percpu-refcount: add @gfp to percpu_ref_init()
[deliverable/linux.git] / mm / percpu.c
CommitLineData
fbf59bc9 1/*
88999a89 2 * mm/percpu.c - percpu memory allocator
fbf59bc9
TH
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
88999a89
TH
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
2f39e637
TH
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
88999a89 16 * When a chunk is filled up, another chunk is allocated.
fbf59bc9
TH
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 29 *
2f39e637
TH
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
4785879e 34 * guaranteed to be equal to or larger than the maximum contiguous
fbf59bc9
TH
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
45 *
46 * To use this allocator, arch code should do the followings.
47 *
fbf59bc9 48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
fbf59bc9 51 *
8d408b4b
TH
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
54 */
55
56#include <linux/bitmap.h>
57#include <linux/bootmem.h>
fd1e8a1f 58#include <linux/err.h>
fbf59bc9 59#include <linux/list.h>
a530b795 60#include <linux/log2.h>
fbf59bc9
TH
61#include <linux/mm.h>
62#include <linux/module.h>
63#include <linux/mutex.h>
64#include <linux/percpu.h>
65#include <linux/pfn.h>
fbf59bc9 66#include <linux/slab.h>
ccea34b5 67#include <linux/spinlock.h>
fbf59bc9 68#include <linux/vmalloc.h>
a56dbddf 69#include <linux/workqueue.h>
f528f0b8 70#include <linux/kmemleak.h>
fbf59bc9
TH
71
72#include <asm/cacheflush.h>
e0100983 73#include <asm/sections.h>
fbf59bc9 74#include <asm/tlbflush.h>
3b034b0d 75#include <asm/io.h>
fbf59bc9 76
fbf59bc9
TH
77#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
9c824b6a
TH
79#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
80#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
1a4d7607
TH
81#define PCPU_EMPTY_POP_PAGES_LOW 2
82#define PCPU_EMPTY_POP_PAGES_HIGH 4
fbf59bc9 83
bbddff05 84#ifdef CONFIG_SMP
e0100983
TH
85/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
86#ifndef __addr_to_pcpu_ptr
87#define __addr_to_pcpu_ptr(addr) \
43cf38eb
TH
88 (void __percpu *)((unsigned long)(addr) - \
89 (unsigned long)pcpu_base_addr + \
90 (unsigned long)__per_cpu_start)
e0100983
TH
91#endif
92#ifndef __pcpu_ptr_to_addr
93#define __pcpu_ptr_to_addr(ptr) \
43cf38eb
TH
94 (void __force *)((unsigned long)(ptr) + \
95 (unsigned long)pcpu_base_addr - \
96 (unsigned long)__per_cpu_start)
e0100983 97#endif
bbddff05
TH
98#else /* CONFIG_SMP */
99/* on UP, it's always identity mapped */
100#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
101#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
102#endif /* CONFIG_SMP */
e0100983 103
fbf59bc9
TH
104struct pcpu_chunk {
105 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
106 int free_size; /* free bytes in the chunk */
107 int contig_hint; /* max contiguous size hint */
bba174f5 108 void *base_addr; /* base address of this chunk */
9c824b6a 109
723ad1d9 110 int map_used; /* # of map entries used before the sentry */
fbf59bc9
TH
111 int map_alloc; /* # of map entries allocated */
112 int *map; /* allocation map */
9c824b6a
TH
113 struct work_struct map_extend_work;/* async ->map[] extension */
114
88999a89 115 void *data; /* chunk data */
3d331ad7 116 int first_free; /* no free below this */
8d408b4b 117 bool immutable; /* no [de]population allowed */
b539b87f 118 int nr_populated; /* # of populated pages */
ce3141a2 119 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
120};
121
40150d37
TH
122static int pcpu_unit_pages __read_mostly;
123static int pcpu_unit_size __read_mostly;
2f39e637 124static int pcpu_nr_units __read_mostly;
6563297c 125static int pcpu_atom_size __read_mostly;
40150d37
TH
126static int pcpu_nr_slots __read_mostly;
127static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 128
a855b84c
TH
129/* cpus with the lowest and highest unit addresses */
130static unsigned int pcpu_low_unit_cpu __read_mostly;
131static unsigned int pcpu_high_unit_cpu __read_mostly;
2f39e637 132
fbf59bc9 133/* the address of the first chunk which starts with the kernel static area */
40150d37 134void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
135EXPORT_SYMBOL_GPL(pcpu_base_addr);
136
fb435d52
TH
137static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
138const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 139
6563297c
TH
140/* group information, used for vm allocation */
141static int pcpu_nr_groups __read_mostly;
142static const unsigned long *pcpu_group_offsets __read_mostly;
143static const size_t *pcpu_group_sizes __read_mostly;
144
ae9e6bc9
TH
145/*
146 * The first chunk which always exists. Note that unlike other
147 * chunks, this one can be allocated and mapped in several different
148 * ways and thus often doesn't live in the vmalloc area.
149 */
150static struct pcpu_chunk *pcpu_first_chunk;
151
152/*
153 * Optional reserved chunk. This chunk reserves part of the first
154 * chunk and serves it for reserved allocations. The amount of
155 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
156 * area doesn't exist, the following variables contain NULL and 0
157 * respectively.
158 */
edcb4639 159static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
160static int pcpu_reserved_chunk_limit;
161
b38d08f3
TH
162static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
163static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
fbf59bc9 164
40150d37 165static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 166
b539b87f
TH
167/*
168 * The number of empty populated pages, protected by pcpu_lock. The
169 * reserved chunk doesn't contribute to the count.
170 */
171static int pcpu_nr_empty_pop_pages;
172
1a4d7607
TH
173/*
174 * Balance work is used to populate or destroy chunks asynchronously. We
175 * try to keep the number of populated free pages between
176 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
177 * empty chunk.
178 */
fe6bd8c3
TH
179static void pcpu_balance_workfn(struct work_struct *work);
180static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
1a4d7607
TH
181static bool pcpu_async_enabled __read_mostly;
182static bool pcpu_atomic_alloc_failed;
183
184static void pcpu_schedule_balance_work(void)
185{
186 if (pcpu_async_enabled)
187 schedule_work(&pcpu_balance_work);
188}
a56dbddf 189
020ec653
TH
190static bool pcpu_addr_in_first_chunk(void *addr)
191{
192 void *first_start = pcpu_first_chunk->base_addr;
193
194 return addr >= first_start && addr < first_start + pcpu_unit_size;
195}
196
197static bool pcpu_addr_in_reserved_chunk(void *addr)
198{
199 void *first_start = pcpu_first_chunk->base_addr;
200
201 return addr >= first_start &&
202 addr < first_start + pcpu_reserved_chunk_limit;
203}
204
d9b55eeb 205static int __pcpu_size_to_slot(int size)
fbf59bc9 206{
cae3aeb8 207 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
208 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
209}
210
d9b55eeb
TH
211static int pcpu_size_to_slot(int size)
212{
213 if (size == pcpu_unit_size)
214 return pcpu_nr_slots - 1;
215 return __pcpu_size_to_slot(size);
216}
217
fbf59bc9
TH
218static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
219{
220 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
221 return 0;
222
223 return pcpu_size_to_slot(chunk->free_size);
224}
225
88999a89
TH
226/* set the pointer to a chunk in a page struct */
227static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
228{
229 page->index = (unsigned long)pcpu;
230}
231
232/* obtain pointer to a chunk from a page struct */
233static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
234{
235 return (struct pcpu_chunk *)page->index;
236}
237
238static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
fbf59bc9 239{
2f39e637 240 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
241}
242
9983b6f0
TH
243static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
244 unsigned int cpu, int page_idx)
fbf59bc9 245{
bba174f5 246 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 247 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
248}
249
88999a89
TH
250static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
251 int *rs, int *re, int end)
ce3141a2
TH
252{
253 *rs = find_next_zero_bit(chunk->populated, end, *rs);
254 *re = find_next_bit(chunk->populated, end, *rs + 1);
255}
256
88999a89
TH
257static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
258 int *rs, int *re, int end)
ce3141a2
TH
259{
260 *rs = find_next_bit(chunk->populated, end, *rs);
261 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
262}
263
264/*
265 * (Un)populated page region iterators. Iterate over (un)populated
b595076a 266 * page regions between @start and @end in @chunk. @rs and @re should
ce3141a2
TH
267 * be integer variables and will be set to start and end page index of
268 * the current region.
269 */
270#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
271 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
272 (rs) < (re); \
273 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
274
275#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
276 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
277 (rs) < (re); \
278 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
279
fbf59bc9 280/**
90459ce0 281 * pcpu_mem_zalloc - allocate memory
1880d93b 282 * @size: bytes to allocate
fbf59bc9 283 *
1880d93b 284 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
90459ce0 285 * kzalloc() is used; otherwise, vzalloc() is used. The returned
1880d93b 286 * memory is always zeroed.
fbf59bc9 287 *
ccea34b5
TH
288 * CONTEXT:
289 * Does GFP_KERNEL allocation.
290 *
fbf59bc9 291 * RETURNS:
1880d93b 292 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 293 */
90459ce0 294static void *pcpu_mem_zalloc(size_t size)
fbf59bc9 295{
099a19d9
TH
296 if (WARN_ON_ONCE(!slab_is_available()))
297 return NULL;
298
1880d93b
TH
299 if (size <= PAGE_SIZE)
300 return kzalloc(size, GFP_KERNEL);
7af4c093
JJ
301 else
302 return vzalloc(size);
1880d93b 303}
fbf59bc9 304
1880d93b
TH
305/**
306 * pcpu_mem_free - free memory
307 * @ptr: memory to free
308 * @size: size of the area
309 *
90459ce0 310 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
1880d93b
TH
311 */
312static void pcpu_mem_free(void *ptr, size_t size)
313{
fbf59bc9 314 if (size <= PAGE_SIZE)
1880d93b 315 kfree(ptr);
fbf59bc9 316 else
1880d93b 317 vfree(ptr);
fbf59bc9
TH
318}
319
b539b87f
TH
320/**
321 * pcpu_count_occupied_pages - count the number of pages an area occupies
322 * @chunk: chunk of interest
323 * @i: index of the area in question
324 *
325 * Count the number of pages chunk's @i'th area occupies. When the area's
326 * start and/or end address isn't aligned to page boundary, the straddled
327 * page is included in the count iff the rest of the page is free.
