tmpfs: take control of its truncate_range
[deliverable/linux.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
0edd73b3
HD
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12 *
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16 *
853ac43a
MM
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19 *
1da177e4
LT
20 * This file is released under the GPL.
21 */
22
853ac43a
MM
23#include <linux/fs.h>
24#include <linux/init.h>
25#include <linux/vfs.h>
26#include <linux/mount.h>
caefba17 27#include <linux/pagemap.h>
853ac43a
MM
28#include <linux/file.h>
29#include <linux/mm.h>
30#include <linux/module.h>
7e496299 31#include <linux/percpu_counter.h>
853ac43a
MM
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
1da177e4
LT
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
39f0247d 43#include <linux/xattr.h>
a5694255 44#include <linux/exportfs.h>
1c7c474c 45#include <linux/posix_acl.h>
39f0247d 46#include <linux/generic_acl.h>
1da177e4 47#include <linux/mman.h>
1da177e4
LT
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
1da177e4 52#include <linux/writeback.h>
1da177e4
LT
53#include <linux/blkdev.h>
54#include <linux/security.h>
55#include <linux/swapops.h>
56#include <linux/mempolicy.h>
57#include <linux/namei.h>
b00dc3ad 58#include <linux/ctype.h>
304dbdb7 59#include <linux/migrate.h>
c1f60a5a 60#include <linux/highmem.h>
680d794b 61#include <linux/seq_file.h>
92562927 62#include <linux/magic.h>
304dbdb7 63
1da177e4
LT
64#include <asm/uaccess.h>
65#include <asm/div64.h>
66#include <asm/pgtable.h>
67
caefba17
HD
68/*
69 * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70 * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71 *
72 * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73 * but one eighth of that on a 64-bit kernel. With 8kB page size, maximum
74 * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75 * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76 *
77 * We use / and * instead of shifts in the definitions below, so that the swap
78 * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79 */
1da177e4 80#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61609d01 81#define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
1da177e4 82
caefba17
HD
83#define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84#define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
1da177e4 85
caefba17
HD
86#define SHMEM_MAX_BYTES min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87#define SHMEM_MAX_INDEX ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88
89#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
90#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91
92/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93#define SHMEM_PAGEIN VM_READ
94#define SHMEM_TRUNCATE VM_WRITE
95
96/* Definition to limit shmem_truncate's steps between cond_rescheds */
97#define LATENCY_LIMIT 64
98
99/* Pretend that each entry is of this size in directory's i_size */
100#define BOGO_DIRENT_SIZE 20
101
b09e0fa4
EP
102struct shmem_xattr {
103 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
104 char *name; /* xattr name */
105 size_t size;
106 char value[0];
107};
108
1da177e4
LT
109/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110enum sgp_type {
1da177e4
LT
111 SGP_READ, /* don't exceed i_size, don't allocate page */
112 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 113 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1da177e4
LT
114 SGP_WRITE, /* may exceed i_size, may allocate page */
115};
116
b76db735 117#ifdef CONFIG_TMPFS
680d794b 118static unsigned long shmem_default_max_blocks(void)
119{
120 return totalram_pages / 2;
121}
122
123static unsigned long shmem_default_max_inodes(void)
124{
125 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
126}
b76db735 127#endif
680d794b 128
1da177e4
LT
129static int shmem_getpage(struct inode *inode, unsigned long idx,
130 struct page **pagep, enum sgp_type sgp, int *type);
131
6daa0e28 132static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
1da177e4
LT
133{
134 /*
135 * The above definition of ENTRIES_PER_PAGE, and the use of
136 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137 * might be reconsidered if it ever diverges from PAGE_SIZE.
769848c0 138 *
e12ba74d 139 * Mobility flags are masked out as swap vectors cannot move
1da177e4 140 */
e12ba74d 141 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
769848c0 142 PAGE_CACHE_SHIFT-PAGE_SHIFT);
1da177e4
LT
143}
144
145static inline void shmem_dir_free(struct page *page)
146{
147 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
148}
149
150static struct page **shmem_dir_map(struct page *page)
151{
152 return (struct page **)kmap_atomic(page, KM_USER0);
153}
154
155static inline void shmem_dir_unmap(struct page **dir)
156{
157 kunmap_atomic(dir, KM_USER0);
158}
159
160static swp_entry_t *shmem_swp_map(struct page *page)
161{
162 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
163}
164
165static inline void shmem_swp_balance_unmap(void)
166{
167 /*
168 * When passing a pointer to an i_direct entry, to code which
169 * also handles indirect entries and so will shmem_swp_unmap,
170 * we must arrange for the preempt count to remain in balance.
171 * What kmap_atomic of a lowmem page does depends on config
172 * and architecture, so pretend to kmap_atomic some lowmem page.
173 */
174 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
175}
176
177static inline void shmem_swp_unmap(swp_entry_t *entry)
178{
179 kunmap_atomic(entry, KM_USER1);
180}
181
182static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
183{
184 return sb->s_fs_info;
185}
186
187/*
188 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189 * for shared memory and for shared anonymous (/dev/zero) mappings
190 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191 * consistent with the pre-accounting of private mappings ...
192 */
193static inline int shmem_acct_size(unsigned long flags, loff_t size)
194{
0b0a0806
HD
195 return (flags & VM_NORESERVE) ?
196 0 : security_vm_enough_memory_kern(VM_ACCT(size));
1da177e4
LT
197}
198
199static inline void shmem_unacct_size(unsigned long flags, loff_t size)
200{
0b0a0806 201 if (!(flags & VM_NORESERVE))
1da177e4
LT
202 vm_unacct_memory(VM_ACCT(size));
203}
204
205/*
206 * ... whereas tmpfs objects are accounted incrementally as
207 * pages are allocated, in order to allow huge sparse files.
208 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
210 */
211static inline int shmem_acct_block(unsigned long flags)
212{
0b0a0806
HD
213 return (flags & VM_NORESERVE) ?
214 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
215}
216
217static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218{
0b0a0806 219 if (flags & VM_NORESERVE)
1da177e4
LT
220 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
221}
222
759b9775 223static const struct super_operations shmem_ops;
f5e54d6e 224static const struct address_space_operations shmem_aops;
15ad7cdc 225static const struct file_operations shmem_file_operations;
92e1d5be
AV
226static const struct inode_operations shmem_inode_operations;
227static const struct inode_operations shmem_dir_inode_operations;
228static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 229static const struct vm_operations_struct shmem_vm_ops;
1da177e4 230
6c231b7b 231static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 232 .ra_pages = 0, /* No readahead */
4f98a2fe 233 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
234};
235
236static LIST_HEAD(shmem_swaplist);
cb5f7b9a 237static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4
LT
238
239static void shmem_free_blocks(struct inode *inode, long pages)
240{
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 242 if (sbinfo->max_blocks) {
7e496299
TC
243 percpu_counter_add(&sbinfo->used_blocks, -pages);
244 spin_lock(&inode->i_lock);
1da177e4 245 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
7e496299 246 spin_unlock(&inode->i_lock);
1da177e4
LT
247 }
248}
249
5b04c689
PE
250static int shmem_reserve_inode(struct super_block *sb)
251{
252 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253 if (sbinfo->max_inodes) {
254 spin_lock(&sbinfo->stat_lock);
255 if (!sbinfo->free_inodes) {
256 spin_unlock(&sbinfo->stat_lock);
257 return -ENOSPC;
258 }
259 sbinfo->free_inodes--;
260 spin_unlock(&sbinfo->stat_lock);
261 }
262 return 0;
263}
264
265static void shmem_free_inode(struct super_block *sb)
266{
267 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268 if (sbinfo->max_inodes) {
269 spin_lock(&sbinfo->stat_lock);
270 sbinfo->free_inodes++;
271 spin_unlock(&sbinfo->stat_lock);
272 }
273}
274
46711810 275/**
1da177e4 276 * shmem_recalc_inode - recalculate the size of an inode
1da177e4
LT
277 * @inode: inode to recalc
278 *
279 * We have to calculate the free blocks since the mm can drop
280 * undirtied hole pages behind our back.
281 *
282 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
283 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284 *
285 * It has to be called with the spinlock held.
286 */
287static void shmem_recalc_inode(struct inode *inode)
288{
289 struct shmem_inode_info *info = SHMEM_I(inode);
290 long freed;
291
292 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293 if (freed > 0) {
294 info->alloced -= freed;
295 shmem_unacct_blocks(info->flags, freed);
296 shmem_free_blocks(inode, freed);
297 }
298}
299
46711810 300/**
1da177e4 301 * shmem_swp_entry - find the swap vector position in the info structure
1da177e4
LT
302 * @info: info structure for the inode
303 * @index: index of the page to find
304 * @page: optional page to add to the structure. Has to be preset to
305 * all zeros
306 *
307 * If there is no space allocated yet it will return NULL when
308 * page is NULL, else it will use the page for the needed block,
309 * setting it to NULL on return to indicate that it has been used.
310 *
311 * The swap vector is organized the following way:
312 *
313 * There are SHMEM_NR_DIRECT entries directly stored in the
314 * shmem_inode_info structure. So small files do not need an addional
315 * allocation.
316 *
317 * For pages with index > SHMEM_NR_DIRECT there is the pointer
318 * i_indirect which points to a page which holds in the first half
319 * doubly indirect blocks, in the second half triple indirect blocks:
320 *
321 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322 * following layout (for SHMEM_NR_DIRECT == 16):
323 *
324 * i_indirect -> dir --> 16-19
325 * | +-> 20-23
326 * |
327 * +-->dir2 --> 24-27
328 * | +-> 28-31
329 * | +-> 32-35
330 * | +-> 36-39
331 * |
332 * +-->dir3 --> 40-43
333 * +-> 44-47
334 * +-> 48-51
335 * +-> 52-55
336 */
337static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
338{
339 unsigned long offset;
340 struct page **dir;
341 struct page *subdir;
342
343 if (index < SHMEM_NR_DIRECT) {
344 shmem_swp_balance_unmap();
345 return info->i_direct+index;
346 }
347 if (!info->i_indirect) {
348 if (page) {
349 info->i_indirect = *page;
350 *page = NULL;
351 }
352 return NULL; /* need another page */
353 }
354
355 index -= SHMEM_NR_DIRECT;
356 offset = index % ENTRIES_PER_PAGE;
357 index /= ENTRIES_PER_PAGE;
358 dir = shmem_dir_map(info->i_indirect);
359
360 if (index >= ENTRIES_PER_PAGE/2) {
361 index -= ENTRIES_PER_PAGE/2;
362 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363 index %= ENTRIES_PER_PAGE;
364 subdir = *dir;
365 if (!subdir) {
366 if (page) {
367 *dir = *page;
368 *page = NULL;
369 }
370 shmem_dir_unmap(dir);
371 return NULL; /* need another page */
372 }
373 shmem_dir_unmap(dir);
374 dir = shmem_dir_map(subdir);
375 }
376
377 dir += index;
378 subdir = *dir;
379 if (!subdir) {
380 if (!page || !(subdir = *page)) {
381 shmem_dir_unmap(dir);
382 return NULL; /* need a page */
383 }
384 *dir = subdir;
385 *page = NULL;
386 }
387 shmem_dir_unmap(dir);
388 return shmem_swp_map(subdir) + offset;
389}
390
391static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
392{
393 long incdec = value? 1: -1;
394
395 entry->val = value;
396 info->swapped += incdec;
4c21e2f2
HD
397 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398 struct page *page = kmap_atomic_to_page(entry);
399 set_page_private(page, page_private(page) + incdec);
400 }
1da177e4
LT
401}
402
46711810 403/**
1da177e4 404 * shmem_swp_alloc - get the position of the swap entry for the page.
1da177e4
LT
405 * @info: info structure for the inode
406 * @index: index of the page to find
407 * @sgp: check and recheck i_size? skip allocation?
46711810
RD
408 *
409 * If the entry does not exist, allocate it.
1da177e4
LT
410 */
411static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
412{
413 struct inode *inode = &info->vfs_inode;
414 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415 struct page *page = NULL;
416 swp_entry_t *entry;
417
418 if (sgp != SGP_WRITE &&
419 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420 return ERR_PTR(-EINVAL);
421
422 while (!(entry = shmem_swp_entry(info, index, &page))) {
423 if (sgp == SGP_READ)
424 return shmem_swp_map(ZERO_PAGE(0));
425 /*
7e496299 426 * Test used_blocks against 1 less max_blocks, since we have 1 data
1da177e4
LT
427 * page (and perhaps indirect index pages) yet to allocate:
428 * a waste to allocate index if we cannot allocate data.
