tmpfs: simplify filepage/swappage
[deliverable/linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
0edd73b3
HD
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
853ac43a
MM
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
1da177e4
LT
20 * This file is released under the GPL.
21 */
22
853ac43a
MM
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
caefba17 27#include <linux/pagemap.h>
853ac43a
MM
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
7e496299 31#include <linux/percpu_counter.h>
853ac43a
MM
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
1da177e4
LT
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
39f0247d 43#include <linux/xattr.h>
a5694255 44#include <linux/exportfs.h>
1c7c474c 45#include <linux/posix_acl.h>
39f0247d 46#include <linux/generic_acl.h>
1da177e4 47#include <linux/mman.h>
1da177e4
LT
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
1da177e4 52#include <linux/writeback.h>
1da177e4 53#include <linux/blkdev.h>
708e3508 54#include <linux/splice.h>
1da177e4
LT
55#include <linux/security.h>
56#include <linux/swapops.h>
57#include <linux/mempolicy.h>
58#include <linux/namei.h>
b00dc3ad 59#include <linux/ctype.h>
304dbdb7 60#include <linux/migrate.h>
c1f60a5a 61#include <linux/highmem.h>
680d794b 62#include <linux/seq_file.h>
92562927 63#include <linux/magic.h>
304dbdb7 64
1da177e4
LT
65#include <asm/uaccess.h>
66#include <asm/div64.h>
67#include <asm/pgtable.h>
68
caefba17
HD
69/*
70 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
71 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
72 *
73 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
74 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
75 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
76 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
77 *
78 * We use / and * instead of shifts in the definitions below, so that the swap
79 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
80 */
1da177e4 81#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61609d01 82#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
1da177e4 83
caefba17
HD
84#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
85#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
1da177e4 86
caefba17
HD
87#define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
88#define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
89
90#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
91#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
92
93/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
94#define SHMEM_PAGEIN VM_READ
95#define SHMEM_TRUNCATE VM_WRITE
96
97/* Definition to limit shmem_truncate's steps between cond_rescheds */
98#define LATENCY_LIMIT 64
99
100/* Pretend that each entry is of this size in directory's i_size */
101#define BOGO_DIRENT_SIZE 20
102
b09e0fa4
EP
103struct shmem_xattr {
104 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
105 char *name; /* xattr name */
106 size_t size;
107 char value[0];
108};
109
1da177e4
LT
110/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
111enum sgp_type {
1da177e4
LT
112 SGP_READ, /* don't exceed i_size, don't allocate page */
113 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 114 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1da177e4
LT
115 SGP_WRITE, /* may exceed i_size, may allocate page */
116};
117
b76db735 118#ifdef CONFIG_TMPFS
680d794b 119static unsigned long shmem_default_max_blocks(void)
120{
121 return totalram_pages / 2;
122}
123
124static unsigned long shmem_default_max_inodes(void)
125{
126 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
127}
b76db735 128#endif
680d794b 129
68da9f05
HD
130static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
131 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
132
133static inline int shmem_getpage(struct inode *inode, pgoff_t index,
134 struct page **pagep, enum sgp_type sgp, int *fault_type)
135{
136 return shmem_getpage_gfp(inode, index, pagep, sgp,
137 mapping_gfp_mask(inode->i_mapping), fault_type);
138}
1da177e4 139
6daa0e28 140static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
1da177e4
LT
141{
142 /*
143 * The above definition of ENTRIES_PER_PAGE, and the use of
144 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
145 * might be reconsidered if it ever diverges from PAGE_SIZE.
769848c0 146 *
e12ba74d 147 * Mobility flags are masked out as swap vectors cannot move
1da177e4 148 */
e12ba74d 149 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
769848c0 150 PAGE_CACHE_SHIFT-PAGE_SHIFT);
1da177e4
LT
151}
152
153static inline void shmem_dir_free(struct page *page)
154{
155 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
156}
157
158static struct page **shmem_dir_map(struct page *page)
159{
160 return (struct page **)kmap_atomic(page, KM_USER0);
161}
162
163static inline void shmem_dir_unmap(struct page **dir)
164{
165 kunmap_atomic(dir, KM_USER0);
166}
167
168static swp_entry_t *shmem_swp_map(struct page *page)
169{
170 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
171}
172
173static inline void shmem_swp_balance_unmap(void)
174{
175 /*
176 * When passing a pointer to an i_direct entry, to code which
177 * also handles indirect entries and so will shmem_swp_unmap,
178 * we must arrange for the preempt count to remain in balance.
179 * What kmap_atomic of a lowmem page does depends on config
180 * and architecture, so pretend to kmap_atomic some lowmem page.
181 */
182 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
183}
184
185static inline void shmem_swp_unmap(swp_entry_t *entry)
186{
187 kunmap_atomic(entry, KM_USER1);
188}
189
190static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
191{
192 return sb->s_fs_info;
193}
194
195/*
196 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
197 * for shared memory and for shared anonymous (/dev/zero) mappings
198 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
199 * consistent with the pre-accounting of private mappings ...
200 */
201static inline int shmem_acct_size(unsigned long flags, loff_t size)
202{
0b0a0806
HD
203 return (flags & VM_NORESERVE) ?
204 0 : security_vm_enough_memory_kern(VM_ACCT(size));
1da177e4
LT
205}
206
207static inline void shmem_unacct_size(unsigned long flags, loff_t size)
208{
0b0a0806 209 if (!(flags & VM_NORESERVE))
1da177e4
LT
210 vm_unacct_memory(VM_ACCT(size));
211}
212
213/*
214 * ... whereas tmpfs objects are accounted incrementally as
215 * pages are allocated, in order to allow huge sparse files.
216 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
217 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
218 */
219static inline int shmem_acct_block(unsigned long flags)
220{
0b0a0806
HD
221 return (flags & VM_NORESERVE) ?
222 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
223}
224
225static inline void shmem_unacct_blocks(unsigned long flags, long pages)
226{
0b0a0806 227 if (flags & VM_NORESERVE)
1da177e4
LT
228 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
229}
230
759b9775 231static const struct super_operations shmem_ops;
f5e54d6e 232static const struct address_space_operations shmem_aops;
15ad7cdc 233static const struct file_operations shmem_file_operations;
92e1d5be
AV
234static const struct inode_operations shmem_inode_operations;
235static const struct inode_operations shmem_dir_inode_operations;
236static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 237static const struct vm_operations_struct shmem_vm_ops;
1da177e4 238
6c231b7b 239static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 240 .ra_pages = 0, /* No readahead */
4f98a2fe 241 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
242};
243
244static LIST_HEAD(shmem_swaplist);
cb5f7b9a 245static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4
LT
246
247static void shmem_free_blocks(struct inode *inode, long pages)
248{
249 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 250 if (sbinfo->max_blocks) {
7e496299 251 percpu_counter_add(&sbinfo->used_blocks, -pages);
1da177e4 252 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
1da177e4
LT
253 }
254}
255
5b04c689
PE
256static int shmem_reserve_inode(struct super_block *sb)
257{
258 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
259 if (sbinfo->max_inodes) {
260 spin_lock(&sbinfo->stat_lock);
261 if (!sbinfo->free_inodes) {
262 spin_unlock(&sbinfo->stat_lock);
263 return -ENOSPC;
264 }
265 sbinfo->free_inodes--;
266 spin_unlock(&sbinfo->stat_lock);
267 }
268 return 0;
269}
270
271static void shmem_free_inode(struct super_block *sb)
272{
273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274 if (sbinfo->max_inodes) {
275 spin_lock(&sbinfo->stat_lock);
276 sbinfo->free_inodes++;
277 spin_unlock(&sbinfo->stat_lock);
278 }
279}
280
46711810 281/**
1da177e4 282 * shmem_recalc_inode - recalculate the size of an inode
1da177e4
LT
283 * @inode: inode to recalc
284 *
285 * We have to calculate the free blocks since the mm can drop
286 * undirtied hole pages behind our back.
287 *
288 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
289 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
290 *
291 * It has to be called with the spinlock held.
292 */
293static void shmem_recalc_inode(struct inode *inode)
294{
295 struct shmem_inode_info *info = SHMEM_I(inode);
296 long freed;
297
298 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
299 if (freed > 0) {
300 info->alloced -= freed;
301 shmem_unacct_blocks(info->flags, freed);
302 shmem_free_blocks(inode, freed);
303 }
304}
305
46711810 306/**
1da177e4 307 * shmem_swp_entry - find the swap vector position in the info structure
1da177e4
LT
308 * @info: info structure for the inode
309 * @index: index of the page to find
310 * @page: optional page to add to the structure. Has to be preset to
311 * all zeros
312 *
313 * If there is no space allocated yet it will return NULL when
314 * page is NULL, else it will use the page for the needed block,
315 * setting it to NULL on return to indicate that it has been used.
316 *
317 * The swap vector is organized the following way:
318 *
319 * There are SHMEM_NR_DIRECT entries directly stored in the
320 * shmem_inode_info structure. So small files do not need an addional
321 * allocation.
322 *
323 * For pages with index > SHMEM_NR_DIRECT there is the pointer
324 * i_indirect which points to a page which holds in the first half
325 * doubly indirect blocks, in the second half triple indirect blocks:
326 *
327 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
328 * following layout (for SHMEM_NR_DIRECT == 16):
329 *
330 * i_indirect -> dir --> 16-19
331 * | +-> 20-23
332 * |
333 * +-->dir2 --> 24-27
334 * | +-> 28-31
335 * | +-> 32-35
336 * | +-> 36-39
337 * |
338 * +-->dir3 --> 40-43
339 * +-> 44-47
340 * +-> 48-51
341 * +-> 52-55
342 */
343static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
344{
345 unsigned long offset;
346 struct page **dir;
347 struct page *subdir;
348
349 if (index < SHMEM_NR_DIRECT) {
350 shmem_swp_balance_unmap();
351 return info->i_direct+index;
352 }
353 if (!info->i_indirect) {
354 if (page) {
355 info->i_indirect = *page;
356 *page = NULL;
357 }
358 return NULL; /* need another page */
359 }
360
361 index -= SHMEM_NR_DIRECT;
362 offset = index % ENTRIES_PER_PAGE;
363 index /= ENTRIES_PER_PAGE;
364 dir = shmem_dir_map(info->i_indirect);
365
366 if (index >= ENTRIES_PER_PAGE/2) {
367 index -= ENTRIES_PER_PAGE/2;
368 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
369 index %= ENTRIES_PER_PAGE;
370 subdir = *dir;
371 if (!subdir) {
372 if (page) {
373 *dir = *page;
374 *page = NULL;
375 }
376 shmem_dir_unmap(dir);
377 return NULL; /* need another page */
378 }
379 shmem_dir_unmap(dir);
380 dir = shmem_dir_map(subdir);
381 }
382
383 dir += index;
384 subdir = *dir;
385 if (!subdir) {
386 if (!page || !(subdir = *page)) {
387 shmem_dir_unmap(dir);
388 return NULL; /* need a page */
389 }
390 *dir = subdir;
391 *page = NULL;
392 }
393 shmem_dir_unmap(dir);
394 return shmem_swp_map(subdir) + offset;
395}
396
397static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
398{
399 long incdec = value? 1: -1;
400
401 entry->val = value;
402 info->swapped += incdec;
4c21e2f2
HD
403 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
404 struct page *page = kmap_atomic_to_page(entry);
405 set_page_private(page, page_private(page) + incdec);
406 }
1da177e4
LT
407}
408
46711810 409/**
1da177e4 410 * shmem_swp_alloc - get the position of the swap entry for the page.
1da177e4
LT
411 * @info: info structure for the inode
412 * @index: index of the page to find
413 * @sgp: check and recheck i_size? skip allocation?
68da9f05 414 * @gfp: gfp mask to use for any page allocation
46711810
RD
415 *
416 * If the entry does not exist, allocate it.
1da177e4 417 */
68da9f05
HD
418static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info,
419 unsigned long index, enum sgp_type sgp, gfp_t gfp)
1da177e4
LT
420{
421 struct inode *inode = &info->vfs_inode;
422 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
423 struct page *page = NULL;
424 swp_entry_t *entry;
425
426 if (sgp != SGP_WRITE &&
427 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
428 return ERR_PTR(-EINVAL);
429
430 while (!(entry = shmem_swp_entry(info, index, &page))) {
431 if (sgp == SGP_READ)
432 return shmem_swp_map(ZERO_PAGE(0));
433 /*
7e496299 434 * Test used_blocks against 1 less max_blocks, since we have 1 data
1da177e4
LT
435 * page (and perhaps indirect index pages) yet to allocate:
436 * a waste to allocate index if we cannot allocate data.