328 */
329static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
330{
331 int off = chunk->map[i] & ~1;
332 int end = chunk->map[i + 1] & ~1;
333
334 if (!PAGE_ALIGNED(off) && i > 0) {
335 int prev = chunk->map[i - 1];
336
337 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
338 off = round_down(off, PAGE_SIZE);
339 }
340
341 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
342 int next = chunk->map[i + 1];
343 int nend = chunk->map[i + 2] & ~1;
344
345 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
346 end = round_up(end, PAGE_SIZE);
347 }
348
349 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
350}
351
fbf59bc9
TH
352/**
353 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
354 * @chunk: chunk of interest
355 * @oslot: the previous slot it was on
356 *
357 * This function is called after an allocation or free changed @chunk.
358 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
359 * moved to the slot. Note that the reserved chunk is never put on
360 * chunk slots.
ccea34b5
TH
361 *
362 * CONTEXT:
363 * pcpu_lock.
fbf59bc9
TH
364 */
365static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
366{
367 int nslot = pcpu_chunk_slot(chunk);
368
edcb4639 369 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
370 if (oslot < nslot)
371 list_move(&chunk->list, &pcpu_slot[nslot]);
372 else
373 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
374 }
375}
376
9f7dcf22 377/**
833af842
TH
378 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
379 * @chunk: chunk of interest
9c824b6a 380 * @is_atomic: the allocation context
9f7dcf22 381 *
9c824b6a
TH
382 * Determine whether area map of @chunk needs to be extended. If
383 * @is_atomic, only the amount necessary for a new allocation is
384 * considered; however, async extension is scheduled if the left amount is
385 * low. If !@is_atomic, it aims for more empty space. Combined, this
386 * ensures that the map is likely to have enough available space to
387 * accomodate atomic allocations which can't extend maps directly.
9f7dcf22 388 *
ccea34b5 389 * CONTEXT:
833af842 390 * pcpu_lock.
ccea34b5 391 *
9f7dcf22 392 * RETURNS:
833af842
TH
393 * New target map allocation length if extension is necessary, 0
394 * otherwise.
9f7dcf22 395 */
9c824b6a 396static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
9f7dcf22 397{
9c824b6a
TH
398 int margin, new_alloc;
399
400 if (is_atomic) {
401 margin = 3;
9f7dcf22 402
9c824b6a 403 if (chunk->map_alloc <
1a4d7607
TH
404 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
405 pcpu_async_enabled)
9c824b6a
TH
406 schedule_work(&chunk->map_extend_work);
407 } else {
408 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
409 }
410
411 if (chunk->map_alloc >= chunk->map_used + margin)
9f7dcf22
TH
412 return 0;
413
414 new_alloc = PCPU_DFL_MAP_ALLOC;
9c824b6a 415 while (new_alloc < chunk->map_used + margin)
9f7dcf22
TH
416 new_alloc *= 2;
417
833af842
TH
418 return new_alloc;
419}
420
421/**
422 * pcpu_extend_area_map - extend area map of a chunk
423 * @chunk: chunk of interest
424 * @new_alloc: new target allocation length of the area map
425 *
426 * Extend area map of @chunk to have @new_alloc entries.
427 *
428 * CONTEXT:
429 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
430 *
431 * RETURNS:
432 * 0 on success, -errno on failure.
433 */
434static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
435{
436 int *old = NULL, *new = NULL;
437 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
438 unsigned long flags;
439
90459ce0 440 new = pcpu_mem_zalloc(new_size);
833af842 441 if (!new)
9f7dcf22 442 return -ENOMEM;
ccea34b5 443
833af842
TH
444 /* acquire pcpu_lock and switch to new area map */
445 spin_lock_irqsave(&pcpu_lock, flags);
446
447 if (new_alloc <= chunk->map_alloc)
448 goto out_unlock;
9f7dcf22 449
833af842 450 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
a002d148
HS
451 old = chunk->map;
452
453 memcpy(new, old, old_size);
9f7dcf22 454
9f7dcf22
TH
455 chunk->map_alloc = new_alloc;
456 chunk->map = new;
833af842
TH
457 new = NULL;
458
459out_unlock:
460 spin_unlock_irqrestore(&pcpu_lock, flags);
461
462 /*
463 * pcpu_mem_free() might end up calling vfree() which uses
464 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
465 */
466 pcpu_mem_free(old, old_size);
467 pcpu_mem_free(new, new_size);
468
9f7dcf22
TH
469 return 0;
470}
471
9c824b6a
TH
472static void pcpu_map_extend_workfn(struct work_struct *work)
473{
474 struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
475 map_extend_work);
476 int new_alloc;
477
478 spin_lock_irq(&pcpu_lock);
479 new_alloc = pcpu_need_to_extend(chunk, false);
480 spin_unlock_irq(&pcpu_lock);
481
482 if (new_alloc)
483 pcpu_extend_area_map(chunk, new_alloc);
484}
485
a16037c8
TH
486/**
487 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
488 * @chunk: chunk the candidate area belongs to
489 * @off: the offset to the start of the candidate area
490 * @this_size: the size of the candidate area
491 * @size: the size of the target allocation
492 * @align: the alignment of the target allocation
493 * @pop_only: only allocate from already populated region
494 *
495 * We're trying to allocate @size bytes aligned at @align. @chunk's area
496 * at @off sized @this_size is a candidate. This function determines
497 * whether the target allocation fits in the candidate area and returns the
498 * number of bytes to pad after @off. If the target area doesn't fit, -1
499 * is returned.
500 *
501 * If @pop_only is %true, this function only considers the already
502 * populated part of the candidate area.
503 */
504static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
505 int size, int align, bool pop_only)
506{
507 int cand_off = off;
508
509 while (true) {
510 int head = ALIGN(cand_off, align) - off;
511 int page_start, page_end, rs, re;
512
513 if (this_size < head + size)
514 return -1;
515
516 if (!pop_only)
517 return head;
518
519 /*
520 * If the first unpopulated page is beyond the end of the
521 * allocation, the whole allocation is populated;
522 * otherwise, retry from the end of the unpopulated area.
523 */
524 page_start = PFN_DOWN(head + off);
525 page_end = PFN_UP(head + off + size);
526
527 rs = page_start;
528 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
529 if (rs >= page_end)
530 return head;
531 cand_off = re * PAGE_SIZE;
532 }
533}
534
fbf59bc9
TH
535/**
536 * pcpu_alloc_area - allocate area from a pcpu_chunk
537 * @chunk: chunk of interest
cae3aeb8 538 * @size: wanted size in bytes
fbf59bc9 539 * @align: wanted align
a16037c8 540 * @pop_only: allocate only from the populated area
b539b87f 541 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
542 *
543 * Try to allocate @size bytes area aligned at @align from @chunk.
544 * Note that this function only allocates the offset. It doesn't
545 * populate or map the area.
546 *
9f7dcf22
TH
547 * @chunk->map must have at least two free slots.
548 *
ccea34b5
TH
549 * CONTEXT:
550 * pcpu_lock.
551 *
fbf59bc9 552 * RETURNS:
9f7dcf22
TH
553 * Allocated offset in @chunk on success, -1 if no matching area is
554 * found.
fbf59bc9 555 */
a16037c8 556static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
b539b87f 557 bool pop_only, int *occ_pages_p)
fbf59bc9
TH
558{
559 int oslot = pcpu_chunk_slot(chunk);
560 int max_contig = 0;
561 int i, off;
3d331ad7 562 bool seen_free = false;
723ad1d9 563 int *p;
fbf59bc9 564
3d331ad7 565 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
fbf59bc9 566 int head, tail;
723ad1d9
AV
567 int this_size;
568
569 off = *p;
570 if (off & 1)
571 continue;
fbf59bc9 572
723ad1d9 573 this_size = (p[1] & ~1) - off;
a16037c8
TH
574
575 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
576 pop_only);
577 if (head < 0) {
3d331ad7
AV
578 if (!seen_free) {
579 chunk->first_free = i;
580 seen_free = true;
581 }
723ad1d9 582 max_contig = max(this_size, max_contig);
fbf59bc9
TH
583 continue;
584 }
585
586 /*
587 * If head is small or the previous block is free,
588 * merge'em. Note that 'small' is defined as smaller
589 * than sizeof(int), which is very small but isn't too
590 * uncommon for percpu allocations.
591 */
723ad1d9 592 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
21ddfd38 593 *p = off += head;
723ad1d9 594 if (p[-1] & 1)
fbf59bc9 595 chunk->free_size -= head;
21ddfd38
JZ
596 else
597 max_contig = max(*p - p[-1], max_contig);
723ad1d9 598 this_size -= head;
fbf59bc9
TH
599 head = 0;
600 }
601
602 /* if tail is small, just keep it around */
723ad1d9
AV
603 tail = this_size - head - size;
604 if (tail < sizeof(int)) {
fbf59bc9 605 tail = 0;
723ad1d9
AV
606 size = this_size - head;
607 }
fbf59bc9
TH
608
609 /* split if warranted */
610 if (head || tail) {
706c16f2
AV
611 int nr_extra = !!head + !!tail;
612
613 /* insert new subblocks */
723ad1d9 614 memmove(p + nr_extra + 1, p + 1,
706c16f2
AV
615 sizeof(chunk->map[0]) * (chunk->map_used - i));
616 chunk->map_used += nr_extra;
617
fbf59bc9 618 if (head) {
3d331ad7
AV
619 if (!seen_free) {
620 chunk->first_free = i;
621 seen_free = true;
622 }
723ad1d9
AV
623 *++p = off += head;
624 ++i;
706c16f2
AV
625 max_contig = max(head, max_contig);
626 }
627 if (tail) {
723ad1d9 628 p[1] = off + size;
706c16f2 629 max_contig = max(tail, max_contig);
fbf59bc9 630 }
fbf59bc9
TH
631 }
632
3d331ad7
AV
633 if (!seen_free)
634 chunk->first_free = i + 1;
635
fbf59bc9 636 /* update hint and mark allocated */
723ad1d9 637 if (i + 1 == chunk->map_used)
fbf59bc9
TH
638 chunk->contig_hint = max_contig; /* fully scanned */
639 else
640 chunk->contig_hint = max(chunk->contig_hint,
641 max_contig);
642
723ad1d9
AV
643 chunk->free_size -= size;
644 *p |= 1;
fbf59bc9 645
b539b87f 646 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
fbf59bc9
TH
647 pcpu_chunk_relocate(chunk, oslot);
648 return off;
649 }
650
651 chunk->contig_hint = max_contig; /* fully scanned */
652 pcpu_chunk_relocate(chunk, oslot);
653
9f7dcf22
TH
654 /* tell the upper layer that this chunk has no matching area */
655 return -1;
fbf59bc9
TH
656}
657
658/**
659 * pcpu_free_area - free area to a pcpu_chunk
660 * @chunk: chunk of interest
661 * @freeme: offset of area to free
b539b87f 662 * @occ_pages_p: out param for the number of pages the area occupies
fbf59bc9
TH
663 *
664 * Free area starting from @freeme to @chunk. Note that this function
665 * only modifies the allocation map. It doesn't depopulate or unmap
666 * the area.
