mm: use radix_tree_iter_retry()
[deliverable/linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
e2e40f2c 34#include <linux/uio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
9183df25 69#include <linux/syscalls.h>
40e041a2 70#include <linux/fcntl.h>
9183df25 71#include <uapi/linux/memfd.h>
304dbdb7 72
1da177e4 73#include <asm/uaccess.h>
1da177e4
LT
74#include <asm/pgtable.h>
75
dd56b046
MG
76#include "internal.h"
77
caefba17 78#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
79#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
1da177e4
LT
81/* Pretend that each entry is of this size in directory's i_size */
82#define BOGO_DIRENT_SIZE 20
83
69f07ec9
HD
84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85#define SHORT_SYMLINK_LEN 128
86
1aac1400 87/*
f00cdc6d
HD
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
1aac1400
HD
91 */
92struct shmem_falloc {
8e205f77 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
1aac1400
HD
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98};
99
285b2c4f 100/* Flag allocation requirements to shmem_getpage */
1da177e4 101enum sgp_type {
1da177e4
LT
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
107};
108
b76db735 109#ifdef CONFIG_TMPFS
680d794b 110static unsigned long shmem_default_max_blocks(void)
111{
112 return totalram_pages / 2;
113}
114
115static unsigned long shmem_default_max_inodes(void)
116{
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118}
b76db735 119#endif
680d794b 120
bde05d1c
HD
121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129{
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132}
1da177e4 133
1da177e4
LT
134static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135{
136 return sb->s_fs_info;
137}
138
139/*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145static inline int shmem_acct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 return (flags & VM_NORESERVE) ?
191c5424 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
149}
150
151static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152{
0b0a0806 153 if (!(flags & VM_NORESERVE))
1da177e4
LT
154 vm_unacct_memory(VM_ACCT(size));
155}
156
77142517
KK
157static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159{
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168}
169
1da177e4
LT
170/*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176static inline int shmem_acct_block(unsigned long flags)
177{
0b0a0806 178 return (flags & VM_NORESERVE) ?
191c5424 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
180}
181
182static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183{
0b0a0806 184 if (flags & VM_NORESERVE)
1da177e4
LT
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186}
187
759b9775 188static const struct super_operations shmem_ops;
f5e54d6e 189static const struct address_space_operations shmem_aops;
15ad7cdc 190static const struct file_operations shmem_file_operations;
92e1d5be
AV
191static const struct inode_operations shmem_inode_operations;
192static const struct inode_operations shmem_dir_inode_operations;
193static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 194static const struct vm_operations_struct shmem_vm_ops;
1da177e4 195
1da177e4 196static LIST_HEAD(shmem_swaplist);
cb5f7b9a 197static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 198
5b04c689
PE
199static int shmem_reserve_inode(struct super_block *sb)
200{
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212}
213
214static void shmem_free_inode(struct super_block *sb)
215{
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222}
223
46711810 224/**
41ffe5d5 225 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236static void shmem_recalc_inode(struct inode *inode)
237{
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
54af6042
HD
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 246 info->alloced -= freed;
54af6042 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 248 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
249 }
250}
251
7a5d0fbb
HD
252/*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257{
258 void **pslot;
6dbaf22c 259 void *item;
7a5d0fbb
HD
260
261 VM_BUG_ON(!expected);
6dbaf22c 262 VM_BUG_ON(!replacement);
7a5d0fbb 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
267 if (item != expected)
268 return -ENOENT;
6dbaf22c 269 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
270 return 0;
271}
272
d1899228
HD
273/*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282{
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289}
290
46f65ec1
HD
291/*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
fed400a1 296 pgoff_t index, void *expected)
46f65ec1 297{
b065b432 298 int error;
46f65ec1 299
309381fe
SL
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 302
b065b432
HD
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
46f65ec1 308 if (!expected)
b065b432
HD
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
46f65ec1 313 if (!error) {
b065b432
HD
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
46f65ec1 322 }
46f65ec1
HD
323 return error;
324}
325
6922c0c7
HD
326/*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330{
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343}
344
7a5d0fbb
HD
345/*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350{
6dbaf22c 351 void *old;
7a5d0fbb
HD
352
353 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 355 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
7a5d0fbb
HD
360}
361
6a15a370
VB
362/*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
48131e03 364 * given offsets are swapped out.
6a15a370
VB
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
48131e03
VB
369unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
6a15a370 371{
6a15a370
VB
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
48131e03 375 unsigned long swapped = 0;
6a15a370
VB
376
377 rcu_read_lock();
378
379restart:
380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 if (iter.index >= end)
382 break;
383
384 page = radix_tree_deref_slot(slot);
385
2cf938aa
MW
386 if (radix_tree_deref_retry(page)) {
387 slot = radix_tree_iter_retry(&iter);
388 continue;
389 }
6a15a370
VB
390
391 if (radix_tree_exceptional_entry(page))
392 swapped++;
393
394 if (need_resched()) {
395 cond_resched_rcu();
396 start = iter.index + 1;
397 goto restart;
398 }
399 }
400
401 rcu_read_unlock();
402
403 return swapped << PAGE_SHIFT;
404}
405
48131e03
VB
406/*
407 * Determine (in bytes) how many of the shmem object's pages mapped by the
408 * given vma is swapped out.
409 *
410 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
411 * as long as the inode doesn't go away and racy results are not a problem.
412 */
413unsigned long shmem_swap_usage(struct vm_area_struct *vma)
414{
415 struct inode *inode = file_inode(vma->vm_file);
416 struct shmem_inode_info *info = SHMEM_I(inode);
417 struct address_space *mapping = inode->i_mapping;
418 unsigned long swapped;
419
420 /* Be careful as we don't hold info->lock */
421 swapped = READ_ONCE(info->swapped);
422
423 /*
424 * The easier cases are when the shmem object has nothing in swap, or
425 * the vma maps it whole. Then we can simply use the stats that we
426 * already track.
427 */
428 if (!swapped)
429 return 0;
430
431 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
432 return swapped << PAGE_SHIFT;
433
434 /* Here comes the more involved part */
435 return shmem_partial_swap_usage(mapping,
436 linear_page_index(vma, vma->vm_start),
437 linear_page_index(vma, vma->vm_end));
438}
439
24513264
HD
440/*
441 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
442 */
443void shmem_unlock_mapping(struct address_space *mapping)
444{
445 struct pagevec pvec;
446 pgoff_t indices[PAGEVEC_SIZE];
447 pgoff_t index = 0;
448
449 pagevec_init(&pvec, 0);
450 /*
451 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
452 */
453 while (!mapping_unevictable(mapping)) {
454 /*
455 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
456 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
457 */
0cd6144a
JW
458 pvec.nr = find_get_entries(mapping, index,
459 PAGEVEC_SIZE, pvec.pages, indices);
24513264
HD
460 if (!pvec.nr)
461 break;
462 index = indices[pvec.nr - 1] + 1;
0cd6144a 463 pagevec_remove_exceptionals(&pvec);
24513264
HD
464 check_move_unevictable_pages(pvec.pages, pvec.nr);
465 pagevec_release(&pvec);
466 cond_resched();
467 }
7a5d0fbb
HD
468}
469
470/*
471 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 472 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 473 */
1635f6a7
HD
474static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
475 bool unfalloc)
1da177e4 476{
285b2c4f 477 struct address_space *mapping = inode->i_mapping;
1da177e4 478 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 479 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
480 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
481 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
482 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 483 struct pagevec pvec;
7a5d0fbb
HD
484 pgoff_t indices[PAGEVEC_SIZE];
485 long nr_swaps_freed = 0;
285b2c4f 486 pgoff_t index;
bda97eab
HD
487 int i;
488
83e4fa9c
HD
489 if (lend == -1)
490 end = -1; /* unsigned, so actually very big */
bda97eab
HD
491
492 pagevec_init(&pvec, 0);
493 index = start;
83e4fa9c 494 while (index < end) {
0cd6144a
JW
495 pvec.nr = find_get_entries(mapping, index,
496 min(end - index, (pgoff_t)PAGEVEC_SIZE),
497 pvec.pages, indices);
7a5d0fbb
HD
498 if (!pvec.nr)
499 break;
bda97eab
HD
500 for (i = 0; i < pagevec_count(&pvec); i++) {
501 struct page *page = pvec.pages[i];
502
7a5d0fbb 503 index = indices[i];
83e4fa9c 504 if (index >= end)
bda97eab
HD
505 break;
506
7a5d0fbb 507 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
508 if (unfalloc)
509 continue;
7a5d0fbb
HD
510 nr_swaps_freed += !shmem_free_swap(mapping,
511 index, page);
bda97eab 512 continue;
7a5d0fbb
HD
513 }
514
515 if (!trylock_page(page))
bda97eab 516 continue;
1635f6a7
HD
517 if (!unfalloc || !PageUptodate(page)) {
518 if (page->mapping == mapping) {
309381fe 519 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
520 truncate_inode_page(mapping, page);
521 }
bda97eab 522 }
bda97eab
HD
523 unlock_page(page);
524 }
0cd6144a 525 pagevec_remove_exceptionals(&pvec);
24513264 526 pagevec_release(&pvec);
bda97eab
HD
527 cond_resched();
528 index++;
529 }
1da177e4 530
83e4fa9c 531 if (partial_start) {
bda97eab
HD
532 struct page *page = NULL;
533 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
534 if (page) {
83e4fa9c
HD
535 unsigned int top = PAGE_CACHE_SIZE;
536 if (start > end) {
537 top = partial_end;
538 partial_end = 0;
539 }
540 zero_user_segment(page, partial_start, top);
541 set_page_dirty(page);
542 unlock_page(page);
543 page_cache_release(page);
544 }
545 }
546 if (partial_end) {
547 struct page *page = NULL;
548 shmem_getpage(inode, end, &page, SGP_READ, NULL);
549 if (page) {
550 zero_user_segment(page, 0, partial_end);
bda97eab
HD
551 set_page_dirty(page);
552 unlock_page(page);
553 page_cache_release(page);
554 }
555 }
83e4fa9c
HD
556 if (start >= end)
557 return;
bda97eab
HD
558
559 index = start;
b1a36650 560 while (index < end) {
bda97eab 561 cond_resched();
0cd6144a
JW
562
563 pvec.nr = find_get_entries(mapping, index,
83e4fa9c 564 min(end - index, (pgoff_t)PAGEVEC_SIZE),
0cd6144a 565 pvec.pages, indices);
7a5d0fbb 566 if (!pvec.nr) {
b1a36650
HD
567 /* If all gone or hole-punch or unfalloc, we're done */
568 if (index == start || end != -1)
bda97eab 569 break;
b1a36650 570 /* But if truncating, restart to make sure all gone */
bda97eab
HD
571 index = start;
572 continue;
573 }
bda97eab
HD
574 for (i = 0; i < pagevec_count(&pvec); i++) {
575 struct page *page = pvec.pages[i];
576
7a5d0fbb 577 index = indices[i];
83e4fa9c 578 if (index >= end)
bda97eab
HD
579 break;
580
7a5d0fbb 581 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
582 if (unfalloc)
583 continue;
b1a36650
HD
584 if (shmem_free_swap(mapping, index, page)) {
585 /* Swap was replaced by page: retry */
586 index--;
587 break;
588 }
589 nr_swaps_freed++;
7a5d0fbb
HD
590 continue;
591 }
592
bda97eab 593 lock_page(page);
1635f6a7
HD
594 if (!unfalloc || !PageUptodate(page)) {
595 if (page->mapping == mapping) {
309381fe 596 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7 597 truncate_inode_page(mapping, page);
b1a36650
HD
598 } else {
599 /* Page was replaced by swap: retry */
600 unlock_page(page);
601 index--;
602 break;
1635f6a7 603 }
7a5d0fbb 604 }
bda97eab
HD
605 unlock_page(page);
606 }
0cd6144a 607 pagevec_remove_exceptionals(&pvec);
24513264 608 pagevec_release(&pvec);
bda97eab
HD
609 index++;
610 }
94c1e62d 611
1da177e4 612 spin_lock(&info->lock);
7a5d0fbb 613 info->swapped -= nr_swaps_freed;
1da177e4
LT
614 shmem_recalc_inode(inode);
615 spin_unlock(&info->lock);
1635f6a7 616}
1da177e4 617
1635f6a7
HD
618void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
619{
620 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 621 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 622}
94c1e62d 623EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 624
44a30220
YZ
625static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
626 struct kstat *stat)
627{
628 struct inode *inode = dentry->d_inode;
629 struct shmem_inode_info *info = SHMEM_I(inode);
630
d0424c42
HD
631 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
632 spin_lock(&info->lock);
633 shmem_recalc_inode(inode);
634 spin_unlock(&info->lock);
635 }
44a30220 636 generic_fillattr(inode, stat);
44a30220
YZ
637 return 0;
638}
639
94c1e62d 640static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4 641{
75c3cfa8 642 struct inode *inode = d_inode(dentry);
40e041a2 643 struct shmem_inode_info *info = SHMEM_I(inode);
1da177e4
LT
644 int error;
645
db78b877
CH
646 error = inode_change_ok(inode, attr);
647 if (error)
648 return error;
649
94c1e62d
HD
650 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
651 loff_t oldsize = inode->i_size;
652 loff_t newsize = attr->ia_size;
3889e6e7 653
40e041a2
DH
654 /* protected by i_mutex */
655 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
656 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
657 return -EPERM;
658
94c1e62d 659 if (newsize != oldsize) {
77142517
KK
660 error = shmem_reacct_size(SHMEM_I(inode)->flags,
661 oldsize, newsize);
662 if (error)
663 return error;
94c1e62d
HD
664 i_size_write(inode, newsize);
665 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
666 }
afa2db2f 667 if (newsize <= oldsize) {
94c1e62d 668 loff_t holebegin = round_up(newsize, PAGE_SIZE);
d0424c42
HD
669 if (oldsize > holebegin)
670 unmap_mapping_range(inode->i_mapping,
671 holebegin, 0, 1);
672 if (info->alloced)
673 shmem_truncate_range(inode,
674 newsize, (loff_t)-1);
94c1e62d 675 /* unmap again to remove racily COWed private pages */
d0424c42
HD
676 if (oldsize > holebegin)
677 unmap_mapping_range(inode->i_mapping,
678 holebegin, 0, 1);
94c1e62d 679 }
1da177e4
LT
680 }
681
db78b877 682 setattr_copy(inode, attr);
db78b877 683 if (attr->ia_valid & ATTR_MODE)
feda821e 684 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
685 return error;
686}
687
1f895f75 688static void shmem_evict_inode(struct inode *inode)
1da177e4 689{
1da177e4
LT
690 struct shmem_inode_info *info = SHMEM_I(inode);
691
3889e6e7 692 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
693 shmem_unacct_size(info->flags, inode->i_size);
694 inode->i_size = 0;
3889e6e7 695 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 696 if (!list_empty(&info->swaplist)) {
cb5f7b9a 697 mutex_lock(&shmem_swaplist_mutex);
1da177e4 698 list_del_init(&info->swaplist);
cb5f7b9a 699 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 700 }
3ed47db3 701 }
b09e0fa4 702
38f38657 703 simple_xattrs_free(&info->xattrs);
0f3c42f5 704 WARN_ON(inode->i_blocks);
5b04c689 705 shmem_free_inode(inode->i_sb);
dbd5768f 706 clear_inode(inode);
1da177e4
LT
707}
708
46f65ec1
HD
709/*
710 * If swap found in inode, free it and move page from swapcache to filecache.
