Merge branch 'pstore-efi' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
ac924c60 62#include <asm/div64.h>
1da177e4
LT
63#include "internal.h"
64
72812019
LS
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
7aac7898
LS
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
1da177e4 81/*
13808910 82 * Array of node states.
1da177e4 83 */
13808910
CL
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92 [N_CPU] = { { [0] = 1UL } },
93#endif /* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
6c231b7b 97unsigned long totalram_pages __read_mostly;
cb45b0e9 98unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 99int percpu_pagelist_fraction;
dcce284a 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 101
452aa699
RW
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
c9e664f1
RW
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
452aa699
RW
115{
116 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
120 }
452aa699
RW
121}
122
c9e664f1 123void pm_restrict_gfp_mask(void)
452aa699 124{
452aa699 125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
129}
130#endif /* CONFIG_PM_SLEEP */
131
d9c23400
MG
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
d98c7a09 136static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 137
1da177e4
LT
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
1da177e4 148 */
2f1b6248 149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 150#ifdef CONFIG_ZONE_DMA
2f1b6248 151 256,
4b51d669 152#endif
fb0e7942 153#ifdef CONFIG_ZONE_DMA32
2f1b6248 154 256,
fb0e7942 155#endif
e53ef38d 156#ifdef CONFIG_HIGHMEM
2a1e274a 157 32,
e53ef38d 158#endif
2a1e274a 159 32,
2f1b6248 160};
1da177e4
LT
161
162EXPORT_SYMBOL(totalram_pages);
1da177e4 163
15ad7cdc 164static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 165#ifdef CONFIG_ZONE_DMA
2f1b6248 166 "DMA",
4b51d669 167#endif
fb0e7942 168#ifdef CONFIG_ZONE_DMA32
2f1b6248 169 "DMA32",
fb0e7942 170#endif
2f1b6248 171 "Normal",
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 "HighMem",
e53ef38d 174#endif
2a1e274a 175 "Movable",
2f1b6248
CL
176};
177
1da177e4
LT
178int min_free_kbytes = 1024;
179
2c85f51d
JB
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
a3142c8e 182static unsigned long __meminitdata dma_reserve;
1da177e4 183
c713216d
MG
184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185 /*
183ff22b 186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
191 */
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
204
98011f56
JB
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 209 static unsigned long __initdata required_kernelcore;
484f51f8 210 static unsigned long __initdata required_movablecore;
b69a7288 211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
212
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
c713216d
MG
216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
418508c1
MS
218#if MAX_NUMNODES > 1
219int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 220int nr_online_nodes __read_mostly = 1;
418508c1 221EXPORT_SYMBOL(nr_node_ids);
62bc62a8 222EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
223#endif
224
9ef9acb0
MG
225int page_group_by_mobility_disabled __read_mostly;
226
b2a0ac88
MG
227static void set_pageblock_migratetype(struct page *page, int migratetype)
228{
49255c61
MG
229
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
232
b2a0ac88
MG
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
235}
236
7f33d49a
RW
237bool oom_killer_disabled __read_mostly;
238
13e7444b 239#ifdef CONFIG_DEBUG_VM
c6a57e19 240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 241{
bdc8cb98
DH
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
c6a57e19 245
bdc8cb98
DH
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
253
254 return ret;
c6a57e19
DH
255}
256
257static int page_is_consistent(struct zone *zone, struct page *page)
258{
14e07298 259 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 260 return 0;
1da177e4 261 if (zone != page_zone(page))
c6a57e19
DH
262 return 0;
263
264 return 1;
265}
266/*
267 * Temporary debugging check for pages not lying within a given zone.
268 */
269static int bad_range(struct zone *zone, struct page *page)
270{
271 if (page_outside_zone_boundaries(zone, page))
1da177e4 272 return 1;
c6a57e19
DH
273 if (!page_is_consistent(zone, page))
274 return 1;
275
1da177e4
LT
276 return 0;
277}
13e7444b
NP
278#else
279static inline int bad_range(struct zone *zone, struct page *page)
280{
281 return 0;
282}
283#endif
284
224abf92 285static void bad_page(struct page *page)
1da177e4 286{
d936cf9b
HD
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
290
2a7684a2
WF
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
ef2b4b95 293 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
294 return;
295 }
296
d936cf9b
HD
297 /*
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
300 */
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
305 }
306 if (nr_unshown) {
1e9e6365
HD
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
309 nr_unshown);
310 nr_unshown = 0;
311 }
312 nr_shown = 0;
313 }
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
316
1e9e6365 317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 318 current->comm, page_to_pfn(page));
718a3821 319 dump_page(page);
3dc14741 320
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358
359 __SetPageTail(p);
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
6aa3001b
AM
405static inline void set_page_order(struct page *page, int order)
406{
4c21e2f2 407 set_page_private(page, order);
676165a8 408 __SetPageBuddy(page);
1da177e4
LT
409}
410
411static inline void rmv_page_order(struct page *page)
412{
676165a8 413 __ClearPageBuddy(page);
4c21e2f2 414 set_page_private(page, 0);
1da177e4
LT
415}
416
417/*
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
420 *
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427 *
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
431 *
d6e05edc 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 433 */
1da177e4 434static inline unsigned long
43506fad 435__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 436{
43506fad 437 return page_idx ^ (1 << order);
1da177e4
LT
438}
439
440/*
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
13e7444b 443 * (a) the buddy is not in a hole &&
676165a8 444 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
676165a8 447 *
5f24ce5f
AA
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 450 *
676165a8 451 * For recording page's order, we use page_private(page).
1da177e4 452 */
cb2b95e1
AW
453static inline int page_is_buddy(struct page *page, struct page *buddy,
454 int order)
1da177e4 455{
14e07298 456 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 457 return 0;
13e7444b 458
cb2b95e1
AW
459 if (page_zone_id(page) != page_zone_id(buddy))
460 return 0;
461
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 463 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 464 return 1;
676165a8 465 }
6aa3001b 466 return 0;
1da177e4
LT
467}
468
469/*
470 * Freeing function for a buddy system allocator.
471 *
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 483 * order is recorded in page_private(page) field.
1da177e4
LT
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
489 *
490 * -- wli
491 */
492
48db57f8 493static inline void __free_one_page(struct page *page,
ed0ae21d
MG
494 struct zone *zone, unsigned int order,
495 int migratetype)
1da177e4
LT
496{
497 unsigned long page_idx;
6dda9d55 498 unsigned long combined_idx;
43506fad 499 unsigned long uninitialized_var(buddy_idx);
6dda9d55 500 struct page *buddy;
1da177e4 501
224abf92 502 if (unlikely(PageCompound(page)))
8cc3b392
HD
503 if (unlikely(destroy_compound_page(page, order)))
504 return;
1da177e4 505
ed0ae21d
MG
506 VM_BUG_ON(migratetype == -1);
507
1da177e4
LT
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509
f2260e6b 510 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 511 VM_BUG_ON(bad_range(zone, page));
1da177e4 512
1da177e4 513 while (order < MAX_ORDER-1) {
43506fad
KC
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
cb2b95e1 516 if (!page_is_buddy(page, buddy, order))
3c82d0ce 517 break;
13e7444b 518
3c82d0ce 519 /* Our buddy is free, merge with it and move up one order. */
1da177e4 520 list_del(&buddy->lru);
b2a0ac88 521 zone->free_area[order].nr_free--;
1da177e4 522 rmv_page_order(buddy);
43506fad 523 combined_idx = buddy_idx & page_idx;
1da177e4
LT
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
527 }
528 set_page_order(page, order);
6dda9d55
CZ
529
530 /*
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
537 */
b7f50cfa 538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 539 struct page *higher_page, *higher_buddy;
43506fad
KC
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
224abf92 574 bad_page(page);
79f4b7bf 575 return 1;
8cc3b392 576 }
79f4b7bf
HD
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
1da177e4
LT
580}
581
582/*
5f8dcc21 583 * Frees a number of pages from the PCP lists
1da177e4 584 * Assumes all pages on list are in same zone, and of same order.
207f36ee 585 * count is the number of pages to free.
1da177e4
LT
586 *
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
589 *
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
592 */
5f8dcc21
MG
593static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
1da177e4 595{
5f8dcc21 596 int migratetype = 0;
a6f9edd6 597 int batch_free = 0;
72853e29 598 int to_free = count;
5f8dcc21 599
c54ad30c 600 spin_lock(&zone->lock);
93e4a89a 601 zone->all_unreclaimable = 0;
1da177e4 602 zone->pages_scanned = 0;
f2260e6b 603
72853e29 604 while (to_free) {
48db57f8 605 struct page *page;
5f8dcc21
MG
606 struct list_head *list;
607
608 /*
a6f9edd6
MG
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
5f8dcc21
MG
614 */
615 do {
a6f9edd6 616 batch_free++;
5f8dcc21
MG
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
48db57f8 621
1d16871d
NK
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
625
a6f9edd6
MG
626 do {
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
a7016235
HD
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 633 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 634 }
72853e29 635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 636 spin_unlock(&zone->lock);
1da177e4
LT
637}
638
ed0ae21d
MG
639static void free_one_page(struct zone *zone, struct page *page, int order,
640 int migratetype)
1da177e4 641{
006d22d9 642 spin_lock(&zone->lock);
93e4a89a 643 zone->all_unreclaimable = 0;
006d22d9 644 zone->pages_scanned = 0;
f2260e6b 645
ed0ae21d 646 __free_one_page(page, zone, order, migratetype);
72853e29 647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 648 spin_unlock(&zone->lock);
48db57f8
NP
649}
650
ec95f53a 651static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 652{
1da177e4 653 int i;
8cc3b392 654 int bad = 0;
1da177e4 655
f650316c 656 trace_mm_page_free_direct(page, order);
b1eeab67
VN
657 kmemcheck_free_shadow(page, order);
658
8dd60a3a
AA
659 if (PageAnon(page))
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
8cc3b392 663 if (bad)
ec95f53a 664 return false;
689bcebf 665
3ac7fe5a 666 if (!PageHighMem(page)) {
9858db50 667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
668 debug_check_no_obj_freed(page_address(page),
669 PAGE_SIZE << order);
670 }
dafb1367 671 arch_free_page(page, order);
48db57f8 672 kernel_map_pages(page, 1 << order, 0);
dafb1367 673
ec95f53a
KM
674 return true;
675}
676
677static void __free_pages_ok(struct page *page, unsigned int order)
678{
679 unsigned long flags;
680 int wasMlocked = __TestClearPageMlocked(page);
681
682 if (!free_pages_prepare(page, order))
683 return;
684
c54ad30c 685 local_irq_save(flags);
c277331d 686 if (unlikely(wasMlocked))
da456f14 687 free_page_mlock(page);
f8891e5e 688 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
c54ad30c 691 local_irq_restore(flags);
1da177e4
LT
692}
693
a226f6c8
DH
694/*
695 * permit the bootmem allocator to evade page validation on high-order frees
696 */
af370fb8 697void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
698{
699 if (order == 0) {
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
7835e98b 702 set_page_refcounted(page);
545b1ea9 703 __free_page(page);
a226f6c8 704 } else {
a226f6c8
DH
705 int loop;
706
545b1ea9 707 prefetchw(page);
a226f6c8
DH
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
710
545b1ea9
NP
711 if (loop + 1 < BITS_PER_LONG)
712 prefetchw(p + 1);
a226f6c8
DH
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
715 }
716
7835e98b 717 set_page_refcounted(page);
545b1ea9 718 __free_pages(page, order);
a226f6c8
DH
719 }
720}
721
1da177e4
LT
722
723/*
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
734 *
735 * -- wli
736 */
085cc7d5 737static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
738 int low, int high, struct free_area *area,
739 int migratetype)
1da177e4
LT
740{
741 unsigned long size = 1 << high;
742
743 while (high > low) {
744 area--;
745 high--;
746 size >>= 1;
725d704e 747 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 748 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
749 area->nr_free++;
750 set_page_order(&page[size], high);
751 }
1da177e4
LT
752}
753
1da177e4
LT
754/*
755 * This page is about to be returned from the page allocator
756 */
2a7684a2 757static inline int check_new_page(struct page *page)
1da177e4 758{
92be2e33
NP
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
a3af9c38 761 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
224abf92 764 bad_page(page);
689bcebf 765 return 1;
8cc3b392 766 }
2a7684a2
WF
767 return 0;
768}
769
770static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771{
772 int i;
773
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
777 return 1;
778 }
689bcebf 779
4c21e2f2 780 set_page_private(page, 0);
7835e98b 781 set_page_refcounted(page);
cc102509
NP
782
783 arch_alloc_page(page, order);
1da177e4 784 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
785
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
788
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
791
689bcebf 792 return 0;
1da177e4
LT
793}
794
56fd56b8
MG
795/*
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
798 */
728ec980
MG
799static inline
800struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
801 int migratetype)
802{
803 unsigned int current_order;
804 struct free_area * area;
805 struct page *page;
806
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
811 continue;
812
813 page = list_entry(area->free_list[migratetype].next,
814 struct page, lru);
815 list_del(&page->lru);
816 rmv_page_order(page);
817 area->nr_free--;
56fd56b8
MG
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
820 }
821
822 return NULL;
823}
824
825
b2a0ac88
MG
826/*
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
829 */
830static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
835};
836
c361be55
MG
837/*
838 * Move the free pages in a range to the free lists of the requested type.
d9c23400 839 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
840 * boundary. If alignment is required, use move_freepages_block()
841 */
b69a7288
AB
842static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
844 int migratetype)
c361be55
MG
845{
846 struct page *page;
847 unsigned long order;
d100313f 848 int pages_moved = 0;
c361be55
MG
849
850#ifndef CONFIG_HOLES_IN_ZONE
851 /*
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
ac0e5b7a 856 * grouping pages by mobility
c361be55
MG
857 */
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
859#endif
860
861 for (page = start_page; page <= end_page;) {
344c790e
AL
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864
c361be55
MG
865 if (!pfn_valid_within(page_to_pfn(page))) {
866 page++;
867 continue;
868 }
869
870 if (!PageBuddy(page)) {
871 page++;
872 continue;
873 }
874
875 order = page_order(page);
84be48d8
KS
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
c361be55 878 page += 1 << order;
d100313f 879 pages_moved += 1 << order;
c361be55
MG
880 }
881
d100313f 882 return pages_moved;
c361be55
MG
883}
884
b69a7288
AB
885static int move_freepages_block(struct zone *zone, struct page *page,
886 int migratetype)
c361be55
MG
887{
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
890
891 start_pfn = page_to_pfn(page);
d9c23400 892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 893 start_page = pfn_to_page(start_pfn);
d9c23400
MG
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
896
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
899 start_page = page;
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 return 0;
902
903 return move_freepages(zone, start_page, end_page, migratetype);
904}
905
2f66a68f
MG
906static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
908{
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
910
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
914 }
915}
916
b2a0ac88 917/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
918static inline struct page *
919__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
920{
921 struct free_area * area;
922 int current_order;
923 struct page *page;
924 int migratetype, i;
925
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
928 --current_order) {
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
931
56fd56b8
MG
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
934 continue;
e010487d 935
b2a0ac88
MG
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
938 continue;
939
940 page = list_entry(area->free_list[migratetype].next,
941 struct page, lru);
942 area->nr_free--;
943
944 /*
c361be55 945 * If breaking a large block of pages, move all free
46dafbca
MG
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
25985edc 948 * aggressive about taking ownership of free pages
b2a0ac88 949 */
d9c23400 950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
46dafbca
MG
953 unsigned long pages;
954 pages = move_freepages_block(zone, page,
955 start_migratetype);
956
957 /* Claim the whole block if over half of it is free */
dd5d241e
MG
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
46dafbca
MG
960 set_pageblock_migratetype(page,
961 start_migratetype);
962
b2a0ac88 963 migratetype = start_migratetype;
c361be55 964 }
b2a0ac88
MG
965
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
b2a0ac88 969
2f66a68f
MG
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
b2a0ac88
MG
973 start_migratetype);
974
975 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
976
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
979
b2a0ac88
MG
980 return page;
981 }
982 }
983
728ec980 984 return NULL;
b2a0ac88
MG
985}
986
56fd56b8 987/*
1da177e4
LT
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
990 */
b2a0ac88
MG
991static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 int migratetype)
1da177e4 993{
1da177e4
LT
994 struct page *page;
995
728ec980 996retry_reserve:
56fd56b8 997 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 998
728ec980 999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1000 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1001
728ec980
MG
1002 /*
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1006 */
1007 if (!page) {
1008 migratetype = MIGRATE_RESERVE;
1009 goto retry_reserve;
1010 }
1011 }
1012
0d3d062a 1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1014 return page;
1da177e4
LT
1015}
1016
1017/*
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1023 unsigned long count, struct list_head *list,
e084b2d9 1024 int migratetype, int cold)
1da177e4 1025{
1da177e4 1026 int i;
1da177e4 1027
c54ad30c 1028 spin_lock(&zone->lock);
1da177e4 1029 for (i = 0; i < count; ++i) {
b2a0ac88 1030 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1031 if (unlikely(page == NULL))
1da177e4 1032 break;
81eabcbe
MG
1033
1034 /*
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1041 * properly.
1042 */
e084b2d9
MG
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1045 else
1046 list_add_tail(&page->lru, list);
535131e6 1047 set_page_private(page, migratetype);
81eabcbe 1048 list = &page->lru;
1da177e4 1049 }
f2260e6b 1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1051 spin_unlock(&zone->lock);
085cc7d5 1052 return i;
1da177e4
LT
1053}
1054
4ae7c039 1055#ifdef CONFIG_NUMA
8fce4d8e 1056/*
4037d452
CL
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
879336c3
CL
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
8fce4d8e 1063 */
4037d452 1064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1065{
4ae7c039 1066 unsigned long flags;
4037d452 1067 int to_drain;
4ae7c039 1068
4037d452
CL
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1072 else
1073 to_drain = pcp->count;
5f8dcc21 1074 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
4ae7c039
CL
1077}
1078#endif
1079
9f8f2172
CL
1080/*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1086 */
1087static void drain_pages(unsigned int cpu)
1da177e4 1088{
c54ad30c 1089 unsigned long flags;
1da177e4 1090 struct zone *zone;
1da177e4 1091
ee99c71c 1092 for_each_populated_zone(zone) {
1da177e4 1093 struct per_cpu_pageset *pset;
3dfa5721 1094 struct per_cpu_pages *pcp;
1da177e4 1095
99dcc3e5
CL
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1098
1099 pcp = &pset->pcp;
2ff754fa
DR
1100 if (pcp->count) {
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1102 pcp->count = 0;
1103 }
3dfa5721 1104 local_irq_restore(flags);
1da177e4
LT
1105 }
1106}
1da177e4 1107
9f8f2172
CL
1108/*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110 */
1111void drain_local_pages(void *arg)
1112{
1113 drain_pages(smp_processor_id());
1114}
1115
1116/*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118 */
1119void drain_all_pages(void)
1120{
15c8b6c1 1121 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1122}
1123
296699de 1124#ifdef CONFIG_HIBERNATION
1da177e4
LT
1125
1126void mark_free_pages(struct zone *zone)
1127{
f623f0db
RW
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
b2a0ac88 1130 int order, t;
1da177e4
LT
1131 struct list_head *curr;
1132
1133 if (!zone->spanned_pages)
1134 return;
1135
1136 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1137
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1142
7be98234
RW
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
f623f0db 1145 }
1da177e4 1146
b2a0ac88
MG
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1149 unsigned long i;
1da177e4 1150
f623f0db
RW
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
7be98234 1153 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1154 }
b2a0ac88 1155 }
1da177e4
LT
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157}
e2c55dc8 1158#endif /* CONFIG_PM */
1da177e4 1159
1da177e4
LT
1160/*
1161 * Free a 0-order page
fc91668e 1162 * cold == 1 ? free a cold page : free a hot page
1da177e4 1163 */
fc91668e 1164void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1165{
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
5f8dcc21 1169 int migratetype;
451ea25d 1170 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1171
ec95f53a 1172 if (!free_pages_prepare(page, 0))
689bcebf
HD
1173 return;
1174
5f8dcc21
MG
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1da177e4 1177 local_irq_save(flags);
c277331d 1178 if (unlikely(wasMlocked))
da456f14 1179 free_page_mlock(page);
f8891e5e 1180 __count_vm_event(PGFREE);
da456f14 1181
5f8dcc21
MG
1182 /*
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1188 */
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1192 goto out;
1193 }
1194 migratetype = MIGRATE_MOVABLE;
1195 }
1196
99dcc3e5 1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1198 if (cold)
5f8dcc21 1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1200 else
5f8dcc21 1201 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1202 pcp->count++;
48db57f8 1203 if (pcp->count >= pcp->high) {
5f8dcc21 1204 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1205 pcp->count -= pcp->batch;
1206 }
5f8dcc21
MG
1207
1208out:
1da177e4 1209 local_irq_restore(flags);
1da177e4
LT
1210}
1211
8dfcc9ba
NP
1212/*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220void split_page(struct page *page, unsigned int order)
1221{
1222 int i;
1223
725d704e
NP
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1226
1227#ifdef CONFIG_KMEMCHECK
1228 /*
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1231 */
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1234#endif
1235
7835e98b
NP
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
8dfcc9ba 1238}
8dfcc9ba 1239
748446bb
MG
1240/*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250int split_free_page(struct page *page)
1251{
1252 unsigned int order;
1253 unsigned long watermark;
1254 struct zone *zone;
1255
1256 BUG_ON(!PageBuddy(page));
1257
1258 zone = page_zone(page);
1259 order = page_order(page);
1260
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 return 0;
1265
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1275
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280 }
1281
1282 return 1 << order;
1283}
1284
1da177e4
LT
1285/*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 * or two.
