up by free_all_bootmem() once the early boot process is
3794 * done. Non-atomic initialization, single-pass.
3795 */
c09b4240 3796void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3797 unsigned long start_pfn, enum memmap_context context)
1da177e4 3798{
1da177e4 3799 struct page *page;
29751f69
AW
3800 unsigned long end_pfn = start_pfn + size;
3801 unsigned long pfn;
86051ca5 3802 struct zone *z;
1da177e4 3803
22b31eec
HD
3804 if (highest_memmap_pfn < end_pfn - 1)
3805 highest_memmap_pfn = end_pfn - 1;
3806
86051ca5 3807 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3808 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3809 /*
3810 * There can be holes in boot-time mem_map[]s
3811 * handed to this function. They do not
3812 * exist on hotplugged memory.
3813 */
3814 if (context == MEMMAP_EARLY) {
3815 if (!early_pfn_valid(pfn))
3816 continue;
3817 if (!early_pfn_in_nid(pfn, nid))
3818 continue;
3819 }
d41dee36
AW
3820 page = pfn_to_page(pfn);
3821 set_page_links(page, zone, nid, pfn);
708614e6 3822 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3823 init_page_count(page);
1da177e4
LT
3824 reset_page_mapcount(page);
3825 SetPageReserved(page);
b2a0ac88
MG
3826 /*
3827 * Mark the block movable so that blocks are reserved for
3828 * movable at startup. This will force kernel allocations
3829 * to reserve their blocks rather than leaking throughout
3830 * the address space during boot when many long-lived
56fd56b8
MG
3831 * kernel allocations are made. Later some blocks near
3832 * the start are marked MIGRATE_RESERVE by
3833 * setup_zone_migrate_reserve()
86051ca5
KH
3834 *
3835 * bitmap is created for zone's valid pfn range. but memmap
3836 * can be created for invalid pages (for alignment)
3837 * check here not to call set_pageblock_migratetype() against
3838 * pfn out of zone.
b2a0ac88 3839 */
86051ca5
KH
3840 if ((z->zone_start_pfn <= pfn)
3841 && (pfn < z->zone_start_pfn + z->spanned_pages)
3842 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3843 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3844
1da177e4
LT
3845 INIT_LIST_HEAD(&page->lru);
3846#ifdef WANT_PAGE_VIRTUAL
3847 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3848 if (!is_highmem_idx(zone))
3212c6be 3849 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3850#endif
1da177e4
LT
3851 }
3852}
3853
1e548deb 3854static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3855{
b2a0ac88
MG
3856 int order, t;
3857 for_each_migratetype_order(order, t) {
3858 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3859 zone->free_area[order].nr_free = 0;
3860 }
3861}
3862
3863#ifndef __HAVE_ARCH_MEMMAP_INIT
3864#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3865 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3866#endif
3867
4ed7e022 3868static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3869{
3a6be87f 3870#ifdef CONFIG_MMU
e7c8d5c9
CL
3871 int batch;
3872
3873 /*
3874 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3875 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3876 *
3877 * OK, so we don't know how big the cache is. So guess.
3878 */
3879 batch = zone->present_pages / 1024;
ba56e91c
SR
3880 if (batch * PAGE_SIZE > 512 * 1024)
3881 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3882 batch /= 4; /* We effectively *= 4 below */
3883 if (batch < 1)
3884 batch = 1;
3885
3886 /*
0ceaacc9
NP
3887 * Clamp the batch to a 2^n - 1 value. Having a power
3888 * of 2 value was found to be more likely to have
3889 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3890 *
0ceaacc9
NP
3891 * For example if 2 tasks are alternately allocating
3892 * batches of pages, one task can end up with a lot
3893 * of pages of one half of the possible page colors
3894 * and the other with pages of the other colors.
e7c8d5c9 3895 */
9155203a 3896 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3897
e7c8d5c9 3898 return batch;
3a6be87f
DH
3899
3900#else
3901 /* The deferral and batching of frees should be suppressed under NOMMU
3902 * conditions.
3903 *
3904 * The problem is that NOMMU needs to be able to allocate large chunks
3905 * of contiguous memory as there's no hardware page translation to
3906 * assemble apparent contiguous memory from discontiguous pages.
3907 *
3908 * Queueing large contiguous runs of pages for batching, however,
3909 * causes the pages to actually be freed in smaller chunks. As there
3910 * can be a significant delay between the individual batches being
3911 * recycled, this leads to the once large chunks of space being
3912 * fragmented and becoming unavailable for high-order allocations.
3913 */
3914 return 0;
3915#endif
e7c8d5c9
CL
3916}
3917
b69a7288 3918static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3919{
3920 struct per_cpu_pages *pcp;
5f8dcc21 3921 int migratetype;
2caaad41 3922
1c6fe946
MD
3923 memset(p, 0, sizeof(*p));
3924
3dfa5721 3925 pcp = &p->pcp;
2caaad41 3926 pcp->count = 0;
2caaad41
CL
3927 pcp->high = 6 * batch;
3928 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3929 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3930 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3931}
3932
8ad4b1fb
RS
3933/*
3934 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3935 * to the value high for the pageset p.
3936 */
3937
3938static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3939 unsigned long high)
3940{
3941 struct per_cpu_pages *pcp;
3942
3dfa5721 3943 pcp = &p->pcp;
8ad4b1fb
RS
3944 pcp->high = high;
3945 pcp->batch = max(1UL, high/4);
3946 if ((high/4) > (PAGE_SHIFT * 8))
3947 pcp->batch = PAGE_SHIFT * 8;
3948}
3949
4ed7e022 3950static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3951{
3952 int cpu;
3953
3954 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3955
3956 for_each_possible_cpu(cpu) {
3957 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3958
3959 setup_pageset(pcp, zone_batchsize(zone));
3960
3961 if (percpu_pagelist_fraction)
3962 setup_pagelist_highmark(pcp,
3963 (zone->present_pages /
3964 percpu_pagelist_fraction));
3965 }
3966}
3967
2caaad41 3968/*
99dcc3e5
CL
3969 * Allocate per cpu pagesets and initialize them.
3970 * Before this call only boot pagesets were available.
e7c8d5c9 3971 */
99dcc3e5 3972void __init setup_per_cpu_pageset(void)
e7c8d5c9 3973{
99dcc3e5 3974 struct zone *zone;
e7c8d5c9 3975
319774e2
WF
3976 for_each_populated_zone(zone)
3977 setup_zone_pageset(zone);
e7c8d5c9
CL
3978}
3979
577a32f6 3980static noinline __init_refok
cca448fe 3981int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3982{
3983 int i;
3984 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3985 size_t alloc_size;
ed8ece2e
DH
3986
3987 /*
3988 * The per-page waitqueue mechanism uses hashed waitqueues
3989 * per zone.
3990 */
02b694de
YG
3991 zone->wait_table_hash_nr_entries =
3992 wait_table_hash_nr_entries(zone_size_pages);
3993 zone->wait_table_bits =
3994 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3995 alloc_size = zone->wait_table_hash_nr_entries
3996 * sizeof(wait_queue_head_t);
3997
cd94b9db 3998 if (!slab_is_available()) {
cca448fe 3999 zone->wait_table = (wait_queue_head_t *)
8f389a99 4000 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4001 } else {
4002 /*
4003 * This case means that a zone whose size was 0 gets new memory
4004 * via memory hot-add.
4005 * But it may be the case that a new node was hot-added. In
4006 * this case vmalloc() will not be able to use this new node's
4007 * memory - this wait_table must be initialized to use this new
4008 * node itself as well.
4009 * To use this new node's memory, further consideration will be
4010 * necessary.
4011 */
8691f3a7 4012 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4013 }
4014 if (!zone->wait_table)
4015 return -ENOMEM;
ed8ece2e 4016
02b694de 4017 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4018 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4019
4020 return 0;
ed8ece2e
DH
4021}
4022
c09b4240 4023static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4024{
99dcc3e5
CL
4025 /*
4026 * per cpu subsystem is not up at this point. The following code
4027 * relies on the ability of the linker to provide the
4028 * offset of a (static) per cpu variable into the per cpu area.