437 */
0edd73b3 438 if (sbinfo->max_blocks) {
fc5da22a
HD
439 if (percpu_counter_compare(&sbinfo->used_blocks,
440 sbinfo->max_blocks - 1) >= 0)
1da177e4 441 return ERR_PTR(-ENOSPC);
7e496299 442 percpu_counter_inc(&sbinfo->used_blocks);
1da177e4 443 inode->i_blocks += BLOCKS_PER_PAGE;
1da177e4
LT
444 }
445
446 spin_unlock(&info->lock);
68da9f05 447 page = shmem_dir_alloc(gfp);
1da177e4
LT
448 spin_lock(&info->lock);
449
450 if (!page) {
451 shmem_free_blocks(inode, 1);
452 return ERR_PTR(-ENOMEM);
453 }
454 if (sgp != SGP_WRITE &&
455 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
456 entry = ERR_PTR(-EINVAL);
457 break;
458 }
459 if (info->next_index <= index)
460 info->next_index = index + 1;
461 }
462 if (page) {
463 /* another task gave its page, or truncated the file */
464 shmem_free_blocks(inode, 1);
465 shmem_dir_free(page);
466 }
467 if (info->next_index <= index && !IS_ERR(entry))
468 info->next_index = index + 1;
469 return entry;
470}
471
46711810 472/**
1da177e4 473 * shmem_free_swp - free some swap entries in a directory
1ae70006
HD
474 * @dir: pointer to the directory
475 * @edir: pointer after last entry of the directory
476 * @punch_lock: pointer to spinlock when needed for the holepunch case
1da177e4 477 */
1ae70006
HD
478static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
479 spinlock_t *punch_lock)
1da177e4 480{
1ae70006 481 spinlock_t *punch_unlock = NULL;
1da177e4
LT
482 swp_entry_t *ptr;
483 int freed = 0;
484
485 for (ptr = dir; ptr < edir; ptr++) {
486 if (ptr->val) {
1ae70006
HD
487 if (unlikely(punch_lock)) {
488 punch_unlock = punch_lock;
489 punch_lock = NULL;
490 spin_lock(punch_unlock);
491 if (!ptr->val)
492 continue;
493 }
1da177e4
LT
494 free_swap_and_cache(*ptr);
495 *ptr = (swp_entry_t){0};
496 freed++;
497 }
498 }
1ae70006
HD
499 if (punch_unlock)
500 spin_unlock(punch_unlock);
1da177e4
LT
501 return freed;
502}
503
1ae70006
HD
504static int shmem_map_and_free_swp(struct page *subdir, int offset,
505 int limit, struct page ***dir, spinlock_t *punch_lock)
1da177e4
LT
506{
507 swp_entry_t *ptr;
508 int freed = 0;
509
510 ptr = shmem_swp_map(subdir);
511 for (; offset < limit; offset += LATENCY_LIMIT) {
512 int size = limit - offset;
513 if (size > LATENCY_LIMIT)
514 size = LATENCY_LIMIT;
1ae70006
HD
515 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
516 punch_lock);
1da177e4
LT
517 if (need_resched()) {
518 shmem_swp_unmap(ptr);
519 if (*dir) {
520 shmem_dir_unmap(*dir);
521 *dir = NULL;
522 }
523 cond_resched();
524 ptr = shmem_swp_map(subdir);
525 }
526 }
527 shmem_swp_unmap(ptr);
528 return freed;
529}
530
531static void shmem_free_pages(struct list_head *next)
532{
533 struct page *page;
534 int freed = 0;
535
536 do {
537 page = container_of(next, struct page, lru);
538 next = next->next;
539 shmem_dir_free(page);
540 freed++;
541 if (freed >= LATENCY_LIMIT) {
542 cond_resched();
543 freed = 0;
544 }
545 } while (next);
546}
547
94c1e62d 548void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
1da177e4
LT
549{
550 struct shmem_inode_info *info = SHMEM_I(inode);
551 unsigned long idx;
552 unsigned long size;
553 unsigned long limit;
554 unsigned long stage;
555 unsigned long diroff;
556 struct page **dir;
557 struct page *topdir;
558 struct page *middir;
559 struct page *subdir;
560 swp_entry_t *ptr;
561 LIST_HEAD(pages_to_free);
562 long nr_pages_to_free = 0;
563 long nr_swaps_freed = 0;
564 int offset;
565 int freed;
a2646d1e 566 int punch_hole;
1ae70006
HD
567 spinlock_t *needs_lock;
568 spinlock_t *punch_lock;
a2646d1e 569 unsigned long upper_limit;
1da177e4 570
94c1e62d
HD
571 truncate_inode_pages_range(inode->i_mapping, start, end);
572
1da177e4 573 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
f6b3ec23 574 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
575 if (idx >= info->next_index)
576 return;
577
578 spin_lock(&info->lock);
579 info->flags |= SHMEM_TRUNCATE;
f6b3ec23
BP
580 if (likely(end == (loff_t) -1)) {
581 limit = info->next_index;
a2646d1e 582 upper_limit = SHMEM_MAX_INDEX;
f6b3ec23 583 info->next_index = idx;
1ae70006 584 needs_lock = NULL;
a2646d1e 585 punch_hole = 0;
f6b3ec23 586 } else {
a2646d1e
HD
587 if (end + 1 >= inode->i_size) { /* we may free a little more */
588 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
589 PAGE_CACHE_SHIFT;
590 upper_limit = SHMEM_MAX_INDEX;
591 } else {
592 limit = (end + 1) >> PAGE_CACHE_SHIFT;
593 upper_limit = limit;
594 }
1ae70006 595 needs_lock = &info->lock;
f6b3ec23
BP
596 punch_hole = 1;
597 }
598
1da177e4 599 topdir = info->i_indirect;
f6b3ec23 600 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
1da177e4
LT
601 info->i_indirect = NULL;
602 nr_pages_to_free++;
603 list_add(&topdir->lru, &pages_to_free);
604 }
605 spin_unlock(&info->lock);
606
607 if (info->swapped && idx < SHMEM_NR_DIRECT) {
608 ptr = info->i_direct;
609 size = limit;
610 if (size > SHMEM_NR_DIRECT)
611 size = SHMEM_NR_DIRECT;
1ae70006 612 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
1da177e4 613 }
92a3d03a
BP
614
615 /*
616 * If there are no indirect blocks or we are punching a hole
617 * below indirect blocks, nothing to be done.
618 */
a2646d1e 619 if (!topdir || limit <= SHMEM_NR_DIRECT)
1da177e4
LT
620 goto done2;
621
1ae70006
HD
622 /*
623 * The truncation case has already dropped info->lock, and we're safe
624 * because i_size and next_index have already been lowered, preventing
625 * access beyond. But in the punch_hole case, we still need to take
626 * the lock when updating the swap directory, because there might be
627 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
628 * shmem_writepage. However, whenever we find we can remove a whole
629 * directory page (not at the misaligned start or end of the range),
630 * we first NULLify its pointer in the level above, and then have no
631 * need to take the lock when updating its contents: needs_lock and
632 * punch_lock (either pointing to info->lock or NULL) manage this.
633 */
634
a2646d1e 635 upper_limit -= SHMEM_NR_DIRECT;
1da177e4
LT
636 limit -= SHMEM_NR_DIRECT;
637 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
638 offset = idx % ENTRIES_PER_PAGE;
639 idx -= offset;
640
641 dir = shmem_dir_map(topdir);
642 stage = ENTRIES_PER_PAGEPAGE/2;
643 if (idx < ENTRIES_PER_PAGEPAGE/2) {
644 middir = topdir;
645 diroff = idx/ENTRIES_PER_PAGE;
646 } else {
647 dir += ENTRIES_PER_PAGE/2;
648 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
649 while (stage <= idx)
650 stage += ENTRIES_PER_PAGEPAGE;
651 middir = *dir;
652 if (*dir) {
653 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
654 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
a2646d1e 655 if (!diroff && !offset && upper_limit >= stage) {
1ae70006
HD
656 if (needs_lock) {
657 spin_lock(needs_lock);
658 *dir = NULL;
659 spin_unlock(needs_lock);
660 needs_lock = NULL;
661 } else
662 *dir = NULL;
1da177e4
LT
663 nr_pages_to_free++;
664 list_add(&middir->lru, &pages_to_free);
665 }
666 shmem_dir_unmap(dir);
667 dir = shmem_dir_map(middir);
668 } else {
669 diroff = 0;
670 offset = 0;
671 idx = stage;
672 }
673 }
674
675 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
676 if (unlikely(idx == stage)) {
677 shmem_dir_unmap(dir);
678 dir = shmem_dir_map(topdir) +
679 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
680 while (!*dir) {
681 dir++;
682 idx += ENTRIES_PER_PAGEPAGE;
683 if (idx >= limit)
684 goto done1;
685 }
686 stage = idx + ENTRIES_PER_PAGEPAGE;
687 middir = *dir;
1ae70006
HD
688 if (punch_hole)
689 needs_lock = &info->lock;
a2646d1e 690 if (upper_limit >= stage) {
1ae70006
HD
691 if (needs_lock) {
692 spin_lock(needs_lock);
693 *dir = NULL;
694 spin_unlock(needs_lock);
695 needs_lock = NULL;
696 } else
697 *dir = NULL;
a2646d1e
HD
698 nr_pages_to_free++;
699 list_add(&middir->lru, &pages_to_free);
700 }
1da177e4
LT
701 shmem_dir_unmap(dir);
702 cond_resched();
703 dir = shmem_dir_map(middir);
704 diroff = 0;
705 }
1ae70006 706 punch_lock = needs_lock;
1da177e4 707 subdir = dir[diroff];
1ae70006
HD
708 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
709 if (needs_lock) {
710 spin_lock(needs_lock);
711 dir[diroff] = NULL;
712 spin_unlock(needs_lock);
713 punch_lock = NULL;
714 } else
715 dir[diroff] = NULL;
716 nr_pages_to_free++;
717 list_add(&subdir->lru, &pages_to_free);
718 }
719 if (subdir && page_private(subdir) /* has swap entries */) {
1da177e4
LT
720 size = limit - idx;
721 if (size > ENTRIES_PER_PAGE)
722 size = ENTRIES_PER_PAGE;
723 freed = shmem_map_and_free_swp(subdir,
1ae70006 724 offset, size, &dir, punch_lock);
1da177e4
LT
725 if (!dir)
726 dir = shmem_dir_map(middir);
727 nr_swaps_freed += freed;
1ae70006 728 if (offset || punch_lock) {
1da177e4 729 spin_lock(&info->lock);
1ae70006
HD
730 set_page_private(subdir,
731 page_private(subdir) - freed);
1da177e4 732 spin_unlock(&info->lock);
1ae70006
HD
733 } else
734 BUG_ON(page_private(subdir) != freed);
1da177e4 735 }
1ae70006 736 offset = 0;
1da177e4
LT
737 }
738done1:
739 shmem_dir_unmap(dir);
740done2:
741 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
742 /*
743 * Call truncate_inode_pages again: racing shmem_unuse_inode
3889e6e7 744 * may have swizzled a page in from swap since
745 * truncate_pagecache or generic_delete_inode did it, before we
746 * lowered next_index. Also, though shmem_getpage checks
747 * i_size before adding to cache, no recheck after: so fix the
748 * narrow window there too.
1da177e4 749 */
f6b3ec23 750 truncate_inode_pages_range(inode->i_mapping, start, end);
1da177e4
LT
751 }
752
753 spin_lock(&info->lock);
754 info->flags &= ~SHMEM_TRUNCATE;
755 info->swapped -= nr_swaps_freed;
756 if (nr_pages_to_free)
757 shmem_free_blocks(inode, nr_pages_to_free);
758 shmem_recalc_inode(inode);
759 spin_unlock(&info->lock);
760
761 /*
762 * Empty swap vector directory pages to be freed?
763 */
764 if (!list_empty(&pages_to_free)) {
765 pages_to_free.prev->next = NULL;
766 shmem_free_pages(pages_to_free.next);
767 }
768}
94c1e62d 769EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 770
94c1e62d 771static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
772{
773 struct inode *inode = dentry->d_inode;
1da177e4
LT
774 int error;
775
db78b877
CH
776 error = inode_change_ok(inode, attr);
777 if (error)
778 return error;
779
94c1e62d
HD
780 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
781 loff_t oldsize = inode->i_size;
782 loff_t newsize = attr->ia_size;
3889e6e7 783 struct page *page = NULL;
784
94c1e62d 785 if (newsize < oldsize) {
1da177e4
LT
786 /*
787 * If truncating down to a partial page, then
788 * if that page is already allocated, hold it
789 * in memory until the truncation is over, so
ae0e47f0 790 * truncate_partial_page cannot miss it were
1da177e4
LT
791 * it assigned to swap.
792 */
3889e6e7 793 if (newsize & (PAGE_CACHE_SIZE-1)) {
1da177e4 794 (void) shmem_getpage(inode,
3889e6e7 795 newsize >> PAGE_CACHE_SHIFT,
1da177e4 796 &page, SGP_READ, NULL);
d3602444
HD
797 if (page)
798 unlock_page(page);
1da177e4
LT
799 }
800 /*
801 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
802 * detect if any pages might have been added to cache
803 * after truncate_inode_pages. But we needn't bother
804 * if it's being fully truncated to zero-length: the
805 * nrpages check is efficient enough in that case.