429 */
0edd73b3 430 if (sbinfo->max_blocks) {
fc5da22a
HD
431 if (percpu_counter_compare(&sbinfo->used_blocks,
432 sbinfo->max_blocks - 1) >= 0)
1da177e4 433 return ERR_PTR(-ENOSPC);
7e496299
TC
434 percpu_counter_inc(&sbinfo->used_blocks);
435 spin_lock(&inode->i_lock);
1da177e4 436 inode->i_blocks += BLOCKS_PER_PAGE;
7e496299 437 spin_unlock(&inode->i_lock);
1da177e4
LT
438 }
439
440 spin_unlock(&info->lock);
769848c0 441 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
1da177e4
LT
442 spin_lock(&info->lock);
443
444 if (!page) {
445 shmem_free_blocks(inode, 1);
446 return ERR_PTR(-ENOMEM);
447 }
448 if (sgp != SGP_WRITE &&
449 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450 entry = ERR_PTR(-EINVAL);
451 break;
452 }
453 if (info->next_index <= index)
454 info->next_index = index + 1;
455 }
456 if (page) {
457 /* another task gave its page, or truncated the file */
458 shmem_free_blocks(inode, 1);
459 shmem_dir_free(page);
460 }
461 if (info->next_index <= index && !IS_ERR(entry))
462 info->next_index = index + 1;
463 return entry;
464}
465
46711810 466/**
1da177e4 467 * shmem_free_swp - free some swap entries in a directory
1ae70006
HD
468 * @dir: pointer to the directory
469 * @edir: pointer after last entry of the directory
470 * @punch_lock: pointer to spinlock when needed for the holepunch case
1da177e4 471 */
1ae70006
HD
472static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473 spinlock_t *punch_lock)
1da177e4 474{
1ae70006 475 spinlock_t *punch_unlock = NULL;
1da177e4
LT
476 swp_entry_t *ptr;
477 int freed = 0;
478
479 for (ptr = dir; ptr < edir; ptr++) {
480 if (ptr->val) {
1ae70006
HD
481 if (unlikely(punch_lock)) {
482 punch_unlock = punch_lock;
483 punch_lock = NULL;
484 spin_lock(punch_unlock);
485 if (!ptr->val)
486 continue;
487 }
1da177e4
LT
488 free_swap_and_cache(*ptr);
489 *ptr = (swp_entry_t){0};
490 freed++;
491 }
492 }
1ae70006
HD
493 if (punch_unlock)
494 spin_unlock(punch_unlock);
1da177e4
LT
495 return freed;
496}
497
1ae70006
HD
498static int shmem_map_and_free_swp(struct page *subdir, int offset,
499 int limit, struct page ***dir, spinlock_t *punch_lock)
1da177e4
LT
500{
501 swp_entry_t *ptr;
502 int freed = 0;
503
504 ptr = shmem_swp_map(subdir);
505 for (; offset < limit; offset += LATENCY_LIMIT) {
506 int size = limit - offset;
507 if (size > LATENCY_LIMIT)
508 size = LATENCY_LIMIT;
1ae70006
HD
509 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510 punch_lock);
1da177e4
LT
511 if (need_resched()) {
512 shmem_swp_unmap(ptr);
513 if (*dir) {
514 shmem_dir_unmap(*dir);
515 *dir = NULL;
516 }
517 cond_resched();
518 ptr = shmem_swp_map(subdir);
519 }
520 }
521 shmem_swp_unmap(ptr);
522 return freed;
523}
524
525static void shmem_free_pages(struct list_head *next)
526{
527 struct page *page;
528 int freed = 0;
529
530 do {
531 page = container_of(next, struct page, lru);
532 next = next->next;
533 shmem_dir_free(page);
534 freed++;
535 if (freed >= LATENCY_LIMIT) {
536 cond_resched();
537 freed = 0;
538 }
539 } while (next);
540}
541
94c1e62d 542void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
1da177e4
LT
543{
544 struct shmem_inode_info *info = SHMEM_I(inode);
545 unsigned long idx;
546 unsigned long size;
547 unsigned long limit;
548 unsigned long stage;
549 unsigned long diroff;
550 struct page **dir;
551 struct page *topdir;
552 struct page *middir;
553 struct page *subdir;
554 swp_entry_t *ptr;
555 LIST_HEAD(pages_to_free);
556 long nr_pages_to_free = 0;
557 long nr_swaps_freed = 0;
558 int offset;
559 int freed;
a2646d1e 560 int punch_hole;
1ae70006
HD
561 spinlock_t *needs_lock;
562 spinlock_t *punch_lock;
a2646d1e 563 unsigned long upper_limit;
1da177e4 564
94c1e62d
HD
565 truncate_inode_pages_range(inode->i_mapping, start, end);
566
1da177e4 567 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
f6b3ec23 568 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
569 if (idx >= info->next_index)
570 return;
571
572 spin_lock(&info->lock);
573 info->flags |= SHMEM_TRUNCATE;
f6b3ec23
BP
574 if (likely(end == (loff_t) -1)) {
575 limit = info->next_index;
a2646d1e 576 upper_limit = SHMEM_MAX_INDEX;
f6b3ec23 577 info->next_index = idx;
1ae70006 578 needs_lock = NULL;
a2646d1e 579 punch_hole = 0;
f6b3ec23 580 } else {
a2646d1e
HD
581 if (end + 1 >= inode->i_size) { /* we may free a little more */
582 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
583 PAGE_CACHE_SHIFT;
584 upper_limit = SHMEM_MAX_INDEX;
585 } else {
586 limit = (end + 1) >> PAGE_CACHE_SHIFT;
587 upper_limit = limit;
588 }
1ae70006 589 needs_lock = &info->lock;
f6b3ec23
BP
590 punch_hole = 1;
591 }
592
1da177e4 593 topdir = info->i_indirect;
f6b3ec23 594 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
1da177e4
LT
595 info->i_indirect = NULL;
596 nr_pages_to_free++;
597 list_add(&topdir->lru, &pages_to_free);
598 }
599 spin_unlock(&info->lock);
600
601 if (info->swapped && idx < SHMEM_NR_DIRECT) {
602 ptr = info->i_direct;
603 size = limit;
604 if (size > SHMEM_NR_DIRECT)
605 size = SHMEM_NR_DIRECT;
1ae70006 606 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
1da177e4 607 }
92a3d03a
BP
608
609 /*
610 * If there are no indirect blocks or we are punching a hole
611 * below indirect blocks, nothing to be done.
612 */
a2646d1e 613 if (!topdir || limit <= SHMEM_NR_DIRECT)
1da177e4
LT
614 goto done2;
615
1ae70006
HD
616 /*
617 * The truncation case has already dropped info->lock, and we're safe
618 * because i_size and next_index have already been lowered, preventing
619 * access beyond. But in the punch_hole case, we still need to take
620 * the lock when updating the swap directory, because there might be
621 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
622 * shmem_writepage. However, whenever we find we can remove a whole
623 * directory page (not at the misaligned start or end of the range),
624 * we first NULLify its pointer in the level above, and then have no
625 * need to take the lock when updating its contents: needs_lock and
626 * punch_lock (either pointing to info->lock or NULL) manage this.
627 */
628
a2646d1e 629 upper_limit -= SHMEM_NR_DIRECT;
1da177e4
LT
630 limit -= SHMEM_NR_DIRECT;
631 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
632 offset = idx % ENTRIES_PER_PAGE;
633 idx -= offset;
634
635 dir = shmem_dir_map(topdir);
636 stage = ENTRIES_PER_PAGEPAGE/2;
637 if (idx < ENTRIES_PER_PAGEPAGE/2) {
638 middir = topdir;
639 diroff = idx/ENTRIES_PER_PAGE;
640 } else {
641 dir += ENTRIES_PER_PAGE/2;
642 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
643 while (stage <= idx)
644 stage += ENTRIES_PER_PAGEPAGE;
645 middir = *dir;
646 if (*dir) {
647 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
648 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
a2646d1e 649 if (!diroff && !offset && upper_limit >= stage) {
1ae70006
HD
650 if (needs_lock) {
651 spin_lock(needs_lock);
652 *dir = NULL;
653 spin_unlock(needs_lock);
654 needs_lock = NULL;
655 } else
656 *dir = NULL;
1da177e4
LT
657 nr_pages_to_free++;
658 list_add(&middir->lru, &pages_to_free);
659 }
660 shmem_dir_unmap(dir);
661 dir = shmem_dir_map(middir);
662 } else {
663 diroff = 0;
664 offset = 0;
665 idx = stage;
666 }
667 }
668
669 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
670 if (unlikely(idx == stage)) {
671 shmem_dir_unmap(dir);
672 dir = shmem_dir_map(topdir) +
673 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
674 while (!*dir) {
675 dir++;
676 idx += ENTRIES_PER_PAGEPAGE;
677 if (idx >= limit)
678 goto done1;
679 }
680 stage = idx + ENTRIES_PER_PAGEPAGE;
681 middir = *dir;
1ae70006
HD
682 if (punch_hole)
683 needs_lock = &info->lock;
a2646d1e 684 if (upper_limit >= stage) {
1ae70006
HD
685 if (needs_lock) {
686 spin_lock(needs_lock);
687 *dir = NULL;
688 spin_unlock(needs_lock);
689 needs_lock = NULL;
690 } else
691 *dir = NULL;
a2646d1e
HD
692 nr_pages_to_free++;
693 list_add(&middir->lru, &pages_to_free);
694 }
1da177e4
LT
695 shmem_dir_unmap(dir);
696 cond_resched();
697 dir = shmem_dir_map(middir);
698 diroff = 0;
699 }
1ae70006 700 punch_lock = needs_lock;
1da177e4 701 subdir = dir[diroff];
1ae70006
HD
702 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
703 if (needs_lock) {
704 spin_lock(needs_lock);
705 dir[diroff] = NULL;
706 spin_unlock(needs_lock);
707 punch_lock = NULL;
708 } else
709 dir[diroff] = NULL;
710 nr_pages_to_free++;
711 list_add(&subdir->lru, &pages_to_free);
712 }
713 if (subdir && page_private(subdir) /* has swap entries */) {
1da177e4
LT
714 size = limit - idx;
715 if (size > ENTRIES_PER_PAGE)
716 size = ENTRIES_PER_PAGE;
717 freed = shmem_map_and_free_swp(subdir,
1ae70006 718 offset, size, &dir, punch_lock);
1da177e4
LT
719 if (!dir)
720 dir = shmem_dir_map(middir);
721 nr_swaps_freed += freed;
1ae70006 722 if (offset || punch_lock) {
1da177e4 723 spin_lock(&info->lock);
1ae70006
HD
724 set_page_private(subdir,
725 page_private(subdir) - freed);
1da177e4 726 spin_unlock(&info->lock);
1ae70006
HD
727 } else
728 BUG_ON(page_private(subdir) != freed);
1da177e4 729 }
1ae70006 730 offset = 0;
1da177e4
LT
731 }
732done1:
733 shmem_dir_unmap(dir);
734done2:
735 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
736 /*
737 * Call truncate_inode_pages again: racing shmem_unuse_inode
3889e6e7 738 * may have swizzled a page in from swap since
739 * truncate_pagecache or generic_delete_inode did it, before we
740 * lowered next_index. Also, though shmem_getpage checks
741 * i_size before adding to cache, no recheck after: so fix the
742 * narrow window there too.
1da177e4 743 */
f6b3ec23 744 truncate_inode_pages_range(inode->i_mapping, start, end);
1da177e4
LT
745 }
746
747 spin_lock(&info->lock);
748 info->flags &= ~SHMEM_TRUNCATE;
749 info->swapped -= nr_swaps_freed;
750 if (nr_pages_to_free)
751 shmem_free_blocks(inode, nr_pages_to_free);
752 shmem_recalc_inode(inode);
753 spin_unlock(&info->lock);
754
755 /*
756 * Empty swap vector directory pages to be freed?
757 */
758 if (!list_empty(&pages_to_free)) {
759 pages_to_free.prev->next = NULL;
760 shmem_free_pages(pages_to_free.next);
761 }
762}
94c1e62d 763EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 764
94c1e62d 765static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
766{
767 struct inode *inode = dentry->d_inode;
1da177e4
LT
768 int error;
769
db78b877
CH
770 error = inode_change_ok(inode, attr);
771 if (error)
772 return error;
773
94c1e62d
HD
774 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
775 loff_t oldsize = inode->i_size;
776 loff_t newsize = attr->ia_size;
3889e6e7 777 struct page *page = NULL;
778
94c1e62d 779 if (newsize < oldsize) {
1da177e4
LT
780 /*
781 * If truncating down to a partial page, then
782 * if that page is already allocated, hold it
783 * in memory until the truncation is over, so
ae0e47f0 784 * truncate_partial_page cannot miss it were
1da177e4
LT
785 * it assigned to swap.
786 */
3889e6e7 787 if (newsize & (PAGE_CACHE_SIZE-1)) {
1da177e4 788 (void) shmem_getpage(inode,
3889e6e7 789 newsize >> PAGE_CACHE_SHIFT,
1da177e4 790 &page, SGP_READ, NULL);
d3602444
HD
791 if (page)
792 unlock_page(page);
1da177e4
LT
793 }
794 /*
795 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
796 * detect if any pages might have been added to cache
797 * after truncate_inode_pages. But we needn't bother
798 * if it's being fully truncated to zero-length: the
799 * nrpages check is efficient enough in that case.
