mm/sl[aou]b: Move kmem_cache allocations into common code
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
50953fe9 167# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 169 SLAB_CACHE_DMA | \
5af60839 170 SLAB_STORE_USER | \
1da177e4 171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 174#else
ac2b898c 175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 176 SLAB_CACHE_DMA | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 206
1da177e4
LT
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
1da177e4
LT
220 */
221struct slab_rcu {
b28a02de 222 struct rcu_head head;
343e0d7a 223 struct kmem_cache *cachep;
b28a02de 224 void *addr;
1da177e4
LT
225};
226
5bfe53a7
LJ
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246};
247
1da177e4
LT
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
bda5b655 266 void *entry[]; /*
a737b3e2
AM
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
072bb0aa
MG
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 274 */
1da177e4
LT
275};
276
072bb0aa
MG
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
a737b3e2
AM
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
1da177e4
LT
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300 struct array_cache cache;
b28a02de 301 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
302};
303
304/*
e498be7d 305 * The slab lists for all objects.
1da177e4
LT
306 */
307struct kmem_list3 {
b28a02de
PE
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
b28a02de 312 unsigned int free_limit;
2e1217cf 313 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
35386e3b
CL
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
1da177e4
LT
319};
320
e498be7d
CL
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
556a169d 324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 326#define CACHE_CACHE 0
556a169d
PE
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 329
ed11d9eb
CL
330static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
83b519e8 334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 335static void cache_reap(struct work_struct *unused);
ed11d9eb 336
e498be7d 337/*
a737b3e2
AM
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 340 */
7243cc05 341static __always_inline int index_of(const size_t size)
e498be7d 342{
5ec8a847
SR
343 extern void __bad_size(void);
344
e498be7d
CL
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348#define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
1c61fc40 353#include <linux/kmalloc_sizes.h>
e498be7d 354#undef CACHE
5ec8a847 355 __bad_size();
7243cc05 356 } else
5ec8a847 357 __bad_size();
e498be7d
CL
358 return 0;
359}
360
e0a42726
IM
361static int slab_early_init = 1;
362
e498be7d
CL
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 365
5295a74c 366static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
367{
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
2e1217cf 373 parent->colour_next = 0;
e498be7d
CL
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377}
378
a737b3e2
AM
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
383 } while (0)
384
a737b3e2
AM
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
e498be7d
CL
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
1da177e4 391
1da177e4
LT
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
a737b3e2
AM
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
1da177e4 399 *
dc6f3f27 400 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
412#define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
1da177e4
LT
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
421#define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 439#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 441#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
1da177e4 449
a737b3e2
AM
450/*
451 * memory layout of objects:
1da177e4 452 * 0 : objp
3dafccf2 453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
3dafccf2 456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 457 * redzone word.
3dafccf2 458 * cachep->obj_offset: The real object.
3b0efdfa
CL
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 461 * [BYTES_PER_WORD long]
1da177e4 462 */
343e0d7a 463static int obj_offset(struct kmem_cache *cachep)
1da177e4 464{
3dafccf2 465 return cachep->obj_offset;
1da177e4
LT
466}
467
b46b8f19 468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
469{
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
1da177e4
LT
473}
474
b46b8f19 475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
476{
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 479 return (unsigned long long *)(objp + cachep->size -
b46b8f19 480 sizeof(unsigned long long) -
87a927c7 481 REDZONE_ALIGN);
3b0efdfa 482 return (unsigned long long *) (objp + cachep->size -
b46b8f19 483 sizeof(unsigned long long));
1da177e4
LT
484}
485
343e0d7a 486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
487{
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
490}
491
492#else
493
3dafccf2 494#define obj_offset(x) 0
b46b8f19
DW
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
0f24f128 501#ifdef CONFIG_TRACING
36555751
EGM
502size_t slab_buffer_size(struct kmem_cache *cachep)
503{
3b0efdfa 504 return cachep->size;
36555751
EGM
505}
506EXPORT_SYMBOL(slab_buffer_size);
507#endif
508
1da177e4 509/*
3df1cccd
DR
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
1da177e4 512 */
543585cc
DR
513#define SLAB_MAX_ORDER_HI 1
514#define SLAB_MAX_ORDER_LO 0
515static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 516static bool slab_max_order_set __initdata;
1da177e4 517
6ed5eb22
PE
518static inline struct kmem_cache *virt_to_cache(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
35026088 521 return page->slab_cache;
6ed5eb22
PE
522}
523
524static inline struct slab *virt_to_slab(const void *obj)
525{
b49af68f 526 struct page *page = virt_to_head_page(obj);
35026088
CL
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
6ed5eb22
PE
530}
531
8fea4e96
PE
532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534{
3b0efdfa 535 return slab->s_mem + cache->size * idx;
8fea4e96
PE
536}
537
6a2d7a95 538/*
3b0efdfa
CL
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
6a2d7a95
ED
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
8fea4e96 546{
6a2d7a95
ED
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
549}
550
a737b3e2
AM
551/*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
1da177e4
LT
554struct cache_sizes malloc_sizes[] = {
555#define CACHE(x) { .cs_size = (x) },
556#include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558#undef CACHE
559};
560EXPORT_SYMBOL(malloc_sizes);
561
562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
563struct cache_names {
564 char *name;
565 char *name_dma;
566};
567
568static struct cache_names __initdata cache_names[] = {
569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570#include <linux/kmalloc_sizes.h>
b28a02de 571 {NULL,}
1da177e4
LT
572#undef CACHE
573};
574
575static struct arraycache_init initarray_cache __initdata =
b28a02de 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 577static struct arraycache_init initarray_generic =
b28a02de 578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
579
580/* internal cache of cache description objs */
9b030cb8
CL
581static struct kmem_list3 *kmem_cache_nodelists[MAX_NUMNODES];
582static struct kmem_cache kmem_cache_boot = {
583 .nodelists = kmem_cache_nodelists,
b28a02de
PE
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
3b0efdfa 587 .size = sizeof(struct kmem_cache),
b28a02de 588 .name = "kmem_cache",
1da177e4
LT
589};
590
056c6241
RT
591#define BAD_ALIEN_MAGIC 0x01020304ul
592
f1aaee53
AV
593#ifdef CONFIG_LOCKDEP
594
595/*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
f1aaee53 605 */
056c6241
RT
606static struct lock_class_key on_slab_l3_key;
607static struct lock_class_key on_slab_alc_key;
608
83835b3d
PZ
609static struct lock_class_key debugobj_l3_key;
610static struct lock_class_key debugobj_alc_key;
611
612static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615{
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639}
640
641static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642{
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644}
645
646static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647{
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652}
653
ce79ddc8 654static void init_node_lock_keys(int q)
f1aaee53 655{
056c6241
RT
656 struct cache_sizes *s = malloc_sizes;
657
97d06609 658 if (slab_state < UP)
ce79ddc8
PE
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 662 struct kmem_list3 *l3;
ce79ddc8
PE
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 666 continue;
83835b3d
PZ
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
f1aaee53
AV
670 }
671}
ce79ddc8
PE
672
673static inline void init_lock_keys(void)
674{
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679}
f1aaee53 680#else
ce79ddc8
PE
681static void init_node_lock_keys(int q)
682{
683}
684
056c6241 685static inline void init_lock_keys(void)
f1aaee53
AV
686{
687}
83835b3d
PZ
688
689static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690{
691}
692
693static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694{
695}
f1aaee53
AV
696#endif
697
1871e52c 698static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 699
343e0d7a 700static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
701{
702 return cachep->array[smp_processor_id()];
703}
704
a737b3e2
AM
705static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
1da177e4
LT
707{
708 struct cache_sizes *csizep = malloc_sizes;
709
710#if DEBUG
711 /* This happens if someone tries to call
b28a02de
PE
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
c7e43c78 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 716#endif
6cb8f913
CL
717 if (!size)
718 return ZERO_SIZE_PTR;
719
1da177e4
LT
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
0abf40c1 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
4b51d669 728#ifdef CONFIG_ZONE_DMA
1da177e4
LT
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
4b51d669 731#endif
1da177e4
LT
732 return csizep->cs_cachep;
733}
734
b221385b 735static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
736{
737 return __find_general_cachep(size, gfpflags);
738}
97e2bde4 739
fbaccacf 740static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 741{
fbaccacf
SR
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743}
1da177e4 744
a737b3e2
AM
745/*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
fbaccacf
SR
748static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751{
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 755
fbaccacf
SR
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
804}
805
d40cee24 806#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 807
a737b3e2
AM
808static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
1da177e4
LT
810{
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 812 function, cachep->name, msg);
1da177e4
LT
813 dump_stack();
814}
815
3395ee05
PM
816/*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824static int use_alien_caches __read_mostly = 1;
825static int __init noaliencache_setup(char *s)
826{
827 use_alien_caches = 0;
828 return 1;
829}
830__setup("noaliencache", noaliencache_setup);
831
3df1cccd
DR
832static int __init slab_max_order_setup(char *str)
833{
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840}
841__setup("slab_max_order=", slab_max_order_setup);
842
8fce4d8e
CL
843#ifdef CONFIG_NUMA
844/*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
1871e52c 850static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
851
852static void init_reap_node(int cpu)
853{
854 int node;
855
7d6e6d09 856 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 857 if (node == MAX_NUMNODES)
442295c9 858 node = first_node(node_online_map);
8fce4d8e 859
1871e52c 860 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
861}
862
863static void next_reap_node(void)
864{
909ea964 865 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 866
8fce4d8e
CL
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
909ea964 870 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
871}
872
873#else
874#define init_reap_node(cpu) do { } while (0)
875#define next_reap_node(void) do { } while (0)
876#endif
877
1da177e4
LT
878/*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
897e679b 885static void __cpuinit start_cpu_timer(int cpu)
1da177e4 886{
1871e52c 887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
52bad64d 894 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 895 init_reap_node(cpu);
78b43536 896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
899 }
900}
901
e498be7d 902static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 903 int batchcount, gfp_t gfp)
1da177e4 904{
b28a02de 905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
906 struct array_cache *nc = NULL;
907
83b519e8 908 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
909 /*
910 * The array_cache structures contain pointers to free object.
25985edc 911 * However, when such objects are allocated or transferred to another
d5cff635
CM
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
1da177e4
LT
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
e498be7d 922 spin_lock_init(&nc->lock);
1da177e4
LT
923 }
924 return nc;
925}
926
072bb0aa
MG
927static inline bool is_slab_pfmemalloc(struct slab *slabp)
928{
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932}
933
934/* Clears pfmemalloc_active if no slabs have pfmalloc set */
935static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937{
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961}
962
381760ea 963static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
964 gfp_t flags, bool force_refill)
965{
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008}
1009
381760ea
MG
1010static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012{
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021}
1022
1023static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1024 void *objp)
1025{
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
381760ea
MG
1033 return objp;
1034}
1035
1036static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038{
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
072bb0aa
MG
1042 ac->entry[ac->avail++] = objp;
1043}
1044
3ded175a
CL
1045/*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053{
1054 /* Figure out how many entries to transfer */
732eacc0 1055 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
3ded175a
CL
1065 return nr;
1066}
1067
765c4507
CL
1068#ifndef CONFIG_NUMA
1069
1070#define drain_alien_cache(cachep, alien) do { } while (0)
1071#define reap_alien(cachep, l3) do { } while (0)
1072
83b519e8 1073static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1074{
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076}
1077
1078static inline void free_alien_cache(struct array_cache **ac_ptr)
1079{
1080}
1081
1082static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083{
1084 return 0;
1085}
1086
1087static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089{
1090 return NULL;
1091}
1092
8b98c169 1093static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1094 gfp_t flags, int nodeid)
1095{
1096 return NULL;
1097}
1098
1099#else /* CONFIG_NUMA */
1100
8b98c169 1101static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1102static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1103
83b519e8 1104static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1105{
1106 struct array_cache **ac_ptr;
8ef82866 1107 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
f3186a9c 1112 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1113 if (ac_ptr) {
1114 for_each_node(i) {
f3186a9c 1115 if (i == node || !node_online(i))
e498be7d 1116 continue;
83b519e8 1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1118 if (!ac_ptr[i]) {
cc550def 1119 for (i--; i >= 0; i--)
e498be7d
CL
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127}
1128
5295a74c 1129static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1130{
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
e498be7d 1135 for_each_node(i)
b28a02de 1136 kfree(ac_ptr[i]);
e498be7d
CL
1137 kfree(ac_ptr);
1138}
1139
343e0d7a 1140static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1141 struct array_cache *ac, int node)
e498be7d
CL
1142{
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
e00946fe
CL
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
693f7d36 1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1154
ff69416e 1155 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159}
1160
8fce4d8e
CL
1161/*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165{
909ea964 1166 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176}
1177
a737b3e2
AM
1178static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
e498be7d 1180{
b28a02de 1181 int i = 0;
e498be7d
CL
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
4484ebf1 1186 ac = alien[i];
e498be7d
CL
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193}
729bd0b7 1194
873623df 1195static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1196{
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1ca4cb24
PE
1201 int node;
1202
7d6e6d09 1203 node = numa_mem_id();
729bd0b7
PE
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
62918a03 1209 if (likely(slabp->nodeid == node))
729bd0b7
PE
1210 return 0;
1211
1ca4cb24 1212 l3 = cachep->nodelists[node];
729bd0b7
PE
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
873623df 1216 spin_lock(&alien->lock);
729bd0b7
PE
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
072bb0aa 1221 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229}
e498be7d
CL
1230#endif
1231
8f9f8d9e
DR
1232/*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
18004c5d 1239 * Must hold slab_mutex.
