mm: convert pr_warning to pr_warn
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
1da177e4
LT
171/*
172 * struct array_cache
173 *
1da177e4
LT
174 * Purpose:
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
178 *
179 * The limit is stored in the per-cpu structure to reduce the data cache
180 * footprint.
181 *
182 */
183struct array_cache {
184 unsigned int avail;
185 unsigned int limit;
186 unsigned int batchcount;
187 unsigned int touched;
bda5b655 188 void *entry[]; /*
a737b3e2
AM
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
191 * the entries.
a737b3e2 192 */
1da177e4
LT
193};
194
c8522a3a
JK
195struct alien_cache {
196 spinlock_t lock;
197 struct array_cache ac;
198};
199
e498be7d
CL
200/*
201 * Need this for bootstrapping a per node allocator.
202 */
bf0dea23 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 205#define CACHE_CACHE 0
bf0dea23 206#define SIZE_NODE (MAX_NUMNODES)
e498be7d 207
ed11d9eb 208static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 209 struct kmem_cache_node *n, int tofree);
ed11d9eb 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
211 int node, struct list_head *list);
212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 214static void cache_reap(struct work_struct *unused);
ed11d9eb 215
e0a42726
IM
216static int slab_early_init = 1;
217
ce8eb6c4 218#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 219
ce8eb6c4 220static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
221{
222 INIT_LIST_HEAD(&parent->slabs_full);
223 INIT_LIST_HEAD(&parent->slabs_partial);
224 INIT_LIST_HEAD(&parent->slabs_free);
225 parent->shared = NULL;
226 parent->alien = NULL;
2e1217cf 227 parent->colour_next = 0;
e498be7d
CL
228 spin_lock_init(&parent->list_lock);
229 parent->free_objects = 0;
230 parent->free_touched = 0;
231}
232
a737b3e2
AM
233#define MAKE_LIST(cachep, listp, slab, nodeid) \
234 do { \
235 INIT_LIST_HEAD(listp); \
18bf8541 236 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
237 } while (0)
238
a737b3e2
AM
239#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
240 do { \
e498be7d
CL
241 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
242 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
243 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
244 } while (0)
1da177e4 245
b03a017b 246#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 247#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 248#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
249#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
250
251#define BATCHREFILL_LIMIT 16
a737b3e2
AM
252/*
253 * Optimization question: fewer reaps means less probability for unnessary
254 * cpucache drain/refill cycles.
1da177e4 255 *
dc6f3f27 256 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
257 * which could lock up otherwise freeable slabs.
258 */
5f0985bb
JZ
259#define REAPTIMEOUT_AC (2*HZ)
260#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
261
262#if STATS
263#define STATS_INC_ACTIVE(x) ((x)->num_active++)
264#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
265#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
266#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 267#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
268#define STATS_SET_HIGH(x) \
269 do { \
270 if ((x)->num_active > (x)->high_mark) \
271 (x)->high_mark = (x)->num_active; \
272 } while (0)
1da177e4
LT
273#define STATS_INC_ERR(x) ((x)->errors++)
274#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 275#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 276#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
277#define STATS_SET_FREEABLE(x, i) \
278 do { \
279 if ((x)->max_freeable < i) \
280 (x)->max_freeable = i; \
281 } while (0)
1da177e4
LT
282#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
283#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
284#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
285#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
286#else
287#define STATS_INC_ACTIVE(x) do { } while (0)
288#define STATS_DEC_ACTIVE(x) do { } while (0)
289#define STATS_INC_ALLOCED(x) do { } while (0)
290#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 291#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
292#define STATS_SET_HIGH(x) do { } while (0)
293#define STATS_INC_ERR(x) do { } while (0)
294#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 295#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 296#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 297#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
298#define STATS_INC_ALLOCHIT(x) do { } while (0)
299#define STATS_INC_ALLOCMISS(x) do { } while (0)
300#define STATS_INC_FREEHIT(x) do { } while (0)
301#define STATS_INC_FREEMISS(x) do { } while (0)
302#endif
303
304#if DEBUG
1da177e4 305
a737b3e2
AM
306/*
307 * memory layout of objects:
1da177e4 308 * 0 : objp
3dafccf2 309 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
310 * the end of an object is aligned with the end of the real
311 * allocation. Catches writes behind the end of the allocation.
3dafccf2 312 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 313 * redzone word.
3dafccf2 314 * cachep->obj_offset: The real object.
3b0efdfa
CL
315 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
316 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 317 * [BYTES_PER_WORD long]
1da177e4 318 */
343e0d7a 319static int obj_offset(struct kmem_cache *cachep)
1da177e4 320{
3dafccf2 321 return cachep->obj_offset;
1da177e4
LT
322}
323
b46b8f19 324static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
325{
326 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
327 return (unsigned long long*) (objp + obj_offset(cachep) -
328 sizeof(unsigned long long));
1da177e4
LT
329}
330
b46b8f19 331static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
332{
333 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 335 return (unsigned long long *)(objp + cachep->size -
b46b8f19 336 sizeof(unsigned long long) -
87a927c7 337 REDZONE_ALIGN);
3b0efdfa 338 return (unsigned long long *) (objp + cachep->size -
b46b8f19 339 sizeof(unsigned long long));
1da177e4
LT
340}
341
343e0d7a 342static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
343{
344 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 345 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
346}
347
348#else
349
3dafccf2 350#define obj_offset(x) 0
b46b8f19
DW
351#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
352#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
353#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
354
355#endif
356
03787301
JK
357#ifdef CONFIG_DEBUG_SLAB_LEAK
358
d31676df 359static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 360{
d31676df
JK
361 return atomic_read(&cachep->store_user_clean) == 1;
362}
03787301 363
d31676df
JK
364static inline void set_store_user_clean(struct kmem_cache *cachep)
365{
366 atomic_set(&cachep->store_user_clean, 1);
367}
03787301 368
d31676df
JK
369static inline void set_store_user_dirty(struct kmem_cache *cachep)
370{
371 if (is_store_user_clean(cachep))
372 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
373}
374
375#else
d31676df 376static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
377
378#endif
379
1da177e4 380/*
3df1cccd
DR
381 * Do not go above this order unless 0 objects fit into the slab or
382 * overridden on the command line.
1da177e4 383 */
543585cc
DR
384#define SLAB_MAX_ORDER_HI 1
385#define SLAB_MAX_ORDER_LO 0
386static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 387static bool slab_max_order_set __initdata;
1da177e4 388
6ed5eb22
PE
389static inline struct kmem_cache *virt_to_cache(const void *obj)
390{
b49af68f 391 struct page *page = virt_to_head_page(obj);
35026088 392 return page->slab_cache;
6ed5eb22
PE
393}
394
8456a648 395static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
396 unsigned int idx)
397{
8456a648 398 return page->s_mem + cache->size * idx;
8fea4e96
PE
399}
400
6a2d7a95 401/*
3b0efdfa
CL
402 * We want to avoid an expensive divide : (offset / cache->size)
403 * Using the fact that size is a constant for a particular cache,
404 * we can replace (offset / cache->size) by
6a2d7a95
ED
405 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
406 */
407static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 408 const struct page *page, void *obj)
8fea4e96 409{
8456a648 410 u32 offset = (obj - page->s_mem);
6a2d7a95 411 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
412}
413
6fb92430 414#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 415/* internal cache of cache description objs */
9b030cb8 416static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
417 .batchcount = 1,
418 .limit = BOOT_CPUCACHE_ENTRIES,
419 .shared = 1,
3b0efdfa 420 .size = sizeof(struct kmem_cache),
b28a02de 421 .name = "kmem_cache",
1da177e4
LT
422};
423
edcad250
JK
424#define BAD_ALIEN_MAGIC 0x01020304ul
425
1871e52c 426static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 427
343e0d7a 428static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 429{
bf0dea23 430 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
431}
432
a737b3e2
AM
433/*
434 * Calculate the number of objects and left-over bytes for a given buffer size.
435 */
70f75067
JK
436static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
437 unsigned long flags, size_t *left_over)
fbaccacf 438{
70f75067 439 unsigned int num;
fbaccacf 440 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 441
fbaccacf
SR
442 /*
443 * The slab management structure can be either off the slab or
444 * on it. For the latter case, the memory allocated for a
445 * slab is used for:
446 *
fbaccacf 447 * - @buffer_size bytes for each object
2e6b3602
JK
448 * - One freelist_idx_t for each object
449 *
450 * We don't need to consider alignment of freelist because
451 * freelist will be at the end of slab page. The objects will be
452 * at the correct alignment.
fbaccacf
SR
453 *
454 * If the slab management structure is off the slab, then the
455 * alignment will already be calculated into the size. Because
456 * the slabs are all pages aligned, the objects will be at the
457 * correct alignment when allocated.
458 */
b03a017b 459 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 460 num = slab_size / buffer_size;
2e6b3602 461 *left_over = slab_size % buffer_size;
fbaccacf 462 } else {
70f75067 463 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
464 *left_over = slab_size %
465 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 466 }
70f75067
JK
467
468 return num;
1da177e4
LT
469}
470
f28510d3 471#if DEBUG
d40cee24 472#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 473
a737b3e2
AM
474static void __slab_error(const char *function, struct kmem_cache *cachep,
475 char *msg)
1da177e4
LT
476{
477 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 478 function, cachep->name, msg);
1da177e4 479 dump_stack();
373d4d09 480 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 481}
f28510d3 482#endif
1da177e4 483
3395ee05
PM
484/*
485 * By default on NUMA we use alien caches to stage the freeing of
486 * objects allocated from other nodes. This causes massive memory
487 * inefficiencies when using fake NUMA setup to split memory into a
488 * large number of small nodes, so it can be disabled on the command
489 * line
490 */
491
492static int use_alien_caches __read_mostly = 1;
493static int __init noaliencache_setup(char *s)
494{
495 use_alien_caches = 0;
496 return 1;
497}
498__setup("noaliencache", noaliencache_setup);
499
3df1cccd
DR
500static int __init slab_max_order_setup(char *str)
501{
502 get_option(&str, &slab_max_order);
503 slab_max_order = slab_max_order < 0 ? 0 :
504 min(slab_max_order, MAX_ORDER - 1);
505 slab_max_order_set = true;
506
507 return 1;
508}
509__setup("slab_max_order=", slab_max_order_setup);
510
8fce4d8e
CL
511#ifdef CONFIG_NUMA
512/*
513 * Special reaping functions for NUMA systems called from cache_reap().
514 * These take care of doing round robin flushing of alien caches (containing
515 * objects freed on different nodes from which they were allocated) and the
516 * flushing of remote pcps by calling drain_node_pages.
517 */
1871e52c 518static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
519
520static void init_reap_node(int cpu)
521{
522 int node;
523
7d6e6d09 524 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 525 if (node == MAX_NUMNODES)
442295c9 526 node = first_node(node_online_map);
8fce4d8e 527
1871e52c 528 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
529}
530
531static void next_reap_node(void)
532{
909ea964 533 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 534
8fce4d8e
CL
535 node = next_node(node, node_online_map);
536 if (unlikely(node >= MAX_NUMNODES))
537 node = first_node(node_online_map);
909ea964 538 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
539}
540
541#else
542#define init_reap_node(cpu) do { } while (0)
543#define next_reap_node(void) do { } while (0)
544#endif
545
1da177e4
LT
546/*
547 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
548 * via the workqueue/eventd.
549 * Add the CPU number into the expiration time to minimize the possibility of
550 * the CPUs getting into lockstep and contending for the global cache chain
551 * lock.
552 */
0db0628d 553static void start_cpu_timer(int cpu)
1da177e4 554{
1871e52c 555 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
556
557 /*
558 * When this gets called from do_initcalls via cpucache_init(),
559 * init_workqueues() has already run, so keventd will be setup
560 * at that time.
561 */
52bad64d 562 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 563 init_reap_node(cpu);
203b42f7 564 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
565 schedule_delayed_work_on(cpu, reap_work,
566 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
567 }
568}
569
1fe00d50 570static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 571{
d5cff635
CM
572 /*
573 * The array_cache structures contain pointers to free object.
25985edc 574 * However, when such objects are allocated or transferred to another
d5cff635
CM
575 * cache the pointers are not cleared and they could be counted as
576 * valid references during a kmemleak scan. Therefore, kmemleak must
577 * not scan such objects.
578 */
1fe00d50
JK
579 kmemleak_no_scan(ac);
580 if (ac) {
581 ac->avail = 0;
582 ac->limit = limit;
583 ac->batchcount = batch;
584 ac->touched = 0;
1da177e4 585 }
1fe00d50
JK
586}
587
588static struct array_cache *alloc_arraycache(int node, int entries,
589 int batchcount, gfp_t gfp)
590{
5e804789 591 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
592 struct array_cache *ac = NULL;
593
594 ac = kmalloc_node(memsize, gfp, node);
595 init_arraycache(ac, entries, batchcount);
596 return ac;
1da177e4
LT
597}
598
f68f8ddd
JK
599static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
600 struct page *page, void *objp)
072bb0aa 601{
f68f8ddd
JK
602 struct kmem_cache_node *n;
603 int page_node;
604 LIST_HEAD(list);
072bb0aa 605
f68f8ddd
JK
606 page_node = page_to_nid(page);
607 n = get_node(cachep, page_node);
381760ea 608
f68f8ddd
JK
609 spin_lock(&n->list_lock);
610 free_block(cachep, &objp, 1, page_node, &list);
611 spin_unlock(&n->list_lock);
381760ea 612
f68f8ddd 613 slabs_destroy(cachep, &list);
072bb0aa
MG
614}
615
3ded175a
CL
616/*
617 * Transfer objects in one arraycache to another.
618 * Locking must be handled by the caller.
619 *
620 * Return the number of entries transferred.
621 */
622static int transfer_objects(struct array_cache *to,
623 struct array_cache *from, unsigned int max)
624{
625 /* Figure out how many entries to transfer */
732eacc0 626 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
627
628 if (!nr)
629 return 0;
630
631 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
632 sizeof(void *) *nr);
633
634 from->avail -= nr;
635 to->avail += nr;
3ded175a
CL
636 return nr;
637}
638
765c4507
CL
639#ifndef CONFIG_NUMA
640
641#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 642#define reap_alien(cachep, n) do { } while (0)
765c4507 643
c8522a3a
JK
644static inline struct alien_cache **alloc_alien_cache(int node,
645 int limit, gfp_t gfp)
765c4507 646{
edcad250 647 return (struct alien_cache **)BAD_ALIEN_MAGIC;
765c4507
CL
648}
649
c8522a3a 650static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
651{
652}
653
654static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
655{
656 return 0;
657}
658
659static inline void *alternate_node_alloc(struct kmem_cache *cachep,
660 gfp_t flags)
661{
662 return NULL;
663}
664
8b98c169 665static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
666 gfp_t flags, int nodeid)
667{
668 return NULL;
669}
670
4167e9b2
DR
671static inline gfp_t gfp_exact_node(gfp_t flags)
672{
444eb2a4 673 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
674}
675
765c4507
CL
676#else /* CONFIG_NUMA */
677
8b98c169 678static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 679static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 680
c8522a3a
JK
681static struct alien_cache *__alloc_alien_cache(int node, int entries,
682 int batch, gfp_t gfp)
683{
5e804789 684 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
685 struct alien_cache *alc = NULL;
686
687 alc = kmalloc_node(memsize, gfp, node);
688 init_arraycache(&alc->ac, entries, batch);
49dfc304 689 spin_lock_init(&alc->lock);
c8522a3a
JK
690 return alc;
691}
692
693static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 694{
c8522a3a 695 struct alien_cache **alc_ptr;
5e804789 696 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
697 int i;
698
699 if (limit > 1)
700 limit = 12;
c8522a3a
JK
701 alc_ptr = kzalloc_node(memsize, gfp, node);
702 if (!alc_ptr)
703 return NULL;
704
705 for_each_node(i) {
706 if (i == node || !node_online(i))
707 continue;
708 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
709 if (!alc_ptr[i]) {
710 for (i--; i >= 0; i--)
711 kfree(alc_ptr[i]);
712 kfree(alc_ptr);
713 return NULL;
e498be7d
CL
714 }
715 }
c8522a3a 716 return alc_ptr;
e498be7d
CL
717}
718
c8522a3a 719static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
720{
721 int i;
722
c8522a3a 723 if (!alc_ptr)
e498be7d 724 return;
e498be7d 725 for_each_node(i)
c8522a3a
JK
726 kfree(alc_ptr[i]);
727 kfree(alc_ptr);
e498be7d
CL
728}
729
343e0d7a 730static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
731 struct array_cache *ac, int node,
732 struct list_head *list)
e498be7d 733{
18bf8541 734 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
735
736 if (ac->avail) {
ce8eb6c4 737 spin_lock(&n->list_lock);
e00946fe
CL
738 /*
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
742 */
ce8eb6c4
CL
743 if (n->shared)
744 transfer_objects(n->shared, ac, ac->limit);
e00946fe 745
833b706c 746 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 747 ac->avail = 0;
ce8eb6c4 748 spin_unlock(&n->list_lock);
e498be7d
CL
749 }
750}
751
8fce4d8e
CL
752/*
753 * Called from cache_reap() to regularly drain alien caches round robin.