806 */
3889e6e7 807 if (newsize) {
1da177e4
LT
808 struct shmem_inode_info *info = SHMEM_I(inode);
809 spin_lock(&info->lock);
810 info->flags &= ~SHMEM_PAGEIN;
811 spin_unlock(&info->lock);
812 }
813 }
94c1e62d
HD
814 if (newsize != oldsize) {
815 i_size_write(inode, newsize);
816 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
817 }
818 if (newsize < oldsize) {
819 loff_t holebegin = round_up(newsize, PAGE_SIZE);
820 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
821 shmem_truncate_range(inode, newsize, (loff_t)-1);
822 /* unmap again to remove racily COWed private pages */
823 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
824 }
3889e6e7 825 if (page)
826 page_cache_release(page);
1da177e4
LT
827 }
828
db78b877 829 setattr_copy(inode, attr);
39f0247d 830#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 831 if (attr->ia_valid & ATTR_MODE)
1c7c474c 832 error = generic_acl_chmod(inode);
39f0247d 833#endif
1da177e4
LT
834 return error;
835}
836
1f895f75 837static void shmem_evict_inode(struct inode *inode)
1da177e4 838{
1da177e4 839 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 840 struct shmem_xattr *xattr, *nxattr;
1da177e4 841
3889e6e7 842 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
843 shmem_unacct_size(info->flags, inode->i_size);
844 inode->i_size = 0;
3889e6e7 845 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 846 if (!list_empty(&info->swaplist)) {
cb5f7b9a 847 mutex_lock(&shmem_swaplist_mutex);
1da177e4 848 list_del_init(&info->swaplist);
cb5f7b9a 849 mutex_unlock(&shmem_swaplist_mutex);
1da177e4
LT
850 }
851 }
b09e0fa4
EP
852
853 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
854 kfree(xattr->name);
855 kfree(xattr);
856 }
0edd73b3 857 BUG_ON(inode->i_blocks);
5b04c689 858 shmem_free_inode(inode->i_sb);
1f895f75 859 end_writeback(inode);
1da177e4
LT
860}
861
862static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
863{
864 swp_entry_t *ptr;
865
866 for (ptr = dir; ptr < edir; ptr++) {
867 if (ptr->val == entry.val)
868 return ptr - dir;
869 }
870 return -1;
871}
872
873static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
874{
778dd893 875 struct address_space *mapping;
1da177e4
LT
876 unsigned long idx;
877 unsigned long size;
878 unsigned long limit;
879 unsigned long stage;
880 struct page **dir;
881 struct page *subdir;
882 swp_entry_t *ptr;
883 int offset;
d9fe526a 884 int error;
1da177e4
LT
885
886 idx = 0;
887 ptr = info->i_direct;
888 spin_lock(&info->lock);
1b1b32f2
HD
889 if (!info->swapped) {
890 list_del_init(&info->swaplist);
891 goto lost2;
892 }
1da177e4
LT
893 limit = info->next_index;
894 size = limit;
895 if (size > SHMEM_NR_DIRECT)
896 size = SHMEM_NR_DIRECT;
897 offset = shmem_find_swp(entry, ptr, ptr+size);
778dd893
HD
898 if (offset >= 0) {
899 shmem_swp_balance_unmap();
1da177e4 900 goto found;
778dd893 901 }
1da177e4
LT
902 if (!info->i_indirect)
903 goto lost2;
904
905 dir = shmem_dir_map(info->i_indirect);
906 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
907
908 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
909 if (unlikely(idx == stage)) {
910 shmem_dir_unmap(dir-1);
cb5f7b9a
HD
911 if (cond_resched_lock(&info->lock)) {
912 /* check it has not been truncated */
913 if (limit > info->next_index) {
914 limit = info->next_index;
915 if (idx >= limit)
916 goto lost2;
917 }
918 }
1da177e4
LT
919 dir = shmem_dir_map(info->i_indirect) +
920 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
921 while (!*dir) {
922 dir++;
923 idx += ENTRIES_PER_PAGEPAGE;
924 if (idx >= limit)
925 goto lost1;
926 }
927 stage = idx + ENTRIES_PER_PAGEPAGE;
928 subdir = *dir;
929 shmem_dir_unmap(dir);
930 dir = shmem_dir_map(subdir);
931 }
932 subdir = *dir;
4c21e2f2 933 if (subdir && page_private(subdir)) {
1da177e4
LT
934 ptr = shmem_swp_map(subdir);
935 size = limit - idx;
936 if (size > ENTRIES_PER_PAGE)
937 size = ENTRIES_PER_PAGE;
938 offset = shmem_find_swp(entry, ptr, ptr+size);
e6c9366b 939 shmem_swp_unmap(ptr);
1da177e4
LT
940 if (offset >= 0) {
941 shmem_dir_unmap(dir);
e6c9366b 942 ptr = shmem_swp_map(subdir);
1da177e4
LT
943 goto found;
944 }
1da177e4
LT
945 }
946 }
947lost1:
948 shmem_dir_unmap(dir-1);
949lost2:
950 spin_unlock(&info->lock);
951 return 0;
952found:
953 idx += offset;
778dd893 954 ptr += offset;
2e0e26c7 955
1b1b32f2
HD
956 /*
957 * Move _head_ to start search for next from here.
1f895f75 958 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2
HD
959 * mutex, and there's an instant in list_move_tail when info->swaplist
960 * would appear empty, if it were the only one on shmem_swaplist. We
961 * could avoid doing it if inode NULL; or use this minor optimization.
962 */
963 if (shmem_swaplist.next != &info->swaplist)
964 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 965
d13d1443 966 /*
778dd893
HD
967 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
968 * but also to hold up shmem_evict_inode(): so inode cannot be freed
969 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 970 */
778dd893
HD
971 mapping = info->vfs_inode.i_mapping;
972 error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
973 /* which does mem_cgroup_uncharge_cache_page on error */
69029cd5 974
d9fe526a 975 if (error == -EEXIST) {
778dd893 976 struct page *filepage = find_get_page(mapping, idx);
2e0e26c7 977 error = 1;
d9fe526a
HD
978 if (filepage) {
979 /*
980 * There might be a more uptodate page coming down
981 * from a stacked writepage: forget our swappage if so.
982 */
983 if (PageUptodate(filepage))
984 error = 0;
985 page_cache_release(filepage);
986 }
987 }
988 if (!error) {
73b1262f
HD
989 delete_from_swap_cache(page);
990 set_page_dirty(page);
1da177e4 991 info->flags |= SHMEM_PAGEIN;
2e0e26c7
HD
992 shmem_swp_set(info, ptr, 0);
993 swap_free(entry);
994 error = 1; /* not an error, but entry was found */
1da177e4 995 }
778dd893 996 shmem_swp_unmap(ptr);
1da177e4 997 spin_unlock(&info->lock);
2e0e26c7 998 return error;
1da177e4
LT
999}
1000
1001/*
1002 * shmem_unuse() search for an eventually swapped out shmem page.
1003 */
1004int shmem_unuse(swp_entry_t entry, struct page *page)
1005{
1006 struct list_head *p, *next;
1007 struct shmem_inode_info *info;
1008 int found = 0;
778dd893
HD
1009 int error;
1010
1011 /*
1012 * Charge page using GFP_KERNEL while we can wait, before taking
1013 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1014 * Charged back to the user (not to caller) when swap account is used.
1015 * add_to_page_cache() will be called with GFP_NOWAIT.
1016 */
1017 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1018 if (error)
1019 goto out;
1020 /*
1021 * Try to preload while we can wait, to not make a habit of
1022 * draining atomic reserves; but don't latch on to this cpu,
1023 * it's okay if sometimes we get rescheduled after this.
1024 */
1025 error = radix_tree_preload(GFP_KERNEL);
1026 if (error)
1027 goto uncharge;
1028 radix_tree_preload_end();
1da177e4 1029
cb5f7b9a 1030 mutex_lock(&shmem_swaplist_mutex);
1da177e4
LT
1031 list_for_each_safe(p, next, &shmem_swaplist) {
1032 info = list_entry(p, struct shmem_inode_info, swaplist);
1b1b32f2 1033 found = shmem_unuse_inode(info, entry, page);
cb5f7b9a 1034 cond_resched();
2e0e26c7 1035 if (found)
778dd893 1036 break;
1da177e4 1037 }
cb5f7b9a 1038 mutex_unlock(&shmem_swaplist_mutex);
778dd893
HD
1039
1040uncharge:
1041 if (!found)
1042 mem_cgroup_uncharge_cache_page(page);
1043 if (found < 0)
1044 error = found;
1045out:
aaa46865
HD
1046 unlock_page(page);
1047 page_cache_release(page);
778dd893 1048 return error;
1da177e4
LT
1049}
1050
1051/*
1052 * Move the page from the page cache to the swap cache.
1053 */
1054static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1055{
1056 struct shmem_inode_info *info;
1057 swp_entry_t *entry, swap;
1058 struct address_space *mapping;
1059 unsigned long index;
1060 struct inode *inode;
1061
1062 BUG_ON(!PageLocked(page));
1da177e4
LT
1063 mapping = page->mapping;
1064 index = page->index;
1065 inode = mapping->host;
1066 info = SHMEM_I(inode);
1067 if (info->flags & VM_LOCKED)
1068 goto redirty;
d9fe526a 1069 if (!total_swap_pages)
1da177e4
LT
1070 goto redirty;
1071
d9fe526a
HD
1072 /*
1073 * shmem_backing_dev_info's capabilities prevent regular writeback or
1074 * sync from ever calling shmem_writepage; but a stacking filesystem
1075 * may use the ->writepage of its underlying filesystem, in which case
1076 * tmpfs should write out to swap only in response to memory pressure,
5b0830cb
JA
1077 * and not for the writeback threads or sync. However, in those cases,
1078 * we do still want to check if there's a redundant swappage to be
1079 * discarded.
d9fe526a
HD
1080 */
1081 if (wbc->for_reclaim)
1082 swap = get_swap_page();
1083 else
1084 swap.val = 0;
1085
b1dea800
HD
1086 /*
1087 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1088 * if it's not already there. Do it now because we cannot take
1089 * mutex while holding spinlock, and must do so before the page
1090 * is moved to swap cache, when its pagelock no longer protects
1091 * the inode from eviction. But don't unlock the mutex until
1092 * we've taken the spinlock, because shmem_unuse_inode() will
1093 * prune a !swapped inode from the swaplist under both locks.
1094 */
05bf86b4 1095 if (swap.val) {
b1dea800 1096 mutex_lock(&shmem_swaplist_mutex);
05bf86b4
HD
1097 if (list_empty(&info->swaplist))
1098 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800
HD
1099 }
1100
1da177e4 1101 spin_lock(&info->lock);
05bf86b4 1102 if (swap.val)
b1dea800
HD
1103 mutex_unlock(&shmem_swaplist_mutex);
1104
1da177e4
LT
1105 if (index >= info->next_index) {
1106 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1107 goto unlock;
1108 }
1109 entry = shmem_swp_entry(info, index, NULL);
d9fe526a
HD
1110 if (entry->val) {
1111 /*
1112 * The more uptodate page coming down from a stacked
1113 * writepage should replace our old swappage.
1114 */
1115 free_swap_and_cache(*entry);
1116 shmem_swp_set(info, entry, 0);
1117 }
1118 shmem_recalc_inode(inode);
1da177e4 1119
d9fe526a 1120 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4c73b1bc 1121 delete_from_page_cache(page);
1da177e4
LT
1122 shmem_swp_set(info, entry, swap.val);
1123 shmem_swp_unmap(entry);
aaa46865 1124 swap_shmem_alloc(swap);
826267cf 1125 spin_unlock(&info->lock);
d9fe526a 1126 BUG_ON(page_mapped(page));
9fab5619 1127 swap_writepage(page, wbc);
1da177e4
LT
1128 return 0;
1129 }
1130
1131 shmem_swp_unmap(entry);
1132unlock:
1133 spin_unlock(&info->lock);
2ca4532a
DN
1134 /*
1135 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1136 * clear SWAP_HAS_CACHE flag.