711 */
41ffe5d5 712static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 713 swp_entry_t swap, struct page **pagep)
1da177e4 714{
285b2c4f 715 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 716 void *radswap;
41ffe5d5 717 pgoff_t index;
bde05d1c
HD
718 gfp_t gfp;
719 int error = 0;
1da177e4 720
46f65ec1 721 radswap = swp_to_radix_entry(swap);
e504f3fd 722 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 723 if (index == -1)
00501b53 724 return -EAGAIN; /* tell shmem_unuse we found nothing */
2e0e26c7 725
1b1b32f2
HD
726 /*
727 * Move _head_ to start search for next from here.
1f895f75 728 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 729 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 730 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
731 */
732 if (shmem_swaplist.next != &info->swaplist)
733 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 734
bde05d1c
HD
735 gfp = mapping_gfp_mask(mapping);
736 if (shmem_should_replace_page(*pagep, gfp)) {
737 mutex_unlock(&shmem_swaplist_mutex);
738 error = shmem_replace_page(pagep, gfp, info, index);
739 mutex_lock(&shmem_swaplist_mutex);
740 /*
741 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
742 * allocation, but the inode might have been freed while we
743 * dropped it: although a racing shmem_evict_inode() cannot
744 * complete without emptying the radix_tree, our page lock
745 * on this swapcache page is not enough to prevent that -
746 * free_swap_and_cache() of our swap entry will only
747 * trylock_page(), removing swap from radix_tree whatever.
748 *
749 * We must not proceed to shmem_add_to_page_cache() if the
750 * inode has been freed, but of course we cannot rely on
751 * inode or mapping or info to check that. However, we can
752 * safely check if our swap entry is still in use (and here
753 * it can't have got reused for another page): if it's still
754 * in use, then the inode cannot have been freed yet, and we
755 * can safely proceed (if it's no longer in use, that tells
756 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
757 */
758 if (!page_swapcount(*pagep))
759 error = -ENOENT;
760 }
761
d13d1443 762 /*
778dd893
HD
763 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
764 * but also to hold up shmem_evict_inode(): so inode cannot be freed
765 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 766 */
bde05d1c
HD
767 if (!error)
768 error = shmem_add_to_page_cache(*pagep, mapping, index,
fed400a1 769 radswap);
48f170fb 770 if (error != -ENOMEM) {
46f65ec1
HD
771 /*
772 * Truncation and eviction use free_swap_and_cache(), which
773 * only does trylock page: if we raced, best clean up here.
774 */
bde05d1c
HD
775 delete_from_swap_cache(*pagep);
776 set_page_dirty(*pagep);
46f65ec1
HD
777 if (!error) {
778 spin_lock(&info->lock);
779 info->swapped--;
780 spin_unlock(&info->lock);
781 swap_free(swap);
782 }
1da177e4 783 }
2e0e26c7 784 return error;
1da177e4
LT
785}
786
787/*
46f65ec1 788 * Search through swapped inodes to find and replace swap by page.
1da177e4 789 */
41ffe5d5 790int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 791{
41ffe5d5 792 struct list_head *this, *next;
1da177e4 793 struct shmem_inode_info *info;
00501b53 794 struct mem_cgroup *memcg;
bde05d1c
HD
795 int error = 0;
796
797 /*
798 * There's a faint possibility that swap page was replaced before
0142ef6c 799 * caller locked it: caller will come back later with the right page.
bde05d1c 800 */
0142ef6c 801 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 802 goto out;
778dd893
HD
803
804 /*
805 * Charge page using GFP_KERNEL while we can wait, before taking
806 * the shmem_swaplist_mutex which might hold up shmem_writepage().
807 * Charged back to the user (not to caller) when swap account is used.
778dd893 808 */
f627c2f5
KS
809 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
810 false);
778dd893
HD
811 if (error)
812 goto out;
46f65ec1 813 /* No radix_tree_preload: swap entry keeps a place for page in tree */
00501b53 814 error = -EAGAIN;
1da177e4 815
cb5f7b9a 816 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
817 list_for_each_safe(this, next, &shmem_swaplist) {
818 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 819 if (info->swapped)
00501b53 820 error = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
821 else
822 list_del_init(&info->swaplist);
cb5f7b9a 823 cond_resched();
00501b53 824 if (error != -EAGAIN)
778dd893 825 break;
00501b53 826 /* found nothing in this: move on to search the next */
1da177e4 827 }
cb5f7b9a 828 mutex_unlock(&shmem_swaplist_mutex);
778dd893 829
00501b53
JW
830 if (error) {
831 if (error != -ENOMEM)
832 error = 0;
f627c2f5 833 mem_cgroup_cancel_charge(page, memcg, false);
00501b53 834 } else
f627c2f5 835 mem_cgroup_commit_charge(page, memcg, true, false);
778dd893 836out:
aaa46865
HD
837 unlock_page(page);
838 page_cache_release(page);
778dd893 839 return error;
1da177e4
LT
840}
841
842/*
843 * Move the page from the page cache to the swap cache.
844 */
845static int shmem_writepage(struct page *page, struct writeback_control *wbc)
846{
847 struct shmem_inode_info *info;
1da177e4 848 struct address_space *mapping;
1da177e4 849 struct inode *inode;
6922c0c7
HD
850 swp_entry_t swap;
851 pgoff_t index;
1da177e4
LT
852
853 BUG_ON(!PageLocked(page));
1da177e4
LT
854 mapping = page->mapping;
855 index = page->index;
856 inode = mapping->host;
857 info = SHMEM_I(inode);
858 if (info->flags & VM_LOCKED)
859 goto redirty;
d9fe526a 860 if (!total_swap_pages)
1da177e4
LT
861 goto redirty;
862
d9fe526a 863 /*
97b713ba
CH
864 * Our capabilities prevent regular writeback or sync from ever calling
865 * shmem_writepage; but a stacking filesystem might use ->writepage of
866 * its underlying filesystem, in which case tmpfs should write out to
867 * swap only in response to memory pressure, and not for the writeback
868 * threads or sync.
d9fe526a 869 */
48f170fb
HD
870 if (!wbc->for_reclaim) {
871 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
872 goto redirty;
873 }
1635f6a7
HD
874
875 /*
876 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
877 * value into swapfile.c, the only way we can correctly account for a
878 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
879 *
880 * That's okay for a page already fallocated earlier, but if we have
881 * not yet completed the fallocation, then (a) we want to keep track
882 * of this page in case we have to undo it, and (b) it may not be a
883 * good idea to continue anyway, once we're pushing into swap. So
884 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
885 */
886 if (!PageUptodate(page)) {
1aac1400
HD
887 if (inode->i_private) {
888 struct shmem_falloc *shmem_falloc;
889 spin_lock(&inode->i_lock);
890 shmem_falloc = inode->i_private;
891 if (shmem_falloc &&
8e205f77 892 !shmem_falloc->waitq &&
1aac1400
HD
893 index >= shmem_falloc->start &&
894 index < shmem_falloc->next)
895 shmem_falloc->nr_unswapped++;
896 else
897 shmem_falloc = NULL;
898 spin_unlock(&inode->i_lock);
899 if (shmem_falloc)
900 goto redirty;
901 }
1635f6a7
HD
902 clear_highpage(page);
903 flush_dcache_page(page);
904 SetPageUptodate(page);
905 }
906
48f170fb
HD
907 swap = get_swap_page();
908 if (!swap.val)
909 goto redirty;
d9fe526a 910
37e84351
VD
911 if (mem_cgroup_try_charge_swap(page, swap))
912 goto free_swap;
913
b1dea800
HD
914 /*
915 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
916 * if it's not already there. Do it now before the page is
917 * moved to swap cache, when its pagelock no longer protects
b1dea800 918 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
919 * we've incremented swapped, because shmem_unuse_inode() will
920 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 921 */
48f170fb
HD
922 mutex_lock(&shmem_swaplist_mutex);
923 if (list_empty(&info->swaplist))
924 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 925
48f170fb 926 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
6922c0c7 927 spin_lock(&info->lock);
6922c0c7 928 shmem_recalc_inode(inode);
267a4c76 929 info->swapped++;
826267cf 930 spin_unlock(&info->lock);
6922c0c7 931
267a4c76
HD
932 swap_shmem_alloc(swap);
933 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
934
6922c0c7 935 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 936 BUG_ON(page_mapped(page));
9fab5619 937 swap_writepage(page, wbc);
1da177e4
LT
938 return 0;
939 }
940
6922c0c7 941 mutex_unlock(&shmem_swaplist_mutex);
37e84351 942free_swap:
0a31bc97 943 swapcache_free(swap);
1da177e4
LT
944redirty:
945 set_page_dirty(page);
d9fe526a
HD
946 if (wbc->for_reclaim)
947 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
948 unlock_page(page);
949 return 0;
1da177e4
LT
950}
951
952#ifdef CONFIG_NUMA
680d794b 953#ifdef CONFIG_TMPFS
71fe804b 954static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 955{
095f1fc4 956 char buffer[64];
680d794b 957
71fe804b 958 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 959 return; /* show nothing */
680d794b 960
a7a88b23 961 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
962
963 seq_printf(seq, ",mpol=%s", buffer);
680d794b 964}
71fe804b
LS
965
966static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967{
968 struct mempolicy *mpol = NULL;
969 if (sbinfo->mpol) {
970 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
971 mpol = sbinfo->mpol;
972 mpol_get(mpol);
973 spin_unlock(&sbinfo->stat_lock);
974 }
975 return mpol;
976}
680d794b 977#endif /* CONFIG_TMPFS */
978
41ffe5d5
HD
979static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
980 struct shmem_inode_info *info, pgoff_t index)
1da177e4 981{
1da177e4 982 struct vm_area_struct pvma;
18a2f371 983 struct page *page;
52cd3b07 984
1da177e4 985 /* Create a pseudo vma that just contains the policy */
c4cc6d07 986 pvma.vm_start = 0;
09c231cb
NZ
987 /* Bias interleave by inode number to distribute better across nodes */
988 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 989 pvma.vm_ops = NULL;
18a2f371
MG
990 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
991
992 page = swapin_readahead(swap, gfp, &pvma, 0);
993
994 /* Drop reference taken by mpol_shared_policy_lookup() */
995 mpol_cond_put(pvma.vm_policy);
996
997 return page;
1da177e4
LT
998}
999
02098fea 1000static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1001 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
1002{
1003 struct vm_area_struct pvma;
18a2f371 1004 struct page *page;
1da177e4 1005
c4cc6d07
HD
1006 /* Create a pseudo vma that just contains the policy */
1007 pvma.vm_start = 0;
09c231cb
NZ
1008 /* Bias interleave by inode number to distribute better across nodes */
1009 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 1010 pvma.vm_ops = NULL;
41ffe5d5 1011 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 1012
18a2f371
MG
1013 page = alloc_page_vma(gfp, &pvma, 0);
1014
1015 /* Drop reference taken by mpol_shared_policy_lookup() */
1016 mpol_cond_put(pvma.vm_policy);
1017
1018 return page;
1da177e4 1019}
680d794b 1020#else /* !CONFIG_NUMA */
1021#ifdef CONFIG_TMPFS
41ffe5d5 1022static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1023{
1024}
1025#endif /* CONFIG_TMPFS */
1026
41ffe5d5
HD
1027static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1028 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1029{
41ffe5d5 1030 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
1031}
1032
02098fea 1033static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 1034 struct shmem_inode_info *info, pgoff_t index)
1da177e4 1035{
e84e2e13 1036 return alloc_page(gfp);
1da177e4 1037}
680d794b 1038#endif /* CONFIG_NUMA */
1da177e4 1039
71fe804b
LS
1040#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1041static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1042{
1043 return NULL;
1044}
1045#endif
1046
bde05d1c
HD
1047/*
1048 * When a page is moved from swapcache to shmem filecache (either by the
1049 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1050 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1051 * ignorance of the mapping it belongs to. If that mapping has special
1052 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1053 * we may need to copy to a suitable page before moving to filecache.
1054 *
1055 * In a future release, this may well be extended to respect cpuset and
1056 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1057 * but for now it is a simple matter of zone.
1058 */
1059static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1060{
1061 return page_zonenum(page) > gfp_zone(gfp);
1062}
1063
1064static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1065 struct shmem_inode_info *info, pgoff_t index)
1066{
1067 struct page *oldpage, *newpage;
1068 struct address_space *swap_mapping;
1069 pgoff_t swap_index;
1070 int error;
1071
1072 oldpage = *pagep;
1073 swap_index = page_private(oldpage);
1074 swap_mapping = page_mapping(oldpage);
1075
1076 /*
1077 * We have arrived here because our zones are constrained, so don't
1078 * limit chance of success by further cpuset and node constraints.