1289 */
0a15c3e9
MG
1290static inline
1291struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1292 struct zone *zone, int order, gfp_t gfp_flags,
1293 int migratetype)
1da177e4
LT
1294{
1295 unsigned long flags;
689bcebf 1296 struct page *page;
1da177e4
LT
1297 int cold = !!(gfp_flags & __GFP_COLD);
1298
689bcebf 1299again:
48db57f8 1300 if (likely(order == 0)) {
1da177e4 1301 struct per_cpu_pages *pcp;
5f8dcc21 1302 struct list_head *list;
1da177e4 1303
1da177e4 1304 local_irq_save(flags);
99dcc3e5
CL
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
5f8dcc21 1307 if (list_empty(list)) {
535131e6 1308 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1309 pcp->batch, list,
e084b2d9 1310 migratetype, cold);
5f8dcc21 1311 if (unlikely(list_empty(list)))
6fb332fa 1312 goto failed;
535131e6 1313 }
b92a6edd 1314
5f8dcc21
MG
1315 if (cold)
1316 page = list_entry(list->prev, struct page, lru);
1317 else
1318 page = list_entry(list->next, struct page, lru);
1319
b92a6edd
MG
1320 list_del(&page->lru);
1321 pcp->count--;
7fb1d9fc 1322 } else {
dab48dab
AM
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324 /*
1325 * __GFP_NOFAIL is not to be used in new code.
1326 *
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1329 *
1330 * We most definitely don't want callers attempting to
4923abf9 1331 * allocate greater than order-1 page units with
dab48dab
AM
1332 * __GFP_NOFAIL.
1333 */
4923abf9 1334 WARN_ON_ONCE(order > 1);
dab48dab 1335 }
1da177e4 1336 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1337 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1338 spin_unlock(&zone->lock);
1339 if (!page)
1340 goto failed;
6ccf80eb 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1342 }
1343
f8891e5e 1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1345 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1346 local_irq_restore(flags);
1da177e4 1347
725d704e 1348 VM_BUG_ON(bad_range(zone, page));
17cf4406 1349 if (prep_new_page(page, order, gfp_flags))
a74609fa 1350 goto again;
1da177e4 1351 return page;
a74609fa
NP
1352
1353failed:
1354 local_irq_restore(flags);
a74609fa 1355 return NULL;
1da177e4
LT
1356}
1357
41858966
MG
1358/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359#define ALLOC_WMARK_MIN WMARK_MIN
1360#define ALLOC_WMARK_LOW WMARK_LOW
1361#define ALLOC_WMARK_HIGH WMARK_HIGH
1362#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1363
1364/* Mask to get the watermark bits */
1365#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1366
3148890b
NP
1367#define ALLOC_HARDER 0x10 /* try to alloc harder */
1368#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1370
933e312e
AM
1371#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
b2588c4b 1373static struct {
933e312e
AM
1374 struct fault_attr attr;
1375
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
54114994 1378 u32 min_order;
933e312e
AM
1379} fail_page_alloc = {
1380 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1381 .ignore_gfp_wait = 1,
1382 .ignore_gfp_highmem = 1,
54114994 1383 .min_order = 1,
933e312e
AM
1384};
1385
1386static int __init setup_fail_page_alloc(char *str)
1387{
1388 return setup_fault_attr(&fail_page_alloc.attr, str);
1389}
1390__setup("fail_page_alloc=", setup_fail_page_alloc);
1391
1392static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393{
54114994
AM
1394 if (order < fail_page_alloc.min_order)
1395 return 0;
933e312e
AM
1396 if (gfp_mask & __GFP_NOFAIL)
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399 return 0;
1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401 return 0;
1402
1403 return should_fail(&fail_page_alloc.attr, 1 << order);
1404}
1405
1406#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407
1408static int __init fail_page_alloc_debugfs(void)
1409{
1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411 struct dentry *dir;
1412 int err;
1413
1414 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1415 "fail_page_alloc");
1416 if (err)
1417 return err;
b2588c4b 1418
7f5ddcc8 1419 dir = fail_page_alloc.attr.dir;
933e312e 1420
b2588c4b
AM
1421 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1422 &fail_page_alloc.ignore_gfp_wait))
1423 goto fail;
1424 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 &fail_page_alloc.ignore_gfp_highmem))
1426 goto fail;
1427 if (!debugfs_create_u32("min-order", mode, dir,
1428 &fail_page_alloc.min_order))
1429 goto fail;
1430
1431 return 0;
1432fail:
1433 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
933e312e 1434
b2588c4b 1435 return -ENOMEM;
933e312e
AM
1436}
1437
1438late_initcall(fail_page_alloc_debugfs);
1439
1440#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1441
1442#else /* CONFIG_FAIL_PAGE_ALLOC */
1443
1444static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1445{
1446 return 0;
1447}
1448
1449#endif /* CONFIG_FAIL_PAGE_ALLOC */
1450
1da177e4 1451/*
88f5acf8 1452 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1453 * of the allocation.
1454 */
88f5acf8
MG
1455static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1456 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1457{
1458 /* free_pages my go negative - that's OK */
d23ad423 1459 long min = mark;
1da177e4
LT
1460 int o;
1461
88f5acf8 1462 free_pages -= (1 << order) + 1;
7fb1d9fc 1463 if (alloc_flags & ALLOC_HIGH)
1da177e4 1464 min -= min / 2;
7fb1d9fc 1465 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1466 min -= min / 4;
1467
1468 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1469 return false;
1da177e4
LT
1470 for (o = 0; o < order; o++) {
1471 /* At the next order, this order's pages become unavailable */
1472 free_pages -= z->free_area[o].nr_free << o;
1473
1474 /* Require fewer higher order pages to be free */
1475 min >>= 1;
1476
1477 if (free_pages <= min)
88f5acf8 1478 return false;
1da177e4 1479 }
88f5acf8
MG
1480 return true;
1481}
1482
1483bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1484 int classzone_idx, int alloc_flags)
1485{
1486 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1487 zone_page_state(z, NR_FREE_PAGES));
1488}
1489
1490bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1491 int classzone_idx, int alloc_flags)
1492{
1493 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1494
1495 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1496 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1497
1498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1499 free_pages);
1da177e4
LT
1500}
1501
9276b1bc
PJ
1502#ifdef CONFIG_NUMA
1503/*
1504 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1505 * skip over zones that are not allowed by the cpuset, or that have
1506 * been recently (in last second) found to be nearly full. See further
1507 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1508 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1509 *
1510 * If the zonelist cache is present in the passed in zonelist, then
1511 * returns a pointer to the allowed node mask (either the current
37b07e41 1512 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1513 *
1514 * If the zonelist cache is not available for this zonelist, does
1515 * nothing and returns NULL.
1516 *
1517 * If the fullzones BITMAP in the zonelist cache is stale (more than
1518 * a second since last zap'd) then we zap it out (clear its bits.)
1519 *
1520 * We hold off even calling zlc_setup, until after we've checked the
1521 * first zone in the zonelist, on the theory that most allocations will
1522 * be satisfied from that first zone, so best to examine that zone as
1523 * quickly as we can.
1524 */
1525static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1526{
1527 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1528 nodemask_t *allowednodes; /* zonelist_cache approximation */
1529
1530 zlc = zonelist->zlcache_ptr;
1531 if (!zlc)
1532 return NULL;
1533
f05111f5 1534 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1535 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1536 zlc->last_full_zap = jiffies;
1537 }
1538
1539 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1540 &cpuset_current_mems_allowed :
37b07e41 1541 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1542 return allowednodes;
1543}
1544
1545/*
1546 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1547 * if it is worth looking at further for free memory:
1548 * 1) Check that the zone isn't thought to be full (doesn't have its
1549 * bit set in the zonelist_cache fullzones BITMAP).
1550 * 2) Check that the zones node (obtained from the zonelist_cache
1551 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1552 * Return true (non-zero) if zone is worth looking at further, or
1553 * else return false (zero) if it is not.
1554 *
1555 * This check -ignores- the distinction between various watermarks,
1556 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1557 * found to be full for any variation of these watermarks, it will
1558 * be considered full for up to one second by all requests, unless
1559 * we are so low on memory on all allowed nodes that we are forced
1560 * into the second scan of the zonelist.
1561 *
1562 * In the second scan we ignore this zonelist cache and exactly
1563 * apply the watermarks to all zones, even it is slower to do so.
1564 * We are low on memory in the second scan, and should leave no stone
1565 * unturned looking for a free page.
1566 */
dd1a239f 1567static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1568 nodemask_t *allowednodes)
1569{
1570 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1571 int i; /* index of *z in zonelist zones */
1572 int n; /* node that zone *z is on */
1573
1574 zlc = zonelist->zlcache_ptr;
1575 if (!zlc)
1576 return 1;
1577
dd1a239f 1578 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1579 n = zlc->z_to_n[i];
1580
1581 /* This zone is worth trying if it is allowed but not full */
1582 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1583}
1584
1585/*
1586 * Given 'z' scanning a zonelist, set the corresponding bit in
1587 * zlc->fullzones, so that subsequent attempts to allocate a page
1588 * from that zone don't waste time re-examining it.
1589 */
dd1a239f 1590static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1591{
1592 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1593 int i; /* index of *z in zonelist zones */
1594
1595 zlc = zonelist->zlcache_ptr;
1596 if (!zlc)
1597 return;
1598
dd1a239f 1599 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1600
1601 set_bit(i, zlc->fullzones);
1602}
1603
76d3fbf8
MG
1604/*
1605 * clear all zones full, called after direct reclaim makes progress so that
1606 * a zone that was recently full is not skipped over for up to a second
1607 */
1608static void zlc_clear_zones_full(struct zonelist *zonelist)
1609{
1610 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1611
1612 zlc = zonelist->zlcache_ptr;
1613 if (!zlc)
1614 return;
1615
1616 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1617}
1618
9276b1bc
PJ
1619#else /* CONFIG_NUMA */
1620
1621static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1622{
1623 return NULL;
1624}
1625
dd1a239f 1626static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1627 nodemask_t *allowednodes)
1628{
1629 return 1;
1630}
1631
dd1a239f 1632static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1633{
1634}
76d3fbf8
MG
1635
1636static void zlc_clear_zones_full(struct zonelist *zonelist)
1637{
1638}
9276b1bc
PJ
1639#endif /* CONFIG_NUMA */
1640
7fb1d9fc 1641/*
0798e519 1642 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1643 * a page.
1644 */
1645static struct page *
19770b32 1646get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1647 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1648 struct zone *preferred_zone, int migratetype)
753ee728 1649{
dd1a239f 1650 struct zoneref *z;
7fb1d9fc 1651 struct page *page = NULL;
54a6eb5c 1652 int classzone_idx;
5117f45d 1653 struct zone *zone;
9276b1bc
PJ
1654 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1655 int zlc_active = 0; /* set if using zonelist_cache */
1656 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1657
19770b32 1658 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1659zonelist_scan:
7fb1d9fc 1660 /*
9276b1bc 1661 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1662 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1663 */
19770b32
MG
1664 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1665 high_zoneidx, nodemask) {
9276b1bc
PJ
1666 if (NUMA_BUILD && zlc_active &&
1667 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1668 continue;
7fb1d9fc 1669 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1670 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1671 continue;
7fb1d9fc 1672
41858966 1673 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1674 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1675 unsigned long mark;
fa5e084e
MG
1676 int ret;
1677
41858966 1678 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1679 if (zone_watermark_ok(zone, order, mark,
1680 classzone_idx, alloc_flags))
1681 goto try_this_zone;
1682
cd38b115
MG
1683 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1684 /*
1685 * we do zlc_setup if there are multiple nodes
1686 * and before considering the first zone allowed
1687 * by the cpuset.
1688 */
1689 allowednodes = zlc_setup(zonelist, alloc_flags);
1690 zlc_active = 1;
1691 did_zlc_setup = 1;
1692 }
1693
fa5e084e
MG
1694 if (zone_reclaim_mode == 0)
1695 goto this_zone_full;
1696
cd38b115
MG
1697 /*
1698 * As we may have just activated ZLC, check if the first
1699 * eligible zone has failed zone_reclaim recently.
1700 */
1701 if (NUMA_BUILD && zlc_active &&
1702 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1703 continue;
1704
fa5e084e
MG
1705 ret = zone_reclaim(zone, gfp_mask, order);
1706 switch (ret) {
1707 case ZONE_RECLAIM_NOSCAN:
1708 /* did not scan */
cd38b115 1709 continue;
fa5e084e
MG
1710 case ZONE_RECLAIM_FULL:
1711 /* scanned but unreclaimable */
cd38b115 1712 continue;
fa5e084e
MG
1713 default:
1714 /* did we reclaim enough */
1715 if (!zone_watermark_ok(zone, order, mark,
1716 classzone_idx, alloc_flags))
9276b1bc 1717 goto this_zone_full;
0798e519 1718 }
7fb1d9fc
RS
1719 }
1720
fa5e084e 1721try_this_zone:
3dd28266
MG
1722 page = buffered_rmqueue(preferred_zone, zone, order,
1723 gfp_mask, migratetype);
0798e519 1724 if (page)
7fb1d9fc 1725 break;
9276b1bc
PJ
1726this_zone_full:
1727 if (NUMA_BUILD)
1728 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1729 }
9276b1bc
PJ
1730
1731 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1732 /* Disable zlc cache for second zonelist scan */
1733 zlc_active = 0;
1734 goto zonelist_scan;
1735 }
7fb1d9fc 1736 return page;
753ee728
MH
1737}
1738
29423e77
DR
1739/*
1740 * Large machines with many possible nodes should not always dump per-node
1741 * meminfo in irq context.
1742 */
1743static inline bool should_suppress_show_mem(void)
1744{
1745 bool ret = false;
1746
1747#if NODES_SHIFT > 8
1748 ret = in_interrupt();
1749#endif
1750 return ret;
1751}
1752
a238ab5b
DH
1753static DEFINE_RATELIMIT_STATE(nopage_rs,
1754 DEFAULT_RATELIMIT_INTERVAL,
1755 DEFAULT_RATELIMIT_BURST);
1756
1757void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1758{
1759 va_list args;
1760 unsigned int filter = SHOW_MEM_FILTER_NODES;
1761
1762 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1763 return;
1764
1765 /*
1766 * This documents exceptions given to allocations in certain
1767 * contexts that are allowed to allocate outside current's set
1768 * of allowed nodes.
1769 */
1770 if (!(gfp_mask & __GFP_NOMEMALLOC))
1771 if (test_thread_flag(TIF_MEMDIE) ||
1772 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1773 filter &= ~SHOW_MEM_FILTER_NODES;
1774 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1775 filter &= ~SHOW_MEM_FILTER_NODES;
1776
1777 if (fmt) {
1778 printk(KERN_WARNING);
1779 va_start(args, fmt);
1780 vprintk(fmt, args);
1781 va_end(args);
1782 }
1783
1784 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1785 current->comm, order, gfp_mask);
1786
1787 dump_stack();
1788 if (!should_suppress_show_mem())
1789 show_mem(filter);
1790}
1791
11e33f6a
MG
1792static inline int
1793should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1794 unsigned long pages_reclaimed)
1da177e4 1795{
11e33f6a
MG
1796 /* Do not loop if specifically requested */
1797 if (gfp_mask & __GFP_NORETRY)
1798 return 0;
1da177e4 1799
11e33f6a
MG
1800 /*
1801 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1802 * means __GFP_NOFAIL, but that may not be true in other
1803 * implementations.
1804 */
1805 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1806 return 1;
1807
1808 /*
1809 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1810 * specified, then we retry until we no longer reclaim any pages
1811 * (above), or we've reclaimed an order of pages at least as
1812 * large as the allocation's order. In both cases, if the
1813 * allocation still fails, we stop retrying.
1814 */
1815 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1816 return 1;
cf40bd16 1817
11e33f6a
MG
1818 /*
1819 * Don't let big-order allocations loop unless the caller
1820 * explicitly requests that.
1821 */
1822 if (gfp_mask & __GFP_NOFAIL)
1823 return 1;
1da177e4 1824
11e33f6a
MG
1825 return 0;
1826}
933e312e 1827
11e33f6a
MG
1828static inline struct page *
1829__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1830 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1831 nodemask_t *nodemask, struct zone *preferred_zone,
1832 int migratetype)
11e33f6a
MG
1833{
1834 struct page *page;
1835
1836 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1837 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1838 schedule_timeout_uninterruptible(1);
1da177e4
LT
1839 return NULL;
1840 }
6b1de916 1841
11e33f6a
MG
1842 /*
1843 * Go through the zonelist yet one more time, keep very high watermark
1844 * here, this is only to catch a parallel oom killing, we must fail if
1845 * we're still under heavy pressure.
1846 */
1847 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1848 order, zonelist, high_zoneidx,
5117f45d 1849 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1850 preferred_zone, migratetype);
7fb1d9fc 1851 if (page)
11e33f6a
MG
1852 goto out;
1853
4365a567
KH
1854 if (!(gfp_mask & __GFP_NOFAIL)) {
1855 /* The OOM killer will not help higher order allocs */
1856 if (order > PAGE_ALLOC_COSTLY_ORDER)
1857 goto out;
03668b3c
DR
1858 /* The OOM killer does not needlessly kill tasks for lowmem */
1859 if (high_zoneidx < ZONE_NORMAL)
1860 goto out;
4365a567
KH
1861 /*
1862 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1863 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1864 * The caller should handle page allocation failure by itself if
1865 * it specifies __GFP_THISNODE.
1866 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1867 */
1868 if (gfp_mask & __GFP_THISNODE)
1869 goto out;
1870 }
11e33f6a 1871 /* Exhausted what can be done so it's blamo time */
4365a567 1872 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1873
1874out:
1875 clear_zonelist_oom(zonelist, gfp_mask);
1876 return page;
1877}
1878
56de7263
MG
1879#ifdef CONFIG_COMPACTION
1880/* Try memory compaction for high-order allocations before reclaim */
1881static struct page *
1882__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1883 struct zonelist *zonelist, enum zone_type high_zoneidx,
1884 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1885 int migratetype, unsigned long *did_some_progress,
1886 bool sync_migration)
56de7263
MG
1887{
1888 struct page *page;
1889
4f92e258 1890 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1891 return NULL;
1892
c06b1fca 1893 current->flags |= PF_MEMALLOC;
56de7263 1894 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1895 nodemask, sync_migration);
c06b1fca 1896 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1897 if (*did_some_progress != COMPACT_SKIPPED) {
1898
1899 /* Page migration frees to the PCP lists but we want merging */
1900 drain_pages(get_cpu());
1901 put_cpu();
1902
1903 page = get_page_from_freelist(gfp_mask, nodemask,
1904 order, zonelist, high_zoneidx,
1905 alloc_flags, preferred_zone,
1906 migratetype);
1907 if (page) {
4f92e258
MG
1908 preferred_zone->compact_considered = 0;
1909 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1910 count_vm_event(COMPACTSUCCESS);
1911 return page;
1912 }
1913
1914 /*
1915 * It's bad if compaction run occurs and fails.
1916 * The most likely reason is that pages exist,
1917 * but not enough to satisfy watermarks.