800 */
3889e6e7 801 if (newsize) {
1da177e4
LT
802 struct shmem_inode_info *info = SHMEM_I(inode);
803 spin_lock(&info->lock);
804 info->flags &= ~SHMEM_PAGEIN;
805 spin_unlock(&info->lock);
806 }
807 }
94c1e62d
HD
808 if (newsize != oldsize) {
809 i_size_write(inode, newsize);
810 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
811 }
812 if (newsize < oldsize) {
813 loff_t holebegin = round_up(newsize, PAGE_SIZE);
814 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
815 shmem_truncate_range(inode, newsize, (loff_t)-1);
816 /* unmap again to remove racily COWed private pages */
817 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
818 }
3889e6e7 819 if (page)
820 page_cache_release(page);
1da177e4
LT
821 }
822
db78b877 823 setattr_copy(inode, attr);
39f0247d 824#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 825 if (attr->ia_valid & ATTR_MODE)
1c7c474c 826 error = generic_acl_chmod(inode);
39f0247d 827#endif
1da177e4
LT
828 return error;
829}
830
1f895f75 831static void shmem_evict_inode(struct inode *inode)
1da177e4 832{
1da177e4 833 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 834 struct shmem_xattr *xattr, *nxattr;
1da177e4 835
3889e6e7 836 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
837 shmem_unacct_size(info->flags, inode->i_size);
838 inode->i_size = 0;
3889e6e7 839 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 840 if (!list_empty(&info->swaplist)) {
cb5f7b9a 841 mutex_lock(&shmem_swaplist_mutex);
1da177e4 842 list_del_init(&info->swaplist);
cb5f7b9a 843 mutex_unlock(&shmem_swaplist_mutex);
1da177e4
LT
844 }
845 }
b09e0fa4
EP
846
847 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
848 kfree(xattr->name);
849 kfree(xattr);
850 }
0edd73b3 851 BUG_ON(inode->i_blocks);
5b04c689 852 shmem_free_inode(inode->i_sb);
1f895f75 853 end_writeback(inode);
1da177e4
LT
854}
855
856static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
857{
858 swp_entry_t *ptr;
859
860 for (ptr = dir; ptr < edir; ptr++) {
861 if (ptr->val == entry.val)
862 return ptr - dir;
863 }
864 return -1;
865}
866
867static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
868{
778dd893 869 struct address_space *mapping;
1da177e4
LT
870 unsigned long idx;
871 unsigned long size;
872 unsigned long limit;
873 unsigned long stage;
874 struct page **dir;
875 struct page *subdir;
876 swp_entry_t *ptr;
877 int offset;
d9fe526a 878 int error;
1da177e4
LT
879
880 idx = 0;
881 ptr = info->i_direct;
882 spin_lock(&info->lock);
1b1b32f2
HD
883 if (!info->swapped) {
884 list_del_init(&info->swaplist);
885 goto lost2;
886 }
1da177e4
LT
887 limit = info->next_index;
888 size = limit;
889 if (size > SHMEM_NR_DIRECT)
890 size = SHMEM_NR_DIRECT;
891 offset = shmem_find_swp(entry, ptr, ptr+size);
778dd893
HD
892 if (offset >= 0) {
893 shmem_swp_balance_unmap();
1da177e4 894 goto found;
778dd893 895 }
1da177e4
LT
896 if (!info->i_indirect)
897 goto lost2;
898
899 dir = shmem_dir_map(info->i_indirect);
900 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
901
902 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
903 if (unlikely(idx == stage)) {
904 shmem_dir_unmap(dir-1);
cb5f7b9a
HD
905 if (cond_resched_lock(&info->lock)) {
906 /* check it has not been truncated */
907 if (limit > info->next_index) {
908 limit = info->next_index;
909 if (idx >= limit)
910 goto lost2;
911 }
912 }
1da177e4
LT
913 dir = shmem_dir_map(info->i_indirect) +
914 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
915 while (!*dir) {
916 dir++;
917 idx += ENTRIES_PER_PAGEPAGE;
918 if (idx >= limit)
919 goto lost1;
920 }
921 stage = idx + ENTRIES_PER_PAGEPAGE;
922 subdir = *dir;
923 shmem_dir_unmap(dir);
924 dir = shmem_dir_map(subdir);
925 }
926 subdir = *dir;
4c21e2f2 927 if (subdir && page_private(subdir)) {
1da177e4
LT
928 ptr = shmem_swp_map(subdir);
929 size = limit - idx;
930 if (size > ENTRIES_PER_PAGE)
931 size = ENTRIES_PER_PAGE;
932 offset = shmem_find_swp(entry, ptr, ptr+size);
e6c9366b 933 shmem_swp_unmap(ptr);
1da177e4
LT
934 if (offset >= 0) {
935 shmem_dir_unmap(dir);
e6c9366b 936 ptr = shmem_swp_map(subdir);
1da177e4
LT
937 goto found;
938 }
1da177e4
LT
939 }
940 }
941lost1:
942 shmem_dir_unmap(dir-1);
943lost2:
944 spin_unlock(&info->lock);
945 return 0;
946found:
947 idx += offset;
778dd893 948 ptr += offset;
2e0e26c7 949
1b1b32f2
HD
950 /*
951 * Move _head_ to start search for next from here.
1f895f75 952 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2
HD
953 * mutex, and there's an instant in list_move_tail when info->swaplist
954 * would appear empty, if it were the only one on shmem_swaplist. We
955 * could avoid doing it if inode NULL; or use this minor optimization.
956 */
957 if (shmem_swaplist.next != &info->swaplist)
958 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 959
d13d1443 960 /*
778dd893
HD
961 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
962 * but also to hold up shmem_evict_inode(): so inode cannot be freed
963 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 964 */
778dd893
HD
965 mapping = info->vfs_inode.i_mapping;
966 error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
967 /* which does mem_cgroup_uncharge_cache_page on error */
69029cd5 968
d9fe526a 969 if (error == -EEXIST) {
778dd893 970 struct page *filepage = find_get_page(mapping, idx);
2e0e26c7 971 error = 1;
d9fe526a
HD
972 if (filepage) {
973 /*
974 * There might be a more uptodate page coming down
975 * from a stacked writepage: forget our swappage if so.
976 */
977 if (PageUptodate(filepage))
978 error = 0;
979 page_cache_release(filepage);
980 }
981 }
982 if (!error) {
73b1262f
HD
983 delete_from_swap_cache(page);
984 set_page_dirty(page);
1da177e4 985 info->flags |= SHMEM_PAGEIN;
2e0e26c7
HD
986 shmem_swp_set(info, ptr, 0);
987 swap_free(entry);
988 error = 1; /* not an error, but entry was found */
1da177e4 989 }
778dd893 990 shmem_swp_unmap(ptr);
1da177e4 991 spin_unlock(&info->lock);
2e0e26c7 992 return error;
1da177e4
LT
993}
994
995/*
996 * shmem_unuse() search for an eventually swapped out shmem page.
997 */
998int shmem_unuse(swp_entry_t entry, struct page *page)
999{
1000 struct list_head *p, *next;
1001 struct shmem_inode_info *info;
1002 int found = 0;
778dd893
HD
1003 int error;
1004
1005 /*
1006 * Charge page using GFP_KERNEL while we can wait, before taking
1007 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1008 * Charged back to the user (not to caller) when swap account is used.
1009 * add_to_page_cache() will be called with GFP_NOWAIT.
1010 */
1011 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1012 if (error)
1013 goto out;
1014 /*
1015 * Try to preload while we can wait, to not make a habit of
1016 * draining atomic reserves; but don't latch on to this cpu,
1017 * it's okay if sometimes we get rescheduled after this.
1018 */
1019 error = radix_tree_preload(GFP_KERNEL);
1020 if (error)
1021 goto uncharge;
1022 radix_tree_preload_end();
1da177e4 1023
cb5f7b9a 1024 mutex_lock(&shmem_swaplist_mutex);
1da177e4
LT
1025 list_for_each_safe(p, next, &shmem_swaplist) {
1026 info = list_entry(p, struct shmem_inode_info, swaplist);
1b1b32f2 1027 found = shmem_unuse_inode(info, entry, page);
cb5f7b9a 1028 cond_resched();
2e0e26c7 1029 if (found)
778dd893 1030 break;
1da177e4 1031 }
cb5f7b9a 1032 mutex_unlock(&shmem_swaplist_mutex);
778dd893
HD
1033
1034uncharge:
1035 if (!found)
1036 mem_cgroup_uncharge_cache_page(page);
1037 if (found < 0)
1038 error = found;
1039out:
aaa46865
HD
1040 unlock_page(page);
1041 page_cache_release(page);
778dd893 1042 return error;
1da177e4
LT
1043}
1044
1045/*
1046 * Move the page from the page cache to the swap cache.
1047 */
1048static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1049{
1050 struct shmem_inode_info *info;
1051 swp_entry_t *entry, swap;
1052 struct address_space *mapping;
1053 unsigned long index;
1054 struct inode *inode;
1055
1056 BUG_ON(!PageLocked(page));
1da177e4
LT
1057 mapping = page->mapping;
1058 index = page->index;
1059 inode = mapping->host;
1060 info = SHMEM_I(inode);
1061 if (info->flags & VM_LOCKED)
1062 goto redirty;
d9fe526a 1063 if (!total_swap_pages)
1da177e4
LT
1064 goto redirty;
1065
d9fe526a
HD
1066 /*
1067 * shmem_backing_dev_info's capabilities prevent regular writeback or
1068 * sync from ever calling shmem_writepage; but a stacking filesystem
1069 * may use the ->writepage of its underlying filesystem, in which case
1070 * tmpfs should write out to swap only in response to memory pressure,
5b0830cb
JA
1071 * and not for the writeback threads or sync. However, in those cases,
1072 * we do still want to check if there's a redundant swappage to be
1073 * discarded.
d9fe526a
HD
1074 */
1075 if (wbc->for_reclaim)
1076 swap = get_swap_page();
1077 else
1078 swap.val = 0;
1079
b1dea800
HD
1080 /*
1081 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1082 * if it's not already there. Do it now because we cannot take
1083 * mutex while holding spinlock, and must do so before the page
1084 * is moved to swap cache, when its pagelock no longer protects
1085 * the inode from eviction. But don't unlock the mutex until
1086 * we've taken the spinlock, because shmem_unuse_inode() will
1087 * prune a !swapped inode from the swaplist under both locks.
1088 */
05bf86b4 1089 if (swap.val) {
b1dea800 1090 mutex_lock(&shmem_swaplist_mutex);
05bf86b4
HD
1091 if (list_empty(&info->swaplist))
1092 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800
HD
1093 }
1094
1da177e4 1095 spin_lock(&info->lock);
05bf86b4 1096 if (swap.val)
b1dea800
HD
1097 mutex_unlock(&shmem_swaplist_mutex);
1098
1da177e4
LT
1099 if (index >= info->next_index) {
1100 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1101 goto unlock;
1102 }
1103 entry = shmem_swp_entry(info, index, NULL);
d9fe526a
HD
1104 if (entry->val) {
1105 /*
1106 * The more uptodate page coming down from a stacked
1107 * writepage should replace our old swappage.
1108 */
1109 free_swap_and_cache(*entry);
1110 shmem_swp_set(info, entry, 0);
1111 }
1112 shmem_recalc_inode(inode);
1da177e4 1113
d9fe526a 1114 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
4c73b1bc 1115 delete_from_page_cache(page);
1da177e4
LT
1116 shmem_swp_set(info, entry, swap.val);
1117 shmem_swp_unmap(entry);
aaa46865 1118 swap_shmem_alloc(swap);
826267cf 1119 spin_unlock(&info->lock);
d9fe526a 1120 BUG_ON(page_mapped(page));
9fab5619 1121 swap_writepage(page, wbc);
1da177e4
LT
1122 return 0;
1123 }
1124
1125 shmem_swp_unmap(entry);
1126unlock:
1127 spin_unlock(&info->lock);
2ca4532a
DN
1128 /*
1129 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1130 * clear SWAP_HAS_CACHE flag.