754 */
ce8eb6c4 755static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 756{
909ea964 757 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 758
ce8eb6c4 759 if (n->alien) {
c8522a3a
JK
760 struct alien_cache *alc = n->alien[node];
761 struct array_cache *ac;
762
763 if (alc) {
764 ac = &alc->ac;
49dfc304 765 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
766 LIST_HEAD(list);
767
768 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 769 spin_unlock_irq(&alc->lock);
833b706c 770 slabs_destroy(cachep, &list);
c8522a3a 771 }
8fce4d8e
CL
772 }
773 }
774}
775
a737b3e2 776static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 777 struct alien_cache **alien)
e498be7d 778{
b28a02de 779 int i = 0;
c8522a3a 780 struct alien_cache *alc;
e498be7d
CL
781 struct array_cache *ac;
782 unsigned long flags;
783
784 for_each_online_node(i) {
c8522a3a
JK
785 alc = alien[i];
786 if (alc) {
833b706c
JK
787 LIST_HEAD(list);
788
c8522a3a 789 ac = &alc->ac;
49dfc304 790 spin_lock_irqsave(&alc->lock, flags);
833b706c 791 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 792 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 793 slabs_destroy(cachep, &list);
e498be7d
CL
794 }
795 }
796}
729bd0b7 797
25c4f304
JK
798static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
799 int node, int page_node)
729bd0b7 800{
ce8eb6c4 801 struct kmem_cache_node *n;
c8522a3a
JK
802 struct alien_cache *alien = NULL;
803 struct array_cache *ac;
97654dfa 804 LIST_HEAD(list);
1ca4cb24 805
18bf8541 806 n = get_node(cachep, node);
729bd0b7 807 STATS_INC_NODEFREES(cachep);
25c4f304
JK
808 if (n->alien && n->alien[page_node]) {
809 alien = n->alien[page_node];
c8522a3a 810 ac = &alien->ac;
49dfc304 811 spin_lock(&alien->lock);
c8522a3a 812 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 813 STATS_INC_ACOVERFLOW(cachep);
25c4f304 814 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 815 }
f68f8ddd 816 ac->entry[ac->avail++] = objp;
49dfc304 817 spin_unlock(&alien->lock);
833b706c 818 slabs_destroy(cachep, &list);
729bd0b7 819 } else {
25c4f304 820 n = get_node(cachep, page_node);
18bf8541 821 spin_lock(&n->list_lock);
25c4f304 822 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 823 spin_unlock(&n->list_lock);
97654dfa 824 slabs_destroy(cachep, &list);
729bd0b7
PE
825 }
826 return 1;
827}
25c4f304
JK
828
829static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
830{
831 int page_node = page_to_nid(virt_to_page(objp));
832 int node = numa_mem_id();
833 /*
834 * Make sure we are not freeing a object from another node to the array
835 * cache on this cpu.
836 */
837 if (likely(node == page_node))
838 return 0;
839
840 return __cache_free_alien(cachep, objp, node, page_node);
841}
4167e9b2
DR
842
843/*
444eb2a4
MG
844 * Construct gfp mask to allocate from a specific node but do not reclaim or
845 * warn about failures.
4167e9b2
DR
846 */
847static inline gfp_t gfp_exact_node(gfp_t flags)
848{
444eb2a4 849 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 850}
e498be7d
CL
851#endif
852
8f9f8d9e 853/*
6a67368c 854 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 855 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 856 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 857 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
858 * already in use.
859 *
18004c5d 860 * Must hold slab_mutex.
8f9f8d9e 861 */
6a67368c 862static int init_cache_node_node(int node)
8f9f8d9e
DR
863{
864 struct kmem_cache *cachep;
ce8eb6c4 865 struct kmem_cache_node *n;
5e804789 866 const size_t memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 867
18004c5d 868 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 869 /*
5f0985bb 870 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
871 * begin anything. Make sure some other cpu on this
872 * node has not already allocated this
873 */
18bf8541
CL
874 n = get_node(cachep, node);
875 if (!n) {
ce8eb6c4
CL
876 n = kmalloc_node(memsize, GFP_KERNEL, node);
877 if (!n)
8f9f8d9e 878 return -ENOMEM;
ce8eb6c4 879 kmem_cache_node_init(n);
5f0985bb
JZ
880 n->next_reap = jiffies + REAPTIMEOUT_NODE +
881 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
882
883 /*
5f0985bb
JZ
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
886 * protection here.
887 */
ce8eb6c4 888 cachep->node[node] = n;
8f9f8d9e
DR
889 }
890
18bf8541
CL
891 spin_lock_irq(&n->list_lock);
892 n->free_limit =
8f9f8d9e
DR
893 (1 + nr_cpus_node(node)) *
894 cachep->batchcount + cachep->num;
18bf8541 895 spin_unlock_irq(&n->list_lock);
8f9f8d9e
DR
896 }
897 return 0;
898}
899
0fa8103b
WL
900static inline int slabs_tofree(struct kmem_cache *cachep,
901 struct kmem_cache_node *n)
902{
903 return (n->free_objects + cachep->num - 1) / cachep->num;
904}
905
0db0628d 906static void cpuup_canceled(long cpu)
fbf1e473
AM
907{
908 struct kmem_cache *cachep;
ce8eb6c4 909 struct kmem_cache_node *n = NULL;
7d6e6d09 910 int node = cpu_to_mem(cpu);
a70f7302 911 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 912
18004c5d 913 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
914 struct array_cache *nc;
915 struct array_cache *shared;
c8522a3a 916 struct alien_cache **alien;
97654dfa 917 LIST_HEAD(list);
fbf1e473 918
18bf8541 919 n = get_node(cachep, node);
ce8eb6c4 920 if (!n)
bf0dea23 921 continue;
fbf1e473 922
ce8eb6c4 923 spin_lock_irq(&n->list_lock);
fbf1e473 924
ce8eb6c4
CL
925 /* Free limit for this kmem_cache_node */
926 n->free_limit -= cachep->batchcount;
bf0dea23
JK
927
928 /* cpu is dead; no one can alloc from it. */
929 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
930 if (nc) {
97654dfa 931 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
932 nc->avail = 0;
933 }
fbf1e473 934
58463c1f 935 if (!cpumask_empty(mask)) {
ce8eb6c4 936 spin_unlock_irq(&n->list_lock);
bf0dea23 937 goto free_slab;
fbf1e473
AM
938 }
939
ce8eb6c4 940 shared = n->shared;
fbf1e473
AM
941 if (shared) {
942 free_block(cachep, shared->entry,
97654dfa 943 shared->avail, node, &list);
ce8eb6c4 944 n->shared = NULL;
fbf1e473
AM
945 }
946
ce8eb6c4
CL
947 alien = n->alien;
948 n->alien = NULL;
fbf1e473 949
ce8eb6c4 950 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
951
952 kfree(shared);
953 if (alien) {
954 drain_alien_cache(cachep, alien);
955 free_alien_cache(alien);
956 }
bf0dea23
JK
957
958free_slab:
97654dfa 959 slabs_destroy(cachep, &list);
fbf1e473
AM
960 }
961 /*
962 * In the previous loop, all the objects were freed to
963 * the respective cache's slabs, now we can go ahead and
964 * shrink each nodelist to its limit.
965 */
18004c5d 966 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 967 n = get_node(cachep, node);
ce8eb6c4 968 if (!n)
fbf1e473 969 continue;
0fa8103b 970 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
971 }
972}
973
0db0628d 974static int cpuup_prepare(long cpu)
1da177e4 975{
343e0d7a 976 struct kmem_cache *cachep;
ce8eb6c4 977 struct kmem_cache_node *n = NULL;
7d6e6d09 978 int node = cpu_to_mem(cpu);
8f9f8d9e 979 int err;
1da177e4 980
fbf1e473
AM
981 /*
982 * We need to do this right in the beginning since
983 * alloc_arraycache's are going to use this list.
984 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 985 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 986 */
6a67368c 987 err = init_cache_node_node(node);
8f9f8d9e
DR
988 if (err < 0)
989 goto bad;
fbf1e473
AM
990
991 /*
992 * Now we can go ahead with allocating the shared arrays and
993 * array caches
994 */
18004c5d 995 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473 996 struct array_cache *shared = NULL;
c8522a3a 997 struct alien_cache **alien = NULL;
fbf1e473 998
fbf1e473
AM
999 if (cachep->shared) {
1000 shared = alloc_arraycache(node,
1001 cachep->shared * cachep->batchcount,
83b519e8 1002 0xbaadf00d, GFP_KERNEL);
bf0dea23 1003 if (!shared)
1da177e4 1004 goto bad;
fbf1e473
AM
1005 }
1006 if (use_alien_caches) {
83b519e8 1007 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1008 if (!alien) {
1009 kfree(shared);
fbf1e473 1010 goto bad;
12d00f6a 1011 }
fbf1e473 1012 }
18bf8541 1013 n = get_node(cachep, node);
ce8eb6c4 1014 BUG_ON(!n);
fbf1e473 1015
ce8eb6c4
CL
1016 spin_lock_irq(&n->list_lock);
1017 if (!n->shared) {
fbf1e473
AM
1018 /*
1019 * We are serialised from CPU_DEAD or
1020 * CPU_UP_CANCELLED by the cpucontrol lock
1021 */
ce8eb6c4 1022 n->shared = shared;
fbf1e473
AM
1023 shared = NULL;
1024 }
4484ebf1 1025#ifdef CONFIG_NUMA
ce8eb6c4
CL
1026 if (!n->alien) {
1027 n->alien = alien;
fbf1e473 1028 alien = NULL;
1da177e4 1029 }
fbf1e473 1030#endif
ce8eb6c4 1031 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1032 kfree(shared);
1033 free_alien_cache(alien);
1034 }
ce79ddc8 1035
fbf1e473
AM
1036 return 0;
1037bad:
12d00f6a 1038 cpuup_canceled(cpu);
fbf1e473
AM
1039 return -ENOMEM;
1040}
1041
0db0628d 1042static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1043 unsigned long action, void *hcpu)
1044{
1045 long cpu = (long)hcpu;
1046 int err = 0;
1047
1048 switch (action) {
fbf1e473
AM
1049 case CPU_UP_PREPARE:
1050 case CPU_UP_PREPARE_FROZEN:
18004c5d 1051 mutex_lock(&slab_mutex);
fbf1e473 1052 err = cpuup_prepare(cpu);
18004c5d 1053 mutex_unlock(&slab_mutex);
1da177e4
LT
1054 break;
1055 case CPU_ONLINE:
8bb78442 1056 case CPU_ONLINE_FROZEN:
1da177e4
LT
1057 start_cpu_timer(cpu);
1058 break;
1059#ifdef CONFIG_HOTPLUG_CPU
5830c590 1060 case CPU_DOWN_PREPARE:
8bb78442 1061 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1062 /*
18004c5d 1063 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1064 * held so that if cache_reap() is invoked it cannot do
1065 * anything expensive but will only modify reap_work
1066 * and reschedule the timer.
1067 */
afe2c511 1068 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1069 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1070 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1071 break;
1072 case CPU_DOWN_FAILED:
8bb78442 1073 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1074 start_cpu_timer(cpu);
1075 break;
1da177e4 1076 case CPU_DEAD:
8bb78442 1077 case CPU_DEAD_FROZEN:
4484ebf1
RT
1078 /*
1079 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1080 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1081 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1082 * memory from the node of the cpu going down. The node
4484ebf1
RT
1083 * structure is usually allocated from kmem_cache_create() and
1084 * gets destroyed at kmem_cache_destroy().
1085 */
183ff22b 1086 /* fall through */
8f5be20b 1087#endif
1da177e4 1088 case CPU_UP_CANCELED:
8bb78442 1089 case CPU_UP_CANCELED_FROZEN:
18004c5d 1090 mutex_lock(&slab_mutex);
fbf1e473 1091 cpuup_canceled(cpu);
18004c5d 1092 mutex_unlock(&slab_mutex);
1da177e4 1093 break;
1da177e4 1094 }
eac40680 1095 return notifier_from_errno(err);
1da177e4
LT
1096}
1097
0db0628d 1098static struct notifier_block cpucache_notifier = {
74b85f37
CS
1099 &cpuup_callback, NULL, 0
1100};
1da177e4 1101
8f9f8d9e
DR
1102#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1103/*
1104 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1105 * Returns -EBUSY if all objects cannot be drained so that the node is not
1106 * removed.
1107 *
18004c5d 1108 * Must hold slab_mutex.
8f9f8d9e 1109 */
6a67368c 1110static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1111{
1112 struct kmem_cache *cachep;
1113 int ret = 0;
1114
18004c5d 1115 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1116 struct kmem_cache_node *n;
8f9f8d9e 1117
18bf8541 1118 n = get_node(cachep, node);
ce8eb6c4 1119 if (!n)
8f9f8d9e
DR
1120 continue;
1121
0fa8103b 1122 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1123
ce8eb6c4
CL
1124 if (!list_empty(&n->slabs_full) ||
1125 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1126 ret = -EBUSY;
1127 break;
1128 }
1129 }
1130 return ret;
1131}
1132
1133static int __meminit slab_memory_callback(struct notifier_block *self,
1134 unsigned long action, void *arg)
1135{
1136 struct memory_notify *mnb = arg;
1137 int ret = 0;
1138 int nid;
1139
1140 nid = mnb->status_change_nid;
1141 if (nid < 0)
1142 goto out;
1143
1144 switch (action) {
1145 case MEM_GOING_ONLINE:
18004c5d 1146 mutex_lock(&slab_mutex);
6a67368c 1147 ret = init_cache_node_node(nid);
18004c5d 1148 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1149 break;
1150 case MEM_GOING_OFFLINE:
18004c5d 1151 mutex_lock(&slab_mutex);
6a67368c 1152 ret = drain_cache_node_node(nid);
18004c5d 1153 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1154 break;
1155 case MEM_ONLINE:
1156 case MEM_OFFLINE:
1157 case MEM_CANCEL_ONLINE:
1158 case MEM_CANCEL_OFFLINE:
1159 break;
1160 }
1161out:
5fda1bd5 1162 return notifier_from_errno(ret);
8f9f8d9e
DR
1163}
1164#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1165
e498be7d 1166/*
ce8eb6c4 1167 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1168 */
6744f087 1169static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1170 int nodeid)
e498be7d 1171{
6744f087 1172 struct kmem_cache_node *ptr;
e498be7d 1173
6744f087 1174 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1175 BUG_ON(!ptr);
1176
6744f087 1177 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1178 /*
1179 * Do not assume that spinlocks can be initialized via memcpy:
1180 */
1181 spin_lock_init(&ptr->list_lock);
1182
e498be7d 1183 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1184 cachep->node[nodeid] = ptr;
e498be7d
CL
1185}
1186
556a169d 1187/*
ce8eb6c4
CL
1188 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1189 * size of kmem_cache_node.
556a169d 1190 */
ce8eb6c4 1191static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1192{
1193 int node;
1194
1195 for_each_online_node(node) {
ce8eb6c4 1196 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1197 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1198 REAPTIMEOUT_NODE +
1199 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1200 }
1201}
1202
a737b3e2
AM
1203/*
1204 * Initialisation. Called after the page allocator have been initialised and
1205 * before smp_init().
1da177e4
LT
1206 */
1207void __init kmem_cache_init(void)
1208{
e498be7d
CL
1209 int i;
1210
68126702
JK
1211 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1212 sizeof(struct rcu_head));
9b030cb8
CL
1213 kmem_cache = &kmem_cache_boot;
1214
b6e68bc1 1215 if (num_possible_nodes() == 1)
62918a03
SS
1216 use_alien_caches = 0;
1217
3c583465 1218 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1219 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1220
1da177e4
LT
1221 /*
1222 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1223 * page orders on machines with more than 32MB of memory if
1224 * not overridden on the command line.