4029 */
4030 zone->pageset = &boot_pageset;
ed8ece2e 4031
f5335c0f 4032 if (zone->present_pages)
99dcc3e5
CL
4033 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4034 zone->name, zone->present_pages,
4035 zone_batchsize(zone));
ed8ece2e
DH
4036}
4037
4ed7e022 4038int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4039 unsigned long zone_start_pfn,
a2f3aa02
DH
4040 unsigned long size,
4041 enum memmap_context context)
ed8ece2e
DH
4042{
4043 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4044 int ret;
4045 ret = zone_wait_table_init(zone, size);
4046 if (ret)
4047 return ret;
ed8ece2e
DH
4048 pgdat->nr_zones = zone_idx(zone) + 1;
4049
ed8ece2e
DH
4050 zone->zone_start_pfn = zone_start_pfn;
4051
708614e6
MG
4052 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4053 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4054 pgdat->node_id,
4055 (unsigned long)zone_idx(zone),
4056 zone_start_pfn, (zone_start_pfn + size));
4057
1e548deb 4058 zone_init_free_lists(zone);
718127cc
YG
4059
4060 return 0;
ed8ece2e
DH
4061}
4062
0ee332c1 4063#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4064#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4065/*
4066 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4067 * Architectures may implement their own version but if add_active_range()
4068 * was used and there are no special requirements, this is a convenient
4069 * alternative
4070 */
f2dbcfa7 4071int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4072{
c13291a5
TH
4073 unsigned long start_pfn, end_pfn;
4074 int i, nid;
c713216d 4075
c13291a5 4076 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4077 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4078 return nid;
cc2559bc
KH
4079 /* This is a memory hole */
4080 return -1;
c713216d
MG
4081}
4082#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4083
f2dbcfa7
KH
4084int __meminit early_pfn_to_nid(unsigned long pfn)
4085{
cc2559bc
KH
4086 int nid;
4087
4088 nid = __early_pfn_to_nid(pfn);
4089 if (nid >= 0)
4090 return nid;
4091 /* just returns 0 */
4092 return 0;
f2dbcfa7
KH
4093}
4094
cc2559bc
KH
4095#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4096bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4097{
4098 int nid;
4099
4100 nid = __early_pfn_to_nid(pfn);
4101 if (nid >= 0 && nid != node)
4102 return false;
4103 return true;
4104}
4105#endif
f2dbcfa7 4106
c713216d
MG
4107/**
4108 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4109 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4110 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4111 *
4112 * If an architecture guarantees that all ranges registered with
4113 * add_active_ranges() contain no holes and may be freed, this
4114 * this function may be used instead of calling free_bootmem() manually.
4115 */
c13291a5 4116void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4117{
c13291a5
TH
4118 unsigned long start_pfn, end_pfn;
4119 int i, this_nid;
edbe7d23 4120
c13291a5
TH
4121 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4122 start_pfn = min(start_pfn, max_low_pfn);
4123 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4124
c13291a5
TH
4125 if (start_pfn < end_pfn)
4126 free_bootmem_node(NODE_DATA(this_nid),
4127 PFN_PHYS(start_pfn),
4128 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4129 }
edbe7d23 4130}
edbe7d23 4131
c713216d
MG
4132/**
4133 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4134 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4135 *
4136 * If an architecture guarantees that all ranges registered with
4137 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4138 * function may be used instead of calling memory_present() manually.
c713216d
MG
4139 */
4140void __init sparse_memory_present_with_active_regions(int nid)
4141{
c13291a5
TH
4142 unsigned long start_pfn, end_pfn;
4143 int i, this_nid;
c713216d 4144
c13291a5
TH
4145 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4146 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4147}
4148
4149/**
4150 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4151 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4152 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4153 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4154 *
4155 * It returns the start and end page frame of a node based on information
4156 * provided by an arch calling add_active_range(). If called for a node
4157 * with no available memory, a warning is printed and the start and end
88ca3b94 4158 * PFNs will be 0.
c713216d 4159 */
a3142c8e 4160void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4161 unsigned long *start_pfn, unsigned long *end_pfn)
4162{
c13291a5 4163 unsigned long this_start_pfn, this_end_pfn;
c713216d 4164 int i;
c13291a5 4165
c713216d
MG
4166 *start_pfn = -1UL;
4167 *end_pfn = 0;
4168
c13291a5
TH
4169 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4170 *start_pfn = min(*start_pfn, this_start_pfn);
4171 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4172 }
4173
633c0666 4174 if (*start_pfn == -1UL)
c713216d 4175 *start_pfn = 0;
c713216d
MG
4176}
4177
2a1e274a
MG
4178/*
4179 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4180 * assumption is made that zones within a node are ordered in monotonic
4181 * increasing memory addresses so that the "highest" populated zone is used
4182 */
b69a7288 4183static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4184{
4185 int zone_index;
4186 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4187 if (zone_index == ZONE_MOVABLE)
4188 continue;
4189
4190 if (arch_zone_highest_possible_pfn[zone_index] >
4191 arch_zone_lowest_possible_pfn[zone_index])
4192 break;
4193 }
4194
4195 VM_BUG_ON(zone_index == -1);
4196 movable_zone = zone_index;
4197}
4198
4199/*
4200 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4201 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4202 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4203 * in each node depending on the size of each node and how evenly kernelcore
4204 * is distributed. This helper function adjusts the zone ranges
4205 * provided by the architecture for a given node by using the end of the
4206 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4207 * zones within a node are in order of monotonic increases memory addresses
4208 */
b69a7288 4209static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4210 unsigned long zone_type,
4211 unsigned long node_start_pfn,
4212 unsigned long node_end_pfn,
4213 unsigned long *zone_start_pfn,
4214 unsigned long *zone_end_pfn)
4215{
4216 /* Only adjust if ZONE_MOVABLE is on this node */
4217 if (zone_movable_pfn[nid]) {
4218 /* Size ZONE_MOVABLE */
4219 if (zone_type == ZONE_MOVABLE) {
4220 *zone_start_pfn = zone_movable_pfn[nid];
4221 *zone_end_pfn = min(node_end_pfn,
4222 arch_zone_highest_possible_pfn[movable_zone]);
4223
4224 /* Adjust for ZONE_MOVABLE starting within this range */
4225 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4226 *zone_end_pfn > zone_movable_pfn[nid]) {
4227 *zone_end_pfn = zone_movable_pfn[nid];
4228
4229 /* Check if this whole range is within ZONE_MOVABLE */
4230 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4231 *zone_start_pfn = *zone_end_pfn;
4232 }
4233}
4234
c713216d
MG
4235/*
4236 * Return the number of pages a zone spans in a node, including holes
4237 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4238 */
6ea6e688 4239static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4240 unsigned long zone_type,
4241 unsigned long *ignored)
4242{
4243 unsigned long node_start_pfn, node_end_pfn;
4244 unsigned long zone_start_pfn, zone_end_pfn;
4245
4246 /* Get the start and end of the node and zone */
4247 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4248 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4249 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4250 adjust_zone_range_for_zone_movable(nid, zone_type,
4251 node_start_pfn, node_end_pfn,
4252 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4253
4254 /* Check that this node has pages within the zone's required range */
4255 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4256 return 0;
4257
4258 /* Move the zone boundaries inside the node if necessary */
4259 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4260 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4261
4262 /* Return the spanned pages */
4263 return zone_end_pfn - zone_start_pfn;
4264}
4265
4266/*
4267 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4268 * then all holes in the requested range will be accounted for.
c713216d 4269 */
32996250 4270unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4271 unsigned long range_start_pfn,
4272 unsigned long range_end_pfn)
4273{
96e907d1
TH
4274 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4275 unsigned long start_pfn, end_pfn;
4276 int i;
c713216d 4277
96e907d1
TH
4278 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4279 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4280 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4281 nr_absent -= end_pfn - start_pfn;
c713216d 4282 }
96e907d1 4283 return nr_absent;
c713216d
MG
4284}
4285
4286/**
4287 * absent_pages_in_range - Return number of page frames in holes within a range
4288 * @start_pfn: The start PFN to start searching for holes
4289 * @end_pfn: The end PFN to stop searching for holes
4290 *
88ca3b94 4291 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4292 */
4293unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4294 unsigned long end_pfn)
4295{
4296 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4297}
4298
4299/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4300static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4301 unsigned long zone_type,
4302 unsigned long *ignored)
4303{
96e907d1
TH
4304 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4305 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4306 unsigned long node_start_pfn, node_end_pfn;
4307 unsigned long zone_start_pfn, zone_end_pfn;
4308
4309 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4310 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4311 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4312
2a1e274a
MG
4313 adjust_zone_range_for_zone_movable(nid, zone_type,
4314 node_start_pfn, node_end_pfn,
4315 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4316 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4317}
0e0b864e 4318
0ee332c1 4319#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4320static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4321 unsigned long zone_type,
4322 unsigned long *zones_size)
4323{
4324 return zones_size[zone_type];
4325}
4326
6ea6e688 4327static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4328 unsigned long zone_type,
4329 unsigned long *zholes_size)
4330{
4331 if (!zholes_size)
4332 return 0;
4333
4334 return zholes_size[zone_type];
4335}
0e0b864e 4336
0ee332c1 4337#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4338
a3142c8e 4339static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4340 unsigned long *zones_size, unsigned long *zholes_size)
4341{
4342 unsigned long realtotalpages, totalpages = 0;
4343 enum zone_type i;
4344
4345 for (i = 0; i < MAX_NR_ZONES; i++)
4346 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4347 zones_size);
4348 pgdat->node_spanned_pages = totalpages;
4349
4350 realtotalpages = totalpages;
4351 for (i = 0; i < MAX_NR_ZONES; i++)
4352 realtotalpages -=
4353 zone_absent_pages_in_node(pgdat->node_id, i,
4354 zholes_size);
4355 pgdat->node_present_pages = realtotalpages;
4356 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4357 realtotalpages);
4358}
4359
835c134e
MG
4360#ifndef CONFIG_SPARSEMEM
4361/*
4362 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4363 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4364 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4365 * round what is now in bits to nearest long in bits, then return it in
4366 * bytes.
