Merge remote-tracking branch 'usb-chipidea-next/ci-for-usb-next'
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
76b342bd
JK
216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
217 void **list);
218static inline void fixup_slab_list(struct kmem_cache *cachep,
219 struct kmem_cache_node *n, struct page *page,
220 void **list);
e0a42726
IM
221static int slab_early_init = 1;
222
ce8eb6c4 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 224
ce8eb6c4 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
226{
227 INIT_LIST_HEAD(&parent->slabs_full);
228 INIT_LIST_HEAD(&parent->slabs_partial);
229 INIT_LIST_HEAD(&parent->slabs_free);
230 parent->shared = NULL;
231 parent->alien = NULL;
2e1217cf 232 parent->colour_next = 0;
e498be7d
CL
233 spin_lock_init(&parent->list_lock);
234 parent->free_objects = 0;
235 parent->free_touched = 0;
236}
237
a737b3e2
AM
238#define MAKE_LIST(cachep, listp, slab, nodeid) \
239 do { \
240 INIT_LIST_HEAD(listp); \
18bf8541 241 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
242 } while (0)
243
a737b3e2
AM
244#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
245 do { \
e498be7d
CL
246 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
247 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
249 } while (0)
1da177e4 250
b03a017b 251#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 252#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 253#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
254#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
255
256#define BATCHREFILL_LIMIT 16
a737b3e2
AM
257/*
258 * Optimization question: fewer reaps means less probability for unnessary
259 * cpucache drain/refill cycles.
1da177e4 260 *
dc6f3f27 261 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
262 * which could lock up otherwise freeable slabs.
263 */
5f0985bb
JZ
264#define REAPTIMEOUT_AC (2*HZ)
265#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
266
267#if STATS
268#define STATS_INC_ACTIVE(x) ((x)->num_active++)
269#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
270#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
271#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 272#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
273#define STATS_SET_HIGH(x) \
274 do { \
275 if ((x)->num_active > (x)->high_mark) \
276 (x)->high_mark = (x)->num_active; \
277 } while (0)
1da177e4
LT
278#define STATS_INC_ERR(x) ((x)->errors++)
279#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 280#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 281#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
282#define STATS_SET_FREEABLE(x, i) \
283 do { \
284 if ((x)->max_freeable < i) \
285 (x)->max_freeable = i; \
286 } while (0)
1da177e4
LT
287#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
288#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
289#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
290#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
291#else
292#define STATS_INC_ACTIVE(x) do { } while (0)
293#define STATS_DEC_ACTIVE(x) do { } while (0)
294#define STATS_INC_ALLOCED(x) do { } while (0)
295#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 296#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
297#define STATS_SET_HIGH(x) do { } while (0)
298#define STATS_INC_ERR(x) do { } while (0)
299#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 300#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 301#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 302#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
303#define STATS_INC_ALLOCHIT(x) do { } while (0)
304#define STATS_INC_ALLOCMISS(x) do { } while (0)
305#define STATS_INC_FREEHIT(x) do { } while (0)
306#define STATS_INC_FREEMISS(x) do { } while (0)
307#endif
308
309#if DEBUG
1da177e4 310
a737b3e2
AM
311/*
312 * memory layout of objects:
1da177e4 313 * 0 : objp
3dafccf2 314 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
315 * the end of an object is aligned with the end of the real
316 * allocation. Catches writes behind the end of the allocation.
3dafccf2 317 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 318 * redzone word.
3dafccf2 319 * cachep->obj_offset: The real object.
3b0efdfa
CL
320 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
321 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 322 * [BYTES_PER_WORD long]
1da177e4 323 */
343e0d7a 324static int obj_offset(struct kmem_cache *cachep)
1da177e4 325{
3dafccf2 326 return cachep->obj_offset;
1da177e4
LT
327}
328
b46b8f19 329static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
330{
331 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
332 return (unsigned long long*) (objp + obj_offset(cachep) -
333 sizeof(unsigned long long));
1da177e4
LT
334}
335
b46b8f19 336static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
337{
338 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
339 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 340 return (unsigned long long *)(objp + cachep->size -
b46b8f19 341 sizeof(unsigned long long) -
87a927c7 342 REDZONE_ALIGN);
3b0efdfa 343 return (unsigned long long *) (objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long));
1da177e4
LT
345}
346
343e0d7a 347static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
348{
349 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 350 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
351}
352
353#else
354
3dafccf2 355#define obj_offset(x) 0
b46b8f19
DW
356#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
357#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
358#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
359
360#endif
361
03787301
JK
362#ifdef CONFIG_DEBUG_SLAB_LEAK
363
d31676df 364static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 365{
d31676df
JK
366 return atomic_read(&cachep->store_user_clean) == 1;
367}
03787301 368
d31676df
JK
369static inline void set_store_user_clean(struct kmem_cache *cachep)
370{
371 atomic_set(&cachep->store_user_clean, 1);
372}
03787301 373
d31676df
JK
374static inline void set_store_user_dirty(struct kmem_cache *cachep)
375{
376 if (is_store_user_clean(cachep))
377 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
378}
379
380#else
d31676df 381static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
382
383#endif
384
1da177e4 385/*
3df1cccd
DR
386 * Do not go above this order unless 0 objects fit into the slab or
387 * overridden on the command line.
1da177e4 388 */
543585cc
DR
389#define SLAB_MAX_ORDER_HI 1
390#define SLAB_MAX_ORDER_LO 0
391static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 392static bool slab_max_order_set __initdata;
1da177e4 393
6ed5eb22
PE
394static inline struct kmem_cache *virt_to_cache(const void *obj)
395{
b49af68f 396 struct page *page = virt_to_head_page(obj);
35026088 397 return page->slab_cache;
6ed5eb22
PE
398}
399
8456a648 400static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
401 unsigned int idx)
402{
8456a648 403 return page->s_mem + cache->size * idx;
8fea4e96
PE
404}
405
6a2d7a95 406/*
3b0efdfa
CL
407 * We want to avoid an expensive divide : (offset / cache->size)
408 * Using the fact that size is a constant for a particular cache,
409 * we can replace (offset / cache->size) by
6a2d7a95
ED
410 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
411 */
412static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 413 const struct page *page, void *obj)
8fea4e96 414{
8456a648 415 u32 offset = (obj - page->s_mem);
6a2d7a95 416 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
417}
418
6fb92430 419#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 420/* internal cache of cache description objs */
9b030cb8 421static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
422 .batchcount = 1,
423 .limit = BOOT_CPUCACHE_ENTRIES,
424 .shared = 1,
3b0efdfa 425 .size = sizeof(struct kmem_cache),
b28a02de 426 .name = "kmem_cache",
1da177e4
LT
427};
428
1871e52c 429static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 430
343e0d7a 431static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 432{
bf0dea23 433 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
434}
435
a737b3e2
AM
436/*
437 * Calculate the number of objects and left-over bytes for a given buffer size.
438 */
70f75067
JK
439static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
440 unsigned long flags, size_t *left_over)
fbaccacf 441{
70f75067 442 unsigned int num;
fbaccacf 443 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 444
fbaccacf
SR
445 /*
446 * The slab management structure can be either off the slab or
447 * on it. For the latter case, the memory allocated for a
448 * slab is used for:
449 *
fbaccacf 450 * - @buffer_size bytes for each object
2e6b3602
JK
451 * - One freelist_idx_t for each object
452 *
453 * We don't need to consider alignment of freelist because
454 * freelist will be at the end of slab page. The objects will be
455 * at the correct alignment.
fbaccacf
SR
456 *
457 * If the slab management structure is off the slab, then the
458 * alignment will already be calculated into the size. Because
459 * the slabs are all pages aligned, the objects will be at the
460 * correct alignment when allocated.
461 */
b03a017b 462 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 463 num = slab_size / buffer_size;
2e6b3602 464 *left_over = slab_size % buffer_size;
fbaccacf 465 } else {
70f75067 466 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
467 *left_over = slab_size %
468 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 469 }
70f75067
JK
470
471 return num;
1da177e4
LT
472}
473
f28510d3 474#if DEBUG
d40cee24 475#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 476
a737b3e2
AM
477static void __slab_error(const char *function, struct kmem_cache *cachep,
478 char *msg)
1da177e4 479{
1170532b 480 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 481 function, cachep->name, msg);
1da177e4 482 dump_stack();
373d4d09 483 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 484}
f28510d3 485#endif
1da177e4 486
3395ee05
PM
487/*
488 * By default on NUMA we use alien caches to stage the freeing of
489 * objects allocated from other nodes. This causes massive memory
490 * inefficiencies when using fake NUMA setup to split memory into a
491 * large number of small nodes, so it can be disabled on the command
492 * line
493 */
494
495static int use_alien_caches __read_mostly = 1;
496static int __init noaliencache_setup(char *s)
497{
498 use_alien_caches = 0;
499 return 1;
500}
501__setup("noaliencache", noaliencache_setup);
502
3df1cccd
DR
503static int __init slab_max_order_setup(char *str)
504{
505 get_option(&str, &slab_max_order);
506 slab_max_order = slab_max_order < 0 ? 0 :
507 min(slab_max_order, MAX_ORDER - 1);
508 slab_max_order_set = true;
509
510 return 1;
511}
512__setup("slab_max_order=", slab_max_order_setup);
513
8fce4d8e
CL
514#ifdef CONFIG_NUMA
515/*
516 * Special reaping functions for NUMA systems called from cache_reap().
517 * These take care of doing round robin flushing of alien caches (containing
518 * objects freed on different nodes from which they were allocated) and the
519 * flushing of remote pcps by calling drain_node_pages.
520 */
1871e52c 521static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
522
523static void init_reap_node(int cpu)
524{
0edaf86c
AM
525 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
526 node_online_map);
8fce4d8e
CL
527}
528
529static void next_reap_node(void)
530{
909ea964 531 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 532
0edaf86c 533 node = next_node_in(node, node_online_map);
909ea964 534 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
535}
536
537#else
538#define init_reap_node(cpu) do { } while (0)
539#define next_reap_node(void) do { } while (0)
540#endif
541
1da177e4
LT
542/*
543 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
544 * via the workqueue/eventd.
545 * Add the CPU number into the expiration time to minimize the possibility of
546 * the CPUs getting into lockstep and contending for the global cache chain
547 * lock.
548 */
0db0628d 549static void start_cpu_timer(int cpu)
1da177e4 550{
1871e52c 551 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
552
553 /*
554 * When this gets called from do_initcalls via cpucache_init(),
555 * init_workqueues() has already run, so keventd will be setup
556 * at that time.
557 */
52bad64d 558 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 559 init_reap_node(cpu);
203b42f7 560 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
561 schedule_delayed_work_on(cpu, reap_work,
562 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
563 }
564}
565
1fe00d50 566static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 567{
d5cff635
CM
568 /*
569 * The array_cache structures contain pointers to free object.
25985edc 570 * However, when such objects are allocated or transferred to another
d5cff635
CM
571 * cache the pointers are not cleared and they could be counted as
572 * valid references during a kmemleak scan. Therefore, kmemleak must
573 * not scan such objects.
574 */
1fe00d50
JK
575 kmemleak_no_scan(ac);
576 if (ac) {
577 ac->avail = 0;
578 ac->limit = limit;
579 ac->batchcount = batch;
580 ac->touched = 0;
1da177e4 581 }
1fe00d50
JK
582}
583
584static struct array_cache *alloc_arraycache(int node, int entries,
585 int batchcount, gfp_t gfp)
586{
5e804789 587 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
588 struct array_cache *ac = NULL;
589
590 ac = kmalloc_node(memsize, gfp, node);
591 init_arraycache(ac, entries, batchcount);
592 return ac;
1da177e4
LT
593}
594
f68f8ddd
JK
595static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
596 struct page *page, void *objp)
072bb0aa 597{
f68f8ddd
JK
598 struct kmem_cache_node *n;
599 int page_node;
600 LIST_HEAD(list);
072bb0aa 601
f68f8ddd
JK
602 page_node = page_to_nid(page);
603 n = get_node(cachep, page_node);
381760ea 604
f68f8ddd
JK
605 spin_lock(&n->list_lock);
606 free_block(cachep, &objp, 1, page_node, &list);
607 spin_unlock(&n->list_lock);
381760ea 608
f68f8ddd 609 slabs_destroy(cachep, &list);
072bb0aa
MG
610}
611
3ded175a
CL
612/*
613 * Transfer objects in one arraycache to another.
614 * Locking must be handled by the caller.
615 *
616 * Return the number of entries transferred.
617 */
618static int transfer_objects(struct array_cache *to,
619 struct array_cache *from, unsigned int max)
620{
621 /* Figure out how many entries to transfer */
732eacc0 622 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
623
624 if (!nr)
625 return 0;
626
627 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
628 sizeof(void *) *nr);
629
630 from->avail -= nr;
631 to->avail += nr;
3ded175a
CL
632 return nr;
633}
634
765c4507
CL
635#ifndef CONFIG_NUMA
636
637#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 638#define reap_alien(cachep, n) do { } while (0)
765c4507 639
c8522a3a
JK
640static inline struct alien_cache **alloc_alien_cache(int node,
641 int limit, gfp_t gfp)
765c4507 642{
8888177e 643 return NULL;
765c4507
CL
644}
645
c8522a3a 646static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
647{
648}
649
650static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
651{
652 return 0;
653}
654
655static inline void *alternate_node_alloc(struct kmem_cache *cachep,
656 gfp_t flags)
657{
658 return NULL;
659}
660
8b98c169 661static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
662 gfp_t flags, int nodeid)
663{
664 return NULL;
665}
666
4167e9b2
DR
667static inline gfp_t gfp_exact_node(gfp_t flags)
668{
444eb2a4 669 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
670}
671
765c4507
CL
672#else /* CONFIG_NUMA */
673
8b98c169 674static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 675static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 676
c8522a3a
JK
677static struct alien_cache *__alloc_alien_cache(int node, int entries,
678 int batch, gfp_t gfp)
679{
5e804789 680 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
681 struct alien_cache *alc = NULL;
682
683 alc = kmalloc_node(memsize, gfp, node);
684 init_arraycache(&alc->ac, entries, batch);
49dfc304 685 spin_lock_init(&alc->lock);
c8522a3a
JK
686 return alc;
687}
688
689static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 690{
c8522a3a 691 struct alien_cache **alc_ptr;
5e804789 692 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
693 int i;
694
695 if (limit > 1)
696 limit = 12;
c8522a3a
JK
697 alc_ptr = kzalloc_node(memsize, gfp, node);
698 if (!alc_ptr)
699 return NULL;
700
701 for_each_node(i) {
702 if (i == node || !node_online(i))
703 continue;
704 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
705 if (!alc_ptr[i]) {
706 for (i--; i >= 0; i--)
707 kfree(alc_ptr[i]);
708 kfree(alc_ptr);
709 return NULL;
e498be7d
CL
710 }
711 }
c8522a3a 712 return alc_ptr;
e498be7d
CL
713}
714
c8522a3a 715static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
716{
717 int i;
718
c8522a3a 719 if (!alc_ptr)
e498be7d 720 return;
e498be7d 721 for_each_node(i)
c8522a3a
JK
722 kfree(alc_ptr[i]);
723 kfree(alc_ptr);
e498be7d
CL
724}
725
343e0d7a 726static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
727 struct array_cache *ac, int node,
728 struct list_head *list)
e498be7d 729{
18bf8541 730 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
731
732 if (ac->avail) {
ce8eb6c4 733 spin_lock(&n->list_lock);
e00946fe
CL
734 /*
735 * Stuff objects into the remote nodes shared array first.
736 * That way we could avoid the overhead of putting the objects
737 * into the free lists and getting them back later.
738 */
ce8eb6c4
CL
739 if (n->shared)
740 transfer_objects(n->shared, ac, ac->limit);
e00946fe 741
833b706c 742 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 743 ac->avail = 0;
ce8eb6c4 744 spin_unlock(&n->list_lock);
e498be7d
CL
745 }
746}
747
8fce4d8e
CL
748/*
749 * Called from cache_reap() to regularly drain alien caches round robin.