1131 */
cb4b86ba 1132 swapcache_free(swap, NULL);
1da177e4
LT
1133redirty:
1134 set_page_dirty(page);
d9fe526a
HD
1135 if (wbc->for_reclaim)
1136 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1137 unlock_page(page);
1138 return 0;
1da177e4
LT
1139}
1140
1141#ifdef CONFIG_NUMA
680d794b 1142#ifdef CONFIG_TMPFS
71fe804b 1143static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 1144{
095f1fc4 1145 char buffer[64];
680d794b 1146
71fe804b 1147 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 1148 return; /* show nothing */
680d794b 1149
71fe804b 1150 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
095f1fc4
LS
1151
1152 seq_printf(seq, ",mpol=%s", buffer);
680d794b 1153}
71fe804b
LS
1154
1155static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1156{
1157 struct mempolicy *mpol = NULL;
1158 if (sbinfo->mpol) {
1159 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1160 mpol = sbinfo->mpol;
1161 mpol_get(mpol);
1162 spin_unlock(&sbinfo->stat_lock);
1163 }
1164 return mpol;
1165}
680d794b 1166#endif /* CONFIG_TMPFS */
1167
02098fea
HD
1168static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1169 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1170{
52cd3b07 1171 struct mempolicy mpol, *spol;
1da177e4 1172 struct vm_area_struct pvma;
c4cc6d07 1173 struct page *page;
1da177e4 1174
52cd3b07
LS
1175 spol = mpol_cond_copy(&mpol,
1176 mpol_shared_policy_lookup(&info->policy, idx));
1177
1da177e4 1178 /* Create a pseudo vma that just contains the policy */
c4cc6d07 1179 pvma.vm_start = 0;
1da177e4 1180 pvma.vm_pgoff = idx;
c4cc6d07 1181 pvma.vm_ops = NULL;
52cd3b07 1182 pvma.vm_policy = spol;
02098fea 1183 page = swapin_readahead(entry, gfp, &pvma, 0);
1da177e4
LT
1184 return page;
1185}
1186
02098fea
HD
1187static struct page *shmem_alloc_page(gfp_t gfp,
1188 struct shmem_inode_info *info, unsigned long idx)
1da177e4
LT
1189{
1190 struct vm_area_struct pvma;
1da177e4 1191
c4cc6d07
HD
1192 /* Create a pseudo vma that just contains the policy */
1193 pvma.vm_start = 0;
1da177e4 1194 pvma.vm_pgoff = idx;
c4cc6d07
HD
1195 pvma.vm_ops = NULL;
1196 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
52cd3b07
LS
1197
1198 /*
1199 * alloc_page_vma() will drop the shared policy reference
1200 */
1201 return alloc_page_vma(gfp, &pvma, 0);
1da177e4 1202}
680d794b 1203#else /* !CONFIG_NUMA */
1204#ifdef CONFIG_TMPFS
71fe804b 1205static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
680d794b 1206{
1207}
1208#endif /* CONFIG_TMPFS */
1209
02098fea
HD
1210static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1211 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1212{
02098fea 1213 return swapin_readahead(entry, gfp, NULL, 0);
1da177e4
LT
1214}
1215
02098fea
HD
1216static inline struct page *shmem_alloc_page(gfp_t gfp,
1217 struct shmem_inode_info *info, unsigned long idx)
1da177e4 1218{
e84e2e13 1219 return alloc_page(gfp);
1da177e4 1220}
680d794b 1221#endif /* CONFIG_NUMA */
1da177e4 1222
71fe804b
LS
1223#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1224static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1225{
1226 return NULL;
1227}
1228#endif
1229
1da177e4
LT
1230/*
1231 * shmem_getpage - either get the page from swap or allocate a new one
1232 *
1233 * If we allocate a new one we do not mark it dirty. That's up to the
1234 * vm. If we swap it in we mark it dirty since we also free the swap
1235 * entry since a page cannot live in both the swap and page cache
1236 */
1237static int shmem_getpage(struct inode *inode, unsigned long idx,
1238 struct page **pagep, enum sgp_type sgp, int *type)
1239{
1240 struct address_space *mapping = inode->i_mapping;
1241 struct shmem_inode_info *info = SHMEM_I(inode);
1242 struct shmem_sb_info *sbinfo;
1243 struct page *filepage = *pagep;
1244 struct page *swappage;
ff36b801 1245 struct page *prealloc_page = NULL;
1da177e4
LT
1246 swp_entry_t *entry;
1247 swp_entry_t swap;
02098fea 1248 gfp_t gfp;
1da177e4
LT
1249 int error;
1250
1251 if (idx >= SHMEM_MAX_INDEX)
1252 return -EFBIG;
54cb8821
NP
1253
1254 if (type)
83c54070 1255 *type = 0;
54cb8821 1256
1da177e4
LT
1257 /*
1258 * Normally, filepage is NULL on entry, and either found
1259 * uptodate immediately, or allocated and zeroed, or read
1260 * in under swappage, which is then assigned to filepage.
5402b976 1261 * But shmem_readpage (required for splice) passes in a locked
ae976416
HD
1262 * filepage, which may be found not uptodate by other callers
1263 * too, and may need to be copied from the swappage read in.
1da177e4
LT
1264 */
1265repeat:
1266 if (!filepage)
1267 filepage = find_lock_page(mapping, idx);
1268 if (filepage && PageUptodate(filepage))
1269 goto done;
02098fea 1270 gfp = mapping_gfp_mask(mapping);
b409f9fc
HD
1271 if (!filepage) {
1272 /*
1273 * Try to preload while we can wait, to not make a habit of
1274 * draining atomic reserves; but don't latch on to this cpu.
1275 */
1276 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1277 if (error)
1278 goto failed;
1279 radix_tree_preload_end();
ff36b801
SL
1280 if (sgp != SGP_READ && !prealloc_page) {
1281 /* We don't care if this fails */
1282 prealloc_page = shmem_alloc_page(gfp, info, idx);
1283 if (prealloc_page) {
1284 if (mem_cgroup_cache_charge(prealloc_page,
1285 current->mm, GFP_KERNEL)) {
1286 page_cache_release(prealloc_page);
1287 prealloc_page = NULL;
1288 }
1289 }
1290 }
b409f9fc 1291 }
ff36b801 1292 error = 0;
1da177e4
LT
1293
1294 spin_lock(&info->lock);
1295 shmem_recalc_inode(inode);
1296 entry = shmem_swp_alloc(info, idx, sgp);
1297 if (IS_ERR(entry)) {
1298 spin_unlock(&info->lock);
1299 error = PTR_ERR(entry);
1300 goto failed;
1301 }
1302 swap = *entry;
1303
1304 if (swap.val) {
1305 /* Look it up and read it in.. */
1306 swappage = lookup_swap_cache(swap);
1307 if (!swappage) {
1308 shmem_swp_unmap(entry);
456f998e 1309 spin_unlock(&info->lock);
1da177e4 1310 /* here we actually do the io */
456f998e 1311 if (type)
83c54070 1312 *type |= VM_FAULT_MAJOR;
02098fea 1313 swappage = shmem_swapin(swap, gfp, info, idx);
1da177e4
LT
1314 if (!swappage) {
1315 spin_lock(&info->lock);
1316 entry = shmem_swp_alloc(info, idx, sgp);
1317 if (IS_ERR(entry))
1318 error = PTR_ERR(entry);
1319 else {
1320 if (entry->val == swap.val)
1321 error = -ENOMEM;
1322 shmem_swp_unmap(entry);
1323 }
1324 spin_unlock(&info->lock);
1325 if (error)
1326 goto failed;
1327 goto repeat;
1328 }
1329 wait_on_page_locked(swappage);
1330 page_cache_release(swappage);
1331 goto repeat;
1332 }
1333
1334 /* We have to do this with page locked to prevent races */
529ae9aa 1335 if (!trylock_page(swappage)) {
1da177e4
LT
1336 shmem_swp_unmap(entry);
1337 spin_unlock(&info->lock);
1338 wait_on_page_locked(swappage);
1339 page_cache_release(swappage);
1340 goto repeat;
1341 }
1342 if (PageWriteback(swappage)) {
1343 shmem_swp_unmap(entry);
1344 spin_unlock(&info->lock);
1345 wait_on_page_writeback(swappage);
1346 unlock_page(swappage);
1347 page_cache_release(swappage);
1348 goto repeat;
1349 }
1350 if (!PageUptodate(swappage)) {
1351 shmem_swp_unmap(entry);
1352 spin_unlock(&info->lock);
1353 unlock_page(swappage);
1354 page_cache_release(swappage);
1355 error = -EIO;
1356 goto failed;
1357 }
1358
1359 if (filepage) {
1360 shmem_swp_set(info, entry, 0);
1361 shmem_swp_unmap(entry);
1362 delete_from_swap_cache(swappage);
1363 spin_unlock(&info->lock);
1364 copy_highpage(filepage, swappage);
1365 unlock_page(swappage);
1366 page_cache_release(swappage);
1367 flush_dcache_page(filepage);
1368 SetPageUptodate(filepage);
1369 set_page_dirty(filepage);
1370 swap_free(swap);
e286781d
NP
1371 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1372 idx, GFP_NOWAIT))) {
1da177e4
LT
1373 info->flags |= SHMEM_PAGEIN;
1374 shmem_swp_set(info, entry, 0);
1375 shmem_swp_unmap(entry);
73b1262f 1376 delete_from_swap_cache(swappage);
1da177e4
LT
1377 spin_unlock(&info->lock);
1378 filepage = swappage;
73b1262f 1379 set_page_dirty(filepage);
1da177e4
LT
1380 swap_free(swap);
1381 } else {
1382 shmem_swp_unmap(entry);
1383 spin_unlock(&info->lock);
82369553 1384 if (error == -ENOMEM) {
ae3abae6
DN
1385 /*
1386 * reclaim from proper memory cgroup and
1387 * call memcg's OOM if needed.
1388 */
1389 error = mem_cgroup_shmem_charge_fallback(
1390 swappage,
b5a84319 1391 current->mm,
c9b0ed51 1392 gfp);
b5a84319
KH
1393 if (error) {
1394 unlock_page(swappage);
1395 page_cache_release(swappage);
82369553 1396 goto failed;
b5a84319 1397 }
82369553 1398 }
b5a84319
KH
1399 unlock_page(swappage);
1400 page_cache_release(swappage);
1da177e4
LT
1401 goto repeat;
1402 }
1403 } else if (sgp == SGP_READ && !filepage) {
1404 shmem_swp_unmap(entry);
1405 filepage = find_get_page(mapping, idx);
1406 if (filepage &&
529ae9aa 1407 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1da177e4
LT
1408 spin_unlock(&info->lock);
1409 wait_on_page_locked(filepage);
1410 page_cache_release(filepage);
1411 filepage = NULL;
1412 goto repeat;
1413 }
1414 spin_unlock(&info->lock);
1415 } else {
1416 shmem_swp_unmap(entry);
1417 sbinfo = SHMEM_SB(inode->i_sb);
0edd73b3 1418 if (sbinfo->max_blocks) {
fc5da22a
HD
1419 if (percpu_counter_compare(&sbinfo->used_blocks,
1420 sbinfo->max_blocks) >= 0 ||
59a16ead
HD
1421 shmem_acct_block(info->flags))
1422 goto nospace;
7e496299
TC
1423 percpu_counter_inc(&sbinfo->used_blocks);
1424 spin_lock(&inode->i_lock);
1da177e4 1425 inode->i_blocks += BLOCKS_PER_PAGE;
7e496299 1426 spin_unlock(&inode->i_lock);
59a16ead
HD
1427 } else if (shmem_acct_block(info->flags))
1428 goto nospace;
1da177e4
LT
1429
1430 if (!filepage) {
69029cd5
KH
1431 int ret;
1432
ff36b801
SL
1433 if (!prealloc_page) {
1434 spin_unlock(&info->lock);
1435 filepage = shmem_alloc_page(gfp, info, idx);
1436 if (!filepage) {
1437 shmem_unacct_blocks(info->flags, 1);
1438 shmem_free_blocks(inode, 1);
1439 error = -ENOMEM;
1440 goto failed;
1441 }
1442 SetPageSwapBacked(filepage);
1da177e4 1443
ff36b801
SL
1444 /*
1445 * Precharge page while we can wait, compensate
1446 * after
1447 */
1448 error = mem_cgroup_cache_charge(filepage,
1449 current->mm, GFP_KERNEL);
1450 if (error) {
1451 page_cache_release(filepage);
1452 shmem_unacct_blocks(info->flags, 1);
1453 shmem_free_blocks(inode, 1);
1454 filepage = NULL;
1455 goto failed;
1456 }
1457
1458 spin_lock(&info->lock);
1459 } else {
1460 filepage = prealloc_page;
1461 prealloc_page = NULL;
1462 SetPageSwapBacked(filepage);
82369553
HD
1463 }
1464
1da177e4
LT
1465 entry = shmem_swp_alloc(info, idx, sgp);
1466 if (IS_ERR(entry))
1467 error = PTR_ERR(entry);
1468 else {
1469 swap = *entry;
1470 shmem_swp_unmap(entry);
1471 }
69029cd5
KH
1472 ret = error || swap.val;
1473 if (ret)
1474 mem_cgroup_uncharge_cache_page(filepage);
1475 else
1476 ret = add_to_page_cache_lru(filepage, mapping,
1477 idx, GFP_NOWAIT);
1478 /*
1479 * At add_to_page_cache_lru() failure, uncharge will
1480 * be done automatically.