8f9f8d9e
DR
1240 */
1241static int init_cache_nodelists_node(int node)
1242{
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
18004c5d 1247 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
18004c5d 1263 * go. slab_mutex is sufficient
8f9f8d9e
DR
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276}
1277
fbf1e473
AM
1278static void __cpuinit cpuup_canceled(long cpu)
1279{
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
7d6e6d09 1282 int node = cpu_to_mem(cpu);
a70f7302 1283 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1284
18004c5d 1285 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
fbf1e473 1289
fbf1e473
AM
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
58463c1f 1305 if (!cpumask_empty(mask)) {
fbf1e473
AM
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
18004c5d 1335 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341}
1342
1343static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1344{
343e0d7a 1345 struct kmem_cache *cachep;
e498be7d 1346 struct kmem_list3 *l3 = NULL;
7d6e6d09 1347 int node = cpu_to_mem(cpu);
8f9f8d9e 1348 int err;
1da177e4 1349
fbf1e473
AM
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
8f9f8d9e
DR
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
fbf1e473
AM
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
18004c5d 1364 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1370 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
83b519e8 1376 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1377 if (!shared) {
1378 kfree(nc);
1da177e4 1379 goto bad;
12d00f6a 1380 }
fbf1e473
AM
1381 }
1382 if (use_alien_caches) {
83b519e8 1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
fbf1e473 1387 goto bad;
12d00f6a 1388 }
fbf1e473
AM
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
4484ebf1 1403#ifdef CONFIG_NUMA
fbf1e473
AM
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1da177e4 1407 }
fbf1e473
AM
1408#endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
83835b3d
PZ
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1414 }
ce79ddc8
PE
1415 init_node_lock_keys(node);
1416
fbf1e473
AM
1417 return 0;
1418bad:
12d00f6a 1419 cpuup_canceled(cpu);
fbf1e473
AM
1420 return -ENOMEM;
1421}
1422
1423static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425{
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
fbf1e473
AM
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
18004c5d 1432 mutex_lock(&slab_mutex);
fbf1e473 1433 err = cpuup_prepare(cpu);
18004c5d 1434 mutex_unlock(&slab_mutex);
1da177e4
LT
1435 break;
1436 case CPU_ONLINE:
8bb78442 1437 case CPU_ONLINE_FROZEN:
1da177e4
LT
1438 start_cpu_timer(cpu);
1439 break;
1440#ifdef CONFIG_HOTPLUG_CPU
5830c590 1441 case CPU_DOWN_PREPARE:
8bb78442 1442 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1443 /*
18004c5d 1444 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
afe2c511 1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1450 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1452 break;
1453 case CPU_DOWN_FAILED:
8bb78442 1454 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1455 start_cpu_timer(cpu);
1456 break;
1da177e4 1457 case CPU_DEAD:
8bb78442 1458 case CPU_DEAD_FROZEN:
4484ebf1
RT
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
183ff22b 1467 /* fall through */
8f5be20b 1468#endif
1da177e4 1469 case CPU_UP_CANCELED:
8bb78442 1470 case CPU_UP_CANCELED_FROZEN:
18004c5d 1471 mutex_lock(&slab_mutex);
fbf1e473 1472 cpuup_canceled(cpu);
18004c5d 1473 mutex_unlock(&slab_mutex);
1da177e4 1474 break;
1da177e4 1475 }
eac40680 1476 return notifier_from_errno(err);
1da177e4
LT
1477}
1478
74b85f37
CS
1479static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481};
1da177e4 1482
8f9f8d9e
DR
1483#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484/*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
18004c5d 1489 * Must hold slab_mutex.
8f9f8d9e
DR
1490 */
1491static int __meminit drain_cache_nodelists_node(int node)
1492{
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
18004c5d 1496 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512}
1513
1514static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516{
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
18004c5d 1527 mutex_lock(&slab_mutex);
8f9f8d9e 1528 ret = init_cache_nodelists_node(nid);
18004c5d 1529 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1530 break;
1531 case MEM_GOING_OFFLINE:
18004c5d 1532 mutex_lock(&slab_mutex);
8f9f8d9e 1533 ret = drain_cache_nodelists_node(nid);
18004c5d 1534 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542out:
5fda1bd5 1543 return notifier_from_errno(ret);
8f9f8d9e
DR
1544}
1545#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
e498be7d
CL
1547/*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
8f9f8d9e
DR
1550static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
e498be7d
CL
1552{
1553 struct kmem_list3 *ptr;
1554
83b519e8 1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1556 BUG_ON(!ptr);
1557
e498be7d 1558 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
e498be7d
CL
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1566}
1567
556a169d
PE
1568/*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573{
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582}
1583
a737b3e2
AM
1584/*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1da177e4
LT
1587 */
1588void __init kmem_cache_init(void)
1589{
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
e498be7d 1593 int i;
07ed76b2 1594 int order;
1ca4cb24 1595 int node;
e498be7d 1596
9b030cb8
CL
1597 kmem_cache = &kmem_cache_boot;
1598
b6e68bc1 1599 if (num_possible_nodes() == 1)
62918a03
SS
1600 use_alien_caches = 0;
1601
e498be7d
CL
1602 for (i = 0; i < NUM_INIT_LISTS; i++) {
1603 kmem_list3_init(&initkmem_list3[i]);
1604 if (i < MAX_NUMNODES)
9b030cb8 1605 kmem_cache->nodelists[i] = NULL;
e498be7d 1606 }
9b030cb8 1607 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1608
1609 /*
1610 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1611 * page orders on machines with more than 32MB of memory if
1612 * not overridden on the command line.
1da177e4 1613 */
3df1cccd 1614 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1615 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1616
1da177e4
LT
1617 /* Bootstrap is tricky, because several objects are allocated
1618 * from caches that do not exist yet:
9b030cb8
CL
1619 * 1) initialize the kmem_cache cache: it contains the struct
1620 * kmem_cache structures of all caches, except kmem_cache itself:
1621 * kmem_cache is statically allocated.
e498be7d
CL
1622 * Initially an __init data area is used for the head array and the
1623 * kmem_list3 structures, it's replaced with a kmalloc allocated
1624 * array at the end of the bootstrap.
1da177e4 1625 * 2) Create the first kmalloc cache.
343e0d7a 1626 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1627 * An __init data area is used for the head array.
1628 * 3) Create the remaining kmalloc caches, with minimally sized
1629 * head arrays.
9b030cb8 1630 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1631 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1632 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1633 * the other cache's with kmalloc allocated memory.
1634 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1635 */
1636
7d6e6d09 1637 node = numa_mem_id();
1ca4cb24 1638
9b030cb8 1639 /* 1) create the kmem_cache */
18004c5d 1640 INIT_LIST_HEAD(&slab_caches);
9b030cb8
CL
1641 list_add(&kmem_cache->list, &slab_caches);
1642 kmem_cache->colour_off = cache_line_size();
1643 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1644 kmem_cache->nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1645
8da3430d 1646 /*
b56efcf0 1647 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1648 */
9b030cb8 1649 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1650 nr_node_ids * sizeof(struct kmem_list3 *);
9b030cb8
CL
1651 kmem_cache->object_size = kmem_cache->size;
1652 kmem_cache->size = ALIGN(kmem_cache->object_size,
a737b3e2 1653 cache_line_size());
9b030cb8
CL
1654 kmem_cache->reciprocal_buffer_size =
1655 reciprocal_value(kmem_cache->size);
1da177e4 1656
07ed76b2 1657 for (order = 0; order < MAX_ORDER; order++) {
9b030cb8
CL
1658 cache_estimate(order, kmem_cache->size,
1659 cache_line_size(), 0, &left_over, &kmem_cache->num);
1660 if (kmem_cache->num)
07ed76b2
JS
1661 break;
1662 }
9b030cb8
CL
1663 BUG_ON(!kmem_cache->num);
1664 kmem_cache->gfporder = order;
1665 kmem_cache->colour = left_over / kmem_cache->colour_off;
1666 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
b28a02de 1667 sizeof(struct slab), cache_line_size());
1da177e4
LT
1668
1669 /* 2+3) create the kmalloc caches */
1670 sizes = malloc_sizes;
1671 names = cache_names;
1672
a737b3e2
AM
1673 /*
1674 * Initialize the caches that provide memory for the array cache and the
1675 * kmem_list3 structures first. Without this, further allocations will
1676 * bug.
e498be7d
CL
1677 */
1678
278b1bb1
CL
1679 sizes[INDEX_AC].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1680 __kmem_cache_create(sizes[INDEX_AC].cs_cachep, names[INDEX_AC].name,
a737b3e2
AM
1681 sizes[INDEX_AC].cs_size,
1682 ARCH_KMALLOC_MINALIGN,
1683 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1684 NULL);
e498be7d 1685
7c9adf5a 1686 list_add(&sizes[INDEX_AC].cs_cachep->list, &slab_caches);
a737b3e2 1687 if (INDEX_AC != INDEX_L3) {
278b1bb1
CL
1688 sizes[INDEX_L3].cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1689 __kmem_cache_create(sizes[INDEX_L3].cs_cachep, names[INDEX_L3].name,
a737b3e2
AM
1690 sizes[INDEX_L3].cs_size,
1691 ARCH_KMALLOC_MINALIGN,
1692 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1693 NULL);
7c9adf5a 1694 list_add(&sizes[INDEX_L3].cs_cachep->list, &slab_caches);
a737b3e2 1695 }
e498be7d 1696
e0a42726
IM
1697 slab_early_init = 0;
1698
1da177e4 1699 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1700 /*
1701 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1702 * This should be particularly beneficial on SMP boxes, as it
1703 * eliminates "false sharing".
1704 * Note for systems short on memory removing the alignment will
e498be7d
CL
1705 * allow tighter packing of the smaller caches.
1706 */
a737b3e2 1707 if (!sizes->cs_cachep) {
278b1bb1
CL
1708 sizes->cs_cachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1709 __kmem_cache_create(sizes->cs_cachep, names->name,
a737b3e2
AM
1710 sizes->cs_size,
1711 ARCH_KMALLOC_MINALIGN,
1712 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1713 NULL);
7c9adf5a 1714 list_add(&sizes->cs_cachep->list, &slab_caches);
a737b3e2 1715 }
4b51d669 1716#ifdef CONFIG_ZONE_DMA
278b1bb1
CL
1717 sizes->cs_dmacachep = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1718 __kmem_cache_create(sizes->cs_dmacachep,
4b51d669 1719 names->name_dma,
a737b3e2
AM
1720 sizes->cs_size,
1721 ARCH_KMALLOC_MINALIGN,
1722 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1723 SLAB_PANIC,
20c2df83 1724 NULL);
7c9adf5a 1725 list_add(&sizes->cs_dmacachep->list, &slab_caches);
4b51d669 1726#endif
1da177e4
LT
1727 sizes++;
1728 names++;
1729 }
1730 /* 4) Replace the bootstrap head arrays */
1731 {
2b2d5493 1732 struct array_cache *ptr;
e498be7d 1733
83b519e8 1734 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1735
9b030cb8
CL
1736 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1737 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1738 sizeof(struct arraycache_init));
2b2d5493
IM
1739 /*
1740 * Do not assume that spinlocks can be initialized via memcpy:
1741 */
1742 spin_lock_init(&ptr->lock);
1743
9b030cb8 1744 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1745
83b519e8 1746 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1747
9a2dba4b 1748 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1749 != &initarray_generic.cache);
9a2dba4b 1750 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1751 sizeof(struct arraycache_init));
2b2d5493
IM
1752 /*
1753 * Do not assume that spinlocks can be initialized via memcpy:
1754 */
1755 spin_lock_init(&ptr->lock);
1756
e498be7d 1757 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1758 ptr;
1da177e4 1759 }
e498be7d
CL
1760 /* 5) Replace the bootstrap kmem_list3's */
1761 {
1ca4cb24
PE
1762 int nid;
1763
9c09a95c 1764 for_each_online_node(nid) {
9b030cb8 1765 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1766
e498be7d 1767 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1768 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1769
1770 if (INDEX_AC != INDEX_L3) {
1771 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1772 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1773 }
1774 }
1775 }
1da177e4 1776
97d06609 1777 slab_state = UP;
8429db5c
PE
1778}
1779
1780void __init kmem_cache_init_late(void)
1781{
1782 struct kmem_cache *cachep;
1783
97d06609 1784 slab_state = UP;
52cef189 1785
30765b92
PZ
1786 /* Annotate slab for lockdep -- annotate the malloc caches */
1787 init_lock_keys();
1788
8429db5c 1789 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1790 mutex_lock(&slab_mutex);
1791 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1792 if (enable_cpucache(cachep, GFP_NOWAIT))
1793 BUG();
18004c5d 1794 mutex_unlock(&slab_mutex);
056c6241 1795
97d06609
CL
1796 /* Done! */
1797 slab_state = FULL;
1798
a737b3e2
AM
1799 /*
1800 * Register a cpu startup notifier callback that initializes
1801 * cpu_cache_get for all new cpus
1da177e4
LT
1802 */
1803 register_cpu_notifier(&cpucache_notifier);
1da177e4 1804
8f9f8d9e
DR
1805#ifdef CONFIG_NUMA
1806 /*
1807 * Register a memory hotplug callback that initializes and frees
1808 * nodelists.
1809 */
1810 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1811#endif
1812
a737b3e2
AM
1813 /*
1814 * The reap timers are started later, with a module init call: That part
1815 * of the kernel is not yet operational.
1da177e4
LT
1816 */
1817}
1818
1819static int __init cpucache_init(void)
1820{
1821 int cpu;
1822
a737b3e2
AM
1823 /*
1824 * Register the timers that return unneeded pages to the page allocator
1da177e4 1825 */
e498be7d 1826 for_each_online_cpu(cpu)
a737b3e2 1827 start_cpu_timer(cpu);
a164f896
GC
1828
1829 /* Done! */
97d06609 1830 slab_state = FULL;
1da177e4
LT
1831 return 0;
1832}
1da177e4
LT
1833__initcall(cpucache_init);
1834
8bdec192
RA
1835static noinline void
1836slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1837{
1838 struct kmem_list3 *l3;
1839 struct slab *slabp;
1840 unsigned long flags;
1841 int node;
1842
1843 printk(KERN_WARNING
1844 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1845 nodeid, gfpflags);
1846 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1847 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1848
1849 for_each_online_node(node) {
1850 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1851 unsigned long active_slabs = 0, num_slabs = 0;
1852
1853 l3 = cachep->nodelists[node];
1854 if (!l3)
1855 continue;
1856
1857 spin_lock_irqsave(&l3->list_lock, flags);
1858 list_for_each_entry(slabp, &l3->slabs_full, list) {
1859 active_objs += cachep->num;
1860 active_slabs++;
1861 }
1862 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1863 active_objs += slabp->inuse;
1864 active_slabs++;
1865 }
1866 list_for_each_entry(slabp, &l3->slabs_free, list)
1867 num_slabs++;
1868
1869 free_objects += l3->free_objects;
1870 spin_unlock_irqrestore(&l3->list_lock, flags);
1871
1872 num_slabs += active_slabs;
1873 num_objs = num_slabs * cachep->num;
1874 printk(KERN_WARNING
1875 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1876 node, active_slabs, num_slabs, active_objs, num_objs,
1877 free_objects);
1878 }
1879}
1880
1da177e4
LT
1881/*
1882 * Interface to system's page allocator. No need to hold the cache-lock.
1883 *
1884 * If we requested dmaable memory, we will get it. Even if we
1885 * did not request dmaable memory, we might get it, but that
1886 * would be relatively rare and ignorable.
1887 */
343e0d7a 1888static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1889{
1890 struct page *page;
e1b6aa6f 1891 int nr_pages;
1da177e4
LT
1892 int i;
1893
d6fef9da 1894#ifndef CONFIG_MMU
e1b6aa6f
CH
1895 /*
1896 * Nommu uses slab's for process anonymous memory allocations, and thus
1897 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1898 */
e1b6aa6f 1899 flags |= __GFP_COMP;
d6fef9da 1900#endif
765c4507 1901
a618e89f 1902 flags |= cachep->allocflags;
e12ba74d
MG
1903 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1904 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1905
517d0869 1906 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1907 if (!page) {
1908 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1909 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1910 return NULL;
8bdec192 1911 }
1da177e4 1912
b37f1dd0 1913 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1914 if (unlikely(page->pfmemalloc))
1915 pfmemalloc_active = true;
1916
e1b6aa6f 1917 nr_pages = (1 << cachep->gfporder);
1da177e4 1918 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1919 add_zone_page_state(page_zone(page),
1920 NR_SLAB_RECLAIMABLE, nr_pages);
1921 else
1922 add_zone_page_state(page_zone(page),
1923 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1924 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1925 __SetPageSlab(page + i);
c175eea4 1926
072bb0aa
MG
1927 if (page->pfmemalloc)
1928 SetPageSlabPfmemalloc(page + i);
1929 }
1930
b1eeab67
VN
1931 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1932 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1933
1934 if (cachep->ctor)
1935 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1936 else
1937 kmemcheck_mark_unallocated_pages(page, nr_pages);
1938 }
c175eea4 1939
e1b6aa6f 1940 return page_address(page);
1da177e4
LT
1941}
1942
1943/*
1944 * Interface to system's page release.
