mm, page_alloc: avoid unnecessary zone lookups during pageblock operations
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
5f8dcc21 834
c54ad30c 835 spin_lock(&zone->lock);
0d5d823a
MG
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 839
72853e29 840 while (to_free) {
48db57f8 841 struct page *page;
5f8dcc21
MG
842 struct list_head *list;
843
844 /*
a6f9edd6
MG
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
5f8dcc21
MG
850 */
851 do {
a6f9edd6 852 batch_free++;
5f8dcc21
MG
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
48db57f8 857
1d16871d
NK
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
a6f9edd6 862 do {
770c8aaa
BZ
863 int mt; /* migratetype of the to-be-freed page */
864
a16601c5 865 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
aa016d14 868
bb14c2c7 869 mt = get_pcppage_migratetype(page);
aa016d14
VB
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
8f82b55d 873 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 874 mt = get_pageblock_migratetype(page);
51bb1a40 875
dc4b0caf 876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 877 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 878 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 879 }
c54ad30c 880 spin_unlock(&zone->lock);
1da177e4
LT
881}
882
dc4b0caf
MG
883static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
7aeb09f9 885 unsigned int order,
ed0ae21d 886 int migratetype)
1da177e4 887{
0d5d823a 888 unsigned long nr_scanned;
006d22d9 889 spin_lock(&zone->lock);
0d5d823a
MG
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 893
ad53f92e
JK
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 897 }
dc4b0caf 898 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 899 spin_unlock(&zone->lock);
48db57f8
NP
900}
901
81422f29
KS
902static int free_tail_pages_check(struct page *head_page, struct page *page)
903{
1d798ca3
KS
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
9a982250
KS
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
9a982250
KS
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
1c290f64 936 }
81422f29
KS
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
1d798ca3 939 goto out;
81422f29 940 }
1d798ca3
KS
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
81422f29 944 }
1d798ca3
KS
945 ret = 0;
946out:
1c290f64 947 page->mapping = NULL;
1d798ca3
KS
948 clear_compound_head(page);
949 return ret;
81422f29
KS
950}
951
1e8ce83c
RH
952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954{
1e8ce83c 955 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
1e8ce83c 959
1e8ce83c
RH
960 INIT_LIST_HEAD(&page->lru);
961#ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965#endif
966}
967
968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970{
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972}
973
7e18adb4
MG
974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975static void init_reserved_page(unsigned long pfn)
976{
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993}
994#else
995static inline void init_reserved_page(unsigned long pfn)
996{
997}
998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
92923ca3
NZ
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
7e18adb4 1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1007{
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
7e18adb4
MG
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1d798ca3
KS
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
7e18adb4
MG
1020 SetPageReserved(page);
1021 }
1022 }
92923ca3
NZ
1023}
1024
ec95f53a 1025static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1026{
d61f8590 1027 int bad = 0;
1da177e4 1028
ab1f306f 1029 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1030
b413d48a 1031 trace_mm_page_free(page, order);
b1eeab67 1032 kmemcheck_free_shadow(page, order);
b8c73fc2 1033 kasan_free_pages(page, order);
b1eeab67 1034
d61f8590
MG
1035 /*
1036 * Check tail pages before head page information is cleared to
1037 * avoid checking PageCompound for order-0 pages.
1038 */
1039 if (unlikely(order)) {
1040 bool compound = PageCompound(page);
1041 int i;
1042
1043 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1044
1045 for (i = 1; i < (1 << order); i++) {
1046 if (compound)
1047 bad += free_tail_pages_check(page, page + i);
1048 bad += free_pages_check(page + i);
1049 }
1050 }
17514574 1051 if (PageAnonHead(page))
8dd60a3a 1052 page->mapping = NULL;
81422f29 1053 bad += free_pages_check(page);
8cc3b392 1054 if (bad)
ec95f53a 1055 return false;
689bcebf 1056
48c96a36
JK
1057 reset_page_owner(page, order);
1058
3ac7fe5a 1059 if (!PageHighMem(page)) {
b8af2941
PK
1060 debug_check_no_locks_freed(page_address(page),
1061 PAGE_SIZE << order);
3ac7fe5a
TG
1062 debug_check_no_obj_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 }
dafb1367 1065 arch_free_page(page, order);
8823b1db 1066 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1067 kernel_map_pages(page, 1 << order, 0);
dafb1367 1068
ec95f53a
KM
1069 return true;
1070}
1071
1072static void __free_pages_ok(struct page *page, unsigned int order)
1073{
1074 unsigned long flags;
95e34412 1075 int migratetype;
dc4b0caf 1076 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1077
1078 if (!free_pages_prepare(page, order))
1079 return;
1080
cfc47a28 1081 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1082 local_irq_save(flags);
f8891e5e 1083 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1084 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1085 local_irq_restore(flags);
1da177e4
LT
1086}
1087
949698a3 1088static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1089{
c3993076 1090 unsigned int nr_pages = 1 << order;
e2d0bd2b 1091 struct page *p = page;
c3993076 1092 unsigned int loop;
a226f6c8 1093
e2d0bd2b
YL
1094 prefetchw(p);
1095 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1096 prefetchw(p + 1);
c3993076
JW
1097 __ClearPageReserved(p);
1098 set_page_count(p, 0);
a226f6c8 1099 }
e2d0bd2b
YL
1100 __ClearPageReserved(p);
1101 set_page_count(p, 0);
c3993076 1102
e2d0bd2b 1103 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1104 set_page_refcounted(page);
1105 __free_pages(page, order);
a226f6c8
DH
1106}
1107
75a592a4
MG
1108#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1109 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1110
75a592a4
MG
1111static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1112
1113int __meminit early_pfn_to_nid(unsigned long pfn)
1114{
7ace9917 1115 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1116 int nid;
1117
7ace9917 1118 spin_lock(&early_pfn_lock);
75a592a4 1119 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1120 if (nid < 0)
1121 nid = 0;
1122 spin_unlock(&early_pfn_lock);
1123
1124 return nid;
75a592a4
MG
1125}
1126#endif
1127
1128#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1130 struct mminit_pfnnid_cache *state)
1131{
1132 int nid;
1133
1134 nid = __early_pfn_to_nid(pfn, state);
1135 if (nid >= 0 && nid != node)
1136 return false;
1137 return true;
1138}
1139
1140/* Only safe to use early in boot when initialisation is single-threaded */
1141static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1142{
1143 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1144}
1145
1146#else
1147
1148static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1149{
1150 return true;
1151}
1152static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1153 struct mminit_pfnnid_cache *state)
1154{
1155 return true;
1156}
1157#endif
1158
1159
0e1cc95b 1160void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1161 unsigned int order)
1162{
1163 if (early_page_uninitialised(pfn))
1164 return;
949698a3 1165 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1166}
1167
7cf91a98
JK
1168/*
1169 * Check that the whole (or subset of) a pageblock given by the interval of
1170 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1171 * with the migration of free compaction scanner. The scanners then need to
1172 * use only pfn_valid_within() check for arches that allow holes within
1173 * pageblocks.
1174 *
1175 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1176 *
1177 * It's possible on some configurations to have a setup like node0 node1 node0
1178 * i.e. it's possible that all pages within a zones range of pages do not
1179 * belong to a single zone. We assume that a border between node0 and node1
1180 * can occur within a single pageblock, but not a node0 node1 node0
1181 * interleaving within a single pageblock. It is therefore sufficient to check
1182 * the first and last page of a pageblock and avoid checking each individual
1183 * page in a pageblock.
1184 */
1185struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1186 unsigned long end_pfn, struct zone *zone)
1187{
1188 struct page *start_page;
1189 struct page *end_page;
1190
1191 /* end_pfn is one past the range we are checking */
1192 end_pfn--;
1193
1194 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1195 return NULL;
1196
1197 start_page = pfn_to_page(start_pfn);
1198
1199 if (page_zone(start_page) != zone)
1200 return NULL;
1201
1202 end_page = pfn_to_page(end_pfn);
1203
1204 /* This gives a shorter code than deriving page_zone(end_page) */
1205 if (page_zone_id(start_page) != page_zone_id(end_page))
1206 return NULL;
1207
1208 return start_page;
1209}
1210
1211void set_zone_contiguous(struct zone *zone)
1212{
1213 unsigned long block_start_pfn = zone->zone_start_pfn;
1214 unsigned long block_end_pfn;
1215
1216 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1217 for (; block_start_pfn < zone_end_pfn(zone);
1218 block_start_pfn = block_end_pfn,
1219 block_end_pfn += pageblock_nr_pages) {
1220
1221 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1222
1223 if (!__pageblock_pfn_to_page(block_start_pfn,
1224 block_end_pfn, zone))
1225 return;
1226 }
1227
1228 /* We confirm that there is no hole */
1229 zone->contiguous = true;
1230}
1231
1232void clear_zone_contiguous(struct zone *zone)
1233{
1234 zone->contiguous = false;
1235}
1236
7e18adb4 1237#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1238static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1239 unsigned long pfn, int nr_pages)
1240{
1241 int i;
1242
1243 if (!page)
1244 return;
1245
1246 /* Free a large naturally-aligned chunk if possible */
1247 if (nr_pages == MAX_ORDER_NR_PAGES &&
1248 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1249 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1250 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1251 return;
1252 }
1253
949698a3
LZ
1254 for (i = 0; i < nr_pages; i++, page++)
1255 __free_pages_boot_core(page, 0);
a4de83dd
MG
1256}
1257
d3cd131d
NS
1258/* Completion tracking for deferred_init_memmap() threads */
1259static atomic_t pgdat_init_n_undone __initdata;
1260static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1261
1262static inline void __init pgdat_init_report_one_done(void)
1263{
1264 if (atomic_dec_and_test(&pgdat_init_n_undone))
1265 complete(&pgdat_init_all_done_comp);
1266}
0e1cc95b 1267
7e18adb4 1268/* Initialise remaining memory on a node */
0e1cc95b 1269static int __init deferred_init_memmap(void *data)
7e18adb4 1270{
0e1cc95b
MG
1271 pg_data_t *pgdat = data;
1272 int nid = pgdat->node_id;
7e18adb4
MG
1273 struct mminit_pfnnid_cache nid_init_state = { };
1274 unsigned long start = jiffies;
1275 unsigned long nr_pages = 0;
1276 unsigned long walk_start, walk_end;
1277 int i, zid;
1278 struct zone *zone;
7e18adb4 1279 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1280 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1281
0e1cc95b 1282 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1283 pgdat_init_report_one_done();
0e1cc95b
MG
1284 return 0;
1285 }
1286
1287 /* Bind memory initialisation thread to a local node if possible */
1288 if (!cpumask_empty(cpumask))
1289 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1290
1291 /* Sanity check boundaries */
1292 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1293 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1294 pgdat->first_deferred_pfn = ULONG_MAX;
1295
1296 /* Only the highest zone is deferred so find it */
1297 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1298 zone = pgdat->node_zones + zid;
1299 if (first_init_pfn < zone_end_pfn(zone))
1300 break;
1301 }
1302
1303 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1304 unsigned long pfn, end_pfn;
54608c3f 1305 struct page *page = NULL;
a4de83dd
MG
1306 struct page *free_base_page = NULL;
1307 unsigned long free_base_pfn = 0;
1308 int nr_to_free = 0;
7e18adb4
MG
1309
1310 end_pfn = min(walk_end, zone_end_pfn(zone));
1311 pfn = first_init_pfn;
1312 if (pfn < walk_start)
1313 pfn = walk_start;
1314 if (pfn < zone->zone_start_pfn)
1315 pfn = zone->zone_start_pfn;
1316
1317 for (; pfn < end_pfn; pfn++) {
54608c3f 1318 if (!pfn_valid_within(pfn))
a4de83dd 1319 goto free_range;
7e18adb4 1320
54608c3f
MG
1321 /*
1322 * Ensure pfn_valid is checked every
1323 * MAX_ORDER_NR_PAGES for memory holes
1324 */
1325 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1326 if (!pfn_valid(pfn)) {
1327 page = NULL;
a4de83dd 1328 goto free_range;
54608c3f
MG
1329 }
1330 }
1331
1332 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1333 page = NULL;
a4de83dd 1334 goto free_range;
54608c3f
MG
1335 }
1336
1337 /* Minimise pfn page lookups and scheduler checks */
1338 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1339 page++;
1340 } else {
a4de83dd
MG
1341 nr_pages += nr_to_free;
1342 deferred_free_range(free_base_page,
1343 free_base_pfn, nr_to_free);
1344 free_base_page = NULL;
1345 free_base_pfn = nr_to_free = 0;
1346
54608c3f
MG
1347 page = pfn_to_page(pfn);
1348 cond_resched();
1349 }
7e18adb4
MG
1350
1351 if (page->flags) {
1352 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1353 goto free_range;
7e18adb4
MG
1354 }
1355
1356 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1357 if (!free_base_page) {
1358 free_base_page = page;
1359 free_base_pfn = pfn;
1360 nr_to_free = 0;
1361 }
1362 nr_to_free++;
1363
1364 /* Where possible, batch up pages for a single free */
1365 continue;
1366free_range:
1367 /* Free the current block of pages to allocator */
1368 nr_pages += nr_to_free;
1369 deferred_free_range(free_base_page, free_base_pfn,
1370 nr_to_free);
1371 free_base_page = NULL;
1372 free_base_pfn = nr_to_free = 0;
7e18adb4 1373 }
a4de83dd 1374
7e18adb4
MG
1375 first_init_pfn = max(end_pfn, first_init_pfn);
1376 }
1377
1378 /* Sanity check that the next zone really is unpopulated */
1379 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1380
0e1cc95b 1381 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1382 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1383
1384 pgdat_init_report_one_done();
0e1cc95b
MG
1385 return 0;
1386}
7cf91a98 1387#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1388
1389void __init page_alloc_init_late(void)
1390{
7cf91a98
JK
1391 struct zone *zone;
1392
1393#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1394 int nid;
1395
d3cd131d
NS
1396 /* There will be num_node_state(N_MEMORY) threads */
1397 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1398 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1399 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1400 }
1401
1402 /* Block until all are initialised */
d3cd131d 1403 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1404
1405 /* Reinit limits that are based on free pages after the kernel is up */
1406 files_maxfiles_init();
7cf91a98
JK
1407#endif
1408
1409 for_each_populated_zone(zone)
1410 set_zone_contiguous(zone);
7e18adb4 1411}
7e18adb4 1412
47118af0 1413#ifdef CONFIG_CMA
9cf510a5 1414/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1415void __init init_cma_reserved_pageblock(struct page *page)
1416{
1417 unsigned i = pageblock_nr_pages;
1418 struct page *p = page;
1419
1420 do {
1421 __ClearPageReserved(p);
1422 set_page_count(p, 0);
1423 } while (++p, --i);
1424
47118af0 1425 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1426
1427 if (pageblock_order >= MAX_ORDER) {
1428 i = pageblock_nr_pages;
1429 p = page;
1430 do {
1431 set_page_refcounted(p);
1432 __free_pages(p, MAX_ORDER - 1);
1433 p += MAX_ORDER_NR_PAGES;
1434 } while (i -= MAX_ORDER_NR_PAGES);
1435 } else {
1436 set_page_refcounted(page);
1437 __free_pages(page, pageblock_order);
1438 }
1439
3dcc0571 1440 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1441}
1442#endif
1da177e4
LT
1443
1444/*
1445 * The order of subdivision here is critical for the IO subsystem.
1446 * Please do not alter this order without good reasons and regression
1447 * testing. Specifically, as large blocks of memory are subdivided,
1448 * the order in which smaller blocks are delivered depends on the order
1449 * they're subdivided in this function. This is the primary factor
1450 * influencing the order in which pages are delivered to the IO
1451 * subsystem according to empirical testing, and this is also justified
1452 * by considering the behavior of a buddy system containing a single
1453 * large block of memory acted on by a series of small allocations.
1454 * This behavior is a critical factor in sglist merging's success.
1455 *
6d49e352 1456 * -- nyc
1da177e4 1457 */
085cc7d5 1458static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1459 int low, int high, struct free_area *area,
1460 int migratetype)
1da177e4
LT
1461{
1462 unsigned long size = 1 << high;
1463
1464 while (high > low) {
1465 area--;
1466 high--;
1467 size >>= 1;
309381fe 1468 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1469
2847cf95 1470 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1471 debug_guardpage_enabled() &&
2847cf95 1472 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1473 /*
1474 * Mark as guard pages (or page), that will allow to
1475 * merge back to allocator when buddy will be freed.
1476 * Corresponding page table entries will not be touched,
1477 * pages will stay not present in virtual address space
1478 */
2847cf95 1479 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1480 continue;
1481 }
b2a0ac88 1482 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1483 area->nr_free++;
1484 set_page_order(&page[size], high);
1485 }
1da177e4
LT
1486}
1487
1da177e4
LT
1488/*
1489 * This page is about to be returned from the page allocator
1490 */
2a7684a2 1491static inline int check_new_page(struct page *page)
1da177e4 1492{
d230dec1 1493 const char *bad_reason = NULL;
f0b791a3
DH
1494 unsigned long bad_flags = 0;
1495
53f9263b 1496 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1497 bad_reason = "nonzero mapcount";
1498 if (unlikely(page->mapping != NULL))
1499 bad_reason = "non-NULL mapping";
fe896d18 1500 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1501 bad_reason = "nonzero _count";
f4c18e6f
NH
1502 if (unlikely(page->flags & __PG_HWPOISON)) {
1503 bad_reason = "HWPoisoned (hardware-corrupted)";
1504 bad_flags = __PG_HWPOISON;
1505 }
f0b791a3
DH
1506 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1507 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1508 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1509 }
9edad6ea
JW
1510#ifdef CONFIG_MEMCG
1511 if (unlikely(page->mem_cgroup))
1512 bad_reason = "page still charged to cgroup";
1513#endif
f0b791a3
DH
1514 if (unlikely(bad_reason)) {
1515 bad_page(page, bad_reason, bad_flags);
689bcebf 1516 return 1;
8cc3b392 1517 }
2a7684a2
WF
1518 return 0;
1519}
1520
1414c7f4
LA
1521static inline bool free_pages_prezeroed(bool poisoned)
1522{
1523 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1524 page_poisoning_enabled() && poisoned;
1525}
1526
75379191
VB
1527static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1528 int alloc_flags)
2a7684a2
WF
1529{
1530 int i;
1414c7f4 1531 bool poisoned = true;
2a7684a2
WF
1532
1533 for (i = 0; i < (1 << order); i++) {
1534 struct page *p = page + i;
1535 if (unlikely(check_new_page(p)))
1536 return 1;
1414c7f4
LA
1537 if (poisoned)
1538 poisoned &= page_is_poisoned(p);
2a7684a2 1539 }
689bcebf 1540
4c21e2f2 1541 set_page_private(page, 0);
7835e98b 1542 set_page_refcounted(page);
cc102509
NP
1543
1544 arch_alloc_page(page, order);
1da177e4 1545 kernel_map_pages(page, 1 << order, 1);
8823b1db 1546 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1547 kasan_alloc_pages(page, order);
17cf4406 1548
1414c7f4 1549 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1550 for (i = 0; i < (1 << order); i++)
1551 clear_highpage(page + i);
17cf4406
NP
1552
1553 if (order && (gfp_flags & __GFP_COMP))
1554 prep_compound_page(page, order);
1555
48c96a36
JK
1556 set_page_owner(page, order, gfp_flags);
1557
75379191 1558 /*
2f064f34 1559 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1560 * allocate the page. The expectation is that the caller is taking
1561 * steps that will free more memory. The caller should avoid the page
1562 * being used for !PFMEMALLOC purposes.
1563 */
2f064f34
MH
1564 if (alloc_flags & ALLOC_NO_WATERMARKS)
1565 set_page_pfmemalloc(page);
1566 else
1567 clear_page_pfmemalloc(page);
75379191 1568
689bcebf 1569 return 0;
1da177e4
LT
1570}
1571
56fd56b8
MG
1572/*
1573 * Go through the free lists for the given migratetype and remove
1574 * the smallest available page from the freelists
1575 */
728ec980
MG
1576static inline
1577struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1578 int migratetype)
1579{
1580 unsigned int current_order;
b8af2941 1581 struct free_area *area;
56fd56b8
MG
1582 struct page *page;
1583
1584 /* Find a page of the appropriate size in the preferred list */
1585 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1586 area = &(zone->free_area[current_order]);
a16601c5 1587 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1588 struct page, lru);
a16601c5
GT
1589 if (!page)
1590 continue;
56fd56b8
MG
1591 list_del(&page->lru);
1592 rmv_page_order(page);
1593 area->nr_free--;
56fd56b8 1594 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1595 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1596 return page;
1597 }
1598
1599 return NULL;
1600}
1601
1602
b2a0ac88
MG
1603/*
1604 * This array describes the order lists are fallen back to when
1605 * the free lists for the desirable migrate type are depleted
1606 */
47118af0 1607static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1608 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1609 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1610 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1611#ifdef CONFIG_CMA
974a786e 1612 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1613#endif
194159fb 1614#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1615 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1616#endif
b2a0ac88
MG
1617};
1618
dc67647b
JK
1619#ifdef CONFIG_CMA
1620static struct page *__rmqueue_cma_fallback(struct zone *zone,
1621 unsigned int order)
1622{
1623 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1624}
1625#else
1626static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1627 unsigned int order) { return NULL; }
1628#endif
1629
c361be55
MG
1630/*
1631 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1632 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1633 * boundary. If alignment is required, use move_freepages_block()
1634 */
435b405c 1635int move_freepages(struct zone *zone,
b69a7288
AB
1636 struct page *start_page, struct page *end_page,
1637 int migratetype)
c361be55
MG
1638{
1639 struct page *page;
d00181b9 1640 unsigned int order;
d100313f 1641 int pages_moved = 0;
c361be55
MG
1642
1643#ifndef CONFIG_HOLES_IN_ZONE
1644 /*
1645 * page_zone is not safe to call in this context when
1646 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1647 * anyway as we check zone boundaries in move_freepages_block().
1648 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1649 * grouping pages by mobility
c361be55 1650 */
97ee4ba7 1651 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1652#endif
1653
1654 for (page = start_page; page <= end_page;) {
344c790e 1655 /* Make sure we are not inadvertently changing nodes */
309381fe 1656 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1657
c361be55
MG
1658 if (!pfn_valid_within(page_to_pfn(page))) {
1659 page++;
1660 continue;
1661 }
1662
1663 if (!PageBuddy(page)) {
1664 page++;
1665 continue;
1666 }
1667
1668 order = page_order(page);
84be48d8
KS
1669 list_move(&page->lru,
1670 &zone->free_area[order].free_list[migratetype]);
c361be55 1671 page += 1 << order;
d100313f 1672 pages_moved += 1 << order;
c361be55
MG
1673 }
1674
d100313f 1675 return pages_moved;
c361be55
MG
1676}
1677
ee6f509c 1678int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1679 int migratetype)
c361be55
MG
1680{
1681 unsigned long start_pfn, end_pfn;
1682 struct page *start_page, *end_page;
1683
1684 start_pfn = page_to_pfn(page);
d9c23400 1685 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1686 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1687 end_page = start_page + pageblock_nr_pages - 1;
1688 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1689
1690 /* Do not cross zone boundaries */
108bcc96 1691 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1692 start_page = page;
108bcc96 1693 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1694 return 0;
1695
1696 return move_freepages(zone, start_page, end_page, migratetype);
1697}
1698
2f66a68f
MG
1699static void change_pageblock_range(struct page *pageblock_page,
1700 int start_order, int migratetype)
1701{
1702 int nr_pageblocks = 1 << (start_order - pageblock_order);
1703
1704 while (nr_pageblocks--) {
1705 set_pageblock_migratetype(pageblock_page, migratetype);
1706 pageblock_page += pageblock_nr_pages;
1707 }
1708}
1709
fef903ef 1710/*
9c0415eb
VB
1711 * When we are falling back to another migratetype during allocation, try to
1712 * steal extra free pages from the same pageblocks to satisfy further
1713 * allocations, instead of polluting multiple pageblocks.
1714 *
1715 * If we are stealing a relatively large buddy page, it is likely there will
1716 * be more free pages in the pageblock, so try to steal them all. For
1717 * reclaimable and unmovable allocations, we steal regardless of page size,
1718 * as fragmentation caused by those allocations polluting movable pageblocks
1719 * is worse than movable allocations stealing from unmovable and reclaimable
1720 * pageblocks.
fef903ef 1721 */
4eb7dce6
JK
1722static bool can_steal_fallback(unsigned int order, int start_mt)
1723{
1724 /*
1725 * Leaving this order check is intended, although there is
1726 * relaxed order check in next check. The reason is that
1727 * we can actually steal whole pageblock if this condition met,
1728 * but, below check doesn't guarantee it and that is just heuristic
1729 * so could be changed anytime.
1730 */
1731 if (order >= pageblock_order)
1732 return true;
1733
1734 if (order >= pageblock_order / 2 ||
1735 start_mt == MIGRATE_RECLAIMABLE ||
1736 start_mt == MIGRATE_UNMOVABLE ||
1737 page_group_by_mobility_disabled)
1738 return true;
1739
1740 return false;
1741}
1742
1743/*
1744 * This function implements actual steal behaviour. If order is large enough,
1745 * we can steal whole pageblock. If not, we first move freepages in this
1746 * pageblock and check whether half of pages are moved or not. If half of
1747 * pages are moved, we can change migratetype of pageblock and permanently
1748 * use it's pages as requested migratetype in the future.