1481 */
1482 if (ret) {
1da177e4
LT
1483 spin_unlock(&info->lock);
1484 page_cache_release(filepage);
1485 shmem_unacct_blocks(info->flags, 1);
1486 shmem_free_blocks(inode, 1);
1487 filepage = NULL;
1488 if (error)
1489 goto failed;
1490 goto repeat;
1491 }
1492 info->flags |= SHMEM_PAGEIN;
1493 }
1494
1495 info->alloced++;
1496 spin_unlock(&info->lock);
e84e2e13 1497 clear_highpage(filepage);
1da177e4
LT
1498 flush_dcache_page(filepage);
1499 SetPageUptodate(filepage);
a0ee5ec5
HD
1500 if (sgp == SGP_DIRTY)
1501 set_page_dirty(filepage);
1da177e4
LT
1502 }
1503done:
d3602444 1504 *pagep = filepage;
ff36b801
SL
1505 error = 0;
1506 goto out;
1da177e4 1507
59a16ead
HD
1508nospace:
1509 /*
1510 * Perhaps the page was brought in from swap between find_lock_page
1511 * and taking info->lock? We allow for that at add_to_page_cache_lru,
1512 * but must also avoid reporting a spurious ENOSPC while working on a
1513 * full tmpfs. (When filepage has been passed in to shmem_getpage, it
1514 * is already in page cache, which prevents this race from occurring.)
1515 */
1516 if (!filepage) {
1517 struct page *page = find_get_page(mapping, idx);
1518 if (page) {
1519 spin_unlock(&info->lock);
1520 page_cache_release(page);
1521 goto repeat;
1522 }
1523 }
1524 spin_unlock(&info->lock);
1525 error = -ENOSPC;
1da177e4
LT
1526failed:
1527 if (*pagep != filepage) {
1528 unlock_page(filepage);
1529 page_cache_release(filepage);
1530 }
ff36b801
SL
1531out:
1532 if (prealloc_page) {
1533 mem_cgroup_uncharge_cache_page(prealloc_page);
1534 page_cache_release(prealloc_page);
1535 }
1da177e4
LT
1536 return error;
1537}
1538
d0217ac0 1539static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1540{
d3ac7f89 1541 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4 1542 int error;
d0217ac0 1543 int ret;
1da177e4 1544
d0217ac0
NP
1545 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1546 return VM_FAULT_SIGBUS;
d00806b1 1547
27d54b39 1548 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1549 if (error)
1550 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
456f998e
YH
1551 if (ret & VM_FAULT_MAJOR) {
1552 count_vm_event(PGMAJFAULT);
1553 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1554 }
83c54070 1555 return ret | VM_FAULT_LOCKED;
1da177e4
LT
1556}
1557
1da177e4 1558#ifdef CONFIG_NUMA
d8dc74f2 1559static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1da177e4 1560{
d3ac7f89 1561 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1562 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1563}
1564
d8dc74f2
AB
1565static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1566 unsigned long addr)
1da177e4 1567{
d3ac7f89 1568 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1da177e4
LT
1569 unsigned long idx;
1570
1571 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1572 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1573}
1574#endif
1575
1576int shmem_lock(struct file *file, int lock, struct user_struct *user)
1577{
d3ac7f89 1578 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1579 struct shmem_inode_info *info = SHMEM_I(inode);
1580 int retval = -ENOMEM;
1581
1582 spin_lock(&info->lock);
1583 if (lock && !(info->flags & VM_LOCKED)) {
1584 if (!user_shm_lock(inode->i_size, user))
1585 goto out_nomem;
1586 info->flags |= VM_LOCKED;
89e004ea 1587 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1588 }
1589 if (!lock && (info->flags & VM_LOCKED) && user) {
1590 user_shm_unlock(inode->i_size, user);
1591 info->flags &= ~VM_LOCKED;
89e004ea
LS
1592 mapping_clear_unevictable(file->f_mapping);
1593 scan_mapping_unevictable_pages(file->f_mapping);
1da177e4
LT
1594 }
1595 retval = 0;
89e004ea 1596
1da177e4
LT
1597out_nomem:
1598 spin_unlock(&info->lock);
1599 return retval;
1600}
1601
9b83a6a8 1602static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1603{
1604 file_accessed(file);
1605 vma->vm_ops = &shmem_vm_ops;
d0217ac0 1606 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1607 return 0;
1608}
1609
454abafe
DM
1610static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1611 int mode, dev_t dev, unsigned long flags)
1da177e4
LT
1612{
1613 struct inode *inode;
1614 struct shmem_inode_info *info;
1615 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1616
5b04c689
PE
1617 if (shmem_reserve_inode(sb))
1618 return NULL;
1da177e4
LT
1619
1620 inode = new_inode(sb);
1621 if (inode) {
85fe4025 1622 inode->i_ino = get_next_ino();
454abafe 1623 inode_init_owner(inode, dir, mode);
1da177e4 1624 inode->i_blocks = 0;
1da177e4
LT
1625 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1626 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1627 inode->i_generation = get_seconds();
1da177e4
LT
1628 info = SHMEM_I(inode);
1629 memset(info, 0, (char *)inode - (char *)info);
1630 spin_lock_init(&info->lock);
0b0a0806 1631 info->flags = flags & VM_NORESERVE;
1da177e4 1632 INIT_LIST_HEAD(&info->swaplist);
b09e0fa4 1633 INIT_LIST_HEAD(&info->xattr_list);
72c04902 1634 cache_no_acl(inode);
1da177e4
LT
1635
1636 switch (mode & S_IFMT) {
1637 default:
39f0247d 1638 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1639 init_special_inode(inode, mode, dev);
1640 break;
1641 case S_IFREG:
14fcc23f 1642 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1643 inode->i_op = &shmem_inode_operations;
1644 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1645 mpol_shared_policy_init(&info->policy,
1646 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1647 break;
1648 case S_IFDIR:
d8c76e6f 1649 inc_nlink(inode);
1da177e4
LT
1650 /* Some things misbehave if size == 0 on a directory */
1651 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1652 inode->i_op = &shmem_dir_inode_operations;
1653 inode->i_fop = &simple_dir_operations;
1654 break;
1655 case S_IFLNK:
1656 /*
1657 * Must not load anything in the rbtree,
1658 * mpol_free_shared_policy will not be called.
1659 */
71fe804b 1660 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1661 break;
1662 }
5b04c689
PE
1663 } else
1664 shmem_free_inode(sb);
1da177e4
LT
1665 return inode;
1666}
1667
1668#ifdef CONFIG_TMPFS
92e1d5be
AV
1669static const struct inode_operations shmem_symlink_inode_operations;
1670static const struct inode_operations shmem_symlink_inline_operations;
1da177e4
LT
1671
1672/*
800d15a5 1673 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
ae976416
HD
1674 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1675 * below the loop driver, in the generic fashion that many filesystems support.
1da177e4 1676 */
ae976416
HD
1677static int shmem_readpage(struct file *file, struct page *page)
1678{
1679 struct inode *inode = page->mapping->host;
1680 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1681 unlock_page(page);
1682 return error;
1683}
1684
1da177e4 1685static int
800d15a5
NP
1686shmem_write_begin(struct file *file, struct address_space *mapping,
1687 loff_t pos, unsigned len, unsigned flags,
1688 struct page **pagep, void **fsdata)
1da177e4 1689{
800d15a5
NP
1690 struct inode *inode = mapping->host;
1691 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1692 *pagep = NULL;
1693 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1694}
1695
1696static int
1697shmem_write_end(struct file *file, struct address_space *mapping,
1698 loff_t pos, unsigned len, unsigned copied,
1699 struct page *page, void *fsdata)
1700{
1701 struct inode *inode = mapping->host;
1702
d3602444
HD
1703 if (pos + copied > inode->i_size)
1704 i_size_write(inode, pos + copied);
1705
800d15a5 1706 set_page_dirty(page);
6746aff7 1707 unlock_page(page);
800d15a5
NP
1708 page_cache_release(page);
1709
800d15a5 1710 return copied;
1da177e4
LT
1711}
1712
1da177e4
LT
1713static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1714{
d3ac7f89 1715 struct inode *inode = filp->f_path.dentry->d_inode;
1da177e4
LT
1716 struct address_space *mapping = inode->i_mapping;
1717 unsigned long index, offset;
a0ee5ec5
HD
1718 enum sgp_type sgp = SGP_READ;
1719
1720 /*
1721 * Might this read be for a stacking filesystem? Then when reading
1722 * holes of a sparse file, we actually need to allocate those pages,
1723 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1724 */
1725 if (segment_eq(get_fs(), KERNEL_DS))
1726 sgp = SGP_DIRTY;
1da177e4
LT
1727
1728 index = *ppos >> PAGE_CACHE_SHIFT;
1729 offset = *ppos & ~PAGE_CACHE_MASK;
1730
1731 for (;;) {
1732 struct page *page = NULL;
1733 unsigned long end_index, nr, ret;
1734 loff_t i_size = i_size_read(inode);
1735
1736 end_index = i_size >> PAGE_CACHE_SHIFT;
1737 if (index > end_index)
1738 break;
1739 if (index == end_index) {
1740 nr = i_size & ~PAGE_CACHE_MASK;
1741 if (nr <= offset)
1742 break;
1743 }
1744
a0ee5ec5 1745 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1746 if (desc->error) {
1747 if (desc->error == -EINVAL)
1748 desc->error = 0;
1749 break;
1750 }
d3602444
HD
1751 if (page)
1752 unlock_page(page);
1da177e4
LT
1753
1754 /*
1755 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1756 * are called without i_mutex protection against truncate
1da177e4
LT
1757 */
1758 nr = PAGE_CACHE_SIZE;
1759 i_size = i_size_read(inode);
1760 end_index = i_size >> PAGE_CACHE_SHIFT;
1761 if (index == end_index) {
1762 nr = i_size & ~PAGE_CACHE_MASK;
1763 if (nr <= offset) {
1764 if (page)
1765 page_cache_release(page);
1766 break;
1767 }
1768 }
1769 nr -= offset;
1770
1771 if (page) {
1772 /*
1773 * If users can be writing to this page using arbitrary
1774 * virtual addresses, take care about potential aliasing
1775 * before reading the page on the kernel side.
1776 */
1777 if (mapping_writably_mapped(mapping))
1778 flush_dcache_page(page);
1779 /*
1780 * Mark the page accessed if we read the beginning.
1781 */
1782 if (!offset)
1783 mark_page_accessed(page);
b5810039 1784 } else {
1da177e4 1785 page = ZERO_PAGE(0);
b5810039
NP
1786 page_cache_get(page);
1787 }
1da177e4
LT
1788
1789 /*
1790 * Ok, we have the page, and it's up-to-date, so
1791 * now we can copy it to user space...
1792 *
1793 * The actor routine returns how many bytes were actually used..
1794 * NOTE! This may not be the same as how much of a user buffer
1795 * we filled up (we may be padding etc), so we can only update
1796 * "pos" here (the actor routine has to update the user buffer
1797 * pointers and the remaining count).
1798 */
1799 ret = actor(desc, page, offset, nr);
1800 offset += ret;
1801 index += offset >> PAGE_CACHE_SHIFT;
1802 offset &= ~PAGE_CACHE_MASK;
1803
1804 page_cache_release(page);
1805 if (ret != nr || !desc->count)
1806 break;
1807
1808 cond_resched();
1809 }
1810
1811 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1812 file_accessed(filp);
1813}
1814
bcd78e49
HD
1815static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1816 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1817{
1818 struct file *filp = iocb->ki_filp;
1819 ssize_t retval;
1820 unsigned long seg;
1821 size_t count;
1822 loff_t *ppos = &iocb->ki_pos;
1823
1824 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1825 if (retval)
1826 return retval;
1827
1828 for (seg = 0; seg < nr_segs; seg++) {
1829 read_descriptor_t desc;
1830
1831 desc.written = 0;
1832 desc.arg.buf = iov[seg].iov_base;
1833 desc.count = iov[seg].iov_len;
1834 if (desc.count == 0)
1835 continue;
1836 desc.error = 0;
1837 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1838 retval += desc.written;
1839 if (desc.error) {
1840 retval = retval ?: desc.error;
1841 break;
1842 }
1843 if (desc.count > 0)
1844 break;
1845 }
1846 return retval;
1da177e4
LT
1847}
1848
726c3342 1849static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1850{
726c3342 1851 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1852
1853 buf->f_type = TMPFS_MAGIC;
1854 buf->f_bsize = PAGE_CACHE_SIZE;
1855 buf->f_namelen = NAME_MAX;
0edd73b3 1856 if (sbinfo->max_blocks) {
1da177e4 1857 buf->f_blocks = sbinfo->max_blocks;
7e496299
TC
1858 buf->f_bavail = buf->f_bfree =
1859 sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1860 }
1861 if (sbinfo->max_inodes) {
1da177e4
LT
1862 buf->f_files = sbinfo->max_inodes;
1863 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1864 }
1865 /* else leave those fields 0 like simple_statfs */
1866 return 0;
1867}
1868
1869/*
1870 * File creation. Allocate an inode, and we're done..