1945 */
343e0d7a 1946static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1947{
b28a02de 1948 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1949 struct page *page = virt_to_page(addr);
1950 const unsigned long nr_freed = i;
1951
b1eeab67 1952 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1953
972d1a7b
CL
1954 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1955 sub_zone_page_state(page_zone(page),
1956 NR_SLAB_RECLAIMABLE, nr_freed);
1957 else
1958 sub_zone_page_state(page_zone(page),
1959 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1960 while (i--) {
f205b2fe 1961 BUG_ON(!PageSlab(page));
072bb0aa 1962 __ClearPageSlabPfmemalloc(page);
f205b2fe 1963 __ClearPageSlab(page);
1da177e4
LT
1964 page++;
1965 }
1da177e4
LT
1966 if (current->reclaim_state)
1967 current->reclaim_state->reclaimed_slab += nr_freed;
1968 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1969}
1970
1971static void kmem_rcu_free(struct rcu_head *head)
1972{
b28a02de 1973 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1974 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1975
1976 kmem_freepages(cachep, slab_rcu->addr);
1977 if (OFF_SLAB(cachep))
1978 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1979}
1980
1981#if DEBUG
1982
1983#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1984static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1985 unsigned long caller)
1da177e4 1986{
8c138bc0 1987 int size = cachep->object_size;
1da177e4 1988
3dafccf2 1989 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1990
b28a02de 1991 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1992 return;
1993
b28a02de
PE
1994 *addr++ = 0x12345678;
1995 *addr++ = caller;
1996 *addr++ = smp_processor_id();
1997 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1998 {
1999 unsigned long *sptr = &caller;
2000 unsigned long svalue;
2001
2002 while (!kstack_end(sptr)) {
2003 svalue = *sptr++;
2004 if (kernel_text_address(svalue)) {
b28a02de 2005 *addr++ = svalue;
1da177e4
LT
2006 size -= sizeof(unsigned long);
2007 if (size <= sizeof(unsigned long))
2008 break;
2009 }
2010 }
2011
2012 }
b28a02de 2013 *addr++ = 0x87654321;
1da177e4
LT
2014}
2015#endif
2016
343e0d7a 2017static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2018{
8c138bc0 2019 int size = cachep->object_size;
3dafccf2 2020 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2021
2022 memset(addr, val, size);
b28a02de 2023 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2024}
2025
2026static void dump_line(char *data, int offset, int limit)
2027{
2028 int i;
aa83aa40
DJ
2029 unsigned char error = 0;
2030 int bad_count = 0;
2031
fdde6abb 2032 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2033 for (i = 0; i < limit; i++) {
2034 if (data[offset + i] != POISON_FREE) {
2035 error = data[offset + i];
2036 bad_count++;
2037 }
aa83aa40 2038 }
fdde6abb
SAS
2039 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2040 &data[offset], limit, 1);
aa83aa40
DJ
2041
2042 if (bad_count == 1) {
2043 error ^= POISON_FREE;
2044 if (!(error & (error - 1))) {
2045 printk(KERN_ERR "Single bit error detected. Probably "
2046 "bad RAM.\n");
2047#ifdef CONFIG_X86
2048 printk(KERN_ERR "Run memtest86+ or a similar memory "
2049 "test tool.\n");
2050#else
2051 printk(KERN_ERR "Run a memory test tool.\n");
2052#endif
2053 }
2054 }
1da177e4
LT
2055}
2056#endif
2057
2058#if DEBUG
2059
343e0d7a 2060static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2061{
2062 int i, size;
2063 char *realobj;
2064
2065 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2066 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2067 *dbg_redzone1(cachep, objp),
2068 *dbg_redzone2(cachep, objp));
1da177e4
LT
2069 }
2070
2071 if (cachep->flags & SLAB_STORE_USER) {
2072 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2073 *dbg_userword(cachep, objp));
1da177e4 2074 print_symbol("(%s)",
a737b3e2 2075 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2076 printk("\n");
2077 }
3dafccf2 2078 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2079 size = cachep->object_size;
b28a02de 2080 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2081 int limit;
2082 limit = 16;
b28a02de
PE
2083 if (i + limit > size)
2084 limit = size - i;
1da177e4
LT
2085 dump_line(realobj, i, limit);
2086 }
2087}
2088
343e0d7a 2089static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2090{
2091 char *realobj;
2092 int size, i;
2093 int lines = 0;
2094
3dafccf2 2095 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2096 size = cachep->object_size;
1da177e4 2097
b28a02de 2098 for (i = 0; i < size; i++) {
1da177e4 2099 char exp = POISON_FREE;
b28a02de 2100 if (i == size - 1)
1da177e4
LT
2101 exp = POISON_END;
2102 if (realobj[i] != exp) {
2103 int limit;
2104 /* Mismatch ! */
2105 /* Print header */
2106 if (lines == 0) {
b28a02de 2107 printk(KERN_ERR
face37f5
DJ
2108 "Slab corruption (%s): %s start=%p, len=%d\n",
2109 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2110 print_objinfo(cachep, objp, 0);
2111 }
2112 /* Hexdump the affected line */
b28a02de 2113 i = (i / 16) * 16;
1da177e4 2114 limit = 16;
b28a02de
PE
2115 if (i + limit > size)
2116 limit = size - i;
1da177e4
LT
2117 dump_line(realobj, i, limit);
2118 i += 16;
2119 lines++;
2120 /* Limit to 5 lines */
2121 if (lines > 5)
2122 break;
2123 }
2124 }
2125 if (lines != 0) {
2126 /* Print some data about the neighboring objects, if they
2127 * exist:
2128 */
6ed5eb22 2129 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2130 unsigned int objnr;
1da177e4 2131
8fea4e96 2132 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2133 if (objnr) {
8fea4e96 2134 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2135 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2136 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2137 realobj, size);
1da177e4
LT
2138 print_objinfo(cachep, objp, 2);
2139 }
b28a02de 2140 if (objnr + 1 < cachep->num) {
8fea4e96 2141 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2142 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2143 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2144 realobj, size);
1da177e4
LT
2145 print_objinfo(cachep, objp, 2);
2146 }
2147 }
2148}
2149#endif
2150
12dd36fa 2151#if DEBUG
e79aec29 2152static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2153{
1da177e4
LT
2154 int i;
2155 for (i = 0; i < cachep->num; i++) {
8fea4e96 2156 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2157
2158 if (cachep->flags & SLAB_POISON) {
2159#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2160 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2161 OFF_SLAB(cachep))
b28a02de 2162 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2163 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2164 else
2165 check_poison_obj(cachep, objp);
2166#else
2167 check_poison_obj(cachep, objp);
2168#endif
2169 }
2170 if (cachep->flags & SLAB_RED_ZONE) {
2171 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2172 slab_error(cachep, "start of a freed object "
b28a02de 2173 "was overwritten");
1da177e4
LT
2174 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2175 slab_error(cachep, "end of a freed object "
b28a02de 2176 "was overwritten");
1da177e4 2177 }
1da177e4 2178 }
12dd36fa 2179}
1da177e4 2180#else
e79aec29 2181static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2182{
12dd36fa 2183}
1da177e4
LT
2184#endif
2185
911851e6
RD
2186/**
2187 * slab_destroy - destroy and release all objects in a slab
2188 * @cachep: cache pointer being destroyed
2189 * @slabp: slab pointer being destroyed
2190 *
12dd36fa 2191 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2192 * Before calling the slab must have been unlinked from the cache. The
2193 * cache-lock is not held/needed.
12dd36fa 2194 */
343e0d7a 2195static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2196{
2197 void *addr = slabp->s_mem - slabp->colouroff;
2198
e79aec29 2199 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2200 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2201 struct slab_rcu *slab_rcu;
2202
b28a02de 2203 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2204 slab_rcu->cachep = cachep;
2205 slab_rcu->addr = addr;
2206 call_rcu(&slab_rcu->head, kmem_rcu_free);
2207 } else {
2208 kmem_freepages(cachep, addr);
873623df
IM
2209 if (OFF_SLAB(cachep))
2210 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2211 }
2212}
2213
4d268eba 2214/**
a70773dd
RD
2215 * calculate_slab_order - calculate size (page order) of slabs
2216 * @cachep: pointer to the cache that is being created
2217 * @size: size of objects to be created in this cache.
2218 * @align: required alignment for the objects.
2219 * @flags: slab allocation flags
2220 *
2221 * Also calculates the number of objects per slab.
4d268eba
PE
2222 *
2223 * This could be made much more intelligent. For now, try to avoid using
2224 * high order pages for slabs. When the gfp() functions are more friendly
2225 * towards high-order requests, this should be changed.
2226 */
a737b3e2 2227static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2228 size_t size, size_t align, unsigned long flags)
4d268eba 2229{
b1ab41c4 2230 unsigned long offslab_limit;
4d268eba 2231 size_t left_over = 0;
9888e6fa 2232 int gfporder;
4d268eba 2233
0aa817f0 2234 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2235 unsigned int num;
2236 size_t remainder;
2237
9888e6fa 2238 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2239 if (!num)
2240 continue;
9888e6fa 2241
b1ab41c4
IM
2242 if (flags & CFLGS_OFF_SLAB) {
2243 /*
2244 * Max number of objs-per-slab for caches which
2245 * use off-slab slabs. Needed to avoid a possible
2246 * looping condition in cache_grow().
2247 */
2248 offslab_limit = size - sizeof(struct slab);
2249 offslab_limit /= sizeof(kmem_bufctl_t);
2250
2251 if (num > offslab_limit)
2252 break;
2253 }
4d268eba 2254
9888e6fa 2255 /* Found something acceptable - save it away */
4d268eba 2256 cachep->num = num;
9888e6fa 2257 cachep->gfporder = gfporder;
4d268eba
PE
2258 left_over = remainder;
2259
f78bb8ad
LT
2260 /*
2261 * A VFS-reclaimable slab tends to have most allocations
2262 * as GFP_NOFS and we really don't want to have to be allocating
2263 * higher-order pages when we are unable to shrink dcache.
2264 */
2265 if (flags & SLAB_RECLAIM_ACCOUNT)
2266 break;
2267
4d268eba
PE
2268 /*
2269 * Large number of objects is good, but very large slabs are
2270 * currently bad for the gfp()s.
2271 */
543585cc 2272 if (gfporder >= slab_max_order)
4d268eba
PE
2273 break;
2274
9888e6fa
LT
2275 /*
2276 * Acceptable internal fragmentation?
2277 */
a737b3e2 2278 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2279 break;
2280 }
2281 return left_over;
2282}
2283
83b519e8 2284static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2285{
97d06609 2286 if (slab_state >= FULL)
83b519e8 2287 return enable_cpucache(cachep, gfp);
2ed3a4ef 2288
97d06609 2289 if (slab_state == DOWN) {
f30cf7d1
PE
2290 /*
2291 * Note: the first kmem_cache_create must create the cache
2292 * that's used by kmalloc(24), otherwise the creation of
2293 * further caches will BUG().
2294 */
2295 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2296
2297 /*
2298 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2299 * the first cache, then we need to set up all its list3s,
2300 * otherwise the creation of further caches will BUG().
2301 */
2302 set_up_list3s(cachep, SIZE_AC);
2303 if (INDEX_AC == INDEX_L3)
97d06609 2304 slab_state = PARTIAL_L3;
f30cf7d1 2305 else
97d06609 2306 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2307 } else {
2308 cachep->array[smp_processor_id()] =
83b519e8 2309 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2310
97d06609 2311 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2312 set_up_list3s(cachep, SIZE_L3);
97d06609 2313 slab_state = PARTIAL_L3;
f30cf7d1
PE
2314 } else {
2315 int node;
556a169d 2316 for_each_online_node(node) {
f30cf7d1
PE
2317 cachep->nodelists[node] =
2318 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2319 gfp, node);
f30cf7d1
PE
2320 BUG_ON(!cachep->nodelists[node]);
2321 kmem_list3_init(cachep->nodelists[node]);
2322 }
2323 }
2324 }
7d6e6d09 2325 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2326 jiffies + REAPTIMEOUT_LIST3 +
2327 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2328
2329 cpu_cache_get(cachep)->avail = 0;
2330 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2331 cpu_cache_get(cachep)->batchcount = 1;
2332 cpu_cache_get(cachep)->touched = 0;
2333 cachep->batchcount = 1;
2334 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2335 return 0;
f30cf7d1
PE
2336}
2337
1da177e4 2338/**
039363f3 2339 * __kmem_cache_create - Create a cache.
1da177e4
LT
2340 * @name: A string which is used in /proc/slabinfo to identify this cache.
2341 * @size: The size of objects to be created in this cache.
2342 * @align: The required alignment for the objects.
2343 * @flags: SLAB flags
2344 * @ctor: A constructor for the objects.
1da177e4
LT
2345 *
2346 * Returns a ptr to the cache on success, NULL on failure.
2347 * Cannot be called within a int, but can be interrupted.
20c2df83 2348 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2349 *
1da177e4
LT
2350 * The flags are
2351 *
2352 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2353 * to catch references to uninitialised memory.
2354 *
2355 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2356 * for buffer overruns.
2357 *
1da177e4
LT
2358 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2359 * cacheline. This can be beneficial if you're counting cycles as closely
2360 * as davem.
2361 */
278b1bb1
CL
2362int
2363__kmem_cache_create (struct kmem_cache *cachep, const char *name, size_t size, size_t align,
51cc5068 2364 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2365{
2366 size_t left_over, slab_size, ralign;
83b519e8 2367 gfp_t gfp;
278b1bb1 2368 int err;
1da177e4 2369
1da177e4 2370#if DEBUG
1da177e4
LT
2371#if FORCED_DEBUG
2372 /*
2373 * Enable redzoning and last user accounting, except for caches with
2374 * large objects, if the increased size would increase the object size
2375 * above the next power of two: caches with object sizes just above a
2376 * power of two have a significant amount of internal fragmentation.
2377 */
87a927c7
DW
2378 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2379 2 * sizeof(unsigned long long)))
b28a02de 2380 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2381 if (!(flags & SLAB_DESTROY_BY_RCU))
2382 flags |= SLAB_POISON;
2383#endif
2384 if (flags & SLAB_DESTROY_BY_RCU)
2385 BUG_ON(flags & SLAB_POISON);
2386#endif
1da177e4 2387 /*
a737b3e2
AM
2388 * Always checks flags, a caller might be expecting debug support which
2389 * isn't available.