1079 */
1080 gfp &= ~GFP_CONSTRAINT_MASK;
1081 newpage = shmem_alloc_page(gfp, info, index);
1082 if (!newpage)
1083 return -ENOMEM;
bde05d1c 1084
bde05d1c
HD
1085 page_cache_get(newpage);
1086 copy_highpage(newpage, oldpage);
0142ef6c 1087 flush_dcache_page(newpage);
bde05d1c 1088
48c935ad 1089 __SetPageLocked(newpage);
bde05d1c 1090 SetPageUptodate(newpage);
bde05d1c 1091 SetPageSwapBacked(newpage);
bde05d1c 1092 set_page_private(newpage, swap_index);
bde05d1c
HD
1093 SetPageSwapCache(newpage);
1094
1095 /*
1096 * Our caller will very soon move newpage out of swapcache, but it's
1097 * a nice clean interface for us to replace oldpage by newpage there.
1098 */
1099 spin_lock_irq(&swap_mapping->tree_lock);
1100 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1101 newpage);
0142ef6c
HD
1102 if (!error) {
1103 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1104 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1105 }
bde05d1c 1106 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1107
0142ef6c
HD
1108 if (unlikely(error)) {
1109 /*
1110 * Is this possible? I think not, now that our callers check
1111 * both PageSwapCache and page_private after getting page lock;
1112 * but be defensive. Reverse old to newpage for clear and free.
1113 */
1114 oldpage = newpage;
1115 } else {
6a93ca8f 1116 mem_cgroup_migrate(oldpage, newpage);
0142ef6c
HD
1117 lru_cache_add_anon(newpage);
1118 *pagep = newpage;
1119 }
bde05d1c
HD
1120
1121 ClearPageSwapCache(oldpage);
1122 set_page_private(oldpage, 0);
1123
1124 unlock_page(oldpage);
1125 page_cache_release(oldpage);
1126 page_cache_release(oldpage);
0142ef6c 1127 return error;
bde05d1c
HD
1128}
1129
1da177e4 1130/*
68da9f05 1131 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1132 *
1133 * If we allocate a new one we do not mark it dirty. That's up to the
1134 * vm. If we swap it in we mark it dirty since we also free the swap
1135 * entry since a page cannot live in both the swap and page cache
1136 */
41ffe5d5 1137static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1138 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1139{
1140 struct address_space *mapping = inode->i_mapping;
54af6042 1141 struct shmem_inode_info *info;
1da177e4 1142 struct shmem_sb_info *sbinfo;
00501b53 1143 struct mem_cgroup *memcg;
27ab7006 1144 struct page *page;
1da177e4
LT
1145 swp_entry_t swap;
1146 int error;
54af6042 1147 int once = 0;
1635f6a7 1148 int alloced = 0;
1da177e4 1149
41ffe5d5 1150 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1151 return -EFBIG;
1da177e4 1152repeat:
54af6042 1153 swap.val = 0;
0cd6144a 1154 page = find_lock_entry(mapping, index);
54af6042
HD
1155 if (radix_tree_exceptional_entry(page)) {
1156 swap = radix_to_swp_entry(page);
1157 page = NULL;
1158 }
1159
1635f6a7 1160 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1161 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1162 error = -EINVAL;
267a4c76 1163 goto unlock;
54af6042
HD
1164 }
1165
66d2f4d2
HD
1166 if (page && sgp == SGP_WRITE)
1167 mark_page_accessed(page);
1168
1635f6a7
HD
1169 /* fallocated page? */
1170 if (page && !PageUptodate(page)) {
1171 if (sgp != SGP_READ)
1172 goto clear;
1173 unlock_page(page);
1174 page_cache_release(page);
1175 page = NULL;
1176 }
54af6042 1177 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1178 *pagep = page;
1179 return 0;
27ab7006
HD
1180 }
1181
1182 /*
54af6042
HD
1183 * Fast cache lookup did not find it:
1184 * bring it back from swap or allocate.
27ab7006 1185 */
54af6042
HD
1186 info = SHMEM_I(inode);
1187 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1188
1da177e4
LT
1189 if (swap.val) {
1190 /* Look it up and read it in.. */
27ab7006
HD
1191 page = lookup_swap_cache(swap);
1192 if (!page) {
1da177e4 1193 /* here we actually do the io */
68da9f05
HD
1194 if (fault_type)
1195 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1196 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1197 if (!page) {
54af6042
HD
1198 error = -ENOMEM;
1199 goto failed;
1da177e4 1200 }
1da177e4
LT
1201 }
1202
1203 /* We have to do this with page locked to prevent races */
54af6042 1204 lock_page(page);
0142ef6c 1205 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1206 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1207 error = -EEXIST; /* try again */
d1899228 1208 goto unlock;
bde05d1c 1209 }
27ab7006 1210 if (!PageUptodate(page)) {
1da177e4 1211 error = -EIO;
54af6042 1212 goto failed;
1da177e4 1213 }
54af6042
HD
1214 wait_on_page_writeback(page);
1215
bde05d1c
HD
1216 if (shmem_should_replace_page(page, gfp)) {
1217 error = shmem_replace_page(&page, gfp, info, index);
1218 if (error)
1219 goto failed;
1da177e4 1220 }
27ab7006 1221
f627c2f5
KS
1222 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1223 false);
d1899228 1224 if (!error) {
aa3b1895 1225 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1226 swp_to_radix_entry(swap));
215c02bc
HD
1227 /*
1228 * We already confirmed swap under page lock, and make
1229 * no memory allocation here, so usually no possibility
1230 * of error; but free_swap_and_cache() only trylocks a
1231 * page, so it is just possible that the entry has been
1232 * truncated or holepunched since swap was confirmed.
1233 * shmem_undo_range() will have done some of the
1234 * unaccounting, now delete_from_swap_cache() will do
93aa7d95 1235 * the rest.
215c02bc
HD
1236 * Reset swap.val? No, leave it so "failed" goes back to
1237 * "repeat": reading a hole and writing should succeed.
1238 */
00501b53 1239 if (error) {
f627c2f5 1240 mem_cgroup_cancel_charge(page, memcg, false);
215c02bc 1241 delete_from_swap_cache(page);
00501b53 1242 }
d1899228 1243 }
54af6042
HD
1244 if (error)
1245 goto failed;
1246
f627c2f5 1247 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1248
54af6042 1249 spin_lock(&info->lock);
285b2c4f 1250 info->swapped--;
54af6042 1251 shmem_recalc_inode(inode);
27ab7006 1252 spin_unlock(&info->lock);
54af6042 1253
66d2f4d2
HD
1254 if (sgp == SGP_WRITE)
1255 mark_page_accessed(page);
1256
54af6042 1257 delete_from_swap_cache(page);
27ab7006
HD
1258 set_page_dirty(page);
1259 swap_free(swap);
1260
54af6042
HD
1261 } else {
1262 if (shmem_acct_block(info->flags)) {
1263 error = -ENOSPC;
1264 goto failed;
1da177e4 1265 }
0edd73b3 1266 if (sbinfo->max_blocks) {
fc5da22a 1267 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1268 sbinfo->max_blocks) >= 0) {
1269 error = -ENOSPC;
1270 goto unacct;
1271 }
7e496299 1272 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1273 }
1da177e4 1274
54af6042
HD
1275 page = shmem_alloc_page(gfp, info, index);
1276 if (!page) {
1277 error = -ENOMEM;
1278 goto decused;
1da177e4
LT
1279 }
1280
07a42788 1281 __SetPageSwapBacked(page);
48c935ad 1282 __SetPageLocked(page);
66d2f4d2 1283 if (sgp == SGP_WRITE)
eb39d618 1284 __SetPageReferenced(page);
66d2f4d2 1285
f627c2f5
KS
1286 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1287 false);
54af6042
HD
1288 if (error)
1289 goto decused;
5e4c0d97 1290 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1291 if (!error) {
1292 error = shmem_add_to_page_cache(page, mapping, index,
fed400a1 1293 NULL);
b065b432
HD
1294 radix_tree_preload_end();
1295 }
1296 if (error) {
f627c2f5 1297 mem_cgroup_cancel_charge(page, memcg, false);
b065b432
HD
1298 goto decused;
1299 }
f627c2f5 1300 mem_cgroup_commit_charge(page, memcg, false, false);
54af6042
HD
1301 lru_cache_add_anon(page);
1302
1303 spin_lock(&info->lock);
1da177e4 1304 info->alloced++;
54af6042
HD
1305 inode->i_blocks += BLOCKS_PER_PAGE;
1306 shmem_recalc_inode(inode);
1da177e4 1307 spin_unlock(&info->lock);
1635f6a7 1308 alloced = true;
54af6042 1309
ec9516fb 1310 /*
1635f6a7
HD
1311 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1312 */
1313 if (sgp == SGP_FALLOC)
1314 sgp = SGP_WRITE;
1315clear:
1316 /*
1317 * Let SGP_WRITE caller clear ends if write does not fill page;
1318 * but SGP_FALLOC on a page fallocated earlier must initialize
1319 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1320 */
1321 if (sgp != SGP_WRITE) {
1322 clear_highpage(page);
1323 flush_dcache_page(page);
1324 SetPageUptodate(page);
1325 }
a0ee5ec5 1326 if (sgp == SGP_DIRTY)
27ab7006 1327 set_page_dirty(page);
1da177e4 1328 }
bde05d1c 1329
54af6042 1330 /* Perhaps the file has been truncated since we checked */
1635f6a7 1331 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042 1332 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
267a4c76
HD
1333 if (alloced) {
1334 ClearPageDirty(page);
1335 delete_from_page_cache(page);
1336 spin_lock(&info->lock);
1337 shmem_recalc_inode(inode);
1338 spin_unlock(&info->lock);
1339 }
54af6042 1340 error = -EINVAL;
267a4c76 1341 goto unlock;
e83c32e8 1342 }
54af6042
HD
1343 *pagep = page;
1344 return 0;
1da177e4 1345
59a16ead 1346 /*
54af6042 1347 * Error recovery.
59a16ead 1348 */
54af6042
HD
1349decused:
1350 if (sbinfo->max_blocks)
1351 percpu_counter_add(&sbinfo->used_blocks, -1);
1352unacct:
1353 shmem_unacct_blocks(info->flags, 1);
1354failed:
267a4c76 1355 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
d1899228
HD
1356 error = -EEXIST;
1357unlock:
27ab7006 1358 if (page) {
54af6042 1359 unlock_page(page);
27ab7006 1360 page_cache_release(page);
54af6042
HD
1361 }
1362 if (error == -ENOSPC && !once++) {
1363 info = SHMEM_I(inode);
1364 spin_lock(&info->lock);
1365 shmem_recalc_inode(inode);
1366 spin_unlock(&info->lock);
27ab7006 1367 goto repeat;
ff36b801 1368 }
d1899228 1369 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1370 goto repeat;
1371 return error;
1da177e4
LT
1372}
1373
d0217ac0 1374static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1375{
496ad9aa 1376 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1377 int error;
68da9f05 1378 int ret = VM_FAULT_LOCKED;
1da177e4 1379
f00cdc6d
HD
1380 /*
1381 * Trinity finds that probing a hole which tmpfs is punching can
1382 * prevent the hole-punch from ever completing: which in turn
1383 * locks writers out with its hold on i_mutex. So refrain from
8e205f77
HD
1384 * faulting pages into the hole while it's being punched. Although
1385 * shmem_undo_range() does remove the additions, it may be unable to
1386 * keep up, as each new page needs its own unmap_mapping_range() call,
1387 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1388 *
1389 * It does not matter if we sometimes reach this check just before the
1390 * hole-punch begins, so that one fault then races with the punch:
1391 * we just need to make racing faults a rare case.
1392 *
1393 * The implementation below would be much simpler if we just used a
1394 * standard mutex or completion: but we cannot take i_mutex in fault,
1395 * and bloating every shmem inode for this unlikely case would be sad.
f00cdc6d
HD
1396 */
1397 if (unlikely(inode->i_private)) {
1398 struct shmem_falloc *shmem_falloc;
1399
1400 spin_lock(&inode->i_lock);
1401 shmem_falloc = inode->i_private;
8e205f77
HD
1402 if (shmem_falloc &&
1403 shmem_falloc->waitq &&
1404 vmf->pgoff >= shmem_falloc->start &&
1405 vmf->pgoff < shmem_falloc->next) {
1406 wait_queue_head_t *shmem_falloc_waitq;
1407 DEFINE_WAIT(shmem_fault_wait);
1408
1409 ret = VM_FAULT_NOPAGE;
f00cdc6d
HD
1410 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1411 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
8e205f77 1412 /* It's polite to up mmap_sem if we can */
f00cdc6d 1413 up_read(&vma->vm_mm->mmap_sem);
8e205f77 1414 ret = VM_FAULT_RETRY;
f00cdc6d 1415 }
8e205f77
HD
1416
1417 shmem_falloc_waitq = shmem_falloc->waitq;
1418 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1419 TASK_UNINTERRUPTIBLE);
1420 spin_unlock(&inode->i_lock);
1421 schedule();
1422
1423 /*
1424 * shmem_falloc_waitq points into the shmem_fallocate()
1425 * stack of the hole-punching task: shmem_falloc_waitq
1426 * is usually invalid by the time we reach here, but
1427 * finish_wait() does not dereference it in that case;
1428 * though i_lock needed lest racing with wake_up_all().