1871 */
1872static int
1873shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1874{
0b0a0806 1875 struct inode *inode;
1da177e4
LT
1876 int error = -ENOSPC;
1877
454abafe 1878 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1879 if (inode) {
2a7dba39
EP
1880 error = security_inode_init_security(inode, dir,
1881 &dentry->d_name, NULL,
1882 NULL, NULL);
570bc1c2
SS
1883 if (error) {
1884 if (error != -EOPNOTSUPP) {
1885 iput(inode);
1886 return error;
1887 }
39f0247d 1888 }
1c7c474c
CH
1889#ifdef CONFIG_TMPFS_POSIX_ACL
1890 error = generic_acl_init(inode, dir);
39f0247d
AG
1891 if (error) {
1892 iput(inode);
1893 return error;
570bc1c2 1894 }
718deb6b
AV
1895#else
1896 error = 0;
1c7c474c 1897#endif
1da177e4
LT
1898 dir->i_size += BOGO_DIRENT_SIZE;
1899 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1900 d_instantiate(dentry, inode);
1901 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1902 }
1903 return error;
1904}
1905
1906static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1907{
1908 int error;
1909
1910 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1911 return error;
d8c76e6f 1912 inc_nlink(dir);
1da177e4
LT
1913 return 0;
1914}
1915
1916static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1917 struct nameidata *nd)
1918{
1919 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1920}
1921
1922/*
1923 * Link a file..
1924 */
1925static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1926{
1927 struct inode *inode = old_dentry->d_inode;
5b04c689 1928 int ret;
1da177e4
LT
1929
1930 /*
1931 * No ordinary (disk based) filesystem counts links as inodes;
1932 * but each new link needs a new dentry, pinning lowmem, and
1933 * tmpfs dentries cannot be pruned until they are unlinked.
1934 */
5b04c689
PE
1935 ret = shmem_reserve_inode(inode->i_sb);
1936 if (ret)
1937 goto out;
1da177e4
LT
1938
1939 dir->i_size += BOGO_DIRENT_SIZE;
1940 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1941 inc_nlink(inode);
7de9c6ee 1942 ihold(inode); /* New dentry reference */
1da177e4
LT
1943 dget(dentry); /* Extra pinning count for the created dentry */
1944 d_instantiate(dentry, inode);
5b04c689
PE
1945out:
1946 return ret;
1da177e4
LT
1947}
1948
1949static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1950{
1951 struct inode *inode = dentry->d_inode;
1952
5b04c689
PE
1953 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1954 shmem_free_inode(inode->i_sb);
1da177e4
LT
1955
1956 dir->i_size -= BOGO_DIRENT_SIZE;
1957 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1958 drop_nlink(inode);
1da177e4
LT
1959 dput(dentry); /* Undo the count from "create" - this does all the work */
1960 return 0;
1961}
1962
1963static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1964{
1965 if (!simple_empty(dentry))
1966 return -ENOTEMPTY;
1967
9a53c3a7
DH
1968 drop_nlink(dentry->d_inode);
1969 drop_nlink(dir);
1da177e4
LT
1970 return shmem_unlink(dir, dentry);
1971}
1972
1973/*
1974 * The VFS layer already does all the dentry stuff for rename,
1975 * we just have to decrement the usage count for the target if
1976 * it exists so that the VFS layer correctly free's it when it
1977 * gets overwritten.
1978 */
1979static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1980{
1981 struct inode *inode = old_dentry->d_inode;
1982 int they_are_dirs = S_ISDIR(inode->i_mode);
1983
1984 if (!simple_empty(new_dentry))
1985 return -ENOTEMPTY;
1986
1987 if (new_dentry->d_inode) {
1988 (void) shmem_unlink(new_dir, new_dentry);
1989 if (they_are_dirs)
9a53c3a7 1990 drop_nlink(old_dir);
1da177e4 1991 } else if (they_are_dirs) {
9a53c3a7 1992 drop_nlink(old_dir);
d8c76e6f 1993 inc_nlink(new_dir);
1da177e4
LT
1994 }
1995
1996 old_dir->i_size -= BOGO_DIRENT_SIZE;
1997 new_dir->i_size += BOGO_DIRENT_SIZE;
1998 old_dir->i_ctime = old_dir->i_mtime =
1999 new_dir->i_ctime = new_dir->i_mtime =
2000 inode->i_ctime = CURRENT_TIME;
2001 return 0;
2002}
2003
2004static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2005{
2006 int error;
2007 int len;
2008 struct inode *inode;
2009 struct page *page = NULL;
2010 char *kaddr;
2011 struct shmem_inode_info *info;
2012
2013 len = strlen(symname) + 1;
2014 if (len > PAGE_CACHE_SIZE)
2015 return -ENAMETOOLONG;
2016
454abafe 2017 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2018 if (!inode)
2019 return -ENOSPC;
2020
2a7dba39
EP
2021 error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2022 NULL, NULL);
570bc1c2
SS
2023 if (error) {
2024 if (error != -EOPNOTSUPP) {
2025 iput(inode);
2026 return error;
2027 }
2028 error = 0;
2029 }
2030
1da177e4
LT
2031 info = SHMEM_I(inode);
2032 inode->i_size = len-1;
b09e0fa4 2033 if (len <= SHMEM_SYMLINK_INLINE_LEN) {
1da177e4 2034 /* do it inline */
b09e0fa4 2035 memcpy(info->inline_symlink, symname, len);
1da177e4
LT
2036 inode->i_op = &shmem_symlink_inline_operations;
2037 } else {
2038 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2039 if (error) {
2040 iput(inode);
2041 return error;
2042 }
14fcc23f 2043 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
2044 inode->i_op = &shmem_symlink_inode_operations;
2045 kaddr = kmap_atomic(page, KM_USER0);
2046 memcpy(kaddr, symname, len);
2047 kunmap_atomic(kaddr, KM_USER0);
2048 set_page_dirty(page);
6746aff7 2049 unlock_page(page);
1da177e4
LT
2050 page_cache_release(page);
2051 }
1da177e4
LT
2052 dir->i_size += BOGO_DIRENT_SIZE;
2053 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2054 d_instantiate(dentry, inode);
2055 dget(dentry);
2056 return 0;
2057}
2058
cc314eef 2059static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1da177e4 2060{
b09e0fa4 2061 nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
cc314eef 2062 return NULL;
1da177e4
LT
2063}
2064
cc314eef 2065static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2066{
2067 struct page *page = NULL;
2068 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2069 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
d3602444
HD
2070 if (page)
2071 unlock_page(page);
cc314eef 2072 return page;
1da177e4
LT
2073}
2074
cc314eef 2075static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2076{
2077 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2078 struct page *page = cookie;
1da177e4
LT
2079 kunmap(page);
2080 mark_page_accessed(page);
2081 page_cache_release(page);
1da177e4
LT
2082 }
2083}
2084
b09e0fa4 2085#ifdef CONFIG_TMPFS_XATTR
46711810 2086/*
b09e0fa4
EP
2087 * Superblocks without xattr inode operations may get some security.* xattr
2088 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2089 * like ACLs, we also need to implement the security.* handlers at
2090 * filesystem level, though.
2091 */
2092
b09e0fa4
EP
2093static int shmem_xattr_get(struct dentry *dentry, const char *name,
2094 void *buffer, size_t size)
39f0247d 2095{
b09e0fa4
EP
2096 struct shmem_inode_info *info;
2097 struct shmem_xattr *xattr;
2098 int ret = -ENODATA;
39f0247d 2099
b09e0fa4
EP
2100 info = SHMEM_I(dentry->d_inode);
2101
2102 spin_lock(&info->lock);
2103 list_for_each_entry(xattr, &info->xattr_list, list) {
2104 if (strcmp(name, xattr->name))
2105 continue;
2106
2107 ret = xattr->size;
2108 if (buffer) {
2109 if (size < xattr->size)
2110 ret = -ERANGE;
2111 else
2112 memcpy(buffer, xattr->value, xattr->size);
2113 }
2114 break;
2115 }
2116 spin_unlock(&info->lock);
2117 return ret;
39f0247d
AG
2118}
2119
b09e0fa4
EP
2120static int shmem_xattr_set(struct dentry *dentry, const char *name,
2121 const void *value, size_t size, int flags)
39f0247d 2122{
b09e0fa4
EP
2123 struct inode *inode = dentry->d_inode;
2124 struct shmem_inode_info *info = SHMEM_I(inode);
2125 struct shmem_xattr *xattr;
2126 struct shmem_xattr *new_xattr = NULL;
2127 size_t len;
2128 int err = 0;
2129
2130 /* value == NULL means remove */
2131 if (value) {
2132 /* wrap around? */
2133 len = sizeof(*new_xattr) + size;
2134 if (len <= sizeof(*new_xattr))
2135 return -ENOMEM;
2136
2137 new_xattr = kmalloc(len, GFP_KERNEL);
2138 if (!new_xattr)
2139 return -ENOMEM;
2140
2141 new_xattr->name = kstrdup(name, GFP_KERNEL);
2142 if (!new_xattr->name) {
2143 kfree(new_xattr);
2144 return -ENOMEM;
2145 }
2146
2147 new_xattr->size = size;
2148 memcpy(new_xattr->value, value, size);
2149 }
2150
2151 spin_lock(&info->lock);
2152 list_for_each_entry(xattr, &info->xattr_list, list) {
2153 if (!strcmp(name, xattr->name)) {
2154 if (flags & XATTR_CREATE) {
2155 xattr = new_xattr;
2156 err = -EEXIST;
2157 } else if (new_xattr) {
2158 list_replace(&xattr->list, &new_xattr->list);
2159 } else {
2160 list_del(&xattr->list);
2161 }
2162 goto out;
2163 }
2164 }
2165 if (flags & XATTR_REPLACE) {
2166 xattr = new_xattr;
2167 err = -ENODATA;
2168 } else {
2169 list_add(&new_xattr->list, &info->xattr_list);
2170 xattr = NULL;
2171 }
2172out:
2173 spin_unlock(&info->lock);
2174 if (xattr)
2175 kfree(xattr->name);
2176 kfree(xattr);
2177 return err;
39f0247d
AG
2178}
2179
39f0247d 2180
bb435453 2181static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2182#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c
CH
2183 &generic_acl_access_handler,
2184 &generic_acl_default_handler,
b09e0fa4 2185#endif
39f0247d
AG
2186 NULL
2187};
b09e0fa4
EP
2188
2189static int shmem_xattr_validate(const char *name)
2190{
2191 struct { const char *prefix; size_t len; } arr[] = {
2192 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2193 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2194 };
2195 int i;
2196
2197 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2198 size_t preflen = arr[i].len;
2199 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2200 if (!name[preflen])
2201 return -EINVAL;
2202 return 0;
2203 }
2204 }
2205 return -EOPNOTSUPP;
2206}
2207
2208static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2209 void *buffer, size_t size)
2210{
2211 int err;
2212
2213 /*
2214 * If this is a request for a synthetic attribute in the system.*
2215 * namespace use the generic infrastructure to resolve a handler
2216 * for it via sb->s_xattr.
2217 */
2218 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2219 return generic_getxattr(dentry, name, buffer, size);
2220
2221 err = shmem_xattr_validate(name);
2222 if (err)
2223 return err;
2224
2225 return shmem_xattr_get(dentry, name, buffer, size);
2226}
2227
2228static int shmem_setxattr(struct dentry *dentry, const char *name,
2229 const void *value, size_t size, int flags)
2230{
2231 int err;
2232
2233 /*
2234 * If this is a request for a synthetic attribute in the system.*
2235 * namespace use the generic infrastructure to resolve a handler
2236 * for it via sb->s_xattr.
2237 */
2238 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2239 return generic_setxattr(dentry, name, value, size, flags);
2240
2241 err = shmem_xattr_validate(name);
2242 if (err)
2243 return err;
2244
2245 if (size == 0)
2246 value = ""; /* empty EA, do not remove */
2247
2248 return shmem_xattr_set(dentry, name, value, size, flags);
2249
2250}
2251
2252static int shmem_removexattr(struct dentry *dentry, const char *name)
2253{
2254 int err;
2255
2256 /*
2257 * If this is a request for a synthetic attribute in the system.*
2258 * namespace use the generic infrastructure to resolve a handler
2259 * for it via sb->s_xattr.