750 */
ce8eb6c4 751static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 752{
909ea964 753 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 754
ce8eb6c4 755 if (n->alien) {
c8522a3a
JK
756 struct alien_cache *alc = n->alien[node];
757 struct array_cache *ac;
758
759 if (alc) {
760 ac = &alc->ac;
49dfc304 761 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
762 LIST_HEAD(list);
763
764 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 765 spin_unlock_irq(&alc->lock);
833b706c 766 slabs_destroy(cachep, &list);
c8522a3a 767 }
8fce4d8e
CL
768 }
769 }
770}
771
a737b3e2 772static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 773 struct alien_cache **alien)
e498be7d 774{
b28a02de 775 int i = 0;
c8522a3a 776 struct alien_cache *alc;
e498be7d
CL
777 struct array_cache *ac;
778 unsigned long flags;
779
780 for_each_online_node(i) {
c8522a3a
JK
781 alc = alien[i];
782 if (alc) {
833b706c
JK
783 LIST_HEAD(list);
784
c8522a3a 785 ac = &alc->ac;
49dfc304 786 spin_lock_irqsave(&alc->lock, flags);
833b706c 787 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 788 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 789 slabs_destroy(cachep, &list);
e498be7d
CL
790 }
791 }
792}
729bd0b7 793
25c4f304
JK
794static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
795 int node, int page_node)
729bd0b7 796{
ce8eb6c4 797 struct kmem_cache_node *n;
c8522a3a
JK
798 struct alien_cache *alien = NULL;
799 struct array_cache *ac;
97654dfa 800 LIST_HEAD(list);
1ca4cb24 801
18bf8541 802 n = get_node(cachep, node);
729bd0b7 803 STATS_INC_NODEFREES(cachep);
25c4f304
JK
804 if (n->alien && n->alien[page_node]) {
805 alien = n->alien[page_node];
c8522a3a 806 ac = &alien->ac;
49dfc304 807 spin_lock(&alien->lock);
c8522a3a 808 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 809 STATS_INC_ACOVERFLOW(cachep);
25c4f304 810 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 811 }
f68f8ddd 812 ac->entry[ac->avail++] = objp;
49dfc304 813 spin_unlock(&alien->lock);
833b706c 814 slabs_destroy(cachep, &list);
729bd0b7 815 } else {
25c4f304 816 n = get_node(cachep, page_node);
18bf8541 817 spin_lock(&n->list_lock);
25c4f304 818 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 819 spin_unlock(&n->list_lock);
97654dfa 820 slabs_destroy(cachep, &list);
729bd0b7
PE
821 }
822 return 1;
823}
25c4f304
JK
824
825static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
826{
827 int page_node = page_to_nid(virt_to_page(objp));
828 int node = numa_mem_id();
829 /*
830 * Make sure we are not freeing a object from another node to the array
831 * cache on this cpu.
832 */
833 if (likely(node == page_node))
834 return 0;
835
836 return __cache_free_alien(cachep, objp, node, page_node);
837}
4167e9b2
DR
838
839/*
444eb2a4
MG
840 * Construct gfp mask to allocate from a specific node but do not reclaim or
841 * warn about failures.
4167e9b2
DR
842 */
843static inline gfp_t gfp_exact_node(gfp_t flags)
844{
444eb2a4 845 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 846}
e498be7d
CL
847#endif
848
ded0ecf6
JK
849static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
850{
851 struct kmem_cache_node *n;
852
853 /*
854 * Set up the kmem_cache_node for cpu before we can
855 * begin anything. Make sure some other cpu on this
856 * node has not already allocated this
857 */
858 n = get_node(cachep, node);
859 if (n) {
860 spin_lock_irq(&n->list_lock);
861 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
862 cachep->num;
863 spin_unlock_irq(&n->list_lock);
864
865 return 0;
866 }
867
868 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
869 if (!n)
870 return -ENOMEM;
871
872 kmem_cache_node_init(n);
873 n->next_reap = jiffies + REAPTIMEOUT_NODE +
874 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
875
876 n->free_limit =
877 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
878
879 /*
880 * The kmem_cache_nodes don't come and go as CPUs
881 * come and go. slab_mutex is sufficient
882 * protection here.
883 */
884 cachep->node[node] = n;
885
886 return 0;
887}
888
6731d4f1 889#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 890/*
6a67368c 891 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 892 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 893 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 894 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
895 * already in use.
896 *
18004c5d 897 * Must hold slab_mutex.
8f9f8d9e 898 */
6a67368c 899static int init_cache_node_node(int node)
8f9f8d9e 900{
ded0ecf6 901 int ret;
8f9f8d9e 902 struct kmem_cache *cachep;
8f9f8d9e 903
18004c5d 904 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
905 ret = init_cache_node(cachep, node, GFP_KERNEL);
906 if (ret)
907 return ret;
8f9f8d9e 908 }
ded0ecf6 909
8f9f8d9e
DR
910 return 0;
911}
6731d4f1 912#endif
8f9f8d9e 913
c3d332b6
JK
914static int setup_kmem_cache_node(struct kmem_cache *cachep,
915 int node, gfp_t gfp, bool force_change)
916{
917 int ret = -ENOMEM;
918 struct kmem_cache_node *n;
919 struct array_cache *old_shared = NULL;
920 struct array_cache *new_shared = NULL;
921 struct alien_cache **new_alien = NULL;
922 LIST_HEAD(list);
923
924 if (use_alien_caches) {
925 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
926 if (!new_alien)
927 goto fail;
928 }
929
930 if (cachep->shared) {
931 new_shared = alloc_arraycache(node,
932 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
933 if (!new_shared)
934 goto fail;
935 }
936
937 ret = init_cache_node(cachep, node, gfp);
938 if (ret)
939 goto fail;
940
941 n = get_node(cachep, node);
942 spin_lock_irq(&n->list_lock);
943 if (n->shared && force_change) {
944 free_block(cachep, n->shared->entry,
945 n->shared->avail, node, &list);
946 n->shared->avail = 0;
947 }
948
949 if (!n->shared || force_change) {
950 old_shared = n->shared;
951 n->shared = new_shared;
952 new_shared = NULL;
953 }
954
955 if (!n->alien) {
956 n->alien = new_alien;
957 new_alien = NULL;
958 }
959
960 spin_unlock_irq(&n->list_lock);
961 slabs_destroy(cachep, &list);
962
801faf0d
JK
963 /*
964 * To protect lockless access to n->shared during irq disabled context.
965 * If n->shared isn't NULL in irq disabled context, accessing to it is
966 * guaranteed to be valid until irq is re-enabled, because it will be
967 * freed after synchronize_sched().
968 */
969 if (force_change)
970 synchronize_sched();
971
c3d332b6
JK
972fail:
973 kfree(old_shared);
974 kfree(new_shared);
975 free_alien_cache(new_alien);
976
977 return ret;
978}
979
6731d4f1
SAS
980#ifdef CONFIG_SMP
981
0db0628d 982static void cpuup_canceled(long cpu)
fbf1e473
AM
983{
984 struct kmem_cache *cachep;
ce8eb6c4 985 struct kmem_cache_node *n = NULL;
7d6e6d09 986 int node = cpu_to_mem(cpu);
a70f7302 987 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 988
18004c5d 989 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
990 struct array_cache *nc;
991 struct array_cache *shared;
c8522a3a 992 struct alien_cache **alien;
97654dfa 993 LIST_HEAD(list);
fbf1e473 994
18bf8541 995 n = get_node(cachep, node);
ce8eb6c4 996 if (!n)
bf0dea23 997 continue;
fbf1e473 998
ce8eb6c4 999 spin_lock_irq(&n->list_lock);
fbf1e473 1000
ce8eb6c4
CL
1001 /* Free limit for this kmem_cache_node */
1002 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1003
1004 /* cpu is dead; no one can alloc from it. */
1005 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1006 if (nc) {
97654dfa 1007 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1008 nc->avail = 0;
1009 }
fbf1e473 1010
58463c1f 1011 if (!cpumask_empty(mask)) {
ce8eb6c4 1012 spin_unlock_irq(&n->list_lock);
bf0dea23 1013 goto free_slab;
fbf1e473
AM
1014 }
1015
ce8eb6c4 1016 shared = n->shared;
fbf1e473
AM
1017 if (shared) {
1018 free_block(cachep, shared->entry,
97654dfa 1019 shared->avail, node, &list);
ce8eb6c4 1020 n->shared = NULL;
fbf1e473
AM
1021 }
1022
ce8eb6c4
CL
1023 alien = n->alien;
1024 n->alien = NULL;
fbf1e473 1025
ce8eb6c4 1026 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1027
1028 kfree(shared);
1029 if (alien) {
1030 drain_alien_cache(cachep, alien);
1031 free_alien_cache(alien);
1032 }
bf0dea23
JK
1033
1034free_slab:
97654dfa 1035 slabs_destroy(cachep, &list);
fbf1e473
AM
1036 }
1037 /*
1038 * In the previous loop, all the objects were freed to
1039 * the respective cache's slabs, now we can go ahead and
1040 * shrink each nodelist to its limit.
1041 */
18004c5d 1042 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1043 n = get_node(cachep, node);
ce8eb6c4 1044 if (!n)
fbf1e473 1045 continue;
a5aa63a5 1046 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1047 }
1048}
1049
0db0628d 1050static int cpuup_prepare(long cpu)
1da177e4 1051{
343e0d7a 1052 struct kmem_cache *cachep;
7d6e6d09 1053 int node = cpu_to_mem(cpu);
8f9f8d9e 1054 int err;
1da177e4 1055
fbf1e473
AM
1056 /*
1057 * We need to do this right in the beginning since
1058 * alloc_arraycache's are going to use this list.
1059 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1060 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1061 */
6a67368c 1062 err = init_cache_node_node(node);
8f9f8d9e
DR
1063 if (err < 0)
1064 goto bad;
fbf1e473
AM
1065
1066 /*
1067 * Now we can go ahead with allocating the shared arrays and
1068 * array caches
1069 */
18004c5d 1070 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1071 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1072 if (err)
1073 goto bad;
fbf1e473 1074 }
ce79ddc8 1075
fbf1e473
AM
1076 return 0;
1077bad:
12d00f6a 1078 cpuup_canceled(cpu);
fbf1e473
AM
1079 return -ENOMEM;
1080}
1081
6731d4f1 1082int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1083{
6731d4f1 1084 int err;
fbf1e473 1085
6731d4f1
SAS
1086 mutex_lock(&slab_mutex);
1087 err = cpuup_prepare(cpu);
1088 mutex_unlock(&slab_mutex);
1089 return err;
1090}
1091
1092/*
1093 * This is called for a failed online attempt and for a successful
1094 * offline.
1095 *
1096 * Even if all the cpus of a node are down, we don't free the
1097 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1098 * a kmalloc allocation from another cpu for memory from the node of
1099 * the cpu going down. The list3 structure is usually allocated from
1100 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1101 */
1102int slab_dead_cpu(unsigned int cpu)
1103{
1104 mutex_lock(&slab_mutex);
1105 cpuup_canceled(cpu);
1106 mutex_unlock(&slab_mutex);
1107 return 0;
1108}
8f5be20b 1109#endif
6731d4f1
SAS
1110
1111static int slab_online_cpu(unsigned int cpu)
1112{
1113 start_cpu_timer(cpu);
1114 return 0;
1da177e4
LT
1115}
1116
6731d4f1
SAS
1117static int slab_offline_cpu(unsigned int cpu)
1118{
1119 /*
1120 * Shutdown cache reaper. Note that the slab_mutex is held so
1121 * that if cache_reap() is invoked it cannot do anything
1122 * expensive but will only modify reap_work and reschedule the
1123 * timer.
1124 */
1125 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1126 /* Now the cache_reaper is guaranteed to be not running. */
1127 per_cpu(slab_reap_work, cpu).work.func = NULL;
1128 return 0;
1129}
1da177e4 1130
8f9f8d9e
DR
1131#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1132/*
1133 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1134 * Returns -EBUSY if all objects cannot be drained so that the node is not
1135 * removed.
1136 *
18004c5d 1137 * Must hold slab_mutex.
8f9f8d9e 1138 */
6a67368c 1139static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1140{
1141 struct kmem_cache *cachep;
1142 int ret = 0;
1143
18004c5d 1144 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1145 struct kmem_cache_node *n;
8f9f8d9e 1146
18bf8541 1147 n = get_node(cachep, node);
ce8eb6c4 1148 if (!n)
8f9f8d9e
DR
1149 continue;
1150
a5aa63a5 1151 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1152
ce8eb6c4
CL
1153 if (!list_empty(&n->slabs_full) ||
1154 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1155 ret = -EBUSY;
1156 break;
1157 }
1158 }
1159 return ret;
1160}
1161
1162static int __meminit slab_memory_callback(struct notifier_block *self,
1163 unsigned long action, void *arg)
1164{
1165 struct memory_notify *mnb = arg;
1166 int ret = 0;
1167 int nid;
1168
1169 nid = mnb->status_change_nid;
1170 if (nid < 0)
1171 goto out;
1172
1173 switch (action) {
1174 case MEM_GOING_ONLINE:
18004c5d 1175 mutex_lock(&slab_mutex);
6a67368c 1176 ret = init_cache_node_node(nid);
18004c5d 1177 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1178 break;
1179 case MEM_GOING_OFFLINE:
18004c5d 1180 mutex_lock(&slab_mutex);
6a67368c 1181 ret = drain_cache_node_node(nid);
18004c5d 1182 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1183 break;
1184 case MEM_ONLINE:
1185 case MEM_OFFLINE:
1186 case MEM_CANCEL_ONLINE:
1187 case MEM_CANCEL_OFFLINE:
1188 break;
1189 }
1190out:
5fda1bd5 1191 return notifier_from_errno(ret);
8f9f8d9e
DR
1192}
1193#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1194
e498be7d 1195/*
ce8eb6c4 1196 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1197 */
6744f087 1198static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1199 int nodeid)
e498be7d 1200{
6744f087 1201 struct kmem_cache_node *ptr;
e498be7d 1202
6744f087 1203 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1204 BUG_ON(!ptr);
1205
6744f087 1206 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1207 /*
1208 * Do not assume that spinlocks can be initialized via memcpy:
1209 */
1210 spin_lock_init(&ptr->list_lock);
1211
e498be7d 1212 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1213 cachep->node[nodeid] = ptr;
e498be7d
CL
1214}
1215
556a169d 1216/*
ce8eb6c4
CL
1217 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1218 * size of kmem_cache_node.
556a169d 1219 */
ce8eb6c4 1220static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1221{
1222 int node;
1223
1224 for_each_online_node(node) {
ce8eb6c4 1225 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1226 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1227 REAPTIMEOUT_NODE +
1228 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1229 }
1230}
1231
a737b3e2
AM
1232/*
1233 * Initialisation. Called after the page allocator have been initialised and
1234 * before smp_init().
1da177e4
LT
1235 */
1236void __init kmem_cache_init(void)
1237{
e498be7d
CL
1238 int i;
1239
68126702
JK
1240 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1241 sizeof(struct rcu_head));
9b030cb8
CL
1242 kmem_cache = &kmem_cache_boot;
1243
8888177e 1244 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1245 use_alien_caches = 0;
1246
3c583465 1247 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1248 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1249
1da177e4
LT
1250 /*
1251 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1252 * page orders on machines with more than 32MB of memory if
1253 * not overridden on the command line.
1da177e4 1254 */
3df1cccd 1255 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1256 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1257
1da177e4
LT
1258 /* Bootstrap is tricky, because several objects are allocated
1259 * from caches that do not exist yet:
9b030cb8
CL
1260 * 1) initialize the kmem_cache cache: it contains the struct
1261 * kmem_cache structures of all caches, except kmem_cache itself:
1262 * kmem_cache is statically allocated.
e498be7d 1263 * Initially an __init data area is used for the head array and the
ce8eb6c4 1264 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1265 * array at the end of the bootstrap.
1da177e4 1266 * 2) Create the first kmalloc cache.
343e0d7a 1267 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1268 * An __init data area is used for the head array.
1269 * 3) Create the remaining kmalloc caches, with minimally sized
1270 * head arrays.
9b030cb8 1271 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1272 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1273 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1274 * the other cache's with kmalloc allocated memory.
1275 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1276 */
1277
9b030cb8 1278 /* 1) create the kmem_cache */
1da177e4 1279
8da3430d 1280 /*
b56efcf0 1281 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1282 */
2f9baa9f 1283 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1284 offsetof(struct kmem_cache, node) +
6744f087 1285 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1286 SLAB_HWCACHE_ALIGN);
1287 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1288 slab_state = PARTIAL;
1da177e4 1289
a737b3e2 1290 /*
bf0dea23
JK
1291 * Initialize the caches that provide memory for the kmem_cache_node
1292 * structures first. Without this, further allocations will bug.
e498be7d 1293 */
bf0dea23 1294 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1295 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1296 slab_state = PARTIAL_NODE;
34cc6990 1297 setup_kmalloc_cache_index_table();
e498be7d 1298
e0a42726
IM
1299 slab_early_init = 0;
1300
ce8eb6c4 1301 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1302 {
1ca4cb24
PE
1303 int nid;
1304
9c09a95c 1305 for_each_online_node(nid) {
ce8eb6c4 1306 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1307
bf0dea23 1308 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1309 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1310 }
1311 }
1da177e4 1312
f97d5f63 1313 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1314}
1315
1316void __init kmem_cache_init_late(void)
1317{
1318 struct kmem_cache *cachep;
1319
97d06609 1320 slab_state = UP;
52cef189 1321
8429db5c 1322 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1323 mutex_lock(&slab_mutex);
1324 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1325 if (enable_cpucache(cachep, GFP_NOWAIT))
1326 BUG();
18004c5d 1327 mutex_unlock(&slab_mutex);
056c6241 1328
97d06609
CL
1329 /* Done! */
1330 slab_state = FULL;
1331
8f9f8d9e
DR
1332#ifdef CONFIG_NUMA
1333 /*
1334 * Register a memory hotplug callback that initializes and frees
6a67368c 1335 * node.