ccea34b5
TH
667 *
668 * CONTEXT:
669 * pcpu_lock.
fbf59bc9 670 */
b539b87f
TH
671static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
672 int *occ_pages_p)
fbf59bc9
TH
673{
674 int oslot = pcpu_chunk_slot(chunk);
723ad1d9
AV
675 int off = 0;
676 unsigned i, j;
677 int to_free = 0;
678 int *p;
679
680 freeme |= 1; /* we are searching for <given offset, in use> pair */
681
682 i = 0;
683 j = chunk->map_used;
684 while (i != j) {
685 unsigned k = (i + j) / 2;
686 off = chunk->map[k];
687 if (off < freeme)
688 i = k + 1;
689 else if (off > freeme)
690 j = k;
691 else
692 i = j = k;
693 }
fbf59bc9 694 BUG_ON(off != freeme);
fbf59bc9 695
3d331ad7
AV
696 if (i < chunk->first_free)
697 chunk->first_free = i;
698
723ad1d9
AV
699 p = chunk->map + i;
700 *p = off &= ~1;
701 chunk->free_size += (p[1] & ~1) - off;
fbf59bc9 702
b539b87f
TH
703 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
704
723ad1d9
AV
705 /* merge with next? */
706 if (!(p[1] & 1))
707 to_free++;
fbf59bc9 708 /* merge with previous? */
723ad1d9
AV
709 if (i > 0 && !(p[-1] & 1)) {
710 to_free++;
fbf59bc9 711 i--;
723ad1d9 712 p--;
fbf59bc9 713 }
723ad1d9
AV
714 if (to_free) {
715 chunk->map_used -= to_free;
716 memmove(p + 1, p + 1 + to_free,
717 (chunk->map_used - i) * sizeof(chunk->map[0]));
fbf59bc9
TH
718 }
719
723ad1d9 720 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
fbf59bc9
TH
721 pcpu_chunk_relocate(chunk, oslot);
722}
723
6081089f
TH
724static struct pcpu_chunk *pcpu_alloc_chunk(void)
725{
726 struct pcpu_chunk *chunk;
727
90459ce0 728 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
6081089f
TH
729 if (!chunk)
730 return NULL;
731
90459ce0
BL
732 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
733 sizeof(chunk->map[0]));
6081089f 734 if (!chunk->map) {
5a838c3b 735 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
736 return NULL;
737 }
738
739 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
723ad1d9
AV
740 chunk->map[0] = 0;
741 chunk->map[1] = pcpu_unit_size | 1;
742 chunk->map_used = 1;
6081089f
TH
743
744 INIT_LIST_HEAD(&chunk->list);
9c824b6a 745 INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
6081089f
TH
746 chunk->free_size = pcpu_unit_size;
747 chunk->contig_hint = pcpu_unit_size;
748
749 return chunk;
750}
751
752static void pcpu_free_chunk(struct pcpu_chunk *chunk)
753{
754 if (!chunk)
755 return;
756 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
b4916cb1 757 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
6081089f
TH
758}
759
b539b87f
TH
760/**
761 * pcpu_chunk_populated - post-population bookkeeping
762 * @chunk: pcpu_chunk which got populated
763 * @page_start: the start page
764 * @page_end: the end page
765 *
766 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
767 * the bookkeeping information accordingly. Must be called after each
768 * successful population.
769 */
770static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
771 int page_start, int page_end)
772{
773 int nr = page_end - page_start;
774
775 lockdep_assert_held(&pcpu_lock);
776
777 bitmap_set(chunk->populated, page_start, nr);
778 chunk->nr_populated += nr;
779 pcpu_nr_empty_pop_pages += nr;
780}
781
782/**
783 * pcpu_chunk_depopulated - post-depopulation bookkeeping
784 * @chunk: pcpu_chunk which got depopulated
785 * @page_start: the start page
786 * @page_end: the end page
787 *
788 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
789 * Update the bookkeeping information accordingly. Must be called after
790 * each successful depopulation.
791 */
792static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
793 int page_start, int page_end)
794{
795 int nr = page_end - page_start;
796
797 lockdep_assert_held(&pcpu_lock);
798
799 bitmap_clear(chunk->populated, page_start, nr);
800 chunk->nr_populated -= nr;
801 pcpu_nr_empty_pop_pages -= nr;
802}
803
9f645532
TH
804/*
805 * Chunk management implementation.
806 *
807 * To allow different implementations, chunk alloc/free and
808 * [de]population are implemented in a separate file which is pulled
809 * into this file and compiled together. The following functions
810 * should be implemented.
811 *
812 * pcpu_populate_chunk - populate the specified range of a chunk
813 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
814 * pcpu_create_chunk - create a new chunk
815 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
816 * pcpu_addr_to_page - translate address to physical address
817 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
fbf59bc9 818 */
9f645532
TH
819static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
820static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
821static struct pcpu_chunk *pcpu_create_chunk(void);
822static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
823static struct page *pcpu_addr_to_page(void *addr);
824static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
fbf59bc9 825
b0c9778b
TH
826#ifdef CONFIG_NEED_PER_CPU_KM
827#include "percpu-km.c"
828#else
9f645532 829#include "percpu-vm.c"
b0c9778b 830#endif
fbf59bc9 831
88999a89
TH
832/**
833 * pcpu_chunk_addr_search - determine chunk containing specified address
834 * @addr: address for which the chunk needs to be determined.
835 *
836 * RETURNS:
837 * The address of the found chunk.
838 */
839static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
840{
841 /* is it in the first chunk? */
842 if (pcpu_addr_in_first_chunk(addr)) {
843 /* is it in the reserved area? */
844 if (pcpu_addr_in_reserved_chunk(addr))
845 return pcpu_reserved_chunk;
846 return pcpu_first_chunk;
847 }
848
849 /*
850 * The address is relative to unit0 which might be unused and
851 * thus unmapped. Offset the address to the unit space of the
852 * current processor before looking it up in the vmalloc
853 * space. Note that any possible cpu id can be used here, so
854 * there's no need to worry about preemption or cpu hotplug.
855 */
856 addr += pcpu_unit_offsets[raw_smp_processor_id()];
9f645532 857 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
88999a89
TH
858}
859
fbf59bc9 860/**
edcb4639 861 * pcpu_alloc - the percpu allocator
cae3aeb8 862 * @size: size of area to allocate in bytes
fbf59bc9 863 * @align: alignment of area (max PAGE_SIZE)
edcb4639 864 * @reserved: allocate from the reserved chunk if available
5835d96e 865 * @gfp: allocation flags
fbf59bc9 866 *
5835d96e
TH
867 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
868 * contain %GFP_KERNEL, the allocation is atomic.
fbf59bc9
TH
869 *
870 * RETURNS:
871 * Percpu pointer to the allocated area on success, NULL on failure.
872 */
5835d96e
TH
873static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
874 gfp_t gfp)
fbf59bc9 875{
f2badb0c 876 static int warn_limit = 10;
fbf59bc9 877 struct pcpu_chunk *chunk;
f2badb0c 878 const char *err;
5835d96e 879 bool is_atomic = !(gfp & GFP_KERNEL);
b539b87f 880 int occ_pages = 0;
b38d08f3 881 int slot, off, new_alloc, cpu, ret;
403a91b1 882 unsigned long flags;
f528f0b8 883 void __percpu *ptr;
fbf59bc9 884
723ad1d9
AV
885 /*
886 * We want the lowest bit of offset available for in-use/free
2f69fa82 887 * indicator, so force >= 16bit alignment and make size even.
723ad1d9
AV
888 */
889 if (unlikely(align < 2))
890 align = 2;
891
fb009e3a 892 size = ALIGN(size, 2);
2f69fa82 893
8d408b4b 894 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
895 WARN(true, "illegal size (%zu) or align (%zu) for "
896 "percpu allocation\n", size, align);
897 return NULL;
898 }
899
403a91b1 900 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9 901
edcb4639
TH
902 /* serve reserved allocations from the reserved chunk if available */
903 if (reserved && pcpu_reserved_chunk) {
904 chunk = pcpu_reserved_chunk;
833af842
TH
905
906 if (size > chunk->contig_hint) {
907 err = "alloc from reserved chunk failed";
ccea34b5 908 goto fail_unlock;
f2badb0c 909 }
833af842 910
9c824b6a 911 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
833af842 912 spin_unlock_irqrestore(&pcpu_lock, flags);
5835d96e
TH
913 if (is_atomic ||
914 pcpu_extend_area_map(chunk, new_alloc) < 0) {
833af842 915 err = "failed to extend area map of reserved chunk";
b38d08f3 916 goto fail;
833af842
TH
917 }
918 spin_lock_irqsave(&pcpu_lock, flags);
919 }
920
b539b87f
TH
921 off = pcpu_alloc_area(chunk, size, align, is_atomic,
922 &occ_pages);
edcb4639
TH
923 if (off >= 0)
924 goto area_found;
833af842 925
f2badb0c 926 err = "alloc from reserved chunk failed";
ccea34b5 927 goto fail_unlock;
edcb4639
TH
928 }
929
ccea34b5 930restart:
edcb4639 931 /* search through normal chunks */
fbf59bc9
TH
932 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
933 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
934 if (size > chunk->contig_hint)
935 continue;
ccea34b5 936
9c824b6a 937 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
833af842 938 if (new_alloc) {
5835d96e
TH
939 if (is_atomic)
940 continue;
833af842
TH
941 spin_unlock_irqrestore(&pcpu_lock, flags);
942 if (pcpu_extend_area_map(chunk,
943 new_alloc) < 0) {
944 err = "failed to extend area map";
b38d08f3 945 goto fail;
833af842
TH
946 }
947 spin_lock_irqsave(&pcpu_lock, flags);
948 /*
949 * pcpu_lock has been dropped, need to
950 * restart cpu_slot list walking.