4367 */
4368static unsigned long __init usemap_size(unsigned long zonesize)
4369{
4370 unsigned long usemapsize;
4371
d9c23400
MG
4372 usemapsize = roundup(zonesize, pageblock_nr_pages);
4373 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4374 usemapsize *= NR_PAGEBLOCK_BITS;
4375 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4376
4377 return usemapsize / 8;
4378}
4379
4380static void __init setup_usemap(struct pglist_data *pgdat,
4381 struct zone *zone, unsigned long zonesize)
4382{
4383 unsigned long usemapsize = usemap_size(zonesize);
4384 zone->pageblock_flags = NULL;
58a01a45 4385 if (usemapsize)
8f389a99
YL
4386 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4387 usemapsize);
835c134e
MG
4388}
4389#else
fa9f90be 4390static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4391 struct zone *zone, unsigned long zonesize) {}
4392#endif /* CONFIG_SPARSEMEM */
4393
d9c23400 4394#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4395
d9c23400 4396/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4397void __init set_pageblock_order(void)
d9c23400 4398{
955c1cd7
AM
4399 unsigned int order;
4400
d9c23400
MG
4401 /* Check that pageblock_nr_pages has not already been setup */
4402 if (pageblock_order)
4403 return;
4404
955c1cd7
AM
4405 if (HPAGE_SHIFT > PAGE_SHIFT)
4406 order = HUGETLB_PAGE_ORDER;
4407 else
4408 order = MAX_ORDER - 1;
4409
d9c23400
MG
4410 /*
4411 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4412 * This value may be variable depending on boot parameters on IA64 and
4413 * powerpc.
d9c23400
MG
4414 */
4415 pageblock_order = order;
4416}
4417#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4418
ba72cb8c
MG
4419/*
4420 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4421 * is unused as pageblock_order is set at compile-time. See
4422 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4423 * the kernel config
ba72cb8c 4424 */
ca57df79 4425void __init set_pageblock_order(void)
ba72cb8c 4426{
ba72cb8c 4427}
d9c23400
MG
4428
4429#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4430
1da177e4
LT
4431/*
4432 * Set up the zone data structures:
4433 * - mark all pages reserved
4434 * - mark all memory queues empty
4435 * - clear the memory bitmaps
6527af5d
MK
4436 *
4437 * NOTE: pgdat should get zeroed by caller.
1da177e4 4438 */
b5a0e011 4439static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4440 unsigned long *zones_size, unsigned long *zholes_size)
4441{
2f1b6248 4442 enum zone_type j;
ed8ece2e 4443 int nid = pgdat->node_id;
1da177e4 4444 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4445 int ret;
1da177e4 4446
208d54e5 4447 pgdat_resize_init(pgdat);
1da177e4 4448 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4449 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4450 pgdat_page_cgroup_init(pgdat);
5f63b720 4451
1da177e4
LT
4452 for (j = 0; j < MAX_NR_ZONES; j++) {
4453 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4454 unsigned long size, realsize, memmap_pages;
1da177e4 4455
c713216d
MG
4456 size = zone_spanned_pages_in_node(nid, j, zones_size);
4457 realsize = size - zone_absent_pages_in_node(nid, j,
4458 zholes_size);
1da177e4 4459
0e0b864e
MG
4460 /*
4461 * Adjust realsize so that it accounts for how much memory
4462 * is used by this zone for memmap. This affects the watermark
4463 * and per-cpu initialisations
4464 */
f7232154
JW
4465 memmap_pages =
4466 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4467 if (realsize >= memmap_pages) {
4468 realsize -= memmap_pages;
5594c8c8
YL
4469 if (memmap_pages)
4470 printk(KERN_DEBUG
4471 " %s zone: %lu pages used for memmap\n",
4472 zone_names[j], memmap_pages);
0e0b864e
MG
4473 } else
4474 printk(KERN_WARNING
4475 " %s zone: %lu pages exceeds realsize %lu\n",
4476 zone_names[j], memmap_pages, realsize);
4477
6267276f
CL
4478 /* Account for reserved pages */
4479 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4480 realsize -= dma_reserve;
d903ef9f 4481 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4482 zone_names[0], dma_reserve);
0e0b864e
MG
4483 }
4484
98d2b0eb 4485 if (!is_highmem_idx(j))
1da177e4
LT
4486 nr_kernel_pages += realsize;
4487 nr_all_pages += realsize;
4488
4489 zone->spanned_pages = size;
4490 zone->present_pages = realsize;
7db8889a
RR
4491#if defined CONFIG_COMPACTION || defined CONFIG_CMA
4492 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4493 zone->spanned_pages;
4494 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4495#endif
9614634f 4496#ifdef CONFIG_NUMA
d5f541ed 4497 zone->node = nid;
8417bba4 4498 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4499 / 100;
0ff38490 4500 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4501#endif
1da177e4
LT
4502 zone->name = zone_names[j];
4503 spin_lock_init(&zone->lock);
4504 spin_lock_init(&zone->lru_lock);
bdc8cb98 4505 zone_seqlock_init(zone);
1da177e4 4506 zone->zone_pgdat = pgdat;
1da177e4 4507
ed8ece2e 4508 zone_pcp_init(zone);
7f5e86c2 4509 lruvec_init(&zone->lruvec, zone);
1da177e4
LT
4510 if (!size)
4511 continue;
4512
955c1cd7 4513 set_pageblock_order();
835c134e 4514 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4515 ret = init_currently_empty_zone(zone, zone_start_pfn,
4516 size, MEMMAP_EARLY);
718127cc 4517 BUG_ON(ret);
76cdd58e 4518 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4519 zone_start_pfn += size;
1da177e4
LT
4520 }
4521}
4522
577a32f6 4523static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4524{
1da177e4
LT
4525 /* Skip empty nodes */
4526 if (!pgdat->node_spanned_pages)
4527 return;
4528
d41dee36 4529#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4530 /* ia64 gets its own node_mem_map, before this, without bootmem */
4531 if (!pgdat->node_mem_map) {
e984bb43 4532 unsigned long size, start, end;
d41dee36
AW
4533 struct page *map;
4534
e984bb43
BP
4535 /*
4536 * The zone's endpoints aren't required to be MAX_ORDER
4537 * aligned but the node_mem_map endpoints must be in order
4538 * for the buddy allocator to function correctly.
4539 */
4540 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4541 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4542 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4543 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4544 map = alloc_remap(pgdat->node_id, size);
4545 if (!map)
8f389a99 4546 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4547 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4548 }
12d810c1 4549#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4550 /*
4551 * With no DISCONTIG, the global mem_map is just set as node 0's
4552 */
c713216d 4553 if (pgdat == NODE_DATA(0)) {
1da177e4 4554 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4555#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4556 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4557 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4558#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4559 }
1da177e4 4560#endif
d41dee36 4561#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4562}
4563
9109fb7b
JW
4564void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4565 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4566{
9109fb7b
JW
4567 pg_data_t *pgdat = NODE_DATA(nid);
4568
88fdf75d 4569 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4570 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4571
1da177e4
LT
4572 pgdat->node_id = nid;
4573 pgdat->node_start_pfn = node_start_pfn;
c713216d 4574 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4575
4576 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4577#ifdef CONFIG_FLAT_NODE_MEM_MAP
4578 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4579 nid, (unsigned long)pgdat,
4580 (unsigned long)pgdat->node_mem_map);
4581#endif
1da177e4
LT
4582
4583 free_area_init_core(pgdat, zones_size, zholes_size);
4584}
4585
0ee332c1 4586#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4587
4588#if MAX_NUMNODES > 1
4589/*
4590 * Figure out the number of possible node ids.
4591 */
4592static void __init setup_nr_node_ids(void)
4593{
4594 unsigned int node;
4595 unsigned int highest = 0;
4596
4597 for_each_node_mask(node, node_possible_map)
4598 highest = node;
4599 nr_node_ids = highest + 1;
4600}
4601#else
4602static inline void setup_nr_node_ids(void)
4603{
4604}
4605#endif
4606
1e01979c
TH
4607/**
4608 * node_map_pfn_alignment - determine the maximum internode alignment
4609 *
4610 * This function should be called after node map is populated and sorted.
4611 * It calculates the maximum power of two alignment which can distinguish
4612 * all the nodes.
4613 *
4614 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4615 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4616 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4617 * shifted, 1GiB is enough and this function will indicate so.
4618 *
4619 * This is used to test whether pfn -> nid mapping of the chosen memory
4620 * model has fine enough granularity to avoid incorrect mapping for the
4621 * populated node map.
4622 *
4623 * Returns the determined alignment in pfn's. 0 if there is no alignment
4624 * requirement (single node).
4625 */
4626unsigned long __init node_map_pfn_alignment(void)
4627{
4628 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4629 unsigned long start, end, mask;
1e01979c 4630 int last_nid = -1;
c13291a5 4631 int i, nid;
1e01979c 4632
c13291a5 4633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4634 if (!start || last_nid < 0 || last_nid == nid) {
4635 last_nid = nid;
4636 last_end = end;
4637 continue;
4638 }
4639
4640 /*
4641 * Start with a mask granular enough to pin-point to the
4642 * start pfn and tick off bits one-by-one until it becomes
4643 * too coarse to separate the current node from the last.