8f9f8d9e
DR
1336 */
1337 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1338#endif
1339
a737b3e2
AM
1340 /*
1341 * The reap timers are started later, with a module init call: That part
1342 * of the kernel is not yet operational.
1da177e4
LT
1343 */
1344}
1345
1346static int __init cpucache_init(void)
1347{
6731d4f1 1348 int ret;
1da177e4 1349
a737b3e2
AM
1350 /*
1351 * Register the timers that return unneeded pages to the page allocator
1da177e4 1352 */
6731d4f1
SAS
1353 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1354 slab_online_cpu, slab_offline_cpu);
1355 WARN_ON(ret < 0);
a164f896
GC
1356
1357 /* Done! */
97d06609 1358 slab_state = FULL;
1da177e4
LT
1359 return 0;
1360}
1da177e4
LT
1361__initcall(cpucache_init);
1362
8bdec192
RA
1363static noinline void
1364slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1365{
9a02d699 1366#if DEBUG
ce8eb6c4 1367 struct kmem_cache_node *n;
8456a648 1368 struct page *page;
8bdec192
RA
1369 unsigned long flags;
1370 int node;
9a02d699
DR
1371 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1372 DEFAULT_RATELIMIT_BURST);
1373
1374 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1375 return;
8bdec192 1376
5b3810e5
VB
1377 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1378 nodeid, gfpflags, &gfpflags);
1379 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1380 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1381
18bf8541 1382 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1383 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1384 unsigned long active_slabs = 0, num_slabs = 0;
1385
ce8eb6c4 1386 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1387 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1388 active_objs += cachep->num;
1389 active_slabs++;
1390 }
8456a648
JK
1391 list_for_each_entry(page, &n->slabs_partial, lru) {
1392 active_objs += page->active;
8bdec192
RA
1393 active_slabs++;
1394 }
8456a648 1395 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1396 num_slabs++;
1397
ce8eb6c4
CL
1398 free_objects += n->free_objects;
1399 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1400
1401 num_slabs += active_slabs;
1402 num_objs = num_slabs * cachep->num;
5b3810e5 1403 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1404 node, active_slabs, num_slabs, active_objs, num_objs,
1405 free_objects);
1406 }
9a02d699 1407#endif
8bdec192
RA
1408}
1409
1da177e4 1410/*
8a7d9b43
WSH
1411 * Interface to system's page allocator. No need to hold the
1412 * kmem_cache_node ->list_lock.
1da177e4
LT
1413 *
1414 * If we requested dmaable memory, we will get it. Even if we
1415 * did not request dmaable memory, we might get it, but that
1416 * would be relatively rare and ignorable.
1417 */
0c3aa83e
JK
1418static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1419 int nodeid)
1da177e4
LT
1420{
1421 struct page *page;
e1b6aa6f 1422 int nr_pages;
765c4507 1423
a618e89f 1424 flags |= cachep->allocflags;
e12ba74d
MG
1425 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1427
96db800f 1428 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1429 if (!page) {
9a02d699 1430 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1431 return NULL;
8bdec192 1432 }
1da177e4 1433
f3ccb2c4
VD
1434 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1435 __free_pages(page, cachep->gfporder);
1436 return NULL;
1437 }
1438
e1b6aa6f 1439 nr_pages = (1 << cachep->gfporder);
1da177e4 1440 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1441 add_zone_page_state(page_zone(page),
1442 NR_SLAB_RECLAIMABLE, nr_pages);
1443 else
1444 add_zone_page_state(page_zone(page),
1445 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1446
a57a4988 1447 __SetPageSlab(page);
f68f8ddd
JK
1448 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1449 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1450 SetPageSlabPfmemalloc(page);
072bb0aa 1451
b1eeab67
VN
1452 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1453 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1454
1455 if (cachep->ctor)
1456 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1457 else
1458 kmemcheck_mark_unallocated_pages(page, nr_pages);
1459 }
c175eea4 1460
0c3aa83e 1461 return page;
1da177e4
LT
1462}
1463
1464/*
1465 * Interface to system's page release.
1466 */
0c3aa83e 1467static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1468{
27ee57c9
VD
1469 int order = cachep->gfporder;
1470 unsigned long nr_freed = (1 << order);
1da177e4 1471
27ee57c9 1472 kmemcheck_free_shadow(page, order);
c175eea4 1473
972d1a7b
CL
1474 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1475 sub_zone_page_state(page_zone(page),
1476 NR_SLAB_RECLAIMABLE, nr_freed);
1477 else
1478 sub_zone_page_state(page_zone(page),
1479 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1480
a57a4988 1481 BUG_ON(!PageSlab(page));
73293c2f 1482 __ClearPageSlabPfmemalloc(page);
a57a4988 1483 __ClearPageSlab(page);
8456a648
JK
1484 page_mapcount_reset(page);
1485 page->mapping = NULL;
1f458cbf 1486
1da177e4
LT
1487 if (current->reclaim_state)
1488 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1489 memcg_uncharge_slab(page, order, cachep);
1490 __free_pages(page, order);
1da177e4
LT
1491}
1492
1493static void kmem_rcu_free(struct rcu_head *head)
1494{
68126702
JK
1495 struct kmem_cache *cachep;
1496 struct page *page;
1da177e4 1497
68126702
JK
1498 page = container_of(head, struct page, rcu_head);
1499 cachep = page->slab_cache;
1500
1501 kmem_freepages(cachep, page);
1da177e4
LT
1502}
1503
1504#if DEBUG
40b44137
JK
1505static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1506{
1507 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1508 (cachep->size % PAGE_SIZE) == 0)
1509 return true;
1510
1511 return false;
1512}
1da177e4
LT
1513
1514#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1515static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1516 unsigned long caller)
1da177e4 1517{
8c138bc0 1518 int size = cachep->object_size;
1da177e4 1519
3dafccf2 1520 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1521
b28a02de 1522 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1523 return;
1524
b28a02de
PE
1525 *addr++ = 0x12345678;
1526 *addr++ = caller;
1527 *addr++ = smp_processor_id();
1528 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1529 {
1530 unsigned long *sptr = &caller;
1531 unsigned long svalue;
1532
1533 while (!kstack_end(sptr)) {
1534 svalue = *sptr++;
1535 if (kernel_text_address(svalue)) {
b28a02de 1536 *addr++ = svalue;
1da177e4
LT
1537 size -= sizeof(unsigned long);
1538 if (size <= sizeof(unsigned long))
1539 break;
1540 }
1541 }
1542
1543 }
b28a02de 1544 *addr++ = 0x87654321;
1da177e4 1545}
40b44137
JK
1546
1547static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1548 int map, unsigned long caller)
1549{
1550 if (!is_debug_pagealloc_cache(cachep))
1551 return;
1552
1553 if (caller)
1554 store_stackinfo(cachep, objp, caller);
1555
1556 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1557}
1558
1559#else
1560static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1561 int map, unsigned long caller) {}
1562
1da177e4
LT
1563#endif
1564
343e0d7a 1565static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1566{
8c138bc0 1567 int size = cachep->object_size;
3dafccf2 1568 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1569
1570 memset(addr, val, size);
b28a02de 1571 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1572}
1573
1574static void dump_line(char *data, int offset, int limit)
1575{
1576 int i;
aa83aa40
DJ
1577 unsigned char error = 0;
1578 int bad_count = 0;
1579
1170532b 1580 pr_err("%03x: ", offset);
aa83aa40
DJ
1581 for (i = 0; i < limit; i++) {
1582 if (data[offset + i] != POISON_FREE) {
1583 error = data[offset + i];
1584 bad_count++;
1585 }
aa83aa40 1586 }
fdde6abb
SAS
1587 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1588 &data[offset], limit, 1);
aa83aa40
DJ
1589
1590 if (bad_count == 1) {
1591 error ^= POISON_FREE;
1592 if (!(error & (error - 1))) {
1170532b 1593 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1594#ifdef CONFIG_X86
1170532b 1595 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1596#else
1170532b 1597 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1598#endif
1599 }
1600 }
1da177e4
LT
1601}
1602#endif
1603
1604#if DEBUG
1605
343e0d7a 1606static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1607{
1608 int i, size;
1609 char *realobj;
1610
1611 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1612 pr_err("Redzone: 0x%llx/0x%llx\n",
1613 *dbg_redzone1(cachep, objp),
1614 *dbg_redzone2(cachep, objp));
1da177e4
LT
1615 }
1616
1617 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1618 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1619 *dbg_userword(cachep, objp),
1620 *dbg_userword(cachep, objp));
1da177e4 1621 }
3dafccf2 1622 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1623 size = cachep->object_size;
b28a02de 1624 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1625 int limit;
1626 limit = 16;
b28a02de
PE
1627 if (i + limit > size)
1628 limit = size - i;
1da177e4
LT
1629 dump_line(realobj, i, limit);
1630 }
1631}
1632
343e0d7a 1633static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1634{
1635 char *realobj;
1636 int size, i;
1637 int lines = 0;
1638
40b44137
JK
1639 if (is_debug_pagealloc_cache(cachep))
1640 return;
1641
3dafccf2 1642 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1643 size = cachep->object_size;
1da177e4 1644
b28a02de 1645 for (i = 0; i < size; i++) {
1da177e4 1646 char exp = POISON_FREE;
b28a02de 1647 if (i == size - 1)
1da177e4
LT
1648 exp = POISON_END;
1649 if (realobj[i] != exp) {
1650 int limit;
1651 /* Mismatch ! */
1652 /* Print header */
1653 if (lines == 0) {
1170532b
JP
1654 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1655 print_tainted(), cachep->name,
1656 realobj, size);
1da177e4
LT
1657 print_objinfo(cachep, objp, 0);
1658 }
1659 /* Hexdump the affected line */
b28a02de 1660 i = (i / 16) * 16;
1da177e4 1661 limit = 16;
b28a02de
PE
1662 if (i + limit > size)
1663 limit = size - i;
1da177e4
LT
1664 dump_line(realobj, i, limit);
1665 i += 16;
1666 lines++;
1667 /* Limit to 5 lines */
1668 if (lines > 5)
1669 break;
1670 }
1671 }
1672 if (lines != 0) {
1673 /* Print some data about the neighboring objects, if they
1674 * exist:
1675 */
8456a648 1676 struct page *page = virt_to_head_page(objp);
8fea4e96 1677 unsigned int objnr;
1da177e4 1678
8456a648 1679 objnr = obj_to_index(cachep, page, objp);
1da177e4 1680 if (objnr) {
8456a648 1681 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1682 realobj = (char *)objp + obj_offset(cachep);
1170532b 1683 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1684 print_objinfo(cachep, objp, 2);
1685 }
b28a02de 1686 if (objnr + 1 < cachep->num) {
8456a648 1687 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1688 realobj = (char *)objp + obj_offset(cachep);
1170532b 1689 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1690 print_objinfo(cachep, objp, 2);
1691 }
1692 }
1693}
1694#endif
1695
12dd36fa 1696#if DEBUG
8456a648
JK
1697static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1698 struct page *page)
1da177e4 1699{
1da177e4 1700 int i;
b03a017b
JK
1701
1702 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1703 poison_obj(cachep, page->freelist - obj_offset(cachep),
1704 POISON_FREE);
1705 }
1706
1da177e4 1707 for (i = 0; i < cachep->num; i++) {
8456a648 1708 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1709
1710 if (cachep->flags & SLAB_POISON) {
1da177e4 1711 check_poison_obj(cachep, objp);
40b44137 1712 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1713 }
1714 if (cachep->flags & SLAB_RED_ZONE) {
1715 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1716 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1717 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1718 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1719 }
1da177e4 1720 }
12dd36fa 1721}
1da177e4 1722#else
8456a648
JK
1723static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1724 struct page *page)
12dd36fa 1725{
12dd36fa 1726}
1da177e4
LT
1727#endif
1728
911851e6
RD
1729/**
1730 * slab_destroy - destroy and release all objects in a slab
1731 * @cachep: cache pointer being destroyed
cb8ee1a3 1732 * @page: page pointer being destroyed
911851e6 1733 *
8a7d9b43
WSH
1734 * Destroy all the objs in a slab page, and release the mem back to the system.
1735 * Before calling the slab page must have been unlinked from the cache. The
1736 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1737 */
8456a648 1738static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1739{
7e007355 1740 void *freelist;
12dd36fa 1741
8456a648
JK
1742 freelist = page->freelist;
1743 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1744 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1745 call_rcu(&page->rcu_head, kmem_rcu_free);
1746 else
0c3aa83e 1747 kmem_freepages(cachep, page);
68126702
JK
1748
1749 /*
8456a648 1750 * From now on, we don't use freelist
68126702
JK
1751 * although actual page can be freed in rcu context
1752 */
1753 if (OFF_SLAB(cachep))
8456a648 1754 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1755}
1756
97654dfa
JK
1757static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1758{
1759 struct page *page, *n;
1760
1761 list_for_each_entry_safe(page, n, list, lru) {
1762 list_del(&page->lru);
1763 slab_destroy(cachep, page);
1764 }
1765}
1766
4d268eba 1767/**
a70773dd
RD
1768 * calculate_slab_order - calculate size (page order) of slabs
1769 * @cachep: pointer to the cache that is being created
1770 * @size: size of objects to be created in this cache.
a70773dd
RD
1771 * @flags: slab allocation flags
1772 *
1773 * Also calculates the number of objects per slab.
4d268eba
PE
1774 *
1775 * This could be made much more intelligent. For now, try to avoid using
1776 * high order pages for slabs. When the gfp() functions are more friendly
1777 * towards high-order requests, this should be changed.
1778 */
a737b3e2 1779static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1780 size_t size, unsigned long flags)
4d268eba
PE
1781{
1782 size_t left_over = 0;
9888e6fa 1783 int gfporder;
4d268eba 1784
0aa817f0 1785 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1786 unsigned int num;
1787 size_t remainder;
1788
70f75067 1789 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1790 if (!num)
1791 continue;
9888e6fa 1792
f315e3fa
JK
1793 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1794 if (num > SLAB_OBJ_MAX_NUM)
1795 break;
1796
b1ab41c4 1797 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1798 struct kmem_cache *freelist_cache;
1799 size_t freelist_size;
1800
1801 freelist_size = num * sizeof(freelist_idx_t);
1802 freelist_cache = kmalloc_slab(freelist_size, 0u);
1803 if (!freelist_cache)
1804 continue;
1805
b1ab41c4 1806 /*
3217fd9b 1807 * Needed to avoid possible looping condition
76b342bd 1808 * in cache_grow_begin()
b1ab41c4 1809 */
3217fd9b
JK
1810 if (OFF_SLAB(freelist_cache))
1811 continue;
b1ab41c4 1812
3217fd9b
JK
1813 /* check if off slab has enough benefit */
1814 if (freelist_cache->size > cachep->size / 2)
1815 continue;
b1ab41c4 1816 }
4d268eba 1817
9888e6fa 1818 /* Found something acceptable - save it away */
4d268eba 1819 cachep->num = num;
9888e6fa 1820 cachep->gfporder = gfporder;
4d268eba
PE
1821 left_over = remainder;
1822
f78bb8ad
LT
1823 /*
1824 * A VFS-reclaimable slab tends to have most allocations
1825 * as GFP_NOFS and we really don't want to have to be allocating
1826 * higher-order pages when we are unable to shrink dcache.
1827 */
1828 if (flags & SLAB_RECLAIM_ACCOUNT)
1829 break;
1830
4d268eba
PE
1831 /*
1832 * Large number of objects is good, but very large slabs are
1833 * currently bad for the gfp()s.
1834 */
543585cc 1835 if (gfporder >= slab_max_order)
4d268eba
PE
1836 break;
1837
9888e6fa
LT
1838 /*
1839 * Acceptable internal fragmentation?
1840 */
a737b3e2 1841 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1842 break;
1843 }
1844 return left_over;
1845}
1846
bf0dea23
JK
1847static struct array_cache __percpu *alloc_kmem_cache_cpus(
1848 struct kmem_cache *cachep, int entries, int batchcount)
1849{
1850 int cpu;
1851 size_t size;
1852 struct array_cache __percpu *cpu_cache;
1853
1854 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1855 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1856
1857 if (!cpu_cache)
1858 return NULL;
1859
1860 for_each_possible_cpu(cpu) {
1861 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1862 entries, batchcount);
1863 }
1864
1865 return cpu_cache;
1866}
1867
bd721ea7 1868static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1869{
97d06609 1870 if (slab_state >= FULL)
83b519e8 1871 return enable_cpucache(cachep, gfp);
2ed3a4ef 1872
bf0dea23
JK
1873 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1874 if (!cachep->cpu_cache)
1875 return 1;
1876
97d06609 1877 if (slab_state == DOWN) {
bf0dea23
JK
1878 /* Creation of first cache (kmem_cache). */
1879 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1880 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1881 /* For kmem_cache_node */
1882 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1883 } else {
bf0dea23 1884 int node;
f30cf7d1 1885
bf0dea23
JK
1886 for_each_online_node(node) {
1887 cachep->node[node] = kmalloc_node(
1888 sizeof(struct kmem_cache_node), gfp, node);
1889 BUG_ON(!cachep->node[node]);
1890 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1891 }
1892 }
bf0dea23 1893
6a67368c 1894 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1895 jiffies + REAPTIMEOUT_NODE +
1896 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1897
1898 cpu_cache_get(cachep)->avail = 0;
1899 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1900 cpu_cache_get(cachep)->batchcount = 1;
1901 cpu_cache_get(cachep)->touched = 0;
1902 cachep->batchcount = 1;
1903 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1904 return 0;
f30cf7d1
PE
1905}
1906
12220dea
JK
1907unsigned long kmem_cache_flags(unsigned long object_size,
1908 unsigned long flags, const char *name,
1909 void (*ctor)(void *))
1910{
1911 return flags;
1912}
1913
1914struct kmem_cache *
1915__kmem_cache_alias(const char *name, size_t size, size_t align,
1916 unsigned long flags, void (*ctor)(void *))
1917{
1918 struct kmem_cache *cachep;
1919
1920 cachep = find_mergeable(size, align, flags, name, ctor);
1921 if (cachep) {
1922 cachep->refcount++;
1923
1924 /*
1925 * Adjust the object sizes so that we clear
1926 * the complete object on kzalloc.