951 */
952 goto restart;
ccea34b5
TH
953 }
954
b539b87f
TH
955 off = pcpu_alloc_area(chunk, size, align, is_atomic,
956 &occ_pages);
fbf59bc9
TH
957 if (off >= 0)
958 goto area_found;
fbf59bc9
TH
959 }
960 }
961
403a91b1 962 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 963
b38d08f3
TH
964 /*
965 * No space left. Create a new chunk. We don't want multiple
966 * tasks to create chunks simultaneously. Serialize and create iff
967 * there's still no empty chunk after grabbing the mutex.
968 */
5835d96e
TH
969 if (is_atomic)
970 goto fail;
971
b38d08f3
TH
972 mutex_lock(&pcpu_alloc_mutex);
973
974 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
975 chunk = pcpu_create_chunk();
976 if (!chunk) {
977 err = "failed to allocate new chunk";
978 goto fail;
979 }
980
981 spin_lock_irqsave(&pcpu_lock, flags);
982 pcpu_chunk_relocate(chunk, -1);
983 } else {
984 spin_lock_irqsave(&pcpu_lock, flags);
f2badb0c 985 }
ccea34b5 986
b38d08f3 987 mutex_unlock(&pcpu_alloc_mutex);
ccea34b5 988 goto restart;
fbf59bc9
TH
989
990area_found:
403a91b1 991 spin_unlock_irqrestore(&pcpu_lock, flags);
ccea34b5 992
dca49645 993 /* populate if not all pages are already there */
5835d96e 994 if (!is_atomic) {
e04d3208 995 int page_start, page_end, rs, re;
dca49645 996
e04d3208 997 mutex_lock(&pcpu_alloc_mutex);
dca49645 998
e04d3208
TH
999 page_start = PFN_DOWN(off);
1000 page_end = PFN_UP(off + size);
b38d08f3 1001
e04d3208
TH
1002 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1003 WARN_ON(chunk->immutable);
1004
1005 ret = pcpu_populate_chunk(chunk, rs, re);
1006
1007 spin_lock_irqsave(&pcpu_lock, flags);
1008 if (ret) {
1009 mutex_unlock(&pcpu_alloc_mutex);
b539b87f 1010 pcpu_free_area(chunk, off, &occ_pages);
e04d3208
TH
1011 err = "failed to populate";
1012 goto fail_unlock;
1013 }
b539b87f 1014 pcpu_chunk_populated(chunk, rs, re);
e04d3208 1015 spin_unlock_irqrestore(&pcpu_lock, flags);
dca49645 1016 }
fbf59bc9 1017
e04d3208
TH
1018 mutex_unlock(&pcpu_alloc_mutex);
1019 }
ccea34b5 1020
b539b87f
TH
1021 if (chunk != pcpu_reserved_chunk)
1022 pcpu_nr_empty_pop_pages -= occ_pages;
1023
1a4d7607
TH
1024 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1025 pcpu_schedule_balance_work();
1026
dca49645
TH
1027 /* clear the areas and return address relative to base address */
1028 for_each_possible_cpu(cpu)
1029 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1030
f528f0b8
CM
1031 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1032 kmemleak_alloc_percpu(ptr, size);
1033 return ptr;
ccea34b5
TH
1034
1035fail_unlock:
403a91b1 1036 spin_unlock_irqrestore(&pcpu_lock, flags);
b38d08f3 1037fail:
5835d96e
TH
1038 if (!is_atomic && warn_limit) {
1039 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1040 size, align, is_atomic, err);
f2badb0c
TH
1041 dump_stack();
1042 if (!--warn_limit)
1043 pr_info("PERCPU: limit reached, disable warning\n");
1044 }
1a4d7607
TH
1045 if (is_atomic) {
1046 /* see the flag handling in pcpu_blance_workfn() */
1047 pcpu_atomic_alloc_failed = true;
1048 pcpu_schedule_balance_work();
1049 }
ccea34b5 1050 return NULL;
fbf59bc9 1051}
edcb4639
TH
1052
1053/**
5835d96e 1054 * __alloc_percpu_gfp - allocate dynamic percpu area
edcb4639
TH
1055 * @size: size of area to allocate in bytes
1056 * @align: alignment of area (max PAGE_SIZE)
5835d96e 1057 * @gfp: allocation flags
edcb4639 1058 *
5835d96e
TH
1059 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1060 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1061 * be called from any context but is a lot more likely to fail.
ccea34b5 1062 *
edcb4639
TH
1063 * RETURNS:
1064 * Percpu pointer to the allocated area on success, NULL on failure.
1065 */
5835d96e
TH
1066void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1067{
1068 return pcpu_alloc(size, align, false, gfp);
1069}
1070EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1071
1072/**
1073 * __alloc_percpu - allocate dynamic percpu area
1074 * @size: size of area to allocate in bytes
1075 * @align: alignment of area (max PAGE_SIZE)
1076 *
1077 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1078 */
43cf38eb 1079void __percpu *__alloc_percpu(size_t size, size_t align)
edcb4639 1080{
5835d96e 1081 return pcpu_alloc(size, align, false, GFP_KERNEL);
edcb4639 1082}
fbf59bc9
TH
1083EXPORT_SYMBOL_GPL(__alloc_percpu);
1084
edcb4639
TH
1085/**
1086 * __alloc_reserved_percpu - allocate reserved percpu area
1087 * @size: size of area to allocate in bytes
1088 * @align: alignment of area (max PAGE_SIZE)
1089 *
9329ba97
TH
1090 * Allocate zero-filled percpu area of @size bytes aligned at @align
1091 * from reserved percpu area if arch has set it up; otherwise,
1092 * allocation is served from the same dynamic area. Might sleep.
1093 * Might trigger writeouts.
edcb4639 1094 *
ccea34b5
TH
1095 * CONTEXT:
1096 * Does GFP_KERNEL allocation.
1097 *
edcb4639
TH
1098 * RETURNS:
1099 * Percpu pointer to the allocated area on success, NULL on failure.
1100 */
43cf38eb 1101void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
edcb4639 1102{
5835d96e 1103 return pcpu_alloc(size, align, true, GFP_KERNEL);
edcb4639
TH
1104}
1105
a56dbddf 1106/**
1a4d7607 1107 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
a56dbddf
TH
1108 * @work: unused
1109 *
1110 * Reclaim all fully free chunks except for the first one.
1111 */
fe6bd8c3 1112static void pcpu_balance_workfn(struct work_struct *work)
fbf59bc9 1113{
fe6bd8c3
TH
1114 LIST_HEAD(to_free);
1115 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
a56dbddf 1116 struct pcpu_chunk *chunk, *next;
1a4d7607 1117 int slot, nr_to_pop, ret;
a56dbddf 1118
1a4d7607
TH
1119 /*
1120 * There's no reason to keep around multiple unused chunks and VM
1121 * areas can be scarce. Destroy all free chunks except for one.
1122 */
ccea34b5
TH
1123 mutex_lock(&pcpu_alloc_mutex);
1124 spin_lock_irq(&pcpu_lock);
a56dbddf 1125
fe6bd8c3 1126 list_for_each_entry_safe(chunk, next, free_head, list) {
a56dbddf
TH
1127 WARN_ON(chunk->immutable);
1128
1129 /* spare the first one */
fe6bd8c3 1130 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
a56dbddf
TH
1131 continue;
1132
fe6bd8c3 1133 list_move(&chunk->list, &to_free);
a56dbddf
TH
1134 }
1135
ccea34b5 1136 spin_unlock_irq(&pcpu_lock);
a56dbddf 1137
fe6bd8c3 1138 list_for_each_entry_safe(chunk, next, &to_free, list) {
a93ace48 1139 int rs, re;
dca49645 1140
a93ace48
TH
1141 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1142 pcpu_depopulate_chunk(chunk, rs, re);
b539b87f
TH
1143 spin_lock_irq(&pcpu_lock);
1144 pcpu_chunk_depopulated(chunk, rs, re);
1145 spin_unlock_irq(&pcpu_lock);
a93ace48 1146 }
6081089f 1147 pcpu_destroy_chunk(chunk);
a56dbddf 1148 }
971f3918 1149
1a4d7607
TH
1150 /*
1151 * Ensure there are certain number of free populated pages for
1152 * atomic allocs. Fill up from the most packed so that atomic
1153 * allocs don't increase fragmentation. If atomic allocation
1154 * failed previously, always populate the maximum amount. This
1155 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1156 * failing indefinitely; however, large atomic allocs are not
1157 * something we support properly and can be highly unreliable and
1158 * inefficient.
1159 */
1160retry_pop:
1161 if (pcpu_atomic_alloc_failed) {
1162 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1163 /* best effort anyway, don't worry about synchronization */
1164 pcpu_atomic_alloc_failed = false;
1165 } else {
1166 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1167 pcpu_nr_empty_pop_pages,
1168 0, PCPU_EMPTY_POP_PAGES_HIGH);
1169 }
1170
1171 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1172 int nr_unpop = 0, rs, re;
1173
1174 if (!nr_to_pop)
1175 break;
1176
1177 spin_lock_irq(&pcpu_lock);
1178 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1179 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1180 if (nr_unpop)
1181 break;
1182 }
1183 spin_unlock_irq(&pcpu_lock);
1184
1185 if (!nr_unpop)
1186 continue;
1187
1188 /* @chunk can't go away while pcpu_alloc_mutex is held */
1189 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1190 int nr = min(re - rs, nr_to_pop);
1191
1192 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1193 if (!ret) {
1194 nr_to_pop -= nr;
1195 spin_lock_irq(&pcpu_lock);
1196 pcpu_chunk_populated(chunk, rs, rs + nr);
1197 spin_unlock_irq(&pcpu_lock);
1198 } else {
1199 nr_to_pop = 0;
1200 }
1201
1202 if (!nr_to_pop)
1203 break;
1204 }
1205 }
1206
1207 if (nr_to_pop) {
1208 /* ran out of chunks to populate, create a new one and retry */
1209 chunk = pcpu_create_chunk();
1210 if (chunk) {
1211 spin_lock_irq(&pcpu_lock);
1212 pcpu_chunk_relocate(chunk, -1);
1213 spin_unlock_irq(&pcpu_lock);
1214 goto retry_pop;
1215 }
1216 }
1217
971f3918 1218 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1219}
1220
1221/**
1222 * free_percpu - free percpu area
1223 * @ptr: pointer to area to free
1224 *
ccea34b5
TH
1225 * Free percpu area @ptr.