1918 */
1919 count_vm_event(COMPACTFAIL);
4f92e258 1920 defer_compaction(preferred_zone);
56de7263
MG
1921
1922 cond_resched();
1923 }
1924
1925 return NULL;
1926}
1927#else
1928static inline struct page *
1929__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1930 struct zonelist *zonelist, enum zone_type high_zoneidx,
1931 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1932 int migratetype, unsigned long *did_some_progress,
1933 bool sync_migration)
56de7263
MG
1934{
1935 return NULL;
1936}
1937#endif /* CONFIG_COMPACTION */
1938
11e33f6a
MG
1939/* The really slow allocator path where we enter direct reclaim */
1940static inline struct page *
1941__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1942 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1943 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1944 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1945{
1946 struct page *page = NULL;
1947 struct reclaim_state reclaim_state;
9ee493ce 1948 bool drained = false;
11e33f6a
MG
1949
1950 cond_resched();
1951
1952 /* We now go into synchronous reclaim */
1953 cpuset_memory_pressure_bump();
c06b1fca 1954 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1955 lockdep_set_current_reclaim_state(gfp_mask);
1956 reclaim_state.reclaimed_slab = 0;
c06b1fca 1957 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1958
1959 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1960
c06b1fca 1961 current->reclaim_state = NULL;
11e33f6a 1962 lockdep_clear_current_reclaim_state();
c06b1fca 1963 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1964
1965 cond_resched();
1966
9ee493ce
MG
1967 if (unlikely(!(*did_some_progress)))
1968 return NULL;
11e33f6a 1969
76d3fbf8
MG
1970 /* After successful reclaim, reconsider all zones for allocation */
1971 if (NUMA_BUILD)
1972 zlc_clear_zones_full(zonelist);
1973
9ee493ce
MG
1974retry:
1975 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1976 zonelist, high_zoneidx,
3dd28266
MG
1977 alloc_flags, preferred_zone,
1978 migratetype);
9ee493ce
MG
1979
1980 /*
1981 * If an allocation failed after direct reclaim, it could be because
1982 * pages are pinned on the per-cpu lists. Drain them and try again
1983 */
1984 if (!page && !drained) {
1985 drain_all_pages();
1986 drained = true;
1987 goto retry;
1988 }
1989
11e33f6a
MG
1990 return page;
1991}
1992
1da177e4 1993/*
11e33f6a
MG
1994 * This is called in the allocator slow-path if the allocation request is of
1995 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1996 */
11e33f6a
MG
1997static inline struct page *
1998__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1999 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2000 nodemask_t *nodemask, struct zone *preferred_zone,
2001 int migratetype)
11e33f6a
MG
2002{
2003 struct page *page;
2004
2005 do {
2006 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2007 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2008 preferred_zone, migratetype);
11e33f6a
MG
2009
2010 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2011 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2012 } while (!page && (gfp_mask & __GFP_NOFAIL));
2013
2014 return page;
2015}
2016
2017static inline
2018void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2019 enum zone_type high_zoneidx,
2020 enum zone_type classzone_idx)
1da177e4 2021{
dd1a239f
MG
2022 struct zoneref *z;
2023 struct zone *zone;
1da177e4 2024
11e33f6a 2025 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2026 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2027}
cf40bd16 2028
341ce06f
PZ
2029static inline int
2030gfp_to_alloc_flags(gfp_t gfp_mask)
2031{
341ce06f
PZ
2032 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2033 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2034
a56f57ff 2035 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2036 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2037
341ce06f
PZ
2038 /*
2039 * The caller may dip into page reserves a bit more if the caller
2040 * cannot run direct reclaim, or if the caller has realtime scheduling
2041 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2042 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2043 */
e6223a3b 2044 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2045
341ce06f 2046 if (!wait) {
5c3240d9
AA
2047 /*
2048 * Not worth trying to allocate harder for
2049 * __GFP_NOMEMALLOC even if it can't schedule.
2050 */
2051 if (!(gfp_mask & __GFP_NOMEMALLOC))
2052 alloc_flags |= ALLOC_HARDER;
523b9458 2053 /*
341ce06f
PZ
2054 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2055 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2056 */
341ce06f 2057 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2058 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2059 alloc_flags |= ALLOC_HARDER;
2060
2061 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2062 if (!in_interrupt() &&
c06b1fca 2063 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2064 unlikely(test_thread_flag(TIF_MEMDIE))))
2065 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2066 }
6b1de916 2067
341ce06f
PZ
2068 return alloc_flags;
2069}
2070
11e33f6a
MG
2071static inline struct page *
2072__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2073 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2074 nodemask_t *nodemask, struct zone *preferred_zone,
2075 int migratetype)
11e33f6a
MG
2076{
2077 const gfp_t wait = gfp_mask & __GFP_WAIT;
2078 struct page *page = NULL;
2079 int alloc_flags;
2080 unsigned long pages_reclaimed = 0;
2081 unsigned long did_some_progress;
77f1fe6b 2082 bool sync_migration = false;
1da177e4 2083
72807a74
MG
2084 /*
2085 * In the slowpath, we sanity check order to avoid ever trying to
2086 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2087 * be using allocators in order of preference for an area that is
2088 * too large.
2089 */
1fc28b70
MG
2090 if (order >= MAX_ORDER) {
2091 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2092 return NULL;
1fc28b70 2093 }
1da177e4 2094
952f3b51
CL
2095 /*
2096 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2097 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2098 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2099 * using a larger set of nodes after it has established that the
2100 * allowed per node queues are empty and that nodes are
2101 * over allocated.
2102 */
2103 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2104 goto nopage;
2105
cc4a6851 2106restart:
32dba98e
AA
2107 if (!(gfp_mask & __GFP_NO_KSWAPD))
2108 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2109 zone_idx(preferred_zone));
1da177e4 2110
9bf2229f 2111 /*
7fb1d9fc
RS
2112 * OK, we're below the kswapd watermark and have kicked background
2113 * reclaim. Now things get more complex, so set up alloc_flags according
2114 * to how we want to proceed.
9bf2229f 2115 */
341ce06f 2116 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2117
f33261d7
DR
2118 /*
2119 * Find the true preferred zone if the allocation is unconstrained by
2120 * cpusets.
2121 */
2122 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2123 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2124 &preferred_zone);
2125
cfa54a0f 2126rebalance:
341ce06f 2127 /* This is the last chance, in general, before the goto nopage. */
19770b32 2128 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2129 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2130 preferred_zone, migratetype);
7fb1d9fc
RS
2131 if (page)
2132 goto got_pg;
1da177e4 2133
11e33f6a 2134 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2135 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2136 page = __alloc_pages_high_priority(gfp_mask, order,
2137 zonelist, high_zoneidx, nodemask,
2138 preferred_zone, migratetype);
2139 if (page)
2140 goto got_pg;
1da177e4
LT
2141 }
2142
2143 /* Atomic allocations - we can't balance anything */
2144 if (!wait)
2145 goto nopage;
2146
341ce06f 2147 /* Avoid recursion of direct reclaim */
c06b1fca 2148 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2149 goto nopage;
2150
6583bb64
DR
2151 /* Avoid allocations with no watermarks from looping endlessly */
2152 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2153 goto nopage;
2154
77f1fe6b
MG
2155 /*
2156 * Try direct compaction. The first pass is asynchronous. Subsequent
2157 * attempts after direct reclaim are synchronous
2158 */
56de7263
MG
2159 page = __alloc_pages_direct_compact(gfp_mask, order,
2160 zonelist, high_zoneidx,
2161 nodemask,
2162 alloc_flags, preferred_zone,
77f1fe6b
MG
2163 migratetype, &did_some_progress,
2164 sync_migration);
56de7263
MG
2165 if (page)
2166 goto got_pg;
c6a140bf 2167 sync_migration = true;
56de7263 2168
11e33f6a
MG
2169 /* Try direct reclaim and then allocating */
2170 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2171 zonelist, high_zoneidx,
2172 nodemask,
5117f45d 2173 alloc_flags, preferred_zone,
3dd28266 2174 migratetype, &did_some_progress);
11e33f6a
MG
2175 if (page)
2176 goto got_pg;
1da177e4 2177
e33c3b5e 2178 /*
11e33f6a
MG
2179 * If we failed to make any progress reclaiming, then we are
2180 * running out of options and have to consider going OOM
e33c3b5e 2181 */
11e33f6a
MG
2182 if (!did_some_progress) {
2183 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2184 if (oom_killer_disabled)
2185 goto nopage;
11e33f6a
MG
2186 page = __alloc_pages_may_oom(gfp_mask, order,
2187 zonelist, high_zoneidx,
3dd28266
MG
2188 nodemask, preferred_zone,
2189 migratetype);
11e33f6a
MG
2190 if (page)
2191 goto got_pg;
1da177e4 2192
03668b3c
DR
2193 if (!(gfp_mask & __GFP_NOFAIL)) {
2194 /*
2195 * The oom killer is not called for high-order
2196 * allocations that may fail, so if no progress
2197 * is being made, there are no other options and
2198 * retrying is unlikely to help.
2199 */
2200 if (order > PAGE_ALLOC_COSTLY_ORDER)
2201 goto nopage;
2202 /*
2203 * The oom killer is not called for lowmem
2204 * allocations to prevent needlessly killing
2205 * innocent tasks.
2206 */
2207 if (high_zoneidx < ZONE_NORMAL)
2208 goto nopage;
2209 }
e2c55dc8 2210
ff0ceb9d
DR
2211 goto restart;
2212 }
1da177e4
LT
2213 }
2214
11e33f6a 2215 /* Check if we should retry the allocation */
a41f24ea 2216 pages_reclaimed += did_some_progress;
11e33f6a
MG
2217 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2218 /* Wait for some write requests to complete then retry */
0e093d99 2219 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2220 goto rebalance;
3e7d3449
MG
2221 } else {
2222 /*
2223 * High-order allocations do not necessarily loop after
2224 * direct reclaim and reclaim/compaction depends on compaction
2225 * being called after reclaim so call directly if necessary
2226 */
2227 page = __alloc_pages_direct_compact(gfp_mask, order,
2228 zonelist, high_zoneidx,
2229 nodemask,
2230 alloc_flags, preferred_zone,
77f1fe6b
MG
2231 migratetype, &did_some_progress,
2232 sync_migration);
3e7d3449
MG
2233 if (page)
2234 goto got_pg;
1da177e4
LT
2235 }
2236
2237nopage:
a238ab5b 2238 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2239 return page;
1da177e4 2240got_pg:
b1eeab67
VN
2241 if (kmemcheck_enabled)
2242 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2243 return page;
11e33f6a 2244
1da177e4 2245}
11e33f6a
MG
2246
2247/*
2248 * This is the 'heart' of the zoned buddy allocator.
2249 */
2250struct page *
2251__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2252 struct zonelist *zonelist, nodemask_t *nodemask)
2253{
2254 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2255 struct zone *preferred_zone;
11e33f6a 2256 struct page *page;
3dd28266 2257 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2258
dcce284a
BH
2259 gfp_mask &= gfp_allowed_mask;
2260
11e33f6a
MG
2261 lockdep_trace_alloc(gfp_mask);
2262
2263 might_sleep_if(gfp_mask & __GFP_WAIT);
2264
2265 if (should_fail_alloc_page(gfp_mask, order))
2266 return NULL;
2267
2268 /*
2269 * Check the zones suitable for the gfp_mask contain at least one
2270 * valid zone. It's possible to have an empty zonelist as a result
2271 * of GFP_THISNODE and a memoryless node
2272 */
2273 if (unlikely(!zonelist->_zonerefs->zone))
2274 return NULL;
2275
c0ff7453 2276 get_mems_allowed();
5117f45d 2277 /* The preferred zone is used for statistics later */
f33261d7
DR
2278 first_zones_zonelist(zonelist, high_zoneidx,
2279 nodemask ? : &cpuset_current_mems_allowed,
2280 &preferred_zone);
c0ff7453
MX
2281 if (!preferred_zone) {
2282 put_mems_allowed();
5117f45d 2283 return NULL;
c0ff7453 2284 }
5117f45d
MG
2285
2286 /* First allocation attempt */
11e33f6a 2287 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2288 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2289 preferred_zone, migratetype);
11e33f6a
MG
2290 if (unlikely(!page))
2291 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2292 zonelist, high_zoneidx, nodemask,
3dd28266 2293 preferred_zone, migratetype);
c0ff7453 2294 put_mems_allowed();
11e33f6a 2295
4b4f278c 2296 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2297 return page;
1da177e4 2298}
d239171e 2299EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2300
2301/*
2302 * Common helper functions.
2303 */
920c7a5d 2304unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2305{
945a1113
AM
2306 struct page *page;
2307
2308 /*
2309 * __get_free_pages() returns a 32-bit address, which cannot represent
2310 * a highmem page
2311 */
2312 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2313
1da177e4
LT
2314 page = alloc_pages(gfp_mask, order);
2315 if (!page)
2316 return 0;
2317 return (unsigned long) page_address(page);
2318}
1da177e4
LT
2319EXPORT_SYMBOL(__get_free_pages);
2320
920c7a5d 2321unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2322{
945a1113 2323 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2324}
1da177e4
LT
2325EXPORT_SYMBOL(get_zeroed_page);
2326
2327void __pagevec_free(struct pagevec *pvec)
2328{
2329 int i = pagevec_count(pvec);
2330
4b4f278c
MG
2331 while (--i >= 0) {
2332 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2333 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2334 }
1da177e4
LT
2335}
2336
920c7a5d 2337void __free_pages(struct page *page, unsigned int order)
1da177e4 2338{
b5810039 2339 if (put_page_testzero(page)) {
1da177e4 2340 if (order == 0)
fc91668e 2341 free_hot_cold_page(page, 0);
1da177e4
LT
2342 else
2343 __free_pages_ok(page, order);
2344 }
2345}
2346
2347EXPORT_SYMBOL(__free_pages);
2348
920c7a5d 2349void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2350{
2351 if (addr != 0) {
725d704e 2352 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2353 __free_pages(virt_to_page((void *)addr), order);
2354 }
2355}
2356
2357EXPORT_SYMBOL(free_pages);
2358
ee85c2e1
AK
2359static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2360{
2361 if (addr) {
2362 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2363 unsigned long used = addr + PAGE_ALIGN(size);
2364
2365 split_page(virt_to_page((void *)addr), order);
2366 while (used < alloc_end) {
2367 free_page(used);
2368 used += PAGE_SIZE;
2369 }
2370 }
2371 return (void *)addr;
2372}
2373
2be0ffe2
TT
2374/**
2375 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2376 * @size: the number of bytes to allocate
2377 * @gfp_mask: GFP flags for the allocation
2378 *
2379 * This function is similar to alloc_pages(), except that it allocates the
2380 * minimum number of pages to satisfy the request. alloc_pages() can only
2381 * allocate memory in power-of-two pages.
2382 *
2383 * This function is also limited by MAX_ORDER.
2384 *
2385 * Memory allocated by this function must be released by free_pages_exact().
2386 */
2387void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2388{
2389 unsigned int order = get_order(size);
2390 unsigned long addr;
2391
2392 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2393 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2394}
2395EXPORT_SYMBOL(alloc_pages_exact);
2396
ee85c2e1
AK
2397/**
2398 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2399 * pages on a node.
b5e6ab58 2400 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2401 * @size: the number of bytes to allocate
2402 * @gfp_mask: GFP flags for the allocation
2403 *
2404 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2405 * back.
2406 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2407 * but is not exact.
2408 */
2409void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2410{
2411 unsigned order = get_order(size);
2412 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2413 if (!p)
2414 return NULL;
2415 return make_alloc_exact((unsigned long)page_address(p), order, size);
2416}
2417EXPORT_SYMBOL(alloc_pages_exact_nid);
2418
2be0ffe2
TT
2419/**
2420 * free_pages_exact - release memory allocated via alloc_pages_exact()
2421 * @virt: the value returned by alloc_pages_exact.
2422 * @size: size of allocation, same value as passed to alloc_pages_exact().
2423 *
2424 * Release the memory allocated by a previous call to alloc_pages_exact.
2425 */
2426void free_pages_exact(void *virt, size_t size)
2427{
2428 unsigned long addr = (unsigned long)virt;
2429 unsigned long end = addr + PAGE_ALIGN(size);
2430
2431 while (addr < end) {
2432 free_page(addr);
2433 addr += PAGE_SIZE;
2434 }
2435}
2436EXPORT_SYMBOL(free_pages_exact);
2437
1da177e4
LT
2438static unsigned int nr_free_zone_pages(int offset)
2439{
dd1a239f 2440 struct zoneref *z;
54a6eb5c
MG
2441 struct zone *zone;
2442
e310fd43 2443 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2444 unsigned int sum = 0;
2445
0e88460d 2446 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2447
54a6eb5c 2448 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2449 unsigned long size = zone->present_pages;
41858966 2450 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2451 if (size > high)
2452 sum += size - high;
1da177e4
LT
2453 }
2454
2455 return sum;
2456}
2457
2458/*
2459 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2460 */
2461unsigned int nr_free_buffer_pages(void)
2462{
af4ca457 2463 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2464}
c2f1a551 2465EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2466
2467/*
2468 * Amount of free RAM allocatable within all zones
2469 */
2470unsigned int nr_free_pagecache_pages(void)
2471{
2a1e274a 2472 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2473}
08e0f6a9
CL
2474
2475static inline void show_node(struct zone *zone)
1da177e4 2476{
08e0f6a9 2477 if (NUMA_BUILD)
25ba77c1 2478 printk("Node %d ", zone_to_nid(zone));
1da177e4 2479}
1da177e4 2480
1da177e4
LT
2481void si_meminfo(struct sysinfo *val)
2482{
2483 val->totalram = totalram_pages;
2484 val->sharedram = 0;
d23ad423 2485 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2486 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2487 val->totalhigh = totalhigh_pages;
2488 val->freehigh = nr_free_highpages();
1da177e4
LT
2489 val->mem_unit = PAGE_SIZE;
2490}
2491
2492EXPORT_SYMBOL(si_meminfo);
2493
2494#ifdef CONFIG_NUMA
2495void si_meminfo_node(struct sysinfo *val, int nid)
2496{
2497 pg_data_t *pgdat = NODE_DATA(nid);
2498
2499 val->totalram = pgdat->node_present_pages;
d23ad423 2500 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2501#ifdef CONFIG_HIGHMEM
1da177e4 2502 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2503 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2504 NR_FREE_PAGES);
98d2b0eb
CL
2505#else
2506 val->totalhigh = 0;
2507 val->freehigh = 0;
2508#endif
1da177e4
LT
2509 val->mem_unit = PAGE_SIZE;
2510}
2511#endif
2512
ddd588b5 2513/*
7bf02ea2
DR
2514 * Determine whether the node should be displayed or not, depending on whether
2515 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2516 */
7bf02ea2 2517bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2518{
2519 bool ret = false;
2520
2521 if (!(flags & SHOW_MEM_FILTER_NODES))
2522 goto out;
2523
2524 get_mems_allowed();
7bf02ea2 2525 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2526 put_mems_allowed();
2527out:
2528 return ret;
2529}
2530
1da177e4
LT
2531#define K(x) ((x) << (PAGE_SHIFT-10))
2532
2533/*
2534 * Show free area list (used inside shift_scroll-lock stuff)
2535 * We also calculate the percentage fragmentation. We do this by counting the
2536 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2537 * Suppresses nodes that are not allowed by current's cpuset if
2538 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2539 */
7bf02ea2 2540void show_free_areas(unsigned int filter)
1da177e4 2541{
c7241913 2542 int cpu;
1da177e4
LT
2543 struct zone *zone;
2544
ee99c71c 2545 for_each_populated_zone(zone) {
7bf02ea2 2546 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2547 continue;
c7241913
JS
2548 show_node(zone);
2549 printk("%s per-cpu:\n", zone->name);
1da177e4 2550
6b482c67 2551 for_each_online_cpu(cpu) {
1da177e4
LT
2552 struct per_cpu_pageset *pageset;
2553
99dcc3e5 2554 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2555
3dfa5721
CL
2556 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2557 cpu, pageset->pcp.high,
2558 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2559 }
2560 }
2561
a731286d
KM
2562 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2563 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2564 " unevictable:%lu"
b76146ed 2565 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2566 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2567 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2568 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2569 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2570 global_page_state(NR_ISOLATED_ANON),
2571 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2572 global_page_state(NR_INACTIVE_FILE),
a731286d 2573 global_page_state(NR_ISOLATED_FILE),
7b854121 2574 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2575 global_page_state(NR_FILE_DIRTY),
ce866b34 2576 global_page_state(NR_WRITEBACK),
fd39fc85 2577 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2578 global_page_state(NR_FREE_PAGES),
3701b033
KM
2579 global_page_state(NR_SLAB_RECLAIMABLE),
2580 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2581 global_page_state(NR_FILE_MAPPED),
4b02108a 2582 global_page_state(NR_SHMEM),
a25700a5
AM
2583 global_page_state(NR_PAGETABLE),
2584 global_page_state(NR_BOUNCE));
1da177e4 2585
ee99c71c 2586 for_each_populated_zone(zone) {
1da177e4
LT
2587 int i;
2588
7bf02ea2 2589 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2590 continue;
1da177e4
LT
2591 show_node(zone);
2592 printk("%s"
2593 " free:%lukB"
2594 " min:%lukB"
2595 " low:%lukB"
2596 " high:%lukB"
4f98a2fe
RR
2597 " active_anon:%lukB"
2598 " inactive_anon:%lukB"
2599 " active_file:%lukB"
2600 " inactive_file:%lukB"
7b854121 2601 " unevictable:%lukB"
a731286d
KM
2602 " isolated(anon):%lukB"
2603 " isolated(file):%lukB"
1da177e4 2604 " present:%lukB"
4a0aa73f
KM
2605 " mlocked:%lukB"
2606 " dirty:%lukB"
2607 " writeback:%lukB"
2608 " mapped:%lukB"
4b02108a 2609 " shmem:%lukB"
4a0aa73f
KM
2610 " slab_reclaimable:%lukB"
2611 " slab_unreclaimable:%lukB"
c6a7f572 2612 " kernel_stack:%lukB"
4a0aa73f
KM
2613 " pagetables:%lukB"
2614 " unstable:%lukB"
2615 " bounce:%lukB"
2616 " writeback_tmp:%lukB"
1da177e4
LT
2617 " pages_scanned:%lu"
2618 " all_unreclaimable? %s"
2619 "\n",
2620 zone->name,
88f5acf8 2621 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2622 K(min_wmark_pages(zone)),
2623 K(low_wmark_pages(zone)),
2624 K(high_wmark_pages(zone)),
4f98a2fe
RR
2625 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2626 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2627 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2628 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2629 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2630 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2631 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2632 K(zone->present_pages),
4a0aa73f
KM
2633 K(zone_page_state(zone, NR_MLOCK)),
2634 K(zone_page_state(zone, NR_FILE_DIRTY)),
2635 K(zone_page_state(zone, NR_WRITEBACK)),
2636 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2637 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2638 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2639 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2640 zone_page_state(zone, NR_KERNEL_STACK) *
2641 THREAD_SIZE / 1024,
4a0aa73f
KM
2642 K(zone_page_state(zone, NR_PAGETABLE)),
2643 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2644 K(zone_page_state(zone, NR_BOUNCE)),
2645 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2646 zone->pages_scanned,
93e4a89a 2647 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2648 );
2649 printk("lowmem_reserve[]:");
2650 for (i = 0; i < MAX_NR_ZONES; i++)
2651 printk(" %lu", zone->lowmem_reserve[i]);
2652 printk("\n");
2653 }
2654
ee99c71c 2655 for_each_populated_zone(zone) {
8f9de51a 2656 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2657
7bf02ea2 2658 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2659 continue;
1da177e4
LT
2660 show_node(zone);
2661 printk("%s: ", zone->name);
1da177e4
LT
2662
2663 spin_lock_irqsave(&zone->lock, flags);
2664 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2665 nr[order] = zone->free_area[order].nr_free;
2666 total += nr[order] << order;
1da177e4
LT
2667 }
2668 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2669 for (order = 0; order < MAX_ORDER; order++)
2670 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2671 printk("= %lukB\n", K(total));
2672 }
2673
e6f3602d
LW
2674 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2675
1da177e4
LT
2676 show_swap_cache_info();
2677}
2678
19770b32
MG
2679static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2680{
2681 zoneref->zone = zone;
2682 zoneref->zone_idx = zone_idx(zone);
2683}
2684
1da177e4
LT
2685/*
2686 * Builds allocation fallback zone lists.