1137 */
cb4b86ba 1138 swapcache_free(swap, NULL);
1da177e4
LT
1139redirty:
1140 set_page_dirty(page);
d9fe526a
HD
1141 if (wbc->for_reclaim)
1142 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1143 unlock_page(page);
1144 return 0;
1da177e4
LT
1145}
1146
1147#ifdef CONFIG_NUMA
680d794b 1148#ifdef CONFIG_TMPFS
71fe804b 1149static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1150{
095f1fc4 1151 char buffer[64];
680d794b 1152
71fe804b 1153 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1154 return; /* show nothing */
680d794b 1155
71fe804b 1156 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
095f1fc4
LS
1157
1158 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1159}
71fe804b
LS
1160
1161static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1162{
1163 struct mempolicy *mpol = NULL;
1164 if (sbinfo->mpol) {
1165 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1166 mpol = sbinfo->mpol;
1167 mpol_get(mpol);
1168 spin_unlock(&sbinfo->stat_lock);
1169 }
1170 return mpol;
1171}
680d794b 1172#endif /* CONFIG_TMPFS */
1173
02098fea
HD
1174static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1175 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1176{
52cd3b07 1177 struct mempolicy mpol, *spol;
1da177e4 1178 struct vm_area_struct pvma;
c4cc6d07 1179 struct page *page;
1da177e4 1180
52cd3b07
LS
1181 spol = mpol_cond_copy(&mpol,
1182 mpol_shared_policy_lookup(&info->policy, idx));
1183
1da177e4 1184 /* Create a pseudo vma that just contains the policy */
c4cc6d07 1185 pvma.vm_start = 0;
1da177e4 1186 pvma.vm_pgoff = idx;
c4cc6d07 1187 pvma.vm_ops = NULL;
52cd3b07 1188 pvma.vm_policy = spol;
02098fea 1189 page = swapin_readahead(entry, gfp, &pvma, 0);
1da177e4
LT
1190 return page;
1191}
1192
02098fea
HD
1193static struct page *shmem_alloc_page(gfp_t gfp,
1194 struct shmem_inode_info *info, unsigned long idx)
1da177e4
LT
1195{
1196 struct vm_area_struct pvma;
1da177e4 1197
c4cc6d07
HD
1198 /* Create a pseudo vma that just contains the policy */
1199 pvma.vm_start = 0;
1da177e4 1200 pvma.vm_pgoff = idx;
c4cc6d07
HD
1201 pvma.vm_ops = NULL;
1202 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
52cd3b07
LS
1203
1204 /*
1205 * alloc_page_vma() will drop the shared policy reference
1206 */
1207 return alloc_page_vma(gfp, &pvma, 0);
1da177e4 1208}
680d794b 1209#else /* !CONFIG_NUMA */
1210#ifdef CONFIG_TMPFS
71fe804b 1211static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
680d794b 1212{
1213}
1214#endif /* CONFIG_TMPFS */
1215
02098fea
HD
1216static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1217 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1218{
02098fea 1219 return swapin_readahead(entry, gfp, NULL, 0);
1da177e4
LT
1220}
1221
02098fea
HD
1222static inline struct page *shmem_alloc_page(gfp_t gfp,
1223 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1224{
e84e2e13 1225 return alloc_page(gfp);
1da177e4 1226}
680d794b 1227#endif /* CONFIG_NUMA */
1da177e4 1228
71fe804b
LS
1229#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1230static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1231{
1232 return NULL;
1233}
1234#endif
1235
1da177e4 1236/*
68da9f05 1237 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1238 *
1239 * If we allocate a new one we do not mark it dirty. That's up to the
1240 * vm. If we swap it in we mark it dirty since we also free the swap
1241 * entry since a page cannot live in both the swap and page cache
1242 */
68da9f05
HD
1243static int shmem_getpage_gfp(struct inode *inode, pgoff_t idx,
1244 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1245{
1246 struct address_space *mapping = inode->i_mapping;
1247 struct shmem_inode_info *info = SHMEM_I(inode);
1248 struct shmem_sb_info *sbinfo;
27ab7006 1249 struct page *page;
ff36b801 1250 struct page *prealloc_page = NULL;
1da177e4
LT
1251 swp_entry_t *entry;
1252 swp_entry_t swap;
1253 int error;
27ab7006 1254 int ret;
1da177e4
LT
1255
1256 if (idx >= SHMEM_MAX_INDEX)
1257 return -EFBIG;
1da177e4 1258repeat:
27ab7006
HD
1259 page = find_lock_page(mapping, idx);
1260 if (page) {
b409f9fc 1261 /*
27ab7006
HD
1262 * Once we can get the page lock, it must be uptodate:
1263 * if there were an error in reading back from swap,
1264 * the page would not be inserted into the filecache.
b409f9fc 1265 */
27ab7006
HD
1266 BUG_ON(!PageUptodate(page));
1267 goto done;
1268 }
1269
1270 /*
1271 * Try to preload while we can wait, to not make a habit of
1272 * draining atomic reserves; but don't latch on to this cpu.
1273 */
1274 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1275 if (error)
1276 goto out;
1277 radix_tree_preload_end();
1278
1279 if (sgp != SGP_READ && !prealloc_page) {
1280 prealloc_page = shmem_alloc_page(gfp, info, idx);
1281 if (prealloc_page) {
1282 SetPageSwapBacked(prealloc_page);
1283 if (mem_cgroup_cache_charge(prealloc_page,
1284 current->mm, GFP_KERNEL)) {
1285 page_cache_release(prealloc_page);
1286 prealloc_page = NULL;
ff36b801
SL
1287 }
1288 }
b409f9fc 1289 }
1da177e4
LT
1290
1291 spin_lock(&info->lock);
1292 shmem_recalc_inode(inode);
68da9f05 1293 entry = shmem_swp_alloc(info, idx, sgp, gfp);
1da177e4
LT
1294 if (IS_ERR(entry)) {
1295 spin_unlock(&info->lock);
1296 error = PTR_ERR(entry);
27ab7006 1297 goto out;
1da177e4
LT
1298 }
1299 swap = *entry;
1300
1301 if (swap.val) {
1302 /* Look it up and read it in.. */
27ab7006
HD
1303 page = lookup_swap_cache(swap);
1304 if (!page) {
1da177e4 1305 shmem_swp_unmap(entry);
456f998e 1306 spin_unlock(&info->lock);
1da177e4 1307 /* here we actually do the io */
68da9f05
HD
1308 if (fault_type)
1309 *fault_type |= VM_FAULT_MAJOR;
27ab7006
HD
1310 page = shmem_swapin(swap, gfp, info, idx);
1311 if (!page) {
1da177e4 1312 spin_lock(&info->lock);
68da9f05 1313 entry = shmem_swp_alloc(info, idx, sgp, gfp);
1da177e4
LT
1314 if (IS_ERR(entry))
1315 error = PTR_ERR(entry);
1316 else {
1317 if (entry->val == swap.val)
1318 error = -ENOMEM;
1319 shmem_swp_unmap(entry);
1320 }
1321 spin_unlock(&info->lock);
1322 if (error)
27ab7006 1323 goto out;
1da177e4
LT
1324 goto repeat;
1325 }
27ab7006
HD
1326 wait_on_page_locked(page);
1327 page_cache_release(page);
1da177e4
LT
1328 goto repeat;
1329 }
1330
1331 /* We have to do this with page locked to prevent races */
27ab7006 1332 if (!trylock_page(page)) {
1da177e4
LT
1333 shmem_swp_unmap(entry);
1334 spin_unlock(&info->lock);
27ab7006
HD
1335 wait_on_page_locked(page);
1336 page_cache_release(page);
1da177e4
LT
1337 goto repeat;
1338 }
27ab7006 1339 if (PageWriteback(page)) {
1da177e4
LT
1340 shmem_swp_unmap(entry);
1341 spin_unlock(&info->lock);
27ab7006
HD
1342 wait_on_page_writeback(page);
1343 unlock_page(page);
1344 page_cache_release(page);
1da177e4
LT
1345 goto repeat;
1346 }
27ab7006 1347 if (!PageUptodate(page)) {
1da177e4
LT
1348 shmem_swp_unmap(entry);
1349 spin_unlock(&info->lock);
27ab7006
HD
1350 unlock_page(page);
1351 page_cache_release(page);
1da177e4 1352 error = -EIO;
27ab7006 1353 goto out;
1da177e4
LT
1354 }
1355
27ab7006
HD
1356 error = add_to_page_cache_locked(page, mapping,
1357 idx, GFP_NOWAIT);
1358 if (error) {
1da177e4
LT
1359 shmem_swp_unmap(entry);
1360 spin_unlock(&info->lock);
82369553 1361 if (error == -ENOMEM) {
ae3abae6
DN
1362 /*
1363 * reclaim from proper memory cgroup and
1364 * call memcg's OOM if needed.
1365 */
1366 error = mem_cgroup_shmem_charge_fallback(
27ab7006 1367 page, current->mm, gfp);
b5a84319 1368 if (error) {
27ab7006
HD
1369 unlock_page(page);
1370 page_cache_release(page);
1371 goto out;
b5a84319 1372 }
82369553 1373 }
27ab7006
HD
1374 unlock_page(page);
1375 page_cache_release(page);
1da177e4
LT
1376 goto repeat;
1377 }
27ab7006
HD
1378
1379 info->flags |= SHMEM_PAGEIN;
1380 shmem_swp_set(info, entry, 0);
1381 shmem_swp_unmap(entry);
1382 delete_from_swap_cache(page);
1383 spin_unlock(&info->lock);
1384 set_page_dirty(page);
1385 swap_free(swap);
1386
1387 } else if (sgp == SGP_READ) {
1da177e4 1388 shmem_swp_unmap(entry);
27ab7006
HD
1389 page = find_get_page(mapping, idx);
1390 if (page && !trylock_page(page)) {
1da177e4 1391 spin_unlock(&info->lock);
27ab7006
HD
1392 wait_on_page_locked(page);
1393 page_cache_release(page);
1da177e4
LT
1394 goto repeat;
1395 }
1396 spin_unlock(&info->lock);
e83c32e8
HD
1397
1398 } else if (prealloc_page) {
1da177e4
LT
1399 shmem_swp_unmap(entry);
1400 sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 1401 if (sbinfo->max_blocks) {
fc5da22a
HD
1402 if (percpu_counter_compare(&sbinfo->used_blocks,
1403 sbinfo->max_blocks) >= 0 ||
59a16ead
HD
1404 shmem_acct_block(info->flags))
1405 goto nospace;
7e496299 1406 percpu_counter_inc(&sbinfo->used_blocks);
1da177e4 1407 inode->i_blocks += BLOCKS_PER_PAGE;
59a16ead
HD
1408 } else if (shmem_acct_block(info->flags))
1409 goto nospace;
1da177e4 1410
27ab7006
HD
1411 page = prealloc_page;
1412 prealloc_page = NULL;
82369553 1413
27ab7006
HD
1414 entry = shmem_swp_alloc(info, idx, sgp, gfp);
1415 if (IS_ERR(entry))
1416 error = PTR_ERR(entry);
1417 else {
1418 swap = *entry;
1419 shmem_swp_unmap(entry);
1420 }
1421 ret = error || swap.val;
1422 if (ret)
1423 mem_cgroup_uncharge_cache_page(page);
1424 else
1425 ret = add_to_page_cache_lru(page, mapping,
69029cd5 1426 idx, GFP_NOWAIT);
27ab7006
HD
1427 /*
1428 * At add_to_page_cache_lru() failure,
1429 * uncharge will be done automatically.
1430 */
1431 if (ret) {
1432 shmem_unacct_blocks(info->flags, 1);
1433 shmem_free_blocks(inode, 1);
1434 spin_unlock(&info->lock);
1435 page_cache_release(page);
1436 if (error)
1437 goto out;
1438 goto repeat;
1da177e4
LT
1439 }
1440
27ab7006 1441 info->flags |= SHMEM_PAGEIN;
1da177e4
LT
1442 info->alloced++;
1443 spin_unlock(&info->lock);
27ab7006
HD
1444 clear_highpage(page);
1445 flush_dcache_page(page);
1446 SetPageUptodate(page);
a0ee5ec5 1447 if (sgp == SGP_DIRTY)
27ab7006
HD
1448 set_page_dirty(page);
1449
e83c32e8
HD
1450 } else {
1451 spin_unlock(&info->lock);
1452 error = -ENOMEM;
1453 goto out;
1da177e4
LT
1454 }
1455done:
27ab7006 1456 *pagep = page;
ff36b801 1457 error = 0;
e83c32e8
HD
1458out:
1459 if (prealloc_page) {
1460 mem_cgroup_uncharge_cache_page(prealloc_page);
1461 page_cache_release(prealloc_page);
1462 }
1463 return error;
1da177e4 1464
59a16ead
HD
1465nospace:
1466 /*
1467 * Perhaps the page was brought in from swap between find_lock_page
1468 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1469 * but must also avoid reporting a spurious ENOSPC while working on a
9276aad6 1470 * full tmpfs.