1927 */
1928 cachep->object_size = max_t(int, cachep->object_size, size);
1929 }
1930 return cachep;
1931}
1932
b03a017b
JK
1933static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1934 size_t size, unsigned long flags)
1935{
1936 size_t left;
1937
1938 cachep->num = 0;
1939
1940 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1941 return false;
1942
1943 left = calculate_slab_order(cachep, size,
1944 flags | CFLGS_OBJFREELIST_SLAB);
1945 if (!cachep->num)
1946 return false;
1947
1948 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1949 return false;
1950
1951 cachep->colour = left / cachep->colour_off;
1952
1953 return true;
1954}
1955
158e319b
JK
1956static bool set_off_slab_cache(struct kmem_cache *cachep,
1957 size_t size, unsigned long flags)
1958{
1959 size_t left;
1960
1961 cachep->num = 0;
1962
1963 /*
3217fd9b
JK
1964 * Always use on-slab management when SLAB_NOLEAKTRACE
1965 * to avoid recursive calls into kmemleak.
158e319b 1966 */
158e319b
JK
1967 if (flags & SLAB_NOLEAKTRACE)
1968 return false;
1969
1970 /*
1971 * Size is large, assume best to place the slab management obj
1972 * off-slab (should allow better packing of objs).
1973 */
1974 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1975 if (!cachep->num)
1976 return false;
1977
1978 /*
1979 * If the slab has been placed off-slab, and we have enough space then
1980 * move it on-slab. This is at the expense of any extra colouring.
1981 */
1982 if (left >= cachep->num * sizeof(freelist_idx_t))
1983 return false;
1984
1985 cachep->colour = left / cachep->colour_off;
1986
1987 return true;
1988}
1989
1990static bool set_on_slab_cache(struct kmem_cache *cachep,
1991 size_t size, unsigned long flags)
1992{
1993 size_t left;
1994
1995 cachep->num = 0;
1996
1997 left = calculate_slab_order(cachep, size, flags);
1998 if (!cachep->num)
1999 return false;
2000
2001 cachep->colour = left / cachep->colour_off;
2002
2003 return true;
2004}
2005
1da177e4 2006/**
039363f3 2007 * __kmem_cache_create - Create a cache.
a755b76a 2008 * @cachep: cache management descriptor
1da177e4 2009 * @flags: SLAB flags
1da177e4
LT
2010 *
2011 * Returns a ptr to the cache on success, NULL on failure.
2012 * Cannot be called within a int, but can be interrupted.
20c2df83 2013 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2014 *
1da177e4
LT
2015 * The flags are
2016 *
2017 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2018 * to catch references to uninitialised memory.
2019 *
2020 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2021 * for buffer overruns.
2022 *
1da177e4
LT
2023 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2024 * cacheline. This can be beneficial if you're counting cycles as closely
2025 * as davem.
2026 */
278b1bb1 2027int
8a13a4cc 2028__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2029{
d4a5fca5 2030 size_t ralign = BYTES_PER_WORD;
83b519e8 2031 gfp_t gfp;
278b1bb1 2032 int err;
8a13a4cc 2033 size_t size = cachep->size;
1da177e4 2034
1da177e4 2035#if DEBUG
1da177e4
LT
2036#if FORCED_DEBUG
2037 /*
2038 * Enable redzoning and last user accounting, except for caches with
2039 * large objects, if the increased size would increase the object size
2040 * above the next power of two: caches with object sizes just above a
2041 * power of two have a significant amount of internal fragmentation.
2042 */
87a927c7
DW
2043 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2044 2 * sizeof(unsigned long long)))
b28a02de 2045 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2046 if (!(flags & SLAB_DESTROY_BY_RCU))
2047 flags |= SLAB_POISON;
2048#endif
1da177e4 2049#endif
1da177e4 2050
a737b3e2
AM
2051 /*
2052 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2053 * unaligned accesses for some archs when redzoning is used, and makes
2054 * sure any on-slab bufctl's are also correctly aligned.
2055 */
b28a02de
PE
2056 if (size & (BYTES_PER_WORD - 1)) {
2057 size += (BYTES_PER_WORD - 1);
2058 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2059 }
2060
87a927c7
DW
2061 if (flags & SLAB_RED_ZONE) {
2062 ralign = REDZONE_ALIGN;
2063 /* If redzoning, ensure that the second redzone is suitably
2064 * aligned, by adjusting the object size accordingly. */
2065 size += REDZONE_ALIGN - 1;
2066 size &= ~(REDZONE_ALIGN - 1);
2067 }
ca5f9703 2068
a44b56d3 2069 /* 3) caller mandated alignment */
8a13a4cc
CL
2070 if (ralign < cachep->align) {
2071 ralign = cachep->align;
1da177e4 2072 }
3ff84a7f
PE
2073 /* disable debug if necessary */
2074 if (ralign > __alignof__(unsigned long long))
a44b56d3 2075 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2076 /*
ca5f9703 2077 * 4) Store it.
1da177e4 2078 */
8a13a4cc 2079 cachep->align = ralign;
158e319b
JK
2080 cachep->colour_off = cache_line_size();
2081 /* Offset must be a multiple of the alignment. */
2082 if (cachep->colour_off < cachep->align)
2083 cachep->colour_off = cachep->align;
1da177e4 2084
83b519e8
PE
2085 if (slab_is_available())
2086 gfp = GFP_KERNEL;
2087 else
2088 gfp = GFP_NOWAIT;
2089
1da177e4 2090#if DEBUG
1da177e4 2091
ca5f9703
PE
2092 /*
2093 * Both debugging options require word-alignment which is calculated
2094 * into align above.
2095 */
1da177e4 2096 if (flags & SLAB_RED_ZONE) {
1da177e4 2097 /* add space for red zone words */
3ff84a7f
PE
2098 cachep->obj_offset += sizeof(unsigned long long);
2099 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2100 }
2101 if (flags & SLAB_STORE_USER) {
ca5f9703 2102 /* user store requires one word storage behind the end of
87a927c7
DW
2103 * the real object. But if the second red zone needs to be
2104 * aligned to 64 bits, we must allow that much space.
1da177e4 2105 */
87a927c7
DW
2106 if (flags & SLAB_RED_ZONE)
2107 size += REDZONE_ALIGN;
2108 else
2109 size += BYTES_PER_WORD;
1da177e4 2110 }
832a15d2
JK
2111#endif
2112
7ed2f9e6
AP
2113 kasan_cache_create(cachep, &size, &flags);
2114
832a15d2
JK
2115 size = ALIGN(size, cachep->align);
2116 /*
2117 * We should restrict the number of objects in a slab to implement
2118 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2119 */
2120 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2121 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2122
2123#if DEBUG
03a2d2a3
JK
2124 /*
2125 * To activate debug pagealloc, off-slab management is necessary
2126 * requirement. In early phase of initialization, small sized slab
2127 * doesn't get initialized so it would not be possible. So, we need
2128 * to check size >= 256. It guarantees that all necessary small
2129 * sized slab is initialized in current slab initialization sequence.
2130 */
40323278 2131 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2132 size >= 256 && cachep->object_size > cache_line_size()) {
2133 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2134 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2135
2136 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2137 flags |= CFLGS_OFF_SLAB;
2138 cachep->obj_offset += tmp_size - size;
2139 size = tmp_size;
2140 goto done;
2141 }
2142 }
1da177e4 2143 }
1da177e4
LT
2144#endif
2145
b03a017b
JK
2146 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2147 flags |= CFLGS_OBJFREELIST_SLAB;
2148 goto done;
2149 }
2150
158e319b 2151 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2152 flags |= CFLGS_OFF_SLAB;
158e319b 2153 goto done;
832a15d2 2154 }
1da177e4 2155
158e319b
JK
2156 if (set_on_slab_cache(cachep, size, flags))
2157 goto done;
1da177e4 2158
158e319b 2159 return -E2BIG;
1da177e4 2160
158e319b
JK
2161done:
2162 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2163 cachep->flags = flags;
a57a4988 2164 cachep->allocflags = __GFP_COMP;
a3187e43 2165 if (flags & SLAB_CACHE_DMA)
a618e89f 2166 cachep->allocflags |= GFP_DMA;
3b0efdfa 2167 cachep->size = size;
6a2d7a95 2168 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2169
40b44137
JK
2170#if DEBUG
2171 /*
2172 * If we're going to use the generic kernel_map_pages()
2173 * poisoning, then it's going to smash the contents of
2174 * the redzone and userword anyhow, so switch them off.
2175 */
2176 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2177 (cachep->flags & SLAB_POISON) &&
2178 is_debug_pagealloc_cache(cachep))
2179 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2180#endif
2181
2182 if (OFF_SLAB(cachep)) {
158e319b
JK
2183 cachep->freelist_cache =
2184 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2185 }
1da177e4 2186
278b1bb1
CL
2187 err = setup_cpu_cache(cachep, gfp);
2188 if (err) {
52b4b950 2189 __kmem_cache_release(cachep);
278b1bb1 2190 return err;
2ed3a4ef 2191 }
1da177e4 2192
278b1bb1 2193 return 0;
1da177e4 2194}
1da177e4
LT
2195
2196#if DEBUG
2197static void check_irq_off(void)
2198{
2199 BUG_ON(!irqs_disabled());
2200}
2201
2202static void check_irq_on(void)
2203{
2204 BUG_ON(irqs_disabled());
2205}
2206
18726ca8
JK
2207static void check_mutex_acquired(void)
2208{
2209 BUG_ON(!mutex_is_locked(&slab_mutex));
2210}
2211
343e0d7a 2212static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2213{
2214#ifdef CONFIG_SMP
2215 check_irq_off();
18bf8541 2216 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2217#endif
2218}
e498be7d 2219
343e0d7a 2220static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2221{
2222#ifdef CONFIG_SMP
2223 check_irq_off();
18bf8541 2224 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2225#endif
2226}
2227
1da177e4
LT
2228#else
2229#define check_irq_off() do { } while(0)
2230#define check_irq_on() do { } while(0)
18726ca8 2231#define check_mutex_acquired() do { } while(0)
1da177e4 2232#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2233#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2234#endif
2235
18726ca8
JK
2236static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2237 int node, bool free_all, struct list_head *list)
2238{
2239 int tofree;
2240
2241 if (!ac || !ac->avail)
2242 return;
2243
2244 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2245 if (tofree > ac->avail)
2246 tofree = (ac->avail + 1) / 2;
2247
2248 free_block(cachep, ac->entry, tofree, node, list);
2249 ac->avail -= tofree;
2250 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2251}
aab2207c 2252
1da177e4
LT
2253static void do_drain(void *arg)
2254{
a737b3e2 2255 struct kmem_cache *cachep = arg;
1da177e4 2256 struct array_cache *ac;
7d6e6d09 2257 int node = numa_mem_id();
18bf8541 2258 struct kmem_cache_node *n;
97654dfa 2259 LIST_HEAD(list);
1da177e4
LT
2260
2261 check_irq_off();
9a2dba4b 2262 ac = cpu_cache_get(cachep);
18bf8541
CL
2263 n = get_node(cachep, node);
2264 spin_lock(&n->list_lock);
97654dfa 2265 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2266 spin_unlock(&n->list_lock);
97654dfa 2267 slabs_destroy(cachep, &list);
1da177e4
LT
2268 ac->avail = 0;
2269}
2270
343e0d7a 2271static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2272{
ce8eb6c4 2273 struct kmem_cache_node *n;
e498be7d 2274 int node;
18726ca8 2275 LIST_HEAD(list);
e498be7d 2276
15c8b6c1 2277 on_each_cpu(do_drain, cachep, 1);
1da177e4 2278 check_irq_on();
18bf8541
CL
2279 for_each_kmem_cache_node(cachep, node, n)
2280 if (n->alien)
ce8eb6c4 2281 drain_alien_cache(cachep, n->alien);
a4523a8b 2282
18726ca8
JK
2283 for_each_kmem_cache_node(cachep, node, n) {
2284 spin_lock_irq(&n->list_lock);
2285 drain_array_locked(cachep, n->shared, node, true, &list);
2286 spin_unlock_irq(&n->list_lock);
2287
2288 slabs_destroy(cachep, &list);
2289 }
1da177e4
LT
2290}
2291
ed11d9eb
CL
2292/*
2293 * Remove slabs from the list of free slabs.
2294 * Specify the number of slabs to drain in tofree.
2295 *
2296 * Returns the actual number of slabs released.
2297 */
2298static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2299 struct kmem_cache_node *n, int tofree)
1da177e4 2300{
ed11d9eb
CL
2301 struct list_head *p;
2302 int nr_freed;
8456a648 2303 struct page *page;
1da177e4 2304
ed11d9eb 2305 nr_freed = 0;
ce8eb6c4 2306 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2307
ce8eb6c4
CL
2308 spin_lock_irq(&n->list_lock);
2309 p = n->slabs_free.prev;
2310 if (p == &n->slabs_free) {
2311 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2312 goto out;
2313 }
1da177e4 2314
8456a648 2315 page = list_entry(p, struct page, lru);
8456a648 2316 list_del(&page->lru);
ed11d9eb
CL
2317 /*
2318 * Safe to drop the lock. The slab is no longer linked
2319 * to the cache.
2320 */
ce8eb6c4
CL
2321 n->free_objects -= cache->num;
2322 spin_unlock_irq(&n->list_lock);
8456a648 2323 slab_destroy(cache, page);
ed11d9eb 2324 nr_freed++;
1da177e4 2325 }
ed11d9eb
CL
2326out:
2327 return nr_freed;
1da177e4
LT
2328}
2329
d6e0b7fa 2330int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2331{
18bf8541
CL
2332 int ret = 0;
2333 int node;
ce8eb6c4 2334 struct kmem_cache_node *n;
e498be7d
CL
2335
2336 drain_cpu_caches(cachep);
2337
2338 check_irq_on();
18bf8541 2339 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2340 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2341
ce8eb6c4
CL
2342 ret += !list_empty(&n->slabs_full) ||
2343 !list_empty(&n->slabs_partial);
e498be7d
CL
2344 }
2345 return (ret ? 1 : 0);
2346}
2347
945cf2b6 2348int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2349{
2350 return __kmem_cache_shrink(cachep, false);
2351}
2352
2353void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2354{
12c3667f 2355 int i;
ce8eb6c4 2356 struct kmem_cache_node *n;
1da177e4 2357
c7ce4f60
TG
2358 cache_random_seq_destroy(cachep);
2359
bf0dea23 2360 free_percpu(cachep->cpu_cache);
1da177e4 2361
ce8eb6c4 2362 /* NUMA: free the node structures */
18bf8541
CL
2363 for_each_kmem_cache_node(cachep, i, n) {
2364 kfree(n->shared);
2365 free_alien_cache(n->alien);
2366 kfree(n);
2367 cachep->node[i] = NULL;
12c3667f 2368 }
1da177e4 2369}
1da177e4 2370
e5ac9c5a
RT
2371/*
2372 * Get the memory for a slab management obj.
5f0985bb
JZ
2373 *
2374 * For a slab cache when the slab descriptor is off-slab, the
2375 * slab descriptor can't come from the same cache which is being created,
2376 * Because if it is the case, that means we defer the creation of
2377 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2378 * And we eventually call down to __kmem_cache_create(), which
2379 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2380 * This is a "chicken-and-egg" problem.