1749 */
1750static void steal_suitable_fallback(struct zone *zone, struct page *page,
1751 int start_type)
fef903ef 1752{
d00181b9 1753 unsigned int current_order = page_order(page);
4eb7dce6 1754 int pages;
fef903ef 1755
fef903ef
SB
1756 /* Take ownership for orders >= pageblock_order */
1757 if (current_order >= pageblock_order) {
1758 change_pageblock_range(page, current_order, start_type);
3a1086fb 1759 return;
fef903ef
SB
1760 }
1761
4eb7dce6 1762 pages = move_freepages_block(zone, page, start_type);
fef903ef 1763
4eb7dce6
JK
1764 /* Claim the whole block if over half of it is free */
1765 if (pages >= (1 << (pageblock_order-1)) ||
1766 page_group_by_mobility_disabled)
1767 set_pageblock_migratetype(page, start_type);
1768}
1769
2149cdae
JK
1770/*
1771 * Check whether there is a suitable fallback freepage with requested order.
1772 * If only_stealable is true, this function returns fallback_mt only if
1773 * we can steal other freepages all together. This would help to reduce
1774 * fragmentation due to mixed migratetype pages in one pageblock.
1775 */
1776int find_suitable_fallback(struct free_area *area, unsigned int order,
1777 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1778{
1779 int i;
1780 int fallback_mt;
1781
1782 if (area->nr_free == 0)
1783 return -1;
1784
1785 *can_steal = false;
1786 for (i = 0;; i++) {
1787 fallback_mt = fallbacks[migratetype][i];
974a786e 1788 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1789 break;
1790
1791 if (list_empty(&area->free_list[fallback_mt]))
1792 continue;
fef903ef 1793
4eb7dce6
JK
1794 if (can_steal_fallback(order, migratetype))
1795 *can_steal = true;
1796
2149cdae
JK
1797 if (!only_stealable)
1798 return fallback_mt;
1799
1800 if (*can_steal)
1801 return fallback_mt;
fef903ef 1802 }
4eb7dce6
JK
1803
1804 return -1;
fef903ef
SB
1805}
1806
0aaa29a5
MG
1807/*
1808 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1809 * there are no empty page blocks that contain a page with a suitable order
1810 */
1811static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1812 unsigned int alloc_order)
1813{
1814 int mt;
1815 unsigned long max_managed, flags;
1816
1817 /*
1818 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1819 * Check is race-prone but harmless.
1820 */
1821 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1822 if (zone->nr_reserved_highatomic >= max_managed)
1823 return;
1824
1825 spin_lock_irqsave(&zone->lock, flags);
1826
1827 /* Recheck the nr_reserved_highatomic limit under the lock */
1828 if (zone->nr_reserved_highatomic >= max_managed)
1829 goto out_unlock;
1830
1831 /* Yoink! */
1832 mt = get_pageblock_migratetype(page);
1833 if (mt != MIGRATE_HIGHATOMIC &&
1834 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1835 zone->nr_reserved_highatomic += pageblock_nr_pages;
1836 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1837 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1838 }
1839
1840out_unlock:
1841 spin_unlock_irqrestore(&zone->lock, flags);
1842}
1843
1844/*
1845 * Used when an allocation is about to fail under memory pressure. This
1846 * potentially hurts the reliability of high-order allocations when under
1847 * intense memory pressure but failed atomic allocations should be easier
1848 * to recover from than an OOM.
1849 */
1850static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1851{
1852 struct zonelist *zonelist = ac->zonelist;
1853 unsigned long flags;
1854 struct zoneref *z;
1855 struct zone *zone;
1856 struct page *page;
1857 int order;
1858
1859 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1860 ac->nodemask) {
1861 /* Preserve at least one pageblock */
1862 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1863 continue;
1864
1865 spin_lock_irqsave(&zone->lock, flags);
1866 for (order = 0; order < MAX_ORDER; order++) {
1867 struct free_area *area = &(zone->free_area[order]);
1868
a16601c5
GT
1869 page = list_first_entry_or_null(
1870 &area->free_list[MIGRATE_HIGHATOMIC],
1871 struct page, lru);
1872 if (!page)
0aaa29a5
MG
1873 continue;
1874
0aaa29a5
MG
1875 /*
1876 * It should never happen but changes to locking could
1877 * inadvertently allow a per-cpu drain to add pages
1878 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1879 * and watch for underflows.
1880 */
1881 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1882 zone->nr_reserved_highatomic);
1883
1884 /*
1885 * Convert to ac->migratetype and avoid the normal
1886 * pageblock stealing heuristics. Minimally, the caller
1887 * is doing the work and needs the pages. More
1888 * importantly, if the block was always converted to
1889 * MIGRATE_UNMOVABLE or another type then the number
1890 * of pageblocks that cannot be completely freed
1891 * may increase.
1892 */
1893 set_pageblock_migratetype(page, ac->migratetype);
1894 move_freepages_block(zone, page, ac->migratetype);
1895 spin_unlock_irqrestore(&zone->lock, flags);
1896 return;
1897 }
1898 spin_unlock_irqrestore(&zone->lock, flags);
1899 }
1900}
1901
b2a0ac88 1902/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1903static inline struct page *
7aeb09f9 1904__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1905{
b8af2941 1906 struct free_area *area;
7aeb09f9 1907 unsigned int current_order;
b2a0ac88 1908 struct page *page;
4eb7dce6
JK
1909 int fallback_mt;
1910 bool can_steal;
b2a0ac88
MG
1911
1912 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1913 for (current_order = MAX_ORDER-1;
1914 current_order >= order && current_order <= MAX_ORDER-1;
1915 --current_order) {
4eb7dce6
JK
1916 area = &(zone->free_area[current_order]);
1917 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1918 start_migratetype, false, &can_steal);
4eb7dce6
JK
1919 if (fallback_mt == -1)
1920 continue;
b2a0ac88 1921
a16601c5 1922 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1923 struct page, lru);
1924 if (can_steal)
1925 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1926
4eb7dce6
JK
1927 /* Remove the page from the freelists */
1928 area->nr_free--;
1929 list_del(&page->lru);
1930 rmv_page_order(page);
3a1086fb 1931
4eb7dce6
JK
1932 expand(zone, page, order, current_order, area,
1933 start_migratetype);
1934 /*
bb14c2c7 1935 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1936 * migratetype depending on the decisions in
bb14c2c7
VB
1937 * find_suitable_fallback(). This is OK as long as it does not
1938 * differ for MIGRATE_CMA pageblocks. Those can be used as
1939 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1940 */
bb14c2c7 1941 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1942
4eb7dce6
JK
1943 trace_mm_page_alloc_extfrag(page, order, current_order,
1944 start_migratetype, fallback_mt);
e0fff1bd 1945
4eb7dce6 1946 return page;
b2a0ac88
MG
1947 }
1948
728ec980 1949 return NULL;
b2a0ac88
MG
1950}
1951
56fd56b8 1952/*
1da177e4
LT
1953 * Do the hard work of removing an element from the buddy allocator.
1954 * Call me with the zone->lock already held.
1955 */
b2a0ac88 1956static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1957 int migratetype)
1da177e4 1958{
1da177e4
LT
1959 struct page *page;
1960
56fd56b8 1961 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1962 if (unlikely(!page)) {
dc67647b
JK
1963 if (migratetype == MIGRATE_MOVABLE)
1964 page = __rmqueue_cma_fallback(zone, order);
1965
1966 if (!page)
1967 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1968 }
1969
0d3d062a 1970 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1971 return page;
1da177e4
LT
1972}
1973
5f63b720 1974/*
1da177e4
LT
1975 * Obtain a specified number of elements from the buddy allocator, all under
1976 * a single hold of the lock, for efficiency. Add them to the supplied list.
1977 * Returns the number of new pages which were placed at *list.
1978 */
5f63b720 1979static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1980 unsigned long count, struct list_head *list,
b745bc85 1981 int migratetype, bool cold)
1da177e4 1982{
5bcc9f86 1983 int i;
5f63b720 1984
c54ad30c 1985 spin_lock(&zone->lock);
1da177e4 1986 for (i = 0; i < count; ++i) {
6ac0206b 1987 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1988 if (unlikely(page == NULL))
1da177e4 1989 break;
81eabcbe
MG
1990
1991 /*
1992 * Split buddy pages returned by expand() are received here
1993 * in physical page order. The page is added to the callers and
1994 * list and the list head then moves forward. From the callers
1995 * perspective, the linked list is ordered by page number in
1996 * some conditions. This is useful for IO devices that can
1997 * merge IO requests if the physical pages are ordered
1998 * properly.
1999 */
b745bc85 2000 if (likely(!cold))
e084b2d9
MG
2001 list_add(&page->lru, list);
2002 else
2003 list_add_tail(&page->lru, list);
81eabcbe 2004 list = &page->lru;
bb14c2c7 2005 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2006 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2007 -(1 << order));
1da177e4 2008 }
f2260e6b 2009 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2010 spin_unlock(&zone->lock);
085cc7d5 2011 return i;
1da177e4
LT
2012}
2013
4ae7c039 2014#ifdef CONFIG_NUMA
8fce4d8e 2015/*
4037d452
CL
2016 * Called from the vmstat counter updater to drain pagesets of this
2017 * currently executing processor on remote nodes after they have
2018 * expired.
2019 *
879336c3
CL
2020 * Note that this function must be called with the thread pinned to
2021 * a single processor.
8fce4d8e 2022 */
4037d452 2023void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2024{
4ae7c039 2025 unsigned long flags;
7be12fc9 2026 int to_drain, batch;
4ae7c039 2027
4037d452 2028 local_irq_save(flags);
4db0c3c2 2029 batch = READ_ONCE(pcp->batch);
7be12fc9 2030 to_drain = min(pcp->count, batch);
2a13515c
KM
2031 if (to_drain > 0) {
2032 free_pcppages_bulk(zone, to_drain, pcp);
2033 pcp->count -= to_drain;
2034 }
4037d452 2035 local_irq_restore(flags);
4ae7c039
CL
2036}
2037#endif
2038
9f8f2172 2039/*
93481ff0 2040 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2041 *
2042 * The processor must either be the current processor and the
2043 * thread pinned to the current processor or a processor that
2044 * is not online.
2045 */
93481ff0 2046static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2047{
c54ad30c 2048 unsigned long flags;
93481ff0
VB
2049 struct per_cpu_pageset *pset;
2050 struct per_cpu_pages *pcp;
1da177e4 2051
93481ff0
VB
2052 local_irq_save(flags);
2053 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2054
93481ff0
VB
2055 pcp = &pset->pcp;
2056 if (pcp->count) {
2057 free_pcppages_bulk(zone, pcp->count, pcp);
2058 pcp->count = 0;
2059 }
2060 local_irq_restore(flags);
2061}
3dfa5721 2062
93481ff0
VB
2063/*
2064 * Drain pcplists of all zones on the indicated processor.
2065 *
2066 * The processor must either be the current processor and the
2067 * thread pinned to the current processor or a processor that
2068 * is not online.
2069 */
2070static void drain_pages(unsigned int cpu)
2071{
2072 struct zone *zone;
2073
2074 for_each_populated_zone(zone) {
2075 drain_pages_zone(cpu, zone);
1da177e4
LT
2076 }
2077}
1da177e4 2078
9f8f2172
CL
2079/*
2080 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2081 *
2082 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2083 * the single zone's pages.
9f8f2172 2084 */
93481ff0 2085void drain_local_pages(struct zone *zone)
9f8f2172 2086{
93481ff0
VB
2087 int cpu = smp_processor_id();
2088
2089 if (zone)
2090 drain_pages_zone(cpu, zone);
2091 else
2092 drain_pages(cpu);
9f8f2172
CL
2093}
2094
2095/*
74046494
GBY
2096 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2097 *
93481ff0
VB
2098 * When zone parameter is non-NULL, spill just the single zone's pages.
2099 *
74046494
GBY
2100 * Note that this code is protected against sending an IPI to an offline
2101 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2102 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2103 * nothing keeps CPUs from showing up after we populated the cpumask and
2104 * before the call to on_each_cpu_mask().
9f8f2172 2105 */
93481ff0 2106void drain_all_pages(struct zone *zone)
9f8f2172 2107{
74046494 2108 int cpu;
74046494
GBY
2109
2110 /*
2111 * Allocate in the BSS so we wont require allocation in
2112 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2113 */
2114 static cpumask_t cpus_with_pcps;
2115
2116 /*
2117 * We don't care about racing with CPU hotplug event
2118 * as offline notification will cause the notified
2119 * cpu to drain that CPU pcps and on_each_cpu_mask
2120 * disables preemption as part of its processing
2121 */
2122 for_each_online_cpu(cpu) {
93481ff0
VB
2123 struct per_cpu_pageset *pcp;
2124 struct zone *z;
74046494 2125 bool has_pcps = false;
93481ff0
VB
2126
2127 if (zone) {
74046494 2128 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2129 if (pcp->pcp.count)
74046494 2130 has_pcps = true;
93481ff0
VB
2131 } else {
2132 for_each_populated_zone(z) {
2133 pcp = per_cpu_ptr(z->pageset, cpu);
2134 if (pcp->pcp.count) {
2135 has_pcps = true;
2136 break;
2137 }
74046494
GBY
2138 }
2139 }
93481ff0 2140
74046494
GBY
2141 if (has_pcps)
2142 cpumask_set_cpu(cpu, &cpus_with_pcps);
2143 else
2144 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2145 }
93481ff0
VB
2146 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2147 zone, 1);
9f8f2172
CL
2148}
2149
296699de 2150#ifdef CONFIG_HIBERNATION
1da177e4
LT
2151
2152void mark_free_pages(struct zone *zone)
2153{
f623f0db
RW
2154 unsigned long pfn, max_zone_pfn;
2155 unsigned long flags;
7aeb09f9 2156 unsigned int order, t;
86760a2c 2157 struct page *page;
1da177e4 2158
8080fc03 2159 if (zone_is_empty(zone))
1da177e4
LT
2160 return;
2161
2162 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2163
108bcc96 2164 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2165 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2166 if (pfn_valid(pfn)) {
86760a2c 2167 page = pfn_to_page(pfn);
ba6b0979
JK
2168
2169 if (page_zone(page) != zone)
2170 continue;
2171
7be98234
RW
2172 if (!swsusp_page_is_forbidden(page))
2173 swsusp_unset_page_free(page);
f623f0db 2174 }
1da177e4 2175
b2a0ac88 2176 for_each_migratetype_order(order, t) {
86760a2c
GT
2177 list_for_each_entry(page,
2178 &zone->free_area[order].free_list[t], lru) {
f623f0db 2179 unsigned long i;
1da177e4 2180
86760a2c 2181 pfn = page_to_pfn(page);
f623f0db 2182 for (i = 0; i < (1UL << order); i++)
7be98234 2183 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2184 }
b2a0ac88 2185 }
1da177e4
LT
2186 spin_unlock_irqrestore(&zone->lock, flags);
2187}
e2c55dc8 2188#endif /* CONFIG_PM */
1da177e4 2189
1da177e4
LT
2190/*
2191 * Free a 0-order page
b745bc85 2192 * cold == true ? free a cold page : free a hot page
1da177e4 2193 */
b745bc85 2194void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2195{
2196 struct zone *zone = page_zone(page);
2197 struct per_cpu_pages *pcp;
2198 unsigned long flags;
dc4b0caf 2199 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2200 int migratetype;
1da177e4 2201
ec95f53a 2202 if (!free_pages_prepare(page, 0))
689bcebf
HD
2203 return;
2204
dc4b0caf 2205 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2206 set_pcppage_migratetype(page, migratetype);
1da177e4 2207 local_irq_save(flags);
f8891e5e 2208 __count_vm_event(PGFREE);
da456f14 2209
5f8dcc21
MG
2210 /*
2211 * We only track unmovable, reclaimable and movable on pcp lists.
2212 * Free ISOLATE pages back to the allocator because they are being
2213 * offlined but treat RESERVE as movable pages so we can get those
2214 * areas back if necessary. Otherwise, we may have to free
2215 * excessively into the page allocator
2216 */
2217 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2218 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2219 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2220 goto out;
2221 }
2222 migratetype = MIGRATE_MOVABLE;
2223 }
2224
99dcc3e5 2225 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2226 if (!cold)
5f8dcc21 2227 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2228 else
2229 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2230 pcp->count++;
48db57f8 2231 if (pcp->count >= pcp->high) {
4db0c3c2 2232 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2233 free_pcppages_bulk(zone, batch, pcp);
2234 pcp->count -= batch;
48db57f8 2235 }
5f8dcc21
MG
2236
2237out:
1da177e4 2238 local_irq_restore(flags);
1da177e4
LT
2239}
2240
cc59850e
KK
2241/*
2242 * Free a list of 0-order pages
2243 */
b745bc85 2244void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2245{
2246 struct page *page, *next;
2247
2248 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2249 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2250 free_hot_cold_page(page, cold);
2251 }
2252}
2253
8dfcc9ba
NP
2254/*
2255 * split_page takes a non-compound higher-order page, and splits it into
2256 * n (1<<order) sub-pages: page[0..n]
2257 * Each sub-page must be freed individually.
2258 *
2259 * Note: this is probably too low level an operation for use in drivers.
2260 * Please consult with lkml before using this in your driver.
2261 */
2262void split_page(struct page *page, unsigned int order)
2263{
2264 int i;
e2cfc911 2265 gfp_t gfp_mask;
8dfcc9ba 2266
309381fe
SL
2267 VM_BUG_ON_PAGE(PageCompound(page), page);
2268 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2269
2270#ifdef CONFIG_KMEMCHECK
2271 /*
2272 * Split shadow pages too, because free(page[0]) would
2273 * otherwise free the whole shadow.
2274 */
2275 if (kmemcheck_page_is_tracked(page))
2276 split_page(virt_to_page(page[0].shadow), order);
2277#endif
2278
e2cfc911
JK
2279 gfp_mask = get_page_owner_gfp(page);
2280 set_page_owner(page, 0, gfp_mask);
48c96a36 2281 for (i = 1; i < (1 << order); i++) {
7835e98b 2282 set_page_refcounted(page + i);
e2cfc911 2283 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2284 }
8dfcc9ba 2285}
5853ff23 2286EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2287
3c605096 2288int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2289{
748446bb
MG
2290 unsigned long watermark;
2291 struct zone *zone;
2139cbe6 2292 int mt;
748446bb
MG
2293
2294 BUG_ON(!PageBuddy(page));
2295
2296 zone = page_zone(page);
2e30abd1 2297 mt = get_pageblock_migratetype(page);
748446bb 2298
194159fb 2299 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2300 /* Obey watermarks as if the page was being allocated */
2301 watermark = low_wmark_pages(zone) + (1 << order);
2302 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2303 return 0;
2304
8fb74b9f 2305 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2306 }
748446bb
MG
2307
2308 /* Remove page from free list */
2309 list_del(&page->lru);
2310 zone->free_area[order].nr_free--;
2311 rmv_page_order(page);
2139cbe6 2312
e2cfc911 2313 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2314
8fb74b9f 2315 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2316 if (order >= pageblock_order - 1) {
2317 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2318 for (; page < endpage; page += pageblock_nr_pages) {
2319 int mt = get_pageblock_migratetype(page);
194159fb 2320 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2321 set_pageblock_migratetype(page,
2322 MIGRATE_MOVABLE);
2323 }
748446bb
MG
2324 }
2325
f3a14ced 2326
8fb74b9f 2327 return 1UL << order;
1fb3f8ca
MG
2328}
2329
2330/*
2331 * Similar to split_page except the page is already free. As this is only
2332 * being used for migration, the migratetype of the block also changes.
2333 * As this is called with interrupts disabled, the caller is responsible
2334 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2335 * are enabled.
2336 *
2337 * Note: this is probably too low level an operation for use in drivers.
2338 * Please consult with lkml before using this in your driver.
2339 */
2340int split_free_page(struct page *page)
2341{
2342 unsigned int order;
2343 int nr_pages;
2344
1fb3f8ca
MG
2345 order = page_order(page);
2346
8fb74b9f 2347 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2348 if (!nr_pages)
2349 return 0;
2350
2351 /* Split into individual pages */
2352 set_page_refcounted(page);
2353 split_page(page, order);
2354 return nr_pages;
748446bb
MG
2355}
2356
060e7417
MG
2357/*
2358 * Update NUMA hit/miss statistics
2359 *
2360 * Must be called with interrupts disabled.
2361 *
2362 * When __GFP_OTHER_NODE is set assume the node of the preferred
2363 * zone is the local node. This is useful for daemons who allocate
2364 * memory on behalf of other processes.
2365 */
2366static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2367 gfp_t flags)
2368{
2369#ifdef CONFIG_NUMA
2370 int local_nid = numa_node_id();
2371 enum zone_stat_item local_stat = NUMA_LOCAL;
2372
2373 if (unlikely(flags & __GFP_OTHER_NODE)) {
2374 local_stat = NUMA_OTHER;
2375 local_nid = preferred_zone->node;
2376 }
2377
2378 if (z->node == local_nid) {
2379 __inc_zone_state(z, NUMA_HIT);
2380 __inc_zone_state(z, local_stat);
2381 } else {
2382 __inc_zone_state(z, NUMA_MISS);
2383 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2384 }
2385#endif
2386}
2387
1da177e4 2388/*
75379191 2389 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2390 */
0a15c3e9
MG
2391static inline
2392struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2393 struct zone *zone, unsigned int order,
0aaa29a5 2394 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2395{
2396 unsigned long flags;
689bcebf 2397 struct page *page;
b745bc85 2398 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2399
48db57f8 2400 if (likely(order == 0)) {
1da177e4 2401 struct per_cpu_pages *pcp;
5f8dcc21 2402 struct list_head *list;
1da177e4 2403
1da177e4 2404 local_irq_save(flags);
99dcc3e5
CL
2405 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2406 list = &pcp->lists[migratetype];
5f8dcc21 2407 if (list_empty(list)) {
535131e6 2408 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2409 pcp->batch, list,
e084b2d9 2410 migratetype, cold);
5f8dcc21 2411 if (unlikely(list_empty(list)))
6fb332fa 2412 goto failed;
535131e6 2413 }
b92a6edd 2414
5f8dcc21 2415 if (cold)
a16601c5 2416 page = list_last_entry(list, struct page, lru);
5f8dcc21 2417 else
a16601c5 2418 page = list_first_entry(list, struct page, lru);
5f8dcc21 2419
754078eb 2420 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2421 list_del(&page->lru);
2422 pcp->count--;
7fb1d9fc 2423 } else {
0f352e53
MH
2424 /*
2425 * We most definitely don't want callers attempting to
2426 * allocate greater than order-1 page units with __GFP_NOFAIL.
2427 */
2428 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2429 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2430
2431 page = NULL;
2432 if (alloc_flags & ALLOC_HARDER) {
2433 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2434 if (page)
2435 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2436 }
2437 if (!page)
6ac0206b 2438 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2439 spin_unlock(&zone->lock);
2440 if (!page)
2441 goto failed;
754078eb 2442 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2443 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2444 get_pcppage_migratetype(page));
1da177e4
LT
2445 }
2446
abe5f972 2447 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2448 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2449 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2450
f8891e5e 2451 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2452 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2453 local_irq_restore(flags);
1da177e4 2454
309381fe 2455 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2456 return page;
a74609fa
NP
2457
2458failed:
2459 local_irq_restore(flags);
a74609fa 2460 return NULL;
1da177e4
LT
2461}
2462
933e312e
AM
2463#ifdef CONFIG_FAIL_PAGE_ALLOC
2464
b2588c4b 2465static struct {
933e312e
AM
2466 struct fault_attr attr;
2467
621a5f7a 2468 bool ignore_gfp_highmem;
71baba4b 2469 bool ignore_gfp_reclaim;
54114994 2470 u32 min_order;
933e312e
AM
2471} fail_page_alloc = {
2472 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2473 .ignore_gfp_reclaim = true,
621a5f7a 2474 .ignore_gfp_highmem = true,
54114994 2475 .min_order = 1,
933e312e
AM
2476};
2477
2478static int __init setup_fail_page_alloc(char *str)
2479{
2480 return setup_fault_attr(&fail_page_alloc.attr, str);
2481}
2482__setup("fail_page_alloc=", setup_fail_page_alloc);
2483
deaf386e 2484static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2485{
54114994 2486 if (order < fail_page_alloc.min_order)
deaf386e 2487 return false;
933e312e 2488 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2489 return false;
933e312e 2490 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2491 return false;
71baba4b
MG
2492 if (fail_page_alloc.ignore_gfp_reclaim &&
2493 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2494 return false;
933e312e
AM
2495
2496 return should_fail(&fail_page_alloc.attr, 1 << order);
2497}
2498
2499#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2500
2501static int __init fail_page_alloc_debugfs(void)
2502{
f4ae40a6 2503 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2504 struct dentry *dir;
933e312e 2505
dd48c085
AM
2506 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2507 &fail_page_alloc.attr);
2508 if (IS_ERR(dir))
2509 return PTR_ERR(dir);
933e312e 2510
b2588c4b 2511 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2512 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2513 goto fail;
2514 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2515 &fail_page_alloc.ignore_gfp_highmem))
2516 goto fail;
2517 if (!debugfs_create_u32("min-order", mode, dir,
2518 &fail_page_alloc.min_order))
2519 goto fail;
2520
2521 return 0;
2522fail:
dd48c085 2523 debugfs_remove_recursive(dir);
933e312e 2524
b2588c4b 2525 return -ENOMEM;
933e312e
AM
2526}
2527
2528late_initcall(fail_page_alloc_debugfs);
2529
2530#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2531
2532#else /* CONFIG_FAIL_PAGE_ALLOC */
2533
deaf386e 2534static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2535{
deaf386e 2536 return false;
933e312e
AM
2537}
2538
2539#endif /* CONFIG_FAIL_PAGE_ALLOC */
2540
1da177e4 2541/*
97a16fc8
MG
2542 * Return true if free base pages are above 'mark'. For high-order checks it
2543 * will return true of the order-0 watermark is reached and there is at least
2544 * one free page of a suitable size. Checking now avoids taking the zone lock
2545 * to check in the allocation paths if no pages are free.