59a16ead 1471 */
27ab7006 1472 page = find_get_page(mapping, idx);
59a16ead 1473 spin_unlock(&info->lock);
27ab7006
HD
1474 if (page) {
1475 page_cache_release(page);
1476 goto repeat;
1da177e4 1477 }
27ab7006 1478 error = -ENOSPC;
e83c32e8 1479 goto out;
1da177e4
LT
1480}
1481
d0217ac0 1482static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1483{
d3ac7f89 1484 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4 1485 int error;
68da9f05 1486 int ret = VM_FAULT_LOCKED;
1da177e4 1487
d0217ac0
NP
1488 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1489 return VM_FAULT_SIGBUS;
d00806b1 1490
27d54b39 1491 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1492 if (error)
1493 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1494
456f998e
YH
1495 if (ret & VM_FAULT_MAJOR) {
1496 count_vm_event(PGMAJFAULT);
1497 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1498 }
68da9f05 1499 return ret;
1da177e4
LT
1500}
1501
1da177e4 1502#ifdef CONFIG_NUMA
d8dc74f2 1503static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1da177e4 1504{
d3ac7f89 1505 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1506 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1507}
1508
d8dc74f2
AB
1509static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1510 unsigned long addr)
1da177e4 1511{
d3ac7f89 1512 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1513 unsigned long idx;
1514
1515 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1516 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1517}
1518#endif
1519
1520int shmem_lock(struct file *file, int lock, struct user_struct *user)
1521{
d3ac7f89 1522 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1523 struct shmem_inode_info *info = SHMEM_I(inode);
1524 int retval = -ENOMEM;
1525
1526 spin_lock(&info->lock);
1527 if (lock && !(info->flags & VM_LOCKED)) {
1528 if (!user_shm_lock(inode->i_size, user))
1529 goto out_nomem;
1530 info->flags |= VM_LOCKED;
89e004ea 1531 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1532 }
1533 if (!lock && (info->flags & VM_LOCKED) && user) {
1534 user_shm_unlock(inode->i_size, user);
1535 info->flags &= ~VM_LOCKED;
89e004ea
LS
1536 mapping_clear_unevictable(file->f_mapping);
1537 scan_mapping_unevictable_pages(file->f_mapping);
1da177e4
LT
1538 }
1539 retval = 0;
89e004ea 1540
1da177e4
LT
1541out_nomem:
1542 spin_unlock(&info->lock);
1543 return retval;
1544}
1545
9b83a6a8 1546static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1547{
1548 file_accessed(file);
1549 vma->vm_ops = &shmem_vm_ops;
d0217ac0 1550 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1551 return 0;
1552}
1553
454abafe
DM
1554static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1555 int mode, dev_t dev, unsigned long flags)
1da177e4
LT
1556{
1557 struct inode *inode;
1558 struct shmem_inode_info *info;
1559 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1560
5b04c689
PE
1561 if (shmem_reserve_inode(sb))
1562 return NULL;
1da177e4
LT
1563
1564 inode = new_inode(sb);
1565 if (inode) {
85fe4025 1566 inode->i_ino = get_next_ino();
454abafe 1567 inode_init_owner(inode, dir, mode);
1da177e4 1568 inode->i_blocks = 0;
1da177e4
LT
1569 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1570 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1571 inode->i_generation = get_seconds();
1da177e4
LT
1572 info = SHMEM_I(inode);
1573 memset(info, 0, (char *)inode - (char *)info);
1574 spin_lock_init(&info->lock);
0b0a0806 1575 info->flags = flags & VM_NORESERVE;
1da177e4 1576 INIT_LIST_HEAD(&info->swaplist);
b09e0fa4 1577 INIT_LIST_HEAD(&info->xattr_list);
72c04902 1578 cache_no_acl(inode);
1da177e4
LT
1579
1580 switch (mode & S_IFMT) {
1581 default:
39f0247d 1582 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1583 init_special_inode(inode, mode, dev);
1584 break;
1585 case S_IFREG:
14fcc23f 1586 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1587 inode->i_op = &shmem_inode_operations;
1588 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1589 mpol_shared_policy_init(&info->policy,
1590 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1591 break;
1592 case S_IFDIR:
d8c76e6f 1593 inc_nlink(inode);
1da177e4
LT
1594 /* Some things misbehave if size == 0 on a directory */
1595 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1596 inode->i_op = &shmem_dir_inode_operations;
1597 inode->i_fop = &simple_dir_operations;
1598 break;
1599 case S_IFLNK:
1600 /*
1601 * Must not load anything in the rbtree,
1602 * mpol_free_shared_policy will not be called.
1603 */
71fe804b 1604 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1605 break;
1606 }
5b04c689
PE
1607 } else
1608 shmem_free_inode(sb);
1da177e4
LT
1609 return inode;
1610}
1611
1612#ifdef CONFIG_TMPFS
92e1d5be
AV
1613static const struct inode_operations shmem_symlink_inode_operations;
1614static const struct inode_operations shmem_symlink_inline_operations;
1da177e4 1615
1da177e4 1616static int
800d15a5
NP
1617shmem_write_begin(struct file *file, struct address_space *mapping,
1618 loff_t pos, unsigned len, unsigned flags,
1619 struct page **pagep, void **fsdata)
1da177e4 1620{
800d15a5
NP
1621 struct inode *inode = mapping->host;
1622 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1623 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1624}
1625
1626static int
1627shmem_write_end(struct file *file, struct address_space *mapping,
1628 loff_t pos, unsigned len, unsigned copied,
1629 struct page *page, void *fsdata)
1630{
1631 struct inode *inode = mapping->host;
1632
d3602444
HD
1633 if (pos + copied > inode->i_size)
1634 i_size_write(inode, pos + copied);
1635
800d15a5 1636 set_page_dirty(page);
6746aff7 1637 unlock_page(page);
800d15a5
NP
1638 page_cache_release(page);
1639
800d15a5 1640 return copied;
1da177e4
LT
1641}
1642
1da177e4
LT
1643static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1644{
d3ac7f89 1645 struct inode *inode = filp->f_path.dentry->d_inode;
1da177e4
LT
1646 struct address_space *mapping = inode->i_mapping;
1647 unsigned long index, offset;
a0ee5ec5
HD
1648 enum sgp_type sgp = SGP_READ;
1649
1650 /*
1651 * Might this read be for a stacking filesystem? Then when reading
1652 * holes of a sparse file, we actually need to allocate those pages,
1653 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1654 */
1655 if (segment_eq(get_fs(), KERNEL_DS))
1656 sgp = SGP_DIRTY;
1da177e4
LT
1657
1658 index = *ppos >> PAGE_CACHE_SHIFT;
1659 offset = *ppos & ~PAGE_CACHE_MASK;
1660
1661 for (;;) {
1662 struct page *page = NULL;
1663 unsigned long end_index, nr, ret;
1664 loff_t i_size = i_size_read(inode);
1665
1666 end_index = i_size >> PAGE_CACHE_SHIFT;
1667 if (index > end_index)
1668 break;
1669 if (index == end_index) {
1670 nr = i_size & ~PAGE_CACHE_MASK;
1671 if (nr <= offset)
1672 break;
1673 }
1674
a0ee5ec5 1675 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1676 if (desc->error) {
1677 if (desc->error == -EINVAL)
1678 desc->error = 0;
1679 break;
1680 }
d3602444
HD
1681 if (page)
1682 unlock_page(page);
1da177e4
LT
1683
1684 /*
1685 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1686 * are called without i_mutex protection against truncate
1da177e4
LT
1687 */
1688 nr = PAGE_CACHE_SIZE;
1689 i_size = i_size_read(inode);
1690 end_index = i_size >> PAGE_CACHE_SHIFT;
1691 if (index == end_index) {
1692 nr = i_size & ~PAGE_CACHE_MASK;
1693 if (nr <= offset) {
1694 if (page)
1695 page_cache_release(page);
1696 break;
1697 }
1698 }
1699 nr -= offset;
1700
1701 if (page) {
1702 /*
1703 * If users can be writing to this page using arbitrary
1704 * virtual addresses, take care about potential aliasing
1705 * before reading the page on the kernel side.
1706 */
1707 if (mapping_writably_mapped(mapping))
1708 flush_dcache_page(page);
1709 /*
1710 * Mark the page accessed if we read the beginning.
1711 */
1712 if (!offset)
1713 mark_page_accessed(page);
b5810039 1714 } else {
1da177e4 1715 page = ZERO_PAGE(0);
b5810039
NP
1716 page_cache_get(page);
1717 }
1da177e4
LT
1718
1719 /*
1720 * Ok, we have the page, and it's up-to-date, so
1721 * now we can copy it to user space...
1722 *
1723 * The actor routine returns how many bytes were actually used..
1724 * NOTE! This may not be the same as how much of a user buffer
1725 * we filled up (we may be padding etc), so we can only update
1726 * "pos" here (the actor routine has to update the user buffer
1727 * pointers and the remaining count).
1728 */
1729 ret = actor(desc, page, offset, nr);
1730 offset += ret;
1731 index += offset >> PAGE_CACHE_SHIFT;
1732 offset &= ~PAGE_CACHE_MASK;
1733
1734 page_cache_release(page);
1735 if (ret != nr || !desc->count)
1736 break;
1737
1738 cond_resched();
1739 }
1740
1741 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1742 file_accessed(filp);
1743}
1744
bcd78e49
HD
1745static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1746 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1747{
1748 struct file *filp = iocb->ki_filp;
1749 ssize_t retval;
1750 unsigned long seg;
1751 size_t count;
1752 loff_t *ppos = &iocb->ki_pos;
1753
1754 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1755 if (retval)
1756 return retval;
1757
1758 for (seg = 0; seg < nr_segs; seg++) {
1759 read_descriptor_t desc;
1760
1761 desc.written = 0;
1762 desc.arg.buf = iov[seg].iov_base;
1763 desc.count = iov[seg].iov_len;
1764 if (desc.count == 0)
1765 continue;
1766 desc.error = 0;
1767 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1768 retval += desc.written;
1769 if (desc.error) {
1770 retval = retval ?: desc.error;
1771 break;
1772 }
1773 if (desc.count > 0)
1774 break;
1775 }
1776 return retval;
1da177e4
LT
1777}
1778
708e3508
HD
1779static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1780 struct pipe_inode_info *pipe, size_t len,
1781 unsigned int flags)
1782{
1783 struct address_space *mapping = in->f_mapping;
71f0e07a 1784 struct inode *inode = mapping->host;
708e3508
HD
1785 unsigned int loff, nr_pages, req_pages;
1786 struct page *pages[PIPE_DEF_BUFFERS];
1787 struct partial_page partial[PIPE_DEF_BUFFERS];
1788 struct page *page;
1789 pgoff_t index, end_index;
1790 loff_t isize, left;
1791 int error, page_nr;
1792 struct splice_pipe_desc spd = {
1793 .pages = pages,
1794 .partial = partial,
1795 .flags = flags,
1796 .ops = &page_cache_pipe_buf_ops,
1797 .spd_release = spd_release_page,
1798 };
1799
71f0e07a 1800 isize = i_size_read(inode);
708e3508
HD
1801 if (unlikely(*ppos >= isize))
1802 return 0;
1803
1804 left = isize - *ppos;
1805 if (unlikely(left < len))
1806 len = left;
1807
1808 if (splice_grow_spd(pipe, &spd))
1809 return -ENOMEM;
1810
1811 index = *ppos >> PAGE_CACHE_SHIFT;
1812 loff = *ppos & ~PAGE_CACHE_MASK;
1813 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1814 nr_pages = min(req_pages, pipe->buffers);
1815
708e3508
HD
1816 spd.nr_pages = find_get_pages_contig(mapping, index,
1817 nr_pages, spd.pages);
1818 index += spd.nr_pages;
708e3508 1819 error = 0;
708e3508 1820
71f0e07a 1821 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1822 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1823 if (error)
1824 break;
1825 unlock_page(page);
708e3508
HD
1826 spd.pages[spd.nr_pages++] = page;
1827 index++;
1828 }
1829
708e3508
HD
1830 index = *ppos >> PAGE_CACHE_SHIFT;
1831 nr_pages = spd.nr_pages;
1832 spd.nr_pages = 0;
71f0e07a 1833
708e3508
HD
1834 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1835 unsigned int this_len;
1836
1837 if (!len)
1838 break;
1839
708e3508
HD
1840 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1841 page = spd.pages[page_nr];
1842
71f0e07a 1843 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1844 error = shmem_getpage(inode, index, &page,
1845 SGP_CACHE, NULL);
1846 if (error)
708e3508 1847 break;
71f0e07a
HD
1848 unlock_page(page);
1849 page_cache_release(spd.pages[page_nr]);
1850 spd.pages[page_nr] = page;
708e3508 1851 }
71f0e07a
HD
1852
1853 isize = i_size_read(inode);
708e3508
HD
1854 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1855 if (unlikely(!isize || index > end_index))
1856 break;
1857
708e3508
HD
1858 if (end_index == index) {
1859 unsigned int plen;
1860
708e3508
HD
1861 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1862 if (plen <= loff)
1863 break;
1864
708e3508
HD
1865 this_len = min(this_len, plen - loff);
1866 len = this_len;
1867 }
1868
1869 spd.partial[page_nr].offset = loff;
1870 spd.partial[page_nr].len = this_len;
1871 len -= this_len;
1872 loff = 0;
1873 spd.nr_pages++;
1874 index++;
1875 }
1876
708e3508
HD
1877 while (page_nr < nr_pages)
1878 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1879
1880 if (spd.nr_pages)
1881 error = splice_to_pipe(pipe, &spd);
1882
1883 splice_shrink_spd(pipe, &spd);
1884
1885 if (error > 0) {
1886 *ppos += error;
1887 file_accessed(in);
1888 }
1889 return error;
1890}
1891
726c3342 1892static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1893{
726c3342 1894 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1895
1896 buf->f_type = TMPFS_MAGIC;
1897 buf->f_bsize = PAGE_CACHE_SIZE;
1898 buf->f_namelen = NAME_MAX;
0edd73b3 1899 if (sbinfo->max_blocks) {
1da177e4 1900 buf->f_blocks = sbinfo->max_blocks;
7e496299
TC
1901 buf->f_bavail = buf->f_bfree =
1902 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1903 }
1904 if (sbinfo->max_inodes) {
1da177e4
LT
1905 buf->f_files = sbinfo->max_inodes;
1906 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1907 }
1908 /* else leave those fields 0 like simple_statfs */
1909 return 0;
1910}
1911
1912/*
1913 * File creation. Allocate an inode, and we're done..