1da177e4 1225 */
3df1cccd 1226 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1227 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1228
1da177e4
LT
1229 /* Bootstrap is tricky, because several objects are allocated
1230 * from caches that do not exist yet:
9b030cb8
CL
1231 * 1) initialize the kmem_cache cache: it contains the struct
1232 * kmem_cache structures of all caches, except kmem_cache itself:
1233 * kmem_cache is statically allocated.
e498be7d 1234 * Initially an __init data area is used for the head array and the
ce8eb6c4 1235 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1236 * array at the end of the bootstrap.
1da177e4 1237 * 2) Create the first kmalloc cache.
343e0d7a 1238 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1239 * An __init data area is used for the head array.
1240 * 3) Create the remaining kmalloc caches, with minimally sized
1241 * head arrays.
9b030cb8 1242 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1243 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1244 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1245 * the other cache's with kmalloc allocated memory.
1246 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1247 */
1248
9b030cb8 1249 /* 1) create the kmem_cache */
1da177e4 1250
8da3430d 1251 /*
b56efcf0 1252 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1253 */
2f9baa9f 1254 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1255 offsetof(struct kmem_cache, node) +
6744f087 1256 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1257 SLAB_HWCACHE_ALIGN);
1258 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1259 slab_state = PARTIAL;
1da177e4 1260
a737b3e2 1261 /*
bf0dea23
JK
1262 * Initialize the caches that provide memory for the kmem_cache_node
1263 * structures first. Without this, further allocations will bug.
e498be7d 1264 */
bf0dea23 1265 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
ce8eb6c4 1266 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1267 slab_state = PARTIAL_NODE;
34cc6990 1268 setup_kmalloc_cache_index_table();
e498be7d 1269
e0a42726
IM
1270 slab_early_init = 0;
1271
ce8eb6c4 1272 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1273 {
1ca4cb24
PE
1274 int nid;
1275
9c09a95c 1276 for_each_online_node(nid) {
ce8eb6c4 1277 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1278
bf0dea23 1279 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1280 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1281 }
1282 }
1da177e4 1283
f97d5f63 1284 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1285}
1286
1287void __init kmem_cache_init_late(void)
1288{
1289 struct kmem_cache *cachep;
1290
97d06609 1291 slab_state = UP;
52cef189 1292
8429db5c 1293 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1294 mutex_lock(&slab_mutex);
1295 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1296 if (enable_cpucache(cachep, GFP_NOWAIT))
1297 BUG();
18004c5d 1298 mutex_unlock(&slab_mutex);
056c6241 1299
97d06609
CL
1300 /* Done! */
1301 slab_state = FULL;
1302
a737b3e2
AM
1303 /*
1304 * Register a cpu startup notifier callback that initializes
1305 * cpu_cache_get for all new cpus
1da177e4
LT
1306 */
1307 register_cpu_notifier(&cpucache_notifier);
1da177e4 1308
8f9f8d9e
DR
1309#ifdef CONFIG_NUMA
1310 /*
1311 * Register a memory hotplug callback that initializes and frees
6a67368c 1312 * node.
8f9f8d9e
DR
1313 */
1314 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1315#endif
1316
a737b3e2
AM
1317 /*
1318 * The reap timers are started later, with a module init call: That part
1319 * of the kernel is not yet operational.
1da177e4
LT
1320 */
1321}
1322
1323static int __init cpucache_init(void)
1324{
1325 int cpu;
1326
a737b3e2
AM
1327 /*
1328 * Register the timers that return unneeded pages to the page allocator
1da177e4 1329 */
e498be7d 1330 for_each_online_cpu(cpu)
a737b3e2 1331 start_cpu_timer(cpu);
a164f896
GC
1332
1333 /* Done! */
97d06609 1334 slab_state = FULL;
1da177e4
LT
1335 return 0;
1336}
1da177e4
LT
1337__initcall(cpucache_init);
1338
8bdec192
RA
1339static noinline void
1340slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1341{
9a02d699 1342#if DEBUG
ce8eb6c4 1343 struct kmem_cache_node *n;
8456a648 1344 struct page *page;
8bdec192
RA
1345 unsigned long flags;
1346 int node;
9a02d699
DR
1347 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1348 DEFAULT_RATELIMIT_BURST);
1349
1350 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1351 return;
8bdec192 1352
5b3810e5
VB
1353 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1354 nodeid, gfpflags, &gfpflags);
1355 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1356 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1357
18bf8541 1358 for_each_kmem_cache_node(cachep, node, n) {
8bdec192
RA
1359 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1360 unsigned long active_slabs = 0, num_slabs = 0;
1361
ce8eb6c4 1362 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1363 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1364 active_objs += cachep->num;
1365 active_slabs++;
1366 }
8456a648
JK
1367 list_for_each_entry(page, &n->slabs_partial, lru) {
1368 active_objs += page->active;
8bdec192
RA
1369 active_slabs++;
1370 }
8456a648 1371 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1372 num_slabs++;
1373
ce8eb6c4
CL
1374 free_objects += n->free_objects;
1375 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1376
1377 num_slabs += active_slabs;
1378 num_objs = num_slabs * cachep->num;
5b3810e5 1379 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
8bdec192
RA
1380 node, active_slabs, num_slabs, active_objs, num_objs,
1381 free_objects);
1382 }
9a02d699 1383#endif
8bdec192
RA
1384}
1385
1da177e4 1386/*
8a7d9b43
WSH
1387 * Interface to system's page allocator. No need to hold the
1388 * kmem_cache_node ->list_lock.
1da177e4
LT
1389 *
1390 * If we requested dmaable memory, we will get it. Even if we
1391 * did not request dmaable memory, we might get it, but that
1392 * would be relatively rare and ignorable.
1393 */
0c3aa83e
JK
1394static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1395 int nodeid)
1da177e4
LT
1396{
1397 struct page *page;
e1b6aa6f 1398 int nr_pages;
765c4507 1399
a618e89f 1400 flags |= cachep->allocflags;
e12ba74d
MG
1401 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1402 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1403
96db800f 1404 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1405 if (!page) {
9a02d699 1406 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1407 return NULL;
8bdec192 1408 }
1da177e4 1409
f3ccb2c4
VD
1410 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1411 __free_pages(page, cachep->gfporder);
1412 return NULL;
1413 }
1414
e1b6aa6f 1415 nr_pages = (1 << cachep->gfporder);
1da177e4 1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1417 add_zone_page_state(page_zone(page),
1418 NR_SLAB_RECLAIMABLE, nr_pages);
1419 else
1420 add_zone_page_state(page_zone(page),
1421 NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1422
a57a4988 1423 __SetPageSlab(page);
f68f8ddd
JK
1424 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1425 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1426 SetPageSlabPfmemalloc(page);
072bb0aa 1427
b1eeab67
VN
1428 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1429 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1430
1431 if (cachep->ctor)
1432 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1433 else
1434 kmemcheck_mark_unallocated_pages(page, nr_pages);
1435 }
c175eea4 1436
0c3aa83e 1437 return page;
1da177e4
LT
1438}
1439
1440/*
1441 * Interface to system's page release.
1442 */
0c3aa83e 1443static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1444{
27ee57c9
VD
1445 int order = cachep->gfporder;
1446 unsigned long nr_freed = (1 << order);
1da177e4 1447
27ee57c9 1448 kmemcheck_free_shadow(page, order);
c175eea4 1449
972d1a7b
CL
1450 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1451 sub_zone_page_state(page_zone(page),
1452 NR_SLAB_RECLAIMABLE, nr_freed);
1453 else
1454 sub_zone_page_state(page_zone(page),
1455 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1456
a57a4988 1457 BUG_ON(!PageSlab(page));
73293c2f 1458 __ClearPageSlabPfmemalloc(page);
a57a4988 1459 __ClearPageSlab(page);
8456a648
JK
1460 page_mapcount_reset(page);
1461 page->mapping = NULL;
1f458cbf 1462
1da177e4
LT
1463 if (current->reclaim_state)
1464 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1465 memcg_uncharge_slab(page, order, cachep);
1466 __free_pages(page, order);
1da177e4
LT
1467}
1468
1469static void kmem_rcu_free(struct rcu_head *head)
1470{
68126702
JK
1471 struct kmem_cache *cachep;
1472 struct page *page;
1da177e4 1473
68126702
JK
1474 page = container_of(head, struct page, rcu_head);
1475 cachep = page->slab_cache;
1476
1477 kmem_freepages(cachep, page);
1da177e4
LT
1478}
1479
1480#if DEBUG
40b44137
JK
1481static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482{
1483 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 (cachep->size % PAGE_SIZE) == 0)
1485 return true;
1486
1487 return false;
1488}
1da177e4
LT
1489
1490#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1491static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1492 unsigned long caller)
1da177e4 1493{
8c138bc0 1494 int size = cachep->object_size;
1da177e4 1495
3dafccf2 1496 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1497
b28a02de 1498 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1499 return;
1500
b28a02de
PE
1501 *addr++ = 0x12345678;
1502 *addr++ = caller;
1503 *addr++ = smp_processor_id();
1504 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1505 {
1506 unsigned long *sptr = &caller;
1507 unsigned long svalue;
1508
1509 while (!kstack_end(sptr)) {
1510 svalue = *sptr++;
1511 if (kernel_text_address(svalue)) {
b28a02de 1512 *addr++ = svalue;
1da177e4
LT
1513 size -= sizeof(unsigned long);
1514 if (size <= sizeof(unsigned long))
1515 break;
1516 }
1517 }
1518
1519 }
b28a02de 1520 *addr++ = 0x87654321;
1da177e4 1521}
40b44137
JK
1522
1523static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 int map, unsigned long caller)
1525{
1526 if (!is_debug_pagealloc_cache(cachep))
1527 return;
1528
1529 if (caller)
1530 store_stackinfo(cachep, objp, caller);
1531
1532 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533}
1534
1535#else
1536static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 int map, unsigned long caller) {}
1538
1da177e4
LT
1539#endif
1540
343e0d7a 1541static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1542{
8c138bc0 1543 int size = cachep->object_size;
3dafccf2 1544 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1545
1546 memset(addr, val, size);
b28a02de 1547 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1548}
1549
1550static void dump_line(char *data, int offset, int limit)
1551{
1552 int i;
aa83aa40
DJ
1553 unsigned char error = 0;
1554 int bad_count = 0;
1555
fdde6abb 1556 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1557 for (i = 0; i < limit; i++) {
1558 if (data[offset + i] != POISON_FREE) {
1559 error = data[offset + i];
1560 bad_count++;
1561 }
aa83aa40 1562 }
fdde6abb
SAS
1563 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 &data[offset], limit, 1);
aa83aa40
DJ
1565
1566 if (bad_count == 1) {
1567 error ^= POISON_FREE;
1568 if (!(error & (error - 1))) {
1569 printk(KERN_ERR "Single bit error detected. Probably "
1570 "bad RAM.\n");
1571#ifdef CONFIG_X86
1572 printk(KERN_ERR "Run memtest86+ or a similar memory "
1573 "test tool.\n");
1574#else
1575 printk(KERN_ERR "Run a memory test tool.\n");
1576#endif
1577 }
1578 }
1da177e4
LT
1579}
1580#endif
1581
1582#if DEBUG
1583
343e0d7a 1584static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1585{
1586 int i, size;
1587 char *realobj;
1588
1589 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1590 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1591 *dbg_redzone1(cachep, objp),
1592 *dbg_redzone2(cachep, objp));
1da177e4
LT
1593 }
1594
1595 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1596 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1597 *dbg_userword(cachep, objp),
1598 *dbg_userword(cachep, objp));
1da177e4 1599 }
3dafccf2 1600 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1601 size = cachep->object_size;
b28a02de 1602 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1603 int limit;
1604 limit = 16;
b28a02de
PE
1605 if (i + limit > size)
1606 limit = size - i;
1da177e4
LT
1607 dump_line(realobj, i, limit);
1608 }
1609}
1610
343e0d7a 1611static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1612{
1613 char *realobj;
1614 int size, i;
1615 int lines = 0;
1616
40b44137
JK
1617 if (is_debug_pagealloc_cache(cachep))
1618 return;
1619
3dafccf2 1620 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1621 size = cachep->object_size;
1da177e4 1622
b28a02de 1623 for (i = 0; i < size; i++) {
1da177e4 1624 char exp = POISON_FREE;
b28a02de 1625 if (i == size - 1)
1da177e4
LT
1626 exp = POISON_END;
1627 if (realobj[i] != exp) {
1628 int limit;
1629 /* Mismatch ! */
1630 /* Print header */
1631 if (lines == 0) {
b28a02de 1632 printk(KERN_ERR
face37f5
DJ
1633 "Slab corruption (%s): %s start=%p, len=%d\n",
1634 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1635 print_objinfo(cachep, objp, 0);
1636 }
1637 /* Hexdump the affected line */
b28a02de 1638 i = (i / 16) * 16;
1da177e4 1639 limit = 16;
b28a02de
PE
1640 if (i + limit > size)
1641 limit = size - i;
1da177e4
LT
1642 dump_line(realobj, i, limit);
1643 i += 16;
1644 lines++;
1645 /* Limit to 5 lines */
1646 if (lines > 5)
1647 break;
1648 }
1649 }
1650 if (lines != 0) {
1651 /* Print some data about the neighboring objects, if they
1652 * exist:
1653 */
8456a648 1654 struct page *page = virt_to_head_page(objp);
8fea4e96 1655 unsigned int objnr;
1da177e4 1656
8456a648 1657 objnr = obj_to_index(cachep, page, objp);
1da177e4 1658 if (objnr) {
8456a648 1659 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1660 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1661 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1662 realobj, size);
1da177e4
LT
1663 print_objinfo(cachep, objp, 2);
1664 }
b28a02de 1665 if (objnr + 1 < cachep->num) {
8456a648 1666 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1667 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1668 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1669 realobj, size);
1da177e4
LT
1670 print_objinfo(cachep, objp, 2);
1671 }
1672 }
1673}
1674#endif
1675
12dd36fa 1676#if DEBUG
8456a648
JK
1677static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1678 struct page *page)
1da177e4 1679{
1da177e4 1680 int i;
b03a017b
JK
1681
1682 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1683 poison_obj(cachep, page->freelist - obj_offset(cachep),
1684 POISON_FREE);
1685 }
1686
1da177e4 1687 for (i = 0; i < cachep->num; i++) {
8456a648 1688 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1689
1690 if (cachep->flags & SLAB_POISON) {
1da177e4 1691 check_poison_obj(cachep, objp);
40b44137 1692 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1693 }
1694 if (cachep->flags & SLAB_RED_ZONE) {
1695 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1696 slab_error(cachep, "start of a freed object "
b28a02de 1697 "was overwritten");
1da177e4
LT
1698 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1699 slab_error(cachep, "end of a freed object "
b28a02de 1700 "was overwritten");
1da177e4 1701 }
1da177e4 1702 }
12dd36fa 1703}
1da177e4 1704#else
8456a648
JK
1705static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1706 struct page *page)
12dd36fa 1707{
12dd36fa 1708}
1da177e4
LT
1709#endif
1710
911851e6
RD
1711/**
1712 * slab_destroy - destroy and release all objects in a slab
1713 * @cachep: cache pointer being destroyed
cb8ee1a3 1714 * @page: page pointer being destroyed
911851e6 1715 *
8a7d9b43
WSH
1716 * Destroy all the objs in a slab page, and release the mem back to the system.
1717 * Before calling the slab page must have been unlinked from the cache. The
1718 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1719 */
8456a648 1720static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1721{
7e007355 1722 void *freelist;
12dd36fa 1723
8456a648
JK
1724 freelist = page->freelist;
1725 slab_destroy_debugcheck(cachep, page);
bc4f610d
KS
1726 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1727 call_rcu(&page->rcu_head, kmem_rcu_free);
1728 else
0c3aa83e 1729 kmem_freepages(cachep, page);
68126702
JK
1730
1731 /*
8456a648 1732 * From now on, we don't use freelist
68126702
JK
1733 * although actual page can be freed in rcu context
1734 */
1735 if (OFF_SLAB(cachep))
8456a648 1736 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1737}
1738
97654dfa
JK
1739static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1740{
1741 struct page *page, *n;
1742
1743 list_for_each_entry_safe(page, n, list, lru) {
1744 list_del(&page->lru);
1745 slab_destroy(cachep, page);
1746 }
1747}
1748
4d268eba 1749/**
a70773dd
RD
1750 * calculate_slab_order - calculate size (page order) of slabs
1751 * @cachep: pointer to the cache that is being created
1752 * @size: size of objects to be created in this cache.
a70773dd
RD
1753 * @flags: slab allocation flags
1754 *
1755 * Also calculates the number of objects per slab.