1429 */
1430 spin_lock(&inode->i_lock);
1431 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1432 spin_unlock(&inode->i_lock);
1433 return ret;
f00cdc6d 1434 }
8e205f77 1435 spin_unlock(&inode->i_lock);
f00cdc6d
HD
1436 }
1437
27d54b39 1438 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1439 if (error)
1440 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1441
456f998e
YH
1442 if (ret & VM_FAULT_MAJOR) {
1443 count_vm_event(PGMAJFAULT);
1444 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1445 }
68da9f05 1446 return ret;
1da177e4
LT
1447}
1448
1da177e4 1449#ifdef CONFIG_NUMA
41ffe5d5 1450static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1451{
496ad9aa 1452 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1453 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1454}
1455
d8dc74f2
AB
1456static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1457 unsigned long addr)
1da177e4 1458{
496ad9aa 1459 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1460 pgoff_t index;
1da177e4 1461
41ffe5d5
HD
1462 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1463 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1464}
1465#endif
1466
1467int shmem_lock(struct file *file, int lock, struct user_struct *user)
1468{
496ad9aa 1469 struct inode *inode = file_inode(file);
1da177e4
LT
1470 struct shmem_inode_info *info = SHMEM_I(inode);
1471 int retval = -ENOMEM;
1472
1473 spin_lock(&info->lock);
1474 if (lock && !(info->flags & VM_LOCKED)) {
1475 if (!user_shm_lock(inode->i_size, user))
1476 goto out_nomem;
1477 info->flags |= VM_LOCKED;
89e004ea 1478 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1479 }
1480 if (!lock && (info->flags & VM_LOCKED) && user) {
1481 user_shm_unlock(inode->i_size, user);
1482 info->flags &= ~VM_LOCKED;
89e004ea 1483 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1484 }
1485 retval = 0;
89e004ea 1486
1da177e4
LT
1487out_nomem:
1488 spin_unlock(&info->lock);
1489 return retval;
1490}
1491
9b83a6a8 1492static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1493{
1494 file_accessed(file);
1495 vma->vm_ops = &shmem_vm_ops;
1496 return 0;
1497}
1498
454abafe 1499static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1500 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1501{
1502 struct inode *inode;
1503 struct shmem_inode_info *info;
1504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1505
5b04c689
PE
1506 if (shmem_reserve_inode(sb))
1507 return NULL;
1da177e4
LT
1508
1509 inode = new_inode(sb);
1510 if (inode) {
85fe4025 1511 inode->i_ino = get_next_ino();
454abafe 1512 inode_init_owner(inode, dir, mode);
1da177e4 1513 inode->i_blocks = 0;
1da177e4 1514 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1515 inode->i_generation = get_seconds();
1da177e4
LT
1516 info = SHMEM_I(inode);
1517 memset(info, 0, (char *)inode - (char *)info);
1518 spin_lock_init(&info->lock);
40e041a2 1519 info->seals = F_SEAL_SEAL;
0b0a0806 1520 info->flags = flags & VM_NORESERVE;
1da177e4 1521 INIT_LIST_HEAD(&info->swaplist);
38f38657 1522 simple_xattrs_init(&info->xattrs);
72c04902 1523 cache_no_acl(inode);
1da177e4
LT
1524
1525 switch (mode & S_IFMT) {
1526 default:
39f0247d 1527 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1528 init_special_inode(inode, mode, dev);
1529 break;
1530 case S_IFREG:
14fcc23f 1531 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1532 inode->i_op = &shmem_inode_operations;
1533 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1534 mpol_shared_policy_init(&info->policy,
1535 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1536 break;
1537 case S_IFDIR:
d8c76e6f 1538 inc_nlink(inode);
1da177e4
LT
1539 /* Some things misbehave if size == 0 on a directory */
1540 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1541 inode->i_op = &shmem_dir_inode_operations;
1542 inode->i_fop = &simple_dir_operations;
1543 break;
1544 case S_IFLNK:
1545 /*
1546 * Must not load anything in the rbtree,
1547 * mpol_free_shared_policy will not be called.
1548 */
71fe804b 1549 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1550 break;
1551 }
5b04c689
PE
1552 } else
1553 shmem_free_inode(sb);
1da177e4
LT
1554 return inode;
1555}
1556
0cd6144a
JW
1557bool shmem_mapping(struct address_space *mapping)
1558{
f0774d88
SL
1559 if (!mapping->host)
1560 return false;
1561
97b713ba 1562 return mapping->host->i_sb->s_op == &shmem_ops;
0cd6144a
JW
1563}
1564
1da177e4 1565#ifdef CONFIG_TMPFS
92e1d5be 1566static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1567static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1568
6d9d88d0
JS
1569#ifdef CONFIG_TMPFS_XATTR
1570static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1571#else
1572#define shmem_initxattrs NULL
1573#endif
1574
1da177e4 1575static int
800d15a5
NP
1576shmem_write_begin(struct file *file, struct address_space *mapping,
1577 loff_t pos, unsigned len, unsigned flags,
1578 struct page **pagep, void **fsdata)
1da177e4 1579{
800d15a5 1580 struct inode *inode = mapping->host;
40e041a2 1581 struct shmem_inode_info *info = SHMEM_I(inode);
800d15a5 1582 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
40e041a2
DH
1583
1584 /* i_mutex is held by caller */
1585 if (unlikely(info->seals)) {
1586 if (info->seals & F_SEAL_WRITE)
1587 return -EPERM;
1588 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1589 return -EPERM;
1590 }
1591
66d2f4d2 1592 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
800d15a5
NP
1593}
1594
1595static int
1596shmem_write_end(struct file *file, struct address_space *mapping,
1597 loff_t pos, unsigned len, unsigned copied,
1598 struct page *page, void *fsdata)
1599{
1600 struct inode *inode = mapping->host;
1601
d3602444
HD
1602 if (pos + copied > inode->i_size)
1603 i_size_write(inode, pos + copied);
1604
ec9516fb
HD
1605 if (!PageUptodate(page)) {
1606 if (copied < PAGE_CACHE_SIZE) {
1607 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1608 zero_user_segments(page, 0, from,
1609 from + copied, PAGE_CACHE_SIZE);
1610 }
1611 SetPageUptodate(page);
1612 }
800d15a5 1613 set_page_dirty(page);
6746aff7 1614 unlock_page(page);
800d15a5
NP
1615 page_cache_release(page);
1616
800d15a5 1617 return copied;
1da177e4
LT
1618}
1619
2ba5bbed 1620static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1da177e4 1621{
6e58e79d
AV
1622 struct file *file = iocb->ki_filp;
1623 struct inode *inode = file_inode(file);
1da177e4 1624 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1625 pgoff_t index;
1626 unsigned long offset;
a0ee5ec5 1627 enum sgp_type sgp = SGP_READ;
f7c1d074 1628 int error = 0;
cb66a7a1 1629 ssize_t retval = 0;
6e58e79d 1630 loff_t *ppos = &iocb->ki_pos;
a0ee5ec5
HD
1631
1632 /*
1633 * Might this read be for a stacking filesystem? Then when reading
1634 * holes of a sparse file, we actually need to allocate those pages,
1635 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1636 */
777eda2c 1637 if (!iter_is_iovec(to))
a0ee5ec5 1638 sgp = SGP_DIRTY;
1da177e4
LT
1639
1640 index = *ppos >> PAGE_CACHE_SHIFT;
1641 offset = *ppos & ~PAGE_CACHE_MASK;
1642
1643 for (;;) {
1644 struct page *page = NULL;
41ffe5d5
HD
1645 pgoff_t end_index;
1646 unsigned long nr, ret;
1da177e4
LT
1647 loff_t i_size = i_size_read(inode);
1648
1649 end_index = i_size >> PAGE_CACHE_SHIFT;
1650 if (index > end_index)
1651 break;
1652 if (index == end_index) {
1653 nr = i_size & ~PAGE_CACHE_MASK;
1654 if (nr <= offset)
1655 break;
1656 }
1657
6e58e79d
AV
1658 error = shmem_getpage(inode, index, &page, sgp, NULL);
1659 if (error) {
1660 if (error == -EINVAL)
1661 error = 0;
1da177e4
LT
1662 break;
1663 }
d3602444
HD
1664 if (page)
1665 unlock_page(page);
1da177e4
LT
1666
1667 /*
1668 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1669 * are called without i_mutex protection against truncate
1da177e4
LT
1670 */
1671 nr = PAGE_CACHE_SIZE;
1672 i_size = i_size_read(inode);
1673 end_index = i_size >> PAGE_CACHE_SHIFT;
1674 if (index == end_index) {
1675 nr = i_size & ~PAGE_CACHE_MASK;
1676 if (nr <= offset) {
1677 if (page)
1678 page_cache_release(page);
1679 break;
1680 }
1681 }
1682 nr -= offset;
1683
1684 if (page) {
1685 /*
1686 * If users can be writing to this page using arbitrary
1687 * virtual addresses, take care about potential aliasing
1688 * before reading the page on the kernel side.
1689 */
1690 if (mapping_writably_mapped(mapping))
1691 flush_dcache_page(page);
1692 /*
1693 * Mark the page accessed if we read the beginning.
1694 */
1695 if (!offset)
1696 mark_page_accessed(page);
b5810039 1697 } else {
1da177e4 1698 page = ZERO_PAGE(0);
b5810039
NP
1699 page_cache_get(page);
1700 }
1da177e4
LT
1701
1702 /*
1703 * Ok, we have the page, and it's up-to-date, so
1704 * now we can copy it to user space...
1da177e4 1705 */
2ba5bbed 1706 ret = copy_page_to_iter(page, offset, nr, to);
6e58e79d 1707 retval += ret;
1da177e4
LT
1708 offset += ret;
1709 index += offset >> PAGE_CACHE_SHIFT;
1710 offset &= ~PAGE_CACHE_MASK;
1711
1712 page_cache_release(page);
2ba5bbed 1713 if (!iov_iter_count(to))
1da177e4 1714 break;
6e58e79d
AV
1715 if (ret < nr) {
1716 error = -EFAULT;
1717 break;
1718 }
1da177e4
LT
1719 cond_resched();
1720 }
1721
1722 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
6e58e79d
AV
1723 file_accessed(file);
1724 return retval ? retval : error;
1da177e4
LT
1725}
1726
708e3508
HD
1727static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1728 struct pipe_inode_info *pipe, size_t len,
1729 unsigned int flags)
1730{
1731 struct address_space *mapping = in->f_mapping;
71f0e07a 1732 struct inode *inode = mapping->host;
708e3508
HD
1733 unsigned int loff, nr_pages, req_pages;
1734 struct page *pages[PIPE_DEF_BUFFERS];
1735 struct partial_page partial[PIPE_DEF_BUFFERS];
1736 struct page *page;
1737 pgoff_t index, end_index;
1738 loff_t isize, left;
1739 int error, page_nr;
1740 struct splice_pipe_desc spd = {
1741 .pages = pages,
1742 .partial = partial,
047fe360 1743 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1744 .flags = flags,
1745 .ops = &page_cache_pipe_buf_ops,
1746 .spd_release = spd_release_page,
1747 };
1748
71f0e07a 1749 isize = i_size_read(inode);
708e3508
HD
1750 if (unlikely(*ppos >= isize))
1751 return 0;
1752
1753 left = isize - *ppos;
1754 if (unlikely(left < len))
1755 len = left;
1756
1757 if (splice_grow_spd(pipe, &spd))
1758 return -ENOMEM;
1759
1760 index = *ppos >> PAGE_CACHE_SHIFT;
1761 loff = *ppos & ~PAGE_CACHE_MASK;
1762 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
a786c06d 1763 nr_pages = min(req_pages, spd.nr_pages_max);
708e3508 1764
708e3508
HD
1765 spd.nr_pages = find_get_pages_contig(mapping, index,
1766 nr_pages, spd.pages);
1767 index += spd.nr_pages;
708e3508 1768 error = 0;
708e3508 1769
71f0e07a 1770 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1771 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1772 if (error)
1773 break;
1774 unlock_page(page);
708e3508
HD
1775 spd.pages[spd.nr_pages++] = page;
1776 index++;
1777 }
1778
708e3508
HD
1779 index = *ppos >> PAGE_CACHE_SHIFT;
1780 nr_pages = spd.nr_pages;
1781 spd.nr_pages = 0;
71f0e07a 1782
708e3508
HD
1783 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1784 unsigned int this_len;
1785
1786 if (!len)
1787 break;
1788
708e3508
HD
1789 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1790 page = spd.pages[page_nr];
1791
71f0e07a 1792 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1793 error = shmem_getpage(inode, index, &page,
1794 SGP_CACHE, NULL);
1795 if (error)
708e3508 1796 break;
71f0e07a
HD
1797 unlock_page(page);
1798 page_cache_release(spd.pages[page_nr]);
1799 spd.pages[page_nr] = page;
708e3508 1800 }
71f0e07a
HD
1801
1802 isize = i_size_read(inode);
708e3508
HD
1803 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1804 if (unlikely(!isize || index > end_index))
1805 break;
1806
708e3508
HD
1807 if (end_index == index) {
1808 unsigned int plen;
1809
708e3508
HD
1810 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1811 if (plen <= loff)
1812 break;
1813
708e3508
HD
1814 this_len = min(this_len, plen - loff);
1815 len = this_len;
1816 }
1817
1818 spd.partial[page_nr].offset = loff;
1819 spd.partial[page_nr].len = this_len;
1820 len -= this_len;
1821 loff = 0;
1822 spd.nr_pages++;
1823 index++;
1824 }
1825
708e3508
HD
1826 while (page_nr < nr_pages)
1827 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1828
1829 if (spd.nr_pages)
1830 error = splice_to_pipe(pipe, &spd);
1831
047fe360 1832 splice_shrink_spd(&spd);
708e3508
HD
1833
1834 if (error > 0) {
1835 *ppos += error;
1836 file_accessed(in);
1837 }
1838 return error;
1839}
1840
220f2ac9
HD
1841/*
1842 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1843 */
1844static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1845 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1846{
1847 struct page *page;
1848 struct pagevec pvec;
1849 pgoff_t indices[PAGEVEC_SIZE];
1850 bool done = false;
1851 int i;
1852
1853 pagevec_init(&pvec, 0);
1854 pvec.nr = 1; /* start small: we may be there already */
1855 while (!done) {
0cd6144a 1856 pvec.nr = find_get_entries(mapping, index,
220f2ac9
HD
1857 pvec.nr, pvec.pages, indices);
1858 if (!pvec.nr) {
965c8e59 1859 if (whence == SEEK_DATA)
220f2ac9
HD
1860 index = end;
1861 break;
1862 }
1863 for (i = 0; i < pvec.nr; i++, index++) {
1864 if (index < indices[i]) {
965c8e59 1865 if (whence == SEEK_HOLE) {
220f2ac9
HD
1866 done = true;
1867 break;
1868 }
1869 index = indices[i];
1870 }
1871 page = pvec.pages[i];
1872 if (page && !radix_tree_exceptional_entry(page)) {
1873 if (!PageUptodate(page))
1874 page = NULL;
1875 }
1876 if (index >= end ||
965c8e59
AM
1877 (page && whence == SEEK_DATA) ||
1878 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1879 done = true;
1880 break;
1881 }
1882 }
0cd6144a 1883 pagevec_remove_exceptionals(&pvec);
220f2ac9
HD
1884 pagevec_release(&pvec);
1885 pvec.nr = PAGEVEC_SIZE;
1886 cond_resched();
1887 }
1888 return index;
1889}
1890
965c8e59 1891static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1892{
1893 struct address_space *mapping = file->f_mapping;
1894 struct inode *inode = mapping->host;
1895 pgoff_t start, end;
1896 loff_t new_offset;
1897
965c8e59
AM
1898 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1899 return generic_file_llseek_size(file, offset, whence,
220f2ac9 1900 MAX_LFS_FILESIZE, i_size_read(inode));
5955102c 1901 inode_lock(inode);
220f2ac9
HD
1902 /* We're holding i_mutex so we can access i_size directly */
1903
1904 if (offset < 0)
1905 offset = -EINVAL;
1906 else if (offset >= inode->i_size)
1907 offset = -ENXIO;
1908 else {
1909 start = offset >> PAGE_CACHE_SHIFT;
1910 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1911 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1912 new_offset <<= PAGE_CACHE_SHIFT;
1913 if (new_offset > offset) {
1914 if (new_offset < inode->i_size)
1915 offset = new_offset;
965c8e59 1916 else if (whence == SEEK_DATA)
220f2ac9
HD
1917 offset = -ENXIO;
1918 else
1919 offset = inode->i_size;
1920 }
1921 }
1922
387aae6f
HD
1923 if (offset >= 0)
1924 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
5955102c 1925 inode_unlock(inode);
220f2ac9
HD
1926 return offset;
1927}
1928
05f65b5c
DH
1929/*
1930 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1931 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1932 */
1933#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1934#define LAST_SCAN 4 /* about 150ms max */
1935
1936static void shmem_tag_pins(struct address_space *mapping)
1937{
1938 struct radix_tree_iter iter;
1939 void **slot;
1940 pgoff_t start;
1941 struct page *page;
1942
1943 lru_add_drain();
1944 start = 0;
1945 rcu_read_lock();
1946
1947restart:
1948 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1949 page = radix_tree_deref_slot(slot);
1950 if (!page || radix_tree_exception(page)) {
2cf938aa
MW
1951 if (radix_tree_deref_retry(page)) {
1952 slot = radix_tree_iter_retry(&iter);
1953 continue;
1954 }
05f65b5c
DH
1955 } else if (page_count(page) - page_mapcount(page) > 1) {
1956 spin_lock_irq(&mapping->tree_lock);
1957 radix_tree_tag_set(&mapping->page_tree, iter.index,
1958 SHMEM_TAG_PINNED);
1959 spin_unlock_irq(&mapping->tree_lock);
1960 }
1961
1962 if (need_resched()) {
1963 cond_resched_rcu();
1964 start = iter.index + 1;
1965 goto restart;
1966 }
1967 }
1968 rcu_read_unlock();
1969}
1970
1971/*
1972 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1973 * via get_user_pages(), drivers might have some pending I/O without any active
1974 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1975 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1976 * them to be dropped.