2381 *
2382 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2383 * which are all initialized during kmem_cache_init().
e5ac9c5a 2384 */
7e007355 2385static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2386 struct page *page, int colour_off,
2387 gfp_t local_flags, int nodeid)
1da177e4 2388{
7e007355 2389 void *freelist;
0c3aa83e 2390 void *addr = page_address(page);
b28a02de 2391
2e6b3602
JK
2392 page->s_mem = addr + colour_off;
2393 page->active = 0;
2394
b03a017b
JK
2395 if (OBJFREELIST_SLAB(cachep))
2396 freelist = NULL;
2397 else if (OFF_SLAB(cachep)) {
1da177e4 2398 /* Slab management obj is off-slab. */
8456a648 2399 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2400 local_flags, nodeid);
8456a648 2401 if (!freelist)
1da177e4
LT
2402 return NULL;
2403 } else {
2e6b3602
JK
2404 /* We will use last bytes at the slab for freelist */
2405 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2406 cachep->freelist_size;
1da177e4 2407 }
2e6b3602 2408
8456a648 2409 return freelist;
1da177e4
LT
2410}
2411
7cc68973 2412static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2413{
a41adfaa 2414 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2415}
2416
2417static inline void set_free_obj(struct page *page,
7cc68973 2418 unsigned int idx, freelist_idx_t val)
e5c58dfd 2419{
a41adfaa 2420 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2421}
2422
10b2e9e8 2423static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2424{
10b2e9e8 2425#if DEBUG
1da177e4
LT
2426 int i;
2427
2428 for (i = 0; i < cachep->num; i++) {
8456a648 2429 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2430
1da177e4
LT
2431 if (cachep->flags & SLAB_STORE_USER)
2432 *dbg_userword(cachep, objp) = NULL;
2433
2434 if (cachep->flags & SLAB_RED_ZONE) {
2435 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2436 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2437 }
2438 /*
a737b3e2
AM
2439 * Constructors are not allowed to allocate memory from the same
2440 * cache which they are a constructor for. Otherwise, deadlock.
2441 * They must also be threaded.
1da177e4 2442 */
7ed2f9e6
AP
2443 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2444 kasan_unpoison_object_data(cachep,
2445 objp + obj_offset(cachep));
51cc5068 2446 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2447 kasan_poison_object_data(
2448 cachep, objp + obj_offset(cachep));
2449 }
1da177e4
LT
2450
2451 if (cachep->flags & SLAB_RED_ZONE) {
2452 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2453 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2454 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2455 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2456 }
40b44137
JK
2457 /* need to poison the objs? */
2458 if (cachep->flags & SLAB_POISON) {
2459 poison_obj(cachep, objp, POISON_FREE);
2460 slab_kernel_map(cachep, objp, 0, 0);
2461 }
10b2e9e8 2462 }
1da177e4 2463#endif
10b2e9e8
JK
2464}
2465
c7ce4f60
TG
2466#ifdef CONFIG_SLAB_FREELIST_RANDOM
2467/* Hold information during a freelist initialization */
2468union freelist_init_state {
2469 struct {
2470 unsigned int pos;
7c00fce9 2471 unsigned int *list;
c7ce4f60
TG
2472 unsigned int count;
2473 unsigned int rand;
2474 };
2475 struct rnd_state rnd_state;
2476};
2477
2478/*
2479 * Initialize the state based on the randomization methode available.
2480 * return true if the pre-computed list is available, false otherwize.
2481 */
2482static bool freelist_state_initialize(union freelist_init_state *state,
2483 struct kmem_cache *cachep,
2484 unsigned int count)
2485{
2486 bool ret;
2487 unsigned int rand;
2488
2489 /* Use best entropy available to define a random shift */
7c00fce9 2490 rand = get_random_int();
c7ce4f60
TG
2491
2492 /* Use a random state if the pre-computed list is not available */
2493 if (!cachep->random_seq) {
2494 prandom_seed_state(&state->rnd_state, rand);
2495 ret = false;
2496 } else {
2497 state->list = cachep->random_seq;
2498 state->count = count;
2499 state->pos = 0;
2500 state->rand = rand;
2501 ret = true;
2502 }
2503 return ret;
2504}
2505
2506/* Get the next entry on the list and randomize it using a random shift */
2507static freelist_idx_t next_random_slot(union freelist_init_state *state)
2508{
2509 return (state->list[state->pos++] + state->rand) % state->count;
2510}
2511
7c00fce9
TG
2512/* Swap two freelist entries */
2513static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2514{
2515 swap(((freelist_idx_t *)page->freelist)[a],
2516 ((freelist_idx_t *)page->freelist)[b]);
2517}
2518
c7ce4f60
TG
2519/*
2520 * Shuffle the freelist initialization state based on pre-computed lists.
2521 * return true if the list was successfully shuffled, false otherwise.
2522 */
2523static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2524{
7c00fce9 2525 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2526 union freelist_init_state state;
2527 bool precomputed;
2528
2529 if (count < 2)
2530 return false;
2531
2532 precomputed = freelist_state_initialize(&state, cachep, count);
2533
2534 /* Take a random entry as the objfreelist */
2535 if (OBJFREELIST_SLAB(cachep)) {
2536 if (!precomputed)
2537 objfreelist = count - 1;
2538 else
2539 objfreelist = next_random_slot(&state);
2540 page->freelist = index_to_obj(cachep, page, objfreelist) +
2541 obj_offset(cachep);
2542 count--;
2543 }
2544
2545 /*
2546 * On early boot, generate the list dynamically.
2547 * Later use a pre-computed list for speed.
2548 */
2549 if (!precomputed) {
7c00fce9
TG
2550 for (i = 0; i < count; i++)
2551 set_free_obj(page, i, i);
2552
2553 /* Fisher-Yates shuffle */
2554 for (i = count - 1; i > 0; i--) {
2555 rand = prandom_u32_state(&state.rnd_state);
2556 rand %= (i + 1);
2557 swap_free_obj(page, i, rand);
2558 }
c7ce4f60
TG
2559 } else {
2560 for (i = 0; i < count; i++)
2561 set_free_obj(page, i, next_random_slot(&state));
2562 }
2563
2564 if (OBJFREELIST_SLAB(cachep))
2565 set_free_obj(page, cachep->num - 1, objfreelist);
2566
2567 return true;
2568}
2569#else
2570static inline bool shuffle_freelist(struct kmem_cache *cachep,
2571 struct page *page)
2572{
2573 return false;
2574}
2575#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2576
10b2e9e8
JK
2577static void cache_init_objs(struct kmem_cache *cachep,
2578 struct page *page)
2579{
2580 int i;
7ed2f9e6 2581 void *objp;
c7ce4f60 2582 bool shuffled;
10b2e9e8
JK
2583
2584 cache_init_objs_debug(cachep, page);
2585
c7ce4f60
TG
2586 /* Try to randomize the freelist if enabled */
2587 shuffled = shuffle_freelist(cachep, page);
2588
2589 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2590 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2591 obj_offset(cachep);
2592 }
2593
10b2e9e8 2594 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2595 objp = index_to_obj(cachep, page, i);
2596 kasan_init_slab_obj(cachep, objp);
2597
10b2e9e8 2598 /* constructor could break poison info */
7ed2f9e6 2599 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2600 kasan_unpoison_object_data(cachep, objp);
2601 cachep->ctor(objp);
2602 kasan_poison_object_data(cachep, objp);
2603 }
10b2e9e8 2604
c7ce4f60
TG
2605 if (!shuffled)
2606 set_free_obj(page, i, i);
1da177e4 2607 }
1da177e4
LT
2608}
2609
260b61dd 2610static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2611{
b1cb0982 2612 void *objp;
78d382d7 2613
e5c58dfd 2614 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2615 page->active++;
78d382d7 2616
d31676df
JK
2617#if DEBUG
2618 if (cachep->flags & SLAB_STORE_USER)
2619 set_store_user_dirty(cachep);
2620#endif
2621
78d382d7
MD
2622 return objp;
2623}
2624
260b61dd
JK
2625static void slab_put_obj(struct kmem_cache *cachep,
2626 struct page *page, void *objp)
78d382d7 2627{
8456a648 2628 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2629#if DEBUG
16025177 2630 unsigned int i;
b1cb0982 2631
b1cb0982 2632 /* Verify double free bug */
8456a648 2633 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2634 if (get_free_obj(page, i) == objnr) {
1170532b 2635 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2636 cachep->name, objp);
b1cb0982
JK
2637 BUG();
2638 }
78d382d7
MD
2639 }
2640#endif
8456a648 2641 page->active--;
b03a017b
JK
2642 if (!page->freelist)
2643 page->freelist = objp + obj_offset(cachep);
2644
e5c58dfd 2645 set_free_obj(page, page->active, objnr);
78d382d7
MD
2646}
2647
4776874f
PE
2648/*
2649 * Map pages beginning at addr to the given cache and slab. This is required
2650 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2651 * virtual address for kfree, ksize, and slab debugging.
4776874f 2652 */
8456a648 2653static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2654 void *freelist)
1da177e4 2655{
a57a4988 2656 page->slab_cache = cache;
8456a648 2657 page->freelist = freelist;
1da177e4
LT
2658}
2659
2660/*
2661 * Grow (by 1) the number of slabs within a cache. This is called by
2662 * kmem_cache_alloc() when there are no active objs left in a cache.
2663 */
76b342bd
JK
2664static struct page *cache_grow_begin(struct kmem_cache *cachep,
2665 gfp_t flags, int nodeid)
1da177e4 2666{
7e007355 2667 void *freelist;
b28a02de
PE
2668 size_t offset;
2669 gfp_t local_flags;
511e3a05 2670 int page_node;
ce8eb6c4 2671 struct kmem_cache_node *n;
511e3a05 2672 struct page *page;
1da177e4 2673
a737b3e2
AM
2674 /*
2675 * Be lazy and only check for valid flags here, keeping it out of the
2676 * critical path in kmem_cache_alloc().
1da177e4 2677 */
c871ac4e 2678 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2679 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2680 flags &= ~GFP_SLAB_BUG_MASK;
2681 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2682 invalid_mask, &invalid_mask, flags, &flags);
2683 dump_stack();
c871ac4e 2684 }
6cb06229 2685 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2686
1da177e4 2687 check_irq_off();
d0164adc 2688 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2689 local_irq_enable();
2690
a737b3e2
AM
2691 /*
2692 * Get mem for the objs. Attempt to allocate a physical page from
2693 * 'nodeid'.
e498be7d 2694 */
511e3a05 2695 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2696 if (!page)
1da177e4
LT
2697 goto failed;
2698
511e3a05
JK
2699 page_node = page_to_nid(page);
2700 n = get_node(cachep, page_node);
03d1d43a
JK
2701
2702 /* Get colour for the slab, and cal the next value. */
2703 n->colour_next++;
2704 if (n->colour_next >= cachep->colour)
2705 n->colour_next = 0;
2706
2707 offset = n->colour_next;
2708 if (offset >= cachep->colour)
2709 offset = 0;
2710
2711 offset *= cachep->colour_off;
2712
1da177e4 2713 /* Get slab management. */
8456a648 2714 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2715 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2716 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2717 goto opps1;
2718
8456a648 2719 slab_map_pages(cachep, page, freelist);
1da177e4 2720
7ed2f9e6 2721 kasan_poison_slab(page);
8456a648 2722 cache_init_objs(cachep, page);
1da177e4 2723
d0164adc 2724 if (gfpflags_allow_blocking(local_flags))
1da177e4 2725 local_irq_disable();
1da177e4 2726
76b342bd
JK
2727 return page;
2728
a737b3e2 2729opps1:
0c3aa83e 2730 kmem_freepages(cachep, page);
a737b3e2 2731failed:
d0164adc 2732 if (gfpflags_allow_blocking(local_flags))
1da177e4 2733 local_irq_disable();
76b342bd
JK
2734 return NULL;
2735}
2736
2737static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2738{
2739 struct kmem_cache_node *n;
2740 void *list = NULL;
2741
2742 check_irq_off();
2743
2744 if (!page)
2745 return;
2746
2747 INIT_LIST_HEAD(&page->lru);
2748 n = get_node(cachep, page_to_nid(page));
2749
2750 spin_lock(&n->list_lock);
2751 if (!page->active)
2752 list_add_tail(&page->lru, &(n->slabs_free));
2753 else
2754 fixup_slab_list(cachep, n, page, &list);
2755 STATS_INC_GROWN(cachep);
2756 n->free_objects += cachep->num - page->active;
2757 spin_unlock(&n->list_lock);
2758
2759 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2760}
2761
2762#if DEBUG
2763
2764/*
2765 * Perform extra freeing checks:
2766 * - detect bad pointers.
2767 * - POISON/RED_ZONE checking
1da177e4
LT
2768 */
2769static void kfree_debugcheck(const void *objp)
2770{
1da177e4 2771 if (!virt_addr_valid(objp)) {
1170532b 2772 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2773 (unsigned long)objp);
2774 BUG();
1da177e4 2775 }
1da177e4
LT
2776}
2777
58ce1fd5
PE
2778static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2779{
b46b8f19 2780 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2781
2782 redzone1 = *dbg_redzone1(cache, obj);
2783 redzone2 = *dbg_redzone2(cache, obj);
2784
2785 /*
2786 * Redzone is ok.
2787 */
2788 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2789 return;
2790
2791 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2792 slab_error(cache, "double free detected");
2793 else
2794 slab_error(cache, "memory outside object was overwritten");
2795
1170532b
JP
2796 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2797 obj, redzone1, redzone2);
58ce1fd5
PE
2798}
2799
343e0d7a 2800static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2801 unsigned long caller)
1da177e4 2802{
1da177e4 2803 unsigned int objnr;
8456a648 2804 struct page *page;
1da177e4 2805
80cbd911
MW
2806 BUG_ON(virt_to_cache(objp) != cachep);
2807
3dafccf2 2808 objp -= obj_offset(cachep);
1da177e4 2809 kfree_debugcheck(objp);
b49af68f 2810 page = virt_to_head_page(objp);
1da177e4 2811
1da177e4 2812 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2813 verify_redzone_free(cachep, objp);
1da177e4
LT
2814 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2815 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2816 }
d31676df
JK
2817 if (cachep->flags & SLAB_STORE_USER) {
2818 set_store_user_dirty(cachep);
7c0cb9c6 2819 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2820 }
1da177e4 2821
8456a648 2822 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2823
2824 BUG_ON(objnr >= cachep->num);
8456a648 2825 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2826
1da177e4 2827 if (cachep->flags & SLAB_POISON) {
1da177e4 2828 poison_obj(cachep, objp, POISON_FREE);
40b44137 2829 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2830 }
2831 return objp;
2832}
2833
1da177e4
LT
2834#else
2835#define kfree_debugcheck(x) do { } while(0)
2836#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2837#endif
2838
b03a017b
JK
2839static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2840 void **list)
2841{
2842#if DEBUG
2843 void *next = *list;
2844 void *objp;
2845
2846 while (next) {
2847 objp = next - obj_offset(cachep);
2848 next = *(void **)next;
2849 poison_obj(cachep, objp, POISON_FREE);
2850 }
2851#endif
2852}
2853
d8410234 2854static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2855 struct kmem_cache_node *n, struct page *page,
2856 void **list)
d8410234
JK
2857{
2858 /* move slabp to correct slabp list: */
2859 list_del(&page->lru);
b03a017b 2860 if (page->active == cachep->num) {
d8410234 2861 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2862 if (OBJFREELIST_SLAB(cachep)) {
2863#if DEBUG
2864 /* Poisoning will be done without holding the lock */
2865 if (cachep->flags & SLAB_POISON) {
2866 void **objp = page->freelist;
2867
2868 *objp = *list;
2869 *list = objp;
2870 }
2871#endif
2872 page->freelist = NULL;
2873 }
2874 } else
d8410234
JK
2875 list_add(&page->lru, &n->slabs_partial);
2876}
2877
f68f8ddd
JK
2878/* Try to find non-pfmemalloc slab if needed */
2879static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2880 struct page *page, bool pfmemalloc)
2881{
2882 if (!page)
2883 return NULL;
2884
2885 if (pfmemalloc)
2886 return page;
2887
2888 if (!PageSlabPfmemalloc(page))
2889 return page;
2890
2891 /* No need to keep pfmemalloc slab if we have enough free objects */
2892 if (n->free_objects > n->free_limit) {
2893 ClearPageSlabPfmemalloc(page);
2894 return page;
2895 }
2896
2897 /* Move pfmemalloc slab to the end of list to speed up next search */
2898 list_del(&page->lru);
2899 if (!page->active)
2900 list_add_tail(&page->lru, &n->slabs_free);
2901 else
2902 list_add_tail(&page->lru, &n->slabs_partial);
2903
2904 list_for_each_entry(page, &n->slabs_partial, lru) {
2905 if (!PageSlabPfmemalloc(page))
2906 return page;
2907 }
2908
2909 list_for_each_entry(page, &n->slabs_free, lru) {
2910 if (!PageSlabPfmemalloc(page))
2911 return page;
2912 }
2913
2914 return NULL;
2915}
2916
2917static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2918{
2919 struct page *page;
2920
2921 page = list_first_entry_or_null(&n->slabs_partial,
2922 struct page, lru);
2923 if (!page) {
2924 n->free_touched = 1;
2925 page = list_first_entry_or_null(&n->slabs_free,
2926 struct page, lru);
2927 }
2928
f68f8ddd
JK
2929 if (sk_memalloc_socks())
2930 return get_valid_first_slab(n, page, pfmemalloc);
2931
7aa0d227
GT
2932 return page;
2933}
2934
f68f8ddd
JK
2935static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2936 struct kmem_cache_node *n, gfp_t flags)
2937{
2938 struct page *page;
2939 void *obj;
2940 void *list = NULL;
2941
2942 if (!gfp_pfmemalloc_allowed(flags))
2943 return NULL;
2944
2945 spin_lock(&n->list_lock);
2946 page = get_first_slab(n, true);
2947 if (!page) {
2948 spin_unlock(&n->list_lock);
2949 return NULL;
2950 }
2951
2952 obj = slab_get_obj(cachep, page);
2953 n->free_objects--;
2954
2955 fixup_slab_list(cachep, n, page, &list);
2956
2957 spin_unlock(&n->list_lock);
2958 fixup_objfreelist_debug(cachep, &list);
2959
2960 return obj;
2961}
2962
213b4695
JK
2963/*
2964 * Slab list should be fixed up by fixup_slab_list() for existing slab
2965 * or cache_grow_end() for new slab
2966 */
2967static __always_inline int alloc_block(struct kmem_cache *cachep,
2968 struct array_cache *ac, struct page *page, int batchcount)
2969{
2970 /*
2971 * There must be at least one object available for
2972 * allocation.