4d268eba
PE
1756 *
1757 * This could be made much more intelligent. For now, try to avoid using
1758 * high order pages for slabs. When the gfp() functions are more friendly
1759 * towards high-order requests, this should be changed.
1760 */
a737b3e2 1761static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1762 size_t size, unsigned long flags)
4d268eba
PE
1763{
1764 size_t left_over = 0;
9888e6fa 1765 int gfporder;
4d268eba 1766
0aa817f0 1767 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1768 unsigned int num;
1769 size_t remainder;
1770
70f75067 1771 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1772 if (!num)
1773 continue;
9888e6fa 1774
f315e3fa
JK
1775 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1776 if (num > SLAB_OBJ_MAX_NUM)
1777 break;
1778
b1ab41c4 1779 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1780 struct kmem_cache *freelist_cache;
1781 size_t freelist_size;
1782
1783 freelist_size = num * sizeof(freelist_idx_t);
1784 freelist_cache = kmalloc_slab(freelist_size, 0u);
1785 if (!freelist_cache)
1786 continue;
1787
b1ab41c4 1788 /*
3217fd9b
JK
1789 * Needed to avoid possible looping condition
1790 * in cache_grow()
b1ab41c4 1791 */
3217fd9b
JK
1792 if (OFF_SLAB(freelist_cache))
1793 continue;
b1ab41c4 1794
3217fd9b
JK
1795 /* check if off slab has enough benefit */
1796 if (freelist_cache->size > cachep->size / 2)
1797 continue;
b1ab41c4 1798 }
4d268eba 1799
9888e6fa 1800 /* Found something acceptable - save it away */
4d268eba 1801 cachep->num = num;
9888e6fa 1802 cachep->gfporder = gfporder;
4d268eba
PE
1803 left_over = remainder;
1804
f78bb8ad
LT
1805 /*
1806 * A VFS-reclaimable slab tends to have most allocations
1807 * as GFP_NOFS and we really don't want to have to be allocating
1808 * higher-order pages when we are unable to shrink dcache.
1809 */
1810 if (flags & SLAB_RECLAIM_ACCOUNT)
1811 break;
1812
4d268eba
PE
1813 /*
1814 * Large number of objects is good, but very large slabs are
1815 * currently bad for the gfp()s.
1816 */
543585cc 1817 if (gfporder >= slab_max_order)
4d268eba
PE
1818 break;
1819
9888e6fa
LT
1820 /*
1821 * Acceptable internal fragmentation?
1822 */
a737b3e2 1823 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1824 break;
1825 }
1826 return left_over;
1827}
1828
bf0dea23
JK
1829static struct array_cache __percpu *alloc_kmem_cache_cpus(
1830 struct kmem_cache *cachep, int entries, int batchcount)
1831{
1832 int cpu;
1833 size_t size;
1834 struct array_cache __percpu *cpu_cache;
1835
1836 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1837 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1838
1839 if (!cpu_cache)
1840 return NULL;
1841
1842 for_each_possible_cpu(cpu) {
1843 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1844 entries, batchcount);
1845 }
1846
1847 return cpu_cache;
1848}
1849
83b519e8 1850static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1851{
97d06609 1852 if (slab_state >= FULL)
83b519e8 1853 return enable_cpucache(cachep, gfp);
2ed3a4ef 1854
bf0dea23
JK
1855 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1856 if (!cachep->cpu_cache)
1857 return 1;
1858
97d06609 1859 if (slab_state == DOWN) {
bf0dea23
JK
1860 /* Creation of first cache (kmem_cache). */
1861 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1862 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1863 /* For kmem_cache_node */
1864 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1865 } else {
bf0dea23 1866 int node;
f30cf7d1 1867
bf0dea23
JK
1868 for_each_online_node(node) {
1869 cachep->node[node] = kmalloc_node(
1870 sizeof(struct kmem_cache_node), gfp, node);
1871 BUG_ON(!cachep->node[node]);
1872 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1873 }
1874 }
bf0dea23 1875
6a67368c 1876 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1877 jiffies + REAPTIMEOUT_NODE +
1878 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1879
1880 cpu_cache_get(cachep)->avail = 0;
1881 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1882 cpu_cache_get(cachep)->batchcount = 1;
1883 cpu_cache_get(cachep)->touched = 0;
1884 cachep->batchcount = 1;
1885 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1886 return 0;
f30cf7d1
PE
1887}
1888
12220dea
JK
1889unsigned long kmem_cache_flags(unsigned long object_size,
1890 unsigned long flags, const char *name,
1891 void (*ctor)(void *))
1892{
1893 return flags;
1894}
1895
1896struct kmem_cache *
1897__kmem_cache_alias(const char *name, size_t size, size_t align,
1898 unsigned long flags, void (*ctor)(void *))
1899{
1900 struct kmem_cache *cachep;
1901
1902 cachep = find_mergeable(size, align, flags, name, ctor);
1903 if (cachep) {
1904 cachep->refcount++;
1905
1906 /*
1907 * Adjust the object sizes so that we clear
1908 * the complete object on kzalloc.
1909 */
1910 cachep->object_size = max_t(int, cachep->object_size, size);
1911 }
1912 return cachep;
1913}
1914
b03a017b
JK
1915static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1916 size_t size, unsigned long flags)
1917{
1918 size_t left;
1919
1920 cachep->num = 0;
1921
1922 if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1923 return false;
1924
1925 left = calculate_slab_order(cachep, size,
1926 flags | CFLGS_OBJFREELIST_SLAB);
1927 if (!cachep->num)
1928 return false;
1929
1930 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1931 return false;
1932
1933 cachep->colour = left / cachep->colour_off;
1934
1935 return true;
1936}
1937
158e319b
JK
1938static bool set_off_slab_cache(struct kmem_cache *cachep,
1939 size_t size, unsigned long flags)
1940{
1941 size_t left;
1942
1943 cachep->num = 0;
1944
1945 /*
3217fd9b
JK
1946 * Always use on-slab management when SLAB_NOLEAKTRACE
1947 * to avoid recursive calls into kmemleak.
158e319b 1948 */
158e319b
JK
1949 if (flags & SLAB_NOLEAKTRACE)
1950 return false;
1951
1952 /*
1953 * Size is large, assume best to place the slab management obj
1954 * off-slab (should allow better packing of objs).
1955 */
1956 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1957 if (!cachep->num)
1958 return false;
1959
1960 /*
1961 * If the slab has been placed off-slab, and we have enough space then
1962 * move it on-slab. This is at the expense of any extra colouring.
1963 */
1964 if (left >= cachep->num * sizeof(freelist_idx_t))
1965 return false;
1966
1967 cachep->colour = left / cachep->colour_off;
1968
1969 return true;
1970}
1971
1972static bool set_on_slab_cache(struct kmem_cache *cachep,
1973 size_t size, unsigned long flags)
1974{
1975 size_t left;
1976
1977 cachep->num = 0;
1978
1979 left = calculate_slab_order(cachep, size, flags);
1980 if (!cachep->num)
1981 return false;
1982
1983 cachep->colour = left / cachep->colour_off;
1984
1985 return true;
1986}
1987
1da177e4 1988/**
039363f3 1989 * __kmem_cache_create - Create a cache.
a755b76a 1990 * @cachep: cache management descriptor
1da177e4 1991 * @flags: SLAB flags
1da177e4
LT
1992 *
1993 * Returns a ptr to the cache on success, NULL on failure.
1994 * Cannot be called within a int, but can be interrupted.
20c2df83 1995 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1996 *
1da177e4
LT
1997 * The flags are
1998 *
1999 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2000 * to catch references to uninitialised memory.
2001 *
2002 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2003 * for buffer overruns.
2004 *
1da177e4
LT
2005 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2006 * cacheline. This can be beneficial if you're counting cycles as closely
2007 * as davem.
2008 */
278b1bb1 2009int
8a13a4cc 2010__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2011{
d4a5fca5 2012 size_t ralign = BYTES_PER_WORD;
83b519e8 2013 gfp_t gfp;
278b1bb1 2014 int err;
8a13a4cc 2015 size_t size = cachep->size;
1da177e4 2016
1da177e4 2017#if DEBUG
1da177e4
LT
2018#if FORCED_DEBUG
2019 /*
2020 * Enable redzoning and last user accounting, except for caches with
2021 * large objects, if the increased size would increase the object size
2022 * above the next power of two: caches with object sizes just above a
2023 * power of two have a significant amount of internal fragmentation.
2024 */
87a927c7
DW
2025 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2026 2 * sizeof(unsigned long long)))
b28a02de 2027 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2028 if (!(flags & SLAB_DESTROY_BY_RCU))
2029 flags |= SLAB_POISON;
2030#endif
1da177e4 2031#endif
1da177e4 2032
a737b3e2
AM
2033 /*
2034 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2035 * unaligned accesses for some archs when redzoning is used, and makes
2036 * sure any on-slab bufctl's are also correctly aligned.
2037 */
b28a02de
PE
2038 if (size & (BYTES_PER_WORD - 1)) {
2039 size += (BYTES_PER_WORD - 1);
2040 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2041 }
2042
87a927c7
DW
2043 if (flags & SLAB_RED_ZONE) {
2044 ralign = REDZONE_ALIGN;
2045 /* If redzoning, ensure that the second redzone is suitably
2046 * aligned, by adjusting the object size accordingly. */
2047 size += REDZONE_ALIGN - 1;
2048 size &= ~(REDZONE_ALIGN - 1);
2049 }
ca5f9703 2050
a44b56d3 2051 /* 3) caller mandated alignment */
8a13a4cc
CL
2052 if (ralign < cachep->align) {
2053 ralign = cachep->align;
1da177e4 2054 }
3ff84a7f
PE
2055 /* disable debug if necessary */
2056 if (ralign > __alignof__(unsigned long long))
a44b56d3 2057 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2058 /*
ca5f9703 2059 * 4) Store it.
1da177e4 2060 */
8a13a4cc 2061 cachep->align = ralign;
158e319b
JK
2062 cachep->colour_off = cache_line_size();
2063 /* Offset must be a multiple of the alignment. */
2064 if (cachep->colour_off < cachep->align)
2065 cachep->colour_off = cachep->align;
1da177e4 2066
83b519e8
PE
2067 if (slab_is_available())
2068 gfp = GFP_KERNEL;
2069 else
2070 gfp = GFP_NOWAIT;
2071
1da177e4 2072#if DEBUG
1da177e4 2073
ca5f9703
PE
2074 /*
2075 * Both debugging options require word-alignment which is calculated
2076 * into align above.
2077 */
1da177e4 2078 if (flags & SLAB_RED_ZONE) {
1da177e4 2079 /* add space for red zone words */
3ff84a7f
PE
2080 cachep->obj_offset += sizeof(unsigned long long);
2081 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2082 }
2083 if (flags & SLAB_STORE_USER) {
ca5f9703 2084 /* user store requires one word storage behind the end of
87a927c7
DW
2085 * the real object. But if the second red zone needs to be
2086 * aligned to 64 bits, we must allow that much space.
1da177e4 2087 */
87a927c7
DW
2088 if (flags & SLAB_RED_ZONE)
2089 size += REDZONE_ALIGN;
2090 else
2091 size += BYTES_PER_WORD;
1da177e4 2092 }
832a15d2
JK
2093#endif
2094
2095 size = ALIGN(size, cachep->align);
2096 /*
2097 * We should restrict the number of objects in a slab to implement
2098 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2099 */
2100 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2101 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2102
2103#if DEBUG
03a2d2a3
JK
2104 /*
2105 * To activate debug pagealloc, off-slab management is necessary
2106 * requirement. In early phase of initialization, small sized slab
2107 * doesn't get initialized so it would not be possible. So, we need
2108 * to check size >= 256. It guarantees that all necessary small
2109 * sized slab is initialized in current slab initialization sequence.
2110 */
40323278 2111 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2112 size >= 256 && cachep->object_size > cache_line_size()) {
2113 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2114 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2115
2116 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2117 flags |= CFLGS_OFF_SLAB;
2118 cachep->obj_offset += tmp_size - size;
2119 size = tmp_size;
2120 goto done;
2121 }
2122 }
1da177e4 2123 }
1da177e4
LT
2124#endif
2125
b03a017b
JK
2126 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2127 flags |= CFLGS_OBJFREELIST_SLAB;
2128 goto done;
2129 }
2130
158e319b 2131 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2132 flags |= CFLGS_OFF_SLAB;
158e319b 2133 goto done;
832a15d2 2134 }
1da177e4 2135
158e319b
JK
2136 if (set_on_slab_cache(cachep, size, flags))
2137 goto done;
1da177e4 2138
158e319b 2139 return -E2BIG;
1da177e4 2140
158e319b
JK
2141done:
2142 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2143 cachep->flags = flags;
a57a4988 2144 cachep->allocflags = __GFP_COMP;
4b51d669 2145 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2146 cachep->allocflags |= GFP_DMA;
3b0efdfa 2147 cachep->size = size;
6a2d7a95 2148 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2149
40b44137
JK
2150#if DEBUG
2151 /*
2152 * If we're going to use the generic kernel_map_pages()
2153 * poisoning, then it's going to smash the contents of
2154 * the redzone and userword anyhow, so switch them off.
2155 */
2156 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2157 (cachep->flags & SLAB_POISON) &&
2158 is_debug_pagealloc_cache(cachep))
2159 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2160#endif
2161
2162 if (OFF_SLAB(cachep)) {
158e319b
JK
2163 cachep->freelist_cache =
2164 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2165 }
1da177e4 2166
278b1bb1
CL
2167 err = setup_cpu_cache(cachep, gfp);
2168 if (err) {
52b4b950 2169 __kmem_cache_release(cachep);
278b1bb1 2170 return err;
2ed3a4ef 2171 }
1da177e4 2172
278b1bb1 2173 return 0;
1da177e4 2174}
1da177e4
LT
2175
2176#if DEBUG
2177static void check_irq_off(void)
2178{
2179 BUG_ON(!irqs_disabled());
2180}
2181
2182static void check_irq_on(void)
2183{
2184 BUG_ON(irqs_disabled());
2185}
2186
343e0d7a 2187static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2188{
2189#ifdef CONFIG_SMP
2190 check_irq_off();
18bf8541 2191 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2192#endif
2193}
e498be7d 2194
343e0d7a 2195static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2196{
2197#ifdef CONFIG_SMP
2198 check_irq_off();
18bf8541 2199 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2200#endif
2201}
2202
1da177e4
LT
2203#else
2204#define check_irq_off() do { } while(0)
2205#define check_irq_on() do { } while(0)
2206#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2207#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2208#endif
2209
ce8eb6c4 2210static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2211 struct array_cache *ac,
2212 int force, int node);
2213
1da177e4
LT
2214static void do_drain(void *arg)
2215{
a737b3e2 2216 struct kmem_cache *cachep = arg;
1da177e4 2217 struct array_cache *ac;
7d6e6d09 2218 int node = numa_mem_id();
18bf8541 2219 struct kmem_cache_node *n;
97654dfa 2220 LIST_HEAD(list);
1da177e4
LT
2221
2222 check_irq_off();
9a2dba4b 2223 ac = cpu_cache_get(cachep);
18bf8541
CL
2224 n = get_node(cachep, node);
2225 spin_lock(&n->list_lock);
97654dfa 2226 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2227 spin_unlock(&n->list_lock);
97654dfa 2228 slabs_destroy(cachep, &list);
1da177e4
LT
2229 ac->avail = 0;
2230}
2231
343e0d7a 2232static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2233{
ce8eb6c4 2234 struct kmem_cache_node *n;
e498be7d
CL
2235 int node;
2236
15c8b6c1 2237 on_each_cpu(do_drain, cachep, 1);
1da177e4 2238 check_irq_on();
18bf8541
CL
2239 for_each_kmem_cache_node(cachep, node, n)
2240 if (n->alien)
ce8eb6c4 2241 drain_alien_cache(cachep, n->alien);
a4523a8b 2242
18bf8541
CL
2243 for_each_kmem_cache_node(cachep, node, n)
2244 drain_array(cachep, n, n->shared, 1, node);
1da177e4
LT
2245}
2246
ed11d9eb
CL
2247/*
2248 * Remove slabs from the list of free slabs.
2249 * Specify the number of slabs to drain in tofree.
2250 *
2251 * Returns the actual number of slabs released.