1226 *
1227 * CONTEXT:
1228 * Can be called from atomic context.
fbf59bc9 1229 */
43cf38eb 1230void free_percpu(void __percpu *ptr)
fbf59bc9 1231{
129182e5 1232 void *addr;
fbf59bc9 1233 struct pcpu_chunk *chunk;
ccea34b5 1234 unsigned long flags;
b539b87f 1235 int off, occ_pages;
fbf59bc9
TH
1236
1237 if (!ptr)
1238 return;
1239
f528f0b8
CM
1240 kmemleak_free_percpu(ptr);
1241
129182e5
AM
1242 addr = __pcpu_ptr_to_addr(ptr);
1243
ccea34b5 1244 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1245
1246 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1247 off = addr - chunk->base_addr;
fbf59bc9 1248
b539b87f
TH
1249 pcpu_free_area(chunk, off, &occ_pages);
1250
1251 if (chunk != pcpu_reserved_chunk)
1252 pcpu_nr_empty_pop_pages += occ_pages;
fbf59bc9 1253
a56dbddf 1254 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1255 if (chunk->free_size == pcpu_unit_size) {
1256 struct pcpu_chunk *pos;
1257
a56dbddf 1258 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1259 if (pos != chunk) {
1a4d7607 1260 pcpu_schedule_balance_work();
fbf59bc9
TH
1261 break;
1262 }
1263 }
1264
ccea34b5 1265 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1266}
1267EXPORT_SYMBOL_GPL(free_percpu);
1268
10fad5e4
TH
1269/**
1270 * is_kernel_percpu_address - test whether address is from static percpu area
1271 * @addr: address to test
1272 *
1273 * Test whether @addr belongs to in-kernel static percpu area. Module
1274 * static percpu areas are not considered. For those, use
1275 * is_module_percpu_address().
1276 *
1277 * RETURNS:
1278 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1279 */
1280bool is_kernel_percpu_address(unsigned long addr)
1281{
bbddff05 1282#ifdef CONFIG_SMP
10fad5e4
TH
1283 const size_t static_size = __per_cpu_end - __per_cpu_start;
1284 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1285 unsigned int cpu;
1286
1287 for_each_possible_cpu(cpu) {
1288 void *start = per_cpu_ptr(base, cpu);
1289
1290 if ((void *)addr >= start && (void *)addr < start + static_size)
1291 return true;
1292 }
bbddff05
TH
1293#endif
1294 /* on UP, can't distinguish from other static vars, always false */
10fad5e4
TH
1295 return false;
1296}
1297
3b034b0d
VG
1298/**
1299 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1300 * @addr: the address to be converted to physical address
1301 *
1302 * Given @addr which is dereferenceable address obtained via one of
1303 * percpu access macros, this function translates it into its physical
1304 * address. The caller is responsible for ensuring @addr stays valid
1305 * until this function finishes.
1306 *
67589c71
DY
1307 * percpu allocator has special setup for the first chunk, which currently
1308 * supports either embedding in linear address space or vmalloc mapping,
1309 * and, from the second one, the backing allocator (currently either vm or
1310 * km) provides translation.
1311 *
1312 * The addr can be tranlated simply without checking if it falls into the
1313 * first chunk. But the current code reflects better how percpu allocator
1314 * actually works, and the verification can discover both bugs in percpu
1315 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1316 * code.
1317 *
3b034b0d
VG
1318 * RETURNS:
1319 * The physical address for @addr.
1320 */
1321phys_addr_t per_cpu_ptr_to_phys(void *addr)
1322{
9983b6f0
TH
1323 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1324 bool in_first_chunk = false;
a855b84c 1325 unsigned long first_low, first_high;
9983b6f0
TH
1326 unsigned int cpu;
1327
1328 /*
a855b84c 1329 * The following test on unit_low/high isn't strictly
9983b6f0
TH
1330 * necessary but will speed up lookups of addresses which
1331 * aren't in the first chunk.
1332 */
a855b84c
TH
1333 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1334 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1335 pcpu_unit_pages);
1336 if ((unsigned long)addr >= first_low &&
1337 (unsigned long)addr < first_high) {
9983b6f0
TH
1338 for_each_possible_cpu(cpu) {
1339 void *start = per_cpu_ptr(base, cpu);
1340
1341 if (addr >= start && addr < start + pcpu_unit_size) {
1342 in_first_chunk = true;
1343 break;
1344 }
1345 }
1346 }
1347
1348 if (in_first_chunk) {
eac522ef 1349 if (!is_vmalloc_addr(addr))
020ec653
TH
1350 return __pa(addr);
1351 else
9f57bd4d
ES
1352 return page_to_phys(vmalloc_to_page(addr)) +
1353 offset_in_page(addr);
020ec653 1354 } else
9f57bd4d
ES
1355 return page_to_phys(pcpu_addr_to_page(addr)) +
1356 offset_in_page(addr);
3b034b0d
VG
1357}
1358
fbf59bc9 1359/**
fd1e8a1f
TH
1360 * pcpu_alloc_alloc_info - allocate percpu allocation info
1361 * @nr_groups: the number of groups
1362 * @nr_units: the number of units
1363 *
1364 * Allocate ai which is large enough for @nr_groups groups containing
1365 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1366 * cpu_map array which is long enough for @nr_units and filled with
1367 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1368 * pointer of other groups.
1369 *
1370 * RETURNS:
1371 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1372 * failure.
1373 */
1374struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1375 int nr_units)
1376{
1377 struct pcpu_alloc_info *ai;
1378 size_t base_size, ai_size;
1379 void *ptr;
1380 int unit;
1381
1382 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1383 __alignof__(ai->groups[0].cpu_map[0]));
1384 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1385
999c17e3 1386 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
fd1e8a1f
TH
1387 if (!ptr)
1388 return NULL;
1389 ai = ptr;
1390 ptr += base_size;
1391
1392 ai->groups[0].cpu_map = ptr;
1393
1394 for (unit = 0; unit < nr_units; unit++)
1395 ai->groups[0].cpu_map[unit] = NR_CPUS;
1396
1397 ai->nr_groups = nr_groups;
1398 ai->__ai_size = PFN_ALIGN(ai_size);
1399
1400 return ai;
1401}
1402
1403/**
1404 * pcpu_free_alloc_info - free percpu allocation info
1405 * @ai: pcpu_alloc_info to free
1406 *
1407 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1408 */
1409void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1410{
999c17e3 1411 memblock_free_early(__pa(ai), ai->__ai_size);
fd1e8a1f
TH
1412}
1413
fd1e8a1f
TH
1414/**
1415 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1416 * @lvl: loglevel
1417 * @ai: allocation info to dump
1418 *
1419 * Print out information about @ai using loglevel @lvl.
1420 */
1421static void pcpu_dump_alloc_info(const char *lvl,
1422 const struct pcpu_alloc_info *ai)
033e48fb 1423{
fd1e8a1f 1424 int group_width = 1, cpu_width = 1, width;
033e48fb 1425 char empty_str[] = "--------";
fd1e8a1f
TH
1426 int alloc = 0, alloc_end = 0;
1427 int group, v;
1428 int upa, apl; /* units per alloc, allocs per line */
1429
1430 v = ai->nr_groups;
1431 while (v /= 10)
1432 group_width++;
033e48fb 1433
fd1e8a1f 1434 v = num_possible_cpus();
033e48fb 1435 while (v /= 10)
fd1e8a1f
TH
1436 cpu_width++;
1437 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1438
fd1e8a1f
TH
1439 upa = ai->alloc_size / ai->unit_size;
1440 width = upa * (cpu_width + 1) + group_width + 3;
1441 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1442
fd1e8a1f
TH
1443 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1444 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1445 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1446
fd1e8a1f
TH
1447 for (group = 0; group < ai->nr_groups; group++) {
1448 const struct pcpu_group_info *gi = &ai->groups[group];
1449 int unit = 0, unit_end = 0;
1450
1451 BUG_ON(gi->nr_units % upa);
1452 for (alloc_end += gi->nr_units / upa;
1453 alloc < alloc_end; alloc++) {
1454 if (!(alloc % apl)) {
cb129820 1455 printk(KERN_CONT "\n");
fd1e8a1f
TH
1456 printk("%spcpu-alloc: ", lvl);
1457 }
cb129820 1458 printk(KERN_CONT "[%0*d] ", group_width, group);
fd1e8a1f
TH
1459
1460 for (unit_end += upa; unit < unit_end; unit++)
1461 if (gi->cpu_map[unit] != NR_CPUS)
cb129820 1462 printk(KERN_CONT "%0*d ", cpu_width,
fd1e8a1f
TH
1463 gi->cpu_map[unit]);
1464 else
cb129820 1465 printk(KERN_CONT "%s ", empty_str);
033e48fb 1466 }
033e48fb 1467 }
cb129820 1468 printk(KERN_CONT "\n");
033e48fb 1469}
033e48fb 1470
fbf59bc9 1471/**
8d408b4b 1472 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1473 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1474 * @base_addr: mapped address
8d408b4b
TH
1475 *
1476 * Initialize the first percpu chunk which contains the kernel static
1477 * perpcu area. This function is to be called from arch percpu area
38a6be52 1478 * setup path.
8d408b4b 1479 *
fd1e8a1f
TH
1480 * @ai contains all information necessary to initialize the first
1481 * chunk and prime the dynamic percpu allocator.
1482 *
1483 * @ai->static_size is the size of static percpu area.
1484 *
1485 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1486 * reserve after the static area in the first chunk. This reserves
1487 * the first chunk such that it's available only through reserved
1488 * percpu allocation. This is primarily used to serve module percpu
1489 * static areas on architectures where the addressing model has
1490 * limited offset range for symbol relocations to guarantee module
1491 * percpu symbols fall inside the relocatable range.
1492 *
fd1e8a1f
TH
1493 * @ai->dyn_size determines the number of bytes available for dynamic
1494 * allocation in the first chunk. The area between @ai->static_size +
1495 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1496 *
fd1e8a1f
TH
1497 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1498 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1499 * @ai->dyn_size.