4644 */
4645 mask = ~((1 << __ffs(start)) - 1);
4646 while (mask && last_end <= (start & (mask << 1)))
4647 mask <<= 1;
4648
4649 /* accumulate all internode masks */
4650 accl_mask |= mask;
4651 }
4652
4653 /* convert mask to number of pages */
4654 return ~accl_mask + 1;
4655}
4656
a6af2bc3 4657/* Find the lowest pfn for a node */
b69a7288 4658static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4659{
a6af2bc3 4660 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4661 unsigned long start_pfn;
4662 int i;
1abbfb41 4663
c13291a5
TH
4664 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4665 min_pfn = min(min_pfn, start_pfn);
c713216d 4666
a6af2bc3
MG
4667 if (min_pfn == ULONG_MAX) {
4668 printk(KERN_WARNING
2bc0d261 4669 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4670 return 0;
4671 }
4672
4673 return min_pfn;
c713216d
MG
4674}
4675
4676/**
4677 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4678 *
4679 * It returns the minimum PFN based on information provided via
88ca3b94 4680 * add_active_range().
c713216d
MG
4681 */
4682unsigned long __init find_min_pfn_with_active_regions(void)
4683{
4684 return find_min_pfn_for_node(MAX_NUMNODES);
4685}
4686
37b07e41
LS
4687/*
4688 * early_calculate_totalpages()
4689 * Sum pages in active regions for movable zone.
4690 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4691 */
484f51f8 4692static unsigned long __init early_calculate_totalpages(void)
7e63efef 4693{
7e63efef 4694 unsigned long totalpages = 0;
c13291a5
TH
4695 unsigned long start_pfn, end_pfn;
4696 int i, nid;
4697
4698 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4699 unsigned long pages = end_pfn - start_pfn;
7e63efef 4700
37b07e41
LS
4701 totalpages += pages;
4702 if (pages)
c13291a5 4703 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4704 }
4705 return totalpages;
7e63efef
MG
4706}
4707
2a1e274a
MG
4708/*
4709 * Find the PFN the Movable zone begins in each node. Kernel memory
4710 * is spread evenly between nodes as long as the nodes have enough
4711 * memory. When they don't, some nodes will have more kernelcore than
4712 * others
4713 */
b224ef85 4714static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4715{
4716 int i, nid;
4717 unsigned long usable_startpfn;
4718 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4719 /* save the state before borrow the nodemask */
4720 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4721 unsigned long totalpages = early_calculate_totalpages();
4722 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4723
7e63efef
MG
4724 /*
4725 * If movablecore was specified, calculate what size of
4726 * kernelcore that corresponds so that memory usable for
4727 * any allocation type is evenly spread. If both kernelcore
4728 * and movablecore are specified, then the value of kernelcore
4729 * will be used for required_kernelcore if it's greater than
4730 * what movablecore would have allowed.
4731 */
4732 if (required_movablecore) {
7e63efef
MG
4733 unsigned long corepages;
4734
4735 /*
4736 * Round-up so that ZONE_MOVABLE is at least as large as what
4737 * was requested by the user
4738 */
4739 required_movablecore =
4740 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4741 corepages = totalpages - required_movablecore;
4742
4743 required_kernelcore = max(required_kernelcore, corepages);
4744 }
4745
2a1e274a
MG
4746 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4747 if (!required_kernelcore)
66918dcd 4748 goto out;
2a1e274a
MG
4749
4750 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4751 find_usable_zone_for_movable();
4752 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4753
4754restart:
4755 /* Spread kernelcore memory as evenly as possible throughout nodes */
4756 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4757 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4758 unsigned long start_pfn, end_pfn;
4759
2a1e274a
MG
4760 /*
4761 * Recalculate kernelcore_node if the division per node
4762 * now exceeds what is necessary to satisfy the requested
4763 * amount of memory for the kernel
4764 */
4765 if (required_kernelcore < kernelcore_node)
4766 kernelcore_node = required_kernelcore / usable_nodes;
4767
4768 /*
4769 * As the map is walked, we track how much memory is usable
4770 * by the kernel using kernelcore_remaining. When it is
4771 * 0, the rest of the node is usable by ZONE_MOVABLE
4772 */
4773 kernelcore_remaining = kernelcore_node;
4774
4775 /* Go through each range of PFNs within this node */
c13291a5 4776 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4777 unsigned long size_pages;
4778
c13291a5 4779 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4780 if (start_pfn >= end_pfn)
4781 continue;
4782
4783 /* Account for what is only usable for kernelcore */
4784 if (start_pfn < usable_startpfn) {
4785 unsigned long kernel_pages;
4786 kernel_pages = min(end_pfn, usable_startpfn)
4787 - start_pfn;
4788
4789 kernelcore_remaining -= min(kernel_pages,
4790 kernelcore_remaining);
4791 required_kernelcore -= min(kernel_pages,
4792 required_kernelcore);
4793
4794 /* Continue if range is now fully accounted */
4795 if (end_pfn <= usable_startpfn) {
4796
4797 /*
4798 * Push zone_movable_pfn to the end so
4799 * that if we have to rebalance
4800 * kernelcore across nodes, we will
4801 * not double account here
4802 */
4803 zone_movable_pfn[nid] = end_pfn;
4804 continue;
4805 }
4806 start_pfn = usable_startpfn;
4807 }
4808
4809 /*
4810 * The usable PFN range for ZONE_MOVABLE is from
4811 * start_pfn->end_pfn. Calculate size_pages as the
4812 * number of pages used as kernelcore
4813 */
4814 size_pages = end_pfn - start_pfn;
4815 if (size_pages > kernelcore_remaining)
4816 size_pages = kernelcore_remaining;
4817 zone_movable_pfn[nid] = start_pfn + size_pages;
4818
4819 /*
4820 * Some kernelcore has been met, update counts and
4821 * break if the kernelcore for this node has been
4822 * satisified
4823 */
4824 required_kernelcore -= min(required_kernelcore,
4825 size_pages);
4826 kernelcore_remaining -= size_pages;
4827 if (!kernelcore_remaining)
4828 break;
4829 }
4830 }
4831
4832 /*
4833 * If there is still required_kernelcore, we do another pass with one
4834 * less node in the count. This will push zone_movable_pfn[nid] further
4835 * along on the nodes that still have memory until kernelcore is
4836 * satisified
4837 */
4838 usable_nodes--;
4839 if (usable_nodes && required_kernelcore > usable_nodes)
4840 goto restart;
4841
4842 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4843 for (nid = 0; nid < MAX_NUMNODES; nid++)
4844 zone_movable_pfn[nid] =
4845 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4846
4847out:
4848 /* restore the node_state */
4849 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4850}
4851
37b07e41 4852/* Any regular memory on that node ? */
4ed7e022 4853static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4854{
4855#ifdef CONFIG_HIGHMEM
4856 enum zone_type zone_type;
4857
4858 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4859 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4860 if (zone->present_pages) {
37b07e41 4861 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4862 break;
4863 }
37b07e41
LS
4864 }
4865#endif
4866}
4867
c713216d
MG
4868/**
4869 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4870 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4871 *
4872 * This will call free_area_init_node() for each active node in the system.
4873 * Using the page ranges provided by add_active_range(), the size of each
4874 * zone in each node and their holes is calculated. If the maximum PFN
4875 * between two adjacent zones match, it is assumed that the zone is empty.
4876 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4877 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4878 * starts where the previous one ended. For example, ZONE_DMA32 starts
4879 * at arch_max_dma_pfn.
4880 */
4881void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4882{
c13291a5
TH
4883 unsigned long start_pfn, end_pfn;
4884 int i, nid;
a6af2bc3 4885
c713216d
MG
4886 /* Record where the zone boundaries are */
4887 memset(arch_zone_lowest_possible_pfn, 0,
4888 sizeof(arch_zone_lowest_possible_pfn));
4889 memset(arch_zone_highest_possible_pfn, 0,
4890 sizeof(arch_zone_highest_possible_pfn));
4891 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4892 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4893 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4894 if (i == ZONE_MOVABLE)
4895 continue;
c713216d
MG
4896 arch_zone_lowest_possible_pfn[i] =
4897 arch_zone_highest_possible_pfn[i-1];
4898 arch_zone_highest_possible_pfn[i] =
4899 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4900 }
2a1e274a
MG
4901 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4902 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4903
4904 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4905 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4906 find_zone_movable_pfns_for_nodes();
c713216d 4907
c713216d 4908 /* Print out the zone ranges */
a62e2f4f 4909 printk("Zone ranges:\n");
2a1e274a
MG
4910 for (i = 0; i < MAX_NR_ZONES; i++) {
4911 if (i == ZONE_MOVABLE)
4912 continue;
155cbfc8 4913 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4914 if (arch_zone_lowest_possible_pfn[i] ==
4915 arch_zone_highest_possible_pfn[i])
155cbfc8 4916 printk(KERN_CONT "empty\n");
72f0ba02 4917 else
a62e2f4f
BH
4918 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4919 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4920 (arch_zone_highest_possible_pfn[i]
4921 << PAGE_SHIFT) - 1);
2a1e274a
MG
4922 }
4923
4924 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4925 printk("Movable zone start for each node\n");
2a1e274a
MG
4926 for (i = 0; i < MAX_NUMNODES; i++) {
4927 if (zone_movable_pfn[i])
a62e2f4f
BH
4928 printk(" Node %d: %#010lx\n", i,
4929 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4930 }
c713216d
MG
4931
4932 /* Print out the early_node_map[] */
a62e2f4f 4933 printk("Early memory node ranges\n");
c13291a5 4934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4935 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4936 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4937
4938 /* Initialise every node */
708614e6 4939 mminit_verify_pageflags_layout();
8ef82866 4940 setup_nr_node_ids();
c713216d
MG
4941 for_each_online_node(nid) {
4942 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4943 free_area_init_node(nid, NULL,
c713216d 4944 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4945
4946 /* Any memory on that node */
4947 if (pgdat->node_present_pages)
4948 node_set_state(nid, N_HIGH_MEMORY);
4949 check_for_regular_memory(pgdat);
c713216d
MG
4950 }
4951}
2a1e274a 4952
7e63efef 4953static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4954{
4955 unsigned long long coremem;
4956 if (!p)
4957 return -EINVAL;
4958
4959 coremem = memparse(p, &p);
7e63efef 4960 *core = coremem >> PAGE_SHIFT;
2a1e274a 4961
7e63efef 4962 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4963 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4964
4965 return 0;
4966}
ed7ed365 4967
7e63efef
MG
4968/*
4969 * kernelcore=size sets the amount of memory for use for allocations that
4970 * cannot be reclaimed or migrated.