1a93205b
CL
2687 *
2688 * Add all populated zones of a node to the zonelist.
1da177e4 2689 */
f0c0b2b8
KH
2690static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2691 int nr_zones, enum zone_type zone_type)
1da177e4 2692{
1a93205b
CL
2693 struct zone *zone;
2694
98d2b0eb 2695 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2696 zone_type++;
02a68a5e
CL
2697
2698 do {
2f6726e5 2699 zone_type--;
070f8032 2700 zone = pgdat->node_zones + zone_type;
1a93205b 2701 if (populated_zone(zone)) {
dd1a239f
MG
2702 zoneref_set_zone(zone,
2703 &zonelist->_zonerefs[nr_zones++]);
070f8032 2704 check_highest_zone(zone_type);
1da177e4 2705 }
02a68a5e 2706
2f6726e5 2707 } while (zone_type);
070f8032 2708 return nr_zones;
1da177e4
LT
2709}
2710
f0c0b2b8
KH
2711
2712/*
2713 * zonelist_order:
2714 * 0 = automatic detection of better ordering.
2715 * 1 = order by ([node] distance, -zonetype)
2716 * 2 = order by (-zonetype, [node] distance)
2717 *
2718 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2719 * the same zonelist. So only NUMA can configure this param.
2720 */
2721#define ZONELIST_ORDER_DEFAULT 0
2722#define ZONELIST_ORDER_NODE 1
2723#define ZONELIST_ORDER_ZONE 2
2724
2725/* zonelist order in the kernel.
2726 * set_zonelist_order() will set this to NODE or ZONE.
2727 */
2728static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2729static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2730
2731
1da177e4 2732#ifdef CONFIG_NUMA
f0c0b2b8
KH
2733/* The value user specified ....changed by config */
2734static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2735/* string for sysctl */
2736#define NUMA_ZONELIST_ORDER_LEN 16
2737char numa_zonelist_order[16] = "default";
2738
2739/*
2740 * interface for configure zonelist ordering.
2741 * command line option "numa_zonelist_order"
2742 * = "[dD]efault - default, automatic configuration.
2743 * = "[nN]ode - order by node locality, then by zone within node
2744 * = "[zZ]one - order by zone, then by locality within zone
2745 */
2746
2747static int __parse_numa_zonelist_order(char *s)
2748{
2749 if (*s == 'd' || *s == 'D') {
2750 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2751 } else if (*s == 'n' || *s == 'N') {
2752 user_zonelist_order = ZONELIST_ORDER_NODE;
2753 } else if (*s == 'z' || *s == 'Z') {
2754 user_zonelist_order = ZONELIST_ORDER_ZONE;
2755 } else {
2756 printk(KERN_WARNING
2757 "Ignoring invalid numa_zonelist_order value: "
2758 "%s\n", s);
2759 return -EINVAL;
2760 }
2761 return 0;
2762}
2763
2764static __init int setup_numa_zonelist_order(char *s)
2765{
ecb256f8
VL
2766 int ret;
2767
2768 if (!s)
2769 return 0;
2770
2771 ret = __parse_numa_zonelist_order(s);
2772 if (ret == 0)
2773 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2774
2775 return ret;
f0c0b2b8
KH
2776}
2777early_param("numa_zonelist_order", setup_numa_zonelist_order);
2778
2779/*
2780 * sysctl handler for numa_zonelist_order
2781 */
2782int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2783 void __user *buffer, size_t *length,
f0c0b2b8
KH
2784 loff_t *ppos)
2785{
2786 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2787 int ret;
443c6f14 2788 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2789
443c6f14 2790 mutex_lock(&zl_order_mutex);
f0c0b2b8 2791 if (write)
443c6f14 2792 strcpy(saved_string, (char*)table->data);
8d65af78 2793 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2794 if (ret)
443c6f14 2795 goto out;
f0c0b2b8
KH
2796 if (write) {
2797 int oldval = user_zonelist_order;
2798 if (__parse_numa_zonelist_order((char*)table->data)) {
2799 /*
2800 * bogus value. restore saved string
2801 */
2802 strncpy((char*)table->data, saved_string,
2803 NUMA_ZONELIST_ORDER_LEN);
2804 user_zonelist_order = oldval;
4eaf3f64
HL
2805 } else if (oldval != user_zonelist_order) {
2806 mutex_lock(&zonelists_mutex);
1f522509 2807 build_all_zonelists(NULL);
4eaf3f64
HL
2808 mutex_unlock(&zonelists_mutex);
2809 }
f0c0b2b8 2810 }
443c6f14
AK
2811out:
2812 mutex_unlock(&zl_order_mutex);
2813 return ret;
f0c0b2b8
KH
2814}
2815
2816
62bc62a8 2817#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2818static int node_load[MAX_NUMNODES];
2819
1da177e4 2820/**
4dc3b16b 2821 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2822 * @node: node whose fallback list we're appending
2823 * @used_node_mask: nodemask_t of already used nodes
2824 *
2825 * We use a number of factors to determine which is the next node that should
2826 * appear on a given node's fallback list. The node should not have appeared
2827 * already in @node's fallback list, and it should be the next closest node
2828 * according to the distance array (which contains arbitrary distance values
2829 * from each node to each node in the system), and should also prefer nodes
2830 * with no CPUs, since presumably they'll have very little allocation pressure
2831 * on them otherwise.
2832 * It returns -1 if no node is found.
2833 */
f0c0b2b8 2834static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2835{
4cf808eb 2836 int n, val;
1da177e4
LT
2837 int min_val = INT_MAX;
2838 int best_node = -1;
a70f7302 2839 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2840
4cf808eb
LT
2841 /* Use the local node if we haven't already */
2842 if (!node_isset(node, *used_node_mask)) {
2843 node_set(node, *used_node_mask);
2844 return node;
2845 }
1da177e4 2846
37b07e41 2847 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2848
2849 /* Don't want a node to appear more than once */
2850 if (node_isset(n, *used_node_mask))
2851 continue;
2852
1da177e4
LT
2853 /* Use the distance array to find the distance */
2854 val = node_distance(node, n);
2855
4cf808eb
LT
2856 /* Penalize nodes under us ("prefer the next node") */
2857 val += (n < node);
2858
1da177e4 2859 /* Give preference to headless and unused nodes */
a70f7302
RR
2860 tmp = cpumask_of_node(n);
2861 if (!cpumask_empty(tmp))
1da177e4
LT
2862 val += PENALTY_FOR_NODE_WITH_CPUS;
2863
2864 /* Slight preference for less loaded node */
2865 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2866 val += node_load[n];
2867
2868 if (val < min_val) {
2869 min_val = val;
2870 best_node = n;
2871 }
2872 }
2873
2874 if (best_node >= 0)
2875 node_set(best_node, *used_node_mask);
2876
2877 return best_node;
2878}
2879
f0c0b2b8
KH
2880
2881/*
2882 * Build zonelists ordered by node and zones within node.
2883 * This results in maximum locality--normal zone overflows into local
2884 * DMA zone, if any--but risks exhausting DMA zone.
2885 */
2886static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2887{
f0c0b2b8 2888 int j;
1da177e4 2889 struct zonelist *zonelist;
f0c0b2b8 2890
54a6eb5c 2891 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2892 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2893 ;
2894 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2895 MAX_NR_ZONES - 1);
dd1a239f
MG
2896 zonelist->_zonerefs[j].zone = NULL;
2897 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2898}
2899
523b9458
CL
2900/*
2901 * Build gfp_thisnode zonelists
2902 */
2903static void build_thisnode_zonelists(pg_data_t *pgdat)
2904{
523b9458
CL
2905 int j;
2906 struct zonelist *zonelist;
2907
54a6eb5c
MG
2908 zonelist = &pgdat->node_zonelists[1];
2909 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2910 zonelist->_zonerefs[j].zone = NULL;
2911 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2912}
2913
f0c0b2b8
KH
2914/*
2915 * Build zonelists ordered by zone and nodes within zones.
2916 * This results in conserving DMA zone[s] until all Normal memory is
2917 * exhausted, but results in overflowing to remote node while memory
2918 * may still exist in local DMA zone.
2919 */
2920static int node_order[MAX_NUMNODES];
2921
2922static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2923{
f0c0b2b8
KH
2924 int pos, j, node;
2925 int zone_type; /* needs to be signed */
2926 struct zone *z;
2927 struct zonelist *zonelist;
2928
54a6eb5c
MG
2929 zonelist = &pgdat->node_zonelists[0];
2930 pos = 0;
2931 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2932 for (j = 0; j < nr_nodes; j++) {
2933 node = node_order[j];
2934 z = &NODE_DATA(node)->node_zones[zone_type];
2935 if (populated_zone(z)) {
dd1a239f
MG
2936 zoneref_set_zone(z,
2937 &zonelist->_zonerefs[pos++]);
54a6eb5c 2938 check_highest_zone(zone_type);
f0c0b2b8
KH
2939 }
2940 }
f0c0b2b8 2941 }
dd1a239f
MG
2942 zonelist->_zonerefs[pos].zone = NULL;
2943 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2944}
2945
2946static int default_zonelist_order(void)
2947{
2948 int nid, zone_type;
2949 unsigned long low_kmem_size,total_size;
2950 struct zone *z;
2951 int average_size;
2952 /*
88393161 2953 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2954 * If they are really small and used heavily, the system can fall
2955 * into OOM very easily.
e325c90f 2956 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2957 */
2958 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2959 low_kmem_size = 0;
2960 total_size = 0;
2961 for_each_online_node(nid) {
2962 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2963 z = &NODE_DATA(nid)->node_zones[zone_type];
2964 if (populated_zone(z)) {
2965 if (zone_type < ZONE_NORMAL)
2966 low_kmem_size += z->present_pages;
2967 total_size += z->present_pages;
e325c90f
DR
2968 } else if (zone_type == ZONE_NORMAL) {
2969 /*
2970 * If any node has only lowmem, then node order
2971 * is preferred to allow kernel allocations
2972 * locally; otherwise, they can easily infringe
2973 * on other nodes when there is an abundance of
2974 * lowmem available to allocate from.
2975 */
2976 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2977 }
2978 }
2979 }
2980 if (!low_kmem_size || /* there are no DMA area. */
2981 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2982 return ZONELIST_ORDER_NODE;
2983 /*
2984 * look into each node's config.
2985 * If there is a node whose DMA/DMA32 memory is very big area on
2986 * local memory, NODE_ORDER may be suitable.
2987 */
37b07e41
LS
2988 average_size = total_size /
2989 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2990 for_each_online_node(nid) {
2991 low_kmem_size = 0;
2992 total_size = 0;
2993 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2994 z = &NODE_DATA(nid)->node_zones[zone_type];
2995 if (populated_zone(z)) {
2996 if (zone_type < ZONE_NORMAL)
2997 low_kmem_size += z->present_pages;
2998 total_size += z->present_pages;
2999 }
3000 }
3001 if (low_kmem_size &&
3002 total_size > average_size && /* ignore small node */
3003 low_kmem_size > total_size * 70/100)
3004 return ZONELIST_ORDER_NODE;
3005 }
3006 return ZONELIST_ORDER_ZONE;
3007}
3008
3009static void set_zonelist_order(void)
3010{
3011 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3012 current_zonelist_order = default_zonelist_order();
3013 else
3014 current_zonelist_order = user_zonelist_order;
3015}
3016
3017static void build_zonelists(pg_data_t *pgdat)
3018{
3019 int j, node, load;
3020 enum zone_type i;
1da177e4 3021 nodemask_t used_mask;
f0c0b2b8
KH
3022 int local_node, prev_node;
3023 struct zonelist *zonelist;
3024 int order = current_zonelist_order;
1da177e4
LT
3025
3026 /* initialize zonelists */
523b9458 3027 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3028 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3029 zonelist->_zonerefs[0].zone = NULL;
3030 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3031 }
3032
3033 /* NUMA-aware ordering of nodes */
3034 local_node = pgdat->node_id;
62bc62a8 3035 load = nr_online_nodes;
1da177e4
LT
3036 prev_node = local_node;
3037 nodes_clear(used_mask);
f0c0b2b8 3038
f0c0b2b8
KH
3039 memset(node_order, 0, sizeof(node_order));
3040 j = 0;
3041
1da177e4 3042 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3043 int distance = node_distance(local_node, node);
3044
3045 /*
3046 * If another node is sufficiently far away then it is better
3047 * to reclaim pages in a zone before going off node.
3048 */
3049 if (distance > RECLAIM_DISTANCE)
3050 zone_reclaim_mode = 1;
3051
1da177e4
LT
3052 /*
3053 * We don't want to pressure a particular node.
3054 * So adding penalty to the first node in same
3055 * distance group to make it round-robin.
3056 */
9eeff239 3057 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3058 node_load[node] = load;
3059
1da177e4
LT
3060 prev_node = node;
3061 load--;
f0c0b2b8
KH
3062 if (order == ZONELIST_ORDER_NODE)
3063 build_zonelists_in_node_order(pgdat, node);
3064 else
3065 node_order[j++] = node; /* remember order */
3066 }
1da177e4 3067
f0c0b2b8
KH
3068 if (order == ZONELIST_ORDER_ZONE) {
3069 /* calculate node order -- i.e., DMA last! */
3070 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3071 }
523b9458
CL
3072
3073 build_thisnode_zonelists(pgdat);
1da177e4
LT
3074}
3075
9276b1bc 3076/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3077static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3078{
54a6eb5c
MG
3079 struct zonelist *zonelist;
3080 struct zonelist_cache *zlc;
dd1a239f 3081 struct zoneref *z;
9276b1bc 3082
54a6eb5c
MG
3083 zonelist = &pgdat->node_zonelists[0];
3084 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3085 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3086 for (z = zonelist->_zonerefs; z->zone; z++)
3087 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3088}
3089
7aac7898
LS
3090#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3091/*
3092 * Return node id of node used for "local" allocations.
3093 * I.e., first node id of first zone in arg node's generic zonelist.
3094 * Used for initializing percpu 'numa_mem', which is used primarily
3095 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3096 */
3097int local_memory_node(int node)
3098{
3099 struct zone *zone;
3100
3101 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3102 gfp_zone(GFP_KERNEL),
3103 NULL,
3104 &zone);
3105 return zone->node;
3106}
3107#endif
f0c0b2b8 3108
1da177e4
LT
3109#else /* CONFIG_NUMA */
3110
f0c0b2b8
KH
3111static void set_zonelist_order(void)
3112{
3113 current_zonelist_order = ZONELIST_ORDER_ZONE;
3114}
3115
3116static void build_zonelists(pg_data_t *pgdat)
1da177e4 3117{
19655d34 3118 int node, local_node;
54a6eb5c
MG
3119 enum zone_type j;
3120 struct zonelist *zonelist;
1da177e4
LT
3121
3122 local_node = pgdat->node_id;
1da177e4 3123
54a6eb5c
MG
3124 zonelist = &pgdat->node_zonelists[0];
3125 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3126
54a6eb5c
MG
3127 /*
3128 * Now we build the zonelist so that it contains the zones
3129 * of all the other nodes.
3130 * We don't want to pressure a particular node, so when
3131 * building the zones for node N, we make sure that the
3132 * zones coming right after the local ones are those from
3133 * node N+1 (modulo N)
3134 */
3135 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3136 if (!node_online(node))
3137 continue;
3138 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3139 MAX_NR_ZONES - 1);
1da177e4 3140 }
54a6eb5c
MG
3141 for (node = 0; node < local_node; node++) {
3142 if (!node_online(node))
3143 continue;
3144 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3145 MAX_NR_ZONES - 1);
3146 }
3147
dd1a239f
MG
3148 zonelist->_zonerefs[j].zone = NULL;
3149 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3150}
3151
9276b1bc 3152/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3153static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3154{
54a6eb5c 3155 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3156}
3157
1da177e4
LT
3158#endif /* CONFIG_NUMA */
3159
99dcc3e5
CL
3160/*
3161 * Boot pageset table. One per cpu which is going to be used for all
3162 * zones and all nodes. The parameters will be set in such a way
3163 * that an item put on a list will immediately be handed over to
3164 * the buddy list. This is safe since pageset manipulation is done
3165 * with interrupts disabled.
3166 *
3167 * The boot_pagesets must be kept even after bootup is complete for
3168 * unused processors and/or zones. They do play a role for bootstrapping
3169 * hotplugged processors.
3170 *
3171 * zoneinfo_show() and maybe other functions do
3172 * not check if the processor is online before following the pageset pointer.
3173 * Other parts of the kernel may not check if the zone is available.
3174 */
3175static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3176static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3177static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3178
4eaf3f64
HL
3179/*
3180 * Global mutex to protect against size modification of zonelists
3181 * as well as to serialize pageset setup for the new populated zone.
3182 */
3183DEFINE_MUTEX(zonelists_mutex);
3184
9b1a4d38 3185/* return values int ....just for stop_machine() */
1f522509 3186static __init_refok int __build_all_zonelists(void *data)
1da177e4 3187{
6811378e 3188 int nid;
99dcc3e5 3189 int cpu;
9276b1bc 3190
7f9cfb31
BL
3191#ifdef CONFIG_NUMA
3192 memset(node_load, 0, sizeof(node_load));
3193#endif
9276b1bc 3194 for_each_online_node(nid) {
7ea1530a
CL
3195 pg_data_t *pgdat = NODE_DATA(nid);
3196
3197 build_zonelists(pgdat);
3198 build_zonelist_cache(pgdat);
9276b1bc 3199 }
99dcc3e5
CL
3200
3201 /*
3202 * Initialize the boot_pagesets that are going to be used
3203 * for bootstrapping processors. The real pagesets for
3204 * each zone will be allocated later when the per cpu
3205 * allocator is available.
3206 *
3207 * boot_pagesets are used also for bootstrapping offline
3208 * cpus if the system is already booted because the pagesets
3209 * are needed to initialize allocators on a specific cpu too.
3210 * F.e. the percpu allocator needs the page allocator which
3211 * needs the percpu allocator in order to allocate its pagesets
3212 * (a chicken-egg dilemma).
3213 */
7aac7898 3214 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3215 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3216
7aac7898
LS
3217#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3218 /*
3219 * We now know the "local memory node" for each node--
3220 * i.e., the node of the first zone in the generic zonelist.