1da177e4 2546 */
7aeb09f9
MG
2547static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2548 unsigned long mark, int classzone_idx, int alloc_flags,
2549 long free_pages)
1da177e4 2550{
d23ad423 2551 long min = mark;
1da177e4 2552 int o;
97a16fc8 2553 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2554
0aaa29a5 2555 /* free_pages may go negative - that's OK */
df0a6daa 2556 free_pages -= (1 << order) - 1;
0aaa29a5 2557
7fb1d9fc 2558 if (alloc_flags & ALLOC_HIGH)
1da177e4 2559 min -= min / 2;
0aaa29a5
MG
2560
2561 /*
2562 * If the caller does not have rights to ALLOC_HARDER then subtract
2563 * the high-atomic reserves. This will over-estimate the size of the
2564 * atomic reserve but it avoids a search.
2565 */
97a16fc8 2566 if (likely(!alloc_harder))
0aaa29a5
MG
2567 free_pages -= z->nr_reserved_highatomic;
2568 else
1da177e4 2569 min -= min / 4;
e2b19197 2570
d95ea5d1
BZ
2571#ifdef CONFIG_CMA
2572 /* If allocation can't use CMA areas don't use free CMA pages */
2573 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2574 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2575#endif
026b0814 2576
97a16fc8
MG
2577 /*
2578 * Check watermarks for an order-0 allocation request. If these
2579 * are not met, then a high-order request also cannot go ahead
2580 * even if a suitable page happened to be free.
2581 */
2582 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2583 return false;
1da177e4 2584
97a16fc8
MG
2585 /* If this is an order-0 request then the watermark is fine */
2586 if (!order)
2587 return true;
2588
2589 /* For a high-order request, check at least one suitable page is free */
2590 for (o = order; o < MAX_ORDER; o++) {
2591 struct free_area *area = &z->free_area[o];
2592 int mt;
2593
2594 if (!area->nr_free)
2595 continue;
2596
2597 if (alloc_harder)
2598 return true;
1da177e4 2599
97a16fc8
MG
2600 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2601 if (!list_empty(&area->free_list[mt]))
2602 return true;
2603 }
2604
2605#ifdef CONFIG_CMA
2606 if ((alloc_flags & ALLOC_CMA) &&
2607 !list_empty(&area->free_list[MIGRATE_CMA])) {
2608 return true;
2609 }
2610#endif
1da177e4 2611 }
97a16fc8 2612 return false;
88f5acf8
MG
2613}
2614
7aeb09f9 2615bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2616 int classzone_idx, int alloc_flags)
2617{
2618 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2619 zone_page_state(z, NR_FREE_PAGES));
2620}
2621
7aeb09f9 2622bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2623 unsigned long mark, int classzone_idx)
88f5acf8
MG
2624{
2625 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2626
2627 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2628 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2629
e2b19197 2630 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2631 free_pages);
1da177e4
LT
2632}
2633
9276b1bc 2634#ifdef CONFIG_NUMA
81c0a2bb
JW
2635static bool zone_local(struct zone *local_zone, struct zone *zone)
2636{
fff4068c 2637 return local_zone->node == zone->node;
81c0a2bb
JW
2638}
2639
957f822a
DR
2640static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2641{
5f7a75ac
MG
2642 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2643 RECLAIM_DISTANCE;
957f822a 2644}
9276b1bc 2645#else /* CONFIG_NUMA */
81c0a2bb
JW
2646static bool zone_local(struct zone *local_zone, struct zone *zone)
2647{
2648 return true;
2649}
2650
957f822a
DR
2651static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2652{
2653 return true;
2654}
9276b1bc
PJ
2655#endif /* CONFIG_NUMA */
2656
4ffeaf35
MG
2657static void reset_alloc_batches(struct zone *preferred_zone)
2658{
2659 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2660
2661 do {
2662 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2663 high_wmark_pages(zone) - low_wmark_pages(zone) -
2664 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2665 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2666 } while (zone++ != preferred_zone);
2667}
2668
7fb1d9fc 2669/*
0798e519 2670 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2671 * a page.
2672 */
2673static struct page *
a9263751
VB
2674get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2675 const struct alloc_context *ac)
753ee728 2676{
a9263751 2677 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2678 struct zoneref *z;
7fb1d9fc 2679 struct page *page = NULL;
5117f45d 2680 struct zone *zone;
4ffeaf35
MG
2681 int nr_fair_skipped = 0;
2682 bool zonelist_rescan;
54a6eb5c 2683
9276b1bc 2684zonelist_scan:
4ffeaf35
MG
2685 zonelist_rescan = false;
2686
7fb1d9fc 2687 /*
9276b1bc 2688 * Scan zonelist, looking for a zone with enough free.
344736f2 2689 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2690 */
a9263751
VB
2691 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2692 ac->nodemask) {
e085dbc5
JW
2693 unsigned long mark;
2694
664eedde
MG
2695 if (cpusets_enabled() &&
2696 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2697 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2698 continue;
81c0a2bb
JW
2699 /*
2700 * Distribute pages in proportion to the individual
2701 * zone size to ensure fair page aging. The zone a
2702 * page was allocated in should have no effect on the
2703 * time the page has in memory before being reclaimed.
81c0a2bb 2704 */
3a025760 2705 if (alloc_flags & ALLOC_FAIR) {
a9263751 2706 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2707 break;
57054651 2708 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2709 nr_fair_skipped++;
3a025760 2710 continue;
4ffeaf35 2711 }
81c0a2bb 2712 }
a756cf59
JW
2713 /*
2714 * When allocating a page cache page for writing, we
2715 * want to get it from a zone that is within its dirty
2716 * limit, such that no single zone holds more than its
2717 * proportional share of globally allowed dirty pages.
2718 * The dirty limits take into account the zone's
2719 * lowmem reserves and high watermark so that kswapd
2720 * should be able to balance it without having to
2721 * write pages from its LRU list.
2722 *
2723 * This may look like it could increase pressure on
2724 * lower zones by failing allocations in higher zones
2725 * before they are full. But the pages that do spill
2726 * over are limited as the lower zones are protected
2727 * by this very same mechanism. It should not become
2728 * a practical burden to them.
2729 *
2730 * XXX: For now, allow allocations to potentially
2731 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2732 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2733 * which is important when on a NUMA setup the allowed
2734 * zones are together not big enough to reach the
2735 * global limit. The proper fix for these situations
2736 * will require awareness of zones in the
2737 * dirty-throttling and the flusher threads.
2738 */
c9ab0c4f 2739 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2740 continue;
7fb1d9fc 2741
e085dbc5
JW
2742 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2743 if (!zone_watermark_ok(zone, order, mark,
a9263751 2744 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2745 int ret;
2746
5dab2911
MG
2747 /* Checked here to keep the fast path fast */
2748 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2749 if (alloc_flags & ALLOC_NO_WATERMARKS)
2750 goto try_this_zone;
2751
957f822a 2752 if (zone_reclaim_mode == 0 ||
a9263751 2753 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2754 continue;
2755
fa5e084e
MG
2756 ret = zone_reclaim(zone, gfp_mask, order);
2757 switch (ret) {
2758 case ZONE_RECLAIM_NOSCAN:
2759 /* did not scan */
cd38b115 2760 continue;
fa5e084e
MG
2761 case ZONE_RECLAIM_FULL:
2762 /* scanned but unreclaimable */
cd38b115 2763 continue;
fa5e084e
MG
2764 default:
2765 /* did we reclaim enough */
fed2719e 2766 if (zone_watermark_ok(zone, order, mark,
a9263751 2767 ac->classzone_idx, alloc_flags))
fed2719e
MG
2768 goto try_this_zone;
2769
fed2719e 2770 continue;
0798e519 2771 }
7fb1d9fc
RS
2772 }
2773
fa5e084e 2774try_this_zone:
a9263751 2775 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2776 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2777 if (page) {
2778 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2779 goto try_this_zone;
0aaa29a5
MG
2780
2781 /*
2782 * If this is a high-order atomic allocation then check
2783 * if the pageblock should be reserved for the future
2784 */
2785 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2786 reserve_highatomic_pageblock(page, zone, order);
2787
75379191
VB
2788 return page;
2789 }
54a6eb5c 2790 }
9276b1bc 2791
4ffeaf35
MG
2792 /*
2793 * The first pass makes sure allocations are spread fairly within the
2794 * local node. However, the local node might have free pages left
2795 * after the fairness batches are exhausted, and remote zones haven't
2796 * even been considered yet. Try once more without fairness, and
2797 * include remote zones now, before entering the slowpath and waking
2798 * kswapd: prefer spilling to a remote zone over swapping locally.
2799 */
2800 if (alloc_flags & ALLOC_FAIR) {
2801 alloc_flags &= ~ALLOC_FAIR;
2802 if (nr_fair_skipped) {
2803 zonelist_rescan = true;
a9263751 2804 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2805 }
2806 if (nr_online_nodes > 1)
2807 zonelist_rescan = true;
2808 }
2809
4ffeaf35
MG
2810 if (zonelist_rescan)
2811 goto zonelist_scan;
2812
2813 return NULL;
753ee728
MH
2814}
2815
29423e77
DR
2816/*
2817 * Large machines with many possible nodes should not always dump per-node
2818 * meminfo in irq context.
2819 */
2820static inline bool should_suppress_show_mem(void)
2821{
2822 bool ret = false;
2823
2824#if NODES_SHIFT > 8
2825 ret = in_interrupt();
2826#endif
2827 return ret;
2828}
2829
a238ab5b
DH
2830static DEFINE_RATELIMIT_STATE(nopage_rs,
2831 DEFAULT_RATELIMIT_INTERVAL,
2832 DEFAULT_RATELIMIT_BURST);
2833
d00181b9 2834void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2835{
a238ab5b
DH
2836 unsigned int filter = SHOW_MEM_FILTER_NODES;
2837
c0a32fc5
SG
2838 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2839 debug_guardpage_minorder() > 0)
a238ab5b
DH
2840 return;
2841
2842 /*
2843 * This documents exceptions given to allocations in certain
2844 * contexts that are allowed to allocate outside current's set
2845 * of allowed nodes.
2846 */
2847 if (!(gfp_mask & __GFP_NOMEMALLOC))
2848 if (test_thread_flag(TIF_MEMDIE) ||
2849 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2850 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2851 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2852 filter &= ~SHOW_MEM_FILTER_NODES;
2853
2854 if (fmt) {
3ee9a4f0
JP
2855 struct va_format vaf;
2856 va_list args;
2857
a238ab5b 2858 va_start(args, fmt);
3ee9a4f0
JP
2859
2860 vaf.fmt = fmt;
2861 vaf.va = &args;
2862
2863 pr_warn("%pV", &vaf);
2864
a238ab5b
DH
2865 va_end(args);
2866 }
2867
c5c990e8
VB
2868 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2869 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2870 dump_stack();
2871 if (!should_suppress_show_mem())
2872 show_mem(filter);
2873}
2874
11e33f6a
MG
2875static inline struct page *
2876__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2877 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2878{
6e0fc46d
DR
2879 struct oom_control oc = {
2880 .zonelist = ac->zonelist,
2881 .nodemask = ac->nodemask,
2882 .gfp_mask = gfp_mask,
2883 .order = order,
6e0fc46d 2884 };
11e33f6a
MG
2885 struct page *page;
2886
9879de73
JW
2887 *did_some_progress = 0;
2888
9879de73 2889 /*
dc56401f
JW
2890 * Acquire the oom lock. If that fails, somebody else is
2891 * making progress for us.
9879de73 2892 */
dc56401f 2893 if (!mutex_trylock(&oom_lock)) {
9879de73 2894 *did_some_progress = 1;
11e33f6a 2895 schedule_timeout_uninterruptible(1);
1da177e4
LT
2896 return NULL;
2897 }
6b1de916 2898
11e33f6a
MG
2899 /*
2900 * Go through the zonelist yet one more time, keep very high watermark
2901 * here, this is only to catch a parallel oom killing, we must fail if
2902 * we're still under heavy pressure.
2903 */
a9263751
VB
2904 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2905 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2906 if (page)
11e33f6a
MG
2907 goto out;
2908
4365a567 2909 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2910 /* Coredumps can quickly deplete all memory reserves */
2911 if (current->flags & PF_DUMPCORE)
2912 goto out;
4365a567
KH
2913 /* The OOM killer will not help higher order allocs */
2914 if (order > PAGE_ALLOC_COSTLY_ORDER)
2915 goto out;
03668b3c 2916 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2917 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2918 goto out;
9083905a
JW
2919 if (pm_suspended_storage())
2920 goto out;
3da88fb3
MH
2921 /*
2922 * XXX: GFP_NOFS allocations should rather fail than rely on
2923 * other request to make a forward progress.
2924 * We are in an unfortunate situation where out_of_memory cannot
2925 * do much for this context but let's try it to at least get
2926 * access to memory reserved if the current task is killed (see
2927 * out_of_memory). Once filesystems are ready to handle allocation
2928 * failures more gracefully we should just bail out here.
2929 */
2930
4167e9b2 2931 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2932 if (gfp_mask & __GFP_THISNODE)
2933 goto out;
2934 }
11e33f6a 2935 /* Exhausted what can be done so it's blamo time */
5020e285 2936 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2937 *did_some_progress = 1;
5020e285
MH
2938
2939 if (gfp_mask & __GFP_NOFAIL) {
2940 page = get_page_from_freelist(gfp_mask, order,
2941 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2942 /*
2943 * fallback to ignore cpuset restriction if our nodes
2944 * are depleted
2945 */
2946 if (!page)
2947 page = get_page_from_freelist(gfp_mask, order,
2948 ALLOC_NO_WATERMARKS, ac);
2949 }
2950 }
11e33f6a 2951out:
dc56401f 2952 mutex_unlock(&oom_lock);
11e33f6a
MG
2953 return page;
2954}
2955
56de7263
MG
2956#ifdef CONFIG_COMPACTION
2957/* Try memory compaction for high-order allocations before reclaim */
2958static struct page *
2959__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2960 int alloc_flags, const struct alloc_context *ac,
2961 enum migrate_mode mode, int *contended_compaction,
2962 bool *deferred_compaction)
56de7263 2963{
53853e2d 2964 unsigned long compact_result;
98dd3b48 2965 struct page *page;
53853e2d
VB
2966
2967 if (!order)
66199712 2968 return NULL;
66199712 2969
c06b1fca 2970 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2971 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2972 mode, contended_compaction);
c06b1fca 2973 current->flags &= ~PF_MEMALLOC;
56de7263 2974
98dd3b48
VB
2975 switch (compact_result) {
2976 case COMPACT_DEFERRED:
53853e2d 2977 *deferred_compaction = true;
98dd3b48
VB
2978 /* fall-through */
2979 case COMPACT_SKIPPED:
2980 return NULL;
2981 default:
2982 break;
2983 }
53853e2d 2984
98dd3b48
VB
2985 /*
2986 * At least in one zone compaction wasn't deferred or skipped, so let's
2987 * count a compaction stall
2988 */
2989 count_vm_event(COMPACTSTALL);
8fb74b9f 2990
a9263751
VB
2991 page = get_page_from_freelist(gfp_mask, order,
2992 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2993
98dd3b48
VB
2994 if (page) {
2995 struct zone *zone = page_zone(page);
53853e2d 2996
98dd3b48
VB
2997 zone->compact_blockskip_flush = false;
2998 compaction_defer_reset(zone, order, true);
2999 count_vm_event(COMPACTSUCCESS);
3000 return page;
3001 }
56de7263 3002
98dd3b48
VB
3003 /*
3004 * It's bad if compaction run occurs and fails. The most likely reason
3005 * is that pages exist, but not enough to satisfy watermarks.
3006 */
3007 count_vm_event(COMPACTFAIL);
66199712 3008
98dd3b48 3009 cond_resched();
56de7263
MG
3010
3011 return NULL;
3012}
3013#else
3014static inline struct page *
3015__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
3016 int alloc_flags, const struct alloc_context *ac,
3017 enum migrate_mode mode, int *contended_compaction,
3018 bool *deferred_compaction)
56de7263
MG
3019{
3020 return NULL;
3021}
3022#endif /* CONFIG_COMPACTION */
3023
bba90710
MS
3024/* Perform direct synchronous page reclaim */
3025static int
a9263751
VB
3026__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3027 const struct alloc_context *ac)
11e33f6a 3028{
11e33f6a 3029 struct reclaim_state reclaim_state;
bba90710 3030 int progress;
11e33f6a
MG
3031
3032 cond_resched();
3033
3034 /* We now go into synchronous reclaim */
3035 cpuset_memory_pressure_bump();
c06b1fca 3036 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3037 lockdep_set_current_reclaim_state(gfp_mask);
3038 reclaim_state.reclaimed_slab = 0;
c06b1fca 3039 current->reclaim_state = &reclaim_state;
11e33f6a 3040
a9263751
VB
3041 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3042 ac->nodemask);
11e33f6a 3043
c06b1fca 3044 current->reclaim_state = NULL;
11e33f6a 3045 lockdep_clear_current_reclaim_state();
c06b1fca 3046 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3047
3048 cond_resched();
3049
bba90710
MS
3050 return progress;
3051}
3052
3053/* The really slow allocator path where we enter direct reclaim */
3054static inline struct page *
3055__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
3056 int alloc_flags, const struct alloc_context *ac,
3057 unsigned long *did_some_progress)
bba90710
MS
3058{
3059 struct page *page = NULL;
3060 bool drained = false;
3061
a9263751 3062 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3063 if (unlikely(!(*did_some_progress)))
3064 return NULL;
11e33f6a 3065
9ee493ce 3066retry:
a9263751
VB
3067 page = get_page_from_freelist(gfp_mask, order,
3068 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3069
3070 /*
3071 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3072 * pages are pinned on the per-cpu lists or in high alloc reserves.
3073 * Shrink them them and try again
9ee493ce
MG
3074 */
3075 if (!page && !drained) {
0aaa29a5 3076 unreserve_highatomic_pageblock(ac);
93481ff0 3077 drain_all_pages(NULL);
9ee493ce
MG
3078 drained = true;
3079 goto retry;
3080 }
3081
11e33f6a
MG
3082 return page;
3083}
3084
a9263751 3085static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3086{
3087 struct zoneref *z;
3088 struct zone *zone;
3089
a9263751
VB
3090 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3091 ac->high_zoneidx, ac->nodemask)
3092 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3093}
3094
341ce06f
PZ
3095static inline int
3096gfp_to_alloc_flags(gfp_t gfp_mask)
3097{
341ce06f 3098 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3099
a56f57ff 3100 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3101 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3102
341ce06f
PZ
3103 /*
3104 * The caller may dip into page reserves a bit more if the caller
3105 * cannot run direct reclaim, or if the caller has realtime scheduling
3106 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3107 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3108 */
e6223a3b 3109 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3110
d0164adc 3111 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3112 /*
b104a35d
DR
3113 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3114 * if it can't schedule.
5c3240d9 3115 */
b104a35d 3116 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3117 alloc_flags |= ALLOC_HARDER;
523b9458 3118 /*
b104a35d 3119 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3120 * comment for __cpuset_node_allowed().
523b9458 3121 */
341ce06f 3122 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3123 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3124 alloc_flags |= ALLOC_HARDER;
3125
b37f1dd0
MG
3126 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3127 if (gfp_mask & __GFP_MEMALLOC)
3128 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3129 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3130 alloc_flags |= ALLOC_NO_WATERMARKS;
3131 else if (!in_interrupt() &&
3132 ((current->flags & PF_MEMALLOC) ||
3133 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3134 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3135 }
d95ea5d1 3136#ifdef CONFIG_CMA
43e7a34d 3137 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3138 alloc_flags |= ALLOC_CMA;
3139#endif
341ce06f
PZ
3140 return alloc_flags;
3141}
3142
072bb0aa
MG
3143bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3144{
b37f1dd0 3145 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3146}
3147
d0164adc
MG
3148static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3149{
3150 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3151}
3152
11e33f6a
MG
3153static inline struct page *
3154__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3155 struct alloc_context *ac)
11e33f6a 3156{
d0164adc 3157 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3158 struct page *page = NULL;
3159 int alloc_flags;
3160 unsigned long pages_reclaimed = 0;
3161 unsigned long did_some_progress;
e0b9daeb 3162 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3163 bool deferred_compaction = false;
1f9efdef 3164 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3165
72807a74
MG
3166 /*
3167 * In the slowpath, we sanity check order to avoid ever trying to
3168 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3169 * be using allocators in order of preference for an area that is
3170 * too large.
3171 */
1fc28b70
MG
3172 if (order >= MAX_ORDER) {
3173 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3174 return NULL;
1fc28b70 3175 }
1da177e4 3176
d0164adc
MG
3177 /*
3178 * We also sanity check to catch abuse of atomic reserves being used by
3179 * callers that are not in atomic context.
3180 */
3181 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3182 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3183 gfp_mask &= ~__GFP_ATOMIC;
3184
9879de73 3185retry:
d0164adc 3186 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3187 wake_all_kswapds(order, ac);
1da177e4 3188
9bf2229f 3189 /*
7fb1d9fc
RS
3190 * OK, we're below the kswapd watermark and have kicked background
3191 * reclaim. Now things get more complex, so set up alloc_flags according
3192 * to how we want to proceed.
9bf2229f 3193 */
341ce06f 3194 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3195
341ce06f 3196 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3197 page = get_page_from_freelist(gfp_mask, order,
3198 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3199 if (page)
3200 goto got_pg;
1da177e4 3201
11e33f6a 3202 /* Allocate without watermarks if the context allows */
341ce06f 3203 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3204 /*
3205 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3206 * the allocation is high priority and these type of
3207 * allocations are system rather than user orientated
3208 */
a9263751 3209 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3210 page = get_page_from_freelist(gfp_mask, order,
3211 ALLOC_NO_WATERMARKS, ac);
3212 if (page)
3213 goto got_pg;
1da177e4
LT
3214 }
3215
d0164adc
MG
3216 /* Caller is not willing to reclaim, we can't balance anything */
3217 if (!can_direct_reclaim) {
aed0a0e3 3218 /*
33d53103
MH
3219 * All existing users of the __GFP_NOFAIL are blockable, so warn
3220 * of any new users that actually allow this type of allocation
3221 * to fail.
aed0a0e3
DR
3222 */
3223 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3224 goto nopage;
aed0a0e3 3225 }
1da177e4 3226
341ce06f 3227 /* Avoid recursion of direct reclaim */
33d53103
MH
3228 if (current->flags & PF_MEMALLOC) {
3229 /*
3230 * __GFP_NOFAIL request from this context is rather bizarre
3231 * because we cannot reclaim anything and only can loop waiting
3232 * for somebody to do a work for us.
3233 */
3234 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3235 cond_resched();
3236 goto retry;
3237 }
341ce06f 3238 goto nopage;
33d53103 3239 }
341ce06f 3240
6583bb64
DR
3241 /* Avoid allocations with no watermarks from looping endlessly */
3242 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3243 goto nopage;
3244
77f1fe6b
MG
3245 /*
3246 * Try direct compaction. The first pass is asynchronous. Subsequent
3247 * attempts after direct reclaim are synchronous
3248 */
a9263751
VB
3249 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3250 migration_mode,
3251 &contended_compaction,
53853e2d 3252 &deferred_compaction);
56de7263
MG
3253 if (page)
3254 goto got_pg;
75f30861 3255
1f9efdef 3256 /* Checks for THP-specific high-order allocations */
d0164adc 3257 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3258 /*
3259 * If compaction is deferred for high-order allocations, it is
3260 * because sync compaction recently failed. If this is the case
3261 * and the caller requested a THP allocation, we do not want
3262 * to heavily disrupt the system, so we fail the allocation
3263 * instead of entering direct reclaim.
3264 */
3265 if (deferred_compaction)
3266 goto nopage;
3267
3268 /*
3269 * In all zones where compaction was attempted (and not
3270 * deferred or skipped), lock contention has been detected.
3271 * For THP allocation we do not want to disrupt the others
3272 * so we fallback to base pages instead.
3273 */
3274 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3275 goto nopage;
3276
3277 /*
3278 * If compaction was aborted due to need_resched(), we do not
3279 * want to further increase allocation latency, unless it is
3280 * khugepaged trying to collapse.
3281 */
3282 if (contended_compaction == COMPACT_CONTENDED_SCHED
3283 && !(current->flags & PF_KTHREAD))
3284 goto nopage;
3285 }
66199712 3286
8fe78048
DR
3287 /*
3288 * It can become very expensive to allocate transparent hugepages at
3289 * fault, so use asynchronous memory compaction for THP unless it is
3290 * khugepaged trying to collapse.