1977 * The caller must guarantee that no new user will acquire writable references
1978 * to those pages to avoid races.
1979 */
40e041a2
DH
1980static int shmem_wait_for_pins(struct address_space *mapping)
1981{
05f65b5c
DH
1982 struct radix_tree_iter iter;
1983 void **slot;
1984 pgoff_t start;
1985 struct page *page;
1986 int error, scan;
1987
1988 shmem_tag_pins(mapping);
1989
1990 error = 0;
1991 for (scan = 0; scan <= LAST_SCAN; scan++) {
1992 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1993 break;
1994
1995 if (!scan)
1996 lru_add_drain_all();
1997 else if (schedule_timeout_killable((HZ << scan) / 200))
1998 scan = LAST_SCAN;
1999
2000 start = 0;
2001 rcu_read_lock();
2002restart:
2003 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2004 start, SHMEM_TAG_PINNED) {
2005
2006 page = radix_tree_deref_slot(slot);
2007 if (radix_tree_exception(page)) {
2cf938aa
MW
2008 if (radix_tree_deref_retry(page)) {
2009 slot = radix_tree_iter_retry(&iter);
2010 continue;
2011 }
05f65b5c
DH
2012
2013 page = NULL;
2014 }
2015
2016 if (page &&
2017 page_count(page) - page_mapcount(page) != 1) {
2018 if (scan < LAST_SCAN)
2019 goto continue_resched;
2020
2021 /*
2022 * On the last scan, we clean up all those tags
2023 * we inserted; but make a note that we still
2024 * found pages pinned.
2025 */
2026 error = -EBUSY;
2027 }
2028
2029 spin_lock_irq(&mapping->tree_lock);
2030 radix_tree_tag_clear(&mapping->page_tree,
2031 iter.index, SHMEM_TAG_PINNED);
2032 spin_unlock_irq(&mapping->tree_lock);
2033continue_resched:
2034 if (need_resched()) {
2035 cond_resched_rcu();
2036 start = iter.index + 1;
2037 goto restart;
2038 }
2039 }
2040 rcu_read_unlock();
2041 }
2042
2043 return error;
40e041a2
DH
2044}
2045
2046#define F_ALL_SEALS (F_SEAL_SEAL | \
2047 F_SEAL_SHRINK | \
2048 F_SEAL_GROW | \
2049 F_SEAL_WRITE)
2050
2051int shmem_add_seals(struct file *file, unsigned int seals)
2052{
2053 struct inode *inode = file_inode(file);
2054 struct shmem_inode_info *info = SHMEM_I(inode);
2055 int error;
2056
2057 /*
2058 * SEALING
2059 * Sealing allows multiple parties to share a shmem-file but restrict
2060 * access to a specific subset of file operations. Seals can only be
2061 * added, but never removed. This way, mutually untrusted parties can
2062 * share common memory regions with a well-defined policy. A malicious
2063 * peer can thus never perform unwanted operations on a shared object.
2064 *
2065 * Seals are only supported on special shmem-files and always affect
2066 * the whole underlying inode. Once a seal is set, it may prevent some
2067 * kinds of access to the file. Currently, the following seals are
2068 * defined:
2069 * SEAL_SEAL: Prevent further seals from being set on this file
2070 * SEAL_SHRINK: Prevent the file from shrinking
2071 * SEAL_GROW: Prevent the file from growing
2072 * SEAL_WRITE: Prevent write access to the file
2073 *
2074 * As we don't require any trust relationship between two parties, we
2075 * must prevent seals from being removed. Therefore, sealing a file
2076 * only adds a given set of seals to the file, it never touches
2077 * existing seals. Furthermore, the "setting seals"-operation can be
2078 * sealed itself, which basically prevents any further seal from being
2079 * added.
2080 *
2081 * Semantics of sealing are only defined on volatile files. Only
2082 * anonymous shmem files support sealing. More importantly, seals are
2083 * never written to disk. Therefore, there's no plan to support it on
2084 * other file types.
2085 */
2086
2087 if (file->f_op != &shmem_file_operations)
2088 return -EINVAL;
2089 if (!(file->f_mode & FMODE_WRITE))
2090 return -EPERM;
2091 if (seals & ~(unsigned int)F_ALL_SEALS)
2092 return -EINVAL;
2093
5955102c 2094 inode_lock(inode);
40e041a2
DH
2095
2096 if (info->seals & F_SEAL_SEAL) {
2097 error = -EPERM;
2098 goto unlock;
2099 }
2100
2101 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2102 error = mapping_deny_writable(file->f_mapping);
2103 if (error)
2104 goto unlock;
2105
2106 error = shmem_wait_for_pins(file->f_mapping);
2107 if (error) {
2108 mapping_allow_writable(file->f_mapping);
2109 goto unlock;
2110 }
2111 }
2112
2113 info->seals |= seals;
2114 error = 0;
2115
2116unlock:
5955102c 2117 inode_unlock(inode);
40e041a2
DH
2118 return error;
2119}
2120EXPORT_SYMBOL_GPL(shmem_add_seals);
2121
2122int shmem_get_seals(struct file *file)
2123{
2124 if (file->f_op != &shmem_file_operations)
2125 return -EINVAL;
2126
2127 return SHMEM_I(file_inode(file))->seals;
2128}
2129EXPORT_SYMBOL_GPL(shmem_get_seals);
2130
2131long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2132{
2133 long error;
2134
2135 switch (cmd) {
2136 case F_ADD_SEALS:
2137 /* disallow upper 32bit */
2138 if (arg > UINT_MAX)
2139 return -EINVAL;
2140
2141 error = shmem_add_seals(file, arg);
2142 break;
2143 case F_GET_SEALS:
2144 error = shmem_get_seals(file);
2145 break;
2146 default:
2147 error = -EINVAL;
2148 break;
2149 }
2150
2151 return error;
2152}
2153
83e4fa9c
HD
2154static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2155 loff_t len)
2156{
496ad9aa 2157 struct inode *inode = file_inode(file);
e2d12e22 2158 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
40e041a2 2159 struct shmem_inode_info *info = SHMEM_I(inode);
1aac1400 2160 struct shmem_falloc shmem_falloc;
e2d12e22
HD
2161 pgoff_t start, index, end;
2162 int error;
83e4fa9c 2163
13ace4d0
HD
2164 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2165 return -EOPNOTSUPP;
2166
5955102c 2167 inode_lock(inode);
83e4fa9c
HD
2168
2169 if (mode & FALLOC_FL_PUNCH_HOLE) {
2170 struct address_space *mapping = file->f_mapping;
2171 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2172 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
8e205f77 2173 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
83e4fa9c 2174
40e041a2
DH
2175 /* protected by i_mutex */
2176 if (info->seals & F_SEAL_WRITE) {
2177 error = -EPERM;
2178 goto out;
2179 }
2180
8e205f77 2181 shmem_falloc.waitq = &shmem_falloc_waitq;
f00cdc6d
HD
2182 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2183 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2184 spin_lock(&inode->i_lock);
2185 inode->i_private = &shmem_falloc;
2186 spin_unlock(&inode->i_lock);
2187
83e4fa9c
HD
2188 if ((u64)unmap_end > (u64)unmap_start)
2189 unmap_mapping_range(mapping, unmap_start,
2190 1 + unmap_end - unmap_start, 0);
2191 shmem_truncate_range(inode, offset, offset + len - 1);
2192 /* No need to unmap again: hole-punching leaves COWed pages */
8e205f77
HD
2193
2194 spin_lock(&inode->i_lock);
2195 inode->i_private = NULL;
2196 wake_up_all(&shmem_falloc_waitq);
2197 spin_unlock(&inode->i_lock);
83e4fa9c 2198 error = 0;
8e205f77 2199 goto out;
e2d12e22
HD
2200 }
2201
2202 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2203 error = inode_newsize_ok(inode, offset + len);
2204 if (error)
2205 goto out;
2206
40e041a2
DH
2207 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2208 error = -EPERM;
2209 goto out;
2210 }
2211
e2d12e22
HD
2212 start = offset >> PAGE_CACHE_SHIFT;
2213 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2214 /* Try to avoid a swapstorm if len is impossible to satisfy */
2215 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2216 error = -ENOSPC;
2217 goto out;
83e4fa9c
HD
2218 }
2219
8e205f77 2220 shmem_falloc.waitq = NULL;
1aac1400
HD
2221 shmem_falloc.start = start;
2222 shmem_falloc.next = start;
2223 shmem_falloc.nr_falloced = 0;
2224 shmem_falloc.nr_unswapped = 0;
2225 spin_lock(&inode->i_lock);
2226 inode->i_private = &shmem_falloc;
2227 spin_unlock(&inode->i_lock);
2228
e2d12e22
HD
2229 for (index = start; index < end; index++) {
2230 struct page *page;
2231
2232 /*
2233 * Good, the fallocate(2) manpage permits EINTR: we may have
2234 * been interrupted because we are using up too much memory.
2235 */
2236 if (signal_pending(current))
2237 error = -EINTR;
1aac1400
HD
2238 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2239 error = -ENOMEM;
e2d12e22 2240 else
1635f6a7 2241 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
2242 NULL);
2243 if (error) {
1635f6a7
HD
2244 /* Remove the !PageUptodate pages we added */
2245 shmem_undo_range(inode,
2246 (loff_t)start << PAGE_CACHE_SHIFT,
2247 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 2248 goto undone;
e2d12e22
HD
2249 }
2250
1aac1400
HD
2251 /*
2252 * Inform shmem_writepage() how far we have reached.
2253 * No need for lock or barrier: we have the page lock.
2254 */
2255 shmem_falloc.next++;
2256 if (!PageUptodate(page))
2257 shmem_falloc.nr_falloced++;
2258
e2d12e22 2259 /*
1635f6a7
HD
2260 * If !PageUptodate, leave it that way so that freeable pages
2261 * can be recognized if we need to rollback on error later.
2262 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
2263 * than free the pages we are allocating (and SGP_CACHE pages
2264 * might still be clean: we now need to mark those dirty too).