1da177e4 2390 */
40094fa6 2391 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2392
a737b3e2
AM
2393 /*
2394 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2395 * unaligned accesses for some archs when redzoning is used, and makes
2396 * sure any on-slab bufctl's are also correctly aligned.
2397 */
b28a02de
PE
2398 if (size & (BYTES_PER_WORD - 1)) {
2399 size += (BYTES_PER_WORD - 1);
2400 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2401 }
2402
a737b3e2
AM
2403 /* calculate the final buffer alignment: */
2404
1da177e4
LT
2405 /* 1) arch recommendation: can be overridden for debug */
2406 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2407 /*
2408 * Default alignment: as specified by the arch code. Except if
2409 * an object is really small, then squeeze multiple objects into
2410 * one cacheline.
1da177e4
LT
2411 */
2412 ralign = cache_line_size();
b28a02de 2413 while (size <= ralign / 2)
1da177e4
LT
2414 ralign /= 2;
2415 } else {
2416 ralign = BYTES_PER_WORD;
2417 }
ca5f9703
PE
2418
2419 /*
87a927c7
DW
2420 * Redzoning and user store require word alignment or possibly larger.
2421 * Note this will be overridden by architecture or caller mandated
2422 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2423 */
87a927c7
DW
2424 if (flags & SLAB_STORE_USER)
2425 ralign = BYTES_PER_WORD;
2426
2427 if (flags & SLAB_RED_ZONE) {
2428 ralign = REDZONE_ALIGN;
2429 /* If redzoning, ensure that the second redzone is suitably
2430 * aligned, by adjusting the object size accordingly. */
2431 size += REDZONE_ALIGN - 1;
2432 size &= ~(REDZONE_ALIGN - 1);
2433 }
ca5f9703 2434
a44b56d3 2435 /* 2) arch mandated alignment */
1da177e4
LT
2436 if (ralign < ARCH_SLAB_MINALIGN) {
2437 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2438 }
a44b56d3 2439 /* 3) caller mandated alignment */
1da177e4
LT
2440 if (ralign < align) {
2441 ralign = align;
1da177e4 2442 }
3ff84a7f
PE
2443 /* disable debug if necessary */
2444 if (ralign > __alignof__(unsigned long long))
a44b56d3 2445 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2446 /*
ca5f9703 2447 * 4) Store it.
1da177e4
LT
2448 */
2449 align = ralign;
2450
83b519e8
PE
2451 if (slab_is_available())
2452 gfp = GFP_KERNEL;
2453 else
2454 gfp = GFP_NOWAIT;
2455
b56efcf0 2456 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2457 cachep->object_size = size;
2458 cachep->align = align;
1da177e4 2459#if DEBUG
1da177e4 2460
ca5f9703
PE
2461 /*
2462 * Both debugging options require word-alignment which is calculated
2463 * into align above.
2464 */
1da177e4 2465 if (flags & SLAB_RED_ZONE) {
1da177e4 2466 /* add space for red zone words */
3ff84a7f
PE
2467 cachep->obj_offset += sizeof(unsigned long long);
2468 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2469 }
2470 if (flags & SLAB_STORE_USER) {
ca5f9703 2471 /* user store requires one word storage behind the end of
87a927c7
DW
2472 * the real object. But if the second red zone needs to be
2473 * aligned to 64 bits, we must allow that much space.
1da177e4 2474 */
87a927c7
DW
2475 if (flags & SLAB_RED_ZONE)
2476 size += REDZONE_ALIGN;
2477 else
2478 size += BYTES_PER_WORD;
1da177e4
LT
2479 }
2480#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2481 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2482 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2483 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2484 size = PAGE_SIZE;
2485 }
2486#endif
2487#endif
2488
e0a42726
IM
2489 /*
2490 * Determine if the slab management is 'on' or 'off' slab.
2491 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2492 * it too early on. Always use on-slab management when
2493 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2494 */
e7cb55b9
CM
2495 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2496 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2497 /*
2498 * Size is large, assume best to place the slab management obj
2499 * off-slab (should allow better packing of objs).
2500 */
2501 flags |= CFLGS_OFF_SLAB;
2502
2503 size = ALIGN(size, align);
2504
f78bb8ad 2505 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2506
2507 if (!cachep->num) {
b4169525 2508 printk(KERN_ERR
2509 "kmem_cache_create: couldn't create cache %s.\n", name);
278b1bb1 2510 return -E2BIG;
1da177e4 2511 }
b28a02de
PE
2512 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2513 + sizeof(struct slab), align);
1da177e4
LT
2514
2515 /*
2516 * If the slab has been placed off-slab, and we have enough space then
2517 * move it on-slab. This is at the expense of any extra colouring.
2518 */
2519 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2520 flags &= ~CFLGS_OFF_SLAB;
2521 left_over -= slab_size;
2522 }
2523
2524 if (flags & CFLGS_OFF_SLAB) {
2525 /* really off slab. No need for manual alignment */
b28a02de
PE
2526 slab_size =
2527 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2528
2529#ifdef CONFIG_PAGE_POISONING
2530 /* If we're going to use the generic kernel_map_pages()
2531 * poisoning, then it's going to smash the contents of
2532 * the redzone and userword anyhow, so switch them off.
2533 */
2534 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2535 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2536#endif
1da177e4
LT
2537 }
2538
2539 cachep->colour_off = cache_line_size();
2540 /* Offset must be a multiple of the alignment. */
2541 if (cachep->colour_off < align)
2542 cachep->colour_off = align;
b28a02de 2543 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2544 cachep->slab_size = slab_size;
2545 cachep->flags = flags;
a618e89f 2546 cachep->allocflags = 0;
4b51d669 2547 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2548 cachep->allocflags |= GFP_DMA;
3b0efdfa 2549 cachep->size = size;
6a2d7a95 2550 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2551
e5ac9c5a 2552 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2553 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2554 /*
2555 * This is a possibility for one of the malloc_sizes caches.
2556 * But since we go off slab only for object size greater than
2557 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2558 * this should not happen at all.
2559 * But leave a BUG_ON for some lucky dude.
2560 */
6cb8f913 2561 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2562 }
1da177e4 2563 cachep->ctor = ctor;
1da177e4 2564 cachep->name = name;
7c9adf5a 2565 cachep->refcount = 1;
1da177e4 2566
278b1bb1
CL
2567 err = setup_cpu_cache(cachep, gfp);
2568 if (err) {
12c3667f 2569 __kmem_cache_shutdown(cachep);
278b1bb1 2570 return err;
2ed3a4ef 2571 }
1da177e4 2572
83835b3d
PZ
2573 if (flags & SLAB_DEBUG_OBJECTS) {
2574 /*
2575 * Would deadlock through slab_destroy()->call_rcu()->
2576 * debug_object_activate()->kmem_cache_alloc().
2577 */
2578 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2579
2580 slab_set_debugobj_lock_classes(cachep);
2581 }
2582
278b1bb1 2583 return 0;
1da177e4 2584}
1da177e4
LT
2585
2586#if DEBUG
2587static void check_irq_off(void)
2588{
2589 BUG_ON(!irqs_disabled());
2590}
2591
2592static void check_irq_on(void)
2593{
2594 BUG_ON(irqs_disabled());
2595}
2596
343e0d7a 2597static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2598{
2599#ifdef CONFIG_SMP
2600 check_irq_off();
7d6e6d09 2601 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2602#endif
2603}
e498be7d 2604
343e0d7a 2605static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2606{
2607#ifdef CONFIG_SMP
2608 check_irq_off();
2609 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2610#endif
2611}
2612
1da177e4
LT
2613#else
2614#define check_irq_off() do { } while(0)
2615#define check_irq_on() do { } while(0)
2616#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2617#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2618#endif
2619
aab2207c
CL
2620static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2621 struct array_cache *ac,
2622 int force, int node);
2623
1da177e4
LT
2624static void do_drain(void *arg)
2625{
a737b3e2 2626 struct kmem_cache *cachep = arg;
1da177e4 2627 struct array_cache *ac;
7d6e6d09 2628 int node = numa_mem_id();
1da177e4
LT
2629
2630 check_irq_off();
9a2dba4b 2631 ac = cpu_cache_get(cachep);
ff69416e
CL
2632 spin_lock(&cachep->nodelists[node]->list_lock);
2633 free_block(cachep, ac->entry, ac->avail, node);
2634 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2635 ac->avail = 0;
2636}
2637
343e0d7a 2638static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2639{
e498be7d
CL
2640 struct kmem_list3 *l3;
2641 int node;
2642
15c8b6c1 2643 on_each_cpu(do_drain, cachep, 1);
1da177e4 2644 check_irq_on();
b28a02de 2645 for_each_online_node(node) {
e498be7d 2646 l3 = cachep->nodelists[node];
a4523a8b
RD
2647 if (l3 && l3->alien)
2648 drain_alien_cache(cachep, l3->alien);
2649 }
2650
2651 for_each_online_node(node) {
2652 l3 = cachep->nodelists[node];
2653 if (l3)
aab2207c 2654 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2655 }
1da177e4
LT
2656}
2657
ed11d9eb
CL
2658/*
2659 * Remove slabs from the list of free slabs.
2660 * Specify the number of slabs to drain in tofree.
2661 *
2662 * Returns the actual number of slabs released.
2663 */
2664static int drain_freelist(struct kmem_cache *cache,
2665 struct kmem_list3 *l3, int tofree)
1da177e4 2666{
ed11d9eb
CL
2667 struct list_head *p;
2668 int nr_freed;
1da177e4 2669 struct slab *slabp;
1da177e4 2670
ed11d9eb
CL
2671 nr_freed = 0;
2672 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2673
ed11d9eb 2674 spin_lock_irq(&l3->list_lock);
e498be7d 2675 p = l3->slabs_free.prev;
ed11d9eb
CL
2676 if (p == &l3->slabs_free) {
2677 spin_unlock_irq(&l3->list_lock);
2678 goto out;
2679 }
1da177e4 2680
ed11d9eb 2681 slabp = list_entry(p, struct slab, list);
1da177e4 2682#if DEBUG
40094fa6 2683 BUG_ON(slabp->inuse);
1da177e4
LT
2684#endif
2685 list_del(&slabp->list);
ed11d9eb
CL
2686 /*
2687 * Safe to drop the lock. The slab is no longer linked
2688 * to the cache.
2689 */
2690 l3->free_objects -= cache->num;
e498be7d 2691 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2692 slab_destroy(cache, slabp);
2693 nr_freed++;
1da177e4 2694 }
ed11d9eb
CL
2695out:
2696 return nr_freed;
1da177e4
LT
2697}
2698
18004c5d 2699/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2700static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2701{
2702 int ret = 0, i = 0;
2703 struct kmem_list3 *l3;
2704
2705 drain_cpu_caches(cachep);
2706
2707 check_irq_on();
2708 for_each_online_node(i) {
2709 l3 = cachep->nodelists[i];
ed11d9eb
CL
2710 if (!l3)
2711 continue;
2712
2713 drain_freelist(cachep, l3, l3->free_objects);
2714
2715 ret += !list_empty(&l3->slabs_full) ||
2716 !list_empty(&l3->slabs_partial);
e498be7d
CL
2717 }
2718 return (ret ? 1 : 0);
2719}
2720
1da177e4
LT
2721/**
2722 * kmem_cache_shrink - Shrink a cache.
2723 * @cachep: The cache to shrink.
2724 *
2725 * Releases as many slabs as possible for a cache.
2726 * To help debugging, a zero exit status indicates all slabs were released.
2727 */
343e0d7a 2728int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2729{
8f5be20b 2730 int ret;
40094fa6 2731 BUG_ON(!cachep || in_interrupt());
1da177e4 2732
95402b38 2733 get_online_cpus();
18004c5d 2734 mutex_lock(&slab_mutex);
8f5be20b 2735 ret = __cache_shrink(cachep);
18004c5d 2736 mutex_unlock(&slab_mutex);
95402b38 2737 put_online_cpus();
8f5be20b 2738 return ret;
1da177e4
LT
2739}
2740EXPORT_SYMBOL(kmem_cache_shrink);
2741
945cf2b6 2742int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2743{
12c3667f
CL
2744 int i;
2745 struct kmem_list3 *l3;
2746 int rc = __cache_shrink(cachep);
2747
2748 if (rc)
2749 return rc;
2750
2751 for_each_online_cpu(i)
2752 kfree(cachep->array[i]);
2753
2754 /* NUMA: free the list3 structures */
2755 for_each_online_node(i) {
2756 l3 = cachep->nodelists[i];
2757 if (l3) {
2758 kfree(l3->shared);
2759 free_alien_cache(l3->alien);
2760 kfree(l3);
2761 }
2762 }
2763 return 0;
1da177e4 2764}
1da177e4 2765
e5ac9c5a
RT
2766/*
2767 * Get the memory for a slab management obj.
2768 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2769 * always come from malloc_sizes caches. The slab descriptor cannot
2770 * come from the same cache which is getting created because,
2771 * when we are searching for an appropriate cache for these
2772 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2773 * If we are creating a malloc_sizes cache here it would not be visible to
2774 * kmem_find_general_cachep till the initialization is complete.
2775 * Hence we cannot have slabp_cache same as the original cache.
2776 */
343e0d7a 2777static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2778 int colour_off, gfp_t local_flags,
2779 int nodeid)
1da177e4
LT
2780{
2781 struct slab *slabp;
b28a02de 2782
1da177e4
LT
2783 if (OFF_SLAB(cachep)) {
2784 /* Slab management obj is off-slab. */
5b74ada7 2785 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2786 local_flags, nodeid);
d5cff635
CM
2787 /*
2788 * If the first object in the slab is leaked (it's allocated
2789 * but no one has a reference to it), we want to make sure
2790 * kmemleak does not treat the ->s_mem pointer as a reference
2791 * to the object. Otherwise we will not report the leak.
2792 */
c017b4be
CM
2793 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2794 local_flags);
1da177e4
LT
2795 if (!slabp)
2796 return NULL;
2797 } else {
b28a02de 2798 slabp = objp + colour_off;
1da177e4
LT
2799 colour_off += cachep->slab_size;
2800 }
2801 slabp->inuse = 0;
2802 slabp->colouroff = colour_off;
b28a02de 2803 slabp->s_mem = objp + colour_off;
5b74ada7 2804 slabp->nodeid = nodeid;
e51bfd0a 2805 slabp->free = 0;
1da177e4
LT
2806 return slabp;
2807}
2808
2809static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2810{
b28a02de 2811 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2812}
2813
343e0d7a 2814static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2815 struct slab *slabp)
1da177e4
LT
2816{
2817 int i;
2818
2819 for (i = 0; i < cachep->num; i++) {
8fea4e96 2820 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2821#if DEBUG
2822 /* need to poison the objs? */
2823 if (cachep->flags & SLAB_POISON)
2824 poison_obj(cachep, objp, POISON_FREE);
2825 if (cachep->flags & SLAB_STORE_USER)
2826 *dbg_userword(cachep, objp) = NULL;
2827
2828 if (cachep->flags & SLAB_RED_ZONE) {
2829 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2830 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2831 }
2832 /*
a737b3e2
AM
2833 * Constructors are not allowed to allocate memory from the same
2834 * cache which they are a constructor for. Otherwise, deadlock.