3291 */
d0164adc 3292 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3293 migration_mode = MIGRATE_SYNC_LIGHT;
3294
11e33f6a 3295 /* Try direct reclaim and then allocating */
a9263751
VB
3296 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3297 &did_some_progress);
11e33f6a
MG
3298 if (page)
3299 goto got_pg;
1da177e4 3300
9083905a
JW
3301 /* Do not loop if specifically requested */
3302 if (gfp_mask & __GFP_NORETRY)
3303 goto noretry;
3304
3305 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3306 pages_reclaimed += did_some_progress;
9083905a
JW
3307 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3308 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3309 /* Wait for some write requests to complete then retry */
a9263751 3310 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3311 goto retry;
1da177e4
LT
3312 }
3313
9083905a
JW
3314 /* Reclaim has failed us, start killing things */
3315 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3316 if (page)
3317 goto got_pg;
3318
3319 /* Retry as long as the OOM killer is making progress */
3320 if (did_some_progress)
3321 goto retry;
3322
3323noretry:
3324 /*
3325 * High-order allocations do not necessarily loop after
3326 * direct reclaim and reclaim/compaction depends on compaction
3327 * being called after reclaim so call directly if necessary
3328 */
3329 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3330 ac, migration_mode,
3331 &contended_compaction,
3332 &deferred_compaction);
3333 if (page)
3334 goto got_pg;
1da177e4 3335nopage:
a238ab5b 3336 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3337got_pg:
072bb0aa 3338 return page;
1da177e4 3339}
11e33f6a
MG
3340
3341/*
3342 * This is the 'heart' of the zoned buddy allocator.
3343 */
3344struct page *
3345__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3346 struct zonelist *zonelist, nodemask_t *nodemask)
3347{
d8846374 3348 struct zoneref *preferred_zoneref;
cc9a6c87 3349 struct page *page = NULL;
cc9a6c87 3350 unsigned int cpuset_mems_cookie;
682a3385 3351 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
91fbdc0f 3352 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3353 struct alloc_context ac = {
3354 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3355 .zonelist = zonelist,
a9263751
VB
3356 .nodemask = nodemask,
3357 .migratetype = gfpflags_to_migratetype(gfp_mask),
3358 };
11e33f6a 3359
682a3385
MG
3360 if (cpusets_enabled()) {
3361 alloc_flags |= ALLOC_CPUSET;
3362 if (!ac.nodemask)
3363 ac.nodemask = &cpuset_current_mems_allowed;
3364 }
3365
dcce284a
BH
3366 gfp_mask &= gfp_allowed_mask;
3367
11e33f6a
MG
3368 lockdep_trace_alloc(gfp_mask);
3369
d0164adc 3370 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3371
3372 if (should_fail_alloc_page(gfp_mask, order))
3373 return NULL;
3374
3375 /*
3376 * Check the zones suitable for the gfp_mask contain at least one
3377 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3378 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3379 */
3380 if (unlikely(!zonelist->_zonerefs->zone))
3381 return NULL;
3382
a9263751 3383 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3384 alloc_flags |= ALLOC_CMA;
3385
cc9a6c87 3386retry_cpuset:
d26914d1 3387 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3388
c9ab0c4f
MG
3389 /* Dirty zone balancing only done in the fast path */
3390 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3391
5117f45d 3392 /* The preferred zone is used for statistics later */
a9263751 3393 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
682a3385 3394 ac.nodemask, &ac.preferred_zone);
a9263751 3395 if (!ac.preferred_zone)
cc9a6c87 3396 goto out;
a9263751 3397 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3398
3399 /* First allocation attempt */
91fbdc0f 3400 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3401 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3402 if (unlikely(!page)) {
3403 /*
3404 * Runtime PM, block IO and its error handling path
3405 * can deadlock because I/O on the device might not
3406 * complete.
3407 */
91fbdc0f 3408 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3409 ac.spread_dirty_pages = false;
91fbdc0f 3410
a9263751 3411 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3412 }
11e33f6a 3413
23f086f9
XQ
3414 if (kmemcheck_enabled && page)
3415 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3416
a9263751 3417 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3418
3419out:
3420 /*
3421 * When updating a task's mems_allowed, it is possible to race with
3422 * parallel threads in such a way that an allocation can fail while
3423 * the mask is being updated. If a page allocation is about to fail,
3424 * check if the cpuset changed during allocation and if so, retry.
3425 */
d26914d1 3426 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3427 goto retry_cpuset;
3428
11e33f6a 3429 return page;
1da177e4 3430}
d239171e 3431EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3432
3433/*
3434 * Common helper functions.
3435 */
920c7a5d 3436unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3437{
945a1113
AM
3438 struct page *page;
3439
3440 /*
3441 * __get_free_pages() returns a 32-bit address, which cannot represent
3442 * a highmem page
3443 */
3444 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3445
1da177e4
LT
3446 page = alloc_pages(gfp_mask, order);
3447 if (!page)
3448 return 0;
3449 return (unsigned long) page_address(page);
3450}
1da177e4
LT
3451EXPORT_SYMBOL(__get_free_pages);
3452
920c7a5d 3453unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3454{
945a1113 3455 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3456}
1da177e4
LT
3457EXPORT_SYMBOL(get_zeroed_page);
3458
920c7a5d 3459void __free_pages(struct page *page, unsigned int order)
1da177e4 3460{
b5810039 3461 if (put_page_testzero(page)) {
1da177e4 3462 if (order == 0)
b745bc85 3463 free_hot_cold_page(page, false);
1da177e4
LT
3464 else
3465 __free_pages_ok(page, order);
3466 }
3467}
3468
3469EXPORT_SYMBOL(__free_pages);
3470
920c7a5d 3471void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3472{
3473 if (addr != 0) {
725d704e 3474 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3475 __free_pages(virt_to_page((void *)addr), order);
3476 }
3477}
3478
3479EXPORT_SYMBOL(free_pages);
3480
b63ae8ca
AD
3481/*
3482 * Page Fragment:
3483 * An arbitrary-length arbitrary-offset area of memory which resides
3484 * within a 0 or higher order page. Multiple fragments within that page
3485 * are individually refcounted, in the page's reference counter.
3486 *
3487 * The page_frag functions below provide a simple allocation framework for
3488 * page fragments. This is used by the network stack and network device
3489 * drivers to provide a backing region of memory for use as either an
3490 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3491 */
3492static struct page *__page_frag_refill(struct page_frag_cache *nc,
3493 gfp_t gfp_mask)
3494{
3495 struct page *page = NULL;
3496 gfp_t gfp = gfp_mask;
3497
3498#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3499 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3500 __GFP_NOMEMALLOC;
3501 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3502 PAGE_FRAG_CACHE_MAX_ORDER);
3503 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3504#endif
3505 if (unlikely(!page))
3506 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3507
3508 nc->va = page ? page_address(page) : NULL;
3509
3510 return page;
3511}
3512
3513void *__alloc_page_frag(struct page_frag_cache *nc,
3514 unsigned int fragsz, gfp_t gfp_mask)
3515{
3516 unsigned int size = PAGE_SIZE;
3517 struct page *page;
3518 int offset;
3519
3520 if (unlikely(!nc->va)) {
3521refill:
3522 page = __page_frag_refill(nc, gfp_mask);
3523 if (!page)
3524 return NULL;
3525
3526#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3527 /* if size can vary use size else just use PAGE_SIZE */
3528 size = nc->size;
3529#endif
3530 /* Even if we own the page, we do not use atomic_set().
3531 * This would break get_page_unless_zero() users.
3532 */
fe896d18 3533 page_ref_add(page, size - 1);
b63ae8ca
AD
3534
3535 /* reset page count bias and offset to start of new frag */
2f064f34 3536 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3537 nc->pagecnt_bias = size;
3538 nc->offset = size;
3539 }
3540
3541 offset = nc->offset - fragsz;
3542 if (unlikely(offset < 0)) {
3543 page = virt_to_page(nc->va);
3544
fe896d18 3545 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3546 goto refill;
3547
3548#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3549 /* if size can vary use size else just use PAGE_SIZE */
3550 size = nc->size;
3551#endif
3552 /* OK, page count is 0, we can safely set it */
fe896d18 3553 set_page_count(page, size);
b63ae8ca
AD
3554
3555 /* reset page count bias and offset to start of new frag */
3556 nc->pagecnt_bias = size;
3557 offset = size - fragsz;
3558 }
3559
3560 nc->pagecnt_bias--;
3561 nc->offset = offset;
3562
3563 return nc->va + offset;
3564}
3565EXPORT_SYMBOL(__alloc_page_frag);
3566
3567/*
3568 * Frees a page fragment allocated out of either a compound or order 0 page.
3569 */
3570void __free_page_frag(void *addr)
3571{
3572 struct page *page = virt_to_head_page(addr);
3573
3574 if (unlikely(put_page_testzero(page)))
3575 __free_pages_ok(page, compound_order(page));
3576}
3577EXPORT_SYMBOL(__free_page_frag);
3578
6a1a0d3b 3579/*
52383431 3580 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3581 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3582 * equivalent to alloc_pages.
6a1a0d3b 3583 *
52383431
VD
3584 * It should be used when the caller would like to use kmalloc, but since the
3585 * allocation is large, it has to fall back to the page allocator.
3586 */
3587struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3588{
3589 struct page *page;
52383431 3590
52383431 3591 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3592 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3593 __free_pages(page, order);
3594 page = NULL;
3595 }
52383431
VD
3596 return page;
3597}
3598
3599struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3600{
3601 struct page *page;
52383431 3602
52383431 3603 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3604 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3605 __free_pages(page, order);
3606 page = NULL;
3607 }
52383431
VD
3608 return page;
3609}
3610
3611/*
3612 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3613 * alloc_kmem_pages.
6a1a0d3b 3614 */
52383431 3615void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3616{
d05e83a6 3617 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3618 __free_pages(page, order);
3619}
3620
52383431 3621void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3622{
3623 if (addr != 0) {
3624 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3625 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3626 }
3627}
3628
d00181b9
KS
3629static void *make_alloc_exact(unsigned long addr, unsigned int order,
3630 size_t size)
ee85c2e1
AK
3631{
3632 if (addr) {
3633 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3634 unsigned long used = addr + PAGE_ALIGN(size);
3635
3636 split_page(virt_to_page((void *)addr), order);
3637 while (used < alloc_end) {
3638 free_page(used);
3639 used += PAGE_SIZE;
3640 }
3641 }
3642 return (void *)addr;
3643}
3644
2be0ffe2
TT
3645/**
3646 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3647 * @size: the number of bytes to allocate
3648 * @gfp_mask: GFP flags for the allocation
3649 *
3650 * This function is similar to alloc_pages(), except that it allocates the
3651 * minimum number of pages to satisfy the request. alloc_pages() can only
3652 * allocate memory in power-of-two pages.
3653 *
3654 * This function is also limited by MAX_ORDER.
3655 *
3656 * Memory allocated by this function must be released by free_pages_exact().
3657 */
3658void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3659{
3660 unsigned int order = get_order(size);
3661 unsigned long addr;
3662
3663 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3664 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3665}
3666EXPORT_SYMBOL(alloc_pages_exact);
3667
ee85c2e1
AK
3668/**
3669 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3670 * pages on a node.
b5e6ab58 3671 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3672 * @size: the number of bytes to allocate
3673 * @gfp_mask: GFP flags for the allocation
3674 *
3675 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3676 * back.
ee85c2e1 3677 */
e1931811 3678void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3679{
d00181b9 3680 unsigned int order = get_order(size);
ee85c2e1
AK
3681 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3682 if (!p)
3683 return NULL;
3684 return make_alloc_exact((unsigned long)page_address(p), order, size);
3685}
ee85c2e1 3686
2be0ffe2
TT
3687/**
3688 * free_pages_exact - release memory allocated via alloc_pages_exact()
3689 * @virt: the value returned by alloc_pages_exact.
3690 * @size: size of allocation, same value as passed to alloc_pages_exact().
3691 *
3692 * Release the memory allocated by a previous call to alloc_pages_exact.
3693 */
3694void free_pages_exact(void *virt, size_t size)
3695{
3696 unsigned long addr = (unsigned long)virt;
3697 unsigned long end = addr + PAGE_ALIGN(size);
3698
3699 while (addr < end) {
3700 free_page(addr);
3701 addr += PAGE_SIZE;
3702 }
3703}
3704EXPORT_SYMBOL(free_pages_exact);
3705
e0fb5815
ZY
3706/**
3707 * nr_free_zone_pages - count number of pages beyond high watermark
3708 * @offset: The zone index of the highest zone
3709 *
3710 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3711 * high watermark within all zones at or below a given zone index. For each
3712 * zone, the number of pages is calculated as:
834405c3 3713 * managed_pages - high_pages
e0fb5815 3714 */
ebec3862 3715static unsigned long nr_free_zone_pages(int offset)
1da177e4 3716{
dd1a239f 3717 struct zoneref *z;
54a6eb5c
MG
3718 struct zone *zone;
3719
e310fd43 3720 /* Just pick one node, since fallback list is circular */
ebec3862 3721 unsigned long sum = 0;
1da177e4 3722
0e88460d 3723 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3724
54a6eb5c 3725 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3726 unsigned long size = zone->managed_pages;
41858966 3727 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3728 if (size > high)
3729 sum += size - high;
1da177e4
LT
3730 }
3731
3732 return sum;
3733}
3734
e0fb5815
ZY
3735/**
3736 * nr_free_buffer_pages - count number of pages beyond high watermark
3737 *
3738 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3739 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3740 */
ebec3862 3741unsigned long nr_free_buffer_pages(void)
1da177e4 3742{
af4ca457 3743 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3744}
c2f1a551 3745EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3746
e0fb5815
ZY
3747/**
3748 * nr_free_pagecache_pages - count number of pages beyond high watermark
3749 *
3750 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3751 * high watermark within all zones.
1da177e4 3752 */
ebec3862 3753unsigned long nr_free_pagecache_pages(void)
1da177e4 3754{
2a1e274a 3755 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3756}
08e0f6a9
CL
3757
3758static inline void show_node(struct zone *zone)
1da177e4 3759{
e5adfffc 3760 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3761 printk("Node %d ", zone_to_nid(zone));
1da177e4 3762}
1da177e4 3763
d02bd27b
IR
3764long si_mem_available(void)
3765{
3766 long available;
3767 unsigned long pagecache;
3768 unsigned long wmark_low = 0;
3769 unsigned long pages[NR_LRU_LISTS];
3770 struct zone *zone;
3771 int lru;
3772
3773 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3774 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3775
3776 for_each_zone(zone)
3777 wmark_low += zone->watermark[WMARK_LOW];
3778
3779 /*
3780 * Estimate the amount of memory available for userspace allocations,
3781 * without causing swapping.
3782 */
3783 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3784
3785 /*
3786 * Not all the page cache can be freed, otherwise the system will
3787 * start swapping. Assume at least half of the page cache, or the
3788 * low watermark worth of cache, needs to stay.
3789 */
3790 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3791 pagecache -= min(pagecache / 2, wmark_low);
3792 available += pagecache;
3793
3794 /*
3795 * Part of the reclaimable slab consists of items that are in use,
3796 * and cannot be freed. Cap this estimate at the low watermark.
3797 */
3798 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3799 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3800
3801 if (available < 0)
3802 available = 0;
3803 return available;
3804}
3805EXPORT_SYMBOL_GPL(si_mem_available);
3806
1da177e4
LT
3807void si_meminfo(struct sysinfo *val)
3808{
3809 val->totalram = totalram_pages;
cc7452b6 3810 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3811 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3812 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3813 val->totalhigh = totalhigh_pages;
3814 val->freehigh = nr_free_highpages();
1da177e4
LT
3815 val->mem_unit = PAGE_SIZE;
3816}
3817
3818EXPORT_SYMBOL(si_meminfo);
3819
3820#ifdef CONFIG_NUMA
3821void si_meminfo_node(struct sysinfo *val, int nid)
3822{
cdd91a77
JL
3823 int zone_type; /* needs to be signed */
3824 unsigned long managed_pages = 0;
fc2bd799
JK
3825 unsigned long managed_highpages = 0;
3826 unsigned long free_highpages = 0;
1da177e4
LT
3827 pg_data_t *pgdat = NODE_DATA(nid);
3828
cdd91a77
JL
3829 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3830 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3831 val->totalram = managed_pages;
cc7452b6 3832 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3833 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3834#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3835 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3836 struct zone *zone = &pgdat->node_zones[zone_type];
3837
3838 if (is_highmem(zone)) {
3839 managed_highpages += zone->managed_pages;
3840 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3841 }
3842 }
3843 val->totalhigh = managed_highpages;
3844 val->freehigh = free_highpages;
98d2b0eb 3845#else
fc2bd799
JK
3846 val->totalhigh = managed_highpages;
3847 val->freehigh = free_highpages;
98d2b0eb 3848#endif
1da177e4
LT
3849 val->mem_unit = PAGE_SIZE;
3850}
3851#endif
3852
ddd588b5 3853/*
7bf02ea2
DR
3854 * Determine whether the node should be displayed or not, depending on whether
3855 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3856 */
7bf02ea2 3857bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3858{
3859 bool ret = false;
cc9a6c87 3860 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3861
3862 if (!(flags & SHOW_MEM_FILTER_NODES))
3863 goto out;
3864
cc9a6c87 3865 do {
d26914d1 3866 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3867 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3868 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3869out:
3870 return ret;
3871}
3872
1da177e4
LT
3873#define K(x) ((x) << (PAGE_SHIFT-10))
3874
377e4f16
RV
3875static void show_migration_types(unsigned char type)
3876{
3877 static const char types[MIGRATE_TYPES] = {
3878 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3879 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3880 [MIGRATE_RECLAIMABLE] = 'E',
3881 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3882#ifdef CONFIG_CMA
3883 [MIGRATE_CMA] = 'C',
3884#endif
194159fb 3885#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3886 [MIGRATE_ISOLATE] = 'I',
194159fb 3887#endif
377e4f16
RV
3888 };
3889 char tmp[MIGRATE_TYPES + 1];
3890 char *p = tmp;
3891 int i;
3892
3893 for (i = 0; i < MIGRATE_TYPES; i++) {
3894 if (type & (1 << i))
3895 *p++ = types[i];
3896 }
3897
3898 *p = '\0';
3899 printk("(%s) ", tmp);
3900}
3901
1da177e4
LT
3902/*
3903 * Show free area list (used inside shift_scroll-lock stuff)
3904 * We also calculate the percentage fragmentation. We do this by counting the
3905 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3906 *
3907 * Bits in @filter:
3908 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3909 * cpuset.
1da177e4 3910 */
7bf02ea2 3911void show_free_areas(unsigned int filter)
1da177e4 3912{
d1bfcdb8 3913 unsigned long free_pcp = 0;
c7241913 3914 int cpu;
1da177e4
LT
3915 struct zone *zone;
3916
ee99c71c 3917 for_each_populated_zone(zone) {
7bf02ea2 3918 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3919 continue;
d1bfcdb8 3920
761b0677
KK
3921 for_each_online_cpu(cpu)
3922 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3923 }
3924
a731286d
KM
3925 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3926 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3927 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3928 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3929 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3930 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3931 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3932 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3933 global_page_state(NR_ISOLATED_ANON),
3934 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3935 global_page_state(NR_INACTIVE_FILE),
a731286d 3936 global_page_state(NR_ISOLATED_FILE),
7b854121 3937 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3938 global_page_state(NR_FILE_DIRTY),
ce866b34 3939 global_page_state(NR_WRITEBACK),
fd39fc85 3940 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3941 global_page_state(NR_SLAB_RECLAIMABLE),
3942 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3943 global_page_state(NR_FILE_MAPPED),
4b02108a 3944 global_page_state(NR_SHMEM),
a25700a5 3945 global_page_state(NR_PAGETABLE),
d1ce749a 3946 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3947 global_page_state(NR_FREE_PAGES),
3948 free_pcp,
d1ce749a 3949 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3950
ee99c71c 3951 for_each_populated_zone(zone) {
1da177e4
LT
3952 int i;
3953
7bf02ea2 3954 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3955 continue;
d1bfcdb8
KK
3956
3957 free_pcp = 0;
3958 for_each_online_cpu(cpu)
3959 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3960
1da177e4
LT
3961 show_node(zone);
3962 printk("%s"
3963 " free:%lukB"
3964 " min:%lukB"
3965 " low:%lukB"
3966 " high:%lukB"
4f98a2fe
RR
3967 " active_anon:%lukB"
3968 " inactive_anon:%lukB"
3969 " active_file:%lukB"
3970 " inactive_file:%lukB"
7b854121 3971 " unevictable:%lukB"
a731286d
KM
3972 " isolated(anon):%lukB"
3973 " isolated(file):%lukB"
1da177e4 3974 " present:%lukB"
9feedc9d 3975 " managed:%lukB"
4a0aa73f
KM
3976 " mlocked:%lukB"
3977 " dirty:%lukB"
3978 " writeback:%lukB"
3979 " mapped:%lukB"
4b02108a 3980 " shmem:%lukB"
4a0aa73f
KM
3981 " slab_reclaimable:%lukB"
3982 " slab_unreclaimable:%lukB"
c6a7f572 3983 " kernel_stack:%lukB"
4a0aa73f
KM
3984 " pagetables:%lukB"
3985 " unstable:%lukB"
3986 " bounce:%lukB"
d1bfcdb8
KK
3987 " free_pcp:%lukB"
3988 " local_pcp:%ukB"
d1ce749a 3989 " free_cma:%lukB"
4a0aa73f 3990 " writeback_tmp:%lukB"
1da177e4
LT
3991 " pages_scanned:%lu"
3992 " all_unreclaimable? %s"
3993 "\n",
3994 zone->name,
88f5acf8 3995 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3996 K(min_wmark_pages(zone)),
3997 K(low_wmark_pages(zone)),
3998 K(high_wmark_pages(zone)),
4f98a2fe
RR
3999 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4000 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4001 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4002 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4003 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4004 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4005 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4006 K(zone->present_pages),
9feedc9d 4007 K(zone->managed_pages),
4a0aa73f
KM
4008 K(zone_page_state(zone, NR_MLOCK)),
4009 K(zone_page_state(zone, NR_FILE_DIRTY)),
4010 K(zone_page_state(zone, NR_WRITEBACK)),
4011 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4012 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4013 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4014 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4015 zone_page_state(zone, NR_KERNEL_STACK) *
4016 THREAD_SIZE / 1024,
4a0aa73f
KM
4017 K(zone_page_state(zone, NR_PAGETABLE)),
4018 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4019 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4020 K(free_pcp),
4021 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4022 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4023 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4024 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4025 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4026 );
4027 printk("lowmem_reserve[]:");
4028 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4029 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4030 printk("\n");
4031 }
4032
ee99c71c 4033 for_each_populated_zone(zone) {
d00181b9
KS
4034 unsigned int order;
4035 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4036 unsigned char types[MAX_ORDER];
1da177e4 4037
7bf02ea2 4038 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4039 continue;
1da177e4
LT
4040 show_node(zone);
4041 printk("%s: ", zone->name);
1da177e4
LT
4042
4043 spin_lock_irqsave(&zone->lock, flags);
4044 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4045 struct free_area *area = &zone->free_area[order];
4046 int type;
4047
4048 nr[order] = area->nr_free;
8f9de51a 4049 total += nr[order] << order;
377e4f16
RV
4050
4051 types[order] = 0;
4052 for (type = 0; type < MIGRATE_TYPES; type++) {
4053 if (!list_empty(&area->free_list[type]))
4054 types[order] |= 1 << type;
4055 }
1da177e4
LT
4056 }
4057 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4058 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4059 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4060 if (nr[order])
4061 show_migration_types(types[order]);
4062 }
1da177e4
LT
4063 printk("= %lukB\n", K(total));
4064 }
4065
949f7ec5
DR
4066 hugetlb_show_meminfo();
4067
e6f3602d
LW
4068 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4069
1da177e4
LT
4070 show_swap_cache_info();
4071}
4072
19770b32
MG
4073static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4074{
4075 zoneref->zone = zone;
4076 zoneref->zone_idx = zone_idx(zone);
4077}
4078
1da177e4
LT
4079/*
4080 * Builds allocation fallback zone lists.
1a93205b
CL
4081 *
4082 * Add all populated zones of a node to the zonelist.
1da177e4 4083 */
f0c0b2b8 4084static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4085 int nr_zones)
1da177e4 4086{
1a93205b 4087 struct zone *zone;
bc732f1d 4088 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4089
4090 do {
2f6726e5 4091 zone_type--;
070f8032 4092 zone = pgdat->node_zones + zone_type;
1a93205b 4093 if (populated_zone(zone)) {
dd1a239f
MG
4094 zoneref_set_zone(zone,
4095 &zonelist->_zonerefs[nr_zones++]);
070f8032 4096 check_highest_zone(zone_type);
1da177e4 4097 }
2f6726e5 4098 } while (zone_type);
bc732f1d 4099
070f8032 4100 return nr_zones;
1da177e4
LT
4101}
4102
f0c0b2b8
KH
4103
4104/*
4105 * zonelist_order:
4106 * 0 = automatic detection of better ordering.
4107 * 1 = order by ([node] distance, -zonetype)
4108 * 2 = order by (-zonetype, [node] distance)
4109 *
4110 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4111 * the same zonelist. So only NUMA can configure this param.
4112 */
4113#define ZONELIST_ORDER_DEFAULT 0
4114#define ZONELIST_ORDER_NODE 1
4115#define ZONELIST_ORDER_ZONE 2
4116
4117/* zonelist order in the kernel.
4118 * set_zonelist_order() will set this to NODE or ZONE.
4119 */
4120static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4121static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4122
4123
1da177e4 4124#ifdef CONFIG_NUMA
f0c0b2b8
KH
4125/* The value user specified ....changed by config */
4126static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4127/* string for sysctl */
4128#define NUMA_ZONELIST_ORDER_LEN 16
4129char numa_zonelist_order[16] = "default";
4130
4131/*
4132 * interface for configure zonelist ordering.
4133 * command line option "numa_zonelist_order"
4134 * = "[dD]efault - default, automatic configuration.