4971 */
4972static int __init cmdline_parse_kernelcore(char *p)
4973{
4974 return cmdline_parse_core(p, &required_kernelcore);
4975}
4976
4977/*
4978 * movablecore=size sets the amount of memory for use for allocations that
4979 * can be reclaimed or migrated.
4980 */
4981static int __init cmdline_parse_movablecore(char *p)
4982{
4983 return cmdline_parse_core(p, &required_movablecore);
4984}
4985
ed7ed365 4986early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4987early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4988
0ee332c1 4989#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4990
0e0b864e 4991/**
88ca3b94
RD
4992 * set_dma_reserve - set the specified number of pages reserved in the first zone
4993 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4994 *
4995 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4996 * In the DMA zone, a significant percentage may be consumed by kernel image
4997 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4998 * function may optionally be used to account for unfreeable pages in the
4999 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5000 * smaller per-cpu batchsize.
0e0b864e
MG
5001 */
5002void __init set_dma_reserve(unsigned long new_dma_reserve)
5003{
5004 dma_reserve = new_dma_reserve;
5005}
5006
1da177e4
LT
5007void __init free_area_init(unsigned long *zones_size)
5008{
9109fb7b 5009 free_area_init_node(0, zones_size,
1da177e4
LT
5010 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5011}
1da177e4 5012
1da177e4
LT
5013static int page_alloc_cpu_notify(struct notifier_block *self,
5014 unsigned long action, void *hcpu)
5015{
5016 int cpu = (unsigned long)hcpu;
1da177e4 5017
8bb78442 5018 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5019 lru_add_drain_cpu(cpu);
9f8f2172
CL
5020 drain_pages(cpu);
5021
5022 /*
5023 * Spill the event counters of the dead processor
5024 * into the current processors event counters.
5025 * This artificially elevates the count of the current
5026 * processor.
5027 */
f8891e5e 5028 vm_events_fold_cpu(cpu);
9f8f2172
CL
5029
5030 /*
5031 * Zero the differential counters of the dead processor
5032 * so that the vm statistics are consistent.
5033 *
5034 * This is only okay since the processor is dead and cannot
5035 * race with what we are doing.
5036 */
2244b95a 5037 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5038 }
5039 return NOTIFY_OK;
5040}
1da177e4
LT
5041
5042void __init page_alloc_init(void)
5043{
5044 hotcpu_notifier(page_alloc_cpu_notify, 0);
5045}
5046
cb45b0e9
HA
5047/*
5048 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5049 * or min_free_kbytes changes.
5050 */
5051static void calculate_totalreserve_pages(void)
5052{
5053 struct pglist_data *pgdat;
5054 unsigned long reserve_pages = 0;
2f6726e5 5055 enum zone_type i, j;
cb45b0e9
HA
5056
5057 for_each_online_pgdat(pgdat) {
5058 for (i = 0; i < MAX_NR_ZONES; i++) {
5059 struct zone *zone = pgdat->node_zones + i;
5060 unsigned long max = 0;
5061
5062 /* Find valid and maximum lowmem_reserve in the zone */
5063 for (j = i; j < MAX_NR_ZONES; j++) {
5064 if (zone->lowmem_reserve[j] > max)
5065 max = zone->lowmem_reserve[j];
5066 }
5067
41858966
MG
5068 /* we treat the high watermark as reserved pages. */
5069 max += high_wmark_pages(zone);
cb45b0e9
HA
5070
5071 if (max > zone->present_pages)
5072 max = zone->present_pages;
5073 reserve_pages += max;
ab8fabd4
JW
5074 /*
5075 * Lowmem reserves are not available to
5076 * GFP_HIGHUSER page cache allocations and
5077 * kswapd tries to balance zones to their high
5078 * watermark. As a result, neither should be
5079 * regarded as dirtyable memory, to prevent a
5080 * situation where reclaim has to clean pages
5081 * in order to balance the zones.
5082 */
5083 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5084 }
5085 }
ab8fabd4 5086 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5087 totalreserve_pages = reserve_pages;
5088}
5089
1da177e4
LT
5090/*
5091 * setup_per_zone_lowmem_reserve - called whenever
5092 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5093 * has a correct pages reserved value, so an adequate number of
5094 * pages are left in the zone after a successful __alloc_pages().
5095 */
5096static void setup_per_zone_lowmem_reserve(void)
5097{
5098 struct pglist_data *pgdat;
2f6726e5 5099 enum zone_type j, idx;
1da177e4 5100
ec936fc5 5101 for_each_online_pgdat(pgdat) {
1da177e4
LT
5102 for (j = 0; j < MAX_NR_ZONES; j++) {
5103 struct zone *zone = pgdat->node_zones + j;
5104 unsigned long present_pages = zone->present_pages;
5105
5106 zone->lowmem_reserve[j] = 0;
5107
2f6726e5
CL
5108 idx = j;
5109 while (idx) {
1da177e4
LT
5110 struct zone *lower_zone;
5111
2f6726e5
CL
5112 idx--;
5113
1da177e4
LT
5114 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5115 sysctl_lowmem_reserve_ratio[idx] = 1;
5116
5117 lower_zone = pgdat->node_zones + idx;
5118 lower_zone->lowmem_reserve[j] = present_pages /
5119 sysctl_lowmem_reserve_ratio[idx];
5120 present_pages += lower_zone->present_pages;
5121 }
5122 }
5123 }
cb45b0e9
HA
5124
5125 /* update totalreserve_pages */
5126 calculate_totalreserve_pages();
1da177e4
LT
5127}
5128
cfd3da1e 5129static void __setup_per_zone_wmarks(void)
1da177e4
LT
5130{
5131 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5132 unsigned long lowmem_pages = 0;
5133 struct zone *zone;
5134 unsigned long flags;
5135
5136 /* Calculate total number of !ZONE_HIGHMEM pages */
5137 for_each_zone(zone) {
5138 if (!is_highmem(zone))
5139 lowmem_pages += zone->present_pages;
5140 }
5141
5142 for_each_zone(zone) {
ac924c60
AM
5143 u64 tmp;
5144
1125b4e3 5145 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5146 tmp = (u64)pages_min * zone->present_pages;
5147 do_div(tmp, lowmem_pages);
1da177e4
LT
5148 if (is_highmem(zone)) {
5149 /*
669ed175
NP
5150 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5151 * need highmem pages, so cap pages_min to a small
5152 * value here.
5153 *
41858966 5154 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5155 * deltas controls asynch page reclaim, and so should
5156 * not be capped for highmem.
1da177e4
LT
5157 */
5158 int min_pages;
5159
5160 min_pages = zone->present_pages / 1024;
5161 if (min_pages < SWAP_CLUSTER_MAX)
5162 min_pages = SWAP_CLUSTER_MAX;
5163 if (min_pages > 128)
5164 min_pages = 128;
41858966 5165 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5166 } else {
669ed175
NP
5167 /*
5168 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5169 * proportionate to the zone's size.
5170 */
41858966 5171 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5172 }
5173
41858966
MG
5174 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5175 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5176
5177 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5178 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5179 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5180
56fd56b8 5181 setup_zone_migrate_reserve(zone);
1125b4e3 5182 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5183 }
cb45b0e9
HA
5184
5185 /* update totalreserve_pages */
5186 calculate_totalreserve_pages();
1da177e4
LT
5187}
5188
cfd3da1e
MG
5189/**
5190 * setup_per_zone_wmarks - called when min_free_kbytes changes
5191 * or when memory is hot-{added|removed}
5192 *
5193 * Ensures that the watermark[min,low,high] values for each zone are set
5194 * correctly with respect to min_free_kbytes.
5195 */
5196void setup_per_zone_wmarks(void)
5197{
5198 mutex_lock(&zonelists_mutex);
5199 __setup_per_zone_wmarks();
5200 mutex_unlock(&zonelists_mutex);
5201}
5202
55a4462a 5203/*
556adecb
RR
5204 * The inactive anon list should be small enough that the VM never has to
5205 * do too much work, but large enough that each inactive page has a chance
5206 * to be referenced again before it is swapped out.
5207 *
5208 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5209 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5210 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5211 * the anonymous pages are kept on the inactive list.
