HWPOISON, hugetlb: support hwpoison injection for hugepage
[deliverable/linux.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
0fe6e20b 59#include <linux/hugetlb.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71}
72
db114b83 73void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
74{
75 kmem_cache_free(anon_vma_cachep, anon_vma);
76}
1da177e4 77
5beb4930
RR
78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79{
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81}
82
83void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84{
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86}
87
d9d332e0
LT
88/**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
91 *
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
95 *
96 * The common case will be that we already have one, but if
97 * if not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
101 *
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
107 *
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
112 *
113 * This must be called with the mmap_sem held for reading.
114 */
1da177e4
LT
115int anon_vma_prepare(struct vm_area_struct *vma)
116{
117 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 118 struct anon_vma_chain *avc;
1da177e4
LT
119
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
d9d332e0 123 struct anon_vma *allocated;
1da177e4 124
5beb4930
RR
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
128
1da177e4 129 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
130 allocated = NULL;
131 if (!anon_vma) {
1da177e4
LT
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
5beb4930 134 goto out_enomem_free_avc;
1da177e4 135 allocated = anon_vma;
1da177e4
LT
136 }
137
31f2b0eb 138 spin_lock(&anon_vma->lock);
1da177e4
LT
139 /* page_table_lock to protect against threads */
140 spin_lock(&mm->page_table_lock);
141 if (likely(!vma->anon_vma)) {
142 vma->anon_vma = anon_vma;
5beb4930
RR
143 avc->anon_vma = anon_vma;
144 avc->vma = vma;
145 list_add(&avc->same_vma, &vma->anon_vma_chain);
146 list_add(&avc->same_anon_vma, &anon_vma->head);
1da177e4 147 allocated = NULL;
31f2b0eb 148 avc = NULL;
1da177e4
LT
149 }
150 spin_unlock(&mm->page_table_lock);
d9d332e0 151 spin_unlock(&anon_vma->lock);
31f2b0eb
ON
152
153 if (unlikely(allocated))
1da177e4 154 anon_vma_free(allocated);
31f2b0eb 155 if (unlikely(avc))
5beb4930 156 anon_vma_chain_free(avc);
1da177e4
LT
157 }
158 return 0;
5beb4930
RR
159
160 out_enomem_free_avc:
161 anon_vma_chain_free(avc);
162 out_enomem:
163 return -ENOMEM;
1da177e4
LT
164}
165
5beb4930
RR
166static void anon_vma_chain_link(struct vm_area_struct *vma,
167 struct anon_vma_chain *avc,
168 struct anon_vma *anon_vma)
1da177e4 169{
5beb4930
RR
170 avc->vma = vma;
171 avc->anon_vma = anon_vma;
172 list_add(&avc->same_vma, &vma->anon_vma_chain);
173
174 spin_lock(&anon_vma->lock);
175 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
176 spin_unlock(&anon_vma->lock);
1da177e4
LT
177}
178
5beb4930
RR
179/*
180 * Attach the anon_vmas from src to dst.
181 * Returns 0 on success, -ENOMEM on failure.
182 */
183int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 184{
5beb4930
RR
185 struct anon_vma_chain *avc, *pavc;
186
646d87b4 187 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
188 avc = anon_vma_chain_alloc();
189 if (!avc)
190 goto enomem_failure;
191 anon_vma_chain_link(dst, avc, pavc->anon_vma);
192 }
193 return 0;
1da177e4 194
5beb4930
RR
195 enomem_failure:
196 unlink_anon_vmas(dst);
197 return -ENOMEM;
1da177e4
LT
198}
199
5beb4930
RR
200/*
201 * Attach vma to its own anon_vma, as well as to the anon_vmas that
202 * the corresponding VMA in the parent process is attached to.
203 * Returns 0 on success, non-zero on failure.
204 */
205int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 206{
5beb4930
RR
207 struct anon_vma_chain *avc;
208 struct anon_vma *anon_vma;
1da177e4 209
5beb4930
RR
210 /* Don't bother if the parent process has no anon_vma here. */
211 if (!pvma->anon_vma)
212 return 0;
213
214 /*
215 * First, attach the new VMA to the parent VMA's anon_vmas,
216 * so rmap can find non-COWed pages in child processes.
217 */
218 if (anon_vma_clone(vma, pvma))
219 return -ENOMEM;
220
221 /* Then add our own anon_vma. */
222 anon_vma = anon_vma_alloc();
223 if (!anon_vma)
224 goto out_error;
225 avc = anon_vma_chain_alloc();
226 if (!avc)
227 goto out_error_free_anon_vma;
228 anon_vma_chain_link(vma, avc, anon_vma);
229 /* Mark this anon_vma as the one where our new (COWed) pages go. */
230 vma->anon_vma = anon_vma;
231
232 return 0;
233
234 out_error_free_anon_vma:
235 anon_vma_free(anon_vma);
236 out_error:
4946d54c 237 unlink_anon_vmas(vma);
5beb4930 238 return -ENOMEM;
1da177e4
LT
239}
240
5beb4930 241static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 242{
5beb4930 243 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
244 int empty;
245
5beb4930 246 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
247 if (!anon_vma)
248 return;
249
250 spin_lock(&anon_vma->lock);
5beb4930 251 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
252
253 /* We must garbage collect the anon_vma if it's empty */
7f60c214 254 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
1da177e4
LT
255 spin_unlock(&anon_vma->lock);
256
257 if (empty)
258 anon_vma_free(anon_vma);
259}
260
5beb4930
RR
261void unlink_anon_vmas(struct vm_area_struct *vma)
262{
263 struct anon_vma_chain *avc, *next;
264
265 /* Unlink each anon_vma chained to the VMA. */
266 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
267 anon_vma_unlink(avc);
268 list_del(&avc->same_vma);
269 anon_vma_chain_free(avc);
270 }
271}
272
51cc5068 273static void anon_vma_ctor(void *data)
1da177e4 274{
a35afb83 275 struct anon_vma *anon_vma = data;
1da177e4 276
a35afb83 277 spin_lock_init(&anon_vma->lock);
7f60c214 278 anonvma_external_refcount_init(anon_vma);
a35afb83 279 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
280}
281
282void __init anon_vma_init(void)
283{
284 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 285 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 286 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
287}
288
289/*
290 * Getting a lock on a stable anon_vma from a page off the LRU is
291 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
292 */
10be22df 293struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 294{
34bbd704 295 struct anon_vma *anon_vma;
1da177e4
LT
296 unsigned long anon_mapping;
297
298 rcu_read_lock();
80e14822 299 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 300 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
301 goto out;
302 if (!page_mapped(page))
303 goto out;
304
305 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
306 spin_lock(&anon_vma->lock);
34bbd704 307 return anon_vma;
1da177e4
LT
308out:
309 rcu_read_unlock();
34bbd704
ON
310 return NULL;
311}
312
10be22df 313void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
314{
315 spin_unlock(&anon_vma->lock);
316 rcu_read_unlock();
1da177e4
LT
317}
318
319/*
3ad33b24
LS
320 * At what user virtual address is page expected in @vma?