2252 */
2253static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2254 struct kmem_cache_node *n, int tofree)
1da177e4 2255{
ed11d9eb
CL
2256 struct list_head *p;
2257 int nr_freed;
8456a648 2258 struct page *page;
1da177e4 2259
ed11d9eb 2260 nr_freed = 0;
ce8eb6c4 2261 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2262
ce8eb6c4
CL
2263 spin_lock_irq(&n->list_lock);
2264 p = n->slabs_free.prev;
2265 if (p == &n->slabs_free) {
2266 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2267 goto out;
2268 }
1da177e4 2269
8456a648 2270 page = list_entry(p, struct page, lru);
8456a648 2271 list_del(&page->lru);
ed11d9eb
CL
2272 /*
2273 * Safe to drop the lock. The slab is no longer linked
2274 * to the cache.
2275 */
ce8eb6c4
CL
2276 n->free_objects -= cache->num;
2277 spin_unlock_irq(&n->list_lock);
8456a648 2278 slab_destroy(cache, page);
ed11d9eb 2279 nr_freed++;
1da177e4 2280 }
ed11d9eb
CL
2281out:
2282 return nr_freed;
1da177e4
LT
2283}
2284
d6e0b7fa 2285int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
e498be7d 2286{
18bf8541
CL
2287 int ret = 0;
2288 int node;
ce8eb6c4 2289 struct kmem_cache_node *n;
e498be7d
CL
2290
2291 drain_cpu_caches(cachep);
2292
2293 check_irq_on();
18bf8541 2294 for_each_kmem_cache_node(cachep, node, n) {
0fa8103b 2295 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2296
ce8eb6c4
CL
2297 ret += !list_empty(&n->slabs_full) ||
2298 !list_empty(&n->slabs_partial);
e498be7d
CL
2299 }
2300 return (ret ? 1 : 0);
2301}
2302
945cf2b6 2303int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950
DS
2304{
2305 return __kmem_cache_shrink(cachep, false);
2306}
2307
2308void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2309{
12c3667f 2310 int i;
ce8eb6c4 2311 struct kmem_cache_node *n;
1da177e4 2312
bf0dea23 2313 free_percpu(cachep->cpu_cache);
1da177e4 2314
ce8eb6c4 2315 /* NUMA: free the node structures */
18bf8541
CL
2316 for_each_kmem_cache_node(cachep, i, n) {
2317 kfree(n->shared);
2318 free_alien_cache(n->alien);
2319 kfree(n);
2320 cachep->node[i] = NULL;
12c3667f 2321 }
1da177e4 2322}
1da177e4 2323
e5ac9c5a
RT
2324/*
2325 * Get the memory for a slab management obj.
5f0985bb
JZ
2326 *
2327 * For a slab cache when the slab descriptor is off-slab, the
2328 * slab descriptor can't come from the same cache which is being created,
2329 * Because if it is the case, that means we defer the creation of
2330 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2331 * And we eventually call down to __kmem_cache_create(), which
2332 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2333 * This is a "chicken-and-egg" problem.
2334 *
2335 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2336 * which are all initialized during kmem_cache_init().
e5ac9c5a 2337 */
7e007355 2338static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2339 struct page *page, int colour_off,
2340 gfp_t local_flags, int nodeid)
1da177e4 2341{
7e007355 2342 void *freelist;
0c3aa83e 2343 void *addr = page_address(page);
b28a02de 2344
2e6b3602
JK
2345 page->s_mem = addr + colour_off;
2346 page->active = 0;
2347
b03a017b
JK
2348 if (OBJFREELIST_SLAB(cachep))
2349 freelist = NULL;
2350 else if (OFF_SLAB(cachep)) {
1da177e4 2351 /* Slab management obj is off-slab. */
8456a648 2352 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2353 local_flags, nodeid);
8456a648 2354 if (!freelist)
1da177e4
LT
2355 return NULL;
2356 } else {
2e6b3602
JK
2357 /* We will use last bytes at the slab for freelist */
2358 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2359 cachep->freelist_size;
1da177e4 2360 }
2e6b3602 2361
8456a648 2362 return freelist;
1da177e4
LT
2363}
2364
7cc68973 2365static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2366{
a41adfaa 2367 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2368}
2369
2370static inline void set_free_obj(struct page *page,
7cc68973 2371 unsigned int idx, freelist_idx_t val)
e5c58dfd 2372{
a41adfaa 2373 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2374}
2375
10b2e9e8 2376static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2377{
10b2e9e8 2378#if DEBUG
1da177e4
LT
2379 int i;
2380
2381 for (i = 0; i < cachep->num; i++) {
8456a648 2382 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2383
1da177e4
LT
2384 if (cachep->flags & SLAB_STORE_USER)
2385 *dbg_userword(cachep, objp) = NULL;
2386
2387 if (cachep->flags & SLAB_RED_ZONE) {
2388 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2389 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2390 }
2391 /*
a737b3e2
AM
2392 * Constructors are not allowed to allocate memory from the same
2393 * cache which they are a constructor for. Otherwise, deadlock.
2394 * They must also be threaded.
1da177e4
LT
2395 */
2396 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2397 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2398
2399 if (cachep->flags & SLAB_RED_ZONE) {
2400 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2401 slab_error(cachep, "constructor overwrote the"
b28a02de 2402 " end of an object");
1da177e4
LT
2403 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2404 slab_error(cachep, "constructor overwrote the"
b28a02de 2405 " start of an object");
1da177e4 2406 }
40b44137
JK
2407 /* need to poison the objs? */
2408 if (cachep->flags & SLAB_POISON) {
2409 poison_obj(cachep, objp, POISON_FREE);
2410 slab_kernel_map(cachep, objp, 0, 0);
2411 }
10b2e9e8 2412 }
1da177e4 2413#endif
10b2e9e8
JK
2414}
2415
2416static void cache_init_objs(struct kmem_cache *cachep,
2417 struct page *page)
2418{
2419 int i;
2420
2421 cache_init_objs_debug(cachep, page);
2422
b03a017b
JK
2423 if (OBJFREELIST_SLAB(cachep)) {
2424 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2425 obj_offset(cachep);
2426 }
2427
10b2e9e8
JK
2428 for (i = 0; i < cachep->num; i++) {
2429 /* constructor could break poison info */
2430 if (DEBUG == 0 && cachep->ctor)
2431 cachep->ctor(index_to_obj(cachep, page, i));
2432
e5c58dfd 2433 set_free_obj(page, i, i);
1da177e4 2434 }
1da177e4
LT
2435}
2436
343e0d7a 2437static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2438{
4b51d669
CL
2439 if (CONFIG_ZONE_DMA_FLAG) {
2440 if (flags & GFP_DMA)
a618e89f 2441 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2442 else
a618e89f 2443 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2444 }
1da177e4
LT
2445}
2446
260b61dd 2447static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2448{
b1cb0982 2449 void *objp;
78d382d7 2450
e5c58dfd 2451 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2452 page->active++;
78d382d7 2453
d31676df
JK
2454#if DEBUG
2455 if (cachep->flags & SLAB_STORE_USER)
2456 set_store_user_dirty(cachep);
2457#endif
2458
78d382d7
MD
2459 return objp;
2460}
2461
260b61dd
JK
2462static void slab_put_obj(struct kmem_cache *cachep,
2463 struct page *page, void *objp)
78d382d7 2464{
8456a648 2465 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2466#if DEBUG
16025177 2467 unsigned int i;
b1cb0982 2468
b1cb0982 2469 /* Verify double free bug */
8456a648 2470 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2471 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2472 printk(KERN_ERR "slab: double free detected in cache "
2473 "'%s', objp %p\n", cachep->name, objp);
2474 BUG();
2475 }
78d382d7
MD
2476 }
2477#endif
8456a648 2478 page->active--;
b03a017b
JK
2479 if (!page->freelist)
2480 page->freelist = objp + obj_offset(cachep);
2481
e5c58dfd 2482 set_free_obj(page, page->active, objnr);
78d382d7
MD
2483}
2484
4776874f
PE
2485/*
2486 * Map pages beginning at addr to the given cache and slab. This is required
2487 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2488 * virtual address for kfree, ksize, and slab debugging.
4776874f 2489 */
8456a648 2490static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2491 void *freelist)
1da177e4 2492{
a57a4988 2493 page->slab_cache = cache;
8456a648 2494 page->freelist = freelist;
1da177e4
LT
2495}
2496
2497/*
2498 * Grow (by 1) the number of slabs within a cache. This is called by
2499 * kmem_cache_alloc() when there are no active objs left in a cache.
2500 */
3c517a61 2501static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2502 gfp_t flags, int nodeid, struct page *page)
1da177e4 2503{
7e007355 2504 void *freelist;
b28a02de
PE
2505 size_t offset;
2506 gfp_t local_flags;
ce8eb6c4 2507 struct kmem_cache_node *n;
1da177e4 2508
a737b3e2
AM
2509 /*
2510 * Be lazy and only check for valid flags here, keeping it out of the
2511 * critical path in kmem_cache_alloc().
1da177e4 2512 */
c871ac4e
AM
2513 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2514 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2515 BUG();
2516 }
6cb06229 2517 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2518
ce8eb6c4 2519 /* Take the node list lock to change the colour_next on this node */
1da177e4 2520 check_irq_off();
18bf8541 2521 n = get_node(cachep, nodeid);
ce8eb6c4 2522 spin_lock(&n->list_lock);
1da177e4
LT
2523
2524 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2525 offset = n->colour_next;
2526 n->colour_next++;
2527 if (n->colour_next >= cachep->colour)
2528 n->colour_next = 0;
2529 spin_unlock(&n->list_lock);
1da177e4 2530
2e1217cf 2531 offset *= cachep->colour_off;
1da177e4 2532
d0164adc 2533 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2534 local_irq_enable();
2535
2536 /*
2537 * The test for missing atomic flag is performed here, rather than
2538 * the more obvious place, simply to reduce the critical path length
2539 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2540 * will eventually be caught here (where it matters).
2541 */
2542 kmem_flagcheck(cachep, flags);
2543
a737b3e2
AM
2544 /*
2545 * Get mem for the objs. Attempt to allocate a physical page from
2546 * 'nodeid'.
e498be7d 2547 */
0c3aa83e
JK
2548 if (!page)
2549 page = kmem_getpages(cachep, local_flags, nodeid);
2550 if (!page)
1da177e4
LT
2551 goto failed;
2552
2553 /* Get slab management. */
8456a648 2554 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2555 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
b03a017b 2556 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2557 goto opps1;
2558
8456a648 2559 slab_map_pages(cachep, page, freelist);
1da177e4 2560
8456a648 2561 cache_init_objs(cachep, page);
1da177e4 2562
d0164adc 2563 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2564 local_irq_disable();
2565 check_irq_off();
ce8eb6c4 2566 spin_lock(&n->list_lock);
1da177e4
LT
2567
2568 /* Make slab active. */
8456a648 2569 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2570 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2571 n->free_objects += cachep->num;
2572 spin_unlock(&n->list_lock);
1da177e4 2573 return 1;
a737b3e2 2574opps1:
0c3aa83e 2575 kmem_freepages(cachep, page);
a737b3e2 2576failed:
d0164adc 2577 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2578 local_irq_disable();
2579 return 0;
2580}
2581
2582#if DEBUG
2583
2584/*
2585 * Perform extra freeing checks:
2586 * - detect bad pointers.
2587 * - POISON/RED_ZONE checking
1da177e4
LT
2588 */
2589static void kfree_debugcheck(const void *objp)
2590{
1da177e4
LT
2591 if (!virt_addr_valid(objp)) {
2592 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2593 (unsigned long)objp);
2594 BUG();
1da177e4 2595 }
1da177e4
LT
2596}
2597
58ce1fd5
PE
2598static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2599{
b46b8f19 2600 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2601
2602 redzone1 = *dbg_redzone1(cache, obj);
2603 redzone2 = *dbg_redzone2(cache, obj);
2604
2605 /*
2606 * Redzone is ok.
2607 */
2608 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2609 return;
2610
2611 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2612 slab_error(cache, "double free detected");
2613 else
2614 slab_error(cache, "memory outside object was overwritten");
2615
b46b8f19 2616 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2617 obj, redzone1, redzone2);
2618}
2619
343e0d7a 2620static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2621 unsigned long caller)
1da177e4 2622{
1da177e4 2623 unsigned int objnr;
8456a648 2624 struct page *page;
1da177e4 2625
80cbd911
MW
2626 BUG_ON(virt_to_cache(objp) != cachep);
2627
3dafccf2 2628 objp -= obj_offset(cachep);
1da177e4 2629 kfree_debugcheck(objp);
b49af68f 2630 page = virt_to_head_page(objp);
1da177e4 2631
1da177e4 2632 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2633 verify_redzone_free(cachep, objp);
1da177e4
LT
2634 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2635 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2636 }
d31676df
JK
2637 if (cachep->flags & SLAB_STORE_USER) {
2638 set_store_user_dirty(cachep);
7c0cb9c6 2639 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2640 }
1da177e4 2641
8456a648 2642 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2643
2644 BUG_ON(objnr >= cachep->num);
8456a648 2645 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2646
1da177e4 2647 if (cachep->flags & SLAB_POISON) {
1da177e4 2648 poison_obj(cachep, objp, POISON_FREE);
40b44137 2649 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2650 }
2651 return objp;
2652}
2653
1da177e4
LT
2654#else
2655#define kfree_debugcheck(x) do { } while(0)
2656#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2657#endif
2658
b03a017b
JK
2659static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2660 void **list)
2661{
2662#if DEBUG
2663 void *next = *list;
2664 void *objp;
2665
2666 while (next) {
2667 objp = next - obj_offset(cachep);
2668 next = *(void **)next;
2669 poison_obj(cachep, objp, POISON_FREE);
2670 }
2671#endif
2672}
2673
d8410234 2674static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2675 struct kmem_cache_node *n, struct page *page,
2676 void **list)
d8410234
JK
2677{
2678 /* move slabp to correct slabp list: */
2679 list_del(&page->lru);
b03a017b 2680 if (page->active == cachep->num) {
d8410234 2681 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2682 if (OBJFREELIST_SLAB(cachep)) {
2683#if DEBUG
2684 /* Poisoning will be done without holding the lock */
2685 if (cachep->flags & SLAB_POISON) {
2686 void **objp = page->freelist;
2687
2688 *objp = *list;
2689 *list = objp;
2690 }
2691#endif
2692 page->freelist = NULL;
2693 }
2694 } else
d8410234
JK
2695 list_add(&page->lru, &n->slabs_partial);
2696}
2697
f68f8ddd
JK
2698/* Try to find non-pfmemalloc slab if needed */
2699static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2700 struct page *page, bool pfmemalloc)
2701{
2702 if (!page)
2703 return NULL;
2704
2705 if (pfmemalloc)
2706 return page;
2707
2708 if (!PageSlabPfmemalloc(page))
2709 return page;
2710
2711 /* No need to keep pfmemalloc slab if we have enough free objects */
2712 if (n->free_objects > n->free_limit) {
2713 ClearPageSlabPfmemalloc(page);
2714 return page;
2715 }
2716
2717 /* Move pfmemalloc slab to the end of list to speed up next search */
2718 list_del(&page->lru);
2719 if (!page->active)
2720 list_add_tail(&page->lru, &n->slabs_free);
2721 else
2722 list_add_tail(&page->lru, &n->slabs_partial);
2723
2724 list_for_each_entry(page, &n->slabs_partial, lru) {
2725 if (!PageSlabPfmemalloc(page))
2726 return page;
2727 }
2728
2729 list_for_each_entry(page, &n->slabs_free, lru) {
2730 if (!PageSlabPfmemalloc(page))
2731 return page;
2732 }
2733
2734 return NULL;
2735}
2736
2737static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2738{
2739 struct page *page;
2740
2741 page = list_first_entry_or_null(&n->slabs_partial,
2742 struct page, lru);
2743 if (!page) {
2744 n->free_touched = 1;
2745 page = list_first_entry_or_null(&n->slabs_free,
2746 struct page, lru);
2747 }
2748
f68f8ddd
JK
2749 if (sk_memalloc_socks())
2750 return get_valid_first_slab(n, page, pfmemalloc);
2751
7aa0d227
GT
2752 return page;
2753}
2754
f68f8ddd
JK
2755static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2756 struct kmem_cache_node *n, gfp_t flags)
2757{
2758 struct page *page;
2759 void *obj;
2760 void *list = NULL;
2761
2762 if (!gfp_pfmemalloc_allowed(flags))
2763 return NULL;
2764
2765 spin_lock(&n->list_lock);
2766 page = get_first_slab(n, true);
2767 if (!page) {
2768 spin_unlock(&n->list_lock);
2769 return NULL;
2770 }
2771
2772 obj = slab_get_obj(cachep, page);
2773 n->free_objects--;
2774
2775 fixup_slab_list(cachep, n, page, &list);
2776
2777 spin_unlock(&n->list_lock);
2778 fixup_objfreelist_debug(cachep, &list);
2779
2780 return obj;
2781}
2782
2783static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2784{
2785 int batchcount;
ce8eb6c4 2786 struct kmem_cache_node *n;
1da177e4 2787 struct array_cache *ac;
1ca4cb24 2788 int node;
b03a017b 2789 void *list = NULL;
1ca4cb24 2790
1da177e4 2791 check_irq_off();
7d6e6d09 2792 node = numa_mem_id();
f68f8ddd 2793
072bb0aa 2794retry:
9a2dba4b 2795 ac = cpu_cache_get(cachep);
1da177e4
LT
2796 batchcount = ac->batchcount;
2797 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2798 /*
2799 * If there was little recent activity on this cache, then
2800 * perform only a partial refill. Otherwise we could generate
2801 * refill bouncing.