5212 *
5213 * total target max
5214 * memory ratio inactive anon
5215 * -------------------------------------
5216 * 10MB 1 5MB
5217 * 100MB 1 50MB
5218 * 1GB 3 250MB
5219 * 10GB 10 0.9GB
5220 * 100GB 31 3GB
5221 * 1TB 101 10GB
5222 * 10TB 320 32GB
5223 */
1b79acc9 5224static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5225{
96cb4df5 5226 unsigned int gb, ratio;
556adecb 5227
96cb4df5
MK
5228 /* Zone size in gigabytes */
5229 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5230 if (gb)
556adecb 5231 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5232 else
5233 ratio = 1;
556adecb 5234
96cb4df5
MK
5235 zone->inactive_ratio = ratio;
5236}
556adecb 5237
839a4fcc 5238static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5239{
5240 struct zone *zone;
5241
5242 for_each_zone(zone)
5243 calculate_zone_inactive_ratio(zone);
556adecb
RR
5244}
5245
1da177e4
LT
5246/*
5247 * Initialise min_free_kbytes.
5248 *
5249 * For small machines we want it small (128k min). For large machines
5250 * we want it large (64MB max). But it is not linear, because network
5251 * bandwidth does not increase linearly with machine size. We use
5252 *
5253 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5254 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5255 *
5256 * which yields
5257 *
5258 * 16MB: 512k
5259 * 32MB: 724k
5260 * 64MB: 1024k
5261 * 128MB: 1448k
5262 * 256MB: 2048k
5263 * 512MB: 2896k
5264 * 1024MB: 4096k
5265 * 2048MB: 5792k
5266 * 4096MB: 8192k
5267 * 8192MB: 11584k
5268 * 16384MB: 16384k
5269 */
1b79acc9 5270int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5271{
5272 unsigned long lowmem_kbytes;
5273
5274 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5275
5276 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5277 if (min_free_kbytes < 128)
5278 min_free_kbytes = 128;
5279 if (min_free_kbytes > 65536)
5280 min_free_kbytes = 65536;
bc75d33f 5281 setup_per_zone_wmarks();
a6cccdc3 5282 refresh_zone_stat_thresholds();
1da177e4 5283 setup_per_zone_lowmem_reserve();
556adecb 5284 setup_per_zone_inactive_ratio();
1da177e4
LT
5285 return 0;
5286}
bc75d33f 5287module_init(init_per_zone_wmark_min)
1da177e4
LT
5288
5289/*
5290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5291 * that we can call two helper functions whenever min_free_kbytes
5292 * changes.
5293 */
5294int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5295 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5296{
8d65af78 5297 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5298 if (write)
bc75d33f 5299 setup_per_zone_wmarks();
1da177e4
LT
5300 return 0;
5301}
5302
9614634f
CL
5303#ifdef CONFIG_NUMA
5304int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5305 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5306{
5307 struct zone *zone;
5308 int rc;
5309
8d65af78 5310 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5311 if (rc)
5312 return rc;
5313
5314 for_each_zone(zone)
8417bba4 5315 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5316 sysctl_min_unmapped_ratio) / 100;
5317 return 0;
5318}
0ff38490
CL
5319
5320int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5321 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5322{
5323 struct zone *zone;
5324 int rc;
5325
8d65af78 5326 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5327 if (rc)
5328 return rc;
5329
5330 for_each_zone(zone)
5331 zone->min_slab_pages = (zone->present_pages *
5332 sysctl_min_slab_ratio) / 100;
5333 return 0;
5334}
9614634f
CL
5335#endif
5336
1da177e4
LT
5337/*
5338 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5339 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5340 * whenever sysctl_lowmem_reserve_ratio changes.
5341 *
5342 * The reserve ratio obviously has absolutely no relation with the
41858966 5343 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5344 * if in function of the boot time zone sizes.
5345 */
5346int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5347 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5348{
8d65af78 5349 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5350 setup_per_zone_lowmem_reserve();
5351 return 0;
5352}
5353
8ad4b1fb
RS
5354/*
5355 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5356 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5357 * can have before it gets flushed back to buddy allocator.
5358 */
5359
5360int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5361 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5362{
5363 struct zone *zone;
5364 unsigned int cpu;
5365 int ret;
5366
8d65af78 5367 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5368 if (!write || (ret < 0))
8ad4b1fb 5369 return ret;
364df0eb 5370 for_each_populated_zone(zone) {
99dcc3e5 5371 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5372 unsigned long high;
5373 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5374 setup_pagelist_highmark(
5375 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5376 }
5377 }
5378 return 0;
5379}
5380
f034b5d4 5381int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5382
5383#ifdef CONFIG_NUMA
5384static int __init set_hashdist(char *str)
5385{
5386 if (!str)
5387 return 0;
5388 hashdist = simple_strtoul(str, &str, 0);
5389 return 1;
5390}
5391__setup("hashdist=", set_hashdist);
5392#endif
5393
5394/*
5395 * allocate a large system hash table from bootmem
5396 * - it is assumed that the hash table must contain an exact power-of-2
5397 * quantity of entries
5398 * - limit is the number of hash buckets, not the total allocation size
5399 */
5400void *__init alloc_large_system_hash(const char *tablename,
5401 unsigned long bucketsize,
5402 unsigned long numentries,
5403 int scale,
5404 int flags,
5405 unsigned int *_hash_shift,
5406 unsigned int *_hash_mask,
31fe62b9
TB
5407 unsigned long low_limit,
5408 unsigned long high_limit)
1da177e4 5409{
31fe62b9 5410 unsigned long long max = high_limit;
1da177e4
LT
5411 unsigned long log2qty, size;
5412 void *table = NULL;
5413
5414 /* allow the kernel cmdline to have a say */
5415 if (!numentries) {
5416 /* round applicable memory size up to nearest megabyte */
04903664 5417 numentries = nr_kernel_pages;
1da177e4
LT
5418 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5419 numentries >>= 20 - PAGE_SHIFT;
5420 numentries <<= 20 - PAGE_SHIFT;
5421
5422 /* limit to 1 bucket per 2^scale bytes of low memory */
5423 if (scale > PAGE_SHIFT)
5424 numentries >>= (scale - PAGE_SHIFT);
5425 else
5426 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5427
5428 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5429 if (unlikely(flags & HASH_SMALL)) {
5430 /* Makes no sense without HASH_EARLY */
5431 WARN_ON(!(flags & HASH_EARLY));
5432 if (!(numentries >> *_hash_shift)) {
5433 numentries = 1UL << *_hash_shift;
5434 BUG_ON(!numentries);
5435 }
5436 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5437 numentries = PAGE_SIZE / bucketsize;
1da177e4 5438 }
6e692ed3 5439 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5440
5441 /* limit allocation size to 1/16 total memory by default */
5442 if (max == 0) {
5443 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5444 do_div(max, bucketsize);
5445 }
074b8517 5446 max = min(max, 0x80000000ULL);
1da177e4 5447
31fe62b9
TB
5448 if (numentries < low_limit)
5449 numentries = low_limit;
1da177e4
LT
5450 if (numentries > max)
5451 numentries = max;
5452
f0d1b0b3 5453 log2qty = ilog2(numentries);
1da177e4
LT
5454
5455 do {
5456 size = bucketsize << log2qty;
5457 if (flags & HASH_EARLY)
74768ed8 5458 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5459 else if (hashdist)
5460 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5461 else {
1037b83b
ED
5462 /*
5463 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5464 * some pages at the end of hash table which
5465 * alloc_pages_exact() automatically does
1037b83b 5466 */
264ef8a9 5467 if (get_order(size) < MAX_ORDER) {
a1dd268c 5468 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5469 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5470 }
1da177e4
LT
5471 }
5472 } while (!table && size > PAGE_SIZE && --log2qty);
5473
5474 if (!table)
5475 panic("Failed to allocate %s hash table\n", tablename);
5476
f241e660 5477 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5478 tablename,
f241e660 5479 (1UL << log2qty),
f0d1b0b3 5480 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5481 size);
5482
5483 if (_hash_shift)
5484 *_hash_shift = log2qty;
5485 if (_hash_mask)
5486 *_hash_mask = (1 << log2qty) - 1;
5487
5488 return table;
5489}
a117e66e 5490
835c134e
MG
5491/* Return a pointer to the bitmap storing bits affecting a block of pages */
5492static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5493 unsigned long pfn)
5494{
5495#ifdef CONFIG_SPARSEMEM
5496 return __pfn_to_section(pfn)->pageblock_flags;
5497#else
5498 return zone->pageblock_flags;
5499#endif /* CONFIG_SPARSEMEM */
5500}
5501
5502static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5503{
5504#ifdef CONFIG_SPARSEMEM
5505 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5506 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5507#else
5508 pfn = pfn - zone->zone_start_pfn;
d9c23400 5509 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5510#endif /* CONFIG_SPARSEMEM */
5511}
5512
5513/**
d9c23400 5514 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5515 * @page: The page within the block of interest
5516 * @start_bitidx: The first bit of interest to retrieve
5517 * @end_bitidx: The last bit of interest
5518 * returns pageblock_bits flags
5519 */
5520unsigned long get_pageblock_flags_group(struct page *page,
5521 int start_bitidx, int end_bitidx)
5522{
5523 struct zone *zone;
5524 unsigned long *bitmap;
5525 unsigned long pfn, bitidx;
5526 unsigned long flags = 0;
5527 unsigned long value = 1;
5528
5529 zone = page_zone(page);
5530 pfn = page_to_pfn(page);
5531 bitmap = get_pageblock_bitmap(zone, pfn);
5532 bitidx = pfn_to_bitidx(zone, pfn);
5533
5534 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5535 if (test_bit(bitidx + start_bitidx, bitmap))
5536 flags |= value;
6220ec78 5537
835c134e
MG
5538 return flags;
5539}
5540
5541/**
d9c23400 5542 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5543 * @page: The page within the block of interest
5544 * @start_bitidx: The first bit of interest
5545 * @end_bitidx: The last bit of interest
5546 * @flags: The flags to set
5547 */
5548void set_pageblock_flags_group(struct page *page, unsigned long flags,
5549 int start_bitidx, int end_bitidx)
5550{
5551 struct zone *zone;
5552 unsigned long *bitmap;
5553 unsigned long pfn, bitidx;
5554 unsigned long value = 1;
5555
5556 zone = page_zone(page);
5557 pfn = page_to_pfn(page);
5558 bitmap = get_pageblock_bitmap(zone, pfn);
5559 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5560 VM_BUG_ON(pfn < zone->zone_start_pfn);
5561 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5562
5563 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5564 if (flags & value)
5565 __set_bit(bitidx + start_bitidx, bitmap);
5566 else
5567 __clear_bit(bitidx + start_bitidx, bitmap);
5568}
a5d76b54
KH
5569
5570/*
80934513
MK
5571 * This function checks whether pageblock includes unmovable pages or not.