3221 * Set up numa_mem percpu variable for on-line cpus. During
3222 * boot, only the boot cpu should be on-line; we'll init the
3223 * secondary cpus' numa_mem as they come on-line. During
3224 * node/memory hotplug, we'll fixup all on-line cpus.
3225 */
3226 if (cpu_online(cpu))
3227 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3228#endif
3229 }
3230
6811378e
YG
3231 return 0;
3232}
3233
4eaf3f64
HL
3234/*
3235 * Called with zonelists_mutex held always
3236 * unless system_state == SYSTEM_BOOTING.
3237 */
9f6ae448 3238void __ref build_all_zonelists(void *data)
6811378e 3239{
f0c0b2b8
KH
3240 set_zonelist_order();
3241
6811378e 3242 if (system_state == SYSTEM_BOOTING) {
423b41d7 3243 __build_all_zonelists(NULL);
68ad8df4 3244 mminit_verify_zonelist();
6811378e
YG
3245 cpuset_init_current_mems_allowed();
3246 } else {
183ff22b 3247 /* we have to stop all cpus to guarantee there is no user
6811378e 3248 of zonelist */
e9959f0f
KH
3249#ifdef CONFIG_MEMORY_HOTPLUG
3250 if (data)
3251 setup_zone_pageset((struct zone *)data);
3252#endif
3253 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3254 /* cpuset refresh routine should be here */
3255 }
bd1e22b8 3256 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3257 /*
3258 * Disable grouping by mobility if the number of pages in the
3259 * system is too low to allow the mechanism to work. It would be
3260 * more accurate, but expensive to check per-zone. This check is
3261 * made on memory-hotadd so a system can start with mobility
3262 * disabled and enable it later
3263 */
d9c23400 3264 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3265 page_group_by_mobility_disabled = 1;
3266 else
3267 page_group_by_mobility_disabled = 0;
3268
3269 printk("Built %i zonelists in %s order, mobility grouping %s. "
3270 "Total pages: %ld\n",
62bc62a8 3271 nr_online_nodes,
f0c0b2b8 3272 zonelist_order_name[current_zonelist_order],
9ef9acb0 3273 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3274 vm_total_pages);
3275#ifdef CONFIG_NUMA
3276 printk("Policy zone: %s\n", zone_names[policy_zone]);
3277#endif
1da177e4
LT
3278}
3279
3280/*
3281 * Helper functions to size the waitqueue hash table.
3282 * Essentially these want to choose hash table sizes sufficiently
3283 * large so that collisions trying to wait on pages are rare.
3284 * But in fact, the number of active page waitqueues on typical
3285 * systems is ridiculously low, less than 200. So this is even
3286 * conservative, even though it seems large.
3287 *
3288 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3289 * waitqueues, i.e. the size of the waitq table given the number of pages.
3290 */
3291#define PAGES_PER_WAITQUEUE 256
3292
cca448fe 3293#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3294static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3295{
3296 unsigned long size = 1;
3297
3298 pages /= PAGES_PER_WAITQUEUE;
3299
3300 while (size < pages)
3301 size <<= 1;
3302
3303 /*
3304 * Once we have dozens or even hundreds of threads sleeping
3305 * on IO we've got bigger problems than wait queue collision.
3306 * Limit the size of the wait table to a reasonable size.
3307 */
3308 size = min(size, 4096UL);
3309
3310 return max(size, 4UL);
3311}
cca448fe
YG
3312#else
3313/*
3314 * A zone's size might be changed by hot-add, so it is not possible to determine
3315 * a suitable size for its wait_table. So we use the maximum size now.
3316 *
3317 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3318 *
3319 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3320 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3321 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3322 *
3323 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3324 * or more by the traditional way. (See above). It equals:
3325 *
3326 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3327 * ia64(16K page size) : = ( 8G + 4M)byte.
3328 * powerpc (64K page size) : = (32G +16M)byte.
3329 */
3330static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3331{
3332 return 4096UL;
3333}
3334#endif
1da177e4
LT
3335
3336/*
3337 * This is an integer logarithm so that shifts can be used later
3338 * to extract the more random high bits from the multiplicative
3339 * hash function before the remainder is taken.
3340 */
3341static inline unsigned long wait_table_bits(unsigned long size)
3342{
3343 return ffz(~size);
3344}
3345
3346#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3347
6d3163ce
AH
3348/*
3349 * Check if a pageblock contains reserved pages
3350 */
3351static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3352{
3353 unsigned long pfn;
3354
3355 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3356 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3357 return 1;
3358 }
3359 return 0;
3360}
3361
56fd56b8 3362/*
d9c23400 3363 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3364 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3365 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3366 * higher will lead to a bigger reserve which will get freed as contiguous
3367 * blocks as reclaim kicks in
3368 */
3369static void setup_zone_migrate_reserve(struct zone *zone)
3370{
6d3163ce 3371 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3372 struct page *page;
78986a67
MG
3373 unsigned long block_migratetype;
3374 int reserve;
56fd56b8
MG
3375
3376 /* Get the start pfn, end pfn and the number of blocks to reserve */
3377 start_pfn = zone->zone_start_pfn;
3378 end_pfn = start_pfn + zone->spanned_pages;
41858966 3379 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3380 pageblock_order;
56fd56b8 3381
78986a67
MG
3382 /*
3383 * Reserve blocks are generally in place to help high-order atomic
3384 * allocations that are short-lived. A min_free_kbytes value that
3385 * would result in more than 2 reserve blocks for atomic allocations
3386 * is assumed to be in place to help anti-fragmentation for the
3387 * future allocation of hugepages at runtime.
3388 */
3389 reserve = min(2, reserve);
3390
d9c23400 3391 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3392 if (!pfn_valid(pfn))
3393 continue;
3394 page = pfn_to_page(pfn);
3395
344c790e
AL
3396 /* Watch out for overlapping nodes */
3397 if (page_to_nid(page) != zone_to_nid(zone))
3398 continue;
3399
56fd56b8 3400 /* Blocks with reserved pages will never free, skip them. */
6d3163ce
AH
3401 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3402 if (pageblock_is_reserved(pfn, block_end_pfn))
56fd56b8
MG
3403 continue;
3404
3405 block_migratetype = get_pageblock_migratetype(page);
3406
3407 /* If this block is reserved, account for it */
3408 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3409 reserve--;
3410 continue;
3411 }
3412
3413 /* Suitable for reserving if this block is movable */
3414 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3415 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3416 move_freepages_block(zone, page, MIGRATE_RESERVE);
3417 reserve--;
3418 continue;
3419 }
3420
3421 /*
3422 * If the reserve is met and this is a previous reserved block,
3423 * take it back
3424 */
3425 if (block_migratetype == MIGRATE_RESERVE) {
3426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3427 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3428 }
3429 }
3430}
ac0e5b7a 3431
1da177e4
LT
3432/*
3433 * Initially all pages are reserved - free ones are freed
3434 * up by free_all_bootmem() once the early boot process is
3435 * done. Non-atomic initialization, single-pass.
3436 */
c09b4240 3437void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3438 unsigned long start_pfn, enum memmap_context context)
1da177e4 3439{
1da177e4 3440 struct page *page;
29751f69
AW
3441 unsigned long end_pfn = start_pfn + size;
3442 unsigned long pfn;
86051ca5 3443 struct zone *z;
1da177e4 3444
22b31eec
HD
3445 if (highest_memmap_pfn < end_pfn - 1)
3446 highest_memmap_pfn = end_pfn - 1;
3447
86051ca5 3448 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3449 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3450 /*
3451 * There can be holes in boot-time mem_map[]s
3452 * handed to this function. They do not
3453 * exist on hotplugged memory.
3454 */
3455 if (context == MEMMAP_EARLY) {
3456 if (!early_pfn_valid(pfn))
3457 continue;
3458 if (!early_pfn_in_nid(pfn, nid))
3459 continue;
3460 }
d41dee36
AW
3461 page = pfn_to_page(pfn);
3462 set_page_links(page, zone, nid, pfn);
708614e6 3463 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3464 init_page_count(page);
1da177e4
LT
3465 reset_page_mapcount(page);
3466 SetPageReserved(page);
b2a0ac88
MG
3467 /*
3468 * Mark the block movable so that blocks are reserved for
3469 * movable at startup. This will force kernel allocations
3470 * to reserve their blocks rather than leaking throughout
3471 * the address space during boot when many long-lived
56fd56b8
MG
3472 * kernel allocations are made. Later some blocks near
3473 * the start are marked MIGRATE_RESERVE by
3474 * setup_zone_migrate_reserve()
86051ca5
KH
3475 *
3476 * bitmap is created for zone's valid pfn range. but memmap
3477 * can be created for invalid pages (for alignment)
3478 * check here not to call set_pageblock_migratetype() against
3479 * pfn out of zone.
b2a0ac88 3480 */
86051ca5
KH
3481 if ((z->zone_start_pfn <= pfn)
3482 && (pfn < z->zone_start_pfn + z->spanned_pages)
3483 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3484 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3485
1da177e4
LT
3486 INIT_LIST_HEAD(&page->lru);
3487#ifdef WANT_PAGE_VIRTUAL
3488 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3489 if (!is_highmem_idx(zone))
3212c6be 3490 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3491#endif
1da177e4
LT
3492 }
3493}
3494
1e548deb 3495static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3496{
b2a0ac88
MG
3497 int order, t;
3498 for_each_migratetype_order(order, t) {
3499 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3500 zone->free_area[order].nr_free = 0;
3501 }
3502}
3503
3504#ifndef __HAVE_ARCH_MEMMAP_INIT
3505#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3506 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3507#endif
3508
1d6f4e60 3509static int zone_batchsize(struct zone *zone)
e7c8d5c9 3510{
3a6be87f 3511#ifdef CONFIG_MMU
e7c8d5c9
CL
3512 int batch;
3513
3514 /*
3515 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3516 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3517 *
3518 * OK, so we don't know how big the cache is. So guess.
3519 */
3520 batch = zone->present_pages / 1024;
ba56e91c
SR
3521 if (batch * PAGE_SIZE > 512 * 1024)
3522 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3523 batch /= 4; /* We effectively *= 4 below */
3524 if (batch < 1)
3525 batch = 1;
3526
3527 /*
0ceaacc9
NP
3528 * Clamp the batch to a 2^n - 1 value. Having a power
3529 * of 2 value was found to be more likely to have
3530 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3531 *
0ceaacc9
NP
3532 * For example if 2 tasks are alternately allocating
3533 * batches of pages, one task can end up with a lot
3534 * of pages of one half of the possible page colors
3535 * and the other with pages of the other colors.
e7c8d5c9 3536 */
9155203a 3537 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3538
e7c8d5c9 3539 return batch;
3a6be87f
DH
3540
3541#else
3542 /* The deferral and batching of frees should be suppressed under NOMMU
3543 * conditions.
3544 *
3545 * The problem is that NOMMU needs to be able to allocate large chunks
3546 * of contiguous memory as there's no hardware page translation to
3547 * assemble apparent contiguous memory from discontiguous pages.
3548 *
3549 * Queueing large contiguous runs of pages for batching, however,
3550 * causes the pages to actually be freed in smaller chunks. As there
3551 * can be a significant delay between the individual batches being
3552 * recycled, this leads to the once large chunks of space being
3553 * fragmented and becoming unavailable for high-order allocations.
3554 */
3555 return 0;
3556#endif
e7c8d5c9
CL
3557}
3558
b69a7288 3559static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3560{
3561 struct per_cpu_pages *pcp;
5f8dcc21 3562 int migratetype;
2caaad41 3563
1c6fe946
MD
3564 memset(p, 0, sizeof(*p));
3565
3dfa5721 3566 pcp = &p->pcp;
2caaad41 3567 pcp->count = 0;
2caaad41
CL
3568 pcp->high = 6 * batch;
3569 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3570 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3571 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3572}
3573
8ad4b1fb
RS
3574/*
3575 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3576 * to the value high for the pageset p.
3577 */
3578
3579static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3580 unsigned long high)
3581{
3582 struct per_cpu_pages *pcp;
3583
3dfa5721 3584 pcp = &p->pcp;
8ad4b1fb
RS
3585 pcp->high = high;
3586 pcp->batch = max(1UL, high/4);
3587 if ((high/4) > (PAGE_SHIFT * 8))
3588 pcp->batch = PAGE_SHIFT * 8;
3589}
3590
58c2ee40 3591static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3592{
3593 int cpu;
3594
3595 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3596
3597 for_each_possible_cpu(cpu) {
3598 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3599
3600 setup_pageset(pcp, zone_batchsize(zone));
3601
3602 if (percpu_pagelist_fraction)
3603 setup_pagelist_highmark(pcp,
3604 (zone->present_pages /
3605 percpu_pagelist_fraction));
3606 }
3607}
3608
2caaad41 3609/*
99dcc3e5
CL
3610 * Allocate per cpu pagesets and initialize them.
3611 * Before this call only boot pagesets were available.
e7c8d5c9 3612 */
99dcc3e5 3613void __init setup_per_cpu_pageset(void)
e7c8d5c9 3614{
99dcc3e5 3615 struct zone *zone;
e7c8d5c9 3616
319774e2
WF
3617 for_each_populated_zone(zone)
3618 setup_zone_pageset(zone);
e7c8d5c9
CL
3619}
3620
577a32f6 3621static noinline __init_refok
cca448fe 3622int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3623{
3624 int i;
3625 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3626 size_t alloc_size;
ed8ece2e
DH
3627
3628 /*
3629 * The per-page waitqueue mechanism uses hashed waitqueues
3630 * per zone.
3631 */
02b694de
YG
3632 zone->wait_table_hash_nr_entries =
3633 wait_table_hash_nr_entries(zone_size_pages);
3634 zone->wait_table_bits =
3635 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3636 alloc_size = zone->wait_table_hash_nr_entries
3637 * sizeof(wait_queue_head_t);
3638
cd94b9db 3639 if (!slab_is_available()) {
cca448fe 3640 zone->wait_table = (wait_queue_head_t *)
8f389a99 3641 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3642 } else {
3643 /*
3644 * This case means that a zone whose size was 0 gets new memory
3645 * via memory hot-add.
3646 * But it may be the case that a new node was hot-added. In
3647 * this case vmalloc() will not be able to use this new node's
3648 * memory - this wait_table must be initialized to use this new
3649 * node itself as well.
3650 * To use this new node's memory, further consideration will be
3651 * necessary.
3652 */
8691f3a7 3653 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3654 }
3655 if (!zone->wait_table)
3656 return -ENOMEM;
ed8ece2e 3657
02b694de 3658 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3659 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3660
3661 return 0;
ed8ece2e
DH
3662}
3663
112067f0
SL
3664static int __zone_pcp_update(void *data)
3665{
3666 struct zone *zone = data;
3667 int cpu;
3668 unsigned long batch = zone_batchsize(zone), flags;
3669
2d30a1f6 3670 for_each_possible_cpu(cpu) {
112067f0
SL
3671 struct per_cpu_pageset *pset;
3672 struct per_cpu_pages *pcp;
3673
99dcc3e5 3674 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3675 pcp = &pset->pcp;
3676
3677 local_irq_save(flags);
5f8dcc21 3678 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3679 setup_pageset(pset, batch);
3680 local_irq_restore(flags);
3681 }
3682 return 0;
3683}
3684
3685void zone_pcp_update(struct zone *zone)
3686{
3687 stop_machine(__zone_pcp_update, zone, NULL);
3688}
3689
c09b4240 3690static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3691{
99dcc3e5
CL
3692 /*
3693 * per cpu subsystem is not up at this point. The following code
3694 * relies on the ability of the linker to provide the
3695 * offset of a (static) per cpu variable into the per cpu area.
3696 */
3697 zone->pageset = &boot_pageset;
ed8ece2e 3698
f5335c0f 3699 if (zone->present_pages)
99dcc3e5
CL
3700 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3701 zone->name, zone->present_pages,
3702 zone_batchsize(zone));
ed8ece2e
DH
3703}
3704
718127cc
YG
3705__meminit int init_currently_empty_zone(struct zone *zone,
3706 unsigned long zone_start_pfn,
a2f3aa02
DH
3707 unsigned long size,
3708 enum memmap_context context)
ed8ece2e
DH
3709{
3710 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3711 int ret;
3712 ret = zone_wait_table_init(zone, size);
3713 if (ret)
3714 return ret;
ed8ece2e
DH
3715 pgdat->nr_zones = zone_idx(zone) + 1;
3716
ed8ece2e
DH
3717 zone->zone_start_pfn = zone_start_pfn;
3718
708614e6
MG
3719 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3720 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3721 pgdat->node_id,
3722 (unsigned long)zone_idx(zone),
3723 zone_start_pfn, (zone_start_pfn + size));
3724
1e548deb 3725 zone_init_free_lists(zone);
718127cc
YG
3726
3727 return 0;
ed8ece2e
DH
3728}
3729
c713216d
MG
3730#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3731/*
3732 * Basic iterator support. Return the first range of PFNs for a node
3733 * Note: nid == MAX_NUMNODES returns first region regardless of node
3734 */
a3142c8e 3735static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3736{
3737 int i;
3738
3739 for (i = 0; i < nr_nodemap_entries; i++)
3740 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3741 return i;
3742
3743 return -1;
3744}
3745
3746/*
3747 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3748 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3749 */
a3142c8e 3750static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3751{
3752 for (index = index + 1; index < nr_nodemap_entries; index++)
3753 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3754 return index;
3755
3756 return -1;
3757}
3758
3759#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3760/*
3761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3762 * Architectures may implement their own version but if add_active_range()
3763 * was used and there are no special requirements, this is a convenient
3764 * alternative
3765 */
f2dbcfa7 3766int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3767{
3768 int i;
3769
3770 for (i = 0; i < nr_nodemap_entries; i++) {
3771 unsigned long start_pfn = early_node_map[i].start_pfn;
3772 unsigned long end_pfn = early_node_map[i].end_pfn;
3773
3774 if (start_pfn <= pfn && pfn < end_pfn)
3775 return early_node_map[i].nid;
3776 }
cc2559bc
KH
3777 /* This is a memory hole */
3778 return -1;
c713216d
MG
3779}
3780#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3781
f2dbcfa7
KH
3782int __meminit early_pfn_to_nid(unsigned long pfn)
3783{
cc2559bc
KH
3784 int nid;
3785
3786 nid = __early_pfn_to_nid(pfn);
3787 if (nid >= 0)
3788 return nid;
3789 /* just returns 0 */
3790 return 0;
f2dbcfa7
KH
3791}
3792
cc2559bc
KH
3793#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3794bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3795{
3796 int nid;
3797
3798 nid = __early_pfn_to_nid(pfn);
3799 if (nid >= 0 && nid != node)
3800 return false;
3801 return true;
3802}
3803#endif
f2dbcfa7 3804
c713216d
MG
3805/* Basic iterator support to walk early_node_map[] */
3806#define for_each_active_range_index_in_nid(i, nid) \
3807 for (i = first_active_region_index_in_nid(nid); i != -1; \
3808 i = next_active_region_index_in_nid(i, nid))
3809
3810/**
3811 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3812 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3813 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3814 *
3815 * If an architecture guarantees that all ranges registered with
3816 * add_active_ranges() contain no holes and may be freed, this
3817 * this function may be used instead of calling free_bootmem() manually.