1da177e4
LT
2802 */
2803 batchcount = BATCHREFILL_LIMIT;
2804 }
18bf8541 2805 n = get_node(cachep, node);
e498be7d 2806
ce8eb6c4
CL
2807 BUG_ON(ac->avail > 0 || !n);
2808 spin_lock(&n->list_lock);
1da177e4 2809
3ded175a 2810 /* See if we can refill from the shared array */
ce8eb6c4
CL
2811 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2812 n->shared->touched = 1;
3ded175a 2813 goto alloc_done;
44b57f1c 2814 }
3ded175a 2815
1da177e4 2816 while (batchcount > 0) {
8456a648 2817 struct page *page;
1da177e4 2818 /* Get slab alloc is to come from. */
f68f8ddd 2819 page = get_first_slab(n, false);
7aa0d227
GT
2820 if (!page)
2821 goto must_grow;
1da177e4 2822
1da177e4 2823 check_spinlock_acquired(cachep);
714b8171
PE
2824
2825 /*
2826 * The slab was either on partial or free list so
2827 * there must be at least one object available for
2828 * allocation.
2829 */
8456a648 2830 BUG_ON(page->active >= cachep->num);
714b8171 2831
8456a648 2832 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2833 STATS_INC_ALLOCED(cachep);
2834 STATS_INC_ACTIVE(cachep);
2835 STATS_SET_HIGH(cachep);
2836
f68f8ddd 2837 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
1da177e4 2838 }
1da177e4 2839
b03a017b 2840 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
2841 }
2842
a737b3e2 2843must_grow:
ce8eb6c4 2844 n->free_objects -= ac->avail;
a737b3e2 2845alloc_done:
ce8eb6c4 2846 spin_unlock(&n->list_lock);
b03a017b 2847 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2848
2849 if (unlikely(!ac->avail)) {
2850 int x;
f68f8ddd
JK
2851
2852 /* Check if we can use obj in pfmemalloc slab */
2853 if (sk_memalloc_socks()) {
2854 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2855
2856 if (obj)
2857 return obj;
2858 }
2859
4167e9b2 2860 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
e498be7d 2861
a737b3e2 2862 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2863 ac = cpu_cache_get(cachep);
51cd8e6f 2864 node = numa_mem_id();
072bb0aa
MG
2865
2866 /* no objects in sight? abort */
f68f8ddd 2867 if (!x && ac->avail == 0)
1da177e4
LT
2868 return NULL;
2869
a737b3e2 2870 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2871 goto retry;
2872 }
2873 ac->touched = 1;
072bb0aa 2874
f68f8ddd 2875 return ac->entry[--ac->avail];
1da177e4
LT
2876}
2877
a737b3e2
AM
2878static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2879 gfp_t flags)
1da177e4 2880{
d0164adc 2881 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
2882#if DEBUG
2883 kmem_flagcheck(cachep, flags);
2884#endif
2885}
2886
2887#if DEBUG
a737b3e2 2888static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2889 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2890{
b28a02de 2891 if (!objp)
1da177e4 2892 return objp;
b28a02de 2893 if (cachep->flags & SLAB_POISON) {
1da177e4 2894 check_poison_obj(cachep, objp);
40b44137 2895 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
2896 poison_obj(cachep, objp, POISON_INUSE);
2897 }
2898 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2899 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2900
2901 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2902 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2903 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2904 slab_error(cachep, "double free, or memory outside"
2905 " object was overwritten");
b28a02de 2906 printk(KERN_ERR
b46b8f19 2907 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2908 objp, *dbg_redzone1(cachep, objp),
2909 *dbg_redzone2(cachep, objp));
1da177e4
LT
2910 }
2911 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2912 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2913 }
03787301 2914
3dafccf2 2915 objp += obj_offset(cachep);
4f104934 2916 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2917 cachep->ctor(objp);
7ea466f2
TH
2918 if (ARCH_SLAB_MINALIGN &&
2919 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2920 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2921 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2922 }
1da177e4
LT
2923 return objp;
2924}
2925#else
2926#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2927#endif
2928
343e0d7a 2929static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2930{
b28a02de 2931 void *objp;
1da177e4
LT
2932 struct array_cache *ac;
2933
5c382300 2934 check_irq_off();
8a8b6502 2935
9a2dba4b 2936 ac = cpu_cache_get(cachep);
1da177e4 2937 if (likely(ac->avail)) {
1da177e4 2938 ac->touched = 1;
f68f8ddd 2939 objp = ac->entry[--ac->avail];
072bb0aa 2940
f68f8ddd
JK
2941 STATS_INC_ALLOCHIT(cachep);
2942 goto out;
1da177e4 2943 }
072bb0aa
MG
2944
2945 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 2946 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
2947 /*
2948 * the 'ac' may be updated by cache_alloc_refill(),
2949 * and kmemleak_erase() requires its correct value.
2950 */
2951 ac = cpu_cache_get(cachep);
2952
2953out:
d5cff635
CM
2954 /*
2955 * To avoid a false negative, if an object that is in one of the
2956 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2957 * treat the array pointers as a reference to the object.
2958 */
f3d8b53a
O
2959 if (objp)
2960 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
2961 return objp;
2962}
2963
e498be7d 2964#ifdef CONFIG_NUMA
c61afb18 2965/*
2ad654bc 2966 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
2967 *
2968 * If we are in_interrupt, then process context, including cpusets and
2969 * mempolicy, may not apply and should not be used for allocation policy.
2970 */
2971static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2972{
2973 int nid_alloc, nid_here;
2974
765c4507 2975 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 2976 return NULL;
7d6e6d09 2977 nid_alloc = nid_here = numa_mem_id();
c61afb18 2978 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 2979 nid_alloc = cpuset_slab_spread_node();
c61afb18 2980 else if (current->mempolicy)
2a389610 2981 nid_alloc = mempolicy_slab_node();
c61afb18 2982 if (nid_alloc != nid_here)
8b98c169 2983 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
2984 return NULL;
2985}
2986
765c4507
CL
2987/*
2988 * Fallback function if there was no memory available and no objects on a
3c517a61 2989 * certain node and fall back is permitted. First we scan all the
6a67368c 2990 * available node for available objects. If that fails then we
3c517a61
CL
2991 * perform an allocation without specifying a node. This allows the page
2992 * allocator to do its reclaim / fallback magic. We then insert the
2993 * slab into the proper nodelist and then allocate from it.
765c4507 2994 */
8c8cc2c1 2995static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 2996{
8c8cc2c1
PE
2997 struct zonelist *zonelist;
2998 gfp_t local_flags;
dd1a239f 2999 struct zoneref *z;
54a6eb5c
MG
3000 struct zone *zone;
3001 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3002 void *obj = NULL;
3c517a61 3003 int nid;
cc9a6c87 3004 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3005
3006 if (flags & __GFP_THISNODE)
3007 return NULL;
3008
6cb06229 3009 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3010
cc9a6c87 3011retry_cpuset:
d26914d1 3012 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3013 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3014
3c517a61
CL
3015retry:
3016 /*
3017 * Look through allowed nodes for objects available
3018 * from existing per node queues.
3019 */
54a6eb5c
MG
3020 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3021 nid = zone_to_nid(zone);
aedb0eb1 3022
061d7074 3023 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3024 get_node(cache, nid) &&
3025 get_node(cache, nid)->free_objects) {
3c517a61 3026 obj = ____cache_alloc_node(cache,
4167e9b2 3027 gfp_exact_node(flags), nid);
481c5346
CL
3028 if (obj)
3029 break;
3030 }
3c517a61
CL
3031 }
3032
cfce6604 3033 if (!obj) {
3c517a61
CL
3034 /*
3035 * This allocation will be performed within the constraints
3036 * of the current cpuset / memory policy requirements.
3037 * We may trigger various forms of reclaim on the allowed
3038 * set and go into memory reserves if necessary.
3039 */
0c3aa83e
JK
3040 struct page *page;
3041
d0164adc 3042 if (gfpflags_allow_blocking(local_flags))
dd47ea75
CL
3043 local_irq_enable();
3044 kmem_flagcheck(cache, flags);
0c3aa83e 3045 page = kmem_getpages(cache, local_flags, numa_mem_id());
d0164adc 3046 if (gfpflags_allow_blocking(local_flags))
dd47ea75 3047 local_irq_disable();
0c3aa83e 3048 if (page) {
3c517a61
CL
3049 /*
3050 * Insert into the appropriate per node queues
3051 */
0c3aa83e
JK
3052 nid = page_to_nid(page);
3053 if (cache_grow(cache, flags, nid, page)) {
3c517a61 3054 obj = ____cache_alloc_node(cache,
4167e9b2 3055 gfp_exact_node(flags), nid);
3c517a61
CL
3056 if (!obj)
3057 /*
3058 * Another processor may allocate the
3059 * objects in the slab since we are
3060 * not holding any locks.
3061 */
3062 goto retry;
3063 } else {
b6a60451 3064 /* cache_grow already freed obj */
3c517a61
CL
3065 obj = NULL;
3066 }
3067 }
aedb0eb1 3068 }
cc9a6c87 3069
d26914d1 3070 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3071 goto retry_cpuset;
765c4507
CL
3072 return obj;
3073}
3074
e498be7d
CL
3075/*
3076 * A interface to enable slab creation on nodeid
1da177e4 3077 */
8b98c169 3078static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3079 int nodeid)
e498be7d 3080{
8456a648 3081 struct page *page;
ce8eb6c4 3082 struct kmem_cache_node *n;
b28a02de 3083 void *obj;
b03a017b 3084 void *list = NULL;
b28a02de
PE
3085 int x;
3086
7c3fbbdd 3087 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3088 n = get_node(cachep, nodeid);
ce8eb6c4 3089 BUG_ON(!n);
b28a02de 3090
a737b3e2 3091retry:
ca3b9b91 3092 check_irq_off();
ce8eb6c4 3093 spin_lock(&n->list_lock);
f68f8ddd 3094 page = get_first_slab(n, false);
7aa0d227
GT
3095 if (!page)
3096 goto must_grow;
b28a02de 3097
b28a02de 3098 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3099
3100 STATS_INC_NODEALLOCS(cachep);
3101 STATS_INC_ACTIVE(cachep);
3102 STATS_SET_HIGH(cachep);
3103
8456a648 3104 BUG_ON(page->active == cachep->num);
b28a02de 3105
260b61dd 3106 obj = slab_get_obj(cachep, page);
ce8eb6c4 3107 n->free_objects--;
b28a02de 3108
b03a017b 3109 fixup_slab_list(cachep, n, page, &list);
e498be7d 3110
ce8eb6c4 3111 spin_unlock(&n->list_lock);
b03a017b 3112 fixup_objfreelist_debug(cachep, &list);
b28a02de 3113 goto done;
e498be7d 3114
a737b3e2 3115must_grow:
ce8eb6c4 3116 spin_unlock(&n->list_lock);
4167e9b2 3117 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
765c4507
CL
3118 if (x)
3119 goto retry;
1da177e4 3120
8c8cc2c1 3121 return fallback_alloc(cachep, flags);
e498be7d 3122
a737b3e2 3123done:
b28a02de 3124 return obj;
e498be7d 3125}
8c8cc2c1 3126
8c8cc2c1 3127static __always_inline void *
48356303 3128slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3129 unsigned long caller)
8c8cc2c1
PE
3130{
3131 unsigned long save_flags;
3132 void *ptr;
7d6e6d09 3133 int slab_node = numa_mem_id();
8c8cc2c1 3134
dcce284a 3135 flags &= gfp_allowed_mask;
011eceaf
JDB
3136 cachep = slab_pre_alloc_hook(cachep, flags);
3137 if (unlikely(!cachep))
824ebef1
AM
3138 return NULL;
3139
8c8cc2c1
PE
3140 cache_alloc_debugcheck_before(cachep, flags);
3141 local_irq_save(save_flags);
3142
eacbbae3 3143 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3144 nodeid = slab_node;
8c8cc2c1 3145
18bf8541 3146 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3147 /* Node not bootstrapped yet */
3148 ptr = fallback_alloc(cachep, flags);
3149 goto out;
3150 }
3151
7d6e6d09 3152 if (nodeid == slab_node) {
8c8cc2c1
PE
3153 /*
3154 * Use the locally cached objects if possible.
3155 * However ____cache_alloc does not allow fallback
3156 * to other nodes. It may fail while we still have
3157 * objects on other nodes available.
3158 */
3159 ptr = ____cache_alloc(cachep, flags);
3160 if (ptr)
3161 goto out;
3162 }
3163 /* ___cache_alloc_node can fall back to other nodes */
3164 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3165 out:
3166 local_irq_restore(save_flags);
3167 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3168
d5e3ed66
JDB
3169 if (unlikely(flags & __GFP_ZERO) && ptr)
3170 memset(ptr, 0, cachep->object_size);
d07dbea4 3171
d5e3ed66 3172 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3173 return ptr;
3174}
3175
3176static __always_inline void *
3177__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3178{
3179 void *objp;
3180
2ad654bc 3181 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3182 objp = alternate_node_alloc(cache, flags);
3183 if (objp)
3184 goto out;
3185 }
3186 objp = ____cache_alloc(cache, flags);
3187
3188 /*
3189 * We may just have run out of memory on the local node.
3190 * ____cache_alloc_node() knows how to locate memory on other nodes
3191 */
7d6e6d09
LS
3192 if (!objp)
3193 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3194
3195 out:
3196 return objp;
3197}
3198#else
3199
3200static __always_inline void *
3201__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3202{
3203 return ____cache_alloc(cachep, flags);
3204}
3205
3206#endif /* CONFIG_NUMA */
3207
3208static __always_inline void *
48356303 3209slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3210{
3211 unsigned long save_flags;
3212 void *objp;
3213
dcce284a 3214 flags &= gfp_allowed_mask;
011eceaf
JDB
3215 cachep = slab_pre_alloc_hook(cachep, flags);
3216 if (unlikely(!cachep))
824ebef1
AM
3217 return NULL;
3218
8c8cc2c1
PE
3219 cache_alloc_debugcheck_before(cachep, flags);
3220 local_irq_save(save_flags);
3221 objp = __do_cache_alloc(cachep, flags);
3222 local_irq_restore(save_flags);
3223 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3224 prefetchw(objp);
3225
d5e3ed66
JDB
3226 if (unlikely(flags & __GFP_ZERO) && objp)
3227 memset(objp, 0, cachep->object_size);
d07dbea4 3228
d5e3ed66 3229 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3230 return objp;
3231}
e498be7d
CL
3232
3233/*
5f0985bb 3234 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3235 * @list: List of detached free slabs should be freed by caller
e498be7d 3236 */
97654dfa
JK
3237static void free_block(struct kmem_cache *cachep, void **objpp,
3238 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3239{
3240 int i;
25c063fb 3241 struct kmem_cache_node *n = get_node(cachep, node);
1da177e4
LT
3242
3243 for (i = 0; i < nr_objects; i++) {
072bb0aa 3244 void *objp;
8456a648 3245 struct page *page;
1da177e4 3246
072bb0aa
MG
3247 objp = objpp[i];
3248
8456a648 3249 page = virt_to_head_page(objp);
8456a648 3250 list_del(&page->lru);
ff69416e 3251 check_spinlock_acquired_node(cachep, node);
260b61dd 3252 slab_put_obj(cachep, page, objp);
1da177e4 3253 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3254 n->free_objects++;
1da177e4
LT
3255
3256 /* fixup slab chains */
8456a648 3257 if (page->active == 0) {
ce8eb6c4
CL
3258 if (n->free_objects > n->free_limit) {
3259 n->free_objects -= cachep->num;
97654dfa 3260 list_add_tail(&page->lru, list);
1da177e4 3261 } else {
8456a648 3262 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3263 }
3264 } else {
3265 /* Unconditionally move a slab to the end of the
3266 * partial list on free - maximum time for the
3267 * other objects to be freed, too.