1914 */
1915static int
1916shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1917{
0b0a0806 1918 struct inode *inode;
1da177e4
LT
1919 int error = -ENOSPC;
1920
454abafe 1921 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1922 if (inode) {
2a7dba39
EP
1923 error = security_inode_init_security(inode, dir,
1924 &dentry->d_name, NULL,
1925 NULL, NULL);
570bc1c2
SS
1926 if (error) {
1927 if (error != -EOPNOTSUPP) {
1928 iput(inode);
1929 return error;
1930 }
39f0247d 1931 }
1c7c474c
CH
1932#ifdef CONFIG_TMPFS_POSIX_ACL
1933 error = generic_acl_init(inode, dir);
39f0247d
AG
1934 if (error) {
1935 iput(inode);
1936 return error;
570bc1c2 1937 }
718deb6b
AV
1938#else
1939 error = 0;
1c7c474c 1940#endif
1da177e4
LT
1941 dir->i_size += BOGO_DIRENT_SIZE;
1942 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1943 d_instantiate(dentry, inode);
1944 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1945 }
1946 return error;
1947}
1948
1949static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1950{
1951 int error;
1952
1953 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1954 return error;
d8c76e6f 1955 inc_nlink(dir);
1da177e4
LT
1956 return 0;
1957}
1958
1959static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1960 struct nameidata *nd)
1961{
1962 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1963}
1964
1965/*
1966 * Link a file..
1967 */
1968static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1969{
1970 struct inode *inode = old_dentry->d_inode;
5b04c689 1971 int ret;
1da177e4
LT
1972
1973 /*
1974 * No ordinary (disk based) filesystem counts links as inodes;
1975 * but each new link needs a new dentry, pinning lowmem, and
1976 * tmpfs dentries cannot be pruned until they are unlinked.
1977 */
5b04c689
PE
1978 ret = shmem_reserve_inode(inode->i_sb);
1979 if (ret)
1980 goto out;
1da177e4
LT
1981
1982 dir->i_size += BOGO_DIRENT_SIZE;
1983 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1984 inc_nlink(inode);
7de9c6ee 1985 ihold(inode); /* New dentry reference */
1da177e4
LT
1986 dget(dentry); /* Extra pinning count for the created dentry */
1987 d_instantiate(dentry, inode);
5b04c689
PE
1988out:
1989 return ret;
1da177e4
LT
1990}
1991
1992static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1993{
1994 struct inode *inode = dentry->d_inode;
1995
5b04c689
PE
1996 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1997 shmem_free_inode(inode->i_sb);
1da177e4
LT
1998
1999 dir->i_size -= BOGO_DIRENT_SIZE;
2000 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2001 drop_nlink(inode);
1da177e4
LT
2002 dput(dentry); /* Undo the count from "create" - this does all the work */
2003 return 0;
2004}
2005
2006static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2007{
2008 if (!simple_empty(dentry))
2009 return -ENOTEMPTY;
2010
9a53c3a7
DH
2011 drop_nlink(dentry->d_inode);
2012 drop_nlink(dir);
1da177e4
LT
2013 return shmem_unlink(dir, dentry);
2014}
2015
2016/*
2017 * The VFS layer already does all the dentry stuff for rename,
2018 * we just have to decrement the usage count for the target if
2019 * it exists so that the VFS layer correctly free's it when it
2020 * gets overwritten.
2021 */
2022static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2023{
2024 struct inode *inode = old_dentry->d_inode;
2025 int they_are_dirs = S_ISDIR(inode->i_mode);
2026
2027 if (!simple_empty(new_dentry))
2028 return -ENOTEMPTY;
2029
2030 if (new_dentry->d_inode) {
2031 (void) shmem_unlink(new_dir, new_dentry);
2032 if (they_are_dirs)
9a53c3a7 2033 drop_nlink(old_dir);
1da177e4 2034 } else if (they_are_dirs) {
9a53c3a7 2035 drop_nlink(old_dir);
d8c76e6f 2036 inc_nlink(new_dir);
1da177e4
LT
2037 }
2038
2039 old_dir->i_size -= BOGO_DIRENT_SIZE;
2040 new_dir->i_size += BOGO_DIRENT_SIZE;
2041 old_dir->i_ctime = old_dir->i_mtime =
2042 new_dir->i_ctime = new_dir->i_mtime =
2043 inode->i_ctime = CURRENT_TIME;
2044 return 0;
2045}
2046
2047static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2048{
2049 int error;
2050 int len;
2051 struct inode *inode;
9276aad6 2052 struct page *page;
1da177e4
LT
2053 char *kaddr;
2054 struct shmem_inode_info *info;
2055
2056 len = strlen(symname) + 1;
2057 if (len > PAGE_CACHE_SIZE)
2058 return -ENAMETOOLONG;
2059
454abafe 2060 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2061 if (!inode)
2062 return -ENOSPC;
2063
2a7dba39
EP
2064 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2065 NULL, NULL);
570bc1c2
SS
2066 if (error) {
2067 if (error != -EOPNOTSUPP) {
2068 iput(inode);
2069 return error;
2070 }
2071 error = 0;
2072 }
2073
1da177e4
LT
2074 info = SHMEM_I(inode);
2075 inode->i_size = len-1;
b09e0fa4 2076 if (len <= SHMEM_SYMLINK_INLINE_LEN) {
1da177e4 2077 /* do it inline */
b09e0fa4 2078 memcpy(info->inline_symlink, symname, len);
1da177e4
LT
2079 inode->i_op = &shmem_symlink_inline_operations;
2080 } else {
2081 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2082 if (error) {
2083 iput(inode);
2084 return error;
2085 }
14fcc23f 2086 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2087 inode->i_op = &shmem_symlink_inode_operations;
2088 kaddr = kmap_atomic(page, KM_USER0);
2089 memcpy(kaddr, symname, len);
2090 kunmap_atomic(kaddr, KM_USER0);
2091 set_page_dirty(page);
6746aff7 2092 unlock_page(page);
1da177e4
LT
2093 page_cache_release(page);
2094 }
1da177e4
LT
2095 dir->i_size += BOGO_DIRENT_SIZE;
2096 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2097 d_instantiate(dentry, inode);
2098 dget(dentry);
2099 return 0;
2100}
2101
cc314eef 2102static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1da177e4 2103{
b09e0fa4 2104 nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
cc314eef 2105 return NULL;
1da177e4
LT
2106}
2107
cc314eef 2108static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2109{
2110 struct page *page = NULL;
2111 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2112 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
d3602444
HD
2113 if (page)
2114 unlock_page(page);
cc314eef 2115 return page;
1da177e4
LT
2116}
2117
cc314eef 2118static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2119{
2120 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2121 struct page *page = cookie;
1da177e4
LT
2122 kunmap(page);
2123 mark_page_accessed(page);
2124 page_cache_release(page);
1da177e4
LT
2125 }
2126}
2127
b09e0fa4 2128#ifdef CONFIG_TMPFS_XATTR
46711810 2129/*
b09e0fa4
EP
2130 * Superblocks without xattr inode operations may get some security.* xattr
2131 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2132 * like ACLs, we also need to implement the security.* handlers at
2133 * filesystem level, though.
2134 */
2135
b09e0fa4
EP
2136static int shmem_xattr_get(struct dentry *dentry, const char *name,
2137 void *buffer, size_t size)
39f0247d 2138{
b09e0fa4
EP
2139 struct shmem_inode_info *info;
2140 struct shmem_xattr *xattr;
2141 int ret = -ENODATA;
39f0247d 2142
b09e0fa4
EP
2143 info = SHMEM_I(dentry->d_inode);
2144
2145 spin_lock(&info->lock);
2146 list_for_each_entry(xattr, &info->xattr_list, list) {
2147 if (strcmp(name, xattr->name))
2148 continue;
2149
2150 ret = xattr->size;
2151 if (buffer) {
2152 if (size < xattr->size)
2153 ret = -ERANGE;
2154 else
2155 memcpy(buffer, xattr->value, xattr->size);
2156 }
2157 break;
2158 }
2159 spin_unlock(&info->lock);
2160 return ret;
39f0247d
AG
2161}
2162
b09e0fa4
EP
2163static int shmem_xattr_set(struct dentry *dentry, const char *name,
2164 const void *value, size_t size, int flags)
39f0247d 2165{
b09e0fa4
EP
2166 struct inode *inode = dentry->d_inode;
2167 struct shmem_inode_info *info = SHMEM_I(inode);
2168 struct shmem_xattr *xattr;
2169 struct shmem_xattr *new_xattr = NULL;
2170 size_t len;
2171 int err = 0;
2172
2173 /* value == NULL means remove */
2174 if (value) {
2175 /* wrap around? */
2176 len = sizeof(*new_xattr) + size;
2177 if (len <= sizeof(*new_xattr))
2178 return -ENOMEM;
2179
2180 new_xattr = kmalloc(len, GFP_KERNEL);
2181 if (!new_xattr)
2182 return -ENOMEM;
2183
2184 new_xattr->name = kstrdup(name, GFP_KERNEL);
2185 if (!new_xattr->name) {
2186 kfree(new_xattr);
2187 return -ENOMEM;
2188 }
2189
2190 new_xattr->size = size;
2191 memcpy(new_xattr->value, value, size);
2192 }
2193
2194 spin_lock(&info->lock);
2195 list_for_each_entry(xattr, &info->xattr_list, list) {
2196 if (!strcmp(name, xattr->name)) {
2197 if (flags & XATTR_CREATE) {
2198 xattr = new_xattr;
2199 err = -EEXIST;
2200 } else if (new_xattr) {
2201 list_replace(&xattr->list, &new_xattr->list);
2202 } else {
2203 list_del(&xattr->list);
2204 }
2205 goto out;
2206 }
2207 }
2208 if (flags & XATTR_REPLACE) {
2209 xattr = new_xattr;
2210 err = -ENODATA;
2211 } else {
2212 list_add(&new_xattr->list, &info->xattr_list);
2213 xattr = NULL;
2214 }
2215out:
2216 spin_unlock(&info->lock);
2217 if (xattr)
2218 kfree(xattr->name);
2219 kfree(xattr);
2220 return err;
39f0247d
AG
2221}
2222
39f0247d 2223
bb435453 2224static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2225#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c
CH
2226 &generic_acl_access_handler,
2227 &generic_acl_default_handler,
b09e0fa4 2228#endif
39f0247d
AG
2229 NULL
2230};
b09e0fa4
EP
2231
2232static int shmem_xattr_validate(const char *name)
2233{
2234 struct { const char *prefix; size_t len; } arr[] = {
2235 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2236 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2237 };
2238 int i;
2239
2240 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2241 size_t preflen = arr[i].len;
2242 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2243 if (!name[preflen])
2244 return -EINVAL;
2245 return 0;
2246 }
2247 }
2248 return -EOPNOTSUPP;
2249}
2250
2251static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2252 void *buffer, size_t size)
2253{
2254 int err;
2255
2256 /*
2257 * If this is a request for a synthetic attribute in the system.*
2258 * namespace use the generic infrastructure to resolve a handler
2259 * for it via sb->s_xattr.
2260 */
2261 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2262 return generic_getxattr(dentry, name, buffer, size);
2263
2264 err = shmem_xattr_validate(name);
2265 if (err)
2266 return err;
2267
2268 return shmem_xattr_get(dentry, name, buffer, size);
2269}
2270
2271static int shmem_setxattr(struct dentry *dentry, const char *name,
2272 const void *value, size_t size, int flags)
2273{
2274 int err;
2275
2276 /*
2277 * If this is a request for a synthetic attribute in the system.*
2278 * namespace use the generic infrastructure to resolve a handler
2279 * for it via sb->s_xattr.
2280 */
2281 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2282 return generic_setxattr(dentry, name, value, size, flags);
2283
2284 err = shmem_xattr_validate(name);
2285 if (err)
2286 return err;
2287
2288 if (size == 0)
2289 value = ""; /* empty EA, do not remove */
2290
2291 return shmem_xattr_set(dentry, name, value, size, flags);
2292
2293}
2294
2295static int shmem_removexattr(struct dentry *dentry, const char *name)
2296{
2297 int err;
2298
2299 /*
2300 * If this is a request for a synthetic attribute in the system.*
2301 * namespace use the generic infrastructure to resolve a handler
2302 * for it via sb->s_xattr.