321 * Returns virtual address or -EFAULT if page's index/offset is not
322 * within the range mapped the @vma.
1da177e4
LT
323 */
324static inline unsigned long
325vma_address(struct page *page, struct vm_area_struct *vma)
326{
327 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
328 unsigned long address;
329
0fe6e20b
NH
330 if (unlikely(is_vm_hugetlb_page(vma)))
331 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
332 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
333 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 334 /* page should be within @vma mapping range */
1da177e4
LT
335 return -EFAULT;
336 }
337 return address;
338}
339
340/*
bf89c8c8 341 * At what user virtual address is page expected in vma?
ab941e0f 342 * Caller should check the page is actually part of the vma.
1da177e4
LT
343 */
344unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
345{
ab941e0f
NH
346 if (PageAnon(page))
347 ;
348 else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
349 if (!vma->vm_file ||
350 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
351 return -EFAULT;
352 } else
353 return -EFAULT;
354 return vma_address(page, vma);
355}
356
81b4082d
ND
357/*
358 * Check that @page is mapped at @address into @mm.
359 *
479db0bf
NP
360 * If @sync is false, page_check_address may perform a racy check to avoid
361 * the page table lock when the pte is not present (helpful when reclaiming
362 * highly shared pages).
363 *
b8072f09 364 * On success returns with pte mapped and locked.
81b4082d 365 */
ceffc078 366pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 367 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
368{
369 pgd_t *pgd;
370 pud_t *pud;
371 pmd_t *pmd;
372 pte_t *pte;
c0718806 373 spinlock_t *ptl;
81b4082d 374
0fe6e20b
NH
375 if (unlikely(PageHuge(page))) {
376 pte = huge_pte_offset(mm, address);
377 ptl = &mm->page_table_lock;
378 goto check;
379 }
380
81b4082d 381 pgd = pgd_offset(mm, address);
c0718806
HD
382 if (!pgd_present(*pgd))
383 return NULL;
384
385 pud = pud_offset(pgd, address);
386 if (!pud_present(*pud))
387 return NULL;
388
389 pmd = pmd_offset(pud, address);
390 if (!pmd_present(*pmd))
391 return NULL;
392
393 pte = pte_offset_map(pmd, address);
394 /* Make a quick check before getting the lock */
479db0bf 395 if (!sync && !pte_present(*pte)) {
c0718806
HD
396 pte_unmap(pte);
397 return NULL;
398 }
399
4c21e2f2 400 ptl = pte_lockptr(mm, pmd);
0fe6e20b 401check:
c0718806
HD
402 spin_lock(ptl);
403 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
404 *ptlp = ptl;
405 return pte;
81b4082d 406 }
c0718806
HD
407 pte_unmap_unlock(pte, ptl);
408 return NULL;
81b4082d
ND
409}
410
b291f000
NP
411/**
412 * page_mapped_in_vma - check whether a page is really mapped in a VMA
413 * @page: the page to test
414 * @vma: the VMA to test
415 *
416 * Returns 1 if the page is mapped into the page tables of the VMA, 0
417 * if the page is not mapped into the page tables of this VMA. Only
418 * valid for normal file or anonymous VMAs.
419 */
6a46079c 420int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
421{
422 unsigned long address;
423 pte_t *pte;
424 spinlock_t *ptl;
425
426 address = vma_address(page, vma);
427 if (address == -EFAULT) /* out of vma range */
428 return 0;
429 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
430 if (!pte) /* the page is not in this mm */
431 return 0;
432 pte_unmap_unlock(pte, ptl);
433
434 return 1;
435}
436
1da177e4
LT
437/*
438 * Subfunctions of page_referenced: page_referenced_one called
439 * repeatedly from either page_referenced_anon or page_referenced_file.
440 */
5ad64688
HD
441int page_referenced_one(struct page *page, struct vm_area_struct *vma,
442 unsigned long address, unsigned int *mapcount,
443 unsigned long *vm_flags)
1da177e4
LT
444{
445 struct mm_struct *mm = vma->vm_mm;
1da177e4 446 pte_t *pte;
c0718806 447 spinlock_t *ptl;
1da177e4
LT
448 int referenced = 0;
449
479db0bf 450 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
451 if (!pte)
452 goto out;
1da177e4 453
b291f000
NP
454 /*
455 * Don't want to elevate referenced for mlocked page that gets this far,
456 * in order that it progresses to try_to_unmap and is moved to the
457 * unevictable list.