2260 */
2261 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2262 return generic_removexattr(dentry, name);
2263
2264 err = shmem_xattr_validate(name);
2265 if (err)
2266 return err;
2267
2268 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2269}
2270
2271static bool xattr_is_trusted(const char *name)
2272{
2273 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2274}
2275
2276static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2277{
2278 bool trusted = capable(CAP_SYS_ADMIN);
2279 struct shmem_xattr *xattr;
2280 struct shmem_inode_info *info;
2281 size_t used = 0;
2282
2283 info = SHMEM_I(dentry->d_inode);
2284
2285 spin_lock(&info->lock);
2286 list_for_each_entry(xattr, &info->xattr_list, list) {
2287 size_t len;
2288
2289 /* skip "trusted." attributes for unprivileged callers */
2290 if (!trusted && xattr_is_trusted(xattr->name))
2291 continue;
2292
2293 len = strlen(xattr->name) + 1;
2294 used += len;
2295 if (buffer) {
2296 if (size < used) {
2297 used = -ERANGE;
2298 break;
2299 }
2300 memcpy(buffer, xattr->name, len);
2301 buffer += len;
2302 }
2303 }
2304 spin_unlock(&info->lock);
2305
2306 return used;
2307}
2308#endif /* CONFIG_TMPFS_XATTR */
2309
2310static const struct inode_operations shmem_symlink_inline_operations = {
2311 .readlink = generic_readlink,
2312 .follow_link = shmem_follow_link_inline,
2313#ifdef CONFIG_TMPFS_XATTR
2314 .setxattr = shmem_setxattr,
2315 .getxattr = shmem_getxattr,
2316 .listxattr = shmem_listxattr,
2317 .removexattr = shmem_removexattr,
2318#endif
2319};
2320
2321static const struct inode_operations shmem_symlink_inode_operations = {
2322 .readlink = generic_readlink,
2323 .follow_link = shmem_follow_link,
2324 .put_link = shmem_put_link,
2325#ifdef CONFIG_TMPFS_XATTR
2326 .setxattr = shmem_setxattr,
2327 .getxattr = shmem_getxattr,
2328 .listxattr = shmem_listxattr,
2329 .removexattr = shmem_removexattr,
39f0247d 2330#endif
b09e0fa4 2331};
39f0247d 2332
91828a40
DG
2333static struct dentry *shmem_get_parent(struct dentry *child)
2334{
2335 return ERR_PTR(-ESTALE);
2336}
2337
2338static int shmem_match(struct inode *ino, void *vfh)
2339{
2340 __u32 *fh = vfh;
2341 __u64 inum = fh[2];
2342 inum = (inum << 32) | fh[1];
2343 return ino->i_ino == inum && fh[0] == ino->i_generation;
2344}
2345
480b116c
CH
2346static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2347 struct fid *fid, int fh_len, int fh_type)
91828a40 2348{
91828a40 2349 struct inode *inode;
480b116c
CH
2350 struct dentry *dentry = NULL;
2351 u64 inum = fid->raw[2];
2352 inum = (inum << 32) | fid->raw[1];
2353
2354 if (fh_len < 3)
2355 return NULL;
91828a40 2356
480b116c
CH
2357 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2358 shmem_match, fid->raw);
91828a40 2359 if (inode) {
480b116c 2360 dentry = d_find_alias(inode);
91828a40
DG
2361 iput(inode);
2362 }
2363
480b116c 2364 return dentry;
91828a40
DG
2365}
2366
2367static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2368 int connectable)
2369{
2370 struct inode *inode = dentry->d_inode;
2371
5fe0c237
AK
2372 if (*len < 3) {
2373 *len = 3;
91828a40 2374 return 255;
5fe0c237 2375 }
91828a40 2376
1d3382cb 2377 if (inode_unhashed(inode)) {
91828a40
DG
2378 /* Unfortunately insert_inode_hash is not idempotent,
2379 * so as we hash inodes here rather than at creation
2380 * time, we need a lock to ensure we only try
2381 * to do it once
2382 */
2383 static DEFINE_SPINLOCK(lock);
2384 spin_lock(&lock);
1d3382cb 2385 if (inode_unhashed(inode))
91828a40
DG
2386 __insert_inode_hash(inode,
2387 inode->i_ino + inode->i_generation);
2388 spin_unlock(&lock);
2389 }
2390
2391 fh[0] = inode->i_generation;
2392 fh[1] = inode->i_ino;
2393 fh[2] = ((__u64)inode->i_ino) >> 32;
2394
2395 *len = 3;
2396 return 1;
2397}
2398
39655164 2399static const struct export_operations shmem_export_ops = {
91828a40 2400 .get_parent = shmem_get_parent,
91828a40 2401 .encode_fh = shmem_encode_fh,
480b116c 2402 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2403};
2404
680d794b 2405static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2406 bool remount)
1da177e4
LT
2407{
2408 char *this_char, *value, *rest;
2409
b00dc3ad
HD
2410 while (options != NULL) {
2411 this_char = options;
2412 for (;;) {
2413 /*
2414 * NUL-terminate this option: unfortunately,
2415 * mount options form a comma-separated list,
2416 * but mpol's nodelist may also contain commas.
2417 */
2418 options = strchr(options, ',');
2419 if (options == NULL)
2420 break;
2421 options++;
2422 if (!isdigit(*options)) {
2423 options[-1] = '\0';
2424 break;
2425 }
2426 }
1da177e4
LT
2427 if (!*this_char)
2428 continue;
2429 if ((value = strchr(this_char,'=')) != NULL) {
2430 *value++ = 0;
2431 } else {
2432 printk(KERN_ERR
2433 "tmpfs: No value for mount option '%s'\n",
2434 this_char);
2435 return 1;
2436 }
2437
2438 if (!strcmp(this_char,"size")) {
2439 unsigned long long size;
2440 size = memparse(value,&rest);
2441 if (*rest == '%') {
2442 size <<= PAGE_SHIFT;
2443 size *= totalram_pages;
2444 do_div(size, 100);
2445 rest++;
2446 }
2447 if (*rest)
2448 goto bad_val;
680d794b 2449 sbinfo->max_blocks =
2450 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2451 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2452 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2453 if (*rest)
2454 goto bad_val;
2455 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2456 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2457 if (*rest)
2458 goto bad_val;
2459 } else if (!strcmp(this_char,"mode")) {
680d794b 2460 if (remount)
1da177e4 2461 continue;
680d794b 2462 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2463 if (*rest)
2464 goto bad_val;
2465 } else if (!strcmp(this_char,"uid")) {
680d794b 2466 if (remount)
1da177e4 2467 continue;
680d794b 2468 sbinfo->uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2469 if (*rest)
2470 goto bad_val;
2471 } else if (!strcmp(this_char,"gid")) {
680d794b 2472 if (remount)
1da177e4 2473 continue;
680d794b 2474 sbinfo->gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2475 if (*rest)
2476 goto bad_val;
7339ff83 2477 } else if (!strcmp(this_char,"mpol")) {
71fe804b 2478 if (mpol_parse_str(value, &sbinfo->mpol, 1))
7339ff83 2479 goto bad_val;
1da177e4
LT
2480 } else {
2481 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2482 this_char);
2483 return 1;
2484 }
2485 }
2486 return 0;
2487
2488bad_val:
2489 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2490 value, this_char);
2491 return 1;
2492
2493}
2494
2495static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2496{
2497 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2498 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2499 unsigned long inodes;
2500 int error = -EINVAL;
2501
680d794b 2502 if (shmem_parse_options(data, &config, true))
0edd73b3 2503 return error;
1da177e4 2504
0edd73b3 2505 spin_lock(&sbinfo->stat_lock);
0edd73b3 2506 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2507 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2508 goto out;
680d794b 2509 if (config.max_inodes < inodes)
0edd73b3
HD
2510 goto out;
2511 /*
2512 * Those tests also disallow limited->unlimited while any are in
2513 * use, so i_blocks will always be zero when max_blocks is zero;
2514 * but we must separately disallow unlimited->limited, because
2515 * in that case we have no record of how much is already in use.
2516 */
680d794b 2517 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2518 goto out;
680d794b 2519 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2520 goto out;
2521
2522 error = 0;
680d794b 2523 sbinfo->max_blocks = config.max_blocks;
680d794b 2524 sbinfo->max_inodes = config.max_inodes;
2525 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b
LS
2526
2527 mpol_put(sbinfo->mpol);
2528 sbinfo->mpol = config.mpol; /* transfers initial ref */
0edd73b3
HD
2529out:
2530 spin_unlock(&sbinfo->stat_lock);
2531 return error;
1da177e4 2532}
680d794b 2533
2534static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2535{
2536 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2537
2538 if (sbinfo->max_blocks != shmem_default_max_blocks())
2539 seq_printf(seq, ",size=%luk",
2540 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2541 if (sbinfo->max_inodes != shmem_default_max_inodes())
2542 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2543 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2544 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2545 if (sbinfo->uid != 0)
2546 seq_printf(seq, ",uid=%u", sbinfo->uid);
2547 if (sbinfo->gid != 0)
2548 seq_printf(seq, ",gid=%u", sbinfo->gid);
71fe804b 2549 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2550 return 0;
2551}
2552#endif /* CONFIG_TMPFS */
1da177e4
LT
2553
2554static void shmem_put_super(struct super_block *sb)
2555{
602586a8
HD
2556 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2557
2558 percpu_counter_destroy(&sbinfo->used_blocks);
2559 kfree(sbinfo);
1da177e4
LT
2560 sb->s_fs_info = NULL;
2561}
2562
2b2af54a 2563int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2564{
2565 struct inode *inode;
2566 struct dentry *root;
0edd73b3 2567 struct shmem_sb_info *sbinfo;
680d794b 2568 int err = -ENOMEM;
2569
2570 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2571 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2572 L1_CACHE_BYTES), GFP_KERNEL);
2573 if (!sbinfo)
2574 return -ENOMEM;
2575
680d794b 2576 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2577 sbinfo->uid = current_fsuid();
2578 sbinfo->gid = current_fsgid();
680d794b 2579 sb->s_fs_info = sbinfo;
1da177e4 2580
0edd73b3 2581#ifdef CONFIG_TMPFS
1da177e4
LT
2582 /*
2583 * Per default we only allow half of the physical ram per
2584 * tmpfs instance, limiting inodes to one per page of lowmem;
2585 * but the internal instance is left unlimited.