2303 */
2304 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2305 return generic_removexattr(dentry, name);
2306
2307 err = shmem_xattr_validate(name);
2308 if (err)
2309 return err;
2310
2311 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2312}
2313
2314static bool xattr_is_trusted(const char *name)
2315{
2316 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2317}
2318
2319static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2320{
2321 bool trusted = capable(CAP_SYS_ADMIN);
2322 struct shmem_xattr *xattr;
2323 struct shmem_inode_info *info;
2324 size_t used = 0;
2325
2326 info = SHMEM_I(dentry->d_inode);
2327
2328 spin_lock(&info->lock);
2329 list_for_each_entry(xattr, &info->xattr_list, list) {
2330 size_t len;
2331
2332 /* skip "trusted." attributes for unprivileged callers */
2333 if (!trusted && xattr_is_trusted(xattr->name))
2334 continue;
2335
2336 len = strlen(xattr->name) + 1;
2337 used += len;
2338 if (buffer) {
2339 if (size < used) {
2340 used = -ERANGE;
2341 break;
2342 }
2343 memcpy(buffer, xattr->name, len);
2344 buffer += len;
2345 }
2346 }
2347 spin_unlock(&info->lock);
2348
2349 return used;
2350}
2351#endif /* CONFIG_TMPFS_XATTR */
2352
2353static const struct inode_operations shmem_symlink_inline_operations = {
2354 .readlink = generic_readlink,
2355 .follow_link = shmem_follow_link_inline,
2356#ifdef CONFIG_TMPFS_XATTR
2357 .setxattr = shmem_setxattr,
2358 .getxattr = shmem_getxattr,
2359 .listxattr = shmem_listxattr,
2360 .removexattr = shmem_removexattr,
2361#endif
2362};
2363
2364static const struct inode_operations shmem_symlink_inode_operations = {
2365 .readlink = generic_readlink,
2366 .follow_link = shmem_follow_link,
2367 .put_link = shmem_put_link,
2368#ifdef CONFIG_TMPFS_XATTR
2369 .setxattr = shmem_setxattr,
2370 .getxattr = shmem_getxattr,
2371 .listxattr = shmem_listxattr,
2372 .removexattr = shmem_removexattr,
39f0247d 2373#endif
b09e0fa4 2374};
39f0247d 2375
91828a40
DG
2376static struct dentry *shmem_get_parent(struct dentry *child)
2377{
2378 return ERR_PTR(-ESTALE);
2379}
2380
2381static int shmem_match(struct inode *ino, void *vfh)
2382{
2383 __u32 *fh = vfh;
2384 __u64 inum = fh[2];
2385 inum = (inum << 32) | fh[1];
2386 return ino->i_ino == inum && fh[0] == ino->i_generation;
2387}
2388
480b116c
CH
2389static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2390 struct fid *fid, int fh_len, int fh_type)
91828a40 2391{
91828a40 2392 struct inode *inode;
480b116c
CH
2393 struct dentry *dentry = NULL;
2394 u64 inum = fid->raw[2];
2395 inum = (inum << 32) | fid->raw[1];
2396
2397 if (fh_len < 3)
2398 return NULL;
91828a40 2399
480b116c
CH
2400 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2401 shmem_match, fid->raw);
91828a40 2402 if (inode) {
480b116c 2403 dentry = d_find_alias(inode);
91828a40
DG
2404 iput(inode);
2405 }
2406
480b116c 2407 return dentry;
91828a40
DG
2408}
2409
2410static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2411 int connectable)
2412{
2413 struct inode *inode = dentry->d_inode;
2414
5fe0c237
AK
2415 if (*len < 3) {
2416 *len = 3;
91828a40 2417 return 255;
5fe0c237 2418 }
91828a40 2419
1d3382cb 2420 if (inode_unhashed(inode)) {
91828a40
DG
2421 /* Unfortunately insert_inode_hash is not idempotent,
2422 * so as we hash inodes here rather than at creation
2423 * time, we need a lock to ensure we only try
2424 * to do it once
2425 */
2426 static DEFINE_SPINLOCK(lock);
2427 spin_lock(&lock);
1d3382cb 2428 if (inode_unhashed(inode))
91828a40
DG
2429 __insert_inode_hash(inode,
2430 inode->i_ino + inode->i_generation);
2431 spin_unlock(&lock);
2432 }
2433
2434 fh[0] = inode->i_generation;
2435 fh[1] = inode->i_ino;
2436 fh[2] = ((__u64)inode->i_ino) >> 32;
2437
2438 *len = 3;
2439 return 1;
2440}
2441
39655164 2442static const struct export_operations shmem_export_ops = {
91828a40 2443 .get_parent = shmem_get_parent,
91828a40 2444 .encode_fh = shmem_encode_fh,
480b116c 2445 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2446};
2447
680d794b 2448static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2449 bool remount)
1da177e4
LT
2450{
2451 char *this_char, *value, *rest;
2452
b00dc3ad
HD
2453 while (options != NULL) {
2454 this_char = options;
2455 for (;;) {
2456 /*
2457 * NUL-terminate this option: unfortunately,
2458 * mount options form a comma-separated list,
2459 * but mpol's nodelist may also contain commas.
2460 */
2461 options = strchr(options, ',');
2462 if (options == NULL)
2463 break;
2464 options++;
2465 if (!isdigit(*options)) {
2466 options[-1] = '\0';
2467 break;
2468 }
2469 }
1da177e4
LT
2470 if (!*this_char)
2471 continue;
2472 if ((value = strchr(this_char,'=')) != NULL) {
2473 *value++ = 0;
2474 } else {
2475 printk(KERN_ERR
2476 "tmpfs: No value for mount option '%s'\n",
2477 this_char);
2478 return 1;
2479 }
2480
2481 if (!strcmp(this_char,"size")) {
2482 unsigned long long size;
2483 size = memparse(value,&rest);
2484 if (*rest == '%') {
2485 size <<= PAGE_SHIFT;
2486 size *= totalram_pages;
2487 do_div(size, 100);
2488 rest++;
2489 }
2490 if (*rest)
2491 goto bad_val;
680d794b 2492 sbinfo->max_blocks =
2493 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2494 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2495 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2496 if (*rest)
2497 goto bad_val;
2498 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2499 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2500 if (*rest)
2501 goto bad_val;
2502 } else if (!strcmp(this_char,"mode")) {
680d794b 2503 if (remount)
1da177e4 2504 continue;
680d794b 2505 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2506 if (*rest)
2507 goto bad_val;
2508 } else if (!strcmp(this_char,"uid")) {
680d794b 2509 if (remount)
1da177e4 2510 continue;
680d794b 2511 sbinfo->uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2512 if (*rest)
2513 goto bad_val;
2514 } else if (!strcmp(this_char,"gid")) {
680d794b 2515 if (remount)
1da177e4 2516 continue;
680d794b 2517 sbinfo->gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2518 if (*rest)
2519 goto bad_val;
7339ff83 2520 } else if (!strcmp(this_char,"mpol")) {
71fe804b 2521 if (mpol_parse_str(value, &sbinfo->mpol, 1))
7339ff83 2522 goto bad_val;
1da177e4
LT
2523 } else {
2524 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2525 this_char);
2526 return 1;
2527 }
2528 }
2529 return 0;
2530
2531bad_val:
2532 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2533 value, this_char);
2534 return 1;
2535
2536}
2537
2538static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2539{
2540 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2541 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2542 unsigned long inodes;
2543 int error = -EINVAL;
2544
680d794b 2545 if (shmem_parse_options(data, &config, true))
0edd73b3 2546 return error;
1da177e4 2547
0edd73b3 2548 spin_lock(&sbinfo->stat_lock);
0edd73b3 2549 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2550 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2551 goto out;
680d794b 2552 if (config.max_inodes < inodes)
0edd73b3
HD
2553 goto out;
2554 /*
2555 * Those tests also disallow limited->unlimited while any are in
2556 * use, so i_blocks will always be zero when max_blocks is zero;
2557 * but we must separately disallow unlimited->limited, because
2558 * in that case we have no record of how much is already in use.
2559 */
680d794b 2560 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2561 goto out;
680d794b 2562 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2563 goto out;
2564
2565 error = 0;
680d794b 2566 sbinfo->max_blocks = config.max_blocks;
680d794b 2567 sbinfo->max_inodes = config.max_inodes;
2568 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b
LS
2569
2570 mpol_put(sbinfo->mpol);
2571 sbinfo->mpol = config.mpol; /* transfers initial ref */
0edd73b3
HD
2572out:
2573 spin_unlock(&sbinfo->stat_lock);
2574 return error;
1da177e4 2575}
680d794b 2576
2577static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2578{
2579 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2580
2581 if (sbinfo->max_blocks != shmem_default_max_blocks())
2582 seq_printf(seq, ",size=%luk",
2583 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2584 if (sbinfo->max_inodes != shmem_default_max_inodes())
2585 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2586 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2587 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2588 if (sbinfo->uid != 0)
2589 seq_printf(seq, ",uid=%u", sbinfo->uid);
2590 if (sbinfo->gid != 0)
2591 seq_printf(seq, ",gid=%u", sbinfo->gid);
71fe804b 2592 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2593 return 0;
2594}
2595#endif /* CONFIG_TMPFS */
1da177e4
LT
2596
2597static void shmem_put_super(struct super_block *sb)
2598{
602586a8
HD
2599 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2600
2601 percpu_counter_destroy(&sbinfo->used_blocks);
2602 kfree(sbinfo);
1da177e4
LT
2603 sb->s_fs_info = NULL;
2604}
2605
2b2af54a 2606int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2607{
2608 struct inode *inode;
2609 struct dentry *root;
0edd73b3 2610 struct shmem_sb_info *sbinfo;
680d794b 2611 int err = -ENOMEM;
2612
2613 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2614 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2615 L1_CACHE_BYTES), GFP_KERNEL);
2616 if (!sbinfo)
2617 return -ENOMEM;
2618
680d794b 2619 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2620 sbinfo->uid = current_fsuid();
2621 sbinfo->gid = current_fsgid();
680d794b 2622 sb->s_fs_info = sbinfo;
1da177e4 2623
0edd73b3 2624#ifdef CONFIG_TMPFS
1da177e4
LT
2625 /*
2626 * Per default we only allow half of the physical ram per
2627 * tmpfs instance, limiting inodes to one per page of lowmem;
2628 * but the internal instance is left unlimited.