458 */
5a9bbdcd 459 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 460 *mapcount = 1; /* break early from loop */
03ef83af 461 *vm_flags |= VM_LOCKED;
b291f000
NP
462 goto out_unmap;
463 }
464
4917e5d0
JW
465 if (ptep_clear_flush_young_notify(vma, address, pte)) {
466 /*
467 * Don't treat a reference through a sequentially read
468 * mapping as such. If the page has been used in
469 * another mapping, we will catch it; if this other
470 * mapping is already gone, the unmap path will have
471 * set PG_referenced or activated the page.
472 */
473 if (likely(!VM_SequentialReadHint(vma)))
474 referenced++;
475 }
1da177e4 476
c0718806
HD
477 /* Pretend the page is referenced if the task has the
478 swap token and is in the middle of a page fault. */
f7b7fd8f 479 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
480 rwsem_is_locked(&mm->mmap_sem))
481 referenced++;
482
b291f000 483out_unmap:
c0718806
HD
484 (*mapcount)--;
485 pte_unmap_unlock(pte, ptl);
273f047e 486
6fe6b7e3
WF
487 if (referenced)
488 *vm_flags |= vma->vm_flags;
273f047e 489out:
1da177e4
LT
490 return referenced;
491}
492
bed7161a 493static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
494 struct mem_cgroup *mem_cont,
495 unsigned long *vm_flags)
1da177e4
LT
496{
497 unsigned int mapcount;
498 struct anon_vma *anon_vma;
5beb4930 499 struct anon_vma_chain *avc;
1da177e4
LT
500 int referenced = 0;
501
502 anon_vma = page_lock_anon_vma(page);
503 if (!anon_vma)
504 return referenced;
505
506 mapcount = page_mapcount(page);
5beb4930
RR
507 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
508 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
509 unsigned long address = vma_address(page, vma);
510 if (address == -EFAULT)
511 continue;
bed7161a
BS
512 /*
513 * If we are reclaiming on behalf of a cgroup, skip
514 * counting on behalf of references from different
515 * cgroups
516 */
bd845e38 517 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 518 continue;
1cb1729b 519 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 520 &mapcount, vm_flags);
1da177e4
LT
521 if (!mapcount)
522 break;
523 }
34bbd704
ON
524
525 page_unlock_anon_vma(anon_vma);
1da177e4
LT
526 return referenced;
527}
528
529/**
530 * page_referenced_file - referenced check for object-based rmap
531 * @page: the page we're checking references on.
43d8eac4 532 * @mem_cont: target memory controller
6fe6b7e3 533 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
534 *
535 * For an object-based mapped page, find all the places it is mapped and
536 * check/clear the referenced flag. This is done by following the page->mapping
537 * pointer, then walking the chain of vmas it holds. It returns the number
538 * of references it found.
539 *
540 * This function is only called from page_referenced for object-based pages.
541 */
bed7161a 542static int page_referenced_file(struct page *page,
6fe6b7e3
WF
543 struct mem_cgroup *mem_cont,
544 unsigned long *vm_flags)
1da177e4
LT
545{
546 unsigned int mapcount;
547 struct address_space *mapping = page->mapping;
548 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
549 struct vm_area_struct *vma;
550 struct prio_tree_iter iter;
551 int referenced = 0;
552
553 /*
554 * The caller's checks on page->mapping and !PageAnon have made
555 * sure that this is a file page: the check for page->mapping
556 * excludes the case just before it gets set on an anon page.
557 */
558 BUG_ON(PageAnon(page));
559
560 /*
561 * The page lock not only makes sure that page->mapping cannot
562 * suddenly be NULLified by truncation, it makes sure that the
563 * structure at mapping cannot be freed and reused yet,
564 * so we can safely take mapping->i_mmap_lock.
565 */
566 BUG_ON(!PageLocked(page));
567
568 spin_lock(&mapping->i_mmap_lock);
569
570 /*
571 * i_mmap_lock does not stabilize mapcount at all, but mapcount
572 * is more likely to be accurate if we note it after spinning.
573 */
574 mapcount = page_mapcount(page);
575
576 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
577 unsigned long address = vma_address(page, vma);
578 if (address == -EFAULT)
579 continue;
bed7161a
BS
580 /*
581 * If we are reclaiming on behalf of a cgroup, skip
582 * counting on behalf of references from different
583 * cgroups
584 */
bd845e38 585 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 586 continue;
1cb1729b 587 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 588 &mapcount, vm_flags);
1da177e4
LT
589 if (!mapcount)
590 break;
591 }
592
593 spin_unlock(&mapping->i_mmap_lock);
594 return referenced;
595}
596
597/**
598 * page_referenced - test if the page was referenced
599 * @page: the page to test
600 * @is_locked: caller holds lock on the page
43d8eac4 601 * @mem_cont: target memory controller
6fe6b7e3 602 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
603 *
604 * Quick test_and_clear_referenced for all mappings to a page,
605 * returns the number of ptes which referenced the page.