2835 * They must also be threaded.
1da177e4
LT
2836 */
2837 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2838 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2839
2840 if (cachep->flags & SLAB_RED_ZONE) {
2841 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2842 slab_error(cachep, "constructor overwrote the"
b28a02de 2843 " end of an object");
1da177e4
LT
2844 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2845 slab_error(cachep, "constructor overwrote the"
b28a02de 2846 " start of an object");
1da177e4 2847 }
3b0efdfa 2848 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2849 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2850 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2851 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2852#else
2853 if (cachep->ctor)
51cc5068 2854 cachep->ctor(objp);
1da177e4 2855#endif
b28a02de 2856 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2857 }
b28a02de 2858 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2859}
2860
343e0d7a 2861static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2862{
4b51d669
CL
2863 if (CONFIG_ZONE_DMA_FLAG) {
2864 if (flags & GFP_DMA)
a618e89f 2865 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2866 else
a618e89f 2867 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2868 }
1da177e4
LT
2869}
2870
a737b3e2
AM
2871static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2872 int nodeid)
78d382d7 2873{
8fea4e96 2874 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2875 kmem_bufctl_t next;
2876
2877 slabp->inuse++;
2878 next = slab_bufctl(slabp)[slabp->free];
2879#if DEBUG
2880 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2881 WARN_ON(slabp->nodeid != nodeid);
2882#endif
2883 slabp->free = next;
2884
2885 return objp;
2886}
2887
a737b3e2
AM
2888static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2889 void *objp, int nodeid)
78d382d7 2890{
8fea4e96 2891 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2892
2893#if DEBUG
2894 /* Verify that the slab belongs to the intended node */
2895 WARN_ON(slabp->nodeid != nodeid);
2896
871751e2 2897 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2898 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2899 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2900 BUG();
2901 }
2902#endif
2903 slab_bufctl(slabp)[objnr] = slabp->free;
2904 slabp->free = objnr;
2905 slabp->inuse--;
2906}
2907
4776874f
PE
2908/*
2909 * Map pages beginning at addr to the given cache and slab. This is required
2910 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2911 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2912 */
2913static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2914 void *addr)
1da177e4 2915{
4776874f 2916 int nr_pages;
1da177e4
LT
2917 struct page *page;
2918
4776874f 2919 page = virt_to_page(addr);
84097518 2920
4776874f 2921 nr_pages = 1;
84097518 2922 if (likely(!PageCompound(page)))
4776874f
PE
2923 nr_pages <<= cache->gfporder;
2924
1da177e4 2925 do {
35026088
CL
2926 page->slab_cache = cache;
2927 page->slab_page = slab;
1da177e4 2928 page++;
4776874f 2929 } while (--nr_pages);
1da177e4
LT
2930}
2931
2932/*
2933 * Grow (by 1) the number of slabs within a cache. This is called by
2934 * kmem_cache_alloc() when there are no active objs left in a cache.
2935 */
3c517a61
CL
2936static int cache_grow(struct kmem_cache *cachep,
2937 gfp_t flags, int nodeid, void *objp)
1da177e4 2938{
b28a02de 2939 struct slab *slabp;
b28a02de
PE
2940 size_t offset;
2941 gfp_t local_flags;
e498be7d 2942 struct kmem_list3 *l3;
1da177e4 2943
a737b3e2
AM
2944 /*
2945 * Be lazy and only check for valid flags here, keeping it out of the
2946 * critical path in kmem_cache_alloc().
1da177e4 2947 */
6cb06229
CL
2948 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2949 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2950
2e1217cf 2951 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2952 check_irq_off();
2e1217cf
RT
2953 l3 = cachep->nodelists[nodeid];
2954 spin_lock(&l3->list_lock);
1da177e4
LT
2955
2956 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2957 offset = l3->colour_next;
2958 l3->colour_next++;
2959 if (l3->colour_next >= cachep->colour)
2960 l3->colour_next = 0;
2961 spin_unlock(&l3->list_lock);
1da177e4 2962
2e1217cf 2963 offset *= cachep->colour_off;
1da177e4
LT
2964
2965 if (local_flags & __GFP_WAIT)
2966 local_irq_enable();
2967
2968 /*
2969 * The test for missing atomic flag is performed here, rather than
2970 * the more obvious place, simply to reduce the critical path length
2971 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2972 * will eventually be caught here (where it matters).
2973 */
2974 kmem_flagcheck(cachep, flags);
2975
a737b3e2
AM
2976 /*
2977 * Get mem for the objs. Attempt to allocate a physical page from
2978 * 'nodeid'.
e498be7d 2979 */
3c517a61 2980 if (!objp)
b8c1c5da 2981 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2982 if (!objp)
1da177e4
LT
2983 goto failed;
2984
2985 /* Get slab management. */
3c517a61 2986 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2987 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2988 if (!slabp)
1da177e4
LT
2989 goto opps1;
2990
4776874f 2991 slab_map_pages(cachep, slabp, objp);
1da177e4 2992
a35afb83 2993 cache_init_objs(cachep, slabp);
1da177e4
LT
2994
2995 if (local_flags & __GFP_WAIT)
2996 local_irq_disable();
2997 check_irq_off();
e498be7d 2998 spin_lock(&l3->list_lock);
1da177e4
LT
2999
3000 /* Make slab active. */
e498be7d 3001 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 3002 STATS_INC_GROWN(cachep);
e498be7d
CL
3003 l3->free_objects += cachep->num;
3004 spin_unlock(&l3->list_lock);
1da177e4 3005 return 1;
a737b3e2 3006opps1:
1da177e4 3007 kmem_freepages(cachep, objp);
a737b3e2 3008failed:
1da177e4
LT
3009 if (local_flags & __GFP_WAIT)
3010 local_irq_disable();
3011 return 0;
3012}
3013
3014#if DEBUG
3015
3016/*
3017 * Perform extra freeing checks:
3018 * - detect bad pointers.
3019 * - POISON/RED_ZONE checking
1da177e4
LT
3020 */
3021static void kfree_debugcheck(const void *objp)
3022{
1da177e4
LT
3023 if (!virt_addr_valid(objp)) {
3024 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3025 (unsigned long)objp);
3026 BUG();
1da177e4 3027 }
1da177e4
LT
3028}
3029
58ce1fd5
PE
3030static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3031{
b46b8f19 3032 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3033
3034 redzone1 = *dbg_redzone1(cache, obj);
3035 redzone2 = *dbg_redzone2(cache, obj);
3036
3037 /*
3038 * Redzone is ok.
3039 */
3040 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3041 return;
3042
3043 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3044 slab_error(cache, "double free detected");
3045 else
3046 slab_error(cache, "memory outside object was overwritten");
3047
b46b8f19 3048 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3049 obj, redzone1, redzone2);
3050}
3051
343e0d7a 3052static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 3053 void *caller)
1da177e4
LT
3054{
3055 struct page *page;
3056 unsigned int objnr;
3057 struct slab *slabp;
3058
80cbd911
MW
3059 BUG_ON(virt_to_cache(objp) != cachep);
3060
3dafccf2 3061 objp -= obj_offset(cachep);
1da177e4 3062 kfree_debugcheck(objp);
b49af68f 3063 page = virt_to_head_page(objp);
1da177e4 3064
35026088 3065 slabp = page->slab_page;
1da177e4
LT
3066
3067 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3068 verify_redzone_free(cachep, objp);
1da177e4
LT
3069 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3070 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3071 }
3072 if (cachep->flags & SLAB_STORE_USER)
3073 *dbg_userword(cachep, objp) = caller;
3074
8fea4e96 3075 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3076
3077 BUG_ON(objnr >= cachep->num);
8fea4e96 3078 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3079
871751e2
AV
3080#ifdef CONFIG_DEBUG_SLAB_LEAK
3081 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3082#endif
1da177e4
LT
3083 if (cachep->flags & SLAB_POISON) {
3084#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3085 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3086 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3087 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3088 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3089 } else {
3090 poison_obj(cachep, objp, POISON_FREE);
3091 }
3092#else
3093 poison_obj(cachep, objp, POISON_FREE);
3094#endif
3095 }
3096 return objp;
3097}
3098
343e0d7a 3099static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3100{
3101 kmem_bufctl_t i;
3102 int entries = 0;
b28a02de 3103
1da177e4
LT
3104 /* Check slab's freelist to see if this obj is there. */
3105 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3106 entries++;
3107 if (entries > cachep->num || i >= cachep->num)
3108 goto bad;
3109 }
3110 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3111bad:
3112 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3113 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3114 cachep->name, cachep->num, slabp, slabp->inuse,
3115 print_tainted());
fdde6abb
SAS
3116 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3117 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3118 1);
1da177e4
LT
3119 BUG();
3120 }
3121}
3122#else
3123#define kfree_debugcheck(x) do { } while(0)
3124#define cache_free_debugcheck(x,objp,z) (objp)
3125#define check_slabp(x,y) do { } while(0)
3126#endif
3127
072bb0aa
MG
3128static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3129 bool force_refill)
1da177e4
LT
3130{
3131 int batchcount;
3132 struct kmem_list3 *l3;
3133 struct array_cache *ac;
1ca4cb24
PE
3134 int node;
3135
1da177e4 3136 check_irq_off();
7d6e6d09 3137 node = numa_mem_id();
072bb0aa
MG
3138 if (unlikely(force_refill))
3139 goto force_grow;
3140retry:
9a2dba4b 3141 ac = cpu_cache_get(cachep);
1da177e4
LT
3142 batchcount = ac->batchcount;
3143 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3144 /*
3145 * If there was little recent activity on this cache, then
3146 * perform only a partial refill. Otherwise we could generate
3147 * refill bouncing.
1da177e4
LT
3148 */
3149 batchcount = BATCHREFILL_LIMIT;
3150 }
1ca4cb24 3151 l3 = cachep->nodelists[node];
e498be7d
CL
3152
3153 BUG_ON(ac->avail > 0 || !l3);
3154 spin_lock(&l3->list_lock);
1da177e4 3155
3ded175a 3156 /* See if we can refill from the shared array */
44b57f1c
NP
3157 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3158 l3->shared->touched = 1;
3ded175a 3159 goto alloc_done;
44b57f1c 3160 }
3ded175a 3161
1da177e4
LT
3162 while (batchcount > 0) {
3163 struct list_head *entry;
3164 struct slab *slabp;
3165 /* Get slab alloc is to come from. */
3166 entry = l3->slabs_partial.next;
3167 if (entry == &l3->slabs_partial) {
3168 l3->free_touched = 1;
3169 entry = l3->slabs_free.next;
3170 if (entry == &l3->slabs_free)
3171 goto must_grow;
3172 }
3173
3174 slabp = list_entry(entry, struct slab, list);
3175 check_slabp(cachep, slabp);
3176 check_spinlock_acquired(cachep);
714b8171
PE
3177
3178 /*
3179 * The slab was either on partial or free list so
3180 * there must be at least one object available for
3181 * allocation.
3182 */
249b9f33 3183 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3184
1da177e4 3185 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3186 STATS_INC_ALLOCED(cachep);
3187 STATS_INC_ACTIVE(cachep);
3188 STATS_SET_HIGH(cachep);
3189
072bb0aa
MG
3190 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3191 node));
1da177e4
LT
3192 }
3193 check_slabp(cachep, slabp);
3194
3195 /* move slabp to correct slabp list: */
3196 list_del(&slabp->list);
3197 if (slabp->free == BUFCTL_END)
3198 list_add(&slabp->list, &l3->slabs_full);
3199 else
3200 list_add(&slabp->list, &l3->slabs_partial);
3201 }
3202
a737b3e2 3203must_grow:
1da177e4 3204 l3->free_objects -= ac->avail;
a737b3e2 3205alloc_done:
e498be7d 3206 spin_unlock(&l3->list_lock);
1da177e4
LT
3207
3208 if (unlikely(!ac->avail)) {
3209 int x;
072bb0aa 3210force_grow:
3c517a61 3211 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3212
a737b3e2 3213 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3214 ac = cpu_cache_get(cachep);
072bb0aa
MG
3215
3216 /* no objects in sight? abort */
3217 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3218 return NULL;
3219
a737b3e2 3220 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3221 goto retry;
3222 }
3223 ac->touched = 1;
072bb0aa
MG
3224
3225 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3226}
3227
a737b3e2
AM
3228static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3229 gfp_t flags)
1da177e4
LT
3230{
3231 might_sleep_if(flags & __GFP_WAIT);
3232#if DEBUG
3233 kmem_flagcheck(cachep, flags);
3234#endif
3235}
3236
3237#if DEBUG
a737b3e2
AM
3238static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3239 gfp_t flags, void *objp, void *caller)
1da177e4 3240{
b28a02de 3241 if (!objp)
1da177e4 3242 return objp;
b28a02de 3243 if (cachep->flags & SLAB_POISON) {
1da177e4 3244#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3245 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3246 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3247 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3248 else
3249 check_poison_obj(cachep, objp);
3250#else
3251 check_poison_obj(cachep, objp);
3252#endif
3253 poison_obj(cachep, objp, POISON_INUSE);
3254 }
3255 if (cachep->flags & SLAB_STORE_USER)
3256 *dbg_userword(cachep, objp) = caller;
3257
3258 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3259 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3260 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3261 slab_error(cachep, "double free, or memory outside"
3262 " object was overwritten");
b28a02de 3263 printk(KERN_ERR
b46b8f19 3264 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3265 objp, *dbg_redzone1(cachep, objp),
3266 *dbg_redzone2(cachep, objp));
1da177e4
LT
3267 }
3268 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3269 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3270 }
871751e2
AV
3271#ifdef CONFIG_DEBUG_SLAB_LEAK
3272 {
3273 struct slab *slabp;
3274 unsigned objnr;
3275
35026088 3276 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3277 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3278 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3279 }
3280#endif
3dafccf2 3281 objp += obj_offset(cachep);
4f104934 3282 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3283 cachep->ctor(objp);
7ea466f2
TH
3284 if (ARCH_SLAB_MINALIGN &&
3285 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3286 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3287 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3288 }
1da177e4
LT
3289 return objp;
3290}
3291#else
3292#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3293#endif
3294
773ff60e 3295static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3296{
9b030cb8 3297 if (cachep == kmem_cache)
773ff60e 3298 return false;
8a8b6502 3299
8c138bc0 3300 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3301}
3302
343e0d7a 3303static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3304{
b28a02de 3305 void *objp;
1da177e4 3306 struct array_cache *ac;
072bb0aa 3307 bool force_refill = false;
1da177e4 3308
5c382300 3309 check_irq_off();
8a8b6502 3310
9a2dba4b 3311 ac = cpu_cache_get(cachep);
1da177e4 3312 if (likely(ac->avail)) {
1da177e4 3313 ac->touched = 1;
072bb0aa
MG
3314 objp = ac_get_obj(cachep, ac, flags, false);
3315
ddbf2e83 3316 /*
072bb0aa
MG
3317 * Allow for the possibility all avail objects are not allowed
3318 * by the current flags
ddbf2e83 3319 */
072bb0aa
MG
3320 if (objp) {
3321 STATS_INC_ALLOCHIT(cachep);
3322 goto out;
3323 }
3324 force_refill = true;
1da177e4 3325 }
072bb0aa
MG
3326
3327 STATS_INC_ALLOCMISS(cachep);
3328 objp = cache_alloc_refill(cachep, flags, force_refill);
3329 /*
3330 * the 'ac' may be updated by cache_alloc_refill(),
3331 * and kmemleak_erase() requires its correct value.