3818 */
3819void __init free_bootmem_with_active_regions(int nid,
3820 unsigned long max_low_pfn)
3821{
3822 int i;
3823
3824 for_each_active_range_index_in_nid(i, nid) {
3825 unsigned long size_pages = 0;
3826 unsigned long end_pfn = early_node_map[i].end_pfn;
3827
3828 if (early_node_map[i].start_pfn >= max_low_pfn)
3829 continue;
3830
3831 if (end_pfn > max_low_pfn)
3832 end_pfn = max_low_pfn;
3833
3834 size_pages = end_pfn - early_node_map[i].start_pfn;
3835 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3836 PFN_PHYS(early_node_map[i].start_pfn),
3837 size_pages << PAGE_SHIFT);
3838 }
3839}
3840
edbe7d23 3841#ifdef CONFIG_HAVE_MEMBLOCK
cc289894
YL
3842/*
3843 * Basic iterator support. Return the last range of PFNs for a node
3844 * Note: nid == MAX_NUMNODES returns last region regardless of node
3845 */
3846static int __meminit last_active_region_index_in_nid(int nid)
3847{
3848 int i;
3849
3850 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3851 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3852 return i;
3853
3854 return -1;
3855}
3856
3857/*
3858 * Basic iterator support. Return the previous active range of PFNs for a node
3859 * Note: nid == MAX_NUMNODES returns next region regardless of node
3860 */
3861static int __meminit previous_active_region_index_in_nid(int index, int nid)
3862{
3863 for (index = index - 1; index >= 0; index--)
3864 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3865 return index;
3866
3867 return -1;
3868}
3869
3870#define for_each_active_range_index_in_nid_reverse(i, nid) \
3871 for (i = last_active_region_index_in_nid(nid); i != -1; \
3872 i = previous_active_region_index_in_nid(i, nid))
3873
edbe7d23
YL
3874u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3875 u64 goal, u64 limit)
3876{
3877 int i;
3878
3879 /* Need to go over early_node_map to find out good range for node */
1a4a678b 3880 for_each_active_range_index_in_nid_reverse(i, nid) {
edbe7d23
YL
3881 u64 addr;
3882 u64 ei_start, ei_last;
3883 u64 final_start, final_end;
3884
3885 ei_last = early_node_map[i].end_pfn;
3886 ei_last <<= PAGE_SHIFT;
3887 ei_start = early_node_map[i].start_pfn;
3888 ei_start <<= PAGE_SHIFT;
3889
3890 final_start = max(ei_start, goal);
3891 final_end = min(ei_last, limit);
3892
3893 if (final_start >= final_end)
3894 continue;
3895
3896 addr = memblock_find_in_range(final_start, final_end, size, align);
3897
3898 if (addr == MEMBLOCK_ERROR)
3899 continue;
3900
3901 return addr;
3902 }
3903
3904 return MEMBLOCK_ERROR;
3905}
3906#endif
3907
08677214
YL
3908int __init add_from_early_node_map(struct range *range, int az,
3909 int nr_range, int nid)
3910{
3911 int i;
3912 u64 start, end;
3913
3914 /* need to go over early_node_map to find out good range for node */
3915 for_each_active_range_index_in_nid(i, nid) {
3916 start = early_node_map[i].start_pfn;
3917 end = early_node_map[i].end_pfn;
3918 nr_range = add_range(range, az, nr_range, start, end);
3919 }
3920 return nr_range;
3921}
3922
b5bc6c0e
YL
3923void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3924{
3925 int i;
d52d53b8 3926 int ret;
b5bc6c0e 3927
d52d53b8
YL
3928 for_each_active_range_index_in_nid(i, nid) {
3929 ret = work_fn(early_node_map[i].start_pfn,
3930 early_node_map[i].end_pfn, data);
3931 if (ret)
3932 break;
3933 }
b5bc6c0e 3934}
c713216d
MG
3935/**
3936 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3937 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3938 *
3939 * If an architecture guarantees that all ranges registered with
3940 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3941 * function may be used instead of calling memory_present() manually.
c713216d
MG
3942 */
3943void __init sparse_memory_present_with_active_regions(int nid)
3944{
3945 int i;
3946
3947 for_each_active_range_index_in_nid(i, nid)
3948 memory_present(early_node_map[i].nid,
3949 early_node_map[i].start_pfn,
3950 early_node_map[i].end_pfn);
3951}
3952
3953/**
3954 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3955 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3956 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3957 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3958 *
3959 * It returns the start and end page frame of a node based on information
3960 * provided by an arch calling add_active_range(). If called for a node
3961 * with no available memory, a warning is printed and the start and end
88ca3b94 3962 * PFNs will be 0.
c713216d 3963 */
a3142c8e 3964void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3965 unsigned long *start_pfn, unsigned long *end_pfn)
3966{
3967 int i;
3968 *start_pfn = -1UL;
3969 *end_pfn = 0;
3970
3971 for_each_active_range_index_in_nid(i, nid) {
3972 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3973 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3974 }
3975
633c0666 3976 if (*start_pfn == -1UL)
c713216d 3977 *start_pfn = 0;
c713216d
MG
3978}
3979
2a1e274a
MG
3980/*
3981 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3982 * assumption is made that zones within a node are ordered in monotonic
3983 * increasing memory addresses so that the "highest" populated zone is used
3984 */
b69a7288 3985static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3986{
3987 int zone_index;
3988 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3989 if (zone_index == ZONE_MOVABLE)
3990 continue;
3991
3992 if (arch_zone_highest_possible_pfn[zone_index] >
3993 arch_zone_lowest_possible_pfn[zone_index])
3994 break;
3995 }
3996
3997 VM_BUG_ON(zone_index == -1);
3998 movable_zone = zone_index;
3999}
4000
4001/*
4002 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4003 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4004 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4005 * in each node depending on the size of each node and how evenly kernelcore
4006 * is distributed. This helper function adjusts the zone ranges
4007 * provided by the architecture for a given node by using the end of the
4008 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4009 * zones within a node are in order of monotonic increases memory addresses
4010 */
b69a7288 4011static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4012 unsigned long zone_type,
4013 unsigned long node_start_pfn,
4014 unsigned long node_end_pfn,
4015 unsigned long *zone_start_pfn,
4016 unsigned long *zone_end_pfn)
4017{
4018 /* Only adjust if ZONE_MOVABLE is on this node */
4019 if (zone_movable_pfn[nid]) {
4020 /* Size ZONE_MOVABLE */
4021 if (zone_type == ZONE_MOVABLE) {
4022 *zone_start_pfn = zone_movable_pfn[nid];
4023 *zone_end_pfn = min(node_end_pfn,
4024 arch_zone_highest_possible_pfn[movable_zone]);
4025
4026 /* Adjust for ZONE_MOVABLE starting within this range */
4027 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4028 *zone_end_pfn > zone_movable_pfn[nid]) {
4029 *zone_end_pfn = zone_movable_pfn[nid];
4030
4031 /* Check if this whole range is within ZONE_MOVABLE */
4032 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4033 *zone_start_pfn = *zone_end_pfn;
4034 }
4035}
4036
c713216d
MG
4037/*
4038 * Return the number of pages a zone spans in a node, including holes
4039 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4040 */
6ea6e688 4041static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4042 unsigned long zone_type,
4043 unsigned long *ignored)
4044{
4045 unsigned long node_start_pfn, node_end_pfn;
4046 unsigned long zone_start_pfn, zone_end_pfn;
4047
4048 /* Get the start and end of the node and zone */
4049 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4050 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4051 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4052 adjust_zone_range_for_zone_movable(nid, zone_type,
4053 node_start_pfn, node_end_pfn,
4054 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4055
4056 /* Check that this node has pages within the zone's required range */
4057 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4058 return 0;
4059
4060 /* Move the zone boundaries inside the node if necessary */
4061 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4062 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4063
4064 /* Return the spanned pages */
4065 return zone_end_pfn - zone_start_pfn;
4066}
4067
4068/*
4069 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4070 * then all holes in the requested range will be accounted for.
c713216d 4071 */
32996250 4072unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4073 unsigned long range_start_pfn,
4074 unsigned long range_end_pfn)
4075{
4076 int i = 0;
4077 unsigned long prev_end_pfn = 0, hole_pages = 0;
4078 unsigned long start_pfn;
4079
4080 /* Find the end_pfn of the first active range of pfns in the node */
4081 i = first_active_region_index_in_nid(nid);
4082 if (i == -1)
4083 return 0;
4084
b5445f95
MG
4085 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4086
9c7cd687
MG
4087 /* Account for ranges before physical memory on this node */
4088 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 4089 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
4090
4091 /* Find all holes for the zone within the node */
4092 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4093
4094 /* No need to continue if prev_end_pfn is outside the zone */
4095 if (prev_end_pfn >= range_end_pfn)
4096 break;
4097
4098 /* Make sure the end of the zone is not within the hole */
4099 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4100 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4101
4102 /* Update the hole size cound and move on */
4103 if (start_pfn > range_start_pfn) {
4104 BUG_ON(prev_end_pfn > start_pfn);
4105 hole_pages += start_pfn - prev_end_pfn;
4106 }
4107 prev_end_pfn = early_node_map[i].end_pfn;
4108 }
4109
9c7cd687
MG
4110 /* Account for ranges past physical memory on this node */
4111 if (range_end_pfn > prev_end_pfn)
0c6cb974 4112 hole_pages += range_end_pfn -
9c7cd687
MG
4113 max(range_start_pfn, prev_end_pfn);
4114
c713216d
MG
4115 return hole_pages;
4116}
4117
4118/**
4119 * absent_pages_in_range - Return number of page frames in holes within a range
4120 * @start_pfn: The start PFN to start searching for holes
4121 * @end_pfn: The end PFN to stop searching for holes
4122 *
88ca3b94 4123 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4124 */
4125unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4126 unsigned long end_pfn)
4127{
4128 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4129}
4130
4131/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4132static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4133 unsigned long zone_type,
4134 unsigned long *ignored)
4135{
9c7cd687
MG
4136 unsigned long node_start_pfn, node_end_pfn;
4137 unsigned long zone_start_pfn, zone_end_pfn;
4138
4139 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4140 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4141 node_start_pfn);
4142 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4143 node_end_pfn);
4144
2a1e274a
MG
4145 adjust_zone_range_for_zone_movable(nid, zone_type,
4146 node_start_pfn, node_end_pfn,
4147 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4148 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4149}
0e0b864e 4150
c713216d 4151#else
6ea6e688 4152static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4153 unsigned long zone_type,
4154 unsigned long *zones_size)
4155{
4156 return zones_size[zone_type];
4157}
4158
6ea6e688 4159static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4160 unsigned long zone_type,
4161 unsigned long *zholes_size)
4162{
4163 if (!zholes_size)
4164 return 0;
4165
4166 return zholes_size[zone_type];
4167}
0e0b864e 4168
c713216d
MG
4169#endif
4170
a3142c8e 4171static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4172 unsigned long *zones_size, unsigned long *zholes_size)
4173{
4174 unsigned long realtotalpages, totalpages = 0;
4175 enum zone_type i;
4176
4177 for (i = 0; i < MAX_NR_ZONES; i++)
4178 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4179 zones_size);
4180 pgdat->node_spanned_pages = totalpages;
4181
4182 realtotalpages = totalpages;
4183 for (i = 0; i < MAX_NR_ZONES; i++)
4184 realtotalpages -=
4185 zone_absent_pages_in_node(pgdat->node_id, i,
4186 zholes_size);
4187 pgdat->node_present_pages = realtotalpages;
4188 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4189 realtotalpages);
4190}
4191
835c134e
MG
4192#ifndef CONFIG_SPARSEMEM
4193/*
4194 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4195 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4196 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4197 * round what is now in bits to nearest long in bits, then return it in
4198 * bytes.
4199 */
4200static unsigned long __init usemap_size(unsigned long zonesize)
4201{
4202 unsigned long usemapsize;
4203
d9c23400
MG
4204 usemapsize = roundup(zonesize, pageblock_nr_pages);
4205 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4206 usemapsize *= NR_PAGEBLOCK_BITS;
4207 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4208
4209 return usemapsize / 8;
4210}
4211
4212static void __init setup_usemap(struct pglist_data *pgdat,
4213 struct zone *zone, unsigned long zonesize)
4214{
4215 unsigned long usemapsize = usemap_size(zonesize);
4216 zone->pageblock_flags = NULL;
58a01a45 4217 if (usemapsize)
8f389a99
YL
4218 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4219 usemapsize);
835c134e
MG
4220}
4221#else
fa9f90be 4222static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4223 struct zone *zone, unsigned long zonesize) {}
4224#endif /* CONFIG_SPARSEMEM */
4225
d9c23400 4226#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4227
4228/* Return a sensible default order for the pageblock size. */
4229static inline int pageblock_default_order(void)
4230{
4231 if (HPAGE_SHIFT > PAGE_SHIFT)
4232 return HUGETLB_PAGE_ORDER;
4233
4234 return MAX_ORDER-1;
4235}
4236
d9c23400
MG
4237/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4238static inline void __init set_pageblock_order(unsigned int order)
4239{
4240 /* Check that pageblock_nr_pages has not already been setup */
4241 if (pageblock_order)
4242 return;
4243
4244 /*
4245 * Assume the largest contiguous order of interest is a huge page.
4246 * This value may be variable depending on boot parameters on IA64
4247 */
4248 pageblock_order = order;
4249}
4250#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4251
ba72cb8c
MG
4252/*
4253 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4254 * and pageblock_default_order() are unused as pageblock_order is set
4255 * at compile-time. See include/linux/pageblock-flags.h for the values of
4256 * pageblock_order based on the kernel config
4257 */
4258static inline int pageblock_default_order(unsigned int order)
4259{
4260 return MAX_ORDER-1;
4261}
d9c23400
MG
4262#define set_pageblock_order(x) do {} while (0)
4263
4264#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4265
1da177e4
LT
4266/*
4267 * Set up the zone data structures:
4268 * - mark all pages reserved
4269 * - mark all memory queues empty
4270 * - clear the memory bitmaps
4271 */
b5a0e011 4272static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4273 unsigned long *zones_size, unsigned long *zholes_size)
4274{
2f1b6248 4275 enum zone_type j;
ed8ece2e 4276 int nid = pgdat->node_id;
1da177e4 4277 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4278 int ret;
1da177e4 4279
208d54e5 4280 pgdat_resize_init(pgdat);
1da177e4
LT
4281 pgdat->nr_zones = 0;
4282 init_waitqueue_head(&pgdat->kswapd_wait);
4283 pgdat->kswapd_max_order = 0;
52d4b9ac 4284 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4285
4286 for (j = 0; j < MAX_NR_ZONES; j++) {
4287 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4288 unsigned long size, realsize, memmap_pages;
b69408e8 4289 enum lru_list l;
1da177e4 4290
c713216d
MG
4291 size = zone_spanned_pages_in_node(nid, j, zones_size);
4292 realsize = size - zone_absent_pages_in_node(nid, j,
4293 zholes_size);
1da177e4 4294
0e0b864e
MG
4295 /*
4296 * Adjust realsize so that it accounts for how much memory
4297 * is used by this zone for memmap. This affects the watermark
4298 * and per-cpu initialisations
4299 */
f7232154
JW
4300 memmap_pages =
4301 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4302 if (realsize >= memmap_pages) {
4303 realsize -= memmap_pages;
5594c8c8
YL
4304 if (memmap_pages)
4305 printk(KERN_DEBUG
4306 " %s zone: %lu pages used for memmap\n",
4307 zone_names[j], memmap_pages);
0e0b864e
MG
4308 } else
4309 printk(KERN_WARNING
4310 " %s zone: %lu pages exceeds realsize %lu\n",
4311 zone_names[j], memmap_pages, realsize);
4312
6267276f
CL
4313 /* Account for reserved pages */
4314 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4315 realsize -= dma_reserve;
d903ef9f 4316 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4317 zone_names[0], dma_reserve);
0e0b864e
MG
4318 }
4319
98d2b0eb 4320 if (!is_highmem_idx(j))
1da177e4
LT
4321 nr_kernel_pages += realsize;
4322 nr_all_pages += realsize;
4323
4324 zone->spanned_pages = size;
4325 zone->present_pages = realsize;
9614634f 4326#ifdef CONFIG_NUMA
d5f541ed 4327 zone->node = nid;
8417bba4 4328 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4329 / 100;
0ff38490 4330 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4331#endif
1da177e4
LT
4332 zone->name = zone_names[j];
4333 spin_lock_init(&zone->lock);
4334 spin_lock_init(&zone->lru_lock);
bdc8cb98 4335 zone_seqlock_init(zone);
1da177e4 4336 zone->zone_pgdat = pgdat;
1da177e4 4337
ed8ece2e 4338 zone_pcp_init(zone);
246e87a9 4339 for_each_lru(l)
b69408e8 4340 INIT_LIST_HEAD(&zone->lru[l].list);
6e901571
KM
4341 zone->reclaim_stat.recent_rotated[0] = 0;
4342 zone->reclaim_stat.recent_rotated[1] = 0;
4343 zone->reclaim_stat.recent_scanned[0] = 0;
4344 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4345 zap_zone_vm_stats(zone);
e815af95 4346 zone->flags = 0;
1da177e4
LT
4347 if (!size)
4348 continue;
4349
ba72cb8c 4350 set_pageblock_order(pageblock_default_order());
835c134e 4351 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4352 ret = init_currently_empty_zone(zone, zone_start_pfn,
4353 size, MEMMAP_EARLY);
718127cc 4354 BUG_ON(ret);
76cdd58e 4355 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4356 zone_start_pfn += size;
1da177e4
LT
4357 }
4358}
4359
577a32f6 4360static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4361{
1da177e4
LT
4362 /* Skip empty nodes */
4363 if (!pgdat->node_spanned_pages)
4364 return;
4365
d41dee36 4366#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4367 /* ia64 gets its own node_mem_map, before this, without bootmem */
4368 if (!pgdat->node_mem_map) {
e984bb43 4369 unsigned long size, start, end;
d41dee36
AW
4370 struct page *map;
4371
e984bb43
BP
4372 /*
4373 * The zone's endpoints aren't required to be MAX_ORDER
4374 * aligned but the node_mem_map endpoints must be in order
4375 * for the buddy allocator to function correctly.
4376 */
4377 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4378 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4379 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4380 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4381 map = alloc_remap(pgdat->node_id, size);
4382 if (!map)
8f389a99 4383 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4384 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4385 }
12d810c1 4386#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4387 /*
4388 * With no DISCONTIG, the global mem_map is just set as node 0's
4389 */
c713216d 4390 if (pgdat == NODE_DATA(0)) {
1da177e4 4391 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4392#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4393 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4394 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4395#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4396 }
1da177e4 4397#endif
d41dee36 4398#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4399}
4400
9109fb7b
JW
4401void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4402 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4403{
9109fb7b
JW
4404 pg_data_t *pgdat = NODE_DATA(nid);
4405
1da177e4
LT
4406 pgdat->node_id = nid;
4407 pgdat->node_start_pfn = node_start_pfn;
c713216d 4408 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4409
4410 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4411#ifdef CONFIG_FLAT_NODE_MEM_MAP
4412 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4413 nid, (unsigned long)pgdat,
4414 (unsigned long)pgdat->node_mem_map);
4415#endif
1da177e4
LT
4416
4417 free_area_init_core(pgdat, zones_size, zholes_size);
4418}
4419
c713216d 4420#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4421
4422#if MAX_NUMNODES > 1
4423/*
4424 * Figure out the number of possible node ids.
4425 */
4426static void __init setup_nr_node_ids(void)
4427{
4428 unsigned int node;
4429 unsigned int highest = 0;
4430
4431 for_each_node_mask(node, node_possible_map)
4432 highest = node;
4433 nr_node_ids = highest + 1;
4434}
4435#else
4436static inline void setup_nr_node_ids(void)
4437{
4438}
4439#endif
4440
c713216d
MG
4441/**
4442 * add_active_range - Register a range of PFNs backed by physical memory
4443 * @nid: The node ID the range resides on
4444 * @start_pfn: The start PFN of the available physical memory
4445 * @end_pfn: The end PFN of the available physical memory
4446 *
4447 * These ranges are stored in an early_node_map[] and later used by
4448 * free_area_init_nodes() to calculate zone sizes and holes. If the
4449 * range spans a memory hole, it is up to the architecture to ensure
4450 * the memory is not freed by the bootmem allocator. If possible
4451 * the range being registered will be merged with existing ranges.
4452 */
4453void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4454 unsigned long end_pfn)
4455{
4456 int i;
4457
6b74ab97
MG
4458 mminit_dprintk(MMINIT_TRACE, "memory_register",
4459 "Entering add_active_range(%d, %#lx, %#lx) "
4460 "%d entries of %d used\n",
4461 nid, start_pfn, end_pfn,
4462 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4463
2dbb51c4
MG
4464 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4465
c713216d
MG
4466 /* Merge with existing active regions if possible */
4467 for (i = 0; i < nr_nodemap_entries; i++) {
4468 if (early_node_map[i].nid != nid)
4469 continue;
4470
4471 /* Skip if an existing region covers this new one */
4472 if (start_pfn >= early_node_map[i].start_pfn &&
4473 end_pfn <= early_node_map[i].end_pfn)
4474 return;
4475
4476 /* Merge forward if suitable */
4477 if (start_pfn <= early_node_map[i].end_pfn &&
4478 end_pfn > early_node_map[i].end_pfn) {
4479 early_node_map[i].end_pfn = end_pfn;
4480 return;
4481 }
4482
4483 /* Merge backward if suitable */
d2dbe08d 4484 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4485 end_pfn >= early_node_map[i].start_pfn) {
4486 early_node_map[i].start_pfn = start_pfn;
4487 return;
4488 }
4489 }
4490
4491 /* Check that early_node_map is large enough */
4492 if (i >= MAX_ACTIVE_REGIONS) {
4493 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4494 MAX_ACTIVE_REGIONS);
4495 return;
4496 }
4497
4498 early_node_map[i].nid = nid;
4499 early_node_map[i].start_pfn = start_pfn;
4500 early_node_map[i].end_pfn = end_pfn;
4501 nr_nodemap_entries = i + 1;
4502}
4503
4504/**
cc1050ba 4505 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4506 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4507 * @start_pfn: The new PFN of the range
4508 * @end_pfn: The new PFN of the range
c713216d
MG
4509 *
4510 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4511 * The map is kept near the end physical page range that has already been
4512 * registered. This function allows an arch to shrink an existing registered
4513 * range.
c713216d 4514 */
cc1050ba
YL
4515void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4516 unsigned long end_pfn)
c713216d 4517{
cc1a9d86
YL
4518 int i, j;
4519 int removed = 0;
c713216d 4520
cc1050ba
YL
4521 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4522 nid, start_pfn, end_pfn);
4523
c713216d 4524 /* Find the old active region end and shrink */
cc1a9d86 4525 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4526 if (early_node_map[i].start_pfn >= start_pfn &&
4527 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4528 /* clear it */
cc1050ba 4529 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4530 early_node_map[i].end_pfn = 0;
4531 removed = 1;
4532 continue;
4533 }
cc1050ba
YL
4534 if (early_node_map[i].start_pfn < start_pfn &&
4535 early_node_map[i].end_pfn > start_pfn) {
4536 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4537 early_node_map[i].end_pfn = start_pfn;
4538 if (temp_end_pfn > end_pfn)
4539 add_active_range(nid, end_pfn, temp_end_pfn);
4540 continue;
4541 }
4542 if (early_node_map[i].start_pfn >= start_pfn &&
4543 early_node_map[i].end_pfn > end_pfn &&
4544 early_node_map[i].start_pfn < end_pfn) {
4545 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4546 continue;
c713216d 4547 }
cc1a9d86
YL
4548 }
4549
4550 if (!removed)
4551 return;
4552
4553 /* remove the blank ones */
4554 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4555 if (early_node_map[i].nid != nid)
4556 continue;
4557 if (early_node_map[i].end_pfn)
4558 continue;
4559 /* we found it, get rid of it */
4560 for (j = i; j < nr_nodemap_entries - 1; j++)
4561 memcpy(&early_node_map[j], &early_node_map[j+1],
4562 sizeof(early_node_map[j]));
4563 j = nr_nodemap_entries - 1;
4564 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4565 nr_nodemap_entries--;
4566 }
c713216d
MG
4567}
4568
4569/**
4570 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4571 *
c713216d
MG
4572 * During discovery, it may be found that a table like SRAT is invalid
4573 * and an alternative discovery method must be used. This function removes
4574 * all currently registered regions.