606 */
6fe6b7e3
WF
607int page_referenced(struct page *page,
608 int is_locked,
609 struct mem_cgroup *mem_cont,
610 unsigned long *vm_flags)
1da177e4
LT
611{
612 int referenced = 0;
5ad64688 613 int we_locked = 0;
1da177e4 614
6fe6b7e3 615 *vm_flags = 0;
3ca7b3c5 616 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
617 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
618 we_locked = trylock_page(page);
619 if (!we_locked) {
620 referenced++;
621 goto out;
622 }
623 }
624 if (unlikely(PageKsm(page)))
625 referenced += page_referenced_ksm(page, mem_cont,
626 vm_flags);
627 else if (PageAnon(page))
6fe6b7e3
WF
628 referenced += page_referenced_anon(page, mem_cont,
629 vm_flags);
5ad64688 630 else if (page->mapping)
6fe6b7e3
WF
631 referenced += page_referenced_file(page, mem_cont,
632 vm_flags);
5ad64688 633 if (we_locked)
1da177e4 634 unlock_page(page);
1da177e4 635 }
5ad64688 636out:
5b7baf05
CB
637 if (page_test_and_clear_young(page))
638 referenced++;
639
1da177e4
LT
640 return referenced;
641}
642
1cb1729b
HD
643static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
644 unsigned long address)
d08b3851
PZ
645{
646 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 647 pte_t *pte;
d08b3851
PZ
648 spinlock_t *ptl;
649 int ret = 0;
650
479db0bf 651 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
652 if (!pte)
653 goto out;
654
c2fda5fe
PZ
655 if (pte_dirty(*pte) || pte_write(*pte)) {
656 pte_t entry;
d08b3851 657
c2fda5fe 658 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 659 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
660 entry = pte_wrprotect(entry);
661 entry = pte_mkclean(entry);
d6e88e67 662 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
663 ret = 1;
664 }
d08b3851 665
d08b3851
PZ
666 pte_unmap_unlock(pte, ptl);
667out:
668 return ret;
669}
670
671static int page_mkclean_file(struct address_space *mapping, struct page *page)
672{
673 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
674 struct vm_area_struct *vma;
675 struct prio_tree_iter iter;
676 int ret = 0;
677
678 BUG_ON(PageAnon(page));
679
680 spin_lock(&mapping->i_mmap_lock);
681 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
682 if (vma->vm_flags & VM_SHARED) {
683 unsigned long address = vma_address(page, vma);
684 if (address == -EFAULT)
685 continue;
686 ret += page_mkclean_one(page, vma, address);
687 }
d08b3851
PZ
688 }
689 spin_unlock(&mapping->i_mmap_lock);
690 return ret;
691}
692
693int page_mkclean(struct page *page)
694{
695 int ret = 0;
696
697 BUG_ON(!PageLocked(page));
698
699 if (page_mapped(page)) {
700 struct address_space *mapping = page_mapping(page);
ce7e9fae 701 if (mapping) {
d08b3851 702 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
703 if (page_test_dirty(page)) {
704 page_clear_dirty(page);
705 ret = 1;
706 }
6c210482 707 }
d08b3851
PZ
708 }
709
710 return ret;
711}
60b59bea 712EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 713
c44b6743
RR
714/**
715 * page_move_anon_rmap - move a page to our anon_vma
716 * @page: the page to move to our anon_vma
717 * @vma: the vma the page belongs to
718 * @address: the user virtual address mapped
719 *
720 * When a page belongs exclusively to one process after a COW event,
721 * that page can be moved into the anon_vma that belongs to just that
722 * process, so the rmap code will not search the parent or sibling
723 * processes.
724 */
725void page_move_anon_rmap(struct page *page,
726 struct vm_area_struct *vma, unsigned long address)
727{
728 struct anon_vma *anon_vma = vma->anon_vma;
729
730 VM_BUG_ON(!PageLocked(page));
731 VM_BUG_ON(!anon_vma);
732 VM_BUG_ON(page->index != linear_page_index(vma, address));
733
734 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
735 page->mapping = (struct address_space *) anon_vma;
736}
737
9617d95e 738/**
43d8eac4 739 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
740 * @page: the page to add the mapping to
741 * @vma: the vm area in which the mapping is added
742 * @address: the user virtual address mapped
e8a03feb 743 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
744 */
745static void __page_set_anon_rmap(struct page *page,
e8a03feb 746 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 747{
e8a03feb 748 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 749
e8a03feb 750 BUG_ON(!anon_vma);
ea90002b
LT
751
752 /*
e8a03feb
RR
753 * If the page isn't exclusively mapped into this vma,
754 * we must use the _oldest_ possible anon_vma for the
755 * page mapping!
ea90002b 756 *
e8a03feb
RR
757 * So take the last AVC chain entry in the vma, which is
758 * the deepest ancestor, and use the anon_vma from that.
ea90002b 759 */
e8a03feb
RR
760 if (!exclusive) {
761 struct anon_vma_chain *avc;
762 avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
763 anon_vma = avc->anon_vma;
764 }
9617d95e 765
9617d95e
NP
766 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
767 page->mapping = (struct address_space *) anon_vma;
9617d95e 768 page->index = linear_page_index(vma, address);
9617d95e
NP
769}
770
c97a9e10 771/**
43d8eac4 772 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
773 * @page: the page to add the mapping to
774 * @vma: the vm area in which the mapping is added
775 * @address: the user virtual address mapped
776 */
777static void __page_check_anon_rmap(struct page *page,
778 struct vm_area_struct *vma, unsigned long address)
779{
780#ifdef CONFIG_DEBUG_VM
781 /*
782 * The page's anon-rmap details (mapping and index) are guaranteed to
783 * be set up correctly at this point.
784 *
785 * We have exclusion against page_add_anon_rmap because the caller
786 * always holds the page locked, except if called from page_dup_rmap,
787 * in which case the page is already known to be setup.
788 *
789 * We have exclusion against page_add_new_anon_rmap because those pages
790 * are initially only visible via the pagetables, and the pte is locked
791 * over the call to page_add_new_anon_rmap.
792 */
c97a9e10
NP
793 BUG_ON(page->index != linear_page_index(vma, address));
794#endif
795}
796
1da177e4
LT
797/**
798 * page_add_anon_rmap - add pte mapping to an anonymous page
799 * @page: the page to add the mapping to
800 * @vma: the vm area in which the mapping is added
801 * @address: the user virtual address mapped
802 *
5ad64688 803 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
804 * the anon_vma case: to serialize mapping,index checking after setting,
805 * and to ensure that PageAnon is not being upgraded racily to PageKsm
806 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
807 */
808void page_add_anon_rmap(struct page *page,
809 struct vm_area_struct *vma, unsigned long address)
810{
5ad64688
HD
811 int first = atomic_inc_and_test(&page->_mapcount);
812 if (first)
813 __inc_zone_page_state(page, NR_ANON_PAGES);
814 if (unlikely(PageKsm(page)))
815 return;
816
c97a9e10
NP
817 VM_BUG_ON(!PageLocked(page));
818 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 819 if (first)
e8a03feb 820 __page_set_anon_rmap(page, vma, address, 0);
69029cd5 821 else
c97a9e10 822 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
823}
824
43d8eac4 825/**
9617d95e
NP
826 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
827 * @page: the page to add the mapping to
828 * @vma: the vm area in which the mapping is added
829 * @address: the user virtual address mapped
830 *
831 * Same as page_add_anon_rmap but must only be called on *new* pages.