2265 */
2266 set_page_dirty(page);
2267 unlock_page(page);
2268 page_cache_release(page);
2269 cond_resched();
2270 }
2271
2272 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2273 i_size_write(inode, offset + len);
e2d12e22 2274 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
2275undone:
2276 spin_lock(&inode->i_lock);
2277 inode->i_private = NULL;
2278 spin_unlock(&inode->i_lock);
e2d12e22 2279out:
5955102c 2280 inode_unlock(inode);
83e4fa9c
HD
2281 return error;
2282}
2283
726c3342 2284static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 2285{
726c3342 2286 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
2287
2288 buf->f_type = TMPFS_MAGIC;
2289 buf->f_bsize = PAGE_CACHE_SIZE;
2290 buf->f_namelen = NAME_MAX;
0edd73b3 2291 if (sbinfo->max_blocks) {
1da177e4 2292 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
2293 buf->f_bavail =
2294 buf->f_bfree = sbinfo->max_blocks -
2295 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
2296 }
2297 if (sbinfo->max_inodes) {
1da177e4
LT
2298 buf->f_files = sbinfo->max_inodes;
2299 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
2300 }
2301 /* else leave those fields 0 like simple_statfs */
2302 return 0;
2303}
2304
2305/*
2306 * File creation. Allocate an inode, and we're done..
2307 */
2308static int
1a67aafb 2309shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 2310{
0b0a0806 2311 struct inode *inode;
1da177e4
LT
2312 int error = -ENOSPC;
2313
454abafe 2314 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 2315 if (inode) {
feda821e
CH
2316 error = simple_acl_create(dir, inode);
2317 if (error)
2318 goto out_iput;
2a7dba39 2319 error = security_inode_init_security(inode, dir,
9d8f13ba 2320 &dentry->d_name,
6d9d88d0 2321 shmem_initxattrs, NULL);
feda821e
CH
2322 if (error && error != -EOPNOTSUPP)
2323 goto out_iput;
37ec43cd 2324
718deb6b 2325 error = 0;
1da177e4
LT
2326 dir->i_size += BOGO_DIRENT_SIZE;
2327 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2328 d_instantiate(dentry, inode);
2329 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
2330 }
2331 return error;
feda821e
CH
2332out_iput:
2333 iput(inode);
2334 return error;
1da177e4
LT
2335}
2336
60545d0d
AV
2337static int
2338shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2339{
2340 struct inode *inode;
2341 int error = -ENOSPC;
2342
2343 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2344 if (inode) {
2345 error = security_inode_init_security(inode, dir,
2346 NULL,
2347 shmem_initxattrs, NULL);
feda821e
CH
2348 if (error && error != -EOPNOTSUPP)
2349 goto out_iput;
2350 error = simple_acl_create(dir, inode);
2351 if (error)
2352 goto out_iput;
60545d0d
AV
2353 d_tmpfile(dentry, inode);
2354 }
2355 return error;
feda821e
CH
2356out_iput:
2357 iput(inode);
2358 return error;
60545d0d
AV
2359}
2360
18bb1db3 2361static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
2362{
2363 int error;
2364
2365 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2366 return error;
d8c76e6f 2367 inc_nlink(dir);
1da177e4
LT
2368 return 0;
2369}
2370
4acdaf27 2371static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 2372 bool excl)
1da177e4
LT
2373{
2374 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2375}
2376
2377/*
2378 * Link a file..
2379 */
2380static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2381{
75c3cfa8 2382 struct inode *inode = d_inode(old_dentry);
5b04c689 2383 int ret;
1da177e4
LT
2384
2385 /*
2386 * No ordinary (disk based) filesystem counts links as inodes;
2387 * but each new link needs a new dentry, pinning lowmem, and
2388 * tmpfs dentries cannot be pruned until they are unlinked.
2389 */
5b04c689
PE
2390 ret = shmem_reserve_inode(inode->i_sb);
2391 if (ret)
2392 goto out;
1da177e4
LT
2393
2394 dir->i_size += BOGO_DIRENT_SIZE;
2395 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2396 inc_nlink(inode);
7de9c6ee 2397 ihold(inode); /* New dentry reference */
1da177e4
LT
2398 dget(dentry); /* Extra pinning count for the created dentry */
2399 d_instantiate(dentry, inode);
5b04c689
PE
2400out:
2401 return ret;
1da177e4
LT
2402}
2403
2404static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2405{
75c3cfa8 2406 struct inode *inode = d_inode(dentry);
1da177e4 2407
5b04c689
PE
2408 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2409 shmem_free_inode(inode->i_sb);
1da177e4
LT
2410
2411 dir->i_size -= BOGO_DIRENT_SIZE;
2412 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2413 drop_nlink(inode);
1da177e4
LT
2414 dput(dentry); /* Undo the count from "create" - this does all the work */
2415 return 0;
2416}
2417
2418static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2419{
2420 if (!simple_empty(dentry))
2421 return -ENOTEMPTY;
2422
75c3cfa8 2423 drop_nlink(d_inode(dentry));
9a53c3a7 2424 drop_nlink(dir);
1da177e4
LT
2425 return shmem_unlink(dir, dentry);
2426}
2427
37456771
MS
2428static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2429{
e36cb0b8
DH
2430 bool old_is_dir = d_is_dir(old_dentry);
2431 bool new_is_dir = d_is_dir(new_dentry);
37456771
MS
2432
2433 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2434 if (old_is_dir) {
2435 drop_nlink(old_dir);
2436 inc_nlink(new_dir);
2437 } else {
2438 drop_nlink(new_dir);
2439 inc_nlink(old_dir);
2440 }
2441 }
2442 old_dir->i_ctime = old_dir->i_mtime =
2443 new_dir->i_ctime = new_dir->i_mtime =
75c3cfa8
DH
2444 d_inode(old_dentry)->i_ctime =
2445 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
37456771
MS
2446
2447 return 0;
2448}
2449
46fdb794
MS
2450static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2451{
2452 struct dentry *whiteout;
2453 int error;
2454
2455 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2456 if (!whiteout)
2457 return -ENOMEM;
2458
2459 error = shmem_mknod(old_dir, whiteout,
2460 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2461 dput(whiteout);
2462 if (error)
2463 return error;
2464
2465 /*
2466 * Cheat and hash the whiteout while the old dentry is still in
2467 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2468 *
2469 * d_lookup() will consistently find one of them at this point,
2470 * not sure which one, but that isn't even important.
2471 */
2472 d_rehash(whiteout);
2473 return 0;
2474}
2475
1da177e4
LT
2476/*
2477 * The VFS layer already does all the dentry stuff for rename,
2478 * we just have to decrement the usage count for the target if
2479 * it exists so that the VFS layer correctly free's it when it
2480 * gets overwritten.
2481 */
3b69ff51 2482static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
1da177e4 2483{
75c3cfa8 2484 struct inode *inode = d_inode(old_dentry);
1da177e4
LT
2485 int they_are_dirs = S_ISDIR(inode->i_mode);
2486
46fdb794 2487 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3b69ff51
MS
2488 return -EINVAL;
2489
37456771
MS
2490 if (flags & RENAME_EXCHANGE)
2491 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2492
1da177e4
LT
2493 if (!simple_empty(new_dentry))
2494 return -ENOTEMPTY;
2495
46fdb794
MS
2496 if (flags & RENAME_WHITEOUT) {
2497 int error;
2498
2499 error = shmem_whiteout(old_dir, old_dentry);
2500 if (error)
2501 return error;
2502 }
2503
75c3cfa8 2504 if (d_really_is_positive(new_dentry)) {
1da177e4 2505 (void) shmem_unlink(new_dir, new_dentry);
b928095b 2506 if (they_are_dirs) {
75c3cfa8 2507 drop_nlink(d_inode(new_dentry));
9a53c3a7 2508 drop_nlink(old_dir);
b928095b 2509 }
1da177e4 2510 } else if (they_are_dirs) {
9a53c3a7 2511 drop_nlink(old_dir);
d8c76e6f 2512 inc_nlink(new_dir);
1da177e4
LT
2513 }
2514
2515 old_dir->i_size -= BOGO_DIRENT_SIZE;
2516 new_dir->i_size += BOGO_DIRENT_SIZE;
2517 old_dir->i_ctime = old_dir->i_mtime =
2518 new_dir->i_ctime = new_dir->i_mtime =
2519 inode->i_ctime = CURRENT_TIME;
2520 return 0;
2521}
2522
2523static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2524{
2525 int error;
2526 int len;
2527 struct inode *inode;
9276aad6 2528 struct page *page;
1da177e4
LT
2529 struct shmem_inode_info *info;
2530
2531 len = strlen(symname) + 1;
2532 if (len > PAGE_CACHE_SIZE)
2533 return -ENAMETOOLONG;
2534
454abafe 2535 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2536 if (!inode)
2537 return -ENOSPC;
2538
9d8f13ba 2539 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2540 shmem_initxattrs, NULL);
570bc1c2
SS
2541 if (error) {
2542 if (error != -EOPNOTSUPP) {
2543 iput(inode);
2544 return error;
2545 }
2546 error = 0;
2547 }
2548
1da177e4
LT
2549 info = SHMEM_I(inode);
2550 inode->i_size = len-1;
69f07ec9 2551 if (len <= SHORT_SYMLINK_LEN) {
3ed47db3
AV
2552 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2553 if (!inode->i_link) {
69f07ec9
HD
2554 iput(inode);
2555 return -ENOMEM;
2556 }
2557 inode->i_op = &shmem_short_symlink_operations;
1da177e4 2558 } else {
e8ecde25 2559 inode_nohighmem(inode);
1da177e4
LT
2560 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2561 if (error) {
2562 iput(inode);
2563 return error;
2564 }
14fcc23f 2565 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2566 inode->i_op = &shmem_symlink_inode_operations;
21fc61c7 2567 memcpy(page_address(page), symname, len);
ec9516fb 2568 SetPageUptodate(page);
1da177e4 2569 set_page_dirty(page);
6746aff7 2570 unlock_page(page);
1da177e4
LT
2571 page_cache_release(page);
2572 }
1da177e4
LT
2573 dir->i_size += BOGO_DIRENT_SIZE;
2574 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2575 d_instantiate(dentry, inode);
2576 dget(dentry);
2577 return 0;
2578}
2579
fceef393 2580static void shmem_put_link(void *arg)
1da177e4 2581{
fceef393
AV
2582 mark_page_accessed(arg);
2583 put_page(arg);
1da177e4
LT
2584}
2585
6b255391 2586static const char *shmem_get_link(struct dentry *dentry,
fceef393
AV
2587 struct inode *inode,
2588 struct delayed_call *done)
1da177e4 2589{
1da177e4 2590 struct page *page = NULL;
6b255391 2591 int error;
6a6c9904
AV
2592 if (!dentry) {
2593 page = find_get_page(inode->i_mapping, 0);
2594 if (!page)
2595 return ERR_PTR(-ECHILD);
2596 if (!PageUptodate(page)) {
2597 put_page(page);
2598 return ERR_PTR(-ECHILD);
2599 }
2600 } else {
2601 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2602 if (error)
2603 return ERR_PTR(error);
2604 unlock_page(page);
2605 }
fceef393 2606 set_delayed_call(done, shmem_put_link, page);
21fc61c7 2607 return page_address(page);
1da177e4
LT
2608}
2609
b09e0fa4 2610#ifdef CONFIG_TMPFS_XATTR
46711810 2611/*
b09e0fa4
EP
2612 * Superblocks without xattr inode operations may get some security.* xattr
2613 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2614 * like ACLs, we also need to implement the security.* handlers at
2615 * filesystem level, though.
2616 */
2617
6d9d88d0
JS
2618/*
2619 * Callback for security_inode_init_security() for acquiring xattrs.