2973 */
2974 BUG_ON(page->active >= cachep->num);
2975
2976 while (page->active < cachep->num && batchcount--) {
2977 STATS_INC_ALLOCED(cachep);
2978 STATS_INC_ACTIVE(cachep);
2979 STATS_SET_HIGH(cachep);
2980
2981 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2982 }
2983
2984 return batchcount;
2985}
2986
f68f8ddd 2987static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2988{
2989 int batchcount;
ce8eb6c4 2990 struct kmem_cache_node *n;
801faf0d 2991 struct array_cache *ac, *shared;
1ca4cb24 2992 int node;
b03a017b 2993 void *list = NULL;
76b342bd 2994 struct page *page;
1ca4cb24 2995
1da177e4 2996 check_irq_off();
7d6e6d09 2997 node = numa_mem_id();
f68f8ddd 2998
9a2dba4b 2999 ac = cpu_cache_get(cachep);
1da177e4
LT
3000 batchcount = ac->batchcount;
3001 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3002 /*
3003 * If there was little recent activity on this cache, then
3004 * perform only a partial refill. Otherwise we could generate
3005 * refill bouncing.
1da177e4
LT
3006 */
3007 batchcount = BATCHREFILL_LIMIT;
3008 }
18bf8541 3009 n = get_node(cachep, node);
e498be7d 3010
ce8eb6c4 3011 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3012 shared = READ_ONCE(n->shared);
3013 if (!n->free_objects && (!shared || !shared->avail))
3014 goto direct_grow;
3015
ce8eb6c4 3016 spin_lock(&n->list_lock);
801faf0d 3017 shared = READ_ONCE(n->shared);
1da177e4 3018
3ded175a 3019 /* See if we can refill from the shared array */
801faf0d
JK
3020 if (shared && transfer_objects(ac, shared, batchcount)) {
3021 shared->touched = 1;
3ded175a 3022 goto alloc_done;
44b57f1c 3023 }
3ded175a 3024
1da177e4 3025 while (batchcount > 0) {
1da177e4 3026 /* Get slab alloc is to come from. */
f68f8ddd 3027 page = get_first_slab(n, false);
7aa0d227
GT
3028 if (!page)
3029 goto must_grow;
1da177e4 3030
1da177e4 3031 check_spinlock_acquired(cachep);
714b8171 3032
213b4695 3033 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3034 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3035 }
3036
a737b3e2 3037must_grow:
ce8eb6c4 3038 n->free_objects -= ac->avail;
a737b3e2 3039alloc_done:
ce8eb6c4 3040 spin_unlock(&n->list_lock);
b03a017b 3041 fixup_objfreelist_debug(cachep, &list);
1da177e4 3042
801faf0d 3043direct_grow:
1da177e4 3044 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3045 /* Check if we can use obj in pfmemalloc slab */
3046 if (sk_memalloc_socks()) {
3047 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3048
3049 if (obj)
3050 return obj;
3051 }
3052
76b342bd 3053 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3054
76b342bd
JK
3055 /*
3056 * cache_grow_begin() can reenable interrupts,
3057 * then ac could change.
3058 */
9a2dba4b 3059 ac = cpu_cache_get(cachep);
213b4695
JK
3060 if (!ac->avail && page)
3061 alloc_block(cachep, ac, page, batchcount);
3062 cache_grow_end(cachep, page);
072bb0aa 3063
213b4695 3064 if (!ac->avail)
1da177e4 3065 return NULL;
1da177e4
LT
3066 }
3067 ac->touched = 1;
072bb0aa 3068
f68f8ddd 3069 return ac->entry[--ac->avail];
1da177e4
LT
3070}
3071
a737b3e2
AM
3072static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3073 gfp_t flags)
1da177e4 3074{
d0164adc 3075 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3076}
3077
3078#if DEBUG
a737b3e2 3079static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3080 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3081{
b28a02de 3082 if (!objp)
1da177e4 3083 return objp;
b28a02de 3084 if (cachep->flags & SLAB_POISON) {
1da177e4 3085 check_poison_obj(cachep, objp);
40b44137 3086 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3087 poison_obj(cachep, objp, POISON_INUSE);
3088 }
3089 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3090 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3091
3092 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3093 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3094 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3095 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3096 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3097 objp, *dbg_redzone1(cachep, objp),
3098 *dbg_redzone2(cachep, objp));
1da177e4
LT
3099 }
3100 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3101 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3102 }
03787301 3103
3dafccf2 3104 objp += obj_offset(cachep);
4f104934 3105 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3106 cachep->ctor(objp);
7ea466f2
TH
3107 if (ARCH_SLAB_MINALIGN &&
3108 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3109 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3110 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3111 }
1da177e4
LT
3112 return objp;
3113}
3114#else
3115#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3116#endif
3117
343e0d7a 3118static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3119{
b28a02de 3120 void *objp;
1da177e4
LT
3121 struct array_cache *ac;
3122
5c382300 3123 check_irq_off();
8a8b6502 3124
9a2dba4b 3125 ac = cpu_cache_get(cachep);
1da177e4 3126 if (likely(ac->avail)) {
1da177e4 3127 ac->touched = 1;
f68f8ddd 3128 objp = ac->entry[--ac->avail];
072bb0aa 3129
f68f8ddd
JK
3130 STATS_INC_ALLOCHIT(cachep);
3131 goto out;
1da177e4 3132 }
072bb0aa
MG
3133
3134 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3135 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3136 /*
3137 * the 'ac' may be updated by cache_alloc_refill(),
3138 * and kmemleak_erase() requires its correct value.
3139 */
3140 ac = cpu_cache_get(cachep);
3141
3142out:
d5cff635
CM
3143 /*
3144 * To avoid a false negative, if an object that is in one of the
3145 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3146 * treat the array pointers as a reference to the object.
3147 */
f3d8b53a
O
3148 if (objp)
3149 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3150 return objp;
3151}
3152
e498be7d 3153#ifdef CONFIG_NUMA
c61afb18 3154/*
2ad654bc 3155 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3156 *
3157 * If we are in_interrupt, then process context, including cpusets and
3158 * mempolicy, may not apply and should not be used for allocation policy.
3159 */
3160static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3161{
3162 int nid_alloc, nid_here;
3163
765c4507 3164 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3165 return NULL;
7d6e6d09 3166 nid_alloc = nid_here = numa_mem_id();
c61afb18 3167 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3168 nid_alloc = cpuset_slab_spread_node();
c61afb18 3169 else if (current->mempolicy)
2a389610 3170 nid_alloc = mempolicy_slab_node();
c61afb18 3171 if (nid_alloc != nid_here)
8b98c169 3172 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3173 return NULL;
3174}
3175
765c4507
CL
3176/*
3177 * Fallback function if there was no memory available and no objects on a
3c517a61 3178 * certain node and fall back is permitted. First we scan all the
6a67368c 3179 * available node for available objects. If that fails then we
3c517a61
CL
3180 * perform an allocation without specifying a node. This allows the page
3181 * allocator to do its reclaim / fallback magic. We then insert the
3182 * slab into the proper nodelist and then allocate from it.
765c4507 3183 */
8c8cc2c1 3184static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3185{
8c8cc2c1 3186 struct zonelist *zonelist;
dd1a239f 3187 struct zoneref *z;
54a6eb5c
MG
3188 struct zone *zone;
3189 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3190 void *obj = NULL;
76b342bd 3191 struct page *page;
3c517a61 3192 int nid;
cc9a6c87 3193 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3194
3195 if (flags & __GFP_THISNODE)
3196 return NULL;
3197
cc9a6c87 3198retry_cpuset:
d26914d1 3199 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3200 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3201
3c517a61
CL
3202retry:
3203 /*
3204 * Look through allowed nodes for objects available
3205 * from existing per node queues.
3206 */
54a6eb5c
MG
3207 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3208 nid = zone_to_nid(zone);
aedb0eb1 3209
061d7074 3210 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3211 get_node(cache, nid) &&
3212 get_node(cache, nid)->free_objects) {
3c517a61 3213 obj = ____cache_alloc_node(cache,
4167e9b2 3214 gfp_exact_node(flags), nid);
481c5346
CL
3215 if (obj)
3216 break;
3217 }
3c517a61
CL
3218 }
3219
cfce6604 3220 if (!obj) {
3c517a61
CL
3221 /*
3222 * This allocation will be performed within the constraints
3223 * of the current cpuset / memory policy requirements.
3224 * We may trigger various forms of reclaim on the allowed
3225 * set and go into memory reserves if necessary.
3226 */
76b342bd
JK
3227 page = cache_grow_begin(cache, flags, numa_mem_id());
3228 cache_grow_end(cache, page);
3229 if (page) {
3230 nid = page_to_nid(page);
511e3a05
JK
3231 obj = ____cache_alloc_node(cache,
3232 gfp_exact_node(flags), nid);
0c3aa83e 3233
3c517a61 3234 /*
511e3a05
JK
3235 * Another processor may allocate the objects in
3236 * the slab since we are not holding any locks.
3c517a61 3237 */
511e3a05
JK
3238 if (!obj)
3239 goto retry;
3c517a61 3240 }
aedb0eb1 3241 }
cc9a6c87 3242
d26914d1 3243 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3244 goto retry_cpuset;
765c4507
CL
3245 return obj;
3246}
3247
e498be7d
CL
3248/*
3249 * A interface to enable slab creation on nodeid
1da177e4 3250 */
8b98c169 3251static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3252 int nodeid)
e498be7d 3253{
8456a648 3254 struct page *page;
ce8eb6c4 3255 struct kmem_cache_node *n;
213b4695 3256 void *obj = NULL;
b03a017b 3257 void *list = NULL;
b28a02de 3258
7c3fbbdd 3259 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3260 n = get_node(cachep, nodeid);
ce8eb6c4 3261 BUG_ON(!n);
b28a02de 3262
ca3b9b91 3263 check_irq_off();
ce8eb6c4 3264 spin_lock(&n->list_lock);
f68f8ddd 3265 page = get_first_slab(n, false);
7aa0d227
GT
3266 if (!page)
3267 goto must_grow;
b28a02de 3268
b28a02de 3269 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3270
3271 STATS_INC_NODEALLOCS(cachep);
3272 STATS_INC_ACTIVE(cachep);
3273 STATS_SET_HIGH(cachep);
3274
8456a648 3275 BUG_ON(page->active == cachep->num);
b28a02de 3276
260b61dd 3277 obj = slab_get_obj(cachep, page);
ce8eb6c4 3278 n->free_objects--;
b28a02de 3279
b03a017b 3280 fixup_slab_list(cachep, n, page, &list);
e498be7d 3281
ce8eb6c4 3282 spin_unlock(&n->list_lock);
b03a017b 3283 fixup_objfreelist_debug(cachep, &list);
213b4695 3284 return obj;
e498be7d 3285
a737b3e2 3286must_grow:
ce8eb6c4 3287 spin_unlock(&n->list_lock);
76b342bd 3288 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3289 if (page) {
3290 /* This slab isn't counted yet so don't update free_objects */
3291 obj = slab_get_obj(cachep, page);
3292 }
76b342bd 3293 cache_grow_end(cachep, page);
1da177e4 3294
213b4695 3295 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3296}
8c8cc2c1 3297
8c8cc2c1 3298static __always_inline void *
48356303 3299slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3300 unsigned long caller)
8c8cc2c1
PE
3301{
3302 unsigned long save_flags;
3303 void *ptr;
7d6e6d09 3304 int slab_node = numa_mem_id();
8c8cc2c1 3305
dcce284a 3306 flags &= gfp_allowed_mask;
011eceaf
JDB
3307 cachep = slab_pre_alloc_hook(cachep, flags);
3308 if (unlikely(!cachep))
824ebef1
AM
3309 return NULL;
3310
8c8cc2c1
PE
3311 cache_alloc_debugcheck_before(cachep, flags);
3312 local_irq_save(save_flags);
3313
eacbbae3 3314 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3315 nodeid = slab_node;
8c8cc2c1 3316
18bf8541 3317 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3318 /* Node not bootstrapped yet */
3319 ptr = fallback_alloc(cachep, flags);
3320 goto out;
3321 }
3322
7d6e6d09 3323 if (nodeid == slab_node) {
8c8cc2c1
PE
3324 /*
3325 * Use the locally cached objects if possible.
3326 * However ____cache_alloc does not allow fallback
3327 * to other nodes. It may fail while we still have
3328 * objects on other nodes available.
3329 */
3330 ptr = ____cache_alloc(cachep, flags);
3331 if (ptr)
3332 goto out;
3333 }
3334 /* ___cache_alloc_node can fall back to other nodes */
3335 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3336 out:
3337 local_irq_restore(save_flags);
3338 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3339
d5e3ed66
JDB
3340 if (unlikely(flags & __GFP_ZERO) && ptr)
3341 memset(ptr, 0, cachep->object_size);
d07dbea4 3342
d5e3ed66 3343 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3344 return ptr;
3345}
3346
3347static __always_inline void *
3348__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3349{
3350 void *objp;
3351
2ad654bc 3352 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3353 objp = alternate_node_alloc(cache, flags);
3354 if (objp)
3355 goto out;
3356 }
3357 objp = ____cache_alloc(cache, flags);
3358
3359 /*
3360 * We may just have run out of memory on the local node.
3361 * ____cache_alloc_node() knows how to locate memory on other nodes
3362 */
7d6e6d09
LS
3363 if (!objp)
3364 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3365
3366 out:
3367 return objp;
3368}
3369#else
3370
3371static __always_inline void *
3372__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3373{
3374 return ____cache_alloc(cachep, flags);
3375}
3376
3377#endif /* CONFIG_NUMA */
3378
3379static __always_inline void *
48356303 3380slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3381{
3382 unsigned long save_flags;
3383 void *objp;
3384
dcce284a 3385 flags &= gfp_allowed_mask;
011eceaf
JDB
3386 cachep = slab_pre_alloc_hook(cachep, flags);
3387 if (unlikely(!cachep))
824ebef1
AM
3388 return NULL;
3389
8c8cc2c1
PE
3390 cache_alloc_debugcheck_before(cachep, flags);
3391 local_irq_save(save_flags);
3392 objp = __do_cache_alloc(cachep, flags);
3393 local_irq_restore(save_flags);
3394 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3395 prefetchw(objp);
3396
d5e3ed66
JDB
3397 if (unlikely(flags & __GFP_ZERO) && objp)
3398 memset(objp, 0, cachep->object_size);
d07dbea4 3399
d5e3ed66 3400 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3401 return objp;
3402}
e498be7d
CL
3403
3404/*
5f0985bb 3405 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3406 * @list: List of detached free slabs should be freed by caller
e498be7d 3407 */
97654dfa
JK
3408static void free_block(struct kmem_cache *cachep, void **objpp,
3409 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3410{
3411 int i;
25c063fb 3412 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3413 struct page *page;
3414
3415 n->free_objects += nr_objects;
1da177e4
LT
3416
3417 for (i = 0; i < nr_objects; i++) {
072bb0aa 3418 void *objp;
8456a648 3419 struct page *page;
1da177e4 3420
072bb0aa
MG
3421 objp = objpp[i];
3422
8456a648 3423 page = virt_to_head_page(objp);
8456a648 3424 list_del(&page->lru);
ff69416e 3425 check_spinlock_acquired_node(cachep, node);
260b61dd 3426 slab_put_obj(cachep, page, objp);
1da177e4 3427 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3428
3429 /* fixup slab chains */
6052b788
JK
3430 if (page->active == 0)
3431 list_add(&page->lru, &n->slabs_free);
3432 else {
1da177e4
LT
3433 /* Unconditionally move a slab to the end of the
3434 * partial list on free - maximum time for the
3435 * other objects to be freed, too.