832 * This means the inc-and-test can be bypassed.
c97a9e10 833 * Page does not have to be locked.
9617d95e
NP
834 */
835void page_add_new_anon_rmap(struct page *page,
836 struct vm_area_struct *vma, unsigned long address)
837{
b5934c53 838 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
839 SetPageSwapBacked(page);
840 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 841 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 842 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 843 if (page_evictable(page, vma))
cbf84b7a 844 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
845 else
846 add_page_to_unevictable_list(page);
9617d95e
NP
847}
848
1da177e4
LT
849/**
850 * page_add_file_rmap - add pte mapping to a file page
851 * @page: the page to add the mapping to
852 *
b8072f09 853 * The caller needs to hold the pte lock.
1da177e4
LT
854 */
855void page_add_file_rmap(struct page *page)
856{
d69b042f 857 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 858 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 859 mem_cgroup_update_file_mapped(page, 1);
d69b042f 860 }
1da177e4
LT
861}
862
863/**
864 * page_remove_rmap - take down pte mapping from a page
865 * @page: page to remove mapping from
866 *
b8072f09 867 * The caller needs to hold the pte lock.
1da177e4 868 */
edc315fd 869void page_remove_rmap(struct page *page)
1da177e4 870{
b904dcfe
KM
871 /* page still mapped by someone else? */
872 if (!atomic_add_negative(-1, &page->_mapcount))
873 return;
874
875 /*
876 * Now that the last pte has gone, s390 must transfer dirty
877 * flag from storage key to struct page. We can usually skip
878 * this if the page is anon, so about to be freed; but perhaps
879 * not if it's in swapcache - there might be another pte slot
880 * containing the swap entry, but page not yet written to swap.
881 */
882 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
883 page_clear_dirty(page);
884 set_page_dirty(page);
1da177e4 885 }
0fe6e20b
NH
886 /*
887 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
888 * and not charged by memcg for now.
889 */
890 if (unlikely(PageHuge(page)))
891 return;
b904dcfe
KM
892 if (PageAnon(page)) {
893 mem_cgroup_uncharge_page(page);
894 __dec_zone_page_state(page, NR_ANON_PAGES);
895 } else {
896 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 897 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 898 }
b904dcfe
KM
899 /*
900 * It would be tidy to reset the PageAnon mapping here,
901 * but that might overwrite a racing page_add_anon_rmap
902 * which increments mapcount after us but sets mapping
903 * before us: so leave the reset to free_hot_cold_page,
904 * and remember that it's only reliable while mapped.
905 * Leaving it set also helps swapoff to reinstate ptes
906 * faster for those pages still in swapcache.
907 */
1da177e4
LT
908}
909
910/*
911 * Subfunctions of try_to_unmap: try_to_unmap_one called
912 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
913 */
5ad64688
HD
914int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
915 unsigned long address, enum ttu_flags flags)
1da177e4
LT
916{
917 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
918 pte_t *pte;
919 pte_t pteval;
c0718806 920 spinlock_t *ptl;
1da177e4
LT
921 int ret = SWAP_AGAIN;
922
479db0bf 923 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 924 if (!pte)
81b4082d 925 goto out;
1da177e4
LT
926
927 /*
928 * If the page is mlock()d, we cannot swap it out.
929 * If it's recently referenced (perhaps page_referenced
930 * skipped over this mm) then we should reactivate it.
931 */
14fa31b8 932 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
933 if (vma->vm_flags & VM_LOCKED)
934 goto out_mlock;
935
af8e3354 936 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 937 goto out_unmap;
14fa31b8
AK
938 }
939 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
940 if (ptep_clear_flush_young_notify(vma, address, pte)) {
941 ret = SWAP_FAIL;
942 goto out_unmap;
943 }
944 }
1da177e4 945
1da177e4
LT
946 /* Nuke the page table entry. */
947 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 948 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
949
950 /* Move the dirty bit to the physical page now the pte is gone. */
951 if (pte_dirty(pteval))
952 set_page_dirty(page);
953
365e9c87
HD
954 /* Update high watermark before we lower rss */
955 update_hiwater_rss(mm);
956
888b9f7c
AK
957 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
958 if (PageAnon(page))
d559db08 959 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 960 else
d559db08 961 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
962 set_pte_at(mm, address, pte,
963 swp_entry_to_pte(make_hwpoison_entry(page)));
964 } else if (PageAnon(page)) {
4c21e2f2 965 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
966
967 if (PageSwapCache(page)) {
968 /*
969 * Store the swap location in the pte.
970 * See handle_pte_fault() ...
971 */
570a335b
HD
972 if (swap_duplicate(entry) < 0) {
973 set_pte_at(mm, address, pte, pteval);
974 ret = SWAP_FAIL;
975 goto out_unmap;
976 }
0697212a
CL
977 if (list_empty(&mm->mmlist)) {
978 spin_lock(&mmlist_lock);
979 if (list_empty(&mm->mmlist))
980 list_add(&mm->mmlist, &init_mm.mmlist);
981 spin_unlock(&mmlist_lock);
982 }
d559db08 983 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 984 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 985 } else if (PAGE_MIGRATION) {
0697212a
CL
986 /*
987 * Store the pfn of the page in a special migration
988 * pte. do_swap_page() will wait until the migration
989 * pte is removed and then restart fault handling.