3268 */
8456a648 3269 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3270 }
3271 }
3272}
3273
343e0d7a 3274static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3275{
3276 int batchcount;
ce8eb6c4 3277 struct kmem_cache_node *n;
7d6e6d09 3278 int node = numa_mem_id();
97654dfa 3279 LIST_HEAD(list);
1da177e4
LT
3280
3281 batchcount = ac->batchcount;
260b61dd 3282
1da177e4 3283 check_irq_off();
18bf8541 3284 n = get_node(cachep, node);
ce8eb6c4
CL
3285 spin_lock(&n->list_lock);
3286 if (n->shared) {
3287 struct array_cache *shared_array = n->shared;
b28a02de 3288 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3289 if (max) {
3290 if (batchcount > max)
3291 batchcount = max;
e498be7d 3292 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3293 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3294 shared_array->avail += batchcount;
3295 goto free_done;
3296 }
3297 }
3298
97654dfa 3299 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3300free_done:
1da177e4
LT
3301#if STATS
3302 {
3303 int i = 0;
73c0219d 3304 struct page *page;
1da177e4 3305
73c0219d 3306 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3307 BUG_ON(page->active);
1da177e4
LT
3308
3309 i++;
1da177e4
LT
3310 }
3311 STATS_SET_FREEABLE(cachep, i);
3312 }
3313#endif
ce8eb6c4 3314 spin_unlock(&n->list_lock);
97654dfa 3315 slabs_destroy(cachep, &list);
1da177e4 3316 ac->avail -= batchcount;
a737b3e2 3317 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3318}
3319
3320/*
a737b3e2
AM
3321 * Release an obj back to its cache. If the obj has a constructed state, it must
3322 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3323 */
a947eb95 3324static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3325 unsigned long caller)
1da177e4 3326{
9a2dba4b 3327 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3328
3329 check_irq_off();
d5cff635 3330 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3331 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3332
8c138bc0 3333 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3334
1807a1aa
SS
3335 /*
3336 * Skip calling cache_free_alien() when the platform is not numa.
3337 * This will avoid cache misses that happen while accessing slabp (which
3338 * is per page memory reference) to get nodeid. Instead use a global
3339 * variable to skip the call, which is mostly likely to be present in
3340 * the cache.
3341 */
b6e68bc1 3342 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3343 return;
3344
3d880194 3345 if (ac->avail < ac->limit) {
1da177e4 3346 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3347 } else {
3348 STATS_INC_FREEMISS(cachep);
3349 cache_flusharray(cachep, ac);
1da177e4 3350 }
42c8c99c 3351
f68f8ddd
JK
3352 if (sk_memalloc_socks()) {
3353 struct page *page = virt_to_head_page(objp);
3354
3355 if (unlikely(PageSlabPfmemalloc(page))) {
3356 cache_free_pfmemalloc(cachep, page, objp);
3357 return;
3358 }
3359 }
3360
3361 ac->entry[ac->avail++] = objp;
1da177e4
LT
3362}
3363
3364/**
3365 * kmem_cache_alloc - Allocate an object
3366 * @cachep: The cache to allocate from.
3367 * @flags: See kmalloc().
3368 *
3369 * Allocate an object from this cache. The flags are only relevant
3370 * if the cache has no available objects.
3371 */
343e0d7a 3372void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3373{
48356303 3374 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3375
ca2b84cb 3376 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3377 cachep->object_size, cachep->size, flags);
36555751
EGM
3378
3379 return ret;
1da177e4
LT
3380}
3381EXPORT_SYMBOL(kmem_cache_alloc);
3382
7b0501dd
JDB
3383static __always_inline void
3384cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3385 size_t size, void **p, unsigned long caller)
3386{
3387 size_t i;
3388
3389 for (i = 0; i < size; i++)
3390 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3391}
3392
865762a8 3393int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3394 void **p)
484748f0 3395{
2a777eac
JDB
3396 size_t i;
3397
3398 s = slab_pre_alloc_hook(s, flags);
3399 if (!s)
3400 return 0;
3401
3402 cache_alloc_debugcheck_before(s, flags);
3403
3404 local_irq_disable();
3405 for (i = 0; i < size; i++) {
3406 void *objp = __do_cache_alloc(s, flags);
3407
2a777eac
JDB
3408 if (unlikely(!objp))
3409 goto error;
3410 p[i] = objp;
3411 }
3412 local_irq_enable();
3413
7b0501dd
JDB
3414 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3415
2a777eac
JDB
3416 /* Clear memory outside IRQ disabled section */
3417 if (unlikely(flags & __GFP_ZERO))
3418 for (i = 0; i < size; i++)
3419 memset(p[i], 0, s->object_size);
3420
3421 slab_post_alloc_hook(s, flags, size, p);
3422 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3423 return size;
3424error:
3425 local_irq_enable();
7b0501dd 3426 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3427 slab_post_alloc_hook(s, flags, i, p);
3428 __kmem_cache_free_bulk(s, i, p);
3429 return 0;
484748f0
CL
3430}
3431EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3432
0f24f128 3433#ifdef CONFIG_TRACING
85beb586 3434void *
4052147c 3435kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3436{
85beb586
SR
3437 void *ret;
3438
48356303 3439 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3440
3441 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3442 size, cachep->size, flags);
85beb586 3443 return ret;
36555751 3444}
85beb586 3445EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3446#endif
3447
1da177e4 3448#ifdef CONFIG_NUMA
d0d04b78
ZL
3449/**
3450 * kmem_cache_alloc_node - Allocate an object on the specified node
3451 * @cachep: The cache to allocate from.
3452 * @flags: See kmalloc().
3453 * @nodeid: node number of the target node.
3454 *
3455 * Identical to kmem_cache_alloc but it will allocate memory on the given
3456 * node, which can improve the performance for cpu bound structures.
3457 *
3458 * Fallback to other node is possible if __GFP_THISNODE is not set.
3459 */
8b98c169
CH
3460void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3461{
48356303 3462 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3463
ca2b84cb 3464 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3465 cachep->object_size, cachep->size,
ca2b84cb 3466 flags, nodeid);
36555751
EGM
3467
3468 return ret;
8b98c169 3469}
1da177e4
LT
3470EXPORT_SYMBOL(kmem_cache_alloc_node);
3471
0f24f128 3472#ifdef CONFIG_TRACING
4052147c 3473void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3474 gfp_t flags,
4052147c
EG
3475 int nodeid,
3476 size_t size)
36555751 3477{
85beb586
SR
3478 void *ret;
3479
592f4145 3480 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3481
85beb586 3482 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3483 size, cachep->size,
85beb586
SR
3484 flags, nodeid);
3485 return ret;
36555751 3486}
85beb586 3487EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3488#endif
3489
8b98c169 3490static __always_inline void *
7c0cb9c6 3491__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3492{
343e0d7a 3493 struct kmem_cache *cachep;
97e2bde4 3494
2c59dd65 3495 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3496 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3497 return cachep;
4052147c 3498 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3499}
8b98c169 3500
8b98c169
CH
3501void *__kmalloc_node(size_t size, gfp_t flags, int node)
3502{
7c0cb9c6 3503 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3504}
dbe5e69d 3505EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3506
3507void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3508 int node, unsigned long caller)
8b98c169 3509{
7c0cb9c6 3510 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3511}
3512EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3513#endif /* CONFIG_NUMA */
1da177e4
LT
3514
3515/**
800590f5 3516 * __do_kmalloc - allocate memory
1da177e4 3517 * @size: how many bytes of memory are required.
800590f5 3518 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3519 * @caller: function caller for debug tracking of the caller
1da177e4 3520 */
7fd6b141 3521static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3522 unsigned long caller)
1da177e4 3523{
343e0d7a 3524 struct kmem_cache *cachep;
36555751 3525 void *ret;
1da177e4 3526
2c59dd65 3527 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3528 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3529 return cachep;
48356303 3530 ret = slab_alloc(cachep, flags, caller);
36555751 3531
7c0cb9c6 3532 trace_kmalloc(caller, ret,
3b0efdfa 3533 size, cachep->size, flags);
36555751
EGM
3534
3535 return ret;
7fd6b141
PE
3536}
3537
7fd6b141
PE
3538void *__kmalloc(size_t size, gfp_t flags)
3539{
7c0cb9c6 3540 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3541}
3542EXPORT_SYMBOL(__kmalloc);
3543
ce71e27c 3544void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3545{
7c0cb9c6 3546 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3547}
3548EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3549
1da177e4
LT
3550/**
3551 * kmem_cache_free - Deallocate an object
3552 * @cachep: The cache the allocation was from.
3553 * @objp: The previously allocated object.
3554 *
3555 * Free an object which was previously allocated from this
3556 * cache.
3557 */
343e0d7a 3558void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3559{
3560 unsigned long flags;
b9ce5ef4
GC
3561 cachep = cache_from_obj(cachep, objp);
3562 if (!cachep)
3563 return;
1da177e4
LT
3564
3565 local_irq_save(flags);
d97d476b 3566 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3567 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3568 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3569 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3570 local_irq_restore(flags);
36555751 3571
ca2b84cb 3572 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3573}
3574EXPORT_SYMBOL(kmem_cache_free);
3575
e6cdb58d
JDB
3576void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3577{
3578 struct kmem_cache *s;
3579 size_t i;
3580
3581 local_irq_disable();
3582 for (i = 0; i < size; i++) {
3583 void *objp = p[i];
3584
ca257195
JDB
3585 if (!orig_s) /* called via kfree_bulk */
3586 s = virt_to_cache(objp);
3587 else
3588 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3589
3590 debug_check_no_locks_freed(objp, s->object_size);
3591 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3592 debug_check_no_obj_freed(objp, s->object_size);
3593
3594 __cache_free(s, objp, _RET_IP_);
3595 }
3596 local_irq_enable();
3597
3598 /* FIXME: add tracing */
3599}
3600EXPORT_SYMBOL(kmem_cache_free_bulk);
3601
1da177e4
LT
3602/**
3603 * kfree - free previously allocated memory
3604 * @objp: pointer returned by kmalloc.
3605 *
80e93eff
PE
3606 * If @objp is NULL, no operation is performed.
3607 *
1da177e4
LT
3608 * Don't free memory not originally allocated by kmalloc()
3609 * or you will run into trouble.
3610 */
3611void kfree(const void *objp)
3612{
343e0d7a 3613 struct kmem_cache *c;
1da177e4
LT
3614 unsigned long flags;
3615
2121db74
PE
3616 trace_kfree(_RET_IP_, objp);
3617
6cb8f913 3618 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3619 return;
3620 local_irq_save(flags);
3621 kfree_debugcheck(objp);
6ed5eb22 3622 c = virt_to_cache(objp);
8c138bc0
CL
3623 debug_check_no_locks_freed(objp, c->object_size);
3624
3625 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3626 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3627 local_irq_restore(flags);
3628}
3629EXPORT_SYMBOL(kfree);
3630
e498be7d 3631/*
ce8eb6c4 3632 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3633 */
5f0985bb 3634static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3635{
3636 int node;
ce8eb6c4 3637 struct kmem_cache_node *n;
cafeb02e 3638 struct array_cache *new_shared;
c8522a3a 3639 struct alien_cache **new_alien = NULL;
e498be7d 3640
9c09a95c 3641 for_each_online_node(node) {
cafeb02e 3642
b455def2
L
3643 if (use_alien_caches) {
3644 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3645 if (!new_alien)
3646 goto fail;
3647 }
cafeb02e 3648
63109846
ED
3649 new_shared = NULL;
3650 if (cachep->shared) {
3651 new_shared = alloc_arraycache(node,
0718dc2a 3652 cachep->shared*cachep->batchcount,
83b519e8 3653 0xbaadf00d, gfp);
63109846
ED
3654 if (!new_shared) {
3655 free_alien_cache(new_alien);
3656 goto fail;
3657 }
0718dc2a 3658 }
cafeb02e 3659
18bf8541 3660 n = get_node(cachep, node);
ce8eb6c4
CL
3661 if (n) {
3662 struct array_cache *shared = n->shared;
97654dfa 3663 LIST_HEAD(list);
cafeb02e 3664
ce8eb6c4 3665 spin_lock_irq(&n->list_lock);
e498be7d 3666
cafeb02e 3667 if (shared)
0718dc2a 3668 free_block(cachep, shared->entry,
97654dfa 3669 shared->avail, node, &list);
e498be7d 3670
ce8eb6c4
CL
3671 n->shared = new_shared;
3672 if (!n->alien) {
3673 n->alien = new_alien;
e498be7d
CL
3674 new_alien = NULL;
3675 }
ce8eb6c4 3676 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3677 cachep->batchcount + cachep->num;
ce8eb6c4 3678 spin_unlock_irq(&n->list_lock);
97654dfa 3679 slabs_destroy(cachep, &list);
cafeb02e 3680 kfree(shared);
e498be7d
CL
3681 free_alien_cache(new_alien);
3682 continue;
3683 }
ce8eb6c4
CL
3684 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3685 if (!n) {
0718dc2a
CL
3686 free_alien_cache(new_alien);
3687 kfree(new_shared);
e498be7d 3688 goto fail;
0718dc2a 3689 }
e498be7d 3690
ce8eb6c4 3691 kmem_cache_node_init(n);
5f0985bb
JZ
3692 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3693 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3694 n->shared = new_shared;
3695 n->alien = new_alien;
3696 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3697 cachep->batchcount + cachep->num;
ce8eb6c4 3698 cachep->node[node] = n;
e498be7d 3699 }
cafeb02e 3700 return 0;
0718dc2a 3701
a737b3e2 3702fail:
3b0efdfa 3703 if (!cachep->list.next) {
0718dc2a
CL
3704 /* Cache is not active yet. Roll back what we did */
3705 node--;
3706 while (node >= 0) {
18bf8541
CL
3707 n = get_node(cachep, node);
3708 if (n) {
ce8eb6c4
CL
3709 kfree(n->shared);
3710 free_alien_cache(n->alien);
3711 kfree(n);
6a67368c 3712 cachep->node[node] = NULL;
0718dc2a
CL
3713 }
3714 node--;
3715 }
3716 }
cafeb02e 3717 return -ENOMEM;
e498be7d
CL
3718}
3719
18004c5d 3720/* Always called with the slab_mutex held */
943a451a 3721static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3722 int batchcount, int shared, gfp_t gfp)
1da177e4 3723{
bf0dea23
JK
3724 struct array_cache __percpu *cpu_cache, *prev;
3725 int cpu;
1da177e4 3726
bf0dea23
JK
3727 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3728 if (!cpu_cache)
d2e7b7d0
SS
3729 return -ENOMEM;
3730
bf0dea23
JK
3731 prev = cachep->cpu_cache;
3732 cachep->cpu_cache = cpu_cache;
3733 kick_all_cpus_sync();
e498be7d 3734
1da177e4 3735 check_irq_on();
1da177e4
LT
3736 cachep->batchcount = batchcount;
3737 cachep->limit = limit;
e498be7d 3738 cachep->shared = shared;
1da177e4 3739
bf0dea23
JK
3740 if (!prev)
3741 goto alloc_node;
3742
3743 for_each_online_cpu(cpu) {
97654dfa 3744 LIST_HEAD(list);
18bf8541
CL
3745 int node;
3746 struct kmem_cache_node *n;
bf0dea23 3747 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3748
bf0dea23 3749 node = cpu_to_mem(cpu);
18bf8541
CL
3750 n = get_node(cachep, node);
3751 spin_lock_irq(&n->list_lock);
bf0dea23 3752 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3753 spin_unlock_irq(&n->list_lock);
97654dfa 3754 slabs_destroy(cachep, &list);
1da177e4 3755 }
bf0dea23
JK
3756 free_percpu(prev);
3757
3758alloc_node:
5f0985bb 3759 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3760}
3761
943a451a
GC
3762static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3763 int batchcount, int shared, gfp_t gfp)
3764{
3765 int ret;
426589f5 3766 struct kmem_cache *c;
943a451a
GC
3767
3768 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3769
3770 if (slab_state < FULL)
3771 return ret;
3772
3773 if ((ret < 0) || !is_root_cache(cachep))
3774 return ret;
3775
426589f5
VD
3776 lockdep_assert_held(&slab_mutex);
3777 for_each_memcg_cache(c, cachep) {
3778 /* return value determined by the root cache only */
3779 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3780 }
3781
3782 return ret;
3783}
3784
18004c5d 3785/* Called with slab_mutex held always */
83b519e8 3786static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3787{
3788 int err;
943a451a
GC
3789 int limit = 0;
3790 int shared = 0;
3791 int batchcount = 0;
3792
3793 if (!is_root_cache(cachep)) {
3794 struct kmem_cache *root = memcg_root_cache(cachep);
3795 limit = root->limit;
3796 shared = root->shared;
3797 batchcount = root->batchcount;
3798 }
1da177e4 3799
943a451a
GC
3800 if (limit && shared && batchcount)
3801 goto skip_setup;
a737b3e2
AM
3802 /*
3803 * The head array serves three purposes:
1da177e4
LT
3804 * - create a LIFO ordering, i.e. return objects that are cache-warm
3805 * - reduce the number of spinlock operations.
a737b3e2 3806 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3807 * bufctl chains: array operations are cheaper.