8d408b4b 1500 *
fd1e8a1f
TH
1501 * @ai->atom_size is the allocation atom size and used as alignment
1502 * for vm areas.
8d408b4b 1503 *
fd1e8a1f
TH
1504 * @ai->alloc_size is the allocation size and always multiple of
1505 * @ai->atom_size. This is larger than @ai->atom_size if
1506 * @ai->unit_size is larger than @ai->atom_size.
1507 *
1508 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1509 * percpu areas. Units which should be colocated are put into the
1510 * same group. Dynamic VM areas will be allocated according to these
1511 * groupings. If @ai->nr_groups is zero, a single group containing
1512 * all units is assumed.
8d408b4b 1513 *
38a6be52
TH
1514 * The caller should have mapped the first chunk at @base_addr and
1515 * copied static data to each unit.
fbf59bc9 1516 *
edcb4639
TH
1517 * If the first chunk ends up with both reserved and dynamic areas, it
1518 * is served by two chunks - one to serve the core static and reserved
1519 * areas and the other for the dynamic area. They share the same vm
1520 * and page map but uses different area allocation map to stay away
1521 * from each other. The latter chunk is circulated in the chunk slots
1522 * and available for dynamic allocation like any other chunks.
1523 *
fbf59bc9 1524 * RETURNS:
fb435d52 1525 * 0 on success, -errno on failure.
fbf59bc9 1526 */
fb435d52
TH
1527int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1528 void *base_addr)
fbf59bc9 1529{
635b75fc 1530 static char cpus_buf[4096] __initdata;
099a19d9
TH
1531 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1532 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
fd1e8a1f
TH
1533 size_t dyn_size = ai->dyn_size;
1534 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1535 struct pcpu_chunk *schunk, *dchunk = NULL;
6563297c
TH
1536 unsigned long *group_offsets;
1537 size_t *group_sizes;
fb435d52 1538 unsigned long *unit_off;
fbf59bc9 1539 unsigned int cpu;
fd1e8a1f
TH
1540 int *unit_map;
1541 int group, unit, i;
fbf59bc9 1542
635b75fc
TH
1543 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1544
1545#define PCPU_SETUP_BUG_ON(cond) do { \
1546 if (unlikely(cond)) { \
1547 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1548 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1549 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1550 BUG(); \
1551 } \
1552} while (0)
1553
2f39e637 1554 /* sanity checks */
635b75fc 1555 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
bbddff05 1556#ifdef CONFIG_SMP
635b75fc 1557 PCPU_SETUP_BUG_ON(!ai->static_size);
0415b00d 1558 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
bbddff05 1559#endif
635b75fc 1560 PCPU_SETUP_BUG_ON(!base_addr);
0415b00d 1561 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
635b75fc
TH
1562 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1563 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1564 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
099a19d9 1565 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
9f645532 1566 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
8d408b4b 1567
6563297c 1568 /* process group information and build config tables accordingly */
999c17e3
SS
1569 group_offsets = memblock_virt_alloc(ai->nr_groups *
1570 sizeof(group_offsets[0]), 0);
1571 group_sizes = memblock_virt_alloc(ai->nr_groups *
1572 sizeof(group_sizes[0]), 0);
1573 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1574 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2f39e637 1575
fd1e8a1f 1576 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
ffe0d5a5 1577 unit_map[cpu] = UINT_MAX;
a855b84c
TH
1578
1579 pcpu_low_unit_cpu = NR_CPUS;
1580 pcpu_high_unit_cpu = NR_CPUS;
2f39e637 1581
fd1e8a1f
TH
1582 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1583 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1584
6563297c
TH
1585 group_offsets[group] = gi->base_offset;
1586 group_sizes[group] = gi->nr_units * ai->unit_size;
1587
fd1e8a1f
TH
1588 for (i = 0; i < gi->nr_units; i++) {
1589 cpu = gi->cpu_map[i];
1590 if (cpu == NR_CPUS)
1591 continue;
8d408b4b 1592
635b75fc
TH
1593 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1594 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1595 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
fbf59bc9 1596
fd1e8a1f 1597 unit_map[cpu] = unit + i;
fb435d52
TH
1598 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1599
a855b84c
TH
1600 /* determine low/high unit_cpu */
1601 if (pcpu_low_unit_cpu == NR_CPUS ||
1602 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1603 pcpu_low_unit_cpu = cpu;
1604 if (pcpu_high_unit_cpu == NR_CPUS ||
1605 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1606 pcpu_high_unit_cpu = cpu;
fd1e8a1f 1607 }
2f39e637 1608 }
fd1e8a1f
TH
1609 pcpu_nr_units = unit;
1610
1611 for_each_possible_cpu(cpu)
635b75fc
TH
1612 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1613
1614 /* we're done parsing the input, undefine BUG macro and dump config */
1615#undef PCPU_SETUP_BUG_ON
bcbea798 1616 pcpu_dump_alloc_info(KERN_DEBUG, ai);
fd1e8a1f 1617
6563297c
TH
1618 pcpu_nr_groups = ai->nr_groups;
1619 pcpu_group_offsets = group_offsets;
1620 pcpu_group_sizes = group_sizes;
fd1e8a1f 1621 pcpu_unit_map = unit_map;
fb435d52 1622 pcpu_unit_offsets = unit_off;
2f39e637
TH
1623
1624 /* determine basic parameters */
fd1e8a1f 1625 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1626 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
6563297c 1627 pcpu_atom_size = ai->atom_size;
ce3141a2
TH
1628 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1629 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
cafe8816 1630
d9b55eeb
TH
1631 /*
1632 * Allocate chunk slots. The additional last slot is for
1633 * empty chunks.
1634 */
1635 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
999c17e3
SS
1636 pcpu_slot = memblock_virt_alloc(
1637 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
fbf59bc9
TH
1638 for (i = 0; i < pcpu_nr_slots; i++)
1639 INIT_LIST_HEAD(&pcpu_slot[i]);
1640
edcb4639
TH
1641 /*
1642 * Initialize static chunk. If reserved_size is zero, the
1643 * static chunk covers static area + dynamic allocation area
1644 * in the first chunk. If reserved_size is not zero, it
1645 * covers static area + reserved area (mostly used for module
1646 * static percpu allocation).
1647 */
999c17e3 1648 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
2441d15c 1649 INIT_LIST_HEAD(&schunk->list);
9c824b6a 1650 INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
bba174f5 1651 schunk->base_addr = base_addr;
61ace7fa
TH
1652 schunk->map = smap;
1653 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1654 schunk->immutable = true;
ce3141a2 1655 bitmap_fill(schunk->populated, pcpu_unit_pages);
b539b87f 1656 schunk->nr_populated = pcpu_unit_pages;
edcb4639 1657
fd1e8a1f
TH
1658 if (ai->reserved_size) {
1659 schunk->free_size = ai->reserved_size;
ae9e6bc9 1660 pcpu_reserved_chunk = schunk;
fd1e8a1f 1661 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1662 } else {
1663 schunk->free_size = dyn_size;
1664 dyn_size = 0; /* dynamic area covered */
1665 }
2441d15c 1666 schunk->contig_hint = schunk->free_size;
fbf59bc9 1667
723ad1d9
AV
1668 schunk->map[0] = 1;
1669 schunk->map[1] = ai->static_size;
1670 schunk->map_used = 1;
61ace7fa 1671 if (schunk->free_size)
723ad1d9
AV
1672 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1673 else
1674 schunk->map[1] |= 1;
61ace7fa 1675
edcb4639
TH
1676 /* init dynamic chunk if necessary */
1677 if (dyn_size) {
999c17e3 1678 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
edcb4639 1679 INIT_LIST_HEAD(&dchunk->list);
9c824b6a 1680 INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
bba174f5 1681 dchunk->base_addr = base_addr;
edcb4639
TH
1682 dchunk->map = dmap;
1683 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1684 dchunk->immutable = true;
ce3141a2 1685 bitmap_fill(dchunk->populated, pcpu_unit_pages);
b539b87f 1686 dchunk->nr_populated = pcpu_unit_pages;
edcb4639
TH
1687
1688 dchunk->contig_hint = dchunk->free_size = dyn_size;
723ad1d9
AV
1689 dchunk->map[0] = 1;
1690 dchunk->map[1] = pcpu_reserved_chunk_limit;
1691 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1692 dchunk->map_used = 2;
edcb4639
TH
1693 }
1694
2441d15c 1695 /* link the first chunk in */
ae9e6bc9 1696 pcpu_first_chunk = dchunk ?: schunk;
b539b87f
TH
1697 pcpu_nr_empty_pop_pages +=
1698 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
ae9e6bc9 1699 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1700
1701 /* we're done */
bba174f5 1702 pcpu_base_addr = base_addr;
fb435d52 1703 return 0;
fbf59bc9 1704}
66c3a757 1705
bbddff05
TH
1706#ifdef CONFIG_SMP
1707
17f3609c 1708const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
f58dc01b
TH
1709 [PCPU_FC_AUTO] = "auto",
1710 [PCPU_FC_EMBED] = "embed",
1711 [PCPU_FC_PAGE] = "page",
f58dc01b 1712};
66c3a757 1713
f58dc01b 1714enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
66c3a757 1715
f58dc01b
TH
1716static int __init percpu_alloc_setup(char *str)
1717{
5479c78a
CG
1718 if (!str)
1719 return -EINVAL;
1720
f58dc01b
TH
1721 if (0)
1722 /* nada */;
1723#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1724 else if (!strcmp(str, "embed"))
1725 pcpu_chosen_fc = PCPU_FC_EMBED;
1726#endif
1727#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1728 else if (!strcmp(str, "page"))
1729 pcpu_chosen_fc = PCPU_FC_PAGE;
f58dc01b
TH
1730#endif
1731 else
1732 pr_warning("PERCPU: unknown allocator %s specified\n", str);
66c3a757 1733
f58dc01b 1734 return 0;
66c3a757 1735}
f58dc01b 1736early_param("percpu_alloc", percpu_alloc_setup);
66c3a757 1737
3c9a024f
TH
1738/*
1739 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1740 * Build it if needed by the arch config or the generic setup is going
1741 * to be used.