990 */
14fa31b8 991 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 992 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
993 }
994 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
995 BUG_ON(pte_file(*pte));
14fa31b8 996 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
997 /* Establish migration entry for a file page */
998 swp_entry_t entry;
999 entry = make_migration_entry(page, pte_write(pteval));
1000 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1001 } else
d559db08 1002 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1003
edc315fd 1004 page_remove_rmap(page);
1da177e4
LT
1005 page_cache_release(page);
1006
1007out_unmap:
c0718806 1008 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1009out:
1010 return ret;
53f79acb 1011
caed0f48
KM
1012out_mlock:
1013 pte_unmap_unlock(pte, ptl);
1014
1015
1016 /*
1017 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1018 * unstable result and race. Plus, We can't wait here because
1019 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1020 * if trylock failed, the page remain in evictable lru and later
1021 * vmscan could retry to move the page to unevictable lru if the
1022 * page is actually mlocked.
1023 */
1024 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1025 if (vma->vm_flags & VM_LOCKED) {
1026 mlock_vma_page(page);
1027 ret = SWAP_MLOCK;
53f79acb 1028 }
caed0f48 1029 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1030 }
1da177e4
LT
1031 return ret;
1032}
1033
1034/*
1035 * objrmap doesn't work for nonlinear VMAs because the assumption that
1036 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1037 * Consequently, given a particular page and its ->index, we cannot locate the
1038 * ptes which are mapping that page without an exhaustive linear search.
1039 *
1040 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1041 * maps the file to which the target page belongs. The ->vm_private_data field
1042 * holds the current cursor into that scan. Successive searches will circulate
1043 * around the vma's virtual address space.
1044 *
1045 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1046 * more scanning pressure is placed against them as well. Eventually pages
1047 * will become fully unmapped and are eligible for eviction.
1048 *
1049 * For very sparsely populated VMAs this is a little inefficient - chances are
1050 * there there won't be many ptes located within the scan cluster. In this case
1051 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1052 *
1053 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1054 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1055 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1056 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1057 */
1058#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1059#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1060
b291f000
NP
1061static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1062 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1063{
1064 struct mm_struct *mm = vma->vm_mm;
1065 pgd_t *pgd;
1066 pud_t *pud;
1067 pmd_t *pmd;
c0718806 1068 pte_t *pte;
1da177e4 1069 pte_t pteval;
c0718806 1070 spinlock_t *ptl;
1da177e4
LT
1071 struct page *page;
1072 unsigned long address;
1073 unsigned long end;
b291f000
NP
1074 int ret = SWAP_AGAIN;
1075 int locked_vma = 0;
1da177e4 1076
1da177e4
LT
1077 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1078 end = address + CLUSTER_SIZE;
1079 if (address < vma->vm_start)
1080 address = vma->vm_start;
1081 if (end > vma->vm_end)
1082 end = vma->vm_end;
1083
1084 pgd = pgd_offset(mm, address);
1085 if (!pgd_present(*pgd))
b291f000 1086 return ret;
1da177e4
LT
1087
1088 pud = pud_offset(pgd, address);
1089 if (!pud_present(*pud))
b291f000 1090 return ret;
1da177e4
LT
1091
1092 pmd = pmd_offset(pud, address);
1093 if (!pmd_present(*pmd))
b291f000
NP
1094 return ret;
1095
1096 /*
af8e3354 1097 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1098 * keep the sem while scanning the cluster for mlocking pages.
1099 */
af8e3354 1100 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1101 locked_vma = (vma->vm_flags & VM_LOCKED);
1102 if (!locked_vma)
1103 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1104 }
c0718806
HD
1105
1106 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1107
365e9c87
HD
1108 /* Update high watermark before we lower rss */
1109 update_hiwater_rss(mm);
1110
c0718806 1111 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1112 if (!pte_present(*pte))
1113 continue;
6aab341e
LT
1114 page = vm_normal_page(vma, address, *pte);
1115 BUG_ON(!page || PageAnon(page));
1da177e4 1116
b291f000
NP
1117 if (locked_vma) {
1118 mlock_vma_page(page); /* no-op if already mlocked */
1119 if (page == check_page)
1120 ret = SWAP_MLOCK;
1121 continue; /* don't unmap */
1122 }
1123
cddb8a5c 1124 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1125 continue;
1126
1127 /* Nuke the page table entry. */
eca35133 1128 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1129 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1130
1131 /* If nonlinear, store the file page offset in the pte. */
1132 if (page->index != linear_page_index(vma, address))
1133 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1134
1135 /* Move the dirty bit to the physical page now the pte is gone. */
1136 if (pte_dirty(pteval))
1137 set_page_dirty(page);
1138
edc315fd 1139 page_remove_rmap(page);
1da177e4 1140 page_cache_release(page);
d559db08 1141 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1142 (*mapcount)--;
1143 }
c0718806 1144 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1145 if (locked_vma)
1146 up_read(&vma->vm_mm->mmap_sem);
1147 return ret;
1da177e4
LT
1148}
1149
a8bef8ff
MG
1150static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1151{
1152 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1153
1154 if (!maybe_stack)
1155 return false;
1156
1157 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1158 VM_STACK_INCOMPLETE_SETUP)
1159 return true;
1160
1161 return false;
1162}
1163
b291f000
NP
1164/**
1165 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1166 * rmap method
1167 * @page: the page to unmap/unlock
8051be5e 1168 * @flags: action and flags
b291f000
NP
1169 *
1170 * Find all the mappings of a page using the mapping pointer and the vma chains
1171 * contained in the anon_vma struct it points to.
1172 *
1173 * This function is only called from try_to_unmap/try_to_munlock for
1174 * anonymous pages.
1175 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1176 * where the page was found will be held for write. So, we won't recheck
1177 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1178 * 'LOCKED.