4135 * = "[nN]ode - order by node locality, then by zone within node
4136 * = "[zZ]one - order by zone, then by locality within zone
4137 */
4138
4139static int __parse_numa_zonelist_order(char *s)
4140{
4141 if (*s == 'd' || *s == 'D') {
4142 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4143 } else if (*s == 'n' || *s == 'N') {
4144 user_zonelist_order = ZONELIST_ORDER_NODE;
4145 } else if (*s == 'z' || *s == 'Z') {
4146 user_zonelist_order = ZONELIST_ORDER_ZONE;
4147 } else {
1170532b 4148 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4149 return -EINVAL;
4150 }
4151 return 0;
4152}
4153
4154static __init int setup_numa_zonelist_order(char *s)
4155{
ecb256f8
VL
4156 int ret;
4157
4158 if (!s)
4159 return 0;
4160
4161 ret = __parse_numa_zonelist_order(s);
4162 if (ret == 0)
4163 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4164
4165 return ret;
f0c0b2b8
KH
4166}
4167early_param("numa_zonelist_order", setup_numa_zonelist_order);
4168
4169/*
4170 * sysctl handler for numa_zonelist_order
4171 */
cccad5b9 4172int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4173 void __user *buffer, size_t *length,
f0c0b2b8
KH
4174 loff_t *ppos)
4175{
4176 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4177 int ret;
443c6f14 4178 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4179
443c6f14 4180 mutex_lock(&zl_order_mutex);
dacbde09
CG
4181 if (write) {
4182 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4183 ret = -EINVAL;
4184 goto out;
4185 }
4186 strcpy(saved_string, (char *)table->data);
4187 }
8d65af78 4188 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4189 if (ret)
443c6f14 4190 goto out;
f0c0b2b8
KH
4191 if (write) {
4192 int oldval = user_zonelist_order;
dacbde09
CG
4193
4194 ret = __parse_numa_zonelist_order((char *)table->data);
4195 if (ret) {
f0c0b2b8
KH
4196 /*
4197 * bogus value. restore saved string
4198 */
dacbde09 4199 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4200 NUMA_ZONELIST_ORDER_LEN);
4201 user_zonelist_order = oldval;
4eaf3f64
HL
4202 } else if (oldval != user_zonelist_order) {
4203 mutex_lock(&zonelists_mutex);
9adb62a5 4204 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4205 mutex_unlock(&zonelists_mutex);
4206 }
f0c0b2b8 4207 }
443c6f14
AK
4208out:
4209 mutex_unlock(&zl_order_mutex);
4210 return ret;
f0c0b2b8
KH
4211}
4212
4213
62bc62a8 4214#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4215static int node_load[MAX_NUMNODES];
4216
1da177e4 4217/**
4dc3b16b 4218 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4219 * @node: node whose fallback list we're appending
4220 * @used_node_mask: nodemask_t of already used nodes
4221 *
4222 * We use a number of factors to determine which is the next node that should
4223 * appear on a given node's fallback list. The node should not have appeared
4224 * already in @node's fallback list, and it should be the next closest node
4225 * according to the distance array (which contains arbitrary distance values
4226 * from each node to each node in the system), and should also prefer nodes
4227 * with no CPUs, since presumably they'll have very little allocation pressure
4228 * on them otherwise.
4229 * It returns -1 if no node is found.
4230 */
f0c0b2b8 4231static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4232{
4cf808eb 4233 int n, val;
1da177e4 4234 int min_val = INT_MAX;
00ef2d2f 4235 int best_node = NUMA_NO_NODE;
a70f7302 4236 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4237
4cf808eb
LT
4238 /* Use the local node if we haven't already */
4239 if (!node_isset(node, *used_node_mask)) {
4240 node_set(node, *used_node_mask);
4241 return node;
4242 }
1da177e4 4243
4b0ef1fe 4244 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4245
4246 /* Don't want a node to appear more than once */
4247 if (node_isset(n, *used_node_mask))
4248 continue;
4249
1da177e4
LT
4250 /* Use the distance array to find the distance */
4251 val = node_distance(node, n);
4252
4cf808eb
LT
4253 /* Penalize nodes under us ("prefer the next node") */
4254 val += (n < node);
4255
1da177e4 4256 /* Give preference to headless and unused nodes */
a70f7302
RR
4257 tmp = cpumask_of_node(n);
4258 if (!cpumask_empty(tmp))
1da177e4
LT
4259 val += PENALTY_FOR_NODE_WITH_CPUS;
4260
4261 /* Slight preference for less loaded node */
4262 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4263 val += node_load[n];
4264
4265 if (val < min_val) {
4266 min_val = val;
4267 best_node = n;
4268 }
4269 }
4270
4271 if (best_node >= 0)
4272 node_set(best_node, *used_node_mask);
4273
4274 return best_node;
4275}
4276
f0c0b2b8
KH
4277
4278/*
4279 * Build zonelists ordered by node and zones within node.
4280 * This results in maximum locality--normal zone overflows into local
4281 * DMA zone, if any--but risks exhausting DMA zone.
4282 */
4283static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4284{
f0c0b2b8 4285 int j;
1da177e4 4286 struct zonelist *zonelist;
f0c0b2b8 4287
54a6eb5c 4288 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4289 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4290 ;
bc732f1d 4291 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4292 zonelist->_zonerefs[j].zone = NULL;
4293 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4294}
4295
523b9458
CL
4296/*
4297 * Build gfp_thisnode zonelists
4298 */
4299static void build_thisnode_zonelists(pg_data_t *pgdat)
4300{
523b9458
CL
4301 int j;
4302 struct zonelist *zonelist;
4303
54a6eb5c 4304 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4305 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4306 zonelist->_zonerefs[j].zone = NULL;
4307 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4308}
4309
f0c0b2b8
KH
4310/*
4311 * Build zonelists ordered by zone and nodes within zones.
4312 * This results in conserving DMA zone[s] until all Normal memory is
4313 * exhausted, but results in overflowing to remote node while memory
4314 * may still exist in local DMA zone.
4315 */
4316static int node_order[MAX_NUMNODES];
4317
4318static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4319{
f0c0b2b8
KH
4320 int pos, j, node;
4321 int zone_type; /* needs to be signed */
4322 struct zone *z;
4323 struct zonelist *zonelist;
4324
54a6eb5c
MG
4325 zonelist = &pgdat->node_zonelists[0];
4326 pos = 0;
4327 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4328 for (j = 0; j < nr_nodes; j++) {
4329 node = node_order[j];
4330 z = &NODE_DATA(node)->node_zones[zone_type];
4331 if (populated_zone(z)) {
dd1a239f
MG
4332 zoneref_set_zone(z,
4333 &zonelist->_zonerefs[pos++]);
54a6eb5c 4334 check_highest_zone(zone_type);
f0c0b2b8
KH
4335 }
4336 }
f0c0b2b8 4337 }
dd1a239f
MG
4338 zonelist->_zonerefs[pos].zone = NULL;
4339 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4340}
4341
3193913c
MG
4342#if defined(CONFIG_64BIT)
4343/*
4344 * Devices that require DMA32/DMA are relatively rare and do not justify a
4345 * penalty to every machine in case the specialised case applies. Default
4346 * to Node-ordering on 64-bit NUMA machines
4347 */
4348static int default_zonelist_order(void)
4349{
4350 return ZONELIST_ORDER_NODE;
4351}
4352#else
4353/*
4354 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4355 * by the kernel. If processes running on node 0 deplete the low memory zone
4356 * then reclaim will occur more frequency increasing stalls and potentially
4357 * be easier to OOM if a large percentage of the zone is under writeback or
4358 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4359 * Hence, default to zone ordering on 32-bit.
4360 */
f0c0b2b8
KH
4361static int default_zonelist_order(void)
4362{
f0c0b2b8
KH
4363 return ZONELIST_ORDER_ZONE;
4364}
3193913c 4365#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4366
4367static void set_zonelist_order(void)
4368{
4369 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4370 current_zonelist_order = default_zonelist_order();
4371 else
4372 current_zonelist_order = user_zonelist_order;
4373}
4374
4375static void build_zonelists(pg_data_t *pgdat)
4376{
c00eb15a 4377 int i, node, load;
1da177e4 4378 nodemask_t used_mask;
f0c0b2b8
KH
4379 int local_node, prev_node;
4380 struct zonelist *zonelist;
d00181b9 4381 unsigned int order = current_zonelist_order;
1da177e4
LT
4382
4383 /* initialize zonelists */
523b9458 4384 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4385 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4386 zonelist->_zonerefs[0].zone = NULL;
4387 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4388 }
4389
4390 /* NUMA-aware ordering of nodes */
4391 local_node = pgdat->node_id;
62bc62a8 4392 load = nr_online_nodes;
1da177e4
LT
4393 prev_node = local_node;
4394 nodes_clear(used_mask);
f0c0b2b8 4395
f0c0b2b8 4396 memset(node_order, 0, sizeof(node_order));
c00eb15a 4397 i = 0;
f0c0b2b8 4398
1da177e4
LT
4399 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4400 /*
4401 * We don't want to pressure a particular node.
4402 * So adding penalty to the first node in same
4403 * distance group to make it round-robin.
4404 */
957f822a
DR
4405 if (node_distance(local_node, node) !=
4406 node_distance(local_node, prev_node))
f0c0b2b8
KH
4407 node_load[node] = load;
4408
1da177e4
LT
4409 prev_node = node;
4410 load--;
f0c0b2b8
KH
4411 if (order == ZONELIST_ORDER_NODE)
4412 build_zonelists_in_node_order(pgdat, node);
4413 else
c00eb15a 4414 node_order[i++] = node; /* remember order */
f0c0b2b8 4415 }
1da177e4 4416
f0c0b2b8
KH
4417 if (order == ZONELIST_ORDER_ZONE) {
4418 /* calculate node order -- i.e., DMA last! */
c00eb15a 4419 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4420 }
523b9458
CL
4421
4422 build_thisnode_zonelists(pgdat);
1da177e4
LT
4423}
4424
7aac7898
LS
4425#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4426/*
4427 * Return node id of node used for "local" allocations.
4428 * I.e., first node id of first zone in arg node's generic zonelist.
4429 * Used for initializing percpu 'numa_mem', which is used primarily
4430 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4431 */
4432int local_memory_node(int node)
4433{
4434 struct zone *zone;
4435
4436 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4437 gfp_zone(GFP_KERNEL),
4438 NULL,
4439 &zone);
4440 return zone->node;
4441}
4442#endif
f0c0b2b8 4443
1da177e4
LT
4444#else /* CONFIG_NUMA */
4445
f0c0b2b8
KH
4446static void set_zonelist_order(void)
4447{
4448 current_zonelist_order = ZONELIST_ORDER_ZONE;
4449}
4450
4451static void build_zonelists(pg_data_t *pgdat)
1da177e4 4452{
19655d34 4453 int node, local_node;
54a6eb5c
MG
4454 enum zone_type j;
4455 struct zonelist *zonelist;
1da177e4
LT
4456
4457 local_node = pgdat->node_id;
1da177e4 4458
54a6eb5c 4459 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4460 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4461
54a6eb5c
MG
4462 /*
4463 * Now we build the zonelist so that it contains the zones
4464 * of all the other nodes.
4465 * We don't want to pressure a particular node, so when
4466 * building the zones for node N, we make sure that the
4467 * zones coming right after the local ones are those from
4468 * node N+1 (modulo N)
4469 */
4470 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4471 if (!node_online(node))
4472 continue;
bc732f1d 4473 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4474 }
54a6eb5c
MG
4475 for (node = 0; node < local_node; node++) {
4476 if (!node_online(node))
4477 continue;
bc732f1d 4478 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4479 }
4480
dd1a239f
MG
4481 zonelist->_zonerefs[j].zone = NULL;
4482 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4483}
4484
4485#endif /* CONFIG_NUMA */
4486
99dcc3e5
CL
4487/*
4488 * Boot pageset table. One per cpu which is going to be used for all
4489 * zones and all nodes. The parameters will be set in such a way
4490 * that an item put on a list will immediately be handed over to
4491 * the buddy list. This is safe since pageset manipulation is done
4492 * with interrupts disabled.
4493 *
4494 * The boot_pagesets must be kept even after bootup is complete for
4495 * unused processors and/or zones. They do play a role for bootstrapping
4496 * hotplugged processors.
4497 *
4498 * zoneinfo_show() and maybe other functions do
4499 * not check if the processor is online before following the pageset pointer.
4500 * Other parts of the kernel may not check if the zone is available.
4501 */
4502static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4503static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4504static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4505
4eaf3f64
HL
4506/*
4507 * Global mutex to protect against size modification of zonelists
4508 * as well as to serialize pageset setup for the new populated zone.
4509 */
4510DEFINE_MUTEX(zonelists_mutex);
4511
9b1a4d38 4512/* return values int ....just for stop_machine() */
4ed7e022 4513static int __build_all_zonelists(void *data)
1da177e4 4514{
6811378e 4515 int nid;
99dcc3e5 4516 int cpu;
9adb62a5 4517 pg_data_t *self = data;
9276b1bc 4518
7f9cfb31
BL
4519#ifdef CONFIG_NUMA
4520 memset(node_load, 0, sizeof(node_load));
4521#endif
9adb62a5
JL
4522
4523 if (self && !node_online(self->node_id)) {
4524 build_zonelists(self);
9adb62a5
JL
4525 }
4526
9276b1bc 4527 for_each_online_node(nid) {
7ea1530a
CL
4528 pg_data_t *pgdat = NODE_DATA(nid);
4529
4530 build_zonelists(pgdat);
9276b1bc 4531 }
99dcc3e5
CL
4532
4533 /*
4534 * Initialize the boot_pagesets that are going to be used
4535 * for bootstrapping processors. The real pagesets for
4536 * each zone will be allocated later when the per cpu
4537 * allocator is available.
4538 *
4539 * boot_pagesets are used also for bootstrapping offline
4540 * cpus if the system is already booted because the pagesets
4541 * are needed to initialize allocators on a specific cpu too.
4542 * F.e. the percpu allocator needs the page allocator which
4543 * needs the percpu allocator in order to allocate its pagesets
4544 * (a chicken-egg dilemma).
4545 */
7aac7898 4546 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4547 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4548
7aac7898
LS
4549#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4550 /*
4551 * We now know the "local memory node" for each node--
4552 * i.e., the node of the first zone in the generic zonelist.
4553 * Set up numa_mem percpu variable for on-line cpus. During
4554 * boot, only the boot cpu should be on-line; we'll init the
4555 * secondary cpus' numa_mem as they come on-line. During
4556 * node/memory hotplug, we'll fixup all on-line cpus.
4557 */
4558 if (cpu_online(cpu))
4559 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4560#endif
4561 }
4562
6811378e
YG
4563 return 0;
4564}
4565
061f67bc
RV
4566static noinline void __init
4567build_all_zonelists_init(void)
4568{
4569 __build_all_zonelists(NULL);
4570 mminit_verify_zonelist();
4571 cpuset_init_current_mems_allowed();
4572}
4573
4eaf3f64
HL
4574/*
4575 * Called with zonelists_mutex held always
4576 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4577 *
4578 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4579 * [we're only called with non-NULL zone through __meminit paths] and
4580 * (2) call of __init annotated helper build_all_zonelists_init
4581 * [protected by SYSTEM_BOOTING].
4eaf3f64 4582 */
9adb62a5 4583void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4584{
f0c0b2b8
KH
4585 set_zonelist_order();
4586
6811378e 4587 if (system_state == SYSTEM_BOOTING) {
061f67bc 4588 build_all_zonelists_init();
6811378e 4589 } else {
e9959f0f 4590#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4591 if (zone)
4592 setup_zone_pageset(zone);
e9959f0f 4593#endif
dd1895e2
CS
4594 /* we have to stop all cpus to guarantee there is no user
4595 of zonelist */
9adb62a5 4596 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4597 /* cpuset refresh routine should be here */
4598 }
bd1e22b8 4599 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4600 /*
4601 * Disable grouping by mobility if the number of pages in the
4602 * system is too low to allow the mechanism to work. It would be
4603 * more accurate, but expensive to check per-zone. This check is
4604 * made on memory-hotadd so a system can start with mobility
4605 * disabled and enable it later
4606 */
d9c23400 4607 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4608 page_group_by_mobility_disabled = 1;
4609 else
4610 page_group_by_mobility_disabled = 0;
4611
756a025f
JP
4612 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4613 nr_online_nodes,
4614 zonelist_order_name[current_zonelist_order],
4615 page_group_by_mobility_disabled ? "off" : "on",
4616 vm_total_pages);
f0c0b2b8 4617#ifdef CONFIG_NUMA
f88dfff5 4618 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4619#endif
1da177e4
LT
4620}
4621
4622/*
4623 * Helper functions to size the waitqueue hash table.
4624 * Essentially these want to choose hash table sizes sufficiently
4625 * large so that collisions trying to wait on pages are rare.
4626 * But in fact, the number of active page waitqueues on typical
4627 * systems is ridiculously low, less than 200. So this is even
4628 * conservative, even though it seems large.
4629 *
4630 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4631 * waitqueues, i.e. the size of the waitq table given the number of pages.
4632 */
4633#define PAGES_PER_WAITQUEUE 256
4634
cca448fe 4635#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4636static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4637{
4638 unsigned long size = 1;
4639
4640 pages /= PAGES_PER_WAITQUEUE;
4641
4642 while (size < pages)
4643 size <<= 1;
4644
4645 /*
4646 * Once we have dozens or even hundreds of threads sleeping
4647 * on IO we've got bigger problems than wait queue collision.
4648 * Limit the size of the wait table to a reasonable size.
4649 */
4650 size = min(size, 4096UL);
4651
4652 return max(size, 4UL);
4653}
cca448fe
YG
4654#else
4655/*
4656 * A zone's size might be changed by hot-add, so it is not possible to determine
4657 * a suitable size for its wait_table. So we use the maximum size now.
4658 *
4659 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4660 *
4661 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4662 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4663 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4664 *
4665 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4666 * or more by the traditional way. (See above). It equals:
4667 *
4668 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4669 * ia64(16K page size) : = ( 8G + 4M)byte.
4670 * powerpc (64K page size) : = (32G +16M)byte.
4671 */
4672static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4673{
4674 return 4096UL;
4675}
4676#endif
1da177e4
LT
4677
4678/*
4679 * This is an integer logarithm so that shifts can be used later
4680 * to extract the more random high bits from the multiplicative
4681 * hash function before the remainder is taken.
4682 */
4683static inline unsigned long wait_table_bits(unsigned long size)
4684{
4685 return ffz(~size);
4686}
4687
1da177e4
LT
4688/*
4689 * Initially all pages are reserved - free ones are freed
4690 * up by free_all_bootmem() once the early boot process is
4691 * done. Non-atomic initialization, single-pass.
4692 */
c09b4240 4693void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4694 unsigned long start_pfn, enum memmap_context context)
1da177e4 4695{
4b94ffdc 4696 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4697 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4698 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4699 unsigned long pfn;
3a80a7fa 4700 unsigned long nr_initialised = 0;
342332e6
TI
4701#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4702 struct memblock_region *r = NULL, *tmp;
4703#endif
1da177e4 4704
22b31eec
HD
4705 if (highest_memmap_pfn < end_pfn - 1)
4706 highest_memmap_pfn = end_pfn - 1;
4707
4b94ffdc
DW
4708 /*
4709 * Honor reservation requested by the driver for this ZONE_DEVICE
4710 * memory
4711 */
4712 if (altmap && start_pfn == altmap->base_pfn)
4713 start_pfn += altmap->reserve;
4714
cbe8dd4a 4715 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4716 /*
b72d0ffb
AM
4717 * There can be holes in boot-time mem_map[]s handed to this
4718 * function. They do not exist on hotplugged memory.
a2f3aa02 4719 */
b72d0ffb
AM
4720 if (context != MEMMAP_EARLY)
4721 goto not_early;
4722
4723 if (!early_pfn_valid(pfn))
4724 continue;
4725 if (!early_pfn_in_nid(pfn, nid))
4726 continue;
4727 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4728 break;
342332e6
TI
4729
4730#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4731 /*
4732 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4733 * from zone_movable_pfn[nid] to end of each node should be
4734 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4735 */
4736 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4737 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4738 continue;
342332e6 4739
b72d0ffb
AM
4740 /*
4741 * Check given memblock attribute by firmware which can affect
4742 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4743 * mirrored, it's an overlapped memmap init. skip it.
4744 */
4745 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4746 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4747 for_each_memblock(memory, tmp)
4748 if (pfn < memblock_region_memory_end_pfn(tmp))
4749 break;
4750 r = tmp;
4751 }
4752 if (pfn >= memblock_region_memory_base_pfn(r) &&
4753 memblock_is_mirror(r)) {
4754 /* already initialized as NORMAL */
4755 pfn = memblock_region_memory_end_pfn(r);
4756 continue;
342332e6 4757 }
a2f3aa02 4758 }
b72d0ffb 4759#endif
ac5d2539 4760
b72d0ffb 4761not_early:
ac5d2539
MG
4762 /*
4763 * Mark the block movable so that blocks are reserved for
4764 * movable at startup. This will force kernel allocations
4765 * to reserve their blocks rather than leaking throughout
4766 * the address space during boot when many long-lived
974a786e 4767 * kernel allocations are made.
ac5d2539
MG
4768 *
4769 * bitmap is created for zone's valid pfn range. but memmap
4770 * can be created for invalid pages (for alignment)
4771 * check here not to call set_pageblock_migratetype() against
4772 * pfn out of zone.
4773 */
4774 if (!(pfn & (pageblock_nr_pages - 1))) {
4775 struct page *page = pfn_to_page(pfn);
4776
4777 __init_single_page(page, pfn, zone, nid);
4778 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4779 } else {
4780 __init_single_pfn(pfn, zone, nid);
4781 }
1da177e4
LT
4782 }
4783}
4784
1e548deb 4785static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4786{
7aeb09f9 4787 unsigned int order, t;
b2a0ac88
MG
4788 for_each_migratetype_order(order, t) {
4789 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4790 zone->free_area[order].nr_free = 0;
4791 }
4792}
4793
4794#ifndef __HAVE_ARCH_MEMMAP_INIT
4795#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4796 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4797#endif
4798
7cd2b0a3 4799static int zone_batchsize(struct zone *zone)
e7c8d5c9 4800{
3a6be87f 4801#ifdef CONFIG_MMU
e7c8d5c9
CL
4802 int batch;
4803
4804 /*
4805 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4806 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4807 *
4808 * OK, so we don't know how big the cache is. So guess.
4809 */
b40da049 4810 batch = zone->managed_pages / 1024;
ba56e91c
SR
4811 if (batch * PAGE_SIZE > 512 * 1024)
4812 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4813 batch /= 4; /* We effectively *= 4 below */
4814 if (batch < 1)
4815 batch = 1;
4816
4817 /*
0ceaacc9
NP
4818 * Clamp the batch to a 2^n - 1 value. Having a power
4819 * of 2 value was found to be more likely to have
4820 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4821 *
0ceaacc9
NP
4822 * For example if 2 tasks are alternately allocating
4823 * batches of pages, one task can end up with a lot
4824 * of pages of one half of the possible page colors
4825 * and the other with pages of the other colors.
e7c8d5c9 4826 */
9155203a 4827 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4828
e7c8d5c9 4829 return batch;
3a6be87f
DH
4830
4831#else
4832 /* The deferral and batching of frees should be suppressed under NOMMU
4833 * conditions.
4834 *
4835 * The problem is that NOMMU needs to be able to allocate large chunks
4836 * of contiguous memory as there's no hardware page translation to
4837 * assemble apparent contiguous memory from discontiguous pages.
4838 *
4839 * Queueing large contiguous runs of pages for batching, however,
4840 * causes the pages to actually be freed in smaller chunks. As there
4841 * can be a significant delay between the individual batches being
4842 * recycled, this leads to the once large chunks of space being
4843 * fragmented and becoming unavailable for high-order allocations.
4844 */
4845 return 0;
4846#endif
e7c8d5c9
CL
4847}
4848
8d7a8fa9
CS
4849/*
4850 * pcp->high and pcp->batch values are related and dependent on one another:
4851 * ->batch must never be higher then ->high.
4852 * The following function updates them in a safe manner without read side
4853 * locking.
4854 *
4855 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4856 * those fields changing asynchronously (acording the the above rule).
4857 *
4858 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4859 * outside of boot time (or some other assurance that no concurrent updaters
4860 * exist).
4861 */
4862static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4863 unsigned long batch)
4864{
4865 /* start with a fail safe value for batch */
4866 pcp->batch = 1;
4867 smp_wmb();
4868
4869 /* Update high, then batch, in order */
4870 pcp->high = high;
4871 smp_wmb();
4872
4873 pcp->batch = batch;
4874}
4875
3664033c 4876/* a companion to pageset_set_high() */
4008bab7
CS
4877static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4878{
8d7a8fa9 4879 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4880}
4881
88c90dbc 4882static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4883{
4884 struct per_cpu_pages *pcp;
5f8dcc21 4885 int migratetype;
2caaad41 4886
1c6fe946
MD
4887 memset(p, 0, sizeof(*p));
4888
3dfa5721 4889 pcp = &p->pcp;
2caaad41 4890 pcp->count = 0;
5f8dcc21
MG
4891 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4892 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4893}
4894
88c90dbc
CS
4895static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4896{
4897 pageset_init(p);
4898 pageset_set_batch(p, batch);
4899}
4900
8ad4b1fb 4901/*
3664033c 4902 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4903 * to the value high for the pageset p.