5572 * If @count is not zero, it is okay to include less @count unmovable pages
5573 *
5574 * PageLRU check wihtout isolation or lru_lock could race so that
5575 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5576 * expect this function should be exact.
a5d76b54 5577 */
ee6f509c 5578bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5579{
5580 unsigned long pfn, iter, found;
47118af0
MN
5581 int mt;
5582
49ac8255
KH
5583 /*
5584 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5585 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5586 */
5587 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5588 return false;
47118af0
MN
5589 mt = get_pageblock_migratetype(page);
5590 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5591 return false;
49ac8255
KH
5592
5593 pfn = page_to_pfn(page);
5594 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5595 unsigned long check = pfn + iter;
5596
29723fcc 5597 if (!pfn_valid_within(check))
49ac8255 5598 continue;
29723fcc 5599
49ac8255 5600 page = pfn_to_page(check);
97d255c8
MK
5601 /*
5602 * We can't use page_count without pin a page
5603 * because another CPU can free compound page.
5604 * This check already skips compound tails of THP
5605 * because their page->_count is zero at all time.
5606 */
5607 if (!atomic_read(&page->_count)) {
49ac8255
KH
5608 if (PageBuddy(page))
5609 iter += (1 << page_order(page)) - 1;
5610 continue;
5611 }
97d255c8 5612
49ac8255
KH
5613 if (!PageLRU(page))
5614 found++;
5615 /*
5616 * If there are RECLAIMABLE pages, we need to check it.
5617 * But now, memory offline itself doesn't call shrink_slab()
5618 * and it still to be fixed.
5619 */
5620 /*
5621 * If the page is not RAM, page_count()should be 0.
5622 * we don't need more check. This is an _used_ not-movable page.
5623 *
5624 * The problematic thing here is PG_reserved pages. PG_reserved
5625 * is set to both of a memory hole page and a _used_ kernel
5626 * page at boot.
5627 */
5628 if (found > count)
80934513 5629 return true;
49ac8255 5630 }
80934513 5631 return false;
49ac8255
KH
5632}
5633
5634bool is_pageblock_removable_nolock(struct page *page)
5635{
656a0706
MH
5636 struct zone *zone;
5637 unsigned long pfn;
687875fb
MH
5638
5639 /*
5640 * We have to be careful here because we are iterating over memory
5641 * sections which are not zone aware so we might end up outside of
5642 * the zone but still within the section.
656a0706
MH
5643 * We have to take care about the node as well. If the node is offline
5644 * its NODE_DATA will be NULL - see page_zone.
687875fb 5645 */
656a0706
MH
5646 if (!node_online(page_to_nid(page)))
5647 return false;
5648
5649 zone = page_zone(page);
5650 pfn = page_to_pfn(page);
5651 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5652 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5653 return false;
5654
ee6f509c 5655 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5656}
0c0e6195 5657
041d3a8c
MN
5658#ifdef CONFIG_CMA
5659
5660static unsigned long pfn_max_align_down(unsigned long pfn)
5661{
5662 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5663 pageblock_nr_pages) - 1);
5664}
5665
5666static unsigned long pfn_max_align_up(unsigned long pfn)
5667{
5668 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5669 pageblock_nr_pages));
5670}
5671
5672static struct page *
5673__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5674 int **resultp)
5675{
6a6dccba
RV
5676 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5677
5678 if (PageHighMem(page))
5679 gfp_mask |= __GFP_HIGHMEM;
5680
5681 return alloc_page(gfp_mask);
041d3a8c
MN
5682}
5683
5684/* [start, end) must belong to a single zone. */
5685static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5686{
5687 /* This function is based on compact_zone() from compaction.c. */
5688
5689 unsigned long pfn = start;
5690 unsigned int tries = 0;
5691 int ret = 0;
5692
5693 struct compact_control cc = {
5694 .nr_migratepages = 0,
5695 .order = -1,
5696 .zone = page_zone(pfn_to_page(start)),
68e3e926 5697 .sync = true,
041d3a8c
MN
5698 };
5699 INIT_LIST_HEAD(&cc.migratepages);
5700
5701 migrate_prep_local();
5702
5703 while (pfn < end || !list_empty(&cc.migratepages)) {
5704 if (fatal_signal_pending(current)) {
5705 ret = -EINTR;
5706 break;
5707 }
5708
5709 if (list_empty(&cc.migratepages)) {
5710 cc.nr_migratepages = 0;
5711 pfn = isolate_migratepages_range(cc.zone, &cc,
5712 pfn, end);
5713 if (!pfn) {
5714 ret = -EINTR;
5715 break;
5716 }
5717 tries = 0;
5718 } else if (++tries == 5) {
5719 ret = ret < 0 ? ret : -EBUSY;
5720 break;
5721 }
5722
02c6de8d
MK
5723 reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
5724
041d3a8c
MN
5725 ret = migrate_pages(&cc.migratepages,
5726 __alloc_contig_migrate_alloc,
58f42fd5 5727 0, false, MIGRATE_SYNC);
041d3a8c
MN
5728 }
5729
5730 putback_lru_pages(&cc.migratepages);
5731 return ret > 0 ? 0 : ret;
5732}
5733
49f223a9
MS
5734/*
5735 * Update zone's cma pages counter used for watermark level calculation.
5736 */
5737static inline void __update_cma_watermarks(struct zone *zone, int count)
5738{
5739 unsigned long flags;
5740 spin_lock_irqsave(&zone->lock, flags);
5741 zone->min_cma_pages += count;
5742 spin_unlock_irqrestore(&zone->lock, flags);
5743 setup_per_zone_wmarks();
5744}
5745
5746/*
5747 * Trigger memory pressure bump to reclaim some pages in order to be able to
5748 * allocate 'count' pages in single page units. Does similar work as
5749 *__alloc_pages_slowpath() function.
5750 */
5751static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5752{
5753 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5754 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5755 int did_some_progress = 0;
5756 int order = 1;
5757
5758 /*
5759 * Increase level of watermarks to force kswapd do his job
5760 * to stabilise at new watermark level.
5761 */
5762 __update_cma_watermarks(zone, count);
5763
5764 /* Obey watermarks as if the page was being allocated */
5765 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5766 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5767
5768 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5769 NULL);
5770 if (!did_some_progress) {
5771 /* Exhausted what can be done so it's blamo time */
5772 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5773 }
5774 }
5775
5776 /* Restore original watermark levels. */
5777 __update_cma_watermarks(zone, -count);
5778
5779 return count;
5780}
5781
041d3a8c
MN
5782/**
5783 * alloc_contig_range() -- tries to allocate given range of pages
5784 * @start: start PFN to allocate
5785 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5786 * @migratetype: migratetype of the underlaying pageblocks (either
5787 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5788 * in range must have the same migratetype and it must
5789 * be either of the two.
041d3a8c
MN
5790 *
5791 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5792 * aligned, however it's the caller's responsibility to guarantee that
5793 * we are the only thread that changes migrate type of pageblocks the
5794 * pages fall in.
5795 *
5796 * The PFN range must belong to a single zone.
5797 *
5798 * Returns zero on success or negative error code. On success all
5799 * pages which PFN is in [start, end) are allocated for the caller and
5800 * need to be freed with free_contig_range().
5801 */
0815f3d8
MN
5802int alloc_contig_range(unsigned long start, unsigned long end,
5803 unsigned migratetype)
041d3a8c
MN
5804{
5805 struct zone *zone = page_zone(pfn_to_page(start));
5806 unsigned long outer_start, outer_end;
5807 int ret = 0, order;
5808
5809 /*
5810 * What we do here is we mark all pageblocks in range as
5811 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5812 * have different sizes, and due to the way page allocator
5813 * work, we align the range to biggest of the two pages so
5814 * that page allocator won't try to merge buddies from
5815 * different pageblocks and change MIGRATE_ISOLATE to some
5816 * other migration type.