4575 */
88ca3b94 4576void __init remove_all_active_ranges(void)
c713216d
MG
4577{
4578 memset(early_node_map, 0, sizeof(early_node_map));
4579 nr_nodemap_entries = 0;
4580}
4581
4582/* Compare two active node_active_regions */
4583static int __init cmp_node_active_region(const void *a, const void *b)
4584{
4585 struct node_active_region *arange = (struct node_active_region *)a;
4586 struct node_active_region *brange = (struct node_active_region *)b;
4587
4588 /* Done this way to avoid overflows */
4589 if (arange->start_pfn > brange->start_pfn)
4590 return 1;
4591 if (arange->start_pfn < brange->start_pfn)
4592 return -1;
4593
4594 return 0;
4595}
4596
4597/* sort the node_map by start_pfn */
32996250 4598void __init sort_node_map(void)
c713216d
MG
4599{
4600 sort(early_node_map, (size_t)nr_nodemap_entries,
4601 sizeof(struct node_active_region),
4602 cmp_node_active_region, NULL);
4603}
4604
1e01979c
TH
4605/**
4606 * node_map_pfn_alignment - determine the maximum internode alignment
4607 *
4608 * This function should be called after node map is populated and sorted.
4609 * It calculates the maximum power of two alignment which can distinguish
4610 * all the nodes.
4611 *
4612 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4613 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4614 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4615 * shifted, 1GiB is enough and this function will indicate so.
4616 *
4617 * This is used to test whether pfn -> nid mapping of the chosen memory
4618 * model has fine enough granularity to avoid incorrect mapping for the
4619 * populated node map.
4620 *
4621 * Returns the determined alignment in pfn's. 0 if there is no alignment
4622 * requirement (single node).
4623 */
4624unsigned long __init node_map_pfn_alignment(void)
4625{
4626 unsigned long accl_mask = 0, last_end = 0;
4627 int last_nid = -1;
4628 int i;
4629
4630 for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4631 int nid = early_node_map[i].nid;
4632 unsigned long start = early_node_map[i].start_pfn;
4633 unsigned long end = early_node_map[i].end_pfn;
4634 unsigned long mask;
4635
4636 if (!start || last_nid < 0 || last_nid == nid) {
4637 last_nid = nid;
4638 last_end = end;
4639 continue;
4640 }
4641
4642 /*
4643 * Start with a mask granular enough to pin-point to the
4644 * start pfn and tick off bits one-by-one until it becomes
4645 * too coarse to separate the current node from the last.
4646 */
4647 mask = ~((1 << __ffs(start)) - 1);
4648 while (mask && last_end <= (start & (mask << 1)))
4649 mask <<= 1;
4650
4651 /* accumulate all internode masks */
4652 accl_mask |= mask;
4653 }
4654
4655 /* convert mask to number of pages */
4656 return ~accl_mask + 1;
4657}
4658
a6af2bc3 4659/* Find the lowest pfn for a node */
b69a7288 4660static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4661{
4662 int i;
a6af2bc3 4663 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4664
c713216d
MG
4665 /* Assuming a sorted map, the first range found has the starting pfn */
4666 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4667 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4668
a6af2bc3
MG
4669 if (min_pfn == ULONG_MAX) {
4670 printk(KERN_WARNING
2bc0d261 4671 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4672 return 0;
4673 }
4674
4675 return min_pfn;
c713216d
MG
4676}
4677
4678/**
4679 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4680 *
4681 * It returns the minimum PFN based on information provided via
88ca3b94 4682 * add_active_range().
c713216d
MG
4683 */
4684unsigned long __init find_min_pfn_with_active_regions(void)
4685{
4686 return find_min_pfn_for_node(MAX_NUMNODES);
4687}
4688
37b07e41
LS
4689/*
4690 * early_calculate_totalpages()
4691 * Sum pages in active regions for movable zone.
4692 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4693 */
484f51f8 4694static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4695{
4696 int i;
4697 unsigned long totalpages = 0;
4698
37b07e41
LS
4699 for (i = 0; i < nr_nodemap_entries; i++) {
4700 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4701 early_node_map[i].start_pfn;
37b07e41
LS
4702 totalpages += pages;
4703 if (pages)
4704 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4705 }
4706 return totalpages;
7e63efef
MG
4707}
4708
2a1e274a
MG
4709/*
4710 * Find the PFN the Movable zone begins in each node. Kernel memory
4711 * is spread evenly between nodes as long as the nodes have enough
4712 * memory. When they don't, some nodes will have more kernelcore than
4713 * others
4714 */
b69a7288 4715static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4716{
4717 int i, nid;
4718 unsigned long usable_startpfn;
4719 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4720 /* save the state before borrow the nodemask */
4721 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4722 unsigned long totalpages = early_calculate_totalpages();
4723 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4724
7e63efef
MG
4725 /*
4726 * If movablecore was specified, calculate what size of
4727 * kernelcore that corresponds so that memory usable for
4728 * any allocation type is evenly spread. If both kernelcore
4729 * and movablecore are specified, then the value of kernelcore
4730 * will be used for required_kernelcore if it's greater than
4731 * what movablecore would have allowed.
4732 */
4733 if (required_movablecore) {
7e63efef
MG
4734 unsigned long corepages;
4735
4736 /*
4737 * Round-up so that ZONE_MOVABLE is at least as large as what
4738 * was requested by the user
4739 */
4740 required_movablecore =
4741 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4742 corepages = totalpages - required_movablecore;
4743
4744 required_kernelcore = max(required_kernelcore, corepages);
4745 }
4746
2a1e274a
MG
4747 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4748 if (!required_kernelcore)
66918dcd 4749 goto out;
2a1e274a
MG
4750
4751 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4752 find_usable_zone_for_movable();
4753 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4754
4755restart:
4756 /* Spread kernelcore memory as evenly as possible throughout nodes */
4757 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4758 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4759 /*
4760 * Recalculate kernelcore_node if the division per node
4761 * now exceeds what is necessary to satisfy the requested
4762 * amount of memory for the kernel
4763 */
4764 if (required_kernelcore < kernelcore_node)
4765 kernelcore_node = required_kernelcore / usable_nodes;
4766
4767 /*
4768 * As the map is walked, we track how much memory is usable
4769 * by the kernel using kernelcore_remaining. When it is
4770 * 0, the rest of the node is usable by ZONE_MOVABLE
4771 */
4772 kernelcore_remaining = kernelcore_node;
4773
4774 /* Go through each range of PFNs within this node */
4775 for_each_active_range_index_in_nid(i, nid) {
4776 unsigned long start_pfn, end_pfn;
4777 unsigned long size_pages;
4778
4779 start_pfn = max(early_node_map[i].start_pfn,
4780 zone_movable_pfn[nid]);
4781 end_pfn = early_node_map[i].end_pfn;
4782 if (start_pfn >= end_pfn)
4783 continue;
4784
4785 /* Account for what is only usable for kernelcore */
4786 if (start_pfn < usable_startpfn) {
4787 unsigned long kernel_pages;
4788 kernel_pages = min(end_pfn, usable_startpfn)
4789 - start_pfn;
4790
4791 kernelcore_remaining -= min(kernel_pages,
4792 kernelcore_remaining);
4793 required_kernelcore -= min(kernel_pages,
4794 required_kernelcore);
4795
4796 /* Continue if range is now fully accounted */
4797 if (end_pfn <= usable_startpfn) {
4798
4799 /*
4800 * Push zone_movable_pfn to the end so
4801 * that if we have to rebalance
4802 * kernelcore across nodes, we will
4803 * not double account here
4804 */
4805 zone_movable_pfn[nid] = end_pfn;
4806 continue;
4807 }
4808 start_pfn = usable_startpfn;
4809 }
4810
4811 /*
4812 * The usable PFN range for ZONE_MOVABLE is from
4813 * start_pfn->end_pfn. Calculate size_pages as the
4814 * number of pages used as kernelcore
4815 */
4816 size_pages = end_pfn - start_pfn;
4817 if (size_pages > kernelcore_remaining)
4818 size_pages = kernelcore_remaining;
4819 zone_movable_pfn[nid] = start_pfn + size_pages;
4820
4821 /*
4822 * Some kernelcore has been met, update counts and
4823 * break if the kernelcore for this node has been
4824 * satisified
4825 */
4826 required_kernelcore -= min(required_kernelcore,
4827 size_pages);
4828 kernelcore_remaining -= size_pages;
4829 if (!kernelcore_remaining)
4830 break;
4831 }
4832 }
4833
4834 /*
4835 * If there is still required_kernelcore, we do another pass with one
4836 * less node in the count. This will push zone_movable_pfn[nid] further
4837 * along on the nodes that still have memory until kernelcore is
4838 * satisified
4839 */
4840 usable_nodes--;
4841 if (usable_nodes && required_kernelcore > usable_nodes)
4842 goto restart;
4843
4844 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4845 for (nid = 0; nid < MAX_NUMNODES; nid++)
4846 zone_movable_pfn[nid] =
4847 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4848
4849out:
4850 /* restore the node_state */
4851 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4852}
4853
37b07e41
LS
4854/* Any regular memory on that node ? */
4855static void check_for_regular_memory(pg_data_t *pgdat)
4856{
4857#ifdef CONFIG_HIGHMEM
4858 enum zone_type zone_type;
4859
4860 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4861 struct zone *zone = &pgdat->node_zones[zone_type];
4862 if (zone->present_pages)
4863 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4864 }
4865#endif
4866}
4867
c713216d
MG
4868/**
4869 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4870 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4871 *
4872 * This will call free_area_init_node() for each active node in the system.
4873 * Using the page ranges provided by add_active_range(), the size of each
4874 * zone in each node and their holes is calculated. If the maximum PFN
4875 * between two adjacent zones match, it is assumed that the zone is empty.
4876 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4877 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4878 * starts where the previous one ended. For example, ZONE_DMA32 starts
4879 * at arch_max_dma_pfn.
4880 */
4881void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4882{
4883 unsigned long nid;
db99100d 4884 int i;
c713216d 4885
a6af2bc3
MG
4886 /* Sort early_node_map as initialisation assumes it is sorted */
4887 sort_node_map();
4888
c713216d
MG
4889 /* Record where the zone boundaries are */
4890 memset(arch_zone_lowest_possible_pfn, 0,
4891 sizeof(arch_zone_lowest_possible_pfn));
4892 memset(arch_zone_highest_possible_pfn, 0,
4893 sizeof(arch_zone_highest_possible_pfn));
4894 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4895 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4896 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4897 if (i == ZONE_MOVABLE)
4898 continue;
c713216d
MG
4899 arch_zone_lowest_possible_pfn[i] =
4900 arch_zone_highest_possible_pfn[i-1];
4901 arch_zone_highest_possible_pfn[i] =
4902 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4903 }
2a1e274a
MG
4904 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4905 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4906
4907 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4908 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4909 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4910
c713216d
MG
4911 /* Print out the zone ranges */
4912 printk("Zone PFN ranges:\n");
2a1e274a
MG
4913 for (i = 0; i < MAX_NR_ZONES; i++) {
4914 if (i == ZONE_MOVABLE)
4915 continue;
72f0ba02
DR
4916 printk(" %-8s ", zone_names[i]);
4917 if (arch_zone_lowest_possible_pfn[i] ==
4918 arch_zone_highest_possible_pfn[i])
4919 printk("empty\n");
4920 else
4921 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4922 arch_zone_lowest_possible_pfn[i],
4923 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4924 }
4925
4926 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4927 printk("Movable zone start PFN for each node\n");
4928 for (i = 0; i < MAX_NUMNODES; i++) {
4929 if (zone_movable_pfn[i])
4930 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4931 }
c713216d
MG
4932
4933 /* Print out the early_node_map[] */
4934 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4935 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4936 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4937 early_node_map[i].start_pfn,
4938 early_node_map[i].end_pfn);
4939
4940 /* Initialise every node */
708614e6 4941 mminit_verify_pageflags_layout();
8ef82866 4942 setup_nr_node_ids();
c713216d
MG
4943 for_each_online_node(nid) {
4944 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4945 free_area_init_node(nid, NULL,
c713216d 4946 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4947
4948 /* Any memory on that node */
4949 if (pgdat->node_present_pages)
4950 node_set_state(nid, N_HIGH_MEMORY);
4951 check_for_regular_memory(pgdat);
c713216d
MG
4952 }
4953}
2a1e274a 4954
7e63efef 4955static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4956{
4957 unsigned long long coremem;
4958 if (!p)
4959 return -EINVAL;
4960
4961 coremem = memparse(p, &p);
7e63efef 4962 *core = coremem >> PAGE_SHIFT;
2a1e274a 4963
7e63efef 4964 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4965 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4966
4967 return 0;
4968}
ed7ed365 4969
7e63efef
MG
4970/*
4971 * kernelcore=size sets the amount of memory for use for allocations that
4972 * cannot be reclaimed or migrated.
4973 */
4974static int __init cmdline_parse_kernelcore(char *p)
4975{
4976 return cmdline_parse_core(p, &required_kernelcore);
4977}
4978
4979/*
4980 * movablecore=size sets the amount of memory for use for allocations that
4981 * can be reclaimed or migrated.
4982 */
4983static int __init cmdline_parse_movablecore(char *p)
4984{
4985 return cmdline_parse_core(p, &required_movablecore);
4986}
4987
ed7ed365 4988early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4989early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4990
c713216d
MG
4991#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4992
0e0b864e 4993/**
88ca3b94
RD
4994 * set_dma_reserve - set the specified number of pages reserved in the first zone
4995 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4996 *
4997 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4998 * In the DMA zone, a significant percentage may be consumed by kernel image
4999 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5000 * function may optionally be used to account for unfreeable pages in the
5001 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5002 * smaller per-cpu batchsize.
0e0b864e
MG
5003 */
5004void __init set_dma_reserve(unsigned long new_dma_reserve)
5005{
5006 dma_reserve = new_dma_reserve;
5007}
5008
1da177e4
LT
5009void __init free_area_init(unsigned long *zones_size)
5010{
9109fb7b 5011 free_area_init_node(0, zones_size,
1da177e4
LT
5012 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5013}
1da177e4 5014
1da177e4
LT
5015static int page_alloc_cpu_notify(struct notifier_block *self,
5016 unsigned long action, void *hcpu)
5017{
5018 int cpu = (unsigned long)hcpu;
1da177e4 5019
8bb78442 5020 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
5021 drain_pages(cpu);
5022
5023 /*
5024 * Spill the event counters of the dead processor
5025 * into the current processors event counters.
5026 * This artificially elevates the count of the current
5027 * processor.
5028 */
f8891e5e 5029 vm_events_fold_cpu(cpu);
9f8f2172
CL
5030
5031 /*
5032 * Zero the differential counters of the dead processor
5033 * so that the vm statistics are consistent.
5034 *
5035 * This is only okay since the processor is dead and cannot
5036 * race with what we are doing.
5037 */
2244b95a 5038 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5039 }
5040 return NOTIFY_OK;
5041}
1da177e4
LT
5042
5043void __init page_alloc_init(void)
5044{
5045 hotcpu_notifier(page_alloc_cpu_notify, 0);
5046}
5047
cb45b0e9
HA
5048/*
5049 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5050 * or min_free_kbytes changes.
5051 */
5052static void calculate_totalreserve_pages(void)
5053{
5054 struct pglist_data *pgdat;
5055 unsigned long reserve_pages = 0;
2f6726e5 5056 enum zone_type i, j;
cb45b0e9
HA
5057
5058 for_each_online_pgdat(pgdat) {
5059 for (i = 0; i < MAX_NR_ZONES; i++) {
5060 struct zone *zone = pgdat->node_zones + i;
5061 unsigned long max = 0;
5062
5063 /* Find valid and maximum lowmem_reserve in the zone */
5064 for (j = i; j < MAX_NR_ZONES; j++) {
5065 if (zone->lowmem_reserve[j] > max)
5066 max = zone->lowmem_reserve[j];
5067 }
5068
41858966
MG
5069 /* we treat the high watermark as reserved pages. */
5070 max += high_wmark_pages(zone);
cb45b0e9
HA
5071
5072 if (max > zone->present_pages)
5073 max = zone->present_pages;
5074 reserve_pages += max;
5075 }
5076 }
5077 totalreserve_pages = reserve_pages;
5078}
5079
1da177e4
LT
5080/*
5081 * setup_per_zone_lowmem_reserve - called whenever
5082 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5083 * has a correct pages reserved value, so an adequate number of
5084 * pages are left in the zone after a successful __alloc_pages().
5085 */
5086static void setup_per_zone_lowmem_reserve(void)
5087{
5088 struct pglist_data *pgdat;
2f6726e5 5089 enum zone_type j, idx;
1da177e4 5090
ec936fc5 5091 for_each_online_pgdat(pgdat) {
1da177e4
LT
5092 for (j = 0; j < MAX_NR_ZONES; j++) {
5093 struct zone *zone = pgdat->node_zones + j;
5094 unsigned long present_pages = zone->present_pages;
5095
5096 zone->lowmem_reserve[j] = 0;
5097
2f6726e5
CL
5098 idx = j;
5099 while (idx) {
1da177e4
LT
5100 struct zone *lower_zone;
5101
2f6726e5
CL
5102 idx--;
5103
1da177e4
LT
5104 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5105 sysctl_lowmem_reserve_ratio[idx] = 1;
5106
5107 lower_zone = pgdat->node_zones + idx;
5108 lower_zone->lowmem_reserve[j] = present_pages /
5109 sysctl_lowmem_reserve_ratio[idx];
5110 present_pages += lower_zone->present_pages;
5111 }
5112 }
5113 }
cb45b0e9
HA
5114
5115 /* update totalreserve_pages */
5116 calculate_totalreserve_pages();
1da177e4
LT
5117}
5118
88ca3b94 5119/**
bc75d33f 5120 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 5121 * or when memory is hot-{added|removed}
88ca3b94 5122 *
bc75d33f
MK
5123 * Ensures that the watermark[min,low,high] values for each zone are set
5124 * correctly with respect to min_free_kbytes.
1da177e4 5125 */
bc75d33f 5126void setup_per_zone_wmarks(void)
1da177e4
LT
5127{
5128 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5129 unsigned long lowmem_pages = 0;
5130 struct zone *zone;
5131 unsigned long flags;
5132
5133 /* Calculate total number of !ZONE_HIGHMEM pages */
5134 for_each_zone(zone) {
5135 if (!is_highmem(zone))
5136 lowmem_pages += zone->present_pages;
5137 }
5138
5139 for_each_zone(zone) {
ac924c60
AM
5140 u64 tmp;
5141
1125b4e3 5142 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5143 tmp = (u64)pages_min * zone->present_pages;
5144 do_div(tmp, lowmem_pages);
1da177e4
LT
5145 if (is_highmem(zone)) {
5146 /*
669ed175
NP
5147 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5148 * need highmem pages, so cap pages_min to a small
5149 * value here.