4904 */
3664033c 4905static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4906 unsigned long high)
4907{
8d7a8fa9
CS
4908 unsigned long batch = max(1UL, high / 4);
4909 if ((high / 4) > (PAGE_SHIFT * 8))
4910 batch = PAGE_SHIFT * 8;
8ad4b1fb 4911
8d7a8fa9 4912 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4913}
4914
7cd2b0a3
DR
4915static void pageset_set_high_and_batch(struct zone *zone,
4916 struct per_cpu_pageset *pcp)
56cef2b8 4917{
56cef2b8 4918 if (percpu_pagelist_fraction)
3664033c 4919 pageset_set_high(pcp,
56cef2b8
CS
4920 (zone->managed_pages /
4921 percpu_pagelist_fraction));
4922 else
4923 pageset_set_batch(pcp, zone_batchsize(zone));
4924}
4925
169f6c19
CS
4926static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4927{
4928 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4929
4930 pageset_init(pcp);
4931 pageset_set_high_and_batch(zone, pcp);
4932}
4933
4ed7e022 4934static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4935{
4936 int cpu;
319774e2 4937 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4938 for_each_possible_cpu(cpu)
4939 zone_pageset_init(zone, cpu);
319774e2
WF
4940}
4941
2caaad41 4942/*
99dcc3e5
CL
4943 * Allocate per cpu pagesets and initialize them.
4944 * Before this call only boot pagesets were available.
e7c8d5c9 4945 */
99dcc3e5 4946void __init setup_per_cpu_pageset(void)
e7c8d5c9 4947{
99dcc3e5 4948 struct zone *zone;
e7c8d5c9 4949
319774e2
WF
4950 for_each_populated_zone(zone)
4951 setup_zone_pageset(zone);
e7c8d5c9
CL
4952}
4953
577a32f6 4954static noinline __init_refok
cca448fe 4955int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4956{
4957 int i;
cca448fe 4958 size_t alloc_size;
ed8ece2e
DH
4959
4960 /*
4961 * The per-page waitqueue mechanism uses hashed waitqueues
4962 * per zone.
4963 */
02b694de
YG
4964 zone->wait_table_hash_nr_entries =
4965 wait_table_hash_nr_entries(zone_size_pages);
4966 zone->wait_table_bits =
4967 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4968 alloc_size = zone->wait_table_hash_nr_entries
4969 * sizeof(wait_queue_head_t);
4970
cd94b9db 4971 if (!slab_is_available()) {
cca448fe 4972 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4973 memblock_virt_alloc_node_nopanic(
4974 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4975 } else {
4976 /*
4977 * This case means that a zone whose size was 0 gets new memory
4978 * via memory hot-add.
4979 * But it may be the case that a new node was hot-added. In
4980 * this case vmalloc() will not be able to use this new node's
4981 * memory - this wait_table must be initialized to use this new
4982 * node itself as well.
4983 * To use this new node's memory, further consideration will be
4984 * necessary.
4985 */
8691f3a7 4986 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4987 }
4988 if (!zone->wait_table)
4989 return -ENOMEM;
ed8ece2e 4990
b8af2941 4991 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4992 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4993
4994 return 0;
ed8ece2e
DH
4995}
4996
c09b4240 4997static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4998{
99dcc3e5
CL
4999 /*
5000 * per cpu subsystem is not up at this point. The following code
5001 * relies on the ability of the linker to provide the
5002 * offset of a (static) per cpu variable into the per cpu area.
5003 */
5004 zone->pageset = &boot_pageset;
ed8ece2e 5005
b38a8725 5006 if (populated_zone(zone))
99dcc3e5
CL
5007 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5008 zone->name, zone->present_pages,
5009 zone_batchsize(zone));
ed8ece2e
DH
5010}
5011
4ed7e022 5012int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5013 unsigned long zone_start_pfn,
b171e409 5014 unsigned long size)
ed8ece2e
DH
5015{
5016 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5017 int ret;
5018 ret = zone_wait_table_init(zone, size);
5019 if (ret)
5020 return ret;
ed8ece2e
DH
5021 pgdat->nr_zones = zone_idx(zone) + 1;
5022
ed8ece2e
DH
5023 zone->zone_start_pfn = zone_start_pfn;
5024
708614e6
MG
5025 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5026 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5027 pgdat->node_id,
5028 (unsigned long)zone_idx(zone),
5029 zone_start_pfn, (zone_start_pfn + size));
5030
1e548deb 5031 zone_init_free_lists(zone);
718127cc
YG
5032
5033 return 0;
ed8ece2e
DH
5034}
5035
0ee332c1 5036#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5037#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5038
c713216d
MG
5039/*
5040 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5041 */
8a942fde
MG
5042int __meminit __early_pfn_to_nid(unsigned long pfn,
5043 struct mminit_pfnnid_cache *state)
c713216d 5044{
c13291a5 5045 unsigned long start_pfn, end_pfn;
e76b63f8 5046 int nid;
7c243c71 5047
8a942fde
MG
5048 if (state->last_start <= pfn && pfn < state->last_end)
5049 return state->last_nid;
c713216d 5050
e76b63f8
YL
5051 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5052 if (nid != -1) {
8a942fde
MG
5053 state->last_start = start_pfn;
5054 state->last_end = end_pfn;
5055 state->last_nid = nid;
e76b63f8
YL
5056 }
5057
5058 return nid;
c713216d
MG
5059}
5060#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5061
c713216d 5062/**
6782832e 5063 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5064 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5065 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5066 *
7d018176
ZZ
5067 * If an architecture guarantees that all ranges registered contain no holes
5068 * and may be freed, this this function may be used instead of calling
5069 * memblock_free_early_nid() manually.
c713216d 5070 */
c13291a5 5071void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5072{
c13291a5
TH
5073 unsigned long start_pfn, end_pfn;
5074 int i, this_nid;
edbe7d23 5075
c13291a5
TH
5076 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5077 start_pfn = min(start_pfn, max_low_pfn);
5078 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5079
c13291a5 5080 if (start_pfn < end_pfn)
6782832e
SS
5081 memblock_free_early_nid(PFN_PHYS(start_pfn),
5082 (end_pfn - start_pfn) << PAGE_SHIFT,
5083 this_nid);
edbe7d23 5084 }
edbe7d23 5085}
edbe7d23 5086
c713216d
MG
5087/**
5088 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5089 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5090 *
7d018176
ZZ
5091 * If an architecture guarantees that all ranges registered contain no holes and may
5092 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5093 */
5094void __init sparse_memory_present_with_active_regions(int nid)
5095{
c13291a5
TH
5096 unsigned long start_pfn, end_pfn;
5097 int i, this_nid;
c713216d 5098
c13291a5
TH
5099 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5100 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5101}
5102
5103/**
5104 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5105 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5106 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5107 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5108 *
5109 * It returns the start and end page frame of a node based on information
7d018176 5110 * provided by memblock_set_node(). If called for a node
c713216d 5111 * with no available memory, a warning is printed and the start and end
88ca3b94 5112 * PFNs will be 0.
c713216d 5113 */
a3142c8e 5114void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5115 unsigned long *start_pfn, unsigned long *end_pfn)
5116{
c13291a5 5117 unsigned long this_start_pfn, this_end_pfn;
c713216d 5118 int i;
c13291a5 5119
c713216d
MG
5120 *start_pfn = -1UL;
5121 *end_pfn = 0;
5122
c13291a5
TH
5123 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5124 *start_pfn = min(*start_pfn, this_start_pfn);
5125 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5126 }
5127
633c0666 5128 if (*start_pfn == -1UL)
c713216d 5129 *start_pfn = 0;
c713216d
MG
5130}
5131
2a1e274a
MG
5132/*
5133 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5134 * assumption is made that zones within a node are ordered in monotonic
5135 * increasing memory addresses so that the "highest" populated zone is used
5136 */
b69a7288 5137static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5138{
5139 int zone_index;
5140 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5141 if (zone_index == ZONE_MOVABLE)
5142 continue;
5143
5144 if (arch_zone_highest_possible_pfn[zone_index] >
5145 arch_zone_lowest_possible_pfn[zone_index])
5146 break;
5147 }
5148
5149 VM_BUG_ON(zone_index == -1);
5150 movable_zone = zone_index;
5151}
5152
5153/*
5154 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5155 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5156 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5157 * in each node depending on the size of each node and how evenly kernelcore
5158 * is distributed. This helper function adjusts the zone ranges
5159 * provided by the architecture for a given node by using the end of the
5160 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5161 * zones within a node are in order of monotonic increases memory addresses
5162 */
b69a7288 5163static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5164 unsigned long zone_type,
5165 unsigned long node_start_pfn,
5166 unsigned long node_end_pfn,
5167 unsigned long *zone_start_pfn,
5168 unsigned long *zone_end_pfn)
5169{
5170 /* Only adjust if ZONE_MOVABLE is on this node */
5171 if (zone_movable_pfn[nid]) {
5172 /* Size ZONE_MOVABLE */
5173 if (zone_type == ZONE_MOVABLE) {
5174 *zone_start_pfn = zone_movable_pfn[nid];
5175 *zone_end_pfn = min(node_end_pfn,
5176 arch_zone_highest_possible_pfn[movable_zone]);
5177
2a1e274a
MG
5178 /* Check if this whole range is within ZONE_MOVABLE */
5179 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5180 *zone_start_pfn = *zone_end_pfn;
5181 }
5182}
5183
c713216d
MG
5184/*
5185 * Return the number of pages a zone spans in a node, including holes
5186 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5187 */
6ea6e688 5188static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5189 unsigned long zone_type,
7960aedd
ZY
5190 unsigned long node_start_pfn,
5191 unsigned long node_end_pfn,
d91749c1
TI
5192 unsigned long *zone_start_pfn,
5193 unsigned long *zone_end_pfn,
c713216d
MG
5194 unsigned long *ignored)
5195{
b5685e92 5196 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5197 if (!node_start_pfn && !node_end_pfn)
5198 return 0;
5199
7960aedd 5200 /* Get the start and end of the zone */
d91749c1
TI
5201 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5202 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5203 adjust_zone_range_for_zone_movable(nid, zone_type,
5204 node_start_pfn, node_end_pfn,
d91749c1 5205 zone_start_pfn, zone_end_pfn);
c713216d
MG
5206
5207 /* Check that this node has pages within the zone's required range */
d91749c1 5208 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5209 return 0;
5210
5211 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5212 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5213 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5214
5215 /* Return the spanned pages */
d91749c1 5216 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5217}
5218
5219/*
5220 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5221 * then all holes in the requested range will be accounted for.
c713216d 5222 */
32996250 5223unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5224 unsigned long range_start_pfn,
5225 unsigned long range_end_pfn)
5226{
96e907d1
TH
5227 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5228 unsigned long start_pfn, end_pfn;
5229 int i;
c713216d 5230
96e907d1
TH
5231 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5232 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5233 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5234 nr_absent -= end_pfn - start_pfn;
c713216d 5235 }
96e907d1 5236 return nr_absent;
c713216d
MG
5237}
5238
5239/**
5240 * absent_pages_in_range - Return number of page frames in holes within a range
5241 * @start_pfn: The start PFN to start searching for holes
5242 * @end_pfn: The end PFN to stop searching for holes
5243 *
88ca3b94 5244 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5245 */
5246unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5247 unsigned long end_pfn)
5248{
5249 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5250}
5251
5252/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5253static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5254 unsigned long zone_type,
7960aedd
ZY
5255 unsigned long node_start_pfn,
5256 unsigned long node_end_pfn,
c713216d
MG
5257 unsigned long *ignored)
5258{
96e907d1
TH
5259 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5260 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5261 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5262 unsigned long nr_absent;
9c7cd687 5263
b5685e92 5264 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5265 if (!node_start_pfn && !node_end_pfn)
5266 return 0;
5267
96e907d1
TH
5268 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5269 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5270
2a1e274a
MG
5271 adjust_zone_range_for_zone_movable(nid, zone_type,
5272 node_start_pfn, node_end_pfn,
5273 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5274 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5275
5276 /*
5277 * ZONE_MOVABLE handling.
5278 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5279 * and vice versa.
5280 */
5281 if (zone_movable_pfn[nid]) {
5282 if (mirrored_kernelcore) {
5283 unsigned long start_pfn, end_pfn;
5284 struct memblock_region *r;
5285
5286 for_each_memblock(memory, r) {
5287 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5288 zone_start_pfn, zone_end_pfn);
5289 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5290 zone_start_pfn, zone_end_pfn);
5291
5292 if (zone_type == ZONE_MOVABLE &&
5293 memblock_is_mirror(r))
5294 nr_absent += end_pfn - start_pfn;
5295
5296 if (zone_type == ZONE_NORMAL &&
5297 !memblock_is_mirror(r))
5298 nr_absent += end_pfn - start_pfn;
5299 }
5300 } else {
5301 if (zone_type == ZONE_NORMAL)
5302 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5303 }
5304 }
5305
5306 return nr_absent;
c713216d 5307}
0e0b864e 5308
0ee332c1 5309#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5310static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5311 unsigned long zone_type,
7960aedd
ZY
5312 unsigned long node_start_pfn,
5313 unsigned long node_end_pfn,
d91749c1
TI
5314 unsigned long *zone_start_pfn,
5315 unsigned long *zone_end_pfn,
c713216d
MG
5316 unsigned long *zones_size)
5317{
d91749c1
TI
5318 unsigned int zone;
5319
5320 *zone_start_pfn = node_start_pfn;
5321 for (zone = 0; zone < zone_type; zone++)
5322 *zone_start_pfn += zones_size[zone];
5323
5324 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5325
c713216d
MG
5326 return zones_size[zone_type];
5327}
5328
6ea6e688 5329static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5330 unsigned long zone_type,
7960aedd
ZY
5331 unsigned long node_start_pfn,
5332 unsigned long node_end_pfn,
c713216d
MG
5333 unsigned long *zholes_size)
5334{
5335 if (!zholes_size)
5336 return 0;
5337
5338 return zholes_size[zone_type];
5339}
20e6926d 5340
0ee332c1 5341#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5342
a3142c8e 5343static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5344 unsigned long node_start_pfn,
5345 unsigned long node_end_pfn,
5346 unsigned long *zones_size,
5347 unsigned long *zholes_size)
c713216d 5348{
febd5949 5349 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5350 enum zone_type i;
5351
febd5949
GZ
5352 for (i = 0; i < MAX_NR_ZONES; i++) {
5353 struct zone *zone = pgdat->node_zones + i;
d91749c1 5354 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5355 unsigned long size, real_size;
c713216d 5356
febd5949
GZ
5357 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5358 node_start_pfn,
5359 node_end_pfn,
d91749c1
TI
5360 &zone_start_pfn,
5361 &zone_end_pfn,
febd5949
GZ
5362 zones_size);
5363 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5364 node_start_pfn, node_end_pfn,
5365 zholes_size);
d91749c1
TI
5366 if (size)
5367 zone->zone_start_pfn = zone_start_pfn;
5368 else
5369 zone->zone_start_pfn = 0;
febd5949
GZ
5370 zone->spanned_pages = size;
5371 zone->present_pages = real_size;
5372
5373 totalpages += size;
5374 realtotalpages += real_size;
5375 }
5376
5377 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5378 pgdat->node_present_pages = realtotalpages;
5379 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5380 realtotalpages);
5381}
5382
835c134e
MG
5383#ifndef CONFIG_SPARSEMEM
5384/*
5385 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5386 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5387 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5388 * round what is now in bits to nearest long in bits, then return it in
5389 * bytes.
5390 */
7c45512d 5391static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5392{
5393 unsigned long usemapsize;
5394
7c45512d 5395 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5396 usemapsize = roundup(zonesize, pageblock_nr_pages);
5397 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5398 usemapsize *= NR_PAGEBLOCK_BITS;
5399 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5400
5401 return usemapsize / 8;
5402}
5403
5404static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5405 struct zone *zone,
5406 unsigned long zone_start_pfn,
5407 unsigned long zonesize)
835c134e 5408{
7c45512d 5409 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5410 zone->pageblock_flags = NULL;
58a01a45 5411 if (usemapsize)
6782832e
SS
5412 zone->pageblock_flags =
5413 memblock_virt_alloc_node_nopanic(usemapsize,
5414 pgdat->node_id);
835c134e
MG
5415}
5416#else
7c45512d
LT
5417static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5418 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5419#endif /* CONFIG_SPARSEMEM */
5420
d9c23400 5421#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5422
d9c23400 5423/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5424void __paginginit set_pageblock_order(void)
d9c23400 5425{
955c1cd7
AM
5426 unsigned int order;
5427
d9c23400
MG
5428 /* Check that pageblock_nr_pages has not already been setup */
5429 if (pageblock_order)
5430 return;
5431
955c1cd7
AM
5432 if (HPAGE_SHIFT > PAGE_SHIFT)
5433 order = HUGETLB_PAGE_ORDER;
5434 else
5435 order = MAX_ORDER - 1;
5436
d9c23400
MG
5437 /*
5438 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5439 * This value may be variable depending on boot parameters on IA64 and
5440 * powerpc.
d9c23400
MG
5441 */
5442 pageblock_order = order;
5443}
5444#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5445
ba72cb8c
MG
5446/*
5447 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5448 * is unused as pageblock_order is set at compile-time. See
5449 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5450 * the kernel config
ba72cb8c 5451 */
15ca220e 5452void __paginginit set_pageblock_order(void)
ba72cb8c 5453{
ba72cb8c 5454}
d9c23400
MG
5455
5456#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5457
01cefaef
JL
5458static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5459 unsigned long present_pages)
5460{
5461 unsigned long pages = spanned_pages;
5462
5463 /*
5464 * Provide a more accurate estimation if there are holes within
5465 * the zone and SPARSEMEM is in use. If there are holes within the
5466 * zone, each populated memory region may cost us one or two extra
5467 * memmap pages due to alignment because memmap pages for each
5468 * populated regions may not naturally algined on page boundary.
5469 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5470 */
5471 if (spanned_pages > present_pages + (present_pages >> 4) &&
5472 IS_ENABLED(CONFIG_SPARSEMEM))
5473 pages = present_pages;
5474
5475 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5476}
5477
1da177e4
LT
5478/*
5479 * Set up the zone data structures:
5480 * - mark all pages reserved
5481 * - mark all memory queues empty
5482 * - clear the memory bitmaps
6527af5d
MK
5483 *
5484 * NOTE: pgdat should get zeroed by caller.
1da177e4 5485 */
7f3eb55b 5486static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5487{
2f1b6248 5488 enum zone_type j;
ed8ece2e 5489 int nid = pgdat->node_id;
718127cc 5490 int ret;
1da177e4 5491
208d54e5 5492 pgdat_resize_init(pgdat);
8177a420
AA
5493#ifdef CONFIG_NUMA_BALANCING
5494 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5495 pgdat->numabalancing_migrate_nr_pages = 0;
5496 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5497#endif
5498#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5499 spin_lock_init(&pgdat->split_queue_lock);
5500 INIT_LIST_HEAD(&pgdat->split_queue);
5501 pgdat->split_queue_len = 0;
8177a420 5502#endif
1da177e4 5503 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5504 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5505#ifdef CONFIG_COMPACTION
5506 init_waitqueue_head(&pgdat->kcompactd_wait);
5507#endif
eefa864b 5508 pgdat_page_ext_init(pgdat);
5f63b720 5509
1da177e4
LT
5510 for (j = 0; j < MAX_NR_ZONES; j++) {
5511 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5512 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5513 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5514
febd5949
GZ
5515 size = zone->spanned_pages;
5516 realsize = freesize = zone->present_pages;
1da177e4 5517
0e0b864e 5518 /*
9feedc9d 5519 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5520 * is used by this zone for memmap. This affects the watermark
5521 * and per-cpu initialisations
5522 */
01cefaef 5523 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5524 if (!is_highmem_idx(j)) {
5525 if (freesize >= memmap_pages) {
5526 freesize -= memmap_pages;
5527 if (memmap_pages)
5528 printk(KERN_DEBUG
5529 " %s zone: %lu pages used for memmap\n",
5530 zone_names[j], memmap_pages);
5531 } else
1170532b 5532 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5533 zone_names[j], memmap_pages, freesize);
5534 }
0e0b864e 5535
6267276f 5536 /* Account for reserved pages */
9feedc9d
JL
5537 if (j == 0 && freesize > dma_reserve) {
5538 freesize -= dma_reserve;
d903ef9f 5539 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5540 zone_names[0], dma_reserve);
0e0b864e
MG
5541 }
5542
98d2b0eb 5543 if (!is_highmem_idx(j))
9feedc9d 5544 nr_kernel_pages += freesize;
01cefaef
JL
5545 /* Charge for highmem memmap if there are enough kernel pages */
5546 else if (nr_kernel_pages > memmap_pages * 2)
5547 nr_kernel_pages -= memmap_pages;
9feedc9d 5548 nr_all_pages += freesize;
1da177e4 5549
9feedc9d
JL
5550 /*
5551 * Set an approximate value for lowmem here, it will be adjusted
5552 * when the bootmem allocator frees pages into the buddy system.
5553 * And all highmem pages will be managed by the buddy system.
5554 */
5555 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5556#ifdef CONFIG_NUMA
d5f541ed 5557 zone->node = nid;
9feedc9d 5558 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5559 / 100;
9feedc9d 5560 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5561#endif
1da177e4
LT
5562 zone->name = zone_names[j];
5563 spin_lock_init(&zone->lock);
5564 spin_lock_init(&zone->lru_lock);
bdc8cb98 5565 zone_seqlock_init(zone);
1da177e4 5566 zone->zone_pgdat = pgdat;
ed8ece2e 5567 zone_pcp_init(zone);
81c0a2bb
JW
5568
5569 /* For bootup, initialized properly in watermark setup */
5570 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5571
bea8c150 5572 lruvec_init(&zone->lruvec);
1da177e4
LT
5573 if (!size)
5574 continue;
5575
955c1cd7 5576 set_pageblock_order();
7c45512d 5577 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5578 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5579 BUG_ON(ret);
76cdd58e 5580 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5581 }
5582}
5583
577a32f6 5584static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5585{
b0aeba74 5586 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5587 unsigned long __maybe_unused offset = 0;
5588
1da177e4
LT
5589 /* Skip empty nodes */
5590 if (!pgdat->node_spanned_pages)
5591 return;
5592
d41dee36 5593#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5594 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5595 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5596 /* ia64 gets its own node_mem_map, before this, without bootmem */
5597 if (!pgdat->node_mem_map) {
b0aeba74 5598 unsigned long size, end;
d41dee36
AW
5599 struct page *map;
5600
e984bb43
BP
5601 /*
5602 * The zone's endpoints aren't required to be MAX_ORDER
5603 * aligned but the node_mem_map endpoints must be in order
5604 * for the buddy allocator to function correctly.
5605 */
108bcc96 5606 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5607 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5608 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5609 map = alloc_remap(pgdat->node_id, size);
5610 if (!map)
6782832e
SS
5611 map = memblock_virt_alloc_node_nopanic(size,
5612 pgdat->node_id);
a1c34a3b 5613 pgdat->node_mem_map = map + offset;
1da177e4 5614 }
12d810c1 5615#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5616 /*
5617 * With no DISCONTIG, the global mem_map is just set as node 0's
5618 */
c713216d 5619 if (pgdat == NODE_DATA(0)) {
1da177e4 5620 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5621#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5622 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5623 mem_map -= offset;
0ee332c1 5624#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5625 }
1da177e4 5626#endif
d41dee36 5627#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5628}
5629
9109fb7b
JW
5630void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5631 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5632{
9109fb7b 5633 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5634 unsigned long start_pfn = 0;
5635 unsigned long end_pfn = 0;
9109fb7b 5636
88fdf75d 5637 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5638 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5639
3a80a7fa 5640 reset_deferred_meminit(pgdat);
1da177e4
LT
5641 pgdat->node_id = nid;
5642 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5643#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5644 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5645 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5646 (u64)start_pfn << PAGE_SHIFT,
5647 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5648#else
5649 start_pfn = node_start_pfn;
7960aedd
ZY
5650#endif
5651 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5652 zones_size, zholes_size);
1da177e4
LT
5653
5654 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5655#ifdef CONFIG_FLAT_NODE_MEM_MAP
5656 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5657 nid, (unsigned long)pgdat,
5658 (unsigned long)pgdat->node_mem_map);
5659#endif
1da177e4 5660
7f3eb55b 5661 free_area_init_core(pgdat);
1da177e4
LT
5662}
5663
0ee332c1 5664#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5665
5666#if MAX_NUMNODES > 1
5667/*
5668 * Figure out the number of possible node ids.
5669 */
f9872caf 5670void __init setup_nr_node_ids(void)
418508c1 5671{
904a9553 5672 unsigned int highest;
418508c1 5673
904a9553 5674 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5675 nr_node_ids = highest + 1;
5676}
418508c1
MS
5677#endif
5678
1e01979c
TH
5679/**
5680 * node_map_pfn_alignment - determine the maximum internode alignment
5681 *
5682 * This function should be called after node map is populated and sorted.
5683 * It calculates the maximum power of two alignment which can distinguish
5684 * all the nodes.
5685 *
5686 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5687 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5688 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5689 * shifted, 1GiB is enough and this function will indicate so.
5690 *
5691 * This is used to test whether pfn -> nid mapping of the chosen memory
5692 * model has fine enough granularity to avoid incorrect mapping for the
5693 * populated node map.
5694 *
5695 * Returns the determined alignment in pfn's. 0 if there is no alignment
5696 * requirement (single node).