3436 */
8456a648 3437 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3438 }
3439 }
6052b788
JK
3440
3441 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3442 n->free_objects -= cachep->num;
3443
3444 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3445 list_move(&page->lru, list);
6052b788 3446 }
1da177e4
LT
3447}
3448
343e0d7a 3449static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3450{
3451 int batchcount;
ce8eb6c4 3452 struct kmem_cache_node *n;
7d6e6d09 3453 int node = numa_mem_id();
97654dfa 3454 LIST_HEAD(list);
1da177e4
LT
3455
3456 batchcount = ac->batchcount;
260b61dd 3457
1da177e4 3458 check_irq_off();
18bf8541 3459 n = get_node(cachep, node);
ce8eb6c4
CL
3460 spin_lock(&n->list_lock);
3461 if (n->shared) {
3462 struct array_cache *shared_array = n->shared;
b28a02de 3463 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3464 if (max) {
3465 if (batchcount > max)
3466 batchcount = max;
e498be7d 3467 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3468 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3469 shared_array->avail += batchcount;
3470 goto free_done;
3471 }
3472 }
3473
97654dfa 3474 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3475free_done:
1da177e4
LT
3476#if STATS
3477 {
3478 int i = 0;
73c0219d 3479 struct page *page;
1da177e4 3480
73c0219d 3481 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3482 BUG_ON(page->active);
1da177e4
LT
3483
3484 i++;
1da177e4
LT
3485 }
3486 STATS_SET_FREEABLE(cachep, i);
3487 }
3488#endif
ce8eb6c4 3489 spin_unlock(&n->list_lock);
97654dfa 3490 slabs_destroy(cachep, &list);
1da177e4 3491 ac->avail -= batchcount;
a737b3e2 3492 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3493}
3494
3495/*
a737b3e2
AM
3496 * Release an obj back to its cache. If the obj has a constructed state, it must
3497 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3498 */
a947eb95 3499static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3500 unsigned long caller)
1da177e4 3501{
55834c59
AP
3502 /* Put the object into the quarantine, don't touch it for now. */
3503 if (kasan_slab_free(cachep, objp))
3504 return;
3505
3506 ___cache_free(cachep, objp, caller);
3507}
1da177e4 3508
55834c59
AP
3509void ___cache_free(struct kmem_cache *cachep, void *objp,
3510 unsigned long caller)
3511{
3512 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3513
1da177e4 3514 check_irq_off();
d5cff635 3515 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3516 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3517
8c138bc0 3518 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3519
1807a1aa
SS
3520 /*
3521 * Skip calling cache_free_alien() when the platform is not numa.
3522 * This will avoid cache misses that happen while accessing slabp (which
3523 * is per page memory reference) to get nodeid. Instead use a global
3524 * variable to skip the call, which is mostly likely to be present in
3525 * the cache.
3526 */
b6e68bc1 3527 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3528 return;
3529
3d880194 3530 if (ac->avail < ac->limit) {
1da177e4 3531 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3532 } else {
3533 STATS_INC_FREEMISS(cachep);
3534 cache_flusharray(cachep, ac);
1da177e4 3535 }
42c8c99c 3536
f68f8ddd
JK
3537 if (sk_memalloc_socks()) {
3538 struct page *page = virt_to_head_page(objp);
3539
3540 if (unlikely(PageSlabPfmemalloc(page))) {
3541 cache_free_pfmemalloc(cachep, page, objp);
3542 return;
3543 }
3544 }
3545
3546 ac->entry[ac->avail++] = objp;
1da177e4
LT
3547}
3548
3549/**
3550 * kmem_cache_alloc - Allocate an object
3551 * @cachep: The cache to allocate from.
3552 * @flags: See kmalloc().
3553 *
3554 * Allocate an object from this cache. The flags are only relevant
3555 * if the cache has no available objects.
3556 */
343e0d7a 3557void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3558{
48356303 3559 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3560
505f5dcb 3561 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3562 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3563 cachep->object_size, cachep->size, flags);
36555751
EGM
3564
3565 return ret;
1da177e4
LT
3566}
3567EXPORT_SYMBOL(kmem_cache_alloc);
3568
7b0501dd
JDB
3569static __always_inline void
3570cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3571 size_t size, void **p, unsigned long caller)
3572{
3573 size_t i;
3574
3575 for (i = 0; i < size; i++)
3576 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3577}
3578
865762a8 3579int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3580 void **p)
484748f0 3581{
2a777eac
JDB
3582 size_t i;
3583
3584 s = slab_pre_alloc_hook(s, flags);
3585 if (!s)
3586 return 0;
3587
3588 cache_alloc_debugcheck_before(s, flags);
3589
3590 local_irq_disable();
3591 for (i = 0; i < size; i++) {
3592 void *objp = __do_cache_alloc(s, flags);
3593
2a777eac
JDB
3594 if (unlikely(!objp))
3595 goto error;
3596 p[i] = objp;
3597 }
3598 local_irq_enable();
3599
7b0501dd
JDB
3600 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3601
2a777eac
JDB
3602 /* Clear memory outside IRQ disabled section */
3603 if (unlikely(flags & __GFP_ZERO))
3604 for (i = 0; i < size; i++)
3605 memset(p[i], 0, s->object_size);
3606
3607 slab_post_alloc_hook(s, flags, size, p);
3608 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3609 return size;
3610error:
3611 local_irq_enable();
7b0501dd 3612 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3613 slab_post_alloc_hook(s, flags, i, p);
3614 __kmem_cache_free_bulk(s, i, p);
3615 return 0;
484748f0
CL
3616}
3617EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3618
0f24f128 3619#ifdef CONFIG_TRACING
85beb586 3620void *
4052147c 3621kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3622{
85beb586
SR
3623 void *ret;
3624
48356303 3625 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3626
505f5dcb 3627 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3628 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3629 size, cachep->size, flags);
85beb586 3630 return ret;
36555751 3631}
85beb586 3632EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3633#endif
3634
1da177e4 3635#ifdef CONFIG_NUMA
d0d04b78
ZL
3636/**
3637 * kmem_cache_alloc_node - Allocate an object on the specified node
3638 * @cachep: The cache to allocate from.
3639 * @flags: See kmalloc().
3640 * @nodeid: node number of the target node.
3641 *
3642 * Identical to kmem_cache_alloc but it will allocate memory on the given
3643 * node, which can improve the performance for cpu bound structures.
3644 *
3645 * Fallback to other node is possible if __GFP_THISNODE is not set.
3646 */
8b98c169
CH
3647void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648{
48356303 3649 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3650
505f5dcb 3651 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3652 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3653 cachep->object_size, cachep->size,
ca2b84cb 3654 flags, nodeid);
36555751
EGM
3655
3656 return ret;
8b98c169 3657}
1da177e4
LT
3658EXPORT_SYMBOL(kmem_cache_alloc_node);
3659
0f24f128 3660#ifdef CONFIG_TRACING
4052147c 3661void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3662 gfp_t flags,
4052147c
EG
3663 int nodeid,
3664 size_t size)
36555751 3665{
85beb586
SR
3666 void *ret;
3667
592f4145 3668 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3669
3670 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3671 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3672 size, cachep->size,
85beb586
SR
3673 flags, nodeid);
3674 return ret;
36555751 3675}
85beb586 3676EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3677#endif
3678
8b98c169 3679static __always_inline void *
7c0cb9c6 3680__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3681{
343e0d7a 3682 struct kmem_cache *cachep;
7ed2f9e6 3683 void *ret;
97e2bde4 3684
2c59dd65 3685 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3686 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 return cachep;
7ed2f9e6 3688 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3689 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3690
3691 return ret;
97e2bde4 3692}
8b98c169 3693
8b98c169
CH
3694void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695{
7c0cb9c6 3696 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3697}
dbe5e69d 3698EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3699
3700void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3701 int node, unsigned long caller)
8b98c169 3702{
7c0cb9c6 3703 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3704}
3705EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3706#endif /* CONFIG_NUMA */
1da177e4
LT
3707
3708/**
800590f5 3709 * __do_kmalloc - allocate memory
1da177e4 3710 * @size: how many bytes of memory are required.
800590f5 3711 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3712 * @caller: function caller for debug tracking of the caller
1da177e4 3713 */
7fd6b141 3714static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3715 unsigned long caller)
1da177e4 3716{
343e0d7a 3717 struct kmem_cache *cachep;
36555751 3718 void *ret;
1da177e4 3719
2c59dd65 3720 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3721 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3722 return cachep;
48356303 3723 ret = slab_alloc(cachep, flags, caller);
36555751 3724
505f5dcb 3725 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3726 trace_kmalloc(caller, ret,
3b0efdfa 3727 size, cachep->size, flags);
36555751
EGM
3728
3729 return ret;
7fd6b141
PE
3730}
3731
7fd6b141
PE
3732void *__kmalloc(size_t size, gfp_t flags)
3733{
7c0cb9c6 3734 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3735}
3736EXPORT_SYMBOL(__kmalloc);
3737
ce71e27c 3738void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3739{
7c0cb9c6 3740 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3741}
3742EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3743
1da177e4
LT
3744/**
3745 * kmem_cache_free - Deallocate an object
3746 * @cachep: The cache the allocation was from.
3747 * @objp: The previously allocated object.
3748 *
3749 * Free an object which was previously allocated from this
3750 * cache.
3751 */
343e0d7a 3752void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3753{
3754 unsigned long flags;
b9ce5ef4
GC
3755 cachep = cache_from_obj(cachep, objp);
3756 if (!cachep)
3757 return;
1da177e4
LT
3758
3759 local_irq_save(flags);
d97d476b 3760 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3762 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3763 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3764 local_irq_restore(flags);
36555751 3765
ca2b84cb 3766 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3767}
3768EXPORT_SYMBOL(kmem_cache_free);
3769
e6cdb58d
JDB
3770void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3771{
3772 struct kmem_cache *s;
3773 size_t i;
3774
3775 local_irq_disable();
3776 for (i = 0; i < size; i++) {
3777 void *objp = p[i];
3778
ca257195
JDB
3779 if (!orig_s) /* called via kfree_bulk */
3780 s = virt_to_cache(objp);
3781 else
3782 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3783
3784 debug_check_no_locks_freed(objp, s->object_size);
3785 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3786 debug_check_no_obj_freed(objp, s->object_size);
3787
3788 __cache_free(s, objp, _RET_IP_);
3789 }
3790 local_irq_enable();
3791
3792 /* FIXME: add tracing */
3793}
3794EXPORT_SYMBOL(kmem_cache_free_bulk);
3795
1da177e4
LT
3796/**
3797 * kfree - free previously allocated memory
3798 * @objp: pointer returned by kmalloc.
3799 *
80e93eff
PE
3800 * If @objp is NULL, no operation is performed.
3801 *
1da177e4
LT
3802 * Don't free memory not originally allocated by kmalloc()
3803 * or you will run into trouble.
3804 */
3805void kfree(const void *objp)
3806{
343e0d7a 3807 struct kmem_cache *c;
1da177e4
LT
3808 unsigned long flags;
3809
2121db74
PE
3810 trace_kfree(_RET_IP_, objp);
3811
6cb8f913 3812 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3813 return;
3814 local_irq_save(flags);
3815 kfree_debugcheck(objp);
6ed5eb22 3816 c = virt_to_cache(objp);
8c138bc0
CL
3817 debug_check_no_locks_freed(objp, c->object_size);
3818
3819 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3820 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3821 local_irq_restore(flags);
3822}
3823EXPORT_SYMBOL(kfree);
3824
e498be7d 3825/*
ce8eb6c4 3826 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3827 */
c3d332b6 3828static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3829{
c3d332b6 3830 int ret;
e498be7d 3831 int node;
ce8eb6c4 3832 struct kmem_cache_node *n;
e498be7d 3833
9c09a95c 3834 for_each_online_node(node) {
c3d332b6
JK
3835 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3836 if (ret)
e498be7d
CL
3837 goto fail;
3838
e498be7d 3839 }
c3d332b6 3840
cafeb02e 3841 return 0;
0718dc2a 3842
a737b3e2 3843fail:
3b0efdfa 3844 if (!cachep->list.next) {
0718dc2a
CL
3845 /* Cache is not active yet. Roll back what we did */
3846 node--;
3847 while (node >= 0) {
18bf8541
CL
3848 n = get_node(cachep, node);
3849 if (n) {
ce8eb6c4
CL
3850 kfree(n->shared);
3851 free_alien_cache(n->alien);
3852 kfree(n);
6a67368c 3853 cachep->node[node] = NULL;
0718dc2a
CL
3854 }
3855 node--;
3856 }
3857 }
cafeb02e 3858 return -ENOMEM;
e498be7d
CL
3859}
3860
18004c5d 3861/* Always called with the slab_mutex held */
943a451a 3862static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3863 int batchcount, int shared, gfp_t gfp)
1da177e4 3864{
bf0dea23
JK
3865 struct array_cache __percpu *cpu_cache, *prev;
3866 int cpu;
1da177e4 3867
bf0dea23
JK
3868 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3869 if (!cpu_cache)
d2e7b7d0
SS
3870 return -ENOMEM;
3871
bf0dea23
JK
3872 prev = cachep->cpu_cache;
3873 cachep->cpu_cache = cpu_cache;
3874 kick_all_cpus_sync();
e498be7d 3875
1da177e4 3876 check_irq_on();
1da177e4
LT
3877 cachep->batchcount = batchcount;
3878 cachep->limit = limit;
e498be7d 3879 cachep->shared = shared;
1da177e4 3880
bf0dea23 3881 if (!prev)
c3d332b6 3882 goto setup_node;
bf0dea23
JK
3883
3884 for_each_online_cpu(cpu) {
97654dfa 3885 LIST_HEAD(list);
18bf8541
CL
3886 int node;
3887 struct kmem_cache_node *n;
bf0dea23 3888 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3889
bf0dea23 3890 node = cpu_to_mem(cpu);
18bf8541
CL
3891 n = get_node(cachep, node);
3892 spin_lock_irq(&n->list_lock);
bf0dea23 3893 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3894 spin_unlock_irq(&n->list_lock);
97654dfa 3895 slabs_destroy(cachep, &list);
1da177e4 3896 }
bf0dea23
JK
3897 free_percpu(prev);
3898
c3d332b6
JK
3899setup_node:
3900 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3901}
3902
943a451a
GC
3903static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3904 int batchcount, int shared, gfp_t gfp)
3905{
3906 int ret;
426589f5 3907 struct kmem_cache *c;
943a451a
GC
3908
3909 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3910
3911 if (slab_state < FULL)
3912 return ret;
3913
3914 if ((ret < 0) || !is_root_cache(cachep))
3915 return ret;
3916
426589f5
VD
3917 lockdep_assert_held(&slab_mutex);
3918 for_each_memcg_cache(c, cachep) {
3919 /* return value determined by the root cache only */
3920 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3921 }
3922
3923 return ret;
3924}
3925
18004c5d 3926/* Called with slab_mutex held always */
83b519e8 3927static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3928{
3929 int err;
943a451a
GC
3930 int limit = 0;
3931 int shared = 0;
3932 int batchcount = 0;
3933
7c00fce9 3934 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3935 if (err)
3936 goto end;
3937
943a451a
GC
3938 if (!is_root_cache(cachep)) {
3939 struct kmem_cache *root = memcg_root_cache(cachep);
3940 limit = root->limit;
3941 shared = root->shared;
3942 batchcount = root->batchcount;
3943 }
1da177e4 3944
943a451a
GC
3945 if (limit && shared && batchcount)
3946 goto skip_setup;
a737b3e2
AM
3947 /*
3948 * The head array serves three purposes:
1da177e4
LT
3949 * - create a LIFO ordering, i.e. return objects that are cache-warm
3950 * - reduce the number of spinlock operations.
a737b3e2 3951 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3952 * bufctl chains: array operations are cheaper.
3953 * The numbers are guessed, we should auto-tune as described by
3954 * Bonwick.
3955 */
3b0efdfa 3956 if (cachep->size > 131072)
1da177e4 3957 limit = 1;
3b0efdfa 3958 else if (cachep->size > PAGE_SIZE)
1da177e4 3959 limit = 8;
3b0efdfa 3960 else if (cachep->size > 1024)
1da177e4 3961 limit = 24;
3b0efdfa 3962 else if (cachep->size > 256)
1da177e4
LT
3963 limit = 54;
3964 else
3965 limit = 120;
3966
a737b3e2
AM
3967 /*
3968 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3969 * allocation behaviour: Most allocs on one cpu, most free operations
3970 * on another cpu. For these cases, an efficient object passing between
3971 * cpus is necessary. This is provided by a shared array. The array
3972 * replaces Bonwick's magazine layer.
3973 * On uniprocessor, it's functionally equivalent (but less efficient)
3974 * to a larger limit. Thus disabled by default.
3975 */
3976 shared = 0;
3b0efdfa 3977 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3978 shared = 8;
1da177e4
LT
3979
3980#if DEBUG
a737b3e2
AM
3981 /*
3982 * With debugging enabled, large batchcount lead to excessively long
3983 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3984 */
3985 if (limit > 32)
3986 limit = 32;
3987#endif
943a451a
GC
3988 batchcount = (limit + 1) / 2;
3989skip_setup:
3990 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3991end:
1da177e4 3992 if (err)
1170532b 3993 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3994 cachep->name, -err);
2ed3a4ef 3995 return err;
1da177e4
LT
3996}
3997
1b55253a 3998/*
ce8eb6c4
CL
3999 * Drain an array if it contains any elements taking the node lock only if
4000 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4001 * if drain_array() is used on the shared array.