1742 */
08fc4580
TH
1743#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1744 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
3c9a024f
TH
1745#define BUILD_EMBED_FIRST_CHUNK
1746#endif
1747
1748/* build pcpu_page_first_chunk() iff needed by the arch config */
1749#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1750#define BUILD_PAGE_FIRST_CHUNK
1751#endif
1752
1753/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1754#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1755/**
1756 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1757 * @reserved_size: the size of reserved percpu area in bytes
1758 * @dyn_size: minimum free size for dynamic allocation in bytes
1759 * @atom_size: allocation atom size
1760 * @cpu_distance_fn: callback to determine distance between cpus, optional
1761 *
1762 * This function determines grouping of units, their mappings to cpus
1763 * and other parameters considering needed percpu size, allocation
1764 * atom size and distances between CPUs.
1765 *
1766 * Groups are always mutliples of atom size and CPUs which are of
1767 * LOCAL_DISTANCE both ways are grouped together and share space for
1768 * units in the same group. The returned configuration is guaranteed
1769 * to have CPUs on different nodes on different groups and >=75% usage
1770 * of allocated virtual address space.
1771 *
1772 * RETURNS:
1773 * On success, pointer to the new allocation_info is returned. On
1774 * failure, ERR_PTR value is returned.
1775 */
1776static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1777 size_t reserved_size, size_t dyn_size,
1778 size_t atom_size,
1779 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1780{
1781 static int group_map[NR_CPUS] __initdata;
1782 static int group_cnt[NR_CPUS] __initdata;
1783 const size_t static_size = __per_cpu_end - __per_cpu_start;
1784 int nr_groups = 1, nr_units = 0;
1785 size_t size_sum, min_unit_size, alloc_size;
1786 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1787 int last_allocs, group, unit;
1788 unsigned int cpu, tcpu;
1789 struct pcpu_alloc_info *ai;
1790 unsigned int *cpu_map;
1791
1792 /* this function may be called multiple times */
1793 memset(group_map, 0, sizeof(group_map));
1794 memset(group_cnt, 0, sizeof(group_cnt));
1795
1796 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1797 size_sum = PFN_ALIGN(static_size + reserved_size +
1798 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1799 dyn_size = size_sum - static_size - reserved_size;
1800
1801 /*
1802 * Determine min_unit_size, alloc_size and max_upa such that
1803 * alloc_size is multiple of atom_size and is the smallest
25985edc 1804 * which can accommodate 4k aligned segments which are equal to
3c9a024f
TH
1805 * or larger than min_unit_size.
1806 */
1807 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1808
1809 alloc_size = roundup(min_unit_size, atom_size);
1810 upa = alloc_size / min_unit_size;
1811 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1812 upa--;
1813 max_upa = upa;
1814
1815 /* group cpus according to their proximity */
1816 for_each_possible_cpu(cpu) {
1817 group = 0;
1818 next_group:
1819 for_each_possible_cpu(tcpu) {
1820 if (cpu == tcpu)
1821 break;
1822 if (group_map[tcpu] == group && cpu_distance_fn &&
1823 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1824 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1825 group++;
1826 nr_groups = max(nr_groups, group + 1);
1827 goto next_group;
1828 }
1829 }
1830 group_map[cpu] = group;
1831 group_cnt[group]++;
1832 }
1833
1834 /*
1835 * Expand unit size until address space usage goes over 75%
1836 * and then as much as possible without using more address
1837 * space.
1838 */
1839 last_allocs = INT_MAX;
1840 for (upa = max_upa; upa; upa--) {
1841 int allocs = 0, wasted = 0;
1842
1843 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1844 continue;
1845
1846 for (group = 0; group < nr_groups; group++) {
1847 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1848 allocs += this_allocs;
1849 wasted += this_allocs * upa - group_cnt[group];
1850 }
1851
1852 /*
1853 * Don't accept if wastage is over 1/3. The
1854 * greater-than comparison ensures upa==1 always
1855 * passes the following check.
1856 */
1857 if (wasted > num_possible_cpus() / 3)
1858 continue;
1859
1860 /* and then don't consume more memory */
1861 if (allocs > last_allocs)
1862 break;
1863 last_allocs = allocs;
1864 best_upa = upa;
1865 }
1866 upa = best_upa;
1867
1868 /* allocate and fill alloc_info */
1869 for (group = 0; group < nr_groups; group++)
1870 nr_units += roundup(group_cnt[group], upa);
1871
1872 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1873 if (!ai)
1874 return ERR_PTR(-ENOMEM);
1875 cpu_map = ai->groups[0].cpu_map;
1876
1877 for (group = 0; group < nr_groups; group++) {
1878 ai->groups[group].cpu_map = cpu_map;
1879 cpu_map += roundup(group_cnt[group], upa);
1880 }
1881
1882 ai->static_size = static_size;
1883 ai->reserved_size = reserved_size;
1884 ai->dyn_size = dyn_size;
1885 ai->unit_size = alloc_size / upa;
1886 ai->atom_size = atom_size;
1887 ai->alloc_size = alloc_size;
1888
1889 for (group = 0, unit = 0; group_cnt[group]; group++) {
1890 struct pcpu_group_info *gi = &ai->groups[group];
1891
1892 /*
1893 * Initialize base_offset as if all groups are located
1894 * back-to-back. The caller should update this to
1895 * reflect actual allocation.
1896 */
1897 gi->base_offset = unit * ai->unit_size;
1898
1899 for_each_possible_cpu(cpu)
1900 if (group_map[cpu] == group)
1901 gi->cpu_map[gi->nr_units++] = cpu;
1902 gi->nr_units = roundup(gi->nr_units, upa);
1903 unit += gi->nr_units;
1904 }
1905 BUG_ON(unit != nr_units);
1906
1907 return ai;
1908}
1909#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1910
1911#if defined(BUILD_EMBED_FIRST_CHUNK)
66c3a757
TH
1912/**
1913 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757 1914 * @reserved_size: the size of reserved percpu area in bytes
4ba6ce25 1915 * @dyn_size: minimum free size for dynamic allocation in bytes
c8826dd5
TH
1916 * @atom_size: allocation atom size
1917 * @cpu_distance_fn: callback to determine distance between cpus, optional
1918 * @alloc_fn: function to allocate percpu page
25985edc 1919 * @free_fn: function to free percpu page
66c3a757
TH
1920 *
1921 * This is a helper to ease setting up embedded first percpu chunk and
1922 * can be called where pcpu_setup_first_chunk() is expected.
1923 *
1924 * If this function is used to setup the first chunk, it is allocated
c8826dd5
TH
1925 * by calling @alloc_fn and used as-is without being mapped into
1926 * vmalloc area. Allocations are always whole multiples of @atom_size
1927 * aligned to @atom_size.
1928 *
1929 * This enables the first chunk to piggy back on the linear physical
1930 * mapping which often uses larger page size. Please note that this
1931 * can result in very sparse cpu->unit mapping on NUMA machines thus
1932 * requiring large vmalloc address space. Don't use this allocator if
1933 * vmalloc space is not orders of magnitude larger than distances
1934 * between node memory addresses (ie. 32bit NUMA machines).
66c3a757 1935 *
4ba6ce25 1936 * @dyn_size specifies the minimum dynamic area size.
66c3a757
TH
1937 *
1938 * If the needed size is smaller than the minimum or specified unit
c8826dd5 1939 * size, the leftover is returned using @free_fn.
66c3a757
TH
1940 *
1941 * RETURNS:
fb435d52 1942 * 0 on success, -errno on failure.
66c3a757 1943 */
4ba6ce25 1944int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
1945 size_t atom_size,
1946 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1947 pcpu_fc_alloc_fn_t alloc_fn,
1948 pcpu_fc_free_fn_t free_fn)
66c3a757 1949{
c8826dd5
TH
1950 void *base = (void *)ULONG_MAX;
1951 void **areas = NULL;
fd1e8a1f 1952 struct pcpu_alloc_info *ai;
6ea529a2 1953 size_t size_sum, areas_size, max_distance;
c8826dd5 1954 int group, i, rc;
66c3a757 1955
c8826dd5
TH
1956 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1957 cpu_distance_fn);
fd1e8a1f
TH
1958 if (IS_ERR(ai))
1959 return PTR_ERR(ai);
66c3a757 1960
fd1e8a1f 1961 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
c8826dd5 1962 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
fa8a7094 1963
999c17e3 1964 areas = memblock_virt_alloc_nopanic(areas_size, 0);
c8826dd5 1965 if (!areas) {
fb435d52 1966 rc = -ENOMEM;
c8826dd5 1967 goto out_free;
fa8a7094 1968 }
66c3a757 1969
c8826dd5
TH
1970 /* allocate, copy and determine base address */
1971 for (group = 0; group < ai->nr_groups; group++) {
1972 struct pcpu_group_info *gi = &ai->groups[group];
1973 unsigned int cpu = NR_CPUS;
1974 void *ptr;
1975
1976 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1977 cpu = gi->cpu_map[i];
1978 BUG_ON(cpu == NR_CPUS);
1979
1980 /* allocate space for the whole group */
1981 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1982 if (!ptr) {
1983 rc = -ENOMEM;
1984 goto out_free_areas;
1985 }
f528f0b8
CM
1986 /* kmemleak tracks the percpu allocations separately */
1987 kmemleak_free(ptr);
c8826dd5 1988 areas[group] = ptr;
fd1e8a1f 1989
c8826dd5 1990 base = min(ptr, base);
42b64281
TH
1991 }
1992
1993 /*
1994 * Copy data and free unused parts. This should happen after all
1995 * allocations are complete; otherwise, we may end up with
1996 * overlapping groups.