1179 */
14fa31b8 1180static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1181{
1182 struct anon_vma *anon_vma;
5beb4930 1183 struct anon_vma_chain *avc;
1da177e4 1184 int ret = SWAP_AGAIN;
b291f000 1185
1da177e4
LT
1186 anon_vma = page_lock_anon_vma(page);
1187 if (!anon_vma)
1188 return ret;
1189
5beb4930
RR
1190 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1191 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1192 unsigned long address;
1193
1194 /*
1195 * During exec, a temporary VMA is setup and later moved.
1196 * The VMA is moved under the anon_vma lock but not the
1197 * page tables leading to a race where migration cannot
1198 * find the migration ptes. Rather than increasing the
1199 * locking requirements of exec(), migration skips
1200 * temporary VMAs until after exec() completes.
1201 */
1202 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1203 is_vma_temporary_stack(vma))
1204 continue;
1205
1206 address = vma_address(page, vma);
1cb1729b
HD
1207 if (address == -EFAULT)
1208 continue;
1209 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1210 if (ret != SWAP_AGAIN || !page_mapped(page))
1211 break;
1da177e4 1212 }
34bbd704
ON
1213
1214 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1215 return ret;
1216}
1217
1218/**
b291f000
NP
1219 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1220 * @page: the page to unmap/unlock
14fa31b8 1221 * @flags: action and flags
1da177e4
LT
1222 *
1223 * Find all the mappings of a page using the mapping pointer and the vma chains
1224 * contained in the address_space struct it points to.
1225 *
b291f000
NP
1226 * This function is only called from try_to_unmap/try_to_munlock for
1227 * object-based pages.
1228 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1229 * where the page was found will be held for write. So, we won't recheck
1230 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1231 * 'LOCKED.
1da177e4 1232 */
14fa31b8 1233static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1234{
1235 struct address_space *mapping = page->mapping;
1236 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1237 struct vm_area_struct *vma;
1238 struct prio_tree_iter iter;
1239 int ret = SWAP_AGAIN;
1240 unsigned long cursor;
1241 unsigned long max_nl_cursor = 0;
1242 unsigned long max_nl_size = 0;
1243 unsigned int mapcount;
1244
1245 spin_lock(&mapping->i_mmap_lock);
1246 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1247 unsigned long address = vma_address(page, vma);
1248 if (address == -EFAULT)
1249 continue;
1250 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1251 if (ret != SWAP_AGAIN || !page_mapped(page))
1252 goto out;
1da177e4
LT
1253 }
1254
1255 if (list_empty(&mapping->i_mmap_nonlinear))
1256 goto out;
1257
53f79acb
HD
1258 /*
1259 * We don't bother to try to find the munlocked page in nonlinears.
1260 * It's costly. Instead, later, page reclaim logic may call
1261 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1262 */
1263 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1264 goto out;
1265
1da177e4
LT
1266 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1267 shared.vm_set.list) {
1da177e4
LT
1268 cursor = (unsigned long) vma->vm_private_data;
1269 if (cursor > max_nl_cursor)
1270 max_nl_cursor = cursor;
1271 cursor = vma->vm_end - vma->vm_start;
1272 if (cursor > max_nl_size)
1273 max_nl_size = cursor;
1274 }
1275
b291f000 1276 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1277 ret = SWAP_FAIL;
1278 goto out;
1279 }
1280
1281 /*
1282 * We don't try to search for this page in the nonlinear vmas,
1283 * and page_referenced wouldn't have found it anyway. Instead
1284 * just walk the nonlinear vmas trying to age and unmap some.
1285 * The mapcount of the page we came in with is irrelevant,
1286 * but even so use it as a guide to how hard we should try?
1287 */
1288 mapcount = page_mapcount(page);
1289 if (!mapcount)
1290 goto out;
1291 cond_resched_lock(&mapping->i_mmap_lock);
1292
1293 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1294 if (max_nl_cursor == 0)
1295 max_nl_cursor = CLUSTER_SIZE;
1296
1297 do {
1298 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1299 shared.vm_set.list) {
1da177e4 1300 cursor = (unsigned long) vma->vm_private_data;
839b9685 1301 while ( cursor < max_nl_cursor &&
1da177e4 1302 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1303 if (try_to_unmap_cluster(cursor, &mapcount,
1304 vma, page) == SWAP_MLOCK)
1305 ret = SWAP_MLOCK;
1da177e4
LT
1306 cursor += CLUSTER_SIZE;
1307 vma->vm_private_data = (void *) cursor;
1308 if ((int)mapcount <= 0)
1309 goto out;
1310 }
1311 vma->vm_private_data = (void *) max_nl_cursor;
1312 }
1313 cond_resched_lock(&mapping->i_mmap_lock);
1314 max_nl_cursor += CLUSTER_SIZE;
1315 } while (max_nl_cursor <= max_nl_size);
1316
1317 /*
1318 * Don't loop forever (perhaps all the remaining pages are
1319 * in locked vmas). Reset cursor on all unreserved nonlinear
1320 * vmas, now forgetting on which ones it had fallen behind.
1321 */
101d2be7
HD
1322 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1323 vma->vm_private_data = NULL;
1da177e4
LT
1324out:
1325 spin_unlock(&mapping->i_mmap_lock);
1326 return ret;
1327}
1328
1329/**
1330 * try_to_unmap - try to remove all page table mappings to a page
1331 * @page: the page to get unmapped
14fa31b8 1332 * @flags: action and flags
1da177e4
LT
1333 *
1334 * Tries to remove all the page table entries which are mapping this
1335 * page, used in the pageout path. Caller must hold the page lock.
1336 * Return values are:
1337 *
1338 * SWAP_SUCCESS - we succeeded in removing all mappings
1339 * SWAP_AGAIN - we missed a mapping, try again later
1340 * SWAP_FAIL - the page is unswappable
b291f000 1341 * SWAP_MLOCK - page is mlocked.