2620 */
2621static int shmem_initxattrs(struct inode *inode,
2622 const struct xattr *xattr_array,
2623 void *fs_info)
2624{
2625 struct shmem_inode_info *info = SHMEM_I(inode);
2626 const struct xattr *xattr;
38f38657 2627 struct simple_xattr *new_xattr;
6d9d88d0
JS
2628 size_t len;
2629
2630 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2631 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2632 if (!new_xattr)
2633 return -ENOMEM;
2634
2635 len = strlen(xattr->name) + 1;
2636 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2637 GFP_KERNEL);
2638 if (!new_xattr->name) {
2639 kfree(new_xattr);
2640 return -ENOMEM;
2641 }
2642
2643 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2644 XATTR_SECURITY_PREFIX_LEN);
2645 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2646 xattr->name, len);
2647
38f38657 2648 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2649 }
2650
2651 return 0;
2652}
2653
aa7c5241
AG
2654static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2655 struct dentry *dentry, const char *name,
2656 void *buffer, size_t size)
b09e0fa4 2657{
75c3cfa8 2658 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2659
aa7c5241 2660 name = xattr_full_name(handler, name);
38f38657 2661 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2662}
2663
aa7c5241
AG
2664static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2665 struct dentry *dentry, const char *name,
2666 const void *value, size_t size, int flags)
b09e0fa4 2667{
75c3cfa8 2668 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
b09e0fa4 2669
aa7c5241 2670 name = xattr_full_name(handler, name);
38f38657 2671 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2672}
2673
aa7c5241
AG
2674static const struct xattr_handler shmem_security_xattr_handler = {
2675 .prefix = XATTR_SECURITY_PREFIX,
2676 .get = shmem_xattr_handler_get,
2677 .set = shmem_xattr_handler_set,
2678};
b09e0fa4 2679
aa7c5241
AG
2680static const struct xattr_handler shmem_trusted_xattr_handler = {
2681 .prefix = XATTR_TRUSTED_PREFIX,
2682 .get = shmem_xattr_handler_get,
2683 .set = shmem_xattr_handler_set,
2684};
b09e0fa4 2685
aa7c5241
AG
2686static const struct xattr_handler *shmem_xattr_handlers[] = {
2687#ifdef CONFIG_TMPFS_POSIX_ACL
2688 &posix_acl_access_xattr_handler,
2689 &posix_acl_default_xattr_handler,
2690#endif
2691 &shmem_security_xattr_handler,
2692 &shmem_trusted_xattr_handler,
2693 NULL
2694};
b09e0fa4
EP
2695
2696static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2697{
75c3cfa8 2698 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
786534b9 2699 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
b09e0fa4
EP
2700}
2701#endif /* CONFIG_TMPFS_XATTR */
2702
69f07ec9 2703static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2704 .readlink = generic_readlink,
6b255391 2705 .get_link = simple_get_link,
b09e0fa4 2706#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2707 .setxattr = generic_setxattr,
2708 .getxattr = generic_getxattr,
b09e0fa4 2709 .listxattr = shmem_listxattr,
aa7c5241 2710 .removexattr = generic_removexattr,
b09e0fa4
EP
2711#endif
2712};
2713
2714static const struct inode_operations shmem_symlink_inode_operations = {
2715 .readlink = generic_readlink,
6b255391 2716 .get_link = shmem_get_link,
b09e0fa4 2717#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
2718 .setxattr = generic_setxattr,
2719 .getxattr = generic_getxattr,
b09e0fa4 2720 .listxattr = shmem_listxattr,
aa7c5241 2721 .removexattr = generic_removexattr,
39f0247d 2722#endif
b09e0fa4 2723};
39f0247d 2724
91828a40
DG
2725static struct dentry *shmem_get_parent(struct dentry *child)
2726{
2727 return ERR_PTR(-ESTALE);
2728}
2729
2730static int shmem_match(struct inode *ino, void *vfh)
2731{
2732 __u32 *fh = vfh;
2733 __u64 inum = fh[2];
2734 inum = (inum << 32) | fh[1];
2735 return ino->i_ino == inum && fh[0] == ino->i_generation;
2736}
2737
480b116c
CH
2738static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2739 struct fid *fid, int fh_len, int fh_type)
91828a40 2740{
91828a40 2741 struct inode *inode;
480b116c 2742 struct dentry *dentry = NULL;
35c2a7f4 2743 u64 inum;
480b116c
CH
2744
2745 if (fh_len < 3)
2746 return NULL;
91828a40 2747
35c2a7f4
HD
2748 inum = fid->raw[2];
2749 inum = (inum << 32) | fid->raw[1];
2750
480b116c
CH
2751 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2752 shmem_match, fid->raw);
91828a40 2753 if (inode) {
480b116c 2754 dentry = d_find_alias(inode);
91828a40
DG
2755 iput(inode);
2756 }
2757
480b116c 2758 return dentry;
91828a40
DG
2759}
2760
b0b0382b
AV
2761static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2762 struct inode *parent)
91828a40 2763{
5fe0c237
AK
2764 if (*len < 3) {
2765 *len = 3;
94e07a75 2766 return FILEID_INVALID;
5fe0c237 2767 }
91828a40 2768
1d3382cb 2769 if (inode_unhashed(inode)) {
91828a40
DG
2770 /* Unfortunately insert_inode_hash is not idempotent,
2771 * so as we hash inodes here rather than at creation
2772 * time, we need a lock to ensure we only try
2773 * to do it once
2774 */
2775 static DEFINE_SPINLOCK(lock);
2776 spin_lock(&lock);
1d3382cb 2777 if (inode_unhashed(inode))
91828a40
DG
2778 __insert_inode_hash(inode,
2779 inode->i_ino + inode->i_generation);
2780 spin_unlock(&lock);
2781 }
2782
2783 fh[0] = inode->i_generation;
2784 fh[1] = inode->i_ino;
2785 fh[2] = ((__u64)inode->i_ino) >> 32;
2786
2787 *len = 3;
2788 return 1;
2789}
2790
39655164 2791static const struct export_operations shmem_export_ops = {
91828a40 2792 .get_parent = shmem_get_parent,
91828a40 2793 .encode_fh = shmem_encode_fh,
480b116c 2794 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2795};
2796
680d794b 2797static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2798 bool remount)
1da177e4
LT
2799{
2800 char *this_char, *value, *rest;
49cd0a5c 2801 struct mempolicy *mpol = NULL;
8751e039
EB
2802 uid_t uid;
2803 gid_t gid;
1da177e4 2804
b00dc3ad
HD
2805 while (options != NULL) {
2806 this_char = options;
2807 for (;;) {
2808 /*
2809 * NUL-terminate this option: unfortunately,
2810 * mount options form a comma-separated list,
2811 * but mpol's nodelist may also contain commas.
2812 */
2813 options = strchr(options, ',');
2814 if (options == NULL)
2815 break;
2816 options++;
2817 if (!isdigit(*options)) {
2818 options[-1] = '\0';
2819 break;
2820 }
2821 }
1da177e4
LT
2822 if (!*this_char)
2823 continue;
2824 if ((value = strchr(this_char,'=')) != NULL) {
2825 *value++ = 0;
2826 } else {
1170532b
JP
2827 pr_err("tmpfs: No value for mount option '%s'\n",
2828 this_char);
49cd0a5c 2829 goto error;
1da177e4
LT
2830 }
2831
2832 if (!strcmp(this_char,"size")) {
2833 unsigned long long size;
2834 size = memparse(value,&rest);
2835 if (*rest == '%') {
2836 size <<= PAGE_SHIFT;
2837 size *= totalram_pages;
2838 do_div(size, 100);
2839 rest++;
2840 }
2841 if (*rest)
2842 goto bad_val;
680d794b 2843 sbinfo->max_blocks =
2844 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2845 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2846 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2847 if (*rest)
2848 goto bad_val;
2849 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2850 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2851 if (*rest)
2852 goto bad_val;
2853 } else if (!strcmp(this_char,"mode")) {
680d794b 2854 if (remount)
1da177e4 2855 continue;
680d794b 2856 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2857 if (*rest)
2858 goto bad_val;
2859 } else if (!strcmp(this_char,"uid")) {
680d794b 2860 if (remount)
1da177e4 2861 continue;
8751e039 2862 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2863 if (*rest)
2864 goto bad_val;
8751e039
EB
2865 sbinfo->uid = make_kuid(current_user_ns(), uid);
2866 if (!uid_valid(sbinfo->uid))
2867 goto bad_val;
1da177e4 2868 } else if (!strcmp(this_char,"gid")) {
680d794b 2869 if (remount)
1da177e4 2870 continue;
8751e039 2871 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2872 if (*rest)
2873 goto bad_val;
8751e039
EB
2874 sbinfo->gid = make_kgid(current_user_ns(), gid);
2875 if (!gid_valid(sbinfo->gid))
2876 goto bad_val;
7339ff83 2877 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2878 mpol_put(mpol);
2879 mpol = NULL;
2880 if (mpol_parse_str(value, &mpol))
7339ff83 2881 goto bad_val;
1da177e4 2882 } else {
1170532b 2883 pr_err("tmpfs: Bad mount option %s\n", this_char);
49cd0a5c 2884 goto error;
1da177e4
LT
2885 }
2886 }
49cd0a5c 2887 sbinfo->mpol = mpol;
1da177e4
LT
2888 return 0;
2889
2890bad_val:
1170532b 2891 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
1da177e4 2892 value, this_char);
49cd0a5c
GT
2893error:
2894 mpol_put(mpol);
1da177e4
LT
2895 return 1;
2896
2897}
2898
2899static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2900{
2901 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2902 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2903 unsigned long inodes;
2904 int error = -EINVAL;
2905
5f00110f 2906 config.mpol = NULL;
680d794b 2907 if (shmem_parse_options(data, &config, true))
0edd73b3 2908 return error;
1da177e4 2909
0edd73b3 2910 spin_lock(&sbinfo->stat_lock);
0edd73b3 2911 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2912 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2913 goto out;
680d794b 2914 if (config.max_inodes < inodes)
0edd73b3
HD
2915 goto out;
2916 /*
54af6042 2917 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2918 * but we must separately disallow unlimited->limited, because
2919 * in that case we have no record of how much is already in use.
2920 */
680d794b 2921 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2922 goto out;
680d794b 2923 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2924 goto out;
2925
2926 error = 0;
680d794b 2927 sbinfo->max_blocks = config.max_blocks;
680d794b 2928 sbinfo->max_inodes = config.max_inodes;
2929 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2930
5f00110f
GT
2931 /*
2932 * Preserve previous mempolicy unless mpol remount option was specified.
2933 */
2934 if (config.mpol) {
2935 mpol_put(sbinfo->mpol);
2936 sbinfo->mpol = config.mpol; /* transfers initial ref */
2937 }
0edd73b3
HD
2938out:
2939 spin_unlock(&sbinfo->stat_lock);
2940 return error;
1da177e4 2941}
680d794b 2942
34c80b1d 2943static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2944{
34c80b1d 2945 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 2946
2947 if (sbinfo->max_blocks != shmem_default_max_blocks())
2948 seq_printf(seq, ",size=%luk",
2949 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2950 if (sbinfo->max_inodes != shmem_default_max_inodes())
2951 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2952 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2953 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2954 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2955 seq_printf(seq, ",uid=%u",
2956 from_kuid_munged(&init_user_ns, sbinfo->uid));
2957 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2958 seq_printf(seq, ",gid=%u",
2959 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2960 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2961 return 0;
2962}
9183df25
DH
2963
2964#define MFD_NAME_PREFIX "memfd:"
2965#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2966#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2967
2968#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2969
2970SYSCALL_DEFINE2(memfd_create,
2971 const char __user *, uname,
2972 unsigned int, flags)
2973{
2974 struct shmem_inode_info *info;
2975 struct file *file;
2976 int fd, error;
2977 char *name;
2978 long len;
2979
2980 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2981 return -EINVAL;
2982
2983 /* length includes terminating zero */
2984 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2985 if (len <= 0)
2986 return -EFAULT;
2987 if (len > MFD_NAME_MAX_LEN + 1)
2988 return -EINVAL;
2989
2990 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2991 if (!name)
2992 return -ENOMEM;
2993
2994 strcpy(name, MFD_NAME_PREFIX);
2995 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2996 error = -EFAULT;
2997 goto err_name;
2998 }
2999
3000 /* terminating-zero may have changed after strnlen_user() returned */
3001 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3002 error = -EFAULT;
3003 goto err_name;
3004 }
3005
3006 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3007 if (fd < 0) {
3008 error = fd;
3009 goto err_name;
3010 }
3011
3012 file = shmem_file_setup(name, 0, VM_NORESERVE);
3013 if (IS_ERR(file)) {
3014 error = PTR_ERR(file);
3015 goto err_fd;
3016 }
3017 info = SHMEM_I(file_inode(file));
3018 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3019 file->f_flags |= O_RDWR | O_LARGEFILE;
3020 if (flags & MFD_ALLOW_SEALING)
3021 info->seals &= ~F_SEAL_SEAL;
3022
3023 fd_install(fd, file);
3024 kfree(name);
3025 return fd;
3026
3027err_fd:
3028 put_unused_fd(fd);
3029err_name:
3030 kfree(name);
3031 return error;
3032}
3033
680d794b 3034#endif /* CONFIG_TMPFS */
1da177e4
LT
3035
3036static void shmem_put_super(struct super_block *sb)
3037{
602586a8
HD
3038 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3039
3040 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 3041 mpol_put(sbinfo->mpol);
602586a8 3042 kfree(sbinfo);
1da177e4
LT
3043 sb->s_fs_info = NULL;
3044}
3045
2b2af54a 3046int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
3047{
3048 struct inode *inode;
0edd73b3 3049 struct shmem_sb_info *sbinfo;
680d794b 3050 int err = -ENOMEM;
3051
3052 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 3053 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 3054 L1_CACHE_BYTES), GFP_KERNEL);
3055 if (!sbinfo)
3056 return -ENOMEM;
3057
680d794b 3058 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
3059 sbinfo->uid = current_fsuid();
3060 sbinfo->gid = current_fsgid();
680d794b 3061 sb->s_fs_info = sbinfo;
1da177e4 3062
0edd73b3 3063#ifdef CONFIG_TMPFS
1da177e4
LT
3064 /*
3065 * Per default we only allow half of the physical ram per
3066 * tmpfs instance, limiting inodes to one per page of lowmem;
3067 * but the internal instance is left unlimited.