1997 */
1998 for (group = 0; group < ai->nr_groups; group++) {
1999 struct pcpu_group_info *gi = &ai->groups[group];
2000 void *ptr = areas[group];
c8826dd5
TH
2001
2002 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2003 if (gi->cpu_map[i] == NR_CPUS) {
2004 /* unused unit, free whole */
2005 free_fn(ptr, ai->unit_size);
2006 continue;
2007 }
2008 /* copy and return the unused part */
2009 memcpy(ptr, __per_cpu_load, ai->static_size);
2010 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2011 }
fa8a7094 2012 }
66c3a757 2013
c8826dd5 2014 /* base address is now known, determine group base offsets */
6ea529a2
TH
2015 max_distance = 0;
2016 for (group = 0; group < ai->nr_groups; group++) {
c8826dd5 2017 ai->groups[group].base_offset = areas[group] - base;
1a0c3298
TH
2018 max_distance = max_t(size_t, max_distance,
2019 ai->groups[group].base_offset);
6ea529a2
TH
2020 }
2021 max_distance += ai->unit_size;
2022
2023 /* warn if maximum distance is further than 75% of vmalloc space */
8a092171 2024 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1a0c3298 2025 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
787e5b06 2026 "space 0x%lx\n", max_distance,
8a092171 2027 VMALLOC_TOTAL);
6ea529a2
TH
2028#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2029 /* and fail if we have fallback */
2030 rc = -EINVAL;
2031 goto out_free;
2032#endif
2033 }
c8826dd5 2034
004018e2 2035 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2036 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2037 ai->dyn_size, ai->unit_size);
d4b95f80 2038
fb435d52 2039 rc = pcpu_setup_first_chunk(ai, base);
c8826dd5
TH
2040 goto out_free;
2041
2042out_free_areas:
2043 for (group = 0; group < ai->nr_groups; group++)
f851c8d8
MH
2044 if (areas[group])
2045 free_fn(areas[group],
2046 ai->groups[group].nr_units * ai->unit_size);
c8826dd5 2047out_free:
fd1e8a1f 2048 pcpu_free_alloc_info(ai);
c8826dd5 2049 if (areas)
999c17e3 2050 memblock_free_early(__pa(areas), areas_size);
fb435d52 2051 return rc;
d4b95f80 2052}
3c9a024f 2053#endif /* BUILD_EMBED_FIRST_CHUNK */
d4b95f80 2054
3c9a024f 2055#ifdef BUILD_PAGE_FIRST_CHUNK
d4b95f80 2056/**
00ae4064 2057 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
2058 * @reserved_size: the size of reserved percpu area in bytes
2059 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
25985edc 2060 * @free_fn: function to free percpu page, always called with PAGE_SIZE
d4b95f80
TH
2061 * @populate_pte_fn: function to populate pte
2062 *
00ae4064
TH
2063 * This is a helper to ease setting up page-remapped first percpu
2064 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
2065 *
2066 * This is the basic allocator. Static percpu area is allocated
2067 * page-by-page into vmalloc area.
2068 *
2069 * RETURNS:
fb435d52 2070 * 0 on success, -errno on failure.
d4b95f80 2071 */
fb435d52
TH
2072int __init pcpu_page_first_chunk(size_t reserved_size,
2073 pcpu_fc_alloc_fn_t alloc_fn,
2074 pcpu_fc_free_fn_t free_fn,
2075 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 2076{
8f05a6a6 2077 static struct vm_struct vm;
fd1e8a1f 2078 struct pcpu_alloc_info *ai;
00ae4064 2079 char psize_str[16];
ce3141a2 2080 int unit_pages;
d4b95f80 2081 size_t pages_size;
ce3141a2 2082 struct page **pages;
fb435d52 2083 int unit, i, j, rc;
d4b95f80 2084
00ae4064
TH
2085 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2086
4ba6ce25 2087 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
fd1e8a1f
TH
2088 if (IS_ERR(ai))
2089 return PTR_ERR(ai);
2090 BUG_ON(ai->nr_groups != 1);
2091 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2092
2093 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
2094
2095 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
2096 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2097 sizeof(pages[0]));
999c17e3 2098 pages = memblock_virt_alloc(pages_size, 0);
d4b95f80 2099
8f05a6a6 2100 /* allocate pages */
d4b95f80 2101 j = 0;
fd1e8a1f 2102 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 2103 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 2104 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
2105 void *ptr;
2106
3cbc8565 2107 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 2108 if (!ptr) {
00ae4064
TH
2109 pr_warning("PERCPU: failed to allocate %s page "
2110 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
2111 goto enomem;
2112 }
f528f0b8
CM
2113 /* kmemleak tracks the percpu allocations separately */
2114 kmemleak_free(ptr);
ce3141a2 2115 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
2116 }
2117
8f05a6a6
TH
2118 /* allocate vm area, map the pages and copy static data */
2119 vm.flags = VM_ALLOC;
fd1e8a1f 2120 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
2121 vm_area_register_early(&vm, PAGE_SIZE);
2122
fd1e8a1f 2123 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 2124 unsigned long unit_addr =
fd1e8a1f 2125 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 2126
ce3141a2 2127 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
2128 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2129
2130 /* pte already populated, the following shouldn't fail */
fb435d52
TH
2131 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2132 unit_pages);
2133 if (rc < 0)
2134 panic("failed to map percpu area, err=%d\n", rc);
66c3a757 2135
8f05a6a6
TH
2136 /*
2137 * FIXME: Archs with virtual cache should flush local
2138 * cache for the linear mapping here - something
2139 * equivalent to flush_cache_vmap() on the local cpu.
2140 * flush_cache_vmap() can't be used as most supporting
2141 * data structures are not set up yet.
2142 */
2143
2144 /* copy static data */
fd1e8a1f 2145 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
66c3a757
TH
2146 }
2147
2148 /* we're ready, commit */
1d9d3257 2149 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
2150 unit_pages, psize_str, vm.addr, ai->static_size,
2151 ai->reserved_size, ai->dyn_size);
d4b95f80 2152
fb435d52 2153 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
2154 goto out_free_ar;
2155
2156enomem:
2157 while (--j >= 0)
ce3141a2 2158 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 2159 rc = -ENOMEM;
d4b95f80 2160out_free_ar:
999c17e3 2161 memblock_free_early(__pa(pages), pages_size);
fd1e8a1f 2162 pcpu_free_alloc_info(ai);
fb435d52 2163 return rc;
d4b95f80 2164}
3c9a024f 2165#endif /* BUILD_PAGE_FIRST_CHUNK */
d4b95f80 2166
bbddff05 2167#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
e74e3962 2168/*
bbddff05 2169 * Generic SMP percpu area setup.
e74e3962
TH
2170 *
2171 * The embedding helper is used because its behavior closely resembles
2172 * the original non-dynamic generic percpu area setup. This is
2173 * important because many archs have addressing restrictions and might
2174 * fail if the percpu area is located far away from the previous
2175 * location. As an added bonus, in non-NUMA cases, embedding is
2176 * generally a good idea TLB-wise because percpu area can piggy back
2177 * on the physical linear memory mapping which uses large page
2178 * mappings on applicable archs.
2179 */
e74e3962
TH
2180unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2181EXPORT_SYMBOL(__per_cpu_offset);
2182
c8826dd5
TH
2183static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2184 size_t align)
2185{
999c17e3
SS
2186 return memblock_virt_alloc_from_nopanic(
2187 size, align, __pa(MAX_DMA_ADDRESS));
c8826dd5 2188}
66c3a757 2189
c8826dd5
TH
2190static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2191{
999c17e3 2192 memblock_free_early(__pa(ptr), size);
c8826dd5
TH
2193}
2194
e74e3962
TH
2195void __init setup_per_cpu_areas(void)
2196{
e74e3962
TH
2197 unsigned long delta;
2198 unsigned int cpu;
fb435d52 2199 int rc;
e74e3962
TH
2200
2201 /*
2202 * Always reserve area for module percpu variables. That's
2203 * what the legacy allocator did.
2204 */
fb435d52 2205 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
c8826dd5
TH
2206 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2207 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
fb435d52 2208 if (rc < 0)
bbddff05 2209 panic("Failed to initialize percpu areas.");
e74e3962
TH
2210
2211 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2212 for_each_possible_cpu(cpu)
fb435d52 2213 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
66c3a757 2214}
bbddff05
TH
2215#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2216
2217#else /* CONFIG_SMP */
2218
2219/*
2220 * UP percpu area setup.
2221 *
2222 * UP always uses km-based percpu allocator with identity mapping.
2223 * Static percpu variables are indistinguishable from the usual static
2224 * variables and don't require any special preparation.
2225 */
2226void __init setup_per_cpu_areas(void)
2227{
2228 const size_t unit_size =
2229 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2230 PERCPU_DYNAMIC_RESERVE));
2231 struct pcpu_alloc_info *ai;
2232 void *fc;
2233
2234 ai = pcpu_alloc_alloc_info(1, 1);
999c17e3
SS
2235 fc = memblock_virt_alloc_from_nopanic(unit_size,
2236 PAGE_SIZE,
2237 __pa(MAX_DMA_ADDRESS));
bbddff05
TH
2238 if (!ai || !fc)
2239 panic("Failed to allocate memory for percpu areas.");
100d13c3
CM
2240 /* kmemleak tracks the percpu allocations separately */
2241 kmemleak_free(fc);
bbddff05
TH
2242
2243 ai->dyn_size = unit_size;
2244 ai->unit_size = unit_size;
2245 ai->atom_size = unit_size;
2246 ai->alloc_size = unit_size;
2247 ai->groups[0].nr_units = 1;
2248 ai->groups[0].cpu_map[0] = 0;
2249
2250 if (pcpu_setup_first_chunk(ai, fc) < 0)
2251 panic("Failed to initialize percpu areas.");
3189eddb
HL
2252
2253 pcpu_free_alloc_info(ai);
bbddff05
TH
2254}
2255
2256#endif /* CONFIG_SMP */
099a19d9
TH
2257
2258/*
2259 * First and reserved chunks are initialized with temporary allocation
2260 * map in initdata so that they can be used before slab is online.
2261 * This function is called after slab is brought up and replaces those
2262 * with properly allocated maps.
2263 */
2264void __init percpu_init_late(void)
2265{
2266 struct pcpu_chunk *target_chunks[] =
2267 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2268 struct pcpu_chunk *chunk;
2269 unsigned long flags;
2270 int i;
2271
2272 for (i = 0; (chunk = target_chunks[i]); i++) {
2273 int *map;
2274 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2275
2276 BUILD_BUG_ON(size > PAGE_SIZE);
2277
90459ce0 2278 map = pcpu_mem_zalloc(size);
099a19d9
TH
2279 BUG_ON(!map);
2280
2281 spin_lock_irqsave(&pcpu_lock, flags);
2282 memcpy(map, chunk->map, size);
2283 chunk->map = map;
2284 spin_unlock_irqrestore(&pcpu_lock, flags);
2285 }
2286}
1a4d7607
TH
2287
2288/*
2289 * Percpu allocator is initialized early during boot when neither slab or
2290 * workqueue is available. Plug async management until everything is up
2291 * and running.
2292 */
2293static int __init percpu_enable_async(void)
2294{
2295 pcpu_async_enabled = true;
2296 return 0;
2297}
2298subsys_initcall(percpu_enable_async);
This page took 0.371547 seconds and 5 git commands to generate.