5817 *
5818 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5819 * migrate the pages from an unaligned range (ie. pages that
5820 * we are interested in). This will put all the pages in
5821 * range back to page allocator as MIGRATE_ISOLATE.
5822 *
5823 * When this is done, we take the pages in range from page
5824 * allocator removing them from the buddy system. This way
5825 * page allocator will never consider using them.
5826 *
5827 * This lets us mark the pageblocks back as
5828 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5829 * aligned range but not in the unaligned, original range are
5830 * put back to page allocator so that buddy can use them.
5831 */
5832
5833 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5834 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5835 if (ret)
5836 goto done;
5837
5838 ret = __alloc_contig_migrate_range(start, end);
5839 if (ret)
5840 goto done;
5841
5842 /*
5843 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5844 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5845 * more, all pages in [start, end) are free in page allocator.
5846 * What we are going to do is to allocate all pages from
5847 * [start, end) (that is remove them from page allocator).
5848 *
5849 * The only problem is that pages at the beginning and at the
5850 * end of interesting range may be not aligned with pages that
5851 * page allocator holds, ie. they can be part of higher order
5852 * pages. Because of this, we reserve the bigger range and
5853 * once this is done free the pages we are not interested in.
5854 *
5855 * We don't have to hold zone->lock here because the pages are
5856 * isolated thus they won't get removed from buddy.
5857 */
5858
5859 lru_add_drain_all();
5860 drain_all_pages();
5861
5862 order = 0;
5863 outer_start = start;
5864 while (!PageBuddy(pfn_to_page(outer_start))) {
5865 if (++order >= MAX_ORDER) {
5866 ret = -EBUSY;
5867 goto done;
5868 }
5869 outer_start &= ~0UL << order;
5870 }
5871
5872 /* Make sure the range is really isolated. */
5873 if (test_pages_isolated(outer_start, end)) {
5874 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5875 outer_start, end);
5876 ret = -EBUSY;
5877 goto done;
5878 }
5879
49f223a9
MS
5880 /*
5881 * Reclaim enough pages to make sure that contiguous allocation
5882 * will not starve the system.
5883 */
5884 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5885
5886 /* Grab isolated pages from freelists. */
041d3a8c
MN
5887 outer_end = isolate_freepages_range(outer_start, end);
5888 if (!outer_end) {
5889 ret = -EBUSY;
5890 goto done;
5891 }
5892
5893 /* Free head and tail (if any) */
5894 if (start != outer_start)
5895 free_contig_range(outer_start, start - outer_start);
5896 if (end != outer_end)
5897 free_contig_range(end, outer_end - end);
5898
5899done:
5900 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5901 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5902 return ret;
5903}
5904
5905void free_contig_range(unsigned long pfn, unsigned nr_pages)
5906{
5907 for (; nr_pages--; ++pfn)
5908 __free_page(pfn_to_page(pfn));
5909}
5910#endif
5911
4ed7e022
JL
5912#ifdef CONFIG_MEMORY_HOTPLUG
5913static int __meminit __zone_pcp_update(void *data)
5914{
5915 struct zone *zone = data;
5916 int cpu;
5917 unsigned long batch = zone_batchsize(zone), flags;
5918
5919 for_each_possible_cpu(cpu) {
5920 struct per_cpu_pageset *pset;
5921 struct per_cpu_pages *pcp;
5922
5923 pset = per_cpu_ptr(zone->pageset, cpu);
5924 pcp = &pset->pcp;
5925
5926 local_irq_save(flags);
5927 if (pcp->count > 0)
5928 free_pcppages_bulk(zone, pcp->count, pcp);
5929 setup_pageset(pset, batch);
5930 local_irq_restore(flags);
5931 }
5932 return 0;
5933}
5934
5935void __meminit zone_pcp_update(struct zone *zone)
5936{
5937 stop_machine(__zone_pcp_update, zone, NULL);
5938}
5939#endif
5940
0c0e6195 5941#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5942void zone_pcp_reset(struct zone *zone)
5943{
5944 unsigned long flags;
5945
5946 /* avoid races with drain_pages() */
5947 local_irq_save(flags);
5948 if (zone->pageset != &boot_pageset) {
5949 free_percpu(zone->pageset);
5950 zone->pageset = &boot_pageset;
5951 }
5952 local_irq_restore(flags);
5953}
5954
0c0e6195
KH
5955/*
5956 * All pages in the range must be isolated before calling this.
5957 */
5958void
5959__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5960{
5961 struct page *page;
5962 struct zone *zone;
5963 int order, i;
5964 unsigned long pfn;
5965 unsigned long flags;
5966 /* find the first valid pfn */
5967 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5968 if (pfn_valid(pfn))
5969 break;
5970 if (pfn == end_pfn)
5971 return;
5972 zone = page_zone(pfn_to_page(pfn));
5973 spin_lock_irqsave(&zone->lock, flags);
5974 pfn = start_pfn;
5975 while (pfn < end_pfn) {
5976 if (!pfn_valid(pfn)) {
5977 pfn++;
5978 continue;
5979 }
5980 page = pfn_to_page(pfn);
5981 BUG_ON(page_count(page));
5982 BUG_ON(!PageBuddy(page));
5983 order = page_order(page);
5984#ifdef CONFIG_DEBUG_VM
5985 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5986 pfn, 1 << order, end_pfn);
5987#endif
5988 list_del(&page->lru);
5989 rmv_page_order(page);
5990 zone->free_area[order].nr_free--;
5991 __mod_zone_page_state(zone, NR_FREE_PAGES,
5992 - (1UL << order));
5993 for (i = 0; i < (1 << order); i++)
5994 SetPageReserved((page+i));
5995 pfn += (1 << order);
5996 }
5997 spin_unlock_irqrestore(&zone->lock, flags);
5998}
5999#endif
8d22ba1b
WF
6000
6001#ifdef CONFIG_MEMORY_FAILURE
6002bool is_free_buddy_page(struct page *page)
6003{
6004 struct zone *zone = page_zone(page);
6005 unsigned long pfn = page_to_pfn(page);
6006 unsigned long flags;
6007 int order;
6008
6009 spin_lock_irqsave(&zone->lock, flags);
6010 for (order = 0; order < MAX_ORDER; order++) {
6011 struct page *page_head = page - (pfn & ((1 << order) - 1));
6012
6013 if (PageBuddy(page_head) && page_order(page_head) >= order)
6014 break;
6015 }
6016 spin_unlock_irqrestore(&zone->lock, flags);
6017
6018 return order < MAX_ORDER;
6019}
6020#endif
718a3821 6021
51300cef 6022static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6023 {1UL << PG_locked, "locked" },
6024 {1UL << PG_error, "error" },
6025 {1UL << PG_referenced, "referenced" },
6026 {1UL << PG_uptodate, "uptodate" },
6027 {1UL << PG_dirty, "dirty" },
6028 {1UL << PG_lru, "lru" },
6029 {1UL << PG_active, "active" },
6030 {1UL << PG_slab, "slab" },
6031 {1UL << PG_owner_priv_1, "owner_priv_1" },
6032 {1UL << PG_arch_1, "arch_1" },
6033 {1UL << PG_reserved, "reserved" },
6034 {1UL << PG_private, "private" },
6035 {1UL << PG_private_2, "private_2" },
6036 {1UL << PG_writeback, "writeback" },
6037#ifdef CONFIG_PAGEFLAGS_EXTENDED
6038 {1UL << PG_head, "head" },
6039 {1UL << PG_tail, "tail" },
6040#else
6041 {1UL << PG_compound, "compound" },
6042#endif
6043 {1UL << PG_swapcache, "swapcache" },
6044 {1UL << PG_mappedtodisk, "mappedtodisk" },
6045 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6046 {1UL << PG_swapbacked, "swapbacked" },
6047 {1UL << PG_unevictable, "unevictable" },
6048#ifdef CONFIG_MMU
6049 {1UL << PG_mlocked, "mlocked" },
6050#endif
6051#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6052 {1UL << PG_uncached, "uncached" },
6053#endif
6054#ifdef CONFIG_MEMORY_FAILURE
6055 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6056#endif
6057#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6058 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6059#endif
718a3821
WF
6060};
6061
6062static void dump_page_flags(unsigned long flags)
6063{
6064 const char *delim = "";
6065 unsigned long mask;
6066 int i;
6067
51300cef 6068 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6069
718a3821
WF
6070 printk(KERN_ALERT "page flags: %#lx(", flags);
6071
6072 /* remove zone id */
6073 flags &= (1UL << NR_PAGEFLAGS) - 1;
6074
51300cef 6075 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6076
6077 mask = pageflag_names[i].mask;
6078 if ((flags & mask) != mask)
6079 continue;
6080
6081 flags &= ~mask;
6082 printk("%s%s", delim, pageflag_names[i].name);
6083 delim = "|";
6084 }
6085
6086 /* check for left over flags */
6087 if (flags)
6088 printk("%s%#lx", delim, flags);
6089
6090 printk(")\n");
6091}
6092
6093void dump_page(struct page *page)
6094{
6095 printk(KERN_ALERT
6096 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6097 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6098 page->mapping, page->index);
6099 dump_page_flags(page->flags);
f212ad7c 6100 mem_cgroup_print_bad_page(page);
718a3821 6101}
This page took 1.307212 seconds and 5 git commands to generate.