3068 */
ca4e0519 3069 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b 3070 sbinfo->max_blocks = shmem_default_max_blocks();
3071 sbinfo->max_inodes = shmem_default_max_inodes();
3072 if (shmem_parse_options(data, sbinfo, false)) {
3073 err = -EINVAL;
3074 goto failed;
3075 }
ca4e0519
AV
3076 } else {
3077 sb->s_flags |= MS_NOUSER;
1da177e4 3078 }
91828a40 3079 sb->s_export_op = &shmem_export_ops;
2f6e38f3 3080 sb->s_flags |= MS_NOSEC;
1da177e4
LT
3081#else
3082 sb->s_flags |= MS_NOUSER;
3083#endif
3084
0edd73b3 3085 spin_lock_init(&sbinfo->stat_lock);
908c7f19 3086 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
602586a8 3087 goto failed;
680d794b 3088 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 3089
285b2c4f 3090 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
3091 sb->s_blocksize = PAGE_CACHE_SIZE;
3092 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3093 sb->s_magic = TMPFS_MAGIC;
3094 sb->s_op = &shmem_ops;
cfd95a9c 3095 sb->s_time_gran = 1;
b09e0fa4 3096#ifdef CONFIG_TMPFS_XATTR
39f0247d 3097 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
3098#endif
3099#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
3100 sb->s_flags |= MS_POSIXACL;
3101#endif
0edd73b3 3102
454abafe 3103 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
3104 if (!inode)
3105 goto failed;
680d794b 3106 inode->i_uid = sbinfo->uid;
3107 inode->i_gid = sbinfo->gid;
318ceed0
AV
3108 sb->s_root = d_make_root(inode);
3109 if (!sb->s_root)
48fde701 3110 goto failed;
1da177e4
LT
3111 return 0;
3112
1da177e4
LT
3113failed:
3114 shmem_put_super(sb);
3115 return err;
3116}
3117
fcc234f8 3118static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
3119
3120static struct inode *shmem_alloc_inode(struct super_block *sb)
3121{
41ffe5d5
HD
3122 struct shmem_inode_info *info;
3123 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3124 if (!info)
1da177e4 3125 return NULL;
41ffe5d5 3126 return &info->vfs_inode;
1da177e4
LT
3127}
3128
41ffe5d5 3129static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
3130{
3131 struct inode *inode = container_of(head, struct inode, i_rcu);
3ed47db3 3132 kfree(inode->i_link);
fa0d7e3d
NP
3133 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3134}
3135
1da177e4
LT
3136static void shmem_destroy_inode(struct inode *inode)
3137{
09208d15 3138 if (S_ISREG(inode->i_mode))
1da177e4 3139 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 3140 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
3141}
3142
41ffe5d5 3143static void shmem_init_inode(void *foo)
1da177e4 3144{
41ffe5d5
HD
3145 struct shmem_inode_info *info = foo;
3146 inode_init_once(&info->vfs_inode);
1da177e4
LT
3147}
3148
41ffe5d5 3149static int shmem_init_inodecache(void)
1da177e4
LT
3150{
3151 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3152 sizeof(struct shmem_inode_info),
5d097056 3153 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
1da177e4
LT
3154 return 0;
3155}
3156
41ffe5d5 3157static void shmem_destroy_inodecache(void)
1da177e4 3158{
1a1d92c1 3159 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
3160}
3161
f5e54d6e 3162static const struct address_space_operations shmem_aops = {
1da177e4 3163 .writepage = shmem_writepage,
76719325 3164 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 3165#ifdef CONFIG_TMPFS
800d15a5
NP
3166 .write_begin = shmem_write_begin,
3167 .write_end = shmem_write_end,
1da177e4 3168#endif
1c93923c 3169#ifdef CONFIG_MIGRATION
304dbdb7 3170 .migratepage = migrate_page,
1c93923c 3171#endif
aa261f54 3172 .error_remove_page = generic_error_remove_page,
1da177e4
LT
3173};
3174
15ad7cdc 3175static const struct file_operations shmem_file_operations = {
1da177e4
LT
3176 .mmap = shmem_mmap,
3177#ifdef CONFIG_TMPFS
220f2ac9 3178 .llseek = shmem_file_llseek,
2ba5bbed 3179 .read_iter = shmem_file_read_iter,
8174202b 3180 .write_iter = generic_file_write_iter,
1b061d92 3181 .fsync = noop_fsync,
708e3508 3182 .splice_read = shmem_file_splice_read,
f6cb85d0 3183 .splice_write = iter_file_splice_write,
83e4fa9c 3184 .fallocate = shmem_fallocate,
1da177e4
LT
3185#endif
3186};
3187
92e1d5be 3188static const struct inode_operations shmem_inode_operations = {
44a30220 3189 .getattr = shmem_getattr,
94c1e62d 3190 .setattr = shmem_setattr,
b09e0fa4 3191#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3192 .setxattr = generic_setxattr,
3193 .getxattr = generic_getxattr,
b09e0fa4 3194 .listxattr = shmem_listxattr,
aa7c5241 3195 .removexattr = generic_removexattr,
feda821e 3196 .set_acl = simple_set_acl,
b09e0fa4 3197#endif
1da177e4
LT
3198};
3199
92e1d5be 3200static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
3201#ifdef CONFIG_TMPFS
3202 .create = shmem_create,
3203 .lookup = simple_lookup,
3204 .link = shmem_link,
3205 .unlink = shmem_unlink,
3206 .symlink = shmem_symlink,
3207 .mkdir = shmem_mkdir,
3208 .rmdir = shmem_rmdir,
3209 .mknod = shmem_mknod,
3b69ff51 3210 .rename2 = shmem_rename2,
60545d0d 3211 .tmpfile = shmem_tmpfile,
1da177e4 3212#endif
b09e0fa4 3213#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3214 .setxattr = generic_setxattr,
3215 .getxattr = generic_getxattr,
b09e0fa4 3216 .listxattr = shmem_listxattr,
aa7c5241 3217 .removexattr = generic_removexattr,
b09e0fa4 3218#endif
39f0247d 3219#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3220 .setattr = shmem_setattr,
feda821e 3221 .set_acl = simple_set_acl,
39f0247d
AG
3222#endif
3223};
3224
92e1d5be 3225static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4 3226#ifdef CONFIG_TMPFS_XATTR
aa7c5241
AG
3227 .setxattr = generic_setxattr,
3228 .getxattr = generic_getxattr,
b09e0fa4 3229 .listxattr = shmem_listxattr,
aa7c5241 3230 .removexattr = generic_removexattr,
b09e0fa4 3231#endif
39f0247d 3232#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 3233 .setattr = shmem_setattr,
feda821e 3234 .set_acl = simple_set_acl,
39f0247d 3235#endif
1da177e4
LT
3236};
3237
759b9775 3238static const struct super_operations shmem_ops = {
1da177e4
LT
3239 .alloc_inode = shmem_alloc_inode,
3240 .destroy_inode = shmem_destroy_inode,
3241#ifdef CONFIG_TMPFS
3242 .statfs = shmem_statfs,
3243 .remount_fs = shmem_remount_fs,
680d794b 3244 .show_options = shmem_show_options,
1da177e4 3245#endif
1f895f75 3246 .evict_inode = shmem_evict_inode,
1da177e4
LT
3247 .drop_inode = generic_delete_inode,
3248 .put_super = shmem_put_super,
3249};
3250
f0f37e2f 3251static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 3252 .fault = shmem_fault,
d7c17551 3253 .map_pages = filemap_map_pages,
1da177e4
LT
3254#ifdef CONFIG_NUMA
3255 .set_policy = shmem_set_policy,
3256 .get_policy = shmem_get_policy,
3257#endif
3258};
3259
3c26ff6e
AV
3260static struct dentry *shmem_mount(struct file_system_type *fs_type,
3261 int flags, const char *dev_name, void *data)
1da177e4 3262{
3c26ff6e 3263 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
3264}
3265
41ffe5d5 3266static struct file_system_type shmem_fs_type = {
1da177e4
LT
3267 .owner = THIS_MODULE,
3268 .name = "tmpfs",
3c26ff6e 3269 .mount = shmem_mount,
1da177e4 3270 .kill_sb = kill_litter_super,
2b8576cb 3271 .fs_flags = FS_USERNS_MOUNT,
1da177e4 3272};
1da177e4 3273
41ffe5d5 3274int __init shmem_init(void)
1da177e4
LT
3275{
3276 int error;
3277
16203a7a
RL
3278 /* If rootfs called this, don't re-init */
3279 if (shmem_inode_cachep)
3280 return 0;
3281
41ffe5d5 3282 error = shmem_init_inodecache();
1da177e4
LT
3283 if (error)
3284 goto out3;
3285
41ffe5d5 3286 error = register_filesystem(&shmem_fs_type);
1da177e4 3287 if (error) {
1170532b 3288 pr_err("Could not register tmpfs\n");
1da177e4
LT
3289 goto out2;
3290 }
95dc112a 3291
ca4e0519 3292 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
3293 if (IS_ERR(shm_mnt)) {
3294 error = PTR_ERR(shm_mnt);
1170532b 3295 pr_err("Could not kern_mount tmpfs\n");
1da177e4
LT
3296 goto out1;
3297 }
3298 return 0;
3299
3300out1:
41ffe5d5 3301 unregister_filesystem(&shmem_fs_type);
1da177e4 3302out2:
41ffe5d5 3303 shmem_destroy_inodecache();
1da177e4
LT
3304out3:
3305 shm_mnt = ERR_PTR(error);
3306 return error;
3307}
853ac43a
MM
3308
3309#else /* !CONFIG_SHMEM */
3310
3311/*
3312 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3313 *
3314 * This is intended for small system where the benefits of the full
3315 * shmem code (swap-backed and resource-limited) are outweighed by
3316 * their complexity. On systems without swap this code should be
3317 * effectively equivalent, but much lighter weight.
3318 */
3319
41ffe5d5 3320static struct file_system_type shmem_fs_type = {
853ac43a 3321 .name = "tmpfs",
3c26ff6e 3322 .mount = ramfs_mount,
853ac43a 3323 .kill_sb = kill_litter_super,
2b8576cb 3324 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
3325};
3326
41ffe5d5 3327int __init shmem_init(void)
853ac43a 3328{
41ffe5d5 3329 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 3330
41ffe5d5 3331 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
3332 BUG_ON(IS_ERR(shm_mnt));
3333
3334 return 0;
3335}
3336
41ffe5d5 3337int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
3338{
3339 return 0;
3340}
3341
3f96b79a
HD
3342int shmem_lock(struct file *file, int lock, struct user_struct *user)
3343{
3344 return 0;
3345}
3346
24513264
HD
3347void shmem_unlock_mapping(struct address_space *mapping)
3348{
3349}
3350
41ffe5d5 3351void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 3352{
41ffe5d5 3353 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
3354}
3355EXPORT_SYMBOL_GPL(shmem_truncate_range);
3356
0b0a0806
HD
3357#define shmem_vm_ops generic_file_vm_ops
3358#define shmem_file_operations ramfs_file_operations
454abafe 3359#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
3360#define shmem_acct_size(flags, size) 0
3361#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
3362
3363#endif /* CONFIG_SHMEM */
3364
3365/* common code */
1da177e4 3366
3451538a 3367static struct dentry_operations anon_ops = {
118b2302 3368 .d_dname = simple_dname
3451538a
AV
3369};
3370
c7277090
EP
3371static struct file *__shmem_file_setup(const char *name, loff_t size,
3372 unsigned long flags, unsigned int i_flags)
1da177e4 3373{
6b4d0b27 3374 struct file *res;
1da177e4 3375 struct inode *inode;
2c48b9c4 3376 struct path path;
3451538a 3377 struct super_block *sb;
1da177e4
LT
3378 struct qstr this;
3379
3380 if (IS_ERR(shm_mnt))
6b4d0b27 3381 return ERR_CAST(shm_mnt);
1da177e4 3382
285b2c4f 3383 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
3384 return ERR_PTR(-EINVAL);
3385
3386 if (shmem_acct_size(flags, size))
3387 return ERR_PTR(-ENOMEM);
3388
6b4d0b27 3389 res = ERR_PTR(-ENOMEM);
1da177e4
LT
3390 this.name = name;
3391 this.len = strlen(name);
3392 this.hash = 0; /* will go */
3451538a 3393 sb = shm_mnt->mnt_sb;
66ee4b88 3394 path.mnt = mntget(shm_mnt);
3451538a 3395 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 3396 if (!path.dentry)
1da177e4 3397 goto put_memory;
3451538a 3398 d_set_d_op(path.dentry, &anon_ops);
1da177e4 3399
6b4d0b27 3400 res = ERR_PTR(-ENOSPC);
3451538a 3401 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 3402 if (!inode)
66ee4b88 3403 goto put_memory;
1da177e4 3404
c7277090 3405 inode->i_flags |= i_flags;
2c48b9c4 3406 d_instantiate(path.dentry, inode);
1da177e4 3407 inode->i_size = size;
6d6b77f1 3408 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
3409 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3410 if (IS_ERR(res))
66ee4b88 3411 goto put_path;
4b42af81 3412
6b4d0b27 3413 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 3414 &shmem_file_operations);
6b4d0b27 3415 if (IS_ERR(res))
66ee4b88 3416 goto put_path;
4b42af81 3417
6b4d0b27 3418 return res;
1da177e4 3419
1da177e4
LT
3420put_memory:
3421 shmem_unacct_size(flags, size);
66ee4b88
KK
3422put_path:
3423 path_put(&path);
6b4d0b27 3424 return res;
1da177e4 3425}
c7277090
EP
3426
3427/**
3428 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3429 * kernel internal. There will be NO LSM permission checks against the
3430 * underlying inode. So users of this interface must do LSM checks at a
e1832f29
SS
3431 * higher layer. The users are the big_key and shm implementations. LSM
3432 * checks are provided at the key or shm level rather than the inode.
c7277090
EP
3433 * @name: name for dentry (to be seen in /proc/<pid>/maps
3434 * @size: size to be set for the file
3435 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3436 */
3437struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3438{
3439 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3440}
3441
3442/**
3443 * shmem_file_setup - get an unlinked file living in tmpfs
3444 * @name: name for dentry (to be seen in /proc/<pid>/maps
3445 * @size: size to be set for the file
3446 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3447 */
3448struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3449{
3450 return __shmem_file_setup(name, size, flags, 0);
3451}
395e0ddc 3452EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3453
46711810 3454/**
1da177e4 3455 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3456 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3457 */
3458int shmem_zero_setup(struct vm_area_struct *vma)
3459{
3460 struct file *file;
3461 loff_t size = vma->vm_end - vma->vm_start;
3462
66fc1303
HD
3463 /*
3464 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3465 * between XFS directory reading and selinux: since this file is only
3466 * accessible to the user through its mapping, use S_PRIVATE flag to
3467 * bypass file security, in the same way as shmem_kernel_file_setup().
3468 */
3469 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
1da177e4
LT
3470 if (IS_ERR(file))
3471 return PTR_ERR(file);
3472
3473 if (vma->vm_file)
3474 fput(vma->vm_file);
3475 vma->vm_file = file;
3476 vma->vm_ops = &shmem_vm_ops;
3477 return 0;
3478}
d9d90e5e
HD
3479
3480/**
3481 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3482 * @mapping: the page's address_space
3483 * @index: the page index
3484 * @gfp: the page allocator flags to use if allocating
3485 *
3486 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3487 * with any new page allocations done using the specified allocation flags.
3488 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3489 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3490 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3491 *
68da9f05
HD
3492 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3493 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3494 */
3495struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3496 pgoff_t index, gfp_t gfp)
3497{
68da9f05
HD
3498#ifdef CONFIG_SHMEM
3499 struct inode *inode = mapping->host;
9276aad6 3500 struct page *page;
68da9f05
HD
3501 int error;
3502
3503 BUG_ON(mapping->a_ops != &shmem_aops);
3504 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3505 if (error)
3506 page = ERR_PTR(error);
3507 else
3508 unlock_page(page);
3509 return page;
3510#else
3511 /*
3512 * The tiny !SHMEM case uses ramfs without swap
3513 */
d9d90e5e 3514 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3515#endif
d9d90e5e
HD
3516}
3517EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
This page took 1.242028 seconds and 5 git commands to generate.