1b55253a 4002 */
ce8eb6c4 4003static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4004 struct array_cache *ac, int node)
1da177e4 4005{
97654dfa 4006 LIST_HEAD(list);
18726ca8
JK
4007
4008 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4009 check_mutex_acquired();
1da177e4 4010
1b55253a
CL
4011 if (!ac || !ac->avail)
4012 return;
18726ca8
JK
4013
4014 if (ac->touched) {
1da177e4 4015 ac->touched = 0;
18726ca8 4016 return;
1da177e4 4017 }
18726ca8
JK
4018
4019 spin_lock_irq(&n->list_lock);
4020 drain_array_locked(cachep, ac, node, false, &list);
4021 spin_unlock_irq(&n->list_lock);
4022
4023 slabs_destroy(cachep, &list);
1da177e4
LT
4024}
4025
4026/**
4027 * cache_reap - Reclaim memory from caches.
05fb6bf0 4028 * @w: work descriptor
1da177e4
LT
4029 *
4030 * Called from workqueue/eventd every few seconds.
4031 * Purpose:
4032 * - clear the per-cpu caches for this CPU.
4033 * - return freeable pages to the main free memory pool.
4034 *
a737b3e2
AM
4035 * If we cannot acquire the cache chain mutex then just give up - we'll try
4036 * again on the next iteration.
1da177e4 4037 */
7c5cae36 4038static void cache_reap(struct work_struct *w)
1da177e4 4039{
7a7c381d 4040 struct kmem_cache *searchp;
ce8eb6c4 4041 struct kmem_cache_node *n;
7d6e6d09 4042 int node = numa_mem_id();
bf6aede7 4043 struct delayed_work *work = to_delayed_work(w);
1da177e4 4044
18004c5d 4045 if (!mutex_trylock(&slab_mutex))
1da177e4 4046 /* Give up. Setup the next iteration. */
7c5cae36 4047 goto out;
1da177e4 4048
18004c5d 4049 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4050 check_irq_on();
4051
35386e3b 4052 /*
ce8eb6c4 4053 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4054 * have established with reasonable certainty that
4055 * we can do some work if the lock was obtained.
4056 */
18bf8541 4057 n = get_node(searchp, node);
35386e3b 4058
ce8eb6c4 4059 reap_alien(searchp, n);
1da177e4 4060
18726ca8 4061 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4062
35386e3b
CL
4063 /*
4064 * These are racy checks but it does not matter
4065 * if we skip one check or scan twice.
4066 */
ce8eb6c4 4067 if (time_after(n->next_reap, jiffies))
35386e3b 4068 goto next;
1da177e4 4069
5f0985bb 4070 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4071
18726ca8 4072 drain_array(searchp, n, n->shared, node);
1da177e4 4073
ce8eb6c4
CL
4074 if (n->free_touched)
4075 n->free_touched = 0;
ed11d9eb
CL
4076 else {
4077 int freed;
1da177e4 4078
ce8eb6c4 4079 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4080 5 * searchp->num - 1) / (5 * searchp->num));
4081 STATS_ADD_REAPED(searchp, freed);
4082 }
35386e3b 4083next:
1da177e4
LT
4084 cond_resched();
4085 }
4086 check_irq_on();
18004c5d 4087 mutex_unlock(&slab_mutex);
8fce4d8e 4088 next_reap_node();
7c5cae36 4089out:
a737b3e2 4090 /* Set up the next iteration */
5f0985bb 4091 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4092}
4093
158a9624 4094#ifdef CONFIG_SLABINFO
0d7561c6 4095void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4096{
8456a648 4097 struct page *page;
b28a02de
PE
4098 unsigned long active_objs;
4099 unsigned long num_objs;
4100 unsigned long active_slabs = 0;
4101 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4102 const char *name;
1da177e4 4103 char *error = NULL;
e498be7d 4104 int node;
ce8eb6c4 4105 struct kmem_cache_node *n;
1da177e4 4106
1da177e4
LT
4107 active_objs = 0;
4108 num_slabs = 0;
18bf8541 4109 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 4110
ca3b9b91 4111 check_irq_on();
ce8eb6c4 4112 spin_lock_irq(&n->list_lock);
e498be7d 4113
8456a648
JK
4114 list_for_each_entry(page, &n->slabs_full, lru) {
4115 if (page->active != cachep->num && !error)
e498be7d
CL
4116 error = "slabs_full accounting error";
4117 active_objs += cachep->num;
4118 active_slabs++;
4119 }
8456a648
JK
4120 list_for_each_entry(page, &n->slabs_partial, lru) {
4121 if (page->active == cachep->num && !error)
106a74e1 4122 error = "slabs_partial accounting error";
8456a648 4123 if (!page->active && !error)
106a74e1 4124 error = "slabs_partial accounting error";
8456a648 4125 active_objs += page->active;
e498be7d
CL
4126 active_slabs++;
4127 }
8456a648
JK
4128 list_for_each_entry(page, &n->slabs_free, lru) {
4129 if (page->active && !error)
106a74e1 4130 error = "slabs_free accounting error";
e498be7d
CL
4131 num_slabs++;
4132 }
ce8eb6c4
CL
4133 free_objects += n->free_objects;
4134 if (n->shared)
4135 shared_avail += n->shared->avail;
e498be7d 4136
ce8eb6c4 4137 spin_unlock_irq(&n->list_lock);
1da177e4 4138 }
b28a02de
PE
4139 num_slabs += active_slabs;
4140 num_objs = num_slabs * cachep->num;
e498be7d 4141 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4142 error = "free_objects accounting error";
4143
b28a02de 4144 name = cachep->name;
1da177e4 4145 if (error)
1170532b 4146 pr_err("slab: cache %s error: %s\n", name, error);
1da177e4 4147
0d7561c6
GC
4148 sinfo->active_objs = active_objs;
4149 sinfo->num_objs = num_objs;
4150 sinfo->active_slabs = active_slabs;
4151 sinfo->num_slabs = num_slabs;
4152 sinfo->shared_avail = shared_avail;
4153 sinfo->limit = cachep->limit;
4154 sinfo->batchcount = cachep->batchcount;
4155 sinfo->shared = cachep->shared;
4156 sinfo->objects_per_slab = cachep->num;
4157 sinfo->cache_order = cachep->gfporder;
4158}
4159
4160void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4161{
1da177e4 4162#if STATS
ce8eb6c4 4163 { /* node stats */
1da177e4
LT
4164 unsigned long high = cachep->high_mark;
4165 unsigned long allocs = cachep->num_allocations;
4166 unsigned long grown = cachep->grown;
4167 unsigned long reaped = cachep->reaped;
4168 unsigned long errors = cachep->errors;
4169 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4170 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4171 unsigned long node_frees = cachep->node_frees;
fb7faf33 4172 unsigned long overflows = cachep->node_overflow;
1da177e4 4173
756a025f 4174 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4175 allocs, high, grown,
4176 reaped, errors, max_freeable, node_allocs,
4177 node_frees, overflows);
1da177e4
LT
4178 }
4179 /* cpu stats */
4180 {
4181 unsigned long allochit = atomic_read(&cachep->allochit);
4182 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4183 unsigned long freehit = atomic_read(&cachep->freehit);
4184 unsigned long freemiss = atomic_read(&cachep->freemiss);
4185
4186 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4187 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4188 }
4189#endif
1da177e4
LT
4190}
4191
1da177e4
LT
4192#define MAX_SLABINFO_WRITE 128
4193/**
4194 * slabinfo_write - Tuning for the slab allocator
4195 * @file: unused
4196 * @buffer: user buffer
4197 * @count: data length
4198 * @ppos: unused
4199 */
b7454ad3 4200ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4201 size_t count, loff_t *ppos)
1da177e4 4202{
b28a02de 4203 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4204 int limit, batchcount, shared, res;
7a7c381d 4205 struct kmem_cache *cachep;
b28a02de 4206
1da177e4
LT
4207 if (count > MAX_SLABINFO_WRITE)
4208 return -EINVAL;
4209 if (copy_from_user(&kbuf, buffer, count))
4210 return -EFAULT;
b28a02de 4211 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4212
4213 tmp = strchr(kbuf, ' ');
4214 if (!tmp)
4215 return -EINVAL;
4216 *tmp = '\0';
4217 tmp++;
4218 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4219 return -EINVAL;
4220
4221 /* Find the cache in the chain of caches. */
18004c5d 4222 mutex_lock(&slab_mutex);
1da177e4 4223 res = -EINVAL;
18004c5d 4224 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4225 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4226 if (limit < 1 || batchcount < 1 ||
4227 batchcount > limit || shared < 0) {
e498be7d 4228 res = 0;
1da177e4 4229 } else {
e498be7d 4230 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4231 batchcount, shared,
4232 GFP_KERNEL);
1da177e4
LT
4233 }
4234 break;
4235 }
4236 }
18004c5d 4237 mutex_unlock(&slab_mutex);
1da177e4
LT
4238 if (res >= 0)
4239 res = count;
4240 return res;
4241}
871751e2
AV
4242
4243#ifdef CONFIG_DEBUG_SLAB_LEAK
4244
871751e2
AV
4245static inline int add_caller(unsigned long *n, unsigned long v)
4246{
4247 unsigned long *p;
4248 int l;
4249 if (!v)
4250 return 1;
4251 l = n[1];
4252 p = n + 2;
4253 while (l) {
4254 int i = l/2;
4255 unsigned long *q = p + 2 * i;
4256 if (*q == v) {
4257 q[1]++;
4258 return 1;
4259 }
4260 if (*q > v) {
4261 l = i;
4262 } else {
4263 p = q + 2;
4264 l -= i + 1;
4265 }
4266 }
4267 if (++n[1] == n[0])
4268 return 0;
4269 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4270 p[0] = v;
4271 p[1] = 1;
4272 return 1;
4273}
4274
8456a648
JK
4275static void handle_slab(unsigned long *n, struct kmem_cache *c,
4276 struct page *page)
871751e2
AV
4277{
4278 void *p;
d31676df
JK
4279 int i, j;
4280 unsigned long v;
b1cb0982 4281
871751e2
AV
4282 if (n[0] == n[1])
4283 return;
8456a648 4284 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4285 bool active = true;
4286
4287 for (j = page->active; j < c->num; j++) {
4288 if (get_free_obj(page, j) == i) {
4289 active = false;
4290 break;
4291 }
4292 }
4293
4294 if (!active)
871751e2 4295 continue;
b1cb0982 4296
d31676df
JK
4297 /*
4298 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4299 * mapping is established when actual object allocation and
4300 * we could mistakenly access the unmapped object in the cpu
4301 * cache.
4302 */
4303 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4304 continue;
4305
4306 if (!add_caller(n, v))
871751e2
AV
4307 return;
4308 }
4309}
4310
4311static void show_symbol(struct seq_file *m, unsigned long address)
4312{
4313#ifdef CONFIG_KALLSYMS
871751e2 4314 unsigned long offset, size;
9281acea 4315 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4316
a5c43dae 4317 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4318 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4319 if (modname[0])
871751e2
AV
4320 seq_printf(m, " [%s]", modname);
4321 return;
4322 }
4323#endif
4324 seq_printf(m, "%p", (void *)address);
4325}
4326
4327static int leaks_show(struct seq_file *m, void *p)
4328{
0672aa7c 4329 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4330 struct page *page;
ce8eb6c4 4331 struct kmem_cache_node *n;
871751e2 4332 const char *name;
db845067 4333 unsigned long *x = m->private;
871751e2
AV
4334 int node;
4335 int i;
4336
4337 if (!(cachep->flags & SLAB_STORE_USER))
4338 return 0;
4339 if (!(cachep->flags & SLAB_RED_ZONE))
4340 return 0;
4341
d31676df
JK
4342 /*
4343 * Set store_user_clean and start to grab stored user information
4344 * for all objects on this cache. If some alloc/free requests comes
4345 * during the processing, information would be wrong so restart
4346 * whole processing.
4347 */
4348 do {
4349 set_store_user_clean(cachep);
4350 drain_cpu_caches(cachep);
4351
4352 x[1] = 0;
871751e2 4353
d31676df 4354 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4355
d31676df
JK
4356 check_irq_on();
4357 spin_lock_irq(&n->list_lock);
871751e2 4358
d31676df
JK
4359 list_for_each_entry(page, &n->slabs_full, lru)
4360 handle_slab(x, cachep, page);
4361 list_for_each_entry(page, &n->slabs_partial, lru)
4362 handle_slab(x, cachep, page);
4363 spin_unlock_irq(&n->list_lock);
4364 }
4365 } while (!is_store_user_clean(cachep));
871751e2 4366
871751e2 4367 name = cachep->name;
db845067 4368 if (x[0] == x[1]) {
871751e2 4369 /* Increase the buffer size */
18004c5d 4370 mutex_unlock(&slab_mutex);
db845067 4371 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4372 if (!m->private) {
4373 /* Too bad, we are really out */
db845067 4374 m->private = x;
18004c5d 4375 mutex_lock(&slab_mutex);
871751e2
AV
4376 return -ENOMEM;
4377 }
db845067
CL
4378 *(unsigned long *)m->private = x[0] * 2;
4379 kfree(x);
18004c5d 4380 mutex_lock(&slab_mutex);
871751e2
AV
4381 /* Now make sure this entry will be retried */
4382 m->count = m->size;
4383 return 0;
4384 }
db845067
CL
4385 for (i = 0; i < x[1]; i++) {
4386 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4387 show_symbol(m, x[2*i+2]);
871751e2
AV
4388 seq_putc(m, '\n');
4389 }
d2e7b7d0 4390
871751e2
AV
4391 return 0;
4392}
4393
a0ec95a8 4394static const struct seq_operations slabstats_op = {
1df3b26f 4395 .start = slab_start,
276a2439
WL
4396 .next = slab_next,
4397 .stop = slab_stop,
871751e2
AV
4398 .show = leaks_show,
4399};
a0ec95a8
AD
4400
4401static int slabstats_open(struct inode *inode, struct file *file)
4402{
b208ce32
RJ
4403 unsigned long *n;
4404
4405 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4406 if (!n)
4407 return -ENOMEM;
4408
4409 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4410
4411 return 0;
a0ec95a8
AD
4412}
4413
4414static const struct file_operations proc_slabstats_operations = {
4415 .open = slabstats_open,
4416 .read = seq_read,
4417 .llseek = seq_lseek,
4418 .release = seq_release_private,
4419};
4420#endif
4421
4422static int __init slab_proc_init(void)
4423{
4424#ifdef CONFIG_DEBUG_SLAB_LEAK
4425 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4426#endif
a0ec95a8
AD
4427 return 0;
4428}
4429module_init(slab_proc_init);
1da177e4
LT
4430#endif
4431
04385fc5
KC
4432#ifdef CONFIG_HARDENED_USERCOPY
4433/*
4434 * Rejects objects that are incorrectly sized.
4435 *
4436 * Returns NULL if check passes, otherwise const char * to name of cache
4437 * to indicate an error.
4438 */
4439const char *__check_heap_object(const void *ptr, unsigned long n,
4440 struct page *page)
4441{
4442 struct kmem_cache *cachep;
4443 unsigned int objnr;
4444 unsigned long offset;
4445
4446 /* Find and validate object. */
4447 cachep = page->slab_cache;
4448 objnr = obj_to_index(cachep, page, (void *)ptr);
4449 BUG_ON(objnr >= cachep->num);
4450
4451 /* Find offset within object. */
4452 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4453
4454 /* Allow address range falling entirely within object size. */
4455 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4456 return NULL;
4457
4458 return cachep->name;
4459}
4460#endif /* CONFIG_HARDENED_USERCOPY */
4461
00e145b6
MS
4462/**
4463 * ksize - get the actual amount of memory allocated for a given object
4464 * @objp: Pointer to the object
4465 *
4466 * kmalloc may internally round up allocations and return more memory
4467 * than requested. ksize() can be used to determine the actual amount of
4468 * memory allocated. The caller may use this additional memory, even though
4469 * a smaller amount of memory was initially specified with the kmalloc call.
4470 * The caller must guarantee that objp points to a valid object previously
4471 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4472 * must not be freed during the duration of the call.
4473 */
fd76bab2 4474size_t ksize(const void *objp)
1da177e4 4475{
7ed2f9e6
AP
4476 size_t size;
4477
ef8b4520
CL
4478 BUG_ON(!objp);
4479 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4480 return 0;
1da177e4 4481
7ed2f9e6
AP
4482 size = virt_to_cache(objp)->object_size;
4483 /* We assume that ksize callers could use the whole allocated area,
4484 * so we need to unpoison this area.
4485 */
4ebb31a4 4486 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4487
4488 return size;
1da177e4 4489}
b1aabecd 4490EXPORT_SYMBOL(ksize);
This page took 1.379725 seconds and 5 git commands to generate.