5150 *
41858966 5151 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5152 * deltas controls asynch page reclaim, and so should
5153 * not be capped for highmem.
1da177e4
LT
5154 */
5155 int min_pages;
5156
5157 min_pages = zone->present_pages / 1024;
5158 if (min_pages < SWAP_CLUSTER_MAX)
5159 min_pages = SWAP_CLUSTER_MAX;
5160 if (min_pages > 128)
5161 min_pages = 128;
41858966 5162 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5163 } else {
669ed175
NP
5164 /*
5165 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5166 * proportionate to the zone's size.
5167 */
41858966 5168 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5169 }
5170
41858966
MG
5171 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5172 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 5173 setup_zone_migrate_reserve(zone);
1125b4e3 5174 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5175 }
cb45b0e9
HA
5176
5177 /* update totalreserve_pages */
5178 calculate_totalreserve_pages();
1da177e4
LT
5179}
5180
55a4462a 5181/*
556adecb
RR
5182 * The inactive anon list should be small enough that the VM never has to
5183 * do too much work, but large enough that each inactive page has a chance
5184 * to be referenced again before it is swapped out.
5185 *
5186 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5187 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5188 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5189 * the anonymous pages are kept on the inactive list.
5190 *
5191 * total target max
5192 * memory ratio inactive anon
5193 * -------------------------------------
5194 * 10MB 1 5MB
5195 * 100MB 1 50MB
5196 * 1GB 3 250MB
5197 * 10GB 10 0.9GB
5198 * 100GB 31 3GB
5199 * 1TB 101 10GB
5200 * 10TB 320 32GB
5201 */
1b79acc9 5202static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5203{
96cb4df5 5204 unsigned int gb, ratio;
556adecb 5205
96cb4df5
MK
5206 /* Zone size in gigabytes */
5207 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5208 if (gb)
556adecb 5209 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5210 else
5211 ratio = 1;
556adecb 5212
96cb4df5
MK
5213 zone->inactive_ratio = ratio;
5214}
556adecb 5215
839a4fcc 5216static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5217{
5218 struct zone *zone;
5219
5220 for_each_zone(zone)
5221 calculate_zone_inactive_ratio(zone);
556adecb
RR
5222}
5223
1da177e4
LT
5224/*
5225 * Initialise min_free_kbytes.
5226 *
5227 * For small machines we want it small (128k min). For large machines
5228 * we want it large (64MB max). But it is not linear, because network
5229 * bandwidth does not increase linearly with machine size. We use
5230 *
5231 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5232 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5233 *
5234 * which yields
5235 *
5236 * 16MB: 512k
5237 * 32MB: 724k
5238 * 64MB: 1024k
5239 * 128MB: 1448k
5240 * 256MB: 2048k
5241 * 512MB: 2896k
5242 * 1024MB: 4096k
5243 * 2048MB: 5792k
5244 * 4096MB: 8192k
5245 * 8192MB: 11584k
5246 * 16384MB: 16384k
5247 */
1b79acc9 5248int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5249{
5250 unsigned long lowmem_kbytes;
5251
5252 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5253
5254 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5255 if (min_free_kbytes < 128)
5256 min_free_kbytes = 128;
5257 if (min_free_kbytes > 65536)
5258 min_free_kbytes = 65536;
bc75d33f 5259 setup_per_zone_wmarks();
a6cccdc3 5260 refresh_zone_stat_thresholds();
1da177e4 5261 setup_per_zone_lowmem_reserve();
556adecb 5262 setup_per_zone_inactive_ratio();
1da177e4
LT
5263 return 0;
5264}
bc75d33f 5265module_init(init_per_zone_wmark_min)
1da177e4
LT
5266
5267/*
5268 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5269 * that we can call two helper functions whenever min_free_kbytes
5270 * changes.
5271 */
5272int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5273 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5274{
8d65af78 5275 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5276 if (write)
bc75d33f 5277 setup_per_zone_wmarks();
1da177e4
LT
5278 return 0;
5279}
5280
9614634f
CL
5281#ifdef CONFIG_NUMA
5282int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5283 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5284{
5285 struct zone *zone;
5286 int rc;
5287
8d65af78 5288 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5289 if (rc)
5290 return rc;
5291
5292 for_each_zone(zone)
8417bba4 5293 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5294 sysctl_min_unmapped_ratio) / 100;
5295 return 0;
5296}
0ff38490
CL
5297
5298int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5299 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5300{
5301 struct zone *zone;
5302 int rc;
5303
8d65af78 5304 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5305 if (rc)
5306 return rc;
5307
5308 for_each_zone(zone)
5309 zone->min_slab_pages = (zone->present_pages *
5310 sysctl_min_slab_ratio) / 100;
5311 return 0;
5312}
9614634f
CL
5313#endif
5314
1da177e4
LT
5315/*
5316 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5317 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5318 * whenever sysctl_lowmem_reserve_ratio changes.
5319 *
5320 * The reserve ratio obviously has absolutely no relation with the
41858966 5321 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5322 * if in function of the boot time zone sizes.
5323 */
5324int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5325 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5326{
8d65af78 5327 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5328 setup_per_zone_lowmem_reserve();
5329 return 0;
5330}
5331
8ad4b1fb
RS
5332/*
5333 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5334 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5335 * can have before it gets flushed back to buddy allocator.
5336 */
5337
5338int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5339 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5340{
5341 struct zone *zone;
5342 unsigned int cpu;
5343 int ret;
5344
8d65af78 5345 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5346 if (!write || (ret == -EINVAL))
5347 return ret;
364df0eb 5348 for_each_populated_zone(zone) {
99dcc3e5 5349 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5350 unsigned long high;
5351 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5352 setup_pagelist_highmark(
5353 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5354 }
5355 }
5356 return 0;
5357}
5358
f034b5d4 5359int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5360
5361#ifdef CONFIG_NUMA
5362static int __init set_hashdist(char *str)
5363{
5364 if (!str)
5365 return 0;
5366 hashdist = simple_strtoul(str, &str, 0);
5367 return 1;
5368}
5369__setup("hashdist=", set_hashdist);
5370#endif
5371
5372/*
5373 * allocate a large system hash table from bootmem
5374 * - it is assumed that the hash table must contain an exact power-of-2
5375 * quantity of entries
5376 * - limit is the number of hash buckets, not the total allocation size
5377 */
5378void *__init alloc_large_system_hash(const char *tablename,
5379 unsigned long bucketsize,
5380 unsigned long numentries,
5381 int scale,
5382 int flags,
5383 unsigned int *_hash_shift,
5384 unsigned int *_hash_mask,
5385 unsigned long limit)
5386{
5387 unsigned long long max = limit;
5388 unsigned long log2qty, size;
5389 void *table = NULL;
5390
5391 /* allow the kernel cmdline to have a say */
5392 if (!numentries) {
5393 /* round applicable memory size up to nearest megabyte */
04903664 5394 numentries = nr_kernel_pages;
1da177e4
LT
5395 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5396 numentries >>= 20 - PAGE_SHIFT;
5397 numentries <<= 20 - PAGE_SHIFT;
5398
5399 /* limit to 1 bucket per 2^scale bytes of low memory */
5400 if (scale > PAGE_SHIFT)
5401 numentries >>= (scale - PAGE_SHIFT);
5402 else
5403 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5404
5405 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5406 if (unlikely(flags & HASH_SMALL)) {
5407 /* Makes no sense without HASH_EARLY */
5408 WARN_ON(!(flags & HASH_EARLY));
5409 if (!(numentries >> *_hash_shift)) {
5410 numentries = 1UL << *_hash_shift;
5411 BUG_ON(!numentries);
5412 }
5413 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5414 numentries = PAGE_SIZE / bucketsize;
1da177e4 5415 }
6e692ed3 5416 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5417
5418 /* limit allocation size to 1/16 total memory by default */
5419 if (max == 0) {
5420 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5421 do_div(max, bucketsize);
5422 }
5423
5424 if (numentries > max)
5425 numentries = max;
5426
f0d1b0b3 5427 log2qty = ilog2(numentries);
1da177e4
LT
5428
5429 do {
5430 size = bucketsize << log2qty;
5431 if (flags & HASH_EARLY)
74768ed8 5432 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5433 else if (hashdist)
5434 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5435 else {
1037b83b
ED
5436 /*
5437 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5438 * some pages at the end of hash table which
5439 * alloc_pages_exact() automatically does
1037b83b 5440 */
264ef8a9 5441 if (get_order(size) < MAX_ORDER) {
a1dd268c 5442 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5443 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5444 }
1da177e4
LT
5445 }
5446 } while (!table && size > PAGE_SIZE && --log2qty);
5447
5448 if (!table)
5449 panic("Failed to allocate %s hash table\n", tablename);
5450
f241e660 5451 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5452 tablename,
f241e660 5453 (1UL << log2qty),
f0d1b0b3 5454 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5455 size);
5456
5457 if (_hash_shift)
5458 *_hash_shift = log2qty;
5459 if (_hash_mask)
5460 *_hash_mask = (1 << log2qty) - 1;
5461
5462 return table;
5463}
a117e66e 5464
835c134e
MG
5465/* Return a pointer to the bitmap storing bits affecting a block of pages */
5466static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5467 unsigned long pfn)
5468{
5469#ifdef CONFIG_SPARSEMEM
5470 return __pfn_to_section(pfn)->pageblock_flags;
5471#else
5472 return zone->pageblock_flags;
5473#endif /* CONFIG_SPARSEMEM */
5474}
5475
5476static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5477{
5478#ifdef CONFIG_SPARSEMEM
5479 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5480 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5481#else
5482 pfn = pfn - zone->zone_start_pfn;
d9c23400 5483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5484#endif /* CONFIG_SPARSEMEM */
5485}
5486
5487/**
d9c23400 5488 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5489 * @page: The page within the block of interest
5490 * @start_bitidx: The first bit of interest to retrieve
5491 * @end_bitidx: The last bit of interest
5492 * returns pageblock_bits flags
5493 */
5494unsigned long get_pageblock_flags_group(struct page *page,
5495 int start_bitidx, int end_bitidx)
5496{
5497 struct zone *zone;
5498 unsigned long *bitmap;
5499 unsigned long pfn, bitidx;
5500 unsigned long flags = 0;
5501 unsigned long value = 1;
5502
5503 zone = page_zone(page);
5504 pfn = page_to_pfn(page);
5505 bitmap = get_pageblock_bitmap(zone, pfn);
5506 bitidx = pfn_to_bitidx(zone, pfn);
5507
5508 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5509 if (test_bit(bitidx + start_bitidx, bitmap))
5510 flags |= value;
6220ec78 5511
835c134e
MG
5512 return flags;
5513}
5514
5515/**
d9c23400 5516 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5517 * @page: The page within the block of interest
5518 * @start_bitidx: The first bit of interest
5519 * @end_bitidx: The last bit of interest
5520 * @flags: The flags to set
5521 */
5522void set_pageblock_flags_group(struct page *page, unsigned long flags,
5523 int start_bitidx, int end_bitidx)
5524{
5525 struct zone *zone;
5526 unsigned long *bitmap;
5527 unsigned long pfn, bitidx;
5528 unsigned long value = 1;
5529
5530 zone = page_zone(page);
5531 pfn = page_to_pfn(page);
5532 bitmap = get_pageblock_bitmap(zone, pfn);
5533 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5534 VM_BUG_ON(pfn < zone->zone_start_pfn);
5535 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5536
5537 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5538 if (flags & value)
5539 __set_bit(bitidx + start_bitidx, bitmap);
5540 else
5541 __clear_bit(bitidx + start_bitidx, bitmap);
5542}
a5d76b54
KH
5543
5544/*
5545 * This is designed as sub function...plz see page_isolation.c also.
5546 * set/clear page block's type to be ISOLATE.
5547 * page allocater never alloc memory from ISOLATE block.
5548 */
5549
49ac8255
KH
5550static int
5551__count_immobile_pages(struct zone *zone, struct page *page, int count)
5552{
5553 unsigned long pfn, iter, found;
5554 /*
5555 * For avoiding noise data, lru_add_drain_all() should be called
5556 * If ZONE_MOVABLE, the zone never contains immobile pages
5557 */
5558 if (zone_idx(zone) == ZONE_MOVABLE)
5559 return true;
5560
5561 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5562 return true;
5563
5564 pfn = page_to_pfn(page);
5565 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5566 unsigned long check = pfn + iter;
5567
29723fcc 5568 if (!pfn_valid_within(check))
49ac8255 5569 continue;
29723fcc 5570
49ac8255
KH
5571 page = pfn_to_page(check);
5572 if (!page_count(page)) {
5573 if (PageBuddy(page))
5574 iter += (1 << page_order(page)) - 1;
5575 continue;
5576 }
5577 if (!PageLRU(page))
5578 found++;
5579 /*
5580 * If there are RECLAIMABLE pages, we need to check it.
5581 * But now, memory offline itself doesn't call shrink_slab()
5582 * and it still to be fixed.
5583 */
5584 /*
5585 * If the page is not RAM, page_count()should be 0.
5586 * we don't need more check. This is an _used_ not-movable page.
5587 *
5588 * The problematic thing here is PG_reserved pages. PG_reserved
5589 * is set to both of a memory hole page and a _used_ kernel
5590 * page at boot.
5591 */
5592 if (found > count)
5593 return false;
5594 }
5595 return true;
5596}
5597
5598bool is_pageblock_removable_nolock(struct page *page)
5599{
5600 struct zone *zone = page_zone(page);
5601 return __count_immobile_pages(zone, page, 0);
5602}
5603
a5d76b54
KH
5604int set_migratetype_isolate(struct page *page)
5605{
5606 struct zone *zone;
49ac8255 5607 unsigned long flags, pfn;
925cc71e
RJ
5608 struct memory_isolate_notify arg;
5609 int notifier_ret;
a5d76b54
KH
5610 int ret = -EBUSY;
5611
5612 zone = page_zone(page);
925cc71e 5613
a5d76b54 5614 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5615
5616 pfn = page_to_pfn(page);
5617 arg.start_pfn = pfn;
5618 arg.nr_pages = pageblock_nr_pages;
5619 arg.pages_found = 0;
5620
a5d76b54 5621 /*
925cc71e
RJ
5622 * It may be possible to isolate a pageblock even if the
5623 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5624 * notifier chain is used by balloon drivers to return the
5625 * number of pages in a range that are held by the balloon
5626 * driver to shrink memory. If all the pages are accounted for
5627 * by balloons, are free, or on the LRU, isolation can continue.
5628 * Later, for example, when memory hotplug notifier runs, these
5629 * pages reported as "can be isolated" should be isolated(freed)
5630 * by the balloon driver through the memory notifier chain.
a5d76b54 5631 */
925cc71e
RJ
5632 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5633 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5634 if (notifier_ret)
a5d76b54 5635 goto out;
49ac8255
KH
5636 /*
5637 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5638 * We just check MOVABLE pages.
5639 */
5640 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5641 ret = 0;
5642
49ac8255
KH
5643 /*
5644 * immobile means "not-on-lru" paes. If immobile is larger than
5645 * removable-by-driver pages reported by notifier, we'll fail.
5646 */
5647
a5d76b54 5648out:
925cc71e
RJ
5649 if (!ret) {
5650 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5651 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5652 }
5653
a5d76b54
KH
5654 spin_unlock_irqrestore(&zone->lock, flags);
5655 if (!ret)
9f8f2172 5656 drain_all_pages();
a5d76b54
KH
5657 return ret;
5658}
5659
5660void unset_migratetype_isolate(struct page *page)
5661{
5662 struct zone *zone;
5663 unsigned long flags;
5664 zone = page_zone(page);
5665 spin_lock_irqsave(&zone->lock, flags);
5666 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5667 goto out;
5668 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5669 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5670out:
5671 spin_unlock_irqrestore(&zone->lock, flags);
5672}
0c0e6195
KH
5673
5674#ifdef CONFIG_MEMORY_HOTREMOVE
5675/*
5676 * All pages in the range must be isolated before calling this.
5677 */
5678void
5679__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5680{
5681 struct page *page;
5682 struct zone *zone;
5683 int order, i;
5684 unsigned long pfn;
5685 unsigned long flags;
5686 /* find the first valid pfn */
5687 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5688 if (pfn_valid(pfn))
5689 break;
5690 if (pfn == end_pfn)
5691 return;
5692 zone = page_zone(pfn_to_page(pfn));
5693 spin_lock_irqsave(&zone->lock, flags);
5694 pfn = start_pfn;
5695 while (pfn < end_pfn) {
5696 if (!pfn_valid(pfn)) {
5697 pfn++;
5698 continue;
5699 }
5700 page = pfn_to_page(pfn);
5701 BUG_ON(page_count(page));
5702 BUG_ON(!PageBuddy(page));
5703 order = page_order(page);
5704#ifdef CONFIG_DEBUG_VM
5705 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5706 pfn, 1 << order, end_pfn);
5707#endif
5708 list_del(&page->lru);
5709 rmv_page_order(page);
5710 zone->free_area[order].nr_free--;
5711 __mod_zone_page_state(zone, NR_FREE_PAGES,
5712 - (1UL << order));
5713 for (i = 0; i < (1 << order); i++)
5714 SetPageReserved((page+i));
5715 pfn += (1 << order);
5716 }
5717 spin_unlock_irqrestore(&zone->lock, flags);
5718}
5719#endif
8d22ba1b
WF
5720
5721#ifdef CONFIG_MEMORY_FAILURE
5722bool is_free_buddy_page(struct page *page)
5723{
5724 struct zone *zone = page_zone(page);
5725 unsigned long pfn = page_to_pfn(page);
5726 unsigned long flags;
5727 int order;
5728
5729 spin_lock_irqsave(&zone->lock, flags);
5730 for (order = 0; order < MAX_ORDER; order++) {
5731 struct page *page_head = page - (pfn & ((1 << order) - 1));
5732
5733 if (PageBuddy(page_head) && page_order(page_head) >= order)
5734 break;
5735 }
5736 spin_unlock_irqrestore(&zone->lock, flags);
5737
5738 return order < MAX_ORDER;
5739}
5740#endif
718a3821
WF
5741
5742static struct trace_print_flags pageflag_names[] = {
5743 {1UL << PG_locked, "locked" },
5744 {1UL << PG_error, "error" },
5745 {1UL << PG_referenced, "referenced" },
5746 {1UL << PG_uptodate, "uptodate" },
5747 {1UL << PG_dirty, "dirty" },
5748 {1UL << PG_lru, "lru" },
5749 {1UL << PG_active, "active" },
5750 {1UL << PG_slab, "slab" },
5751 {1UL << PG_owner_priv_1, "owner_priv_1" },
5752 {1UL << PG_arch_1, "arch_1" },
5753 {1UL << PG_reserved, "reserved" },
5754 {1UL << PG_private, "private" },
5755 {1UL << PG_private_2, "private_2" },
5756 {1UL << PG_writeback, "writeback" },
5757#ifdef CONFIG_PAGEFLAGS_EXTENDED
5758 {1UL << PG_head, "head" },
5759 {1UL << PG_tail, "tail" },
5760#else
5761 {1UL << PG_compound, "compound" },
5762#endif
5763 {1UL << PG_swapcache, "swapcache" },
5764 {1UL << PG_mappedtodisk, "mappedtodisk" },
5765 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5766 {1UL << PG_swapbacked, "swapbacked" },
5767 {1UL << PG_unevictable, "unevictable" },
5768#ifdef CONFIG_MMU
5769 {1UL << PG_mlocked, "mlocked" },
5770#endif
5771#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5772 {1UL << PG_uncached, "uncached" },
5773#endif
5774#ifdef CONFIG_MEMORY_FAILURE
5775 {1UL << PG_hwpoison, "hwpoison" },
5776#endif
5777 {-1UL, NULL },
5778};
5779
5780static void dump_page_flags(unsigned long flags)
5781{
5782 const char *delim = "";
5783 unsigned long mask;
5784 int i;
5785
5786 printk(KERN_ALERT "page flags: %#lx(", flags);
5787
5788 /* remove zone id */
5789 flags &= (1UL << NR_PAGEFLAGS) - 1;
5790
5791 for (i = 0; pageflag_names[i].name && flags; i++) {
5792
5793 mask = pageflag_names[i].mask;
5794 if ((flags & mask) != mask)
5795 continue;
5796
5797 flags &= ~mask;
5798 printk("%s%s", delim, pageflag_names[i].name);
5799 delim = "|";
5800 }
5801
5802 /* check for left over flags */
5803 if (flags)
5804 printk("%s%#lx", delim, flags);
5805
5806 printk(")\n");
5807}
5808
5809void dump_page(struct page *page)
5810{
5811 printk(KERN_ALERT
5812 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5813 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5814 page->mapping, page->index);
5815 dump_page_flags(page->flags);
f212ad7c 5816 mem_cgroup_print_bad_page(page);
718a3821 5817}
This page took 1.027832 seconds and 5 git commands to generate.