5697 */
5698unsigned long __init node_map_pfn_alignment(void)
5699{
5700 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5701 unsigned long start, end, mask;
1e01979c 5702 int last_nid = -1;
c13291a5 5703 int i, nid;
1e01979c 5704
c13291a5 5705 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5706 if (!start || last_nid < 0 || last_nid == nid) {
5707 last_nid = nid;
5708 last_end = end;
5709 continue;
5710 }
5711
5712 /*
5713 * Start with a mask granular enough to pin-point to the
5714 * start pfn and tick off bits one-by-one until it becomes
5715 * too coarse to separate the current node from the last.
5716 */
5717 mask = ~((1 << __ffs(start)) - 1);
5718 while (mask && last_end <= (start & (mask << 1)))
5719 mask <<= 1;
5720
5721 /* accumulate all internode masks */
5722 accl_mask |= mask;
5723 }
5724
5725 /* convert mask to number of pages */
5726 return ~accl_mask + 1;
5727}
5728
a6af2bc3 5729/* Find the lowest pfn for a node */
b69a7288 5730static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5731{
a6af2bc3 5732 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5733 unsigned long start_pfn;
5734 int i;
1abbfb41 5735
c13291a5
TH
5736 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5737 min_pfn = min(min_pfn, start_pfn);
c713216d 5738
a6af2bc3 5739 if (min_pfn == ULONG_MAX) {
1170532b 5740 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5741 return 0;
5742 }
5743
5744 return min_pfn;
c713216d
MG
5745}
5746
5747/**
5748 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5749 *
5750 * It returns the minimum PFN based on information provided via
7d018176 5751 * memblock_set_node().
c713216d
MG
5752 */
5753unsigned long __init find_min_pfn_with_active_regions(void)
5754{
5755 return find_min_pfn_for_node(MAX_NUMNODES);
5756}
5757
37b07e41
LS
5758/*
5759 * early_calculate_totalpages()
5760 * Sum pages in active regions for movable zone.
4b0ef1fe 5761 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5762 */
484f51f8 5763static unsigned long __init early_calculate_totalpages(void)
7e63efef 5764{
7e63efef 5765 unsigned long totalpages = 0;
c13291a5
TH
5766 unsigned long start_pfn, end_pfn;
5767 int i, nid;
5768
5769 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5770 unsigned long pages = end_pfn - start_pfn;
7e63efef 5771
37b07e41
LS
5772 totalpages += pages;
5773 if (pages)
4b0ef1fe 5774 node_set_state(nid, N_MEMORY);
37b07e41 5775 }
b8af2941 5776 return totalpages;
7e63efef
MG
5777}
5778
2a1e274a
MG
5779/*
5780 * Find the PFN the Movable zone begins in each node. Kernel memory
5781 * is spread evenly between nodes as long as the nodes have enough
5782 * memory. When they don't, some nodes will have more kernelcore than
5783 * others
5784 */
b224ef85 5785static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5786{
5787 int i, nid;
5788 unsigned long usable_startpfn;
5789 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5790 /* save the state before borrow the nodemask */
4b0ef1fe 5791 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5792 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5793 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5794 struct memblock_region *r;
b2f3eebe
TC
5795
5796 /* Need to find movable_zone earlier when movable_node is specified. */
5797 find_usable_zone_for_movable();
5798
5799 /*
5800 * If movable_node is specified, ignore kernelcore and movablecore
5801 * options.
5802 */
5803 if (movable_node_is_enabled()) {
136199f0
EM
5804 for_each_memblock(memory, r) {
5805 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5806 continue;
5807
136199f0 5808 nid = r->nid;
b2f3eebe 5809
136199f0 5810 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5811 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5812 min(usable_startpfn, zone_movable_pfn[nid]) :
5813 usable_startpfn;
5814 }
5815
5816 goto out2;
5817 }
2a1e274a 5818
342332e6
TI
5819 /*
5820 * If kernelcore=mirror is specified, ignore movablecore option
5821 */
5822 if (mirrored_kernelcore) {
5823 bool mem_below_4gb_not_mirrored = false;
5824
5825 for_each_memblock(memory, r) {
5826 if (memblock_is_mirror(r))
5827 continue;
5828
5829 nid = r->nid;
5830
5831 usable_startpfn = memblock_region_memory_base_pfn(r);
5832
5833 if (usable_startpfn < 0x100000) {
5834 mem_below_4gb_not_mirrored = true;
5835 continue;
5836 }
5837
5838 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5839 min(usable_startpfn, zone_movable_pfn[nid]) :
5840 usable_startpfn;
5841 }
5842
5843 if (mem_below_4gb_not_mirrored)
5844 pr_warn("This configuration results in unmirrored kernel memory.");
5845
5846 goto out2;
5847 }
5848
7e63efef 5849 /*
b2f3eebe 5850 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5851 * kernelcore that corresponds so that memory usable for
5852 * any allocation type is evenly spread. If both kernelcore
5853 * and movablecore are specified, then the value of kernelcore
5854 * will be used for required_kernelcore if it's greater than
5855 * what movablecore would have allowed.
5856 */
5857 if (required_movablecore) {
7e63efef
MG
5858 unsigned long corepages;
5859
5860 /*
5861 * Round-up so that ZONE_MOVABLE is at least as large as what
5862 * was requested by the user
5863 */
5864 required_movablecore =
5865 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5866 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5867 corepages = totalpages - required_movablecore;
5868
5869 required_kernelcore = max(required_kernelcore, corepages);
5870 }
5871
bde304bd
XQ
5872 /*
5873 * If kernelcore was not specified or kernelcore size is larger
5874 * than totalpages, there is no ZONE_MOVABLE.
5875 */
5876 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5877 goto out;
2a1e274a
MG
5878
5879 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5880 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5881
5882restart:
5883 /* Spread kernelcore memory as evenly as possible throughout nodes */
5884 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5885 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5886 unsigned long start_pfn, end_pfn;
5887
2a1e274a
MG
5888 /*
5889 * Recalculate kernelcore_node if the division per node
5890 * now exceeds what is necessary to satisfy the requested
5891 * amount of memory for the kernel
5892 */
5893 if (required_kernelcore < kernelcore_node)
5894 kernelcore_node = required_kernelcore / usable_nodes;
5895
5896 /*
5897 * As the map is walked, we track how much memory is usable
5898 * by the kernel using kernelcore_remaining. When it is
5899 * 0, the rest of the node is usable by ZONE_MOVABLE
5900 */
5901 kernelcore_remaining = kernelcore_node;
5902
5903 /* Go through each range of PFNs within this node */
c13291a5 5904 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5905 unsigned long size_pages;
5906
c13291a5 5907 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5908 if (start_pfn >= end_pfn)
5909 continue;
5910
5911 /* Account for what is only usable for kernelcore */
5912 if (start_pfn < usable_startpfn) {
5913 unsigned long kernel_pages;
5914 kernel_pages = min(end_pfn, usable_startpfn)
5915 - start_pfn;
5916
5917 kernelcore_remaining -= min(kernel_pages,
5918 kernelcore_remaining);
5919 required_kernelcore -= min(kernel_pages,
5920 required_kernelcore);
5921
5922 /* Continue if range is now fully accounted */
5923 if (end_pfn <= usable_startpfn) {
5924
5925 /*
5926 * Push zone_movable_pfn to the end so
5927 * that if we have to rebalance
5928 * kernelcore across nodes, we will
5929 * not double account here
5930 */
5931 zone_movable_pfn[nid] = end_pfn;
5932 continue;
5933 }
5934 start_pfn = usable_startpfn;
5935 }
5936
5937 /*
5938 * The usable PFN range for ZONE_MOVABLE is from
5939 * start_pfn->end_pfn. Calculate size_pages as the
5940 * number of pages used as kernelcore
5941 */
5942 size_pages = end_pfn - start_pfn;
5943 if (size_pages > kernelcore_remaining)
5944 size_pages = kernelcore_remaining;
5945 zone_movable_pfn[nid] = start_pfn + size_pages;
5946
5947 /*
5948 * Some kernelcore has been met, update counts and
5949 * break if the kernelcore for this node has been
b8af2941 5950 * satisfied
2a1e274a
MG
5951 */
5952 required_kernelcore -= min(required_kernelcore,
5953 size_pages);
5954 kernelcore_remaining -= size_pages;
5955 if (!kernelcore_remaining)
5956 break;
5957 }
5958 }
5959
5960 /*
5961 * If there is still required_kernelcore, we do another pass with one
5962 * less node in the count. This will push zone_movable_pfn[nid] further
5963 * along on the nodes that still have memory until kernelcore is
b8af2941 5964 * satisfied
2a1e274a
MG
5965 */
5966 usable_nodes--;
5967 if (usable_nodes && required_kernelcore > usable_nodes)
5968 goto restart;
5969
b2f3eebe 5970out2:
2a1e274a
MG
5971 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5972 for (nid = 0; nid < MAX_NUMNODES; nid++)
5973 zone_movable_pfn[nid] =
5974 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5975
20e6926d 5976out:
66918dcd 5977 /* restore the node_state */
4b0ef1fe 5978 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5979}
5980
4b0ef1fe
LJ
5981/* Any regular or high memory on that node ? */
5982static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5983{
37b07e41
LS
5984 enum zone_type zone_type;
5985
4b0ef1fe
LJ
5986 if (N_MEMORY == N_NORMAL_MEMORY)
5987 return;
5988
5989 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5990 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5991 if (populated_zone(zone)) {
4b0ef1fe
LJ
5992 node_set_state(nid, N_HIGH_MEMORY);
5993 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5994 zone_type <= ZONE_NORMAL)
5995 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5996 break;
5997 }
37b07e41 5998 }
37b07e41
LS
5999}
6000
c713216d
MG
6001/**
6002 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6003 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6004 *
6005 * This will call free_area_init_node() for each active node in the system.
7d018176 6006 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6007 * zone in each node and their holes is calculated. If the maximum PFN
6008 * between two adjacent zones match, it is assumed that the zone is empty.
6009 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6010 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6011 * starts where the previous one ended. For example, ZONE_DMA32 starts
6012 * at arch_max_dma_pfn.
6013 */
6014void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6015{
c13291a5
TH
6016 unsigned long start_pfn, end_pfn;
6017 int i, nid;
a6af2bc3 6018
c713216d
MG
6019 /* Record where the zone boundaries are */
6020 memset(arch_zone_lowest_possible_pfn, 0,
6021 sizeof(arch_zone_lowest_possible_pfn));
6022 memset(arch_zone_highest_possible_pfn, 0,
6023 sizeof(arch_zone_highest_possible_pfn));
6024 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6025 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6026 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6027 if (i == ZONE_MOVABLE)
6028 continue;
c713216d
MG
6029 arch_zone_lowest_possible_pfn[i] =
6030 arch_zone_highest_possible_pfn[i-1];
6031 arch_zone_highest_possible_pfn[i] =
6032 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6033 }
2a1e274a
MG
6034 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6035 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6036
6037 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6038 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6039 find_zone_movable_pfns_for_nodes();
c713216d 6040
c713216d 6041 /* Print out the zone ranges */
f88dfff5 6042 pr_info("Zone ranges:\n");
2a1e274a
MG
6043 for (i = 0; i < MAX_NR_ZONES; i++) {
6044 if (i == ZONE_MOVABLE)
6045 continue;
f88dfff5 6046 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6047 if (arch_zone_lowest_possible_pfn[i] ==
6048 arch_zone_highest_possible_pfn[i])
f88dfff5 6049 pr_cont("empty\n");
72f0ba02 6050 else
8d29e18a
JG
6051 pr_cont("[mem %#018Lx-%#018Lx]\n",
6052 (u64)arch_zone_lowest_possible_pfn[i]
6053 << PAGE_SHIFT,
6054 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6055 << PAGE_SHIFT) - 1);
2a1e274a
MG
6056 }
6057
6058 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6059 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6060 for (i = 0; i < MAX_NUMNODES; i++) {
6061 if (zone_movable_pfn[i])
8d29e18a
JG
6062 pr_info(" Node %d: %#018Lx\n", i,
6063 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6064 }
c713216d 6065
f2d52fe5 6066 /* Print out the early node map */
f88dfff5 6067 pr_info("Early memory node ranges\n");
c13291a5 6068 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6069 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6070 (u64)start_pfn << PAGE_SHIFT,
6071 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6072
6073 /* Initialise every node */
708614e6 6074 mminit_verify_pageflags_layout();
8ef82866 6075 setup_nr_node_ids();
c713216d
MG
6076 for_each_online_node(nid) {
6077 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6078 free_area_init_node(nid, NULL,
c713216d 6079 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6080
6081 /* Any memory on that node */
6082 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6083 node_set_state(nid, N_MEMORY);
6084 check_for_memory(pgdat, nid);
c713216d
MG
6085 }
6086}
2a1e274a 6087
7e63efef 6088static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6089{
6090 unsigned long long coremem;
6091 if (!p)
6092 return -EINVAL;
6093
6094 coremem = memparse(p, &p);
7e63efef 6095 *core = coremem >> PAGE_SHIFT;
2a1e274a 6096
7e63efef 6097 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6098 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6099
6100 return 0;
6101}
ed7ed365 6102
7e63efef
MG
6103/*
6104 * kernelcore=size sets the amount of memory for use for allocations that
6105 * cannot be reclaimed or migrated.
6106 */
6107static int __init cmdline_parse_kernelcore(char *p)
6108{
342332e6
TI
6109 /* parse kernelcore=mirror */
6110 if (parse_option_str(p, "mirror")) {
6111 mirrored_kernelcore = true;
6112 return 0;
6113 }
6114
7e63efef
MG
6115 return cmdline_parse_core(p, &required_kernelcore);
6116}
6117
6118/*
6119 * movablecore=size sets the amount of memory for use for allocations that
6120 * can be reclaimed or migrated.
6121 */
6122static int __init cmdline_parse_movablecore(char *p)
6123{
6124 return cmdline_parse_core(p, &required_movablecore);
6125}
6126
ed7ed365 6127early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6128early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6129
0ee332c1 6130#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6131
c3d5f5f0
JL
6132void adjust_managed_page_count(struct page *page, long count)
6133{
6134 spin_lock(&managed_page_count_lock);
6135 page_zone(page)->managed_pages += count;
6136 totalram_pages += count;
3dcc0571
JL
6137#ifdef CONFIG_HIGHMEM
6138 if (PageHighMem(page))
6139 totalhigh_pages += count;
6140#endif
c3d5f5f0
JL
6141 spin_unlock(&managed_page_count_lock);
6142}
3dcc0571 6143EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6144
11199692 6145unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6146{
11199692
JL
6147 void *pos;
6148 unsigned long pages = 0;
69afade7 6149
11199692
JL
6150 start = (void *)PAGE_ALIGN((unsigned long)start);
6151 end = (void *)((unsigned long)end & PAGE_MASK);
6152 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6153 if ((unsigned int)poison <= 0xFF)
11199692
JL
6154 memset(pos, poison, PAGE_SIZE);
6155 free_reserved_page(virt_to_page(pos));
69afade7
JL
6156 }
6157
6158 if (pages && s)
11199692 6159 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6160 s, pages << (PAGE_SHIFT - 10), start, end);
6161
6162 return pages;
6163}
11199692 6164EXPORT_SYMBOL(free_reserved_area);
69afade7 6165
cfa11e08
JL
6166#ifdef CONFIG_HIGHMEM
6167void free_highmem_page(struct page *page)
6168{
6169 __free_reserved_page(page);
6170 totalram_pages++;
7b4b2a0d 6171 page_zone(page)->managed_pages++;
cfa11e08
JL
6172 totalhigh_pages++;
6173}
6174#endif
6175
7ee3d4e8
JL
6176
6177void __init mem_init_print_info(const char *str)
6178{
6179 unsigned long physpages, codesize, datasize, rosize, bss_size;
6180 unsigned long init_code_size, init_data_size;
6181
6182 physpages = get_num_physpages();
6183 codesize = _etext - _stext;
6184 datasize = _edata - _sdata;
6185 rosize = __end_rodata - __start_rodata;
6186 bss_size = __bss_stop - __bss_start;
6187 init_data_size = __init_end - __init_begin;
6188 init_code_size = _einittext - _sinittext;
6189
6190 /*
6191 * Detect special cases and adjust section sizes accordingly:
6192 * 1) .init.* may be embedded into .data sections
6193 * 2) .init.text.* may be out of [__init_begin, __init_end],
6194 * please refer to arch/tile/kernel/vmlinux.lds.S.
6195 * 3) .rodata.* may be embedded into .text or .data sections.
6196 */
6197#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6198 do { \
6199 if (start <= pos && pos < end && size > adj) \
6200 size -= adj; \
6201 } while (0)
7ee3d4e8
JL
6202
6203 adj_init_size(__init_begin, __init_end, init_data_size,
6204 _sinittext, init_code_size);
6205 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6206 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6207 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6208 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6209
6210#undef adj_init_size
6211
756a025f 6212 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6213#ifdef CONFIG_HIGHMEM
756a025f 6214 ", %luK highmem"
7ee3d4e8 6215#endif
756a025f
JP
6216 "%s%s)\n",
6217 nr_free_pages() << (PAGE_SHIFT - 10),
6218 physpages << (PAGE_SHIFT - 10),
6219 codesize >> 10, datasize >> 10, rosize >> 10,
6220 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6221 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6222 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6223#ifdef CONFIG_HIGHMEM
756a025f 6224 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6225#endif
756a025f 6226 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6227}
6228
0e0b864e 6229/**
88ca3b94
RD
6230 * set_dma_reserve - set the specified number of pages reserved in the first zone
6231 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6232 *
013110a7 6233 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6234 * In the DMA zone, a significant percentage may be consumed by kernel image
6235 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6236 * function may optionally be used to account for unfreeable pages in the
6237 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6238 * smaller per-cpu batchsize.
0e0b864e
MG
6239 */
6240void __init set_dma_reserve(unsigned long new_dma_reserve)
6241{
6242 dma_reserve = new_dma_reserve;
6243}
6244
1da177e4
LT
6245void __init free_area_init(unsigned long *zones_size)
6246{
9109fb7b 6247 free_area_init_node(0, zones_size,
1da177e4
LT
6248 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6249}
1da177e4 6250
1da177e4
LT
6251static int page_alloc_cpu_notify(struct notifier_block *self,
6252 unsigned long action, void *hcpu)
6253{
6254 int cpu = (unsigned long)hcpu;
1da177e4 6255
8bb78442 6256 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6257 lru_add_drain_cpu(cpu);
9f8f2172
CL
6258 drain_pages(cpu);
6259
6260 /*
6261 * Spill the event counters of the dead processor
6262 * into the current processors event counters.
6263 * This artificially elevates the count of the current
6264 * processor.
6265 */
f8891e5e 6266 vm_events_fold_cpu(cpu);
9f8f2172
CL
6267
6268 /*
6269 * Zero the differential counters of the dead processor
6270 * so that the vm statistics are consistent.
6271 *
6272 * This is only okay since the processor is dead and cannot
6273 * race with what we are doing.
6274 */
2bb921e5 6275 cpu_vm_stats_fold(cpu);
1da177e4
LT
6276 }
6277 return NOTIFY_OK;
6278}
1da177e4
LT
6279
6280void __init page_alloc_init(void)
6281{
6282 hotcpu_notifier(page_alloc_cpu_notify, 0);
6283}
6284
cb45b0e9 6285/*
34b10060 6286 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6287 * or min_free_kbytes changes.
6288 */
6289static void calculate_totalreserve_pages(void)
6290{
6291 struct pglist_data *pgdat;
6292 unsigned long reserve_pages = 0;
2f6726e5 6293 enum zone_type i, j;
cb45b0e9
HA
6294
6295 for_each_online_pgdat(pgdat) {
6296 for (i = 0; i < MAX_NR_ZONES; i++) {
6297 struct zone *zone = pgdat->node_zones + i;
3484b2de 6298 long max = 0;
cb45b0e9
HA
6299
6300 /* Find valid and maximum lowmem_reserve in the zone */
6301 for (j = i; j < MAX_NR_ZONES; j++) {
6302 if (zone->lowmem_reserve[j] > max)
6303 max = zone->lowmem_reserve[j];
6304 }
6305
41858966
MG
6306 /* we treat the high watermark as reserved pages. */
6307 max += high_wmark_pages(zone);
cb45b0e9 6308
b40da049
JL
6309 if (max > zone->managed_pages)
6310 max = zone->managed_pages;
a8d01437
JW
6311
6312 zone->totalreserve_pages = max;
6313
cb45b0e9
HA
6314 reserve_pages += max;
6315 }
6316 }
6317 totalreserve_pages = reserve_pages;
6318}
6319
1da177e4
LT
6320/*
6321 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6322 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6323 * has a correct pages reserved value, so an adequate number of
6324 * pages are left in the zone after a successful __alloc_pages().
6325 */
6326static void setup_per_zone_lowmem_reserve(void)
6327{
6328 struct pglist_data *pgdat;
2f6726e5 6329 enum zone_type j, idx;
1da177e4 6330
ec936fc5 6331 for_each_online_pgdat(pgdat) {
1da177e4
LT
6332 for (j = 0; j < MAX_NR_ZONES; j++) {
6333 struct zone *zone = pgdat->node_zones + j;
b40da049 6334 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6335
6336 zone->lowmem_reserve[j] = 0;
6337
2f6726e5
CL
6338 idx = j;
6339 while (idx) {
1da177e4
LT
6340 struct zone *lower_zone;
6341
2f6726e5
CL
6342 idx--;
6343
1da177e4
LT
6344 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6345 sysctl_lowmem_reserve_ratio[idx] = 1;
6346
6347 lower_zone = pgdat->node_zones + idx;
b40da049 6348 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6349 sysctl_lowmem_reserve_ratio[idx];
b40da049 6350 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6351 }
6352 }
6353 }
cb45b0e9
HA
6354
6355 /* update totalreserve_pages */
6356 calculate_totalreserve_pages();
1da177e4
LT
6357}
6358
cfd3da1e 6359static void __setup_per_zone_wmarks(void)
1da177e4
LT
6360{
6361 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6362 unsigned long lowmem_pages = 0;
6363 struct zone *zone;
6364 unsigned long flags;
6365
6366 /* Calculate total number of !ZONE_HIGHMEM pages */
6367 for_each_zone(zone) {
6368 if (!is_highmem(zone))
b40da049 6369 lowmem_pages += zone->managed_pages;
1da177e4
LT
6370 }
6371
6372 for_each_zone(zone) {
ac924c60
AM
6373 u64 tmp;
6374
1125b4e3 6375 spin_lock_irqsave(&zone->lock, flags);
b40da049 6376 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6377 do_div(tmp, lowmem_pages);
1da177e4
LT
6378 if (is_highmem(zone)) {
6379 /*
669ed175
NP
6380 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6381 * need highmem pages, so cap pages_min to a small
6382 * value here.
6383 *
41858966 6384 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6385 * deltas control asynch page reclaim, and so should
669ed175 6386 * not be capped for highmem.
1da177e4 6387 */
90ae8d67 6388 unsigned long min_pages;
1da177e4 6389
b40da049 6390 min_pages = zone->managed_pages / 1024;
90ae8d67 6391 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6392 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6393 } else {
669ed175
NP
6394 /*
6395 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6396 * proportionate to the zone's size.
6397 */
41858966 6398 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6399 }
6400
795ae7a0
JW
6401 /*
6402 * Set the kswapd watermarks distance according to the
6403 * scale factor in proportion to available memory, but
6404 * ensure a minimum size on small systems.
6405 */
6406 tmp = max_t(u64, tmp >> 2,
6407 mult_frac(zone->managed_pages,
6408 watermark_scale_factor, 10000));
6409
6410 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6411 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6412
81c0a2bb 6413 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6414 high_wmark_pages(zone) - low_wmark_pages(zone) -
6415 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6416
1125b4e3 6417 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6418 }
cb45b0e9
HA
6419
6420 /* update totalreserve_pages */
6421 calculate_totalreserve_pages();
1da177e4
LT
6422}
6423
cfd3da1e
MG
6424/**
6425 * setup_per_zone_wmarks - called when min_free_kbytes changes
6426 * or when memory is hot-{added|removed}
6427 *
6428 * Ensures that the watermark[min,low,high] values for each zone are set
6429 * correctly with respect to min_free_kbytes.
6430 */
6431void setup_per_zone_wmarks(void)
6432{
6433 mutex_lock(&zonelists_mutex);
6434 __setup_per_zone_wmarks();
6435 mutex_unlock(&zonelists_mutex);
6436}
6437
55a4462a 6438/*
556adecb
RR
6439 * The inactive anon list should be small enough that the VM never has to
6440 * do too much work, but large enough that each inactive page has a chance
6441 * to be referenced again before it is swapped out.
6442 *
6443 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6444 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6445 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6446 * the anonymous pages are kept on the inactive list.
6447 *
6448 * total target max
6449 * memory ratio inactive anon
6450 * -------------------------------------
6451 * 10MB 1 5MB
6452 * 100MB 1 50MB
6453 * 1GB 3 250MB
6454 * 10GB 10 0.9GB
6455 * 100GB 31 3GB
6456 * 1TB 101 10GB
6457 * 10TB 320 32GB
6458 */
1b79acc9 6459static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6460{
96cb4df5 6461 unsigned int gb, ratio;
556adecb 6462
96cb4df5 6463 /* Zone size in gigabytes */
b40da049 6464 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6465 if (gb)
556adecb 6466 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6467 else
6468 ratio = 1;
556adecb 6469
96cb4df5
MK
6470 zone->inactive_ratio = ratio;
6471}
556adecb 6472
839a4fcc 6473static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6474{
6475 struct zone *zone;
6476
6477 for_each_zone(zone)
6478 calculate_zone_inactive_ratio(zone);
556adecb
RR
6479}
6480
1da177e4
LT
6481/*
6482 * Initialise min_free_kbytes.