2629 */
2630 if (!(sb->s_flags & MS_NOUSER)) {
680d794b 2631 sbinfo->max_blocks = shmem_default_max_blocks();
2632 sbinfo->max_inodes = shmem_default_max_inodes();
2633 if (shmem_parse_options(data, sbinfo, false)) {
2634 err = -EINVAL;
2635 goto failed;
2636 }
1da177e4 2637 }
91828a40 2638 sb->s_export_op = &shmem_export_ops;
1da177e4
LT
2639#else
2640 sb->s_flags |= MS_NOUSER;
2641#endif
2642
0edd73b3 2643 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2644 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2645 goto failed;
680d794b 2646 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2647
1da177e4
LT
2648 sb->s_maxbytes = SHMEM_MAX_BYTES;
2649 sb->s_blocksize = PAGE_CACHE_SIZE;
2650 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2651 sb->s_magic = TMPFS_MAGIC;
2652 sb->s_op = &shmem_ops;
cfd95a9c 2653 sb->s_time_gran = 1;
b09e0fa4 2654#ifdef CONFIG_TMPFS_XATTR
39f0247d 2655 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2656#endif
2657#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2658 sb->s_flags |= MS_POSIXACL;
2659#endif
0edd73b3 2660
454abafe 2661 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2662 if (!inode)
2663 goto failed;
680d794b 2664 inode->i_uid = sbinfo->uid;
2665 inode->i_gid = sbinfo->gid;
1da177e4
LT
2666 root = d_alloc_root(inode);
2667 if (!root)
2668 goto failed_iput;
2669 sb->s_root = root;
2670 return 0;
2671
2672failed_iput:
2673 iput(inode);
2674failed:
2675 shmem_put_super(sb);
2676 return err;
2677}
2678
fcc234f8 2679static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2680
2681static struct inode *shmem_alloc_inode(struct super_block *sb)
2682{
2683 struct shmem_inode_info *p;
e94b1766 2684 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
1da177e4
LT
2685 if (!p)
2686 return NULL;
2687 return &p->vfs_inode;
2688}
2689
fa0d7e3d
NP
2690static void shmem_i_callback(struct rcu_head *head)
2691{
2692 struct inode *inode = container_of(head, struct inode, i_rcu);
2693 INIT_LIST_HEAD(&inode->i_dentry);
2694 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2695}
2696
1da177e4
LT
2697static void shmem_destroy_inode(struct inode *inode)
2698{
2699 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2700 /* only struct inode is valid if it's an inline symlink */
2701 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2702 }
fa0d7e3d 2703 call_rcu(&inode->i_rcu, shmem_i_callback);
1da177e4
LT
2704}
2705
51cc5068 2706static void init_once(void *foo)
1da177e4
LT
2707{
2708 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2709
a35afb83 2710 inode_init_once(&p->vfs_inode);
1da177e4
LT
2711}
2712
2713static int init_inodecache(void)
2714{
2715 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2716 sizeof(struct shmem_inode_info),
040b5c6f 2717 0, SLAB_PANIC, init_once);
1da177e4
LT
2718 return 0;
2719}
2720
2721static void destroy_inodecache(void)
2722{
1a1d92c1 2723 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2724}
2725
f5e54d6e 2726static const struct address_space_operations shmem_aops = {
1da177e4 2727 .writepage = shmem_writepage,
76719325 2728 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2729#ifdef CONFIG_TMPFS
800d15a5
NP
2730 .write_begin = shmem_write_begin,
2731 .write_end = shmem_write_end,
1da177e4 2732#endif
304dbdb7 2733 .migratepage = migrate_page,
aa261f54 2734 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2735};
2736
15ad7cdc 2737static const struct file_operations shmem_file_operations = {
1da177e4
LT
2738 .mmap = shmem_mmap,
2739#ifdef CONFIG_TMPFS
2740 .llseek = generic_file_llseek,
bcd78e49 2741 .read = do_sync_read,
5402b976 2742 .write = do_sync_write,
bcd78e49 2743 .aio_read = shmem_file_aio_read,
5402b976 2744 .aio_write = generic_file_aio_write,
1b061d92 2745 .fsync = noop_fsync,
708e3508 2746 .splice_read = shmem_file_splice_read,
ae976416 2747 .splice_write = generic_file_splice_write,
1da177e4
LT
2748#endif
2749};
2750
92e1d5be 2751static const struct inode_operations shmem_inode_operations = {
94c1e62d 2752 .setattr = shmem_setattr,
f6b3ec23 2753 .truncate_range = shmem_truncate_range,
b09e0fa4
EP
2754#ifdef CONFIG_TMPFS_XATTR
2755 .setxattr = shmem_setxattr,
2756 .getxattr = shmem_getxattr,
2757 .listxattr = shmem_listxattr,
2758 .removexattr = shmem_removexattr,
2759#endif
39f0247d 2760#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c 2761 .check_acl = generic_check_acl,
39f0247d
AG
2762#endif
2763
1da177e4
LT
2764};
2765
92e1d5be 2766static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2767#ifdef CONFIG_TMPFS
2768 .create = shmem_create,
2769 .lookup = simple_lookup,
2770 .link = shmem_link,
2771 .unlink = shmem_unlink,
2772 .symlink = shmem_symlink,
2773 .mkdir = shmem_mkdir,
2774 .rmdir = shmem_rmdir,
2775 .mknod = shmem_mknod,
2776 .rename = shmem_rename,
1da177e4 2777#endif
b09e0fa4
EP
2778#ifdef CONFIG_TMPFS_XATTR
2779 .setxattr = shmem_setxattr,
2780 .getxattr = shmem_getxattr,
2781 .listxattr = shmem_listxattr,
2782 .removexattr = shmem_removexattr,
2783#endif
39f0247d 2784#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2785 .setattr = shmem_setattr,
1c7c474c 2786 .check_acl = generic_check_acl,
39f0247d
AG
2787#endif
2788};
2789
92e1d5be 2790static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2791#ifdef CONFIG_TMPFS_XATTR
2792 .setxattr = shmem_setxattr,
2793 .getxattr = shmem_getxattr,
2794 .listxattr = shmem_listxattr,
2795 .removexattr = shmem_removexattr,
2796#endif
39f0247d 2797#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2798 .setattr = shmem_setattr,
1c7c474c 2799 .check_acl = generic_check_acl,
39f0247d 2800#endif
1da177e4
LT
2801};
2802
759b9775 2803static const struct super_operations shmem_ops = {
1da177e4
LT
2804 .alloc_inode = shmem_alloc_inode,
2805 .destroy_inode = shmem_destroy_inode,
2806#ifdef CONFIG_TMPFS
2807 .statfs = shmem_statfs,
2808 .remount_fs = shmem_remount_fs,
680d794b 2809 .show_options = shmem_show_options,
1da177e4 2810#endif
1f895f75 2811 .evict_inode = shmem_evict_inode,
1da177e4
LT
2812 .drop_inode = generic_delete_inode,
2813 .put_super = shmem_put_super,
2814};
2815
f0f37e2f 2816static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2817 .fault = shmem_fault,
1da177e4
LT
2818#ifdef CONFIG_NUMA
2819 .set_policy = shmem_set_policy,
2820 .get_policy = shmem_get_policy,
2821#endif
2822};
2823
2824
3c26ff6e
AV
2825static struct dentry *shmem_mount(struct file_system_type *fs_type,
2826 int flags, const char *dev_name, void *data)
1da177e4 2827{
3c26ff6e 2828 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2829}
2830
2831static struct file_system_type tmpfs_fs_type = {
2832 .owner = THIS_MODULE,
2833 .name = "tmpfs",
3c26ff6e 2834 .mount = shmem_mount,
1da177e4
LT
2835 .kill_sb = kill_litter_super,
2836};
1da177e4 2837
2b2af54a 2838int __init init_tmpfs(void)
1da177e4
LT
2839{
2840 int error;
2841
e0bf68dd
PZ
2842 error = bdi_init(&shmem_backing_dev_info);
2843 if (error)
2844 goto out4;
2845
1da177e4
LT
2846 error = init_inodecache();
2847 if (error)
2848 goto out3;
2849
2850 error = register_filesystem(&tmpfs_fs_type);
2851 if (error) {
2852 printk(KERN_ERR "Could not register tmpfs\n");
2853 goto out2;
2854 }
95dc112a 2855
1f5ce9e9 2856 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
1da177e4
LT
2857 tmpfs_fs_type.name, NULL);
2858 if (IS_ERR(shm_mnt)) {
2859 error = PTR_ERR(shm_mnt);
2860 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2861 goto out1;
2862 }
2863 return 0;
2864
2865out1:
2866 unregister_filesystem(&tmpfs_fs_type);
2867out2:
2868 destroy_inodecache();
2869out3:
e0bf68dd
PZ
2870 bdi_destroy(&shmem_backing_dev_info);
2871out4:
1da177e4
LT
2872 shm_mnt = ERR_PTR(error);
2873 return error;
2874}
853ac43a 2875
87946a72
DN
2876#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2877/**
2878 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2879 * @inode: the inode to be searched
2880 * @pgoff: the offset to be searched
2881 * @pagep: the pointer for the found page to be stored
2882 * @ent: the pointer for the found swap entry to be stored
2883 *
2884 * If a page is found, refcount of it is incremented. Callers should handle
2885 * these refcount.
2886 */
2887void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2888 struct page **pagep, swp_entry_t *ent)
2889{
2890 swp_entry_t entry = { .val = 0 }, *ptr;
2891 struct page *page = NULL;
2892 struct shmem_inode_info *info = SHMEM_I(inode);
2893
2894 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2895 goto out;
2896
2897 spin_lock(&info->lock);
2898 ptr = shmem_swp_entry(info, pgoff, NULL);
2899#ifdef CONFIG_SWAP
2900 if (ptr && ptr->val) {
2901 entry.val = ptr->val;
2902 page = find_get_page(&swapper_space, entry.val);
2903 } else
2904#endif
2905 page = find_get_page(inode->i_mapping, pgoff);
2906 if (ptr)
2907 shmem_swp_unmap(ptr);
2908 spin_unlock(&info->lock);
2909out:
2910 *pagep = page;
2911 *ent = entry;
2912}
2913#endif
2914
853ac43a
MM
2915#else /* !CONFIG_SHMEM */
2916
2917/*
2918 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2919 *
2920 * This is intended for small system where the benefits of the full
2921 * shmem code (swap-backed and resource-limited) are outweighed by
2922 * their complexity. On systems without swap this code should be
2923 * effectively equivalent, but much lighter weight.
2924 */
2925
2926#include <linux/ramfs.h>
2927
2928static struct file_system_type tmpfs_fs_type = {
2929 .name = "tmpfs",
3c26ff6e 2930 .mount = ramfs_mount,
853ac43a
MM
2931 .kill_sb = kill_litter_super,
2932};
2933
2b2af54a 2934int __init init_tmpfs(void)
853ac43a
MM
2935{
2936 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2937
2938 shm_mnt = kern_mount(&tmpfs_fs_type);
2939 BUG_ON(IS_ERR(shm_mnt));
2940
2941 return 0;
2942}
2943
2944int shmem_unuse(swp_entry_t entry, struct page *page)
2945{
2946 return 0;
2947}
2948
3f96b79a
HD
2949int shmem_lock(struct file *file, int lock, struct user_struct *user)
2950{
2951 return 0;
2952}
2953
94c1e62d
HD
2954void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2955{
2956 truncate_inode_pages_range(inode->i_mapping, start, end);
2957}
2958EXPORT_SYMBOL_GPL(shmem_truncate_range);
2959
87946a72
DN
2960#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2961/**
2962 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2963 * @inode: the inode to be searched
2964 * @pgoff: the offset to be searched
2965 * @pagep: the pointer for the found page to be stored
2966 * @ent: the pointer for the found swap entry to be stored
2967 *
2968 * If a page is found, refcount of it is incremented. Callers should handle
2969 * these refcount.
2970 */
2971void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2972 struct page **pagep, swp_entry_t *ent)
2973{
2974 struct page *page = NULL;
2975
2976 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2977 goto out;
2978 page = find_get_page(inode->i_mapping, pgoff);
2979out:
2980 *pagep = page;
2981 *ent = (swp_entry_t){ .val = 0 };
2982}
2983#endif
2984
0b0a0806
HD
2985#define shmem_vm_ops generic_file_vm_ops
2986#define shmem_file_operations ramfs_file_operations
454abafe 2987#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2988#define shmem_acct_size(flags, size) 0
2989#define shmem_unacct_size(flags, size) do {} while (0)
caefba17 2990#define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
853ac43a
MM
2991
2992#endif /* CONFIG_SHMEM */
2993
2994/* common code */
1da177e4 2995
46711810 2996/**
1da177e4 2997 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2998 * @name: name for dentry (to be seen in /proc/<pid>/maps
2999 * @size: size to be set for the file
0b0a0806 3000 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 3001 */
168f5ac6 3002struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4
LT
3003{
3004 int error;
3005 struct file *file;
3006 struct inode *inode;
2c48b9c4
AV
3007 struct path path;
3008 struct dentry *root;
1da177e4
LT
3009 struct qstr this;
3010
3011 if (IS_ERR(shm_mnt))
3012 return (void *)shm_mnt;
3013
3014 if (size < 0 || size > SHMEM_MAX_BYTES)
3015 return ERR_PTR(-EINVAL);
3016
3017 if (shmem_acct_size(flags, size))
3018 return ERR_PTR(-ENOMEM);
3019
3020 error = -ENOMEM;
3021 this.name = name;
3022 this.len = strlen(name);
3023 this.hash = 0; /* will go */
3024 root = shm_mnt->mnt_root;
2c48b9c4
AV
3025 path.dentry = d_alloc(root, &this);
3026 if (!path.dentry)
1da177e4 3027 goto put_memory;
2c48b9c4 3028 path.mnt = mntget(shm_mnt);
1da177e4 3029
1da177e4 3030 error = -ENOSPC;
454abafe 3031 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3032 if (!inode)
4b42af81 3033 goto put_dentry;
1da177e4 3034
2c48b9c4 3035 d_instantiate(path.dentry, inode);
1da177e4
LT
3036 inode->i_size = size;
3037 inode->i_nlink = 0; /* It is unlinked */
853ac43a
MM
3038#ifndef CONFIG_MMU
3039 error = ramfs_nommu_expand_for_mapping(inode, size);
3040 if (error)
4b42af81 3041 goto put_dentry;
853ac43a 3042#endif
4b42af81
AV
3043
3044 error = -ENFILE;
2c48b9c4 3045 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81
AV
3046 &shmem_file_operations);
3047 if (!file)
3048 goto put_dentry;
3049
1da177e4
LT
3050 return file;
3051
1da177e4 3052put_dentry:
2c48b9c4 3053 path_put(&path);
1da177e4
LT
3054put_memory:
3055 shmem_unacct_size(flags, size);
3056 return ERR_PTR(error);
3057}
395e0ddc 3058EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3059
46711810 3060/**
1da177e4 3061 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3062 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3063 */
3064int shmem_zero_setup(struct vm_area_struct *vma)
3065{
3066 struct file *file;
3067 loff_t size = vma->vm_end - vma->vm_start;
3068
3069 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3070 if (IS_ERR(file))
3071 return PTR_ERR(file);
3072
3073 if (vma->vm_file)
3074 fput(vma->vm_file);
3075 vma->vm_file = file;
3076 vma->vm_ops = &shmem_vm_ops;
bee4c36a 3077 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
3078 return 0;
3079}
d9d90e5e
HD
3080
3081/**
3082 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3083 * @mapping: the page's address_space
3084 * @index: the page index
3085 * @gfp: the page allocator flags to use if allocating
3086 *
3087 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3088 * with any new page allocations done using the specified allocation flags.
3089 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3090 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3091 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3092 *
68da9f05
HD
3093 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3094 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3095 */
3096struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3097 pgoff_t index, gfp_t gfp)
3098{
68da9f05
HD
3099#ifdef CONFIG_SHMEM
3100 struct inode *inode = mapping->host;
9276aad6 3101 struct page *page;
68da9f05
HD
3102 int error;
3103
3104 BUG_ON(mapping->a_ops != &shmem_aops);
3105 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3106 if (error)
3107 page = ERR_PTR(error);
3108 else
3109 unlock_page(page);
3110 return page;
3111#else
3112 /*
3113 * The tiny !SHMEM case uses ramfs without swap
3114 */
d9d90e5e 3115 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3116#endif
d9d90e5e
HD
3117}
3118EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 0.788804 seconds and 5 git commands to generate.