3332 */
3333 ac = cpu_cache_get(cachep);
3334
3335out:
d5cff635
CM
3336 /*
3337 * To avoid a false negative, if an object that is in one of the
3338 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3339 * treat the array pointers as a reference to the object.
3340 */
f3d8b53a
O
3341 if (objp)
3342 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3343 return objp;
3344}
3345
e498be7d 3346#ifdef CONFIG_NUMA
c61afb18 3347/*
b2455396 3348 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3349 *
3350 * If we are in_interrupt, then process context, including cpusets and
3351 * mempolicy, may not apply and should not be used for allocation policy.
3352 */
3353static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3354{
3355 int nid_alloc, nid_here;
3356
765c4507 3357 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3358 return NULL;
7d6e6d09 3359 nid_alloc = nid_here = numa_mem_id();
c61afb18 3360 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3361 nid_alloc = cpuset_slab_spread_node();
c61afb18 3362 else if (current->mempolicy)
e7b691b0 3363 nid_alloc = slab_node();
c61afb18 3364 if (nid_alloc != nid_here)
8b98c169 3365 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3366 return NULL;
3367}
3368
765c4507
CL
3369/*
3370 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3371 * certain node and fall back is permitted. First we scan all the
3372 * available nodelists for available objects. If that fails then we
3373 * perform an allocation without specifying a node. This allows the page
3374 * allocator to do its reclaim / fallback magic. We then insert the
3375 * slab into the proper nodelist and then allocate from it.
765c4507 3376 */
8c8cc2c1 3377static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3378{
8c8cc2c1
PE
3379 struct zonelist *zonelist;
3380 gfp_t local_flags;
dd1a239f 3381 struct zoneref *z;
54a6eb5c
MG
3382 struct zone *zone;
3383 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3384 void *obj = NULL;
3c517a61 3385 int nid;
cc9a6c87 3386 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3387
3388 if (flags & __GFP_THISNODE)
3389 return NULL;
3390
6cb06229 3391 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3392
cc9a6c87
MG
3393retry_cpuset:
3394 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3395 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3396
3c517a61
CL
3397retry:
3398 /*
3399 * Look through allowed nodes for objects available
3400 * from existing per node queues.
3401 */
54a6eb5c
MG
3402 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3403 nid = zone_to_nid(zone);
aedb0eb1 3404
54a6eb5c 3405 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3406 cache->nodelists[nid] &&
481c5346 3407 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3408 obj = ____cache_alloc_node(cache,
3409 flags | GFP_THISNODE, nid);
481c5346
CL
3410 if (obj)
3411 break;
3412 }
3c517a61
CL
3413 }
3414
cfce6604 3415 if (!obj) {
3c517a61
CL
3416 /*
3417 * This allocation will be performed within the constraints
3418 * of the current cpuset / memory policy requirements.
3419 * We may trigger various forms of reclaim on the allowed
3420 * set and go into memory reserves if necessary.
3421 */
dd47ea75
CL
3422 if (local_flags & __GFP_WAIT)
3423 local_irq_enable();
3424 kmem_flagcheck(cache, flags);
7d6e6d09 3425 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3426 if (local_flags & __GFP_WAIT)
3427 local_irq_disable();
3c517a61
CL
3428 if (obj) {
3429 /*
3430 * Insert into the appropriate per node queues
3431 */
3432 nid = page_to_nid(virt_to_page(obj));
3433 if (cache_grow(cache, flags, nid, obj)) {
3434 obj = ____cache_alloc_node(cache,
3435 flags | GFP_THISNODE, nid);
3436 if (!obj)
3437 /*
3438 * Another processor may allocate the
3439 * objects in the slab since we are
3440 * not holding any locks.
3441 */
3442 goto retry;
3443 } else {
b6a60451 3444 /* cache_grow already freed obj */
3c517a61
CL
3445 obj = NULL;
3446 }
3447 }
aedb0eb1 3448 }
cc9a6c87
MG
3449
3450 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3451 goto retry_cpuset;
765c4507
CL
3452 return obj;
3453}
3454
e498be7d
CL
3455/*
3456 * A interface to enable slab creation on nodeid
1da177e4 3457 */
8b98c169 3458static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3459 int nodeid)
e498be7d
CL
3460{
3461 struct list_head *entry;
b28a02de
PE
3462 struct slab *slabp;
3463 struct kmem_list3 *l3;
3464 void *obj;
b28a02de
PE
3465 int x;
3466
3467 l3 = cachep->nodelists[nodeid];
3468 BUG_ON(!l3);
3469
a737b3e2 3470retry:
ca3b9b91 3471 check_irq_off();
b28a02de
PE
3472 spin_lock(&l3->list_lock);
3473 entry = l3->slabs_partial.next;
3474 if (entry == &l3->slabs_partial) {
3475 l3->free_touched = 1;
3476 entry = l3->slabs_free.next;
3477 if (entry == &l3->slabs_free)
3478 goto must_grow;
3479 }
3480
3481 slabp = list_entry(entry, struct slab, list);
3482 check_spinlock_acquired_node(cachep, nodeid);
3483 check_slabp(cachep, slabp);
3484
3485 STATS_INC_NODEALLOCS(cachep);
3486 STATS_INC_ACTIVE(cachep);
3487 STATS_SET_HIGH(cachep);
3488
3489 BUG_ON(slabp->inuse == cachep->num);
3490
78d382d7 3491 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3492 check_slabp(cachep, slabp);
3493 l3->free_objects--;
3494 /* move slabp to correct slabp list: */
3495 list_del(&slabp->list);
3496
a737b3e2 3497 if (slabp->free == BUFCTL_END)
b28a02de 3498 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3499 else
b28a02de 3500 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3501
b28a02de
PE
3502 spin_unlock(&l3->list_lock);
3503 goto done;
e498be7d 3504
a737b3e2 3505must_grow:
b28a02de 3506 spin_unlock(&l3->list_lock);
3c517a61 3507 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3508 if (x)
3509 goto retry;
1da177e4 3510
8c8cc2c1 3511 return fallback_alloc(cachep, flags);
e498be7d 3512
a737b3e2 3513done:
b28a02de 3514 return obj;
e498be7d 3515}
8c8cc2c1
PE
3516
3517/**
3518 * kmem_cache_alloc_node - Allocate an object on the specified node
3519 * @cachep: The cache to allocate from.
3520 * @flags: See kmalloc().
3521 * @nodeid: node number of the target node.
3522 * @caller: return address of caller, used for debug information
3523 *
3524 * Identical to kmem_cache_alloc but it will allocate memory on the given
3525 * node, which can improve the performance for cpu bound structures.
3526 *
3527 * Fallback to other node is possible if __GFP_THISNODE is not set.
3528 */
3529static __always_inline void *
3530__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3531 void *caller)
3532{
3533 unsigned long save_flags;
3534 void *ptr;
7d6e6d09 3535 int slab_node = numa_mem_id();
8c8cc2c1 3536
dcce284a 3537 flags &= gfp_allowed_mask;
7e85ee0c 3538
cf40bd16
NP
3539 lockdep_trace_alloc(flags);
3540
773ff60e 3541 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3542 return NULL;
3543
8c8cc2c1
PE
3544 cache_alloc_debugcheck_before(cachep, flags);
3545 local_irq_save(save_flags);
3546
eacbbae3 3547 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3548 nodeid = slab_node;
8c8cc2c1
PE
3549
3550 if (unlikely(!cachep->nodelists[nodeid])) {
3551 /* Node not bootstrapped yet */
3552 ptr = fallback_alloc(cachep, flags);
3553 goto out;
3554 }
3555
7d6e6d09 3556 if (nodeid == slab_node) {
8c8cc2c1
PE
3557 /*
3558 * Use the locally cached objects if possible.
3559 * However ____cache_alloc does not allow fallback
3560 * to other nodes. It may fail while we still have
3561 * objects on other nodes available.
3562 */
3563 ptr = ____cache_alloc(cachep, flags);
3564 if (ptr)
3565 goto out;
3566 }
3567 /* ___cache_alloc_node can fall back to other nodes */
3568 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3569 out:
3570 local_irq_restore(save_flags);
3571 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3572 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3573 flags);
8c8cc2c1 3574
c175eea4 3575 if (likely(ptr))
8c138bc0 3576 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3577
d07dbea4 3578 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3579 memset(ptr, 0, cachep->object_size);
d07dbea4 3580
8c8cc2c1
PE
3581 return ptr;
3582}
3583
3584static __always_inline void *
3585__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3586{
3587 void *objp;
3588
3589 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3590 objp = alternate_node_alloc(cache, flags);
3591 if (objp)
3592 goto out;
3593 }
3594 objp = ____cache_alloc(cache, flags);
3595
3596 /*
3597 * We may just have run out of memory on the local node.
3598 * ____cache_alloc_node() knows how to locate memory on other nodes
3599 */
7d6e6d09
LS
3600 if (!objp)
3601 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3602
3603 out:
3604 return objp;
3605}
3606#else
3607
3608static __always_inline void *
3609__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3610{
3611 return ____cache_alloc(cachep, flags);
3612}
3613
3614#endif /* CONFIG_NUMA */
3615
3616static __always_inline void *
3617__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3618{
3619 unsigned long save_flags;
3620 void *objp;
3621
dcce284a 3622 flags &= gfp_allowed_mask;
7e85ee0c 3623
cf40bd16
NP
3624 lockdep_trace_alloc(flags);
3625
773ff60e 3626 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3627 return NULL;
3628
8c8cc2c1
PE
3629 cache_alloc_debugcheck_before(cachep, flags);
3630 local_irq_save(save_flags);
3631 objp = __do_cache_alloc(cachep, flags);
3632 local_irq_restore(save_flags);
3633 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3634 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3635 flags);
8c8cc2c1
PE
3636 prefetchw(objp);
3637
c175eea4 3638 if (likely(objp))
8c138bc0 3639 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3640
d07dbea4 3641 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3642 memset(objp, 0, cachep->object_size);
d07dbea4 3643
8c8cc2c1
PE
3644 return objp;
3645}
e498be7d
CL
3646
3647/*
3648 * Caller needs to acquire correct kmem_list's list_lock
3649 */
343e0d7a 3650static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3651 int node)
1da177e4
LT
3652{
3653 int i;
e498be7d 3654 struct kmem_list3 *l3;
1da177e4
LT
3655
3656 for (i = 0; i < nr_objects; i++) {
072bb0aa 3657 void *objp;
1da177e4 3658 struct slab *slabp;
1da177e4 3659
072bb0aa
MG
3660 clear_obj_pfmemalloc(&objpp[i]);
3661 objp = objpp[i];
3662
6ed5eb22 3663 slabp = virt_to_slab(objp);
ff69416e 3664 l3 = cachep->nodelists[node];
1da177e4 3665 list_del(&slabp->list);
ff69416e 3666 check_spinlock_acquired_node(cachep, node);
1da177e4 3667 check_slabp(cachep, slabp);
78d382d7 3668 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3669 STATS_DEC_ACTIVE(cachep);
e498be7d 3670 l3->free_objects++;
1da177e4
LT
3671 check_slabp(cachep, slabp);
3672
3673 /* fixup slab chains */
3674 if (slabp->inuse == 0) {
e498be7d
CL
3675 if (l3->free_objects > l3->free_limit) {
3676 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3677 /* No need to drop any previously held
3678 * lock here, even if we have a off-slab slab
3679 * descriptor it is guaranteed to come from
3680 * a different cache, refer to comments before
3681 * alloc_slabmgmt.
3682 */
1da177e4
LT
3683 slab_destroy(cachep, slabp);
3684 } else {
e498be7d 3685 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3686 }
3687 } else {
3688 /* Unconditionally move a slab to the end of the
3689 * partial list on free - maximum time for the
3690 * other objects to be freed, too.
3691 */
e498be7d 3692 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3693 }
3694 }
3695}
3696
343e0d7a 3697static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3698{
3699 int batchcount;
e498be7d 3700 struct kmem_list3 *l3;
7d6e6d09 3701 int node = numa_mem_id();
1da177e4
LT
3702
3703 batchcount = ac->batchcount;
3704#if DEBUG
3705 BUG_ON(!batchcount || batchcount > ac->avail);
3706#endif
3707 check_irq_off();
ff69416e 3708 l3 = cachep->nodelists[node];
873623df 3709 spin_lock(&l3->list_lock);
e498be7d
CL
3710 if (l3->shared) {
3711 struct array_cache *shared_array = l3->shared;
b28a02de 3712 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3713 if (max) {
3714 if (batchcount > max)
3715 batchcount = max;
e498be7d 3716 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3717 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3718 shared_array->avail += batchcount;
3719 goto free_done;
3720 }
3721 }
3722
ff69416e 3723 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3724free_done:
1da177e4
LT
3725#if STATS
3726 {
3727 int i = 0;
3728 struct list_head *p;
3729
e498be7d
CL
3730 p = l3->slabs_free.next;
3731 while (p != &(l3->slabs_free)) {
1da177e4
LT
3732 struct slab *slabp;
3733
3734 slabp = list_entry(p, struct slab, list);
3735 BUG_ON(slabp->inuse);
3736
3737 i++;
3738 p = p->next;
3739 }
3740 STATS_SET_FREEABLE(cachep, i);
3741 }
3742#endif
e498be7d 3743 spin_unlock(&l3->list_lock);
1da177e4 3744 ac->avail -= batchcount;
a737b3e2 3745 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3746}
3747
3748/*
a737b3e2
AM
3749 * Release an obj back to its cache. If the obj has a constructed state, it must
3750 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3751 */
a947eb95
SS
3752static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3753 void *caller)
1da177e4 3754{
9a2dba4b 3755 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3756
3757 check_irq_off();
d5cff635 3758 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3759 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3760
8c138bc0 3761 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3762
1807a1aa
SS
3763 /*
3764 * Skip calling cache_free_alien() when the platform is not numa.
3765 * This will avoid cache misses that happen while accessing slabp (which
3766 * is per page memory reference) to get nodeid. Instead use a global
3767 * variable to skip the call, which is mostly likely to be present in
3768 * the cache.