1da177e4 1342 */
14fa31b8 1343int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1344{
1345 int ret;
1346
1da177e4
LT
1347 BUG_ON(!PageLocked(page));
1348
5ad64688
HD
1349 if (unlikely(PageKsm(page)))
1350 ret = try_to_unmap_ksm(page, flags);
1351 else if (PageAnon(page))
14fa31b8 1352 ret = try_to_unmap_anon(page, flags);
1da177e4 1353 else
14fa31b8 1354 ret = try_to_unmap_file(page, flags);
b291f000 1355 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1356 ret = SWAP_SUCCESS;
1357 return ret;
1358}
81b4082d 1359
b291f000
NP
1360/**
1361 * try_to_munlock - try to munlock a page
1362 * @page: the page to be munlocked
1363 *
1364 * Called from munlock code. Checks all of the VMAs mapping the page
1365 * to make sure nobody else has this page mlocked. The page will be
1366 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1367 *
1368 * Return values are:
1369 *
53f79acb 1370 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1371 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1372 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1373 * SWAP_MLOCK - page is now mlocked.
1374 */
1375int try_to_munlock(struct page *page)
1376{
1377 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1378
5ad64688
HD
1379 if (unlikely(PageKsm(page)))
1380 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1381 else if (PageAnon(page))
14fa31b8 1382 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1383 else
14fa31b8 1384 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1385}
e9995ef9
HD
1386
1387#ifdef CONFIG_MIGRATION
1388/*
1389 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1390 * Called by migrate.c to remove migration ptes, but might be used more later.
1391 */
1392static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1393 struct vm_area_struct *, unsigned long, void *), void *arg)
1394{
1395 struct anon_vma *anon_vma;
5beb4930 1396 struct anon_vma_chain *avc;
e9995ef9
HD
1397 int ret = SWAP_AGAIN;
1398
1399 /*
1400 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1401 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1402 * are holding mmap_sem. Users without mmap_sem are required to
1403 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1404 */
1405 anon_vma = page_anon_vma(page);
1406 if (!anon_vma)
1407 return ret;
1408 spin_lock(&anon_vma->lock);
5beb4930
RR
1409 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1410 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1411 unsigned long address = vma_address(page, vma);
1412 if (address == -EFAULT)
1413 continue;
1414 ret = rmap_one(page, vma, address, arg);
1415 if (ret != SWAP_AGAIN)
1416 break;
1417 }
1418 spin_unlock(&anon_vma->lock);
1419 return ret;
1420}
1421
1422static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1423 struct vm_area_struct *, unsigned long, void *), void *arg)
1424{
1425 struct address_space *mapping = page->mapping;
1426 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1427 struct vm_area_struct *vma;
1428 struct prio_tree_iter iter;
1429 int ret = SWAP_AGAIN;
1430
1431 if (!mapping)
1432 return ret;
1433 spin_lock(&mapping->i_mmap_lock);
1434 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1435 unsigned long address = vma_address(page, vma);
1436 if (address == -EFAULT)
1437 continue;
1438 ret = rmap_one(page, vma, address, arg);
1439 if (ret != SWAP_AGAIN)
1440 break;
1441 }
1442 /*
1443 * No nonlinear handling: being always shared, nonlinear vmas
1444 * never contain migration ptes. Decide what to do about this
1445 * limitation to linear when we need rmap_walk() on nonlinear.
1446 */
1447 spin_unlock(&mapping->i_mmap_lock);
1448 return ret;
1449}
1450
1451int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1452 struct vm_area_struct *, unsigned long, void *), void *arg)
1453{
1454 VM_BUG_ON(!PageLocked(page));
1455
1456 if (unlikely(PageKsm(page)))
1457 return rmap_walk_ksm(page, rmap_one, arg);
1458 else if (PageAnon(page))
1459 return rmap_walk_anon(page, rmap_one, arg);
1460 else
1461 return rmap_walk_file(page, rmap_one, arg);
1462}
1463#endif /* CONFIG_MIGRATION */
0fe6e20b
NH
1464
1465#ifdef CONFIG_HUGETLBFS
1466/*
1467 * The following three functions are for anonymous (private mapped) hugepages.
1468 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1469 * and no lru code, because we handle hugepages differently from common pages.
1470 */
1471static void __hugepage_set_anon_rmap(struct page *page,
1472 struct vm_area_struct *vma, unsigned long address, int exclusive)
1473{
1474 struct anon_vma *anon_vma = vma->anon_vma;
1475 BUG_ON(!anon_vma);
1476 if (!exclusive) {
1477 struct anon_vma_chain *avc;
1478 avc = list_entry(vma->anon_vma_chain.prev,
1479 struct anon_vma_chain, same_vma);
1480 anon_vma = avc->anon_vma;
1481 }
1482 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1483 page->mapping = (struct address_space *) anon_vma;
1484 page->index = linear_page_index(vma, address);
1485}
1486
1487void hugepage_add_anon_rmap(struct page *page,
1488 struct vm_area_struct *vma, unsigned long address)
1489{
1490 struct anon_vma *anon_vma = vma->anon_vma;
1491 int first;
1492 BUG_ON(!anon_vma);
1493 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1494 first = atomic_inc_and_test(&page->_mapcount);
1495 if (first)
1496 __hugepage_set_anon_rmap(page, vma, address, 0);
1497}
1498
1499void hugepage_add_new_anon_rmap(struct page *page,
1500 struct vm_area_struct *vma, unsigned long address)
1501{
1502 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1503 atomic_set(&page->_mapcount, 0);
1504 __hugepage_set_anon_rmap(page, vma, address, 1);
1505}
1506#endif /* CONFIG_HUGETLBFS */
This page took 0.683662 seconds and 5 git commands to generate.