2586 */
2587 if (!(sb->s_flags & MS_NOUSER)) {
680d794b 2588 sbinfo->max_blocks = shmem_default_max_blocks();
2589 sbinfo->max_inodes = shmem_default_max_inodes();
2590 if (shmem_parse_options(data, sbinfo, false)) {
2591 err = -EINVAL;
2592 goto failed;
2593 }
1da177e4 2594 }
91828a40 2595 sb->s_export_op = &shmem_export_ops;
1da177e4
LT
2596#else
2597 sb->s_flags |= MS_NOUSER;
2598#endif
2599
0edd73b3 2600 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2601 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2602 goto failed;
680d794b 2603 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2604
1da177e4
LT
2605 sb->s_maxbytes = SHMEM_MAX_BYTES;
2606 sb->s_blocksize = PAGE_CACHE_SIZE;
2607 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2608 sb->s_magic = TMPFS_MAGIC;
2609 sb->s_op = &shmem_ops;
cfd95a9c 2610 sb->s_time_gran = 1;
b09e0fa4 2611#ifdef CONFIG_TMPFS_XATTR
39f0247d 2612 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2613#endif
2614#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2615 sb->s_flags |= MS_POSIXACL;
2616#endif
0edd73b3 2617
454abafe 2618 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2619 if (!inode)
2620 goto failed;
680d794b 2621 inode->i_uid = sbinfo->uid;
2622 inode->i_gid = sbinfo->gid;
1da177e4
LT
2623 root = d_alloc_root(inode);
2624 if (!root)
2625 goto failed_iput;
2626 sb->s_root = root;
2627 return 0;
2628
2629failed_iput:
2630 iput(inode);
2631failed:
2632 shmem_put_super(sb);
2633 return err;
2634}
2635
fcc234f8 2636static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2637
2638static struct inode *shmem_alloc_inode(struct super_block *sb)
2639{
2640 struct shmem_inode_info *p;
e94b1766 2641 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
1da177e4
LT
2642 if (!p)
2643 return NULL;
2644 return &p->vfs_inode;
2645}
2646
fa0d7e3d
NP
2647static void shmem_i_callback(struct rcu_head *head)
2648{
2649 struct inode *inode = container_of(head, struct inode, i_rcu);
2650 INIT_LIST_HEAD(&inode->i_dentry);
2651 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2652}
2653
1da177e4
LT
2654static void shmem_destroy_inode(struct inode *inode)
2655{
2656 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2657 /* only struct inode is valid if it's an inline symlink */
2658 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2659 }
fa0d7e3d 2660 call_rcu(&inode->i_rcu, shmem_i_callback);
1da177e4
LT
2661}
2662
51cc5068 2663static void init_once(void *foo)
1da177e4
LT
2664{
2665 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2666
a35afb83 2667 inode_init_once(&p->vfs_inode);
1da177e4
LT
2668}
2669
2670static int init_inodecache(void)
2671{
2672 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2673 sizeof(struct shmem_inode_info),
040b5c6f 2674 0, SLAB_PANIC, init_once);
1da177e4
LT
2675 return 0;
2676}
2677
2678static void destroy_inodecache(void)
2679{
1a1d92c1 2680 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2681}
2682
f5e54d6e 2683static const struct address_space_operations shmem_aops = {
1da177e4 2684 .writepage = shmem_writepage,
76719325 2685 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2686#ifdef CONFIG_TMPFS
ae976416 2687 .readpage = shmem_readpage,
800d15a5
NP
2688 .write_begin = shmem_write_begin,
2689 .write_end = shmem_write_end,
1da177e4 2690#endif
304dbdb7 2691 .migratepage = migrate_page,
aa261f54 2692 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2693};
2694
15ad7cdc 2695static const struct file_operations shmem_file_operations = {
1da177e4
LT
2696 .mmap = shmem_mmap,
2697#ifdef CONFIG_TMPFS
2698 .llseek = generic_file_llseek,
bcd78e49 2699 .read = do_sync_read,
5402b976 2700 .write = do_sync_write,
bcd78e49 2701 .aio_read = shmem_file_aio_read,
5402b976 2702 .aio_write = generic_file_aio_write,
1b061d92 2703 .fsync = noop_fsync,
ae976416
HD
2704 .splice_read = generic_file_splice_read,
2705 .splice_write = generic_file_splice_write,
1da177e4
LT
2706#endif
2707};
2708
92e1d5be 2709static const struct inode_operations shmem_inode_operations = {
94c1e62d 2710 .setattr = shmem_setattr,
f6b3ec23 2711 .truncate_range = shmem_truncate_range,
b09e0fa4
EP
2712#ifdef CONFIG_TMPFS_XATTR
2713 .setxattr = shmem_setxattr,
2714 .getxattr = shmem_getxattr,
2715 .listxattr = shmem_listxattr,
2716 .removexattr = shmem_removexattr,
2717#endif
39f0247d 2718#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c 2719 .check_acl = generic_check_acl,
39f0247d
AG
2720#endif
2721
1da177e4
LT
2722};
2723
92e1d5be 2724static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2725#ifdef CONFIG_TMPFS
2726 .create = shmem_create,
2727 .lookup = simple_lookup,
2728 .link = shmem_link,
2729 .unlink = shmem_unlink,
2730 .symlink = shmem_symlink,
2731 .mkdir = shmem_mkdir,
2732 .rmdir = shmem_rmdir,
2733 .mknod = shmem_mknod,
2734 .rename = shmem_rename,
1da177e4 2735#endif
b09e0fa4
EP
2736#ifdef CONFIG_TMPFS_XATTR
2737 .setxattr = shmem_setxattr,
2738 .getxattr = shmem_getxattr,
2739 .listxattr = shmem_listxattr,
2740 .removexattr = shmem_removexattr,
2741#endif
39f0247d 2742#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2743 .setattr = shmem_setattr,
1c7c474c 2744 .check_acl = generic_check_acl,
39f0247d
AG
2745#endif
2746};
2747
92e1d5be 2748static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2749#ifdef CONFIG_TMPFS_XATTR
2750 .setxattr = shmem_setxattr,
2751 .getxattr = shmem_getxattr,
2752 .listxattr = shmem_listxattr,
2753 .removexattr = shmem_removexattr,
2754#endif
39f0247d 2755#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2756 .setattr = shmem_setattr,
1c7c474c 2757 .check_acl = generic_check_acl,
39f0247d 2758#endif
1da177e4
LT
2759};
2760
759b9775 2761static const struct super_operations shmem_ops = {
1da177e4
LT
2762 .alloc_inode = shmem_alloc_inode,
2763 .destroy_inode = shmem_destroy_inode,
2764#ifdef CONFIG_TMPFS
2765 .statfs = shmem_statfs,
2766 .remount_fs = shmem_remount_fs,
680d794b 2767 .show_options = shmem_show_options,
1da177e4 2768#endif
1f895f75 2769 .evict_inode = shmem_evict_inode,
1da177e4
LT
2770 .drop_inode = generic_delete_inode,
2771 .put_super = shmem_put_super,
2772};
2773
f0f37e2f 2774static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2775 .fault = shmem_fault,
1da177e4
LT
2776#ifdef CONFIG_NUMA
2777 .set_policy = shmem_set_policy,
2778 .get_policy = shmem_get_policy,
2779#endif
2780};
2781
2782
3c26ff6e
AV
2783static struct dentry *shmem_mount(struct file_system_type *fs_type,
2784 int flags, const char *dev_name, void *data)
1da177e4 2785{
3c26ff6e 2786 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2787}
2788
2789static struct file_system_type tmpfs_fs_type = {
2790 .owner = THIS_MODULE,
2791 .name = "tmpfs",
3c26ff6e 2792 .mount = shmem_mount,
1da177e4
LT
2793 .kill_sb = kill_litter_super,
2794};
1da177e4 2795
2b2af54a 2796int __init init_tmpfs(void)
1da177e4
LT
2797{
2798 int error;
2799
e0bf68dd
PZ
2800 error = bdi_init(&shmem_backing_dev_info);
2801 if (error)
2802 goto out4;
2803
1da177e4
LT
2804 error = init_inodecache();
2805 if (error)
2806 goto out3;
2807
2808 error = register_filesystem(&tmpfs_fs_type);
2809 if (error) {
2810 printk(KERN_ERR "Could not register tmpfs\n");
2811 goto out2;
2812 }
95dc112a 2813
1f5ce9e9 2814 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
1da177e4
LT
2815 tmpfs_fs_type.name, NULL);
2816 if (IS_ERR(shm_mnt)) {
2817 error = PTR_ERR(shm_mnt);
2818 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2819 goto out1;
2820 }
2821 return 0;
2822
2823out1:
2824 unregister_filesystem(&tmpfs_fs_type);
2825out2:
2826 destroy_inodecache();
2827out3:
e0bf68dd
PZ
2828 bdi_destroy(&shmem_backing_dev_info);
2829out4:
1da177e4
LT
2830 shm_mnt = ERR_PTR(error);
2831 return error;
2832}
853ac43a 2833
87946a72
DN
2834#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2835/**
2836 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2837 * @inode: the inode to be searched
2838 * @pgoff: the offset to be searched
2839 * @pagep: the pointer for the found page to be stored
2840 * @ent: the pointer for the found swap entry to be stored
2841 *
2842 * If a page is found, refcount of it is incremented. Callers should handle
2843 * these refcount.
2844 */
2845void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2846 struct page **pagep, swp_entry_t *ent)
2847{
2848 swp_entry_t entry = { .val = 0 }, *ptr;
2849 struct page *page = NULL;
2850 struct shmem_inode_info *info = SHMEM_I(inode);
2851
2852 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2853 goto out;
2854
2855 spin_lock(&info->lock);
2856 ptr = shmem_swp_entry(info, pgoff, NULL);
2857#ifdef CONFIG_SWAP
2858 if (ptr && ptr->val) {
2859 entry.val = ptr->val;
2860 page = find_get_page(&swapper_space, entry.val);
2861 } else
2862#endif
2863 page = find_get_page(inode->i_mapping, pgoff);
2864 if (ptr)
2865 shmem_swp_unmap(ptr);
2866 spin_unlock(&info->lock);
2867out:
2868 *pagep = page;
2869 *ent = entry;
2870}
2871#endif
2872
853ac43a
MM
2873#else /* !CONFIG_SHMEM */
2874
2875/*
2876 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2877 *
2878 * This is intended for small system where the benefits of the full
2879 * shmem code (swap-backed and resource-limited) are outweighed by
2880 * their complexity. On systems without swap this code should be
2881 * effectively equivalent, but much lighter weight.
2882 */
2883
2884#include <linux/ramfs.h>
2885
2886static struct file_system_type tmpfs_fs_type = {
2887 .name = "tmpfs",
3c26ff6e 2888 .mount = ramfs_mount,
853ac43a
MM
2889 .kill_sb = kill_litter_super,
2890};
2891
2b2af54a 2892int __init init_tmpfs(void)
853ac43a
MM
2893{
2894 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2895
2896 shm_mnt = kern_mount(&tmpfs_fs_type);
2897 BUG_ON(IS_ERR(shm_mnt));
2898
2899 return 0;
2900}
2901
2902int shmem_unuse(swp_entry_t entry, struct page *page)
2903{
2904 return 0;
2905}
2906
3f96b79a
HD
2907int shmem_lock(struct file *file, int lock, struct user_struct *user)
2908{
2909 return 0;
2910}
2911
94c1e62d
HD
2912void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
2913{
2914 truncate_inode_pages_range(inode->i_mapping, start, end);
2915}
2916EXPORT_SYMBOL_GPL(shmem_truncate_range);
2917
87946a72
DN
2918#ifdef CONFIG_CGROUP_MEM_RES_CTLR
2919/**
2920 * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2921 * @inode: the inode to be searched
2922 * @pgoff: the offset to be searched
2923 * @pagep: the pointer for the found page to be stored
2924 * @ent: the pointer for the found swap entry to be stored
2925 *
2926 * If a page is found, refcount of it is incremented. Callers should handle
2927 * these refcount.
2928 */
2929void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2930 struct page **pagep, swp_entry_t *ent)
2931{
2932 struct page *page = NULL;
2933
2934 if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2935 goto out;
2936 page = find_get_page(inode->i_mapping, pgoff);
2937out:
2938 *pagep = page;
2939 *ent = (swp_entry_t){ .val = 0 };
2940}
2941#endif
2942
0b0a0806
HD
2943#define shmem_vm_ops generic_file_vm_ops
2944#define shmem_file_operations ramfs_file_operations
454abafe 2945#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2946#define shmem_acct_size(flags, size) 0
2947#define shmem_unacct_size(flags, size) do {} while (0)
caefba17 2948#define SHMEM_MAX_BYTES MAX_LFS_FILESIZE
853ac43a
MM
2949
2950#endif /* CONFIG_SHMEM */
2951
2952/* common code */
1da177e4 2953
46711810 2954/**
1da177e4 2955 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2956 * @name: name for dentry (to be seen in /proc/<pid>/maps
2957 * @size: size to be set for the file
0b0a0806 2958 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 2959 */
168f5ac6 2960struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4
LT
2961{
2962 int error;
2963 struct file *file;
2964 struct inode *inode;
2c48b9c4
AV
2965 struct path path;
2966 struct dentry *root;
1da177e4
LT
2967 struct qstr this;
2968
2969 if (IS_ERR(shm_mnt))
2970 return (void *)shm_mnt;
2971
2972 if (size < 0 || size > SHMEM_MAX_BYTES)
2973 return ERR_PTR(-EINVAL);
2974
2975 if (shmem_acct_size(flags, size))
2976 return ERR_PTR(-ENOMEM);
2977
2978 error = -ENOMEM;
2979 this.name = name;
2980 this.len = strlen(name);
2981 this.hash = 0; /* will go */
2982 root = shm_mnt->mnt_root;
2c48b9c4
AV
2983 path.dentry = d_alloc(root, &this);
2984 if (!path.dentry)
1da177e4 2985 goto put_memory;
2c48b9c4 2986 path.mnt = mntget(shm_mnt);
1da177e4 2987
1da177e4 2988 error = -ENOSPC;
454abafe 2989 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2990 if (!inode)
4b42af81 2991 goto put_dentry;
1da177e4 2992
2c48b9c4 2993 d_instantiate(path.dentry, inode);
1da177e4
LT
2994 inode->i_size = size;
2995 inode->i_nlink = 0; /* It is unlinked */
853ac43a
MM
2996#ifndef CONFIG_MMU
2997 error = ramfs_nommu_expand_for_mapping(inode, size);
2998 if (error)
4b42af81 2999 goto put_dentry;
853ac43a 3000#endif
4b42af81
AV
3001
3002 error = -ENFILE;
2c48b9c4 3003 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81
AV
3004 &shmem_file_operations);
3005 if (!file)
3006 goto put_dentry;
3007
1da177e4
LT
3008 return file;
3009
1da177e4 3010put_dentry:
2c48b9c4 3011 path_put(&path);
1da177e4
LT
3012put_memory:
3013 shmem_unacct_size(flags, size);
3014 return ERR_PTR(error);
3015}
395e0ddc 3016EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 3017
46711810 3018/**
1da177e4 3019 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
3020 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3021 */
3022int shmem_zero_setup(struct vm_area_struct *vma)
3023{
3024 struct file *file;
3025 loff_t size = vma->vm_end - vma->vm_start;
3026
3027 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3028 if (IS_ERR(file))
3029 return PTR_ERR(file);
3030
3031 if (vma->vm_file)
3032 fput(vma->vm_file);
3033 vma->vm_file = file;
3034 vma->vm_ops = &shmem_vm_ops;
bee4c36a 3035 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
3036 return 0;
3037}
This page took 0.760912 seconds and 5 git commands to generate.