3769 */
b6e68bc1 3770 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3771 return;
3772
1da177e4
LT
3773 if (likely(ac->avail < ac->limit)) {
3774 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3775 } else {
3776 STATS_INC_FREEMISS(cachep);
3777 cache_flusharray(cachep, ac);
1da177e4 3778 }
42c8c99c 3779
072bb0aa 3780 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3781}
3782
3783/**
3784 * kmem_cache_alloc - Allocate an object
3785 * @cachep: The cache to allocate from.
3786 * @flags: See kmalloc().
3787 *
3788 * Allocate an object from this cache. The flags are only relevant
3789 * if the cache has no available objects.
3790 */
343e0d7a 3791void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3792{
36555751
EGM
3793 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3794
ca2b84cb 3795 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3796 cachep->object_size, cachep->size, flags);
36555751
EGM
3797
3798 return ret;
1da177e4
LT
3799}
3800EXPORT_SYMBOL(kmem_cache_alloc);
3801
0f24f128 3802#ifdef CONFIG_TRACING
85beb586
SR
3803void *
3804kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3805{
85beb586
SR
3806 void *ret;
3807
3808 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3809
3810 trace_kmalloc(_RET_IP_, ret,
3811 size, slab_buffer_size(cachep), flags);
3812 return ret;
36555751 3813}
85beb586 3814EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3815#endif
3816
1da177e4 3817#ifdef CONFIG_NUMA
8b98c169
CH
3818void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3819{
36555751
EGM
3820 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3821 __builtin_return_address(0));
3822
ca2b84cb 3823 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3824 cachep->object_size, cachep->size,
ca2b84cb 3825 flags, nodeid);
36555751
EGM
3826
3827 return ret;
8b98c169 3828}
1da177e4
LT
3829EXPORT_SYMBOL(kmem_cache_alloc_node);
3830
0f24f128 3831#ifdef CONFIG_TRACING
85beb586
SR
3832void *kmem_cache_alloc_node_trace(size_t size,
3833 struct kmem_cache *cachep,
3834 gfp_t flags,
3835 int nodeid)
36555751 3836{
85beb586
SR
3837 void *ret;
3838
3839 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3840 __builtin_return_address(0));
85beb586
SR
3841 trace_kmalloc_node(_RET_IP_, ret,
3842 size, slab_buffer_size(cachep),
3843 flags, nodeid);
3844 return ret;
36555751 3845}
85beb586 3846EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3847#endif
3848
8b98c169
CH
3849static __always_inline void *
3850__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3851{
343e0d7a 3852 struct kmem_cache *cachep;
97e2bde4
MS
3853
3854 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3855 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3856 return cachep;
85beb586 3857 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3858}
8b98c169 3859
0bb38a5c 3860#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3861void *__kmalloc_node(size_t size, gfp_t flags, int node)
3862{
3863 return __do_kmalloc_node(size, flags, node,
3864 __builtin_return_address(0));
3865}
dbe5e69d 3866EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3867
3868void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3869 int node, unsigned long caller)
8b98c169 3870{
ce71e27c 3871 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3872}
3873EXPORT_SYMBOL(__kmalloc_node_track_caller);
3874#else
3875void *__kmalloc_node(size_t size, gfp_t flags, int node)
3876{
3877 return __do_kmalloc_node(size, flags, node, NULL);
3878}
3879EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3880#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3881#endif /* CONFIG_NUMA */
1da177e4
LT
3882
3883/**
800590f5 3884 * __do_kmalloc - allocate memory
1da177e4 3885 * @size: how many bytes of memory are required.
800590f5 3886 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3887 * @caller: function caller for debug tracking of the caller
1da177e4 3888 */
7fd6b141
PE
3889static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3890 void *caller)
1da177e4 3891{
343e0d7a 3892 struct kmem_cache *cachep;
36555751 3893 void *ret;
1da177e4 3894
97e2bde4
MS
3895 /* If you want to save a few bytes .text space: replace
3896 * __ with kmem_.
3897 * Then kmalloc uses the uninlined functions instead of the inline
3898 * functions.
3899 */
3900 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3901 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3902 return cachep;
36555751
EGM
3903 ret = __cache_alloc(cachep, flags, caller);
3904
ca2b84cb 3905 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3906 size, cachep->size, flags);
36555751
EGM
3907
3908 return ret;
7fd6b141
PE
3909}
3910
7fd6b141 3911
0bb38a5c 3912#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3913void *__kmalloc(size_t size, gfp_t flags)
3914{
871751e2 3915 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3916}
3917EXPORT_SYMBOL(__kmalloc);
3918
ce71e27c 3919void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3920{
ce71e27c 3921 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3922}
3923EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3924
3925#else
3926void *__kmalloc(size_t size, gfp_t flags)
3927{
3928 return __do_kmalloc(size, flags, NULL);
3929}
3930EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3931#endif
3932
1da177e4
LT
3933/**
3934 * kmem_cache_free - Deallocate an object
3935 * @cachep: The cache the allocation was from.
3936 * @objp: The previously allocated object.
3937 *
3938 * Free an object which was previously allocated from this
3939 * cache.
3940 */
343e0d7a 3941void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3942{
3943 unsigned long flags;
3944
3945 local_irq_save(flags);
d97d476b 3946 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3947 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3948 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3949 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3950 local_irq_restore(flags);
36555751 3951
ca2b84cb 3952 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3953}
3954EXPORT_SYMBOL(kmem_cache_free);
3955
1da177e4
LT
3956/**
3957 * kfree - free previously allocated memory
3958 * @objp: pointer returned by kmalloc.
3959 *
80e93eff
PE
3960 * If @objp is NULL, no operation is performed.
3961 *
1da177e4
LT
3962 * Don't free memory not originally allocated by kmalloc()
3963 * or you will run into trouble.
3964 */
3965void kfree(const void *objp)
3966{
343e0d7a 3967 struct kmem_cache *c;
1da177e4
LT
3968 unsigned long flags;
3969
2121db74
PE
3970 trace_kfree(_RET_IP_, objp);
3971
6cb8f913 3972 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3973 return;
3974 local_irq_save(flags);
3975 kfree_debugcheck(objp);
6ed5eb22 3976 c = virt_to_cache(objp);
8c138bc0
CL
3977 debug_check_no_locks_freed(objp, c->object_size);
3978
3979 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 3980 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3981 local_irq_restore(flags);
3982}
3983EXPORT_SYMBOL(kfree);
3984
343e0d7a 3985unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3986{
8c138bc0 3987 return cachep->object_size;
1da177e4
LT
3988}
3989EXPORT_SYMBOL(kmem_cache_size);
3990
e498be7d 3991/*
183ff22b 3992 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3993 */
83b519e8 3994static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3995{
3996 int node;
3997 struct kmem_list3 *l3;
cafeb02e 3998 struct array_cache *new_shared;
3395ee05 3999 struct array_cache **new_alien = NULL;
e498be7d 4000
9c09a95c 4001 for_each_online_node(node) {
cafeb02e 4002
3395ee05 4003 if (use_alien_caches) {
83b519e8 4004 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
4005 if (!new_alien)
4006 goto fail;
4007 }
cafeb02e 4008
63109846
ED
4009 new_shared = NULL;
4010 if (cachep->shared) {
4011 new_shared = alloc_arraycache(node,
0718dc2a 4012 cachep->shared*cachep->batchcount,
83b519e8 4013 0xbaadf00d, gfp);
63109846
ED
4014 if (!new_shared) {
4015 free_alien_cache(new_alien);
4016 goto fail;
4017 }
0718dc2a 4018 }
cafeb02e 4019
a737b3e2
AM
4020 l3 = cachep->nodelists[node];
4021 if (l3) {
cafeb02e
CL
4022 struct array_cache *shared = l3->shared;
4023
e498be7d
CL
4024 spin_lock_irq(&l3->list_lock);
4025
cafeb02e 4026 if (shared)
0718dc2a
CL
4027 free_block(cachep, shared->entry,
4028 shared->avail, node);
e498be7d 4029
cafeb02e
CL
4030 l3->shared = new_shared;
4031 if (!l3->alien) {
e498be7d
CL
4032 l3->alien = new_alien;
4033 new_alien = NULL;
4034 }
b28a02de 4035 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4036 cachep->batchcount + cachep->num;
e498be7d 4037 spin_unlock_irq(&l3->list_lock);
cafeb02e 4038 kfree(shared);
e498be7d
CL
4039 free_alien_cache(new_alien);
4040 continue;
4041 }
83b519e8 4042 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4043 if (!l3) {
4044 free_alien_cache(new_alien);
4045 kfree(new_shared);
e498be7d 4046 goto fail;
0718dc2a 4047 }
e498be7d
CL
4048
4049 kmem_list3_init(l3);
4050 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4051 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4052 l3->shared = new_shared;
e498be7d 4053 l3->alien = new_alien;
b28a02de 4054 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4055 cachep->batchcount + cachep->num;
e498be7d
CL
4056 cachep->nodelists[node] = l3;
4057 }
cafeb02e 4058 return 0;
0718dc2a 4059
a737b3e2 4060fail:
3b0efdfa 4061 if (!cachep->list.next) {
0718dc2a
CL
4062 /* Cache is not active yet. Roll back what we did */
4063 node--;
4064 while (node >= 0) {
4065 if (cachep->nodelists[node]) {
4066 l3 = cachep->nodelists[node];
4067
4068 kfree(l3->shared);
4069 free_alien_cache(l3->alien);
4070 kfree(l3);
4071 cachep->nodelists[node] = NULL;
4072 }
4073 node--;
4074 }
4075 }
cafeb02e 4076 return -ENOMEM;
e498be7d
CL
4077}
4078
1da177e4 4079struct ccupdate_struct {
343e0d7a 4080 struct kmem_cache *cachep;
acfe7d74 4081 struct array_cache *new[0];
1da177e4
LT
4082};
4083
4084static void do_ccupdate_local(void *info)
4085{
a737b3e2 4086 struct ccupdate_struct *new = info;
1da177e4
LT
4087 struct array_cache *old;
4088
4089 check_irq_off();
9a2dba4b 4090 old = cpu_cache_get(new->cachep);
e498be7d 4091
1da177e4
LT
4092 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4093 new->new[smp_processor_id()] = old;
4094}
4095
18004c5d 4096/* Always called with the slab_mutex held */
a737b3e2 4097static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4098 int batchcount, int shared, gfp_t gfp)
1da177e4 4099{
d2e7b7d0 4100 struct ccupdate_struct *new;
2ed3a4ef 4101 int i;
1da177e4 4102
acfe7d74
ED
4103 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4104 gfp);
d2e7b7d0
SS
4105 if (!new)
4106 return -ENOMEM;
4107
e498be7d 4108 for_each_online_cpu(i) {
7d6e6d09 4109 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4110 batchcount, gfp);
d2e7b7d0 4111 if (!new->new[i]) {
b28a02de 4112 for (i--; i >= 0; i--)
d2e7b7d0
SS
4113 kfree(new->new[i]);
4114 kfree(new);
e498be7d 4115 return -ENOMEM;
1da177e4
LT
4116 }
4117 }
d2e7b7d0 4118 new->cachep = cachep;
1da177e4 4119
15c8b6c1 4120 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4121
1da177e4 4122 check_irq_on();
1da177e4
LT
4123 cachep->batchcount = batchcount;
4124 cachep->limit = limit;
e498be7d 4125 cachep->shared = shared;
1da177e4 4126
e498be7d 4127 for_each_online_cpu(i) {
d2e7b7d0 4128 struct array_cache *ccold = new->new[i];
1da177e4
LT
4129 if (!ccold)
4130 continue;
7d6e6d09
LS
4131 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4132 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4133 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4134 kfree(ccold);
4135 }
d2e7b7d0 4136 kfree(new);
83b519e8 4137 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4138}
4139
18004c5d 4140/* Called with slab_mutex held always */
83b519e8 4141static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4142{
4143 int err;
4144 int limit, shared;
4145
a737b3e2
AM
4146 /*
4147 * The head array serves three purposes:
1da177e4
LT
4148 * - create a LIFO ordering, i.e. return objects that are cache-warm
4149 * - reduce the number of spinlock operations.
a737b3e2 4150 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4151 * bufctl chains: array operations are cheaper.
4152 * The numbers are guessed, we should auto-tune as described by
4153 * Bonwick.
4154 */
3b0efdfa 4155 if (cachep->size > 131072)
1da177e4 4156 limit = 1;
3b0efdfa 4157 else if (cachep->size > PAGE_SIZE)
1da177e4 4158 limit = 8;
3b0efdfa 4159 else if (cachep->size > 1024)
1da177e4 4160 limit = 24;
3b0efdfa 4161 else if (cachep->size > 256)
1da177e4
LT
4162 limit = 54;
4163 else
4164 limit = 120;
4165
a737b3e2
AM
4166 /*
4167 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4168 * allocation behaviour: Most allocs on one cpu, most free operations
4169 * on another cpu. For these cases, an efficient object passing between
4170 * cpus is necessary. This is provided by a shared array. The array
4171 * replaces Bonwick's magazine layer.
4172 * On uniprocessor, it's functionally equivalent (but less efficient)
4173 * to a larger limit. Thus disabled by default.
4174 */
4175 shared = 0;
3b0efdfa 4176 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4177 shared = 8;
1da177e4
LT
4178
4179#if DEBUG
a737b3e2
AM
4180 /*
4181 * With debugging enabled, large batchcount lead to excessively long
4182 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4183 */
4184 if (limit > 32)
4185 limit = 32;
4186#endif
83b519e8 4187 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4188 if (err)
4189 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4190 cachep->name, -err);
2ed3a4ef 4191 return err;
1da177e4
LT
4192}
4193
1b55253a
CL
4194/*
4195 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4196 * necessary. Note that the l3 listlock also protects the array_cache
4197 * if drain_array() is used on the shared array.
1b55253a 4198 */
68a1b195 4199static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4200 struct array_cache *ac, int force, int node)
1da177e4
LT
4201{
4202 int tofree;
4203
1b55253a
CL
4204 if (!ac || !ac->avail)
4205 return;
1da177e4
LT
4206 if (ac->touched && !force) {
4207 ac->touched = 0;
b18e7e65 4208 } else {
1b55253a 4209 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4210 if (ac->avail) {
4211 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4212 if (tofree > ac->avail)
4213 tofree = (ac->avail + 1) / 2;
4214 free_block(cachep, ac->entry, tofree, node);
4215 ac->avail -= tofree;
4216 memmove(ac->entry, &(ac->entry[tofree]),
4217 sizeof(void *) * ac->avail);
4218 }
1b55253a 4219 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4220 }
4221}
4222
4223/**
4224 * cache_reap - Reclaim memory from caches.
05fb6bf0 4225 * @w: work descriptor
1da177e4
LT
4226 *
4227 * Called from workqueue/eventd every few seconds.
4228 * Purpose:
4229 * - clear the per-cpu caches for this CPU.
4230 * - return freeable pages to the main free memory pool.
4231 *
a737b3e2
AM
4232 * If we cannot acquire the cache chain mutex then just give up - we'll try
4233 * again on the next iteration.