6483 *
6484 * For small machines we want it small (128k min). For large machines
6485 * we want it large (64MB max). But it is not linear, because network
6486 * bandwidth does not increase linearly with machine size. We use
6487 *
b8af2941 6488 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6489 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6490 *
6491 * which yields
6492 *
6493 * 16MB: 512k
6494 * 32MB: 724k
6495 * 64MB: 1024k
6496 * 128MB: 1448k
6497 * 256MB: 2048k
6498 * 512MB: 2896k
6499 * 1024MB: 4096k
6500 * 2048MB: 5792k
6501 * 4096MB: 8192k
6502 * 8192MB: 11584k
6503 * 16384MB: 16384k
6504 */
1b79acc9 6505int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6506{
6507 unsigned long lowmem_kbytes;
5f12733e 6508 int new_min_free_kbytes;
1da177e4
LT
6509
6510 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6511 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6512
6513 if (new_min_free_kbytes > user_min_free_kbytes) {
6514 min_free_kbytes = new_min_free_kbytes;
6515 if (min_free_kbytes < 128)
6516 min_free_kbytes = 128;
6517 if (min_free_kbytes > 65536)
6518 min_free_kbytes = 65536;
6519 } else {
6520 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6521 new_min_free_kbytes, user_min_free_kbytes);
6522 }
bc75d33f 6523 setup_per_zone_wmarks();
a6cccdc3 6524 refresh_zone_stat_thresholds();
1da177e4 6525 setup_per_zone_lowmem_reserve();
556adecb 6526 setup_per_zone_inactive_ratio();
1da177e4
LT
6527 return 0;
6528}
bc22af74 6529core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6530
6531/*
b8af2941 6532 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6533 * that we can call two helper functions whenever min_free_kbytes
6534 * changes.
6535 */
cccad5b9 6536int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6537 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6538{
da8c757b
HP
6539 int rc;
6540
6541 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6542 if (rc)
6543 return rc;
6544
5f12733e
MH
6545 if (write) {
6546 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6547 setup_per_zone_wmarks();
5f12733e 6548 }
1da177e4
LT
6549 return 0;
6550}
6551
795ae7a0
JW
6552int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6553 void __user *buffer, size_t *length, loff_t *ppos)
6554{
6555 int rc;
6556
6557 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6558 if (rc)
6559 return rc;
6560
6561 if (write)
6562 setup_per_zone_wmarks();
6563
6564 return 0;
6565}
6566
9614634f 6567#ifdef CONFIG_NUMA
cccad5b9 6568int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6569 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6570{
6571 struct zone *zone;
6572 int rc;
6573
8d65af78 6574 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6575 if (rc)
6576 return rc;
6577
6578 for_each_zone(zone)
b40da049 6579 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6580 sysctl_min_unmapped_ratio) / 100;
6581 return 0;
6582}
0ff38490 6583
cccad5b9 6584int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6585 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6586{
6587 struct zone *zone;
6588 int rc;
6589
8d65af78 6590 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6591 if (rc)
6592 return rc;
6593
6594 for_each_zone(zone)
b40da049 6595 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6596 sysctl_min_slab_ratio) / 100;
6597 return 0;
6598}
9614634f
CL
6599#endif
6600
1da177e4
LT
6601/*
6602 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6603 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6604 * whenever sysctl_lowmem_reserve_ratio changes.
6605 *
6606 * The reserve ratio obviously has absolutely no relation with the
41858966 6607 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6608 * if in function of the boot time zone sizes.
6609 */
cccad5b9 6610int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6611 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6612{
8d65af78 6613 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6614 setup_per_zone_lowmem_reserve();
6615 return 0;
6616}
6617
8ad4b1fb
RS
6618/*
6619 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6620 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6621 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6622 */
cccad5b9 6623int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6624 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6625{
6626 struct zone *zone;
7cd2b0a3 6627 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6628 int ret;
6629
7cd2b0a3
DR
6630 mutex_lock(&pcp_batch_high_lock);
6631 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6632
8d65af78 6633 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6634 if (!write || ret < 0)
6635 goto out;
6636
6637 /* Sanity checking to avoid pcp imbalance */
6638 if (percpu_pagelist_fraction &&
6639 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6640 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6641 ret = -EINVAL;
6642 goto out;
6643 }
6644
6645 /* No change? */
6646 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6647 goto out;
c8e251fa 6648
364df0eb 6649 for_each_populated_zone(zone) {
7cd2b0a3
DR
6650 unsigned int cpu;
6651
22a7f12b 6652 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6653 pageset_set_high_and_batch(zone,
6654 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6655 }
7cd2b0a3 6656out:
c8e251fa 6657 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6658 return ret;
8ad4b1fb
RS
6659}
6660
a9919c79 6661#ifdef CONFIG_NUMA
f034b5d4 6662int hashdist = HASHDIST_DEFAULT;
1da177e4 6663
1da177e4
LT
6664static int __init set_hashdist(char *str)
6665{
6666 if (!str)
6667 return 0;
6668 hashdist = simple_strtoul(str, &str, 0);
6669 return 1;
6670}
6671__setup("hashdist=", set_hashdist);
6672#endif
6673
6674/*
6675 * allocate a large system hash table from bootmem
6676 * - it is assumed that the hash table must contain an exact power-of-2
6677 * quantity of entries
6678 * - limit is the number of hash buckets, not the total allocation size
6679 */
6680void *__init alloc_large_system_hash(const char *tablename,
6681 unsigned long bucketsize,
6682 unsigned long numentries,
6683 int scale,
6684 int flags,
6685 unsigned int *_hash_shift,
6686 unsigned int *_hash_mask,
31fe62b9
TB
6687 unsigned long low_limit,
6688 unsigned long high_limit)
1da177e4 6689{
31fe62b9 6690 unsigned long long max = high_limit;
1da177e4
LT
6691 unsigned long log2qty, size;
6692 void *table = NULL;
6693
6694 /* allow the kernel cmdline to have a say */
6695 if (!numentries) {
6696 /* round applicable memory size up to nearest megabyte */
04903664 6697 numentries = nr_kernel_pages;
a7e83318
JZ
6698
6699 /* It isn't necessary when PAGE_SIZE >= 1MB */
6700 if (PAGE_SHIFT < 20)
6701 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6702
6703 /* limit to 1 bucket per 2^scale bytes of low memory */
6704 if (scale > PAGE_SHIFT)
6705 numentries >>= (scale - PAGE_SHIFT);
6706 else
6707 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6708
6709 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6710 if (unlikely(flags & HASH_SMALL)) {
6711 /* Makes no sense without HASH_EARLY */
6712 WARN_ON(!(flags & HASH_EARLY));
6713 if (!(numentries >> *_hash_shift)) {
6714 numentries = 1UL << *_hash_shift;
6715 BUG_ON(!numentries);
6716 }
6717 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6718 numentries = PAGE_SIZE / bucketsize;
1da177e4 6719 }
6e692ed3 6720 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6721
6722 /* limit allocation size to 1/16 total memory by default */
6723 if (max == 0) {
6724 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6725 do_div(max, bucketsize);
6726 }
074b8517 6727 max = min(max, 0x80000000ULL);
1da177e4 6728
31fe62b9
TB
6729 if (numentries < low_limit)
6730 numentries = low_limit;
1da177e4
LT
6731 if (numentries > max)
6732 numentries = max;
6733
f0d1b0b3 6734 log2qty = ilog2(numentries);
1da177e4
LT
6735
6736 do {
6737 size = bucketsize << log2qty;
6738 if (flags & HASH_EARLY)
6782832e 6739 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6740 else if (hashdist)
6741 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6742 else {
1037b83b
ED
6743 /*
6744 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6745 * some pages at the end of hash table which
6746 * alloc_pages_exact() automatically does
1037b83b 6747 */
264ef8a9 6748 if (get_order(size) < MAX_ORDER) {
a1dd268c 6749 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6750 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6751 }
1da177e4
LT
6752 }
6753 } while (!table && size > PAGE_SIZE && --log2qty);
6754
6755 if (!table)
6756 panic("Failed to allocate %s hash table\n", tablename);
6757
1170532b
JP
6758 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6759 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6760
6761 if (_hash_shift)
6762 *_hash_shift = log2qty;
6763 if (_hash_mask)
6764 *_hash_mask = (1 << log2qty) - 1;
6765
6766 return table;
6767}
a117e66e 6768
835c134e 6769/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6770static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6771 unsigned long pfn)
6772{
6773#ifdef CONFIG_SPARSEMEM
6774 return __pfn_to_section(pfn)->pageblock_flags;
6775#else
f75fb889 6776 return page_zone(page)->pageblock_flags;
835c134e
MG
6777#endif /* CONFIG_SPARSEMEM */
6778}
6779
f75fb889 6780static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6781{
6782#ifdef CONFIG_SPARSEMEM
6783 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6784 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6785#else
f75fb889 6786 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6787 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6788#endif /* CONFIG_SPARSEMEM */
6789}
6790
6791/**
1aab4d77 6792 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6793 * @page: The page within the block of interest
1aab4d77
RD
6794 * @pfn: The target page frame number
6795 * @end_bitidx: The last bit of interest to retrieve
6796 * @mask: mask of bits that the caller is interested in
6797 *
6798 * Return: pageblock_bits flags
835c134e 6799 */
dc4b0caf 6800unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6801 unsigned long end_bitidx,
6802 unsigned long mask)
835c134e 6803{
835c134e 6804 unsigned long *bitmap;
dc4b0caf 6805 unsigned long bitidx, word_bitidx;
e58469ba 6806 unsigned long word;
835c134e 6807
f75fb889
MG
6808 bitmap = get_pageblock_bitmap(page, pfn);
6809 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6810 word_bitidx = bitidx / BITS_PER_LONG;
6811 bitidx &= (BITS_PER_LONG-1);
835c134e 6812
e58469ba
MG
6813 word = bitmap[word_bitidx];
6814 bitidx += end_bitidx;
6815 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6816}
6817
6818/**
dc4b0caf 6819 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6820 * @page: The page within the block of interest
835c134e 6821 * @flags: The flags to set
1aab4d77
RD
6822 * @pfn: The target page frame number
6823 * @end_bitidx: The last bit of interest
6824 * @mask: mask of bits that the caller is interested in
835c134e 6825 */
dc4b0caf
MG
6826void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6827 unsigned long pfn,
e58469ba
MG
6828 unsigned long end_bitidx,
6829 unsigned long mask)
835c134e 6830{
835c134e 6831 unsigned long *bitmap;
dc4b0caf 6832 unsigned long bitidx, word_bitidx;
e58469ba
MG
6833 unsigned long old_word, word;
6834
6835 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6836
f75fb889
MG
6837 bitmap = get_pageblock_bitmap(page, pfn);
6838 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6839 word_bitidx = bitidx / BITS_PER_LONG;
6840 bitidx &= (BITS_PER_LONG-1);
6841
f75fb889 6842 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6843
e58469ba
MG
6844 bitidx += end_bitidx;
6845 mask <<= (BITS_PER_LONG - bitidx - 1);
6846 flags <<= (BITS_PER_LONG - bitidx - 1);
6847
4db0c3c2 6848 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6849 for (;;) {
6850 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6851 if (word == old_word)
6852 break;
6853 word = old_word;
6854 }
835c134e 6855}
a5d76b54
KH
6856
6857/*
80934513
MK
6858 * This function checks whether pageblock includes unmovable pages or not.
6859 * If @count is not zero, it is okay to include less @count unmovable pages
6860 *
b8af2941 6861 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6862 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6863 * expect this function should be exact.
a5d76b54 6864 */
b023f468
WC
6865bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6866 bool skip_hwpoisoned_pages)
49ac8255
KH
6867{
6868 unsigned long pfn, iter, found;
47118af0
MN
6869 int mt;
6870
49ac8255
KH
6871 /*
6872 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6873 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6874 */
6875 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6876 return false;
47118af0
MN
6877 mt = get_pageblock_migratetype(page);
6878 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6879 return false;
49ac8255
KH
6880
6881 pfn = page_to_pfn(page);
6882 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6883 unsigned long check = pfn + iter;
6884
29723fcc 6885 if (!pfn_valid_within(check))
49ac8255 6886 continue;
29723fcc 6887
49ac8255 6888 page = pfn_to_page(check);
c8721bbb
NH
6889
6890 /*
6891 * Hugepages are not in LRU lists, but they're movable.
6892 * We need not scan over tail pages bacause we don't
6893 * handle each tail page individually in migration.
6894 */
6895 if (PageHuge(page)) {
6896 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6897 continue;
6898 }
6899
97d255c8
MK
6900 /*
6901 * We can't use page_count without pin a page
6902 * because another CPU can free compound page.
6903 * This check already skips compound tails of THP
0139aa7b 6904 * because their page->_refcount is zero at all time.
97d255c8 6905 */
fe896d18 6906 if (!page_ref_count(page)) {
49ac8255
KH
6907 if (PageBuddy(page))
6908 iter += (1 << page_order(page)) - 1;
6909 continue;
6910 }
97d255c8 6911
b023f468
WC
6912 /*
6913 * The HWPoisoned page may be not in buddy system, and
6914 * page_count() is not 0.
6915 */
6916 if (skip_hwpoisoned_pages && PageHWPoison(page))
6917 continue;
6918
49ac8255
KH
6919 if (!PageLRU(page))
6920 found++;
6921 /*
6b4f7799
JW
6922 * If there are RECLAIMABLE pages, we need to check
6923 * it. But now, memory offline itself doesn't call
6924 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6925 */
6926 /*
6927 * If the page is not RAM, page_count()should be 0.
6928 * we don't need more check. This is an _used_ not-movable page.
6929 *
6930 * The problematic thing here is PG_reserved pages. PG_reserved
6931 * is set to both of a memory hole page and a _used_ kernel
6932 * page at boot.
6933 */
6934 if (found > count)
80934513 6935 return true;
49ac8255 6936 }
80934513 6937 return false;
49ac8255
KH
6938}
6939
6940bool is_pageblock_removable_nolock(struct page *page)
6941{
656a0706
MH
6942 struct zone *zone;
6943 unsigned long pfn;
687875fb
MH
6944
6945 /*
6946 * We have to be careful here because we are iterating over memory
6947 * sections which are not zone aware so we might end up outside of
6948 * the zone but still within the section.
656a0706
MH
6949 * We have to take care about the node as well. If the node is offline
6950 * its NODE_DATA will be NULL - see page_zone.
687875fb 6951 */
656a0706
MH
6952 if (!node_online(page_to_nid(page)))
6953 return false;
6954
6955 zone = page_zone(page);
6956 pfn = page_to_pfn(page);
108bcc96 6957 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6958 return false;
6959
b023f468 6960 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6961}
0c0e6195 6962
080fe206 6963#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6964
6965static unsigned long pfn_max_align_down(unsigned long pfn)
6966{
6967 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6968 pageblock_nr_pages) - 1);
6969}
6970
6971static unsigned long pfn_max_align_up(unsigned long pfn)
6972{
6973 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6974 pageblock_nr_pages));
6975}
6976
041d3a8c 6977/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6978static int __alloc_contig_migrate_range(struct compact_control *cc,
6979 unsigned long start, unsigned long end)
041d3a8c
MN
6980{
6981 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6982 unsigned long nr_reclaimed;
041d3a8c
MN
6983 unsigned long pfn = start;
6984 unsigned int tries = 0;
6985 int ret = 0;
6986
be49a6e1 6987 migrate_prep();
041d3a8c 6988
bb13ffeb 6989 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6990 if (fatal_signal_pending(current)) {
6991 ret = -EINTR;
6992 break;
6993 }
6994
bb13ffeb
MG
6995 if (list_empty(&cc->migratepages)) {
6996 cc->nr_migratepages = 0;
edc2ca61 6997 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6998 if (!pfn) {
6999 ret = -EINTR;
7000 break;
7001 }
7002 tries = 0;
7003 } else if (++tries == 5) {
7004 ret = ret < 0 ? ret : -EBUSY;
7005 break;
7006 }
7007
beb51eaa
MK
7008 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7009 &cc->migratepages);
7010 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7011
9c620e2b 7012 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7013 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7014 }
2a6f5124
SP
7015 if (ret < 0) {
7016 putback_movable_pages(&cc->migratepages);
7017 return ret;
7018 }
7019 return 0;
041d3a8c
MN
7020}
7021
7022/**
7023 * alloc_contig_range() -- tries to allocate given range of pages
7024 * @start: start PFN to allocate
7025 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7026 * @migratetype: migratetype of the underlaying pageblocks (either
7027 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7028 * in range must have the same migratetype and it must
7029 * be either of the two.
041d3a8c
MN
7030 *
7031 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7032 * aligned, however it's the caller's responsibility to guarantee that
7033 * we are the only thread that changes migrate type of pageblocks the
7034 * pages fall in.
7035 *
7036 * The PFN range must belong to a single zone.
7037 *
7038 * Returns zero on success or negative error code. On success all
7039 * pages which PFN is in [start, end) are allocated for the caller and
7040 * need to be freed with free_contig_range().
7041 */
0815f3d8
MN
7042int alloc_contig_range(unsigned long start, unsigned long end,
7043 unsigned migratetype)
041d3a8c 7044{
041d3a8c 7045 unsigned long outer_start, outer_end;
d00181b9
KS
7046 unsigned int order;
7047 int ret = 0;
041d3a8c 7048
bb13ffeb
MG
7049 struct compact_control cc = {
7050 .nr_migratepages = 0,
7051 .order = -1,
7052 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7053 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7054 .ignore_skip_hint = true,
7055 };
7056 INIT_LIST_HEAD(&cc.migratepages);
7057
041d3a8c
MN
7058 /*
7059 * What we do here is we mark all pageblocks in range as
7060 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7061 * have different sizes, and due to the way page allocator
7062 * work, we align the range to biggest of the two pages so
7063 * that page allocator won't try to merge buddies from
7064 * different pageblocks and change MIGRATE_ISOLATE to some
7065 * other migration type.
7066 *
7067 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7068 * migrate the pages from an unaligned range (ie. pages that
7069 * we are interested in). This will put all the pages in
7070 * range back to page allocator as MIGRATE_ISOLATE.
7071 *
7072 * When this is done, we take the pages in range from page
7073 * allocator removing them from the buddy system. This way
7074 * page allocator will never consider using them.
7075 *
7076 * This lets us mark the pageblocks back as
7077 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7078 * aligned range but not in the unaligned, original range are
7079 * put back to page allocator so that buddy can use them.
7080 */
7081
7082 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7083 pfn_max_align_up(end), migratetype,
7084 false);
041d3a8c 7085 if (ret)
86a595f9 7086 return ret;
041d3a8c 7087
8ef5849f
JK
7088 /*
7089 * In case of -EBUSY, we'd like to know which page causes problem.
7090 * So, just fall through. We will check it in test_pages_isolated().
7091 */
bb13ffeb 7092 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7093 if (ret && ret != -EBUSY)
041d3a8c
MN
7094 goto done;
7095
7096 /*
7097 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7098 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7099 * more, all pages in [start, end) are free in page allocator.
7100 * What we are going to do is to allocate all pages from
7101 * [start, end) (that is remove them from page allocator).
7102 *
7103 * The only problem is that pages at the beginning and at the
7104 * end of interesting range may be not aligned with pages that
7105 * page allocator holds, ie. they can be part of higher order
7106 * pages. Because of this, we reserve the bigger range and
7107 * once this is done free the pages we are not interested in.
7108 *
7109 * We don't have to hold zone->lock here because the pages are
7110 * isolated thus they won't get removed from buddy.
7111 */
7112
7113 lru_add_drain_all();
510f5507 7114 drain_all_pages(cc.zone);
041d3a8c
MN
7115
7116 order = 0;
7117 outer_start = start;
7118 while (!PageBuddy(pfn_to_page(outer_start))) {
7119 if (++order >= MAX_ORDER) {
8ef5849f
JK
7120 outer_start = start;
7121 break;
041d3a8c
MN
7122 }
7123 outer_start &= ~0UL << order;
7124 }
7125
8ef5849f
JK
7126 if (outer_start != start) {
7127 order = page_order(pfn_to_page(outer_start));
7128
7129 /*
7130 * outer_start page could be small order buddy page and
7131 * it doesn't include start page. Adjust outer_start
7132 * in this case to report failed page properly
7133 * on tracepoint in test_pages_isolated()
7134 */
7135 if (outer_start + (1UL << order) <= start)
7136 outer_start = start;
7137 }
7138
041d3a8c 7139 /* Make sure the range is really isolated. */
b023f468 7140 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7141 pr_info("%s: [%lx, %lx) PFNs busy\n",
7142 __func__, outer_start, end);
041d3a8c
MN
7143 ret = -EBUSY;
7144 goto done;
7145 }
7146
49f223a9 7147 /* Grab isolated pages from freelists. */
bb13ffeb 7148 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7149 if (!outer_end) {
7150 ret = -EBUSY;
7151 goto done;
7152 }
7153
7154 /* Free head and tail (if any) */
7155 if (start != outer_start)
7156 free_contig_range(outer_start, start - outer_start);
7157 if (end != outer_end)
7158 free_contig_range(end, outer_end - end);
7159
7160done:
7161 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7162 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7163 return ret;
7164}
7165
7166void free_contig_range(unsigned long pfn, unsigned nr_pages)
7167{
bcc2b02f
MS
7168 unsigned int count = 0;
7169
7170 for (; nr_pages--; pfn++) {
7171 struct page *page = pfn_to_page(pfn);
7172
7173 count += page_count(page) != 1;
7174 __free_page(page);
7175 }
7176 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7177}
7178#endif
7179
4ed7e022 7180#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7181/*
7182 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7183 * page high values need to be recalulated.
7184 */
4ed7e022
JL
7185void __meminit zone_pcp_update(struct zone *zone)
7186{
0a647f38 7187 unsigned cpu;
c8e251fa 7188 mutex_lock(&pcp_batch_high_lock);
0a647f38 7189 for_each_possible_cpu(cpu)
169f6c19
CS
7190 pageset_set_high_and_batch(zone,
7191 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7192 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7193}
7194#endif
7195
340175b7
JL
7196void zone_pcp_reset(struct zone *zone)
7197{
7198 unsigned long flags;
5a883813
MK
7199 int cpu;
7200 struct per_cpu_pageset *pset;
340175b7
JL
7201
7202 /* avoid races with drain_pages() */
7203 local_irq_save(flags);
7204 if (zone->pageset != &boot_pageset) {
5a883813
MK
7205 for_each_online_cpu(cpu) {
7206 pset = per_cpu_ptr(zone->pageset, cpu);
7207 drain_zonestat(zone, pset);
7208 }
340175b7
JL
7209 free_percpu(zone->pageset);
7210 zone->pageset = &boot_pageset;
7211 }
7212 local_irq_restore(flags);
7213}
7214
6dcd73d7 7215#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7216/*
b9eb6319
JK
7217 * All pages in the range must be in a single zone and isolated
7218 * before calling this.
0c0e6195
KH
7219 */
7220void
7221__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7222{
7223 struct page *page;
7224 struct zone *zone;
7aeb09f9 7225 unsigned int order, i;
0c0e6195
KH
7226 unsigned long pfn;
7227 unsigned long flags;
7228 /* find the first valid pfn */
7229 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7230 if (pfn_valid(pfn))
7231 break;
7232 if (pfn == end_pfn)
7233 return;
7234 zone = page_zone(pfn_to_page(pfn));
7235 spin_lock_irqsave(&zone->lock, flags);
7236 pfn = start_pfn;
7237 while (pfn < end_pfn) {
7238 if (!pfn_valid(pfn)) {
7239 pfn++;
7240 continue;
7241 }
7242 page = pfn_to_page(pfn);
b023f468
WC
7243 /*
7244 * The HWPoisoned page may be not in buddy system, and
7245 * page_count() is not 0.
7246 */
7247 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7248 pfn++;
7249 SetPageReserved(page);
7250 continue;
7251 }
7252
0c0e6195
KH
7253 BUG_ON(page_count(page));
7254 BUG_ON(!PageBuddy(page));
7255 order = page_order(page);
7256#ifdef CONFIG_DEBUG_VM
1170532b
JP
7257 pr_info("remove from free list %lx %d %lx\n",
7258 pfn, 1 << order, end_pfn);
0c0e6195
KH
7259#endif
7260 list_del(&page->lru);
7261 rmv_page_order(page);
7262 zone->free_area[order].nr_free--;
0c0e6195
KH
7263 for (i = 0; i < (1 << order); i++)
7264 SetPageReserved((page+i));
7265 pfn += (1 << order);
7266 }
7267 spin_unlock_irqrestore(&zone->lock, flags);
7268}
7269#endif
8d22ba1b 7270
8d22ba1b
WF
7271bool is_free_buddy_page(struct page *page)
7272{
7273 struct zone *zone = page_zone(page);
7274 unsigned long pfn = page_to_pfn(page);
7275 unsigned long flags;
7aeb09f9 7276 unsigned int order;
8d22ba1b
WF
7277
7278 spin_lock_irqsave(&zone->lock, flags);
7279 for (order = 0; order < MAX_ORDER; order++) {
7280 struct page *page_head = page - (pfn & ((1 << order) - 1));
7281
7282 if (PageBuddy(page_head) && page_order(page_head) >= order)
7283 break;
7284 }
7285 spin_unlock_irqrestore(&zone->lock, flags);
7286
7287 return order < MAX_ORDER;
7288}
This page took 1.760601 seconds and 5 git commands to generate.