1da177e4 4234 */
7c5cae36 4235static void cache_reap(struct work_struct *w)
1da177e4 4236{
7a7c381d 4237 struct kmem_cache *searchp;
e498be7d 4238 struct kmem_list3 *l3;
7d6e6d09 4239 int node = numa_mem_id();
bf6aede7 4240 struct delayed_work *work = to_delayed_work(w);
1da177e4 4241
18004c5d 4242 if (!mutex_trylock(&slab_mutex))
1da177e4 4243 /* Give up. Setup the next iteration. */
7c5cae36 4244 goto out;
1da177e4 4245
18004c5d 4246 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4247 check_irq_on();
4248
35386e3b
CL
4249 /*
4250 * We only take the l3 lock if absolutely necessary and we
4251 * have established with reasonable certainty that
4252 * we can do some work if the lock was obtained.
4253 */
aab2207c 4254 l3 = searchp->nodelists[node];
35386e3b 4255
8fce4d8e 4256 reap_alien(searchp, l3);
1da177e4 4257
aab2207c 4258 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4259
35386e3b
CL
4260 /*
4261 * These are racy checks but it does not matter
4262 * if we skip one check or scan twice.
4263 */
e498be7d 4264 if (time_after(l3->next_reap, jiffies))
35386e3b 4265 goto next;
1da177e4 4266
e498be7d 4267 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4268
aab2207c 4269 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4270
ed11d9eb 4271 if (l3->free_touched)
e498be7d 4272 l3->free_touched = 0;
ed11d9eb
CL
4273 else {
4274 int freed;
1da177e4 4275
ed11d9eb
CL
4276 freed = drain_freelist(searchp, l3, (l3->free_limit +
4277 5 * searchp->num - 1) / (5 * searchp->num));
4278 STATS_ADD_REAPED(searchp, freed);
4279 }
35386e3b 4280next:
1da177e4
LT
4281 cond_resched();
4282 }
4283 check_irq_on();
18004c5d 4284 mutex_unlock(&slab_mutex);
8fce4d8e 4285 next_reap_node();
7c5cae36 4286out:
a737b3e2 4287 /* Set up the next iteration */
7c5cae36 4288 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4289}
4290
158a9624 4291#ifdef CONFIG_SLABINFO
1da177e4 4292
85289f98 4293static void print_slabinfo_header(struct seq_file *m)
1da177e4 4294{
85289f98
PE
4295 /*
4296 * Output format version, so at least we can change it
4297 * without _too_ many complaints.
4298 */
1da177e4 4299#if STATS
85289f98 4300 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4301#else
85289f98 4302 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4303#endif
85289f98
PE
4304 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4305 "<objperslab> <pagesperslab>");
4306 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4307 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4308#if STATS
85289f98 4309 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4310 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4311 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4312#endif
85289f98
PE
4313 seq_putc(m, '\n');
4314}
4315
4316static void *s_start(struct seq_file *m, loff_t *pos)
4317{
4318 loff_t n = *pos;
85289f98 4319
18004c5d 4320 mutex_lock(&slab_mutex);
85289f98
PE
4321 if (!n)
4322 print_slabinfo_header(m);
b92151ba 4323
18004c5d 4324 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4325}
4326
4327static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4328{
18004c5d 4329 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4330}
4331
4332static void s_stop(struct seq_file *m, void *p)
4333{
18004c5d 4334 mutex_unlock(&slab_mutex);
1da177e4
LT
4335}
4336
4337static int s_show(struct seq_file *m, void *p)
4338{
3b0efdfa 4339 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4340 struct slab *slabp;
4341 unsigned long active_objs;
4342 unsigned long num_objs;
4343 unsigned long active_slabs = 0;
4344 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4345 const char *name;
1da177e4 4346 char *error = NULL;
e498be7d
CL
4347 int node;
4348 struct kmem_list3 *l3;
1da177e4 4349
1da177e4
LT
4350 active_objs = 0;
4351 num_slabs = 0;
e498be7d
CL
4352 for_each_online_node(node) {
4353 l3 = cachep->nodelists[node];
4354 if (!l3)
4355 continue;
4356
ca3b9b91
RT
4357 check_irq_on();
4358 spin_lock_irq(&l3->list_lock);
e498be7d 4359
7a7c381d 4360 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4361 if (slabp->inuse != cachep->num && !error)
4362 error = "slabs_full accounting error";
4363 active_objs += cachep->num;
4364 active_slabs++;
4365 }
7a7c381d 4366 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4367 if (slabp->inuse == cachep->num && !error)
4368 error = "slabs_partial inuse accounting error";
4369 if (!slabp->inuse && !error)
4370 error = "slabs_partial/inuse accounting error";
4371 active_objs += slabp->inuse;
4372 active_slabs++;
4373 }
7a7c381d 4374 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4375 if (slabp->inuse && !error)
4376 error = "slabs_free/inuse accounting error";
4377 num_slabs++;
4378 }
4379 free_objects += l3->free_objects;
4484ebf1
RT
4380 if (l3->shared)
4381 shared_avail += l3->shared->avail;
e498be7d 4382
ca3b9b91 4383 spin_unlock_irq(&l3->list_lock);
1da177e4 4384 }
b28a02de
PE
4385 num_slabs += active_slabs;
4386 num_objs = num_slabs * cachep->num;
e498be7d 4387 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4388 error = "free_objects accounting error";
4389
b28a02de 4390 name = cachep->name;
1da177e4
LT
4391 if (error)
4392 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4393
4394 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4395 name, active_objs, num_objs, cachep->size,
b28a02de 4396 cachep->num, (1 << cachep->gfporder));
1da177e4 4397 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4398 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4399 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4400 active_slabs, num_slabs, shared_avail);
1da177e4 4401#if STATS
b28a02de 4402 { /* list3 stats */
1da177e4
LT
4403 unsigned long high = cachep->high_mark;
4404 unsigned long allocs = cachep->num_allocations;
4405 unsigned long grown = cachep->grown;
4406 unsigned long reaped = cachep->reaped;
4407 unsigned long errors = cachep->errors;
4408 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4409 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4410 unsigned long node_frees = cachep->node_frees;
fb7faf33 4411 unsigned long overflows = cachep->node_overflow;
1da177e4 4412
e92dd4fd
JP
4413 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4414 "%4lu %4lu %4lu %4lu %4lu",
4415 allocs, high, grown,
4416 reaped, errors, max_freeable, node_allocs,
4417 node_frees, overflows);
1da177e4
LT
4418 }
4419 /* cpu stats */
4420 {
4421 unsigned long allochit = atomic_read(&cachep->allochit);
4422 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4423 unsigned long freehit = atomic_read(&cachep->freehit);
4424 unsigned long freemiss = atomic_read(&cachep->freemiss);
4425
4426 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4427 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4428 }
4429#endif
4430 seq_putc(m, '\n');
1da177e4
LT
4431 return 0;
4432}
4433
4434/*
4435 * slabinfo_op - iterator that generates /proc/slabinfo
4436 *
4437 * Output layout:
4438 * cache-name
4439 * num-active-objs
4440 * total-objs
4441 * object size
4442 * num-active-slabs
4443 * total-slabs
4444 * num-pages-per-slab
4445 * + further values on SMP and with statistics enabled
4446 */
4447
7b3c3a50 4448static const struct seq_operations slabinfo_op = {
b28a02de
PE
4449 .start = s_start,
4450 .next = s_next,
4451 .stop = s_stop,
4452 .show = s_show,
1da177e4
LT
4453};
4454
4455#define MAX_SLABINFO_WRITE 128
4456/**
4457 * slabinfo_write - Tuning for the slab allocator
4458 * @file: unused
4459 * @buffer: user buffer
4460 * @count: data length
4461 * @ppos: unused
4462 */
68a1b195 4463static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4464 size_t count, loff_t *ppos)
1da177e4 4465{
b28a02de 4466 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4467 int limit, batchcount, shared, res;
7a7c381d 4468 struct kmem_cache *cachep;
b28a02de 4469
1da177e4
LT
4470 if (count > MAX_SLABINFO_WRITE)
4471 return -EINVAL;
4472 if (copy_from_user(&kbuf, buffer, count))
4473 return -EFAULT;
b28a02de 4474 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4475
4476 tmp = strchr(kbuf, ' ');
4477 if (!tmp)
4478 return -EINVAL;
4479 *tmp = '\0';
4480 tmp++;
4481 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4482 return -EINVAL;
4483
4484 /* Find the cache in the chain of caches. */
18004c5d 4485 mutex_lock(&slab_mutex);
1da177e4 4486 res = -EINVAL;
18004c5d 4487 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4488 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4489 if (limit < 1 || batchcount < 1 ||
4490 batchcount > limit || shared < 0) {
e498be7d 4491 res = 0;
1da177e4 4492 } else {
e498be7d 4493 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4494 batchcount, shared,
4495 GFP_KERNEL);
1da177e4
LT
4496 }
4497 break;
4498 }
4499 }
18004c5d 4500 mutex_unlock(&slab_mutex);
1da177e4
LT
4501 if (res >= 0)
4502 res = count;
4503 return res;
4504}
871751e2 4505
7b3c3a50
AD
4506static int slabinfo_open(struct inode *inode, struct file *file)
4507{
4508 return seq_open(file, &slabinfo_op);
4509}
4510
4511static const struct file_operations proc_slabinfo_operations = {
4512 .open = slabinfo_open,
4513 .read = seq_read,
4514 .write = slabinfo_write,
4515 .llseek = seq_lseek,
4516 .release = seq_release,
4517};
4518
871751e2
AV
4519#ifdef CONFIG_DEBUG_SLAB_LEAK
4520
4521static void *leaks_start(struct seq_file *m, loff_t *pos)
4522{
18004c5d
CL
4523 mutex_lock(&slab_mutex);
4524 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4525}
4526
4527static inline int add_caller(unsigned long *n, unsigned long v)
4528{
4529 unsigned long *p;
4530 int l;
4531 if (!v)
4532 return 1;
4533 l = n[1];
4534 p = n + 2;
4535 while (l) {
4536 int i = l/2;
4537 unsigned long *q = p + 2 * i;
4538 if (*q == v) {
4539 q[1]++;
4540 return 1;
4541 }
4542 if (*q > v) {
4543 l = i;
4544 } else {
4545 p = q + 2;
4546 l -= i + 1;
4547 }
4548 }
4549 if (++n[1] == n[0])
4550 return 0;
4551 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4552 p[0] = v;
4553 p[1] = 1;
4554 return 1;
4555}
4556
4557static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4558{
4559 void *p;
4560 int i;
4561 if (n[0] == n[1])
4562 return;
3b0efdfa 4563 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4564 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4565 continue;
4566 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4567 return;
4568 }
4569}
4570
4571static void show_symbol(struct seq_file *m, unsigned long address)
4572{
4573#ifdef CONFIG_KALLSYMS
871751e2 4574 unsigned long offset, size;
9281acea 4575 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4576
a5c43dae 4577 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4578 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4579 if (modname[0])
871751e2
AV
4580 seq_printf(m, " [%s]", modname);
4581 return;
4582 }
4583#endif
4584 seq_printf(m, "%p", (void *)address);
4585}
4586
4587static int leaks_show(struct seq_file *m, void *p)
4588{
0672aa7c 4589 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4590 struct slab *slabp;
4591 struct kmem_list3 *l3;
4592 const char *name;
4593 unsigned long *n = m->private;
4594 int node;
4595 int i;
4596
4597 if (!(cachep->flags & SLAB_STORE_USER))
4598 return 0;
4599 if (!(cachep->flags & SLAB_RED_ZONE))
4600 return 0;
4601
4602 /* OK, we can do it */
4603
4604 n[1] = 0;
4605
4606 for_each_online_node(node) {
4607 l3 = cachep->nodelists[node];
4608 if (!l3)
4609 continue;
4610
4611 check_irq_on();
4612 spin_lock_irq(&l3->list_lock);
4613
7a7c381d 4614 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4615 handle_slab(n, cachep, slabp);
7a7c381d 4616 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4617 handle_slab(n, cachep, slabp);
871751e2
AV
4618 spin_unlock_irq(&l3->list_lock);
4619 }
4620 name = cachep->name;
4621 if (n[0] == n[1]) {
4622 /* Increase the buffer size */
18004c5d 4623 mutex_unlock(&slab_mutex);
871751e2
AV
4624 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4625 if (!m->private) {
4626 /* Too bad, we are really out */
4627 m->private = n;
18004c5d 4628 mutex_lock(&slab_mutex);
871751e2
AV
4629 return -ENOMEM;
4630 }
4631 *(unsigned long *)m->private = n[0] * 2;
4632 kfree(n);
18004c5d 4633 mutex_lock(&slab_mutex);
871751e2
AV
4634 /* Now make sure this entry will be retried */
4635 m->count = m->size;
4636 return 0;
4637 }
4638 for (i = 0; i < n[1]; i++) {
4639 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4640 show_symbol(m, n[2*i+2]);
4641 seq_putc(m, '\n');
4642 }
d2e7b7d0 4643
871751e2
AV
4644 return 0;
4645}
4646
a0ec95a8 4647static const struct seq_operations slabstats_op = {
871751e2
AV
4648 .start = leaks_start,
4649 .next = s_next,
4650 .stop = s_stop,
4651 .show = leaks_show,
4652};
a0ec95a8
AD
4653
4654static int slabstats_open(struct inode *inode, struct file *file)
4655{
4656 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4657 int ret = -ENOMEM;
4658 if (n) {
4659 ret = seq_open(file, &slabstats_op);
4660 if (!ret) {
4661 struct seq_file *m = file->private_data;
4662 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4663 m->private = n;
4664 n = NULL;
4665 }
4666 kfree(n);
4667 }
4668 return ret;
4669}
4670
4671static const struct file_operations proc_slabstats_operations = {
4672 .open = slabstats_open,
4673 .read = seq_read,
4674 .llseek = seq_lseek,
4675 .release = seq_release_private,
4676};
4677#endif
4678
4679static int __init slab_proc_init(void)
4680{
ab067e99 4681 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4682#ifdef CONFIG_DEBUG_SLAB_LEAK
4683 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4684#endif
a0ec95a8
AD
4685 return 0;
4686}
4687module_init(slab_proc_init);
1da177e4
LT
4688#endif
4689
00e145b6
MS
4690/**
4691 * ksize - get the actual amount of memory allocated for a given object
4692 * @objp: Pointer to the object
4693 *
4694 * kmalloc may internally round up allocations and return more memory
4695 * than requested. ksize() can be used to determine the actual amount of
4696 * memory allocated. The caller may use this additional memory, even though
4697 * a smaller amount of memory was initially specified with the kmalloc call.
4698 * The caller must guarantee that objp points to a valid object previously
4699 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4700 * must not be freed during the duration of the call.
4701 */
fd76bab2 4702size_t ksize(const void *objp)
1da177e4 4703{
ef8b4520
CL
4704 BUG_ON(!objp);
4705 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4706 return 0;
1da177e4 4707
8c138bc0 4708 return virt_to_cache(objp)->object_size;
1da177e4 4709}
b1aabecd 4710EXPORT_SYMBOL(ksize);
This page took 1.08107 seconds and 5 git commands to generate.