3808 * The numbers are guessed, we should auto-tune as described by
3809 * Bonwick.
3810 */
3b0efdfa 3811 if (cachep->size > 131072)
1da177e4 3812 limit = 1;
3b0efdfa 3813 else if (cachep->size > PAGE_SIZE)
1da177e4 3814 limit = 8;
3b0efdfa 3815 else if (cachep->size > 1024)
1da177e4 3816 limit = 24;
3b0efdfa 3817 else if (cachep->size > 256)
1da177e4
LT
3818 limit = 54;
3819 else
3820 limit = 120;
3821
a737b3e2
AM
3822 /*
3823 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3824 * allocation behaviour: Most allocs on one cpu, most free operations
3825 * on another cpu. For these cases, an efficient object passing between
3826 * cpus is necessary. This is provided by a shared array. The array
3827 * replaces Bonwick's magazine layer.
3828 * On uniprocessor, it's functionally equivalent (but less efficient)
3829 * to a larger limit. Thus disabled by default.
3830 */
3831 shared = 0;
3b0efdfa 3832 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3833 shared = 8;
1da177e4
LT
3834
3835#if DEBUG
a737b3e2
AM
3836 /*
3837 * With debugging enabled, large batchcount lead to excessively long
3838 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3839 */
3840 if (limit > 32)
3841 limit = 32;
3842#endif
943a451a
GC
3843 batchcount = (limit + 1) / 2;
3844skip_setup:
3845 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3846 if (err)
3847 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3848 cachep->name, -err);
2ed3a4ef 3849 return err;
1da177e4
LT
3850}
3851
1b55253a 3852/*
ce8eb6c4
CL
3853 * Drain an array if it contains any elements taking the node lock only if
3854 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3855 * if drain_array() is used on the shared array.
1b55253a 3856 */
ce8eb6c4 3857static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3858 struct array_cache *ac, int force, int node)
1da177e4 3859{
97654dfa 3860 LIST_HEAD(list);
1da177e4
LT
3861 int tofree;
3862
1b55253a
CL
3863 if (!ac || !ac->avail)
3864 return;
1da177e4
LT
3865 if (ac->touched && !force) {
3866 ac->touched = 0;
b18e7e65 3867 } else {
ce8eb6c4 3868 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3869 if (ac->avail) {
3870 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3871 if (tofree > ac->avail)
3872 tofree = (ac->avail + 1) / 2;
97654dfa 3873 free_block(cachep, ac->entry, tofree, node, &list);
b18e7e65
CL
3874 ac->avail -= tofree;
3875 memmove(ac->entry, &(ac->entry[tofree]),
3876 sizeof(void *) * ac->avail);
3877 }
ce8eb6c4 3878 spin_unlock_irq(&n->list_lock);
97654dfa 3879 slabs_destroy(cachep, &list);
1da177e4
LT
3880 }
3881}
3882
3883/**
3884 * cache_reap - Reclaim memory from caches.
05fb6bf0 3885 * @w: work descriptor
1da177e4
LT
3886 *
3887 * Called from workqueue/eventd every few seconds.
3888 * Purpose:
3889 * - clear the per-cpu caches for this CPU.
3890 * - return freeable pages to the main free memory pool.
3891 *
a737b3e2
AM
3892 * If we cannot acquire the cache chain mutex then just give up - we'll try
3893 * again on the next iteration.
1da177e4 3894 */
7c5cae36 3895static void cache_reap(struct work_struct *w)
1da177e4 3896{
7a7c381d 3897 struct kmem_cache *searchp;
ce8eb6c4 3898 struct kmem_cache_node *n;
7d6e6d09 3899 int node = numa_mem_id();
bf6aede7 3900 struct delayed_work *work = to_delayed_work(w);
1da177e4 3901
18004c5d 3902 if (!mutex_trylock(&slab_mutex))
1da177e4 3903 /* Give up. Setup the next iteration. */
7c5cae36 3904 goto out;
1da177e4 3905
18004c5d 3906 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3907 check_irq_on();
3908
35386e3b 3909 /*
ce8eb6c4 3910 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3911 * have established with reasonable certainty that
3912 * we can do some work if the lock was obtained.
3913 */
18bf8541 3914 n = get_node(searchp, node);
35386e3b 3915
ce8eb6c4 3916 reap_alien(searchp, n);
1da177e4 3917
ce8eb6c4 3918 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3919
35386e3b
CL
3920 /*
3921 * These are racy checks but it does not matter
3922 * if we skip one check or scan twice.
3923 */
ce8eb6c4 3924 if (time_after(n->next_reap, jiffies))
35386e3b 3925 goto next;
1da177e4 3926
5f0985bb 3927 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 3928
ce8eb6c4 3929 drain_array(searchp, n, n->shared, 0, node);
1da177e4 3930
ce8eb6c4
CL
3931 if (n->free_touched)
3932 n->free_touched = 0;
ed11d9eb
CL
3933 else {
3934 int freed;
1da177e4 3935
ce8eb6c4 3936 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
3937 5 * searchp->num - 1) / (5 * searchp->num));
3938 STATS_ADD_REAPED(searchp, freed);
3939 }
35386e3b 3940next:
1da177e4
LT
3941 cond_resched();
3942 }
3943 check_irq_on();
18004c5d 3944 mutex_unlock(&slab_mutex);
8fce4d8e 3945 next_reap_node();
7c5cae36 3946out:
a737b3e2 3947 /* Set up the next iteration */
5f0985bb 3948 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
3949}
3950
158a9624 3951#ifdef CONFIG_SLABINFO
0d7561c6 3952void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 3953{
8456a648 3954 struct page *page;
b28a02de
PE
3955 unsigned long active_objs;
3956 unsigned long num_objs;
3957 unsigned long active_slabs = 0;
3958 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3959 const char *name;
1da177e4 3960 char *error = NULL;
e498be7d 3961 int node;
ce8eb6c4 3962 struct kmem_cache_node *n;
1da177e4 3963
1da177e4
LT
3964 active_objs = 0;
3965 num_slabs = 0;
18bf8541 3966 for_each_kmem_cache_node(cachep, node, n) {
e498be7d 3967
ca3b9b91 3968 check_irq_on();
ce8eb6c4 3969 spin_lock_irq(&n->list_lock);
e498be7d 3970
8456a648
JK
3971 list_for_each_entry(page, &n->slabs_full, lru) {
3972 if (page->active != cachep->num && !error)
e498be7d
CL
3973 error = "slabs_full accounting error";
3974 active_objs += cachep->num;
3975 active_slabs++;
3976 }
8456a648
JK
3977 list_for_each_entry(page, &n->slabs_partial, lru) {
3978 if (page->active == cachep->num && !error)
106a74e1 3979 error = "slabs_partial accounting error";
8456a648 3980 if (!page->active && !error)
106a74e1 3981 error = "slabs_partial accounting error";
8456a648 3982 active_objs += page->active;
e498be7d
CL
3983 active_slabs++;
3984 }
8456a648
JK
3985 list_for_each_entry(page, &n->slabs_free, lru) {
3986 if (page->active && !error)
106a74e1 3987 error = "slabs_free accounting error";
e498be7d
CL
3988 num_slabs++;
3989 }
ce8eb6c4
CL
3990 free_objects += n->free_objects;
3991 if (n->shared)
3992 shared_avail += n->shared->avail;
e498be7d 3993
ce8eb6c4 3994 spin_unlock_irq(&n->list_lock);
1da177e4 3995 }
b28a02de
PE
3996 num_slabs += active_slabs;
3997 num_objs = num_slabs * cachep->num;
e498be7d 3998 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3999 error = "free_objects accounting error";
4000
b28a02de 4001 name = cachep->name;
1da177e4
LT
4002 if (error)
4003 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4004
0d7561c6
GC
4005 sinfo->active_objs = active_objs;
4006 sinfo->num_objs = num_objs;
4007 sinfo->active_slabs = active_slabs;
4008 sinfo->num_slabs = num_slabs;
4009 sinfo->shared_avail = shared_avail;
4010 sinfo->limit = cachep->limit;
4011 sinfo->batchcount = cachep->batchcount;
4012 sinfo->shared = cachep->shared;
4013 sinfo->objects_per_slab = cachep->num;
4014 sinfo->cache_order = cachep->gfporder;
4015}
4016
4017void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4018{
1da177e4 4019#if STATS
ce8eb6c4 4020 { /* node stats */
1da177e4
LT
4021 unsigned long high = cachep->high_mark;
4022 unsigned long allocs = cachep->num_allocations;
4023 unsigned long grown = cachep->grown;
4024 unsigned long reaped = cachep->reaped;
4025 unsigned long errors = cachep->errors;
4026 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4027 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4028 unsigned long node_frees = cachep->node_frees;
fb7faf33 4029 unsigned long overflows = cachep->node_overflow;
1da177e4 4030
e92dd4fd
JP
4031 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4032 "%4lu %4lu %4lu %4lu %4lu",
4033 allocs, high, grown,
4034 reaped, errors, max_freeable, node_allocs,
4035 node_frees, overflows);
1da177e4
LT
4036 }
4037 /* cpu stats */
4038 {
4039 unsigned long allochit = atomic_read(&cachep->allochit);
4040 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4041 unsigned long freehit = atomic_read(&cachep->freehit);
4042 unsigned long freemiss = atomic_read(&cachep->freemiss);
4043
4044 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4045 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4046 }
4047#endif
1da177e4
LT
4048}
4049
1da177e4
LT
4050#define MAX_SLABINFO_WRITE 128
4051/**
4052 * slabinfo_write - Tuning for the slab allocator
4053 * @file: unused
4054 * @buffer: user buffer
4055 * @count: data length
4056 * @ppos: unused
4057 */
b7454ad3 4058ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4059 size_t count, loff_t *ppos)
1da177e4 4060{
b28a02de 4061 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4062 int limit, batchcount, shared, res;
7a7c381d 4063 struct kmem_cache *cachep;
b28a02de 4064
1da177e4
LT
4065 if (count > MAX_SLABINFO_WRITE)
4066 return -EINVAL;
4067 if (copy_from_user(&kbuf, buffer, count))
4068 return -EFAULT;
b28a02de 4069 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4070
4071 tmp = strchr(kbuf, ' ');
4072 if (!tmp)
4073 return -EINVAL;
4074 *tmp = '\0';
4075 tmp++;
4076 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4077 return -EINVAL;
4078
4079 /* Find the cache in the chain of caches. */
18004c5d 4080 mutex_lock(&slab_mutex);
1da177e4 4081 res = -EINVAL;
18004c5d 4082 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4083 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4084 if (limit < 1 || batchcount < 1 ||
4085 batchcount > limit || shared < 0) {
e498be7d 4086 res = 0;
1da177e4 4087 } else {
e498be7d 4088 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4089 batchcount, shared,
4090 GFP_KERNEL);
1da177e4
LT
4091 }
4092 break;
4093 }
4094 }
18004c5d 4095 mutex_unlock(&slab_mutex);
1da177e4
LT
4096 if (res >= 0)
4097 res = count;
4098 return res;
4099}
871751e2
AV
4100
4101#ifdef CONFIG_DEBUG_SLAB_LEAK
4102
871751e2
AV
4103static inline int add_caller(unsigned long *n, unsigned long v)
4104{
4105 unsigned long *p;
4106 int l;
4107 if (!v)
4108 return 1;
4109 l = n[1];
4110 p = n + 2;
4111 while (l) {
4112 int i = l/2;
4113 unsigned long *q = p + 2 * i;
4114 if (*q == v) {
4115 q[1]++;
4116 return 1;
4117 }
4118 if (*q > v) {
4119 l = i;
4120 } else {
4121 p = q + 2;
4122 l -= i + 1;
4123 }
4124 }
4125 if (++n[1] == n[0])
4126 return 0;
4127 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4128 p[0] = v;
4129 p[1] = 1;
4130 return 1;
4131}
4132
8456a648
JK
4133static void handle_slab(unsigned long *n, struct kmem_cache *c,
4134 struct page *page)
871751e2
AV
4135{
4136 void *p;
d31676df
JK
4137 int i, j;
4138 unsigned long v;
b1cb0982 4139
871751e2
AV
4140 if (n[0] == n[1])
4141 return;
8456a648 4142 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4143 bool active = true;
4144
4145 for (j = page->active; j < c->num; j++) {
4146 if (get_free_obj(page, j) == i) {
4147 active = false;
4148 break;
4149 }
4150 }
4151
4152 if (!active)
871751e2 4153 continue;
b1cb0982 4154
d31676df
JK
4155 /*
4156 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4157 * mapping is established when actual object allocation and
4158 * we could mistakenly access the unmapped object in the cpu
4159 * cache.
4160 */
4161 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4162 continue;
4163
4164 if (!add_caller(n, v))
871751e2
AV
4165 return;
4166 }
4167}
4168
4169static void show_symbol(struct seq_file *m, unsigned long address)
4170{
4171#ifdef CONFIG_KALLSYMS
871751e2 4172 unsigned long offset, size;
9281acea 4173 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4174
a5c43dae 4175 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4176 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4177 if (modname[0])
871751e2
AV
4178 seq_printf(m, " [%s]", modname);
4179 return;
4180 }
4181#endif
4182 seq_printf(m, "%p", (void *)address);
4183}
4184
4185static int leaks_show(struct seq_file *m, void *p)
4186{
0672aa7c 4187 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4188 struct page *page;
ce8eb6c4 4189 struct kmem_cache_node *n;
871751e2 4190 const char *name;
db845067 4191 unsigned long *x = m->private;
871751e2
AV
4192 int node;
4193 int i;
4194
4195 if (!(cachep->flags & SLAB_STORE_USER))
4196 return 0;
4197 if (!(cachep->flags & SLAB_RED_ZONE))
4198 return 0;
4199
d31676df
JK
4200 /*
4201 * Set store_user_clean and start to grab stored user information
4202 * for all objects on this cache. If some alloc/free requests comes
4203 * during the processing, information would be wrong so restart
4204 * whole processing.
4205 */
4206 do {
4207 set_store_user_clean(cachep);
4208 drain_cpu_caches(cachep);
4209
4210 x[1] = 0;
871751e2 4211
d31676df 4212 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4213
d31676df
JK
4214 check_irq_on();
4215 spin_lock_irq(&n->list_lock);
871751e2 4216
d31676df
JK
4217 list_for_each_entry(page, &n->slabs_full, lru)
4218 handle_slab(x, cachep, page);
4219 list_for_each_entry(page, &n->slabs_partial, lru)
4220 handle_slab(x, cachep, page);
4221 spin_unlock_irq(&n->list_lock);
4222 }
4223 } while (!is_store_user_clean(cachep));
871751e2 4224
871751e2 4225 name = cachep->name;
db845067 4226 if (x[0] == x[1]) {
871751e2 4227 /* Increase the buffer size */
18004c5d 4228 mutex_unlock(&slab_mutex);
db845067 4229 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4230 if (!m->private) {
4231 /* Too bad, we are really out */
db845067 4232 m->private = x;
18004c5d 4233 mutex_lock(&slab_mutex);
871751e2
AV
4234 return -ENOMEM;
4235 }
db845067
CL
4236 *(unsigned long *)m->private = x[0] * 2;
4237 kfree(x);
18004c5d 4238 mutex_lock(&slab_mutex);
871751e2
AV
4239 /* Now make sure this entry will be retried */
4240 m->count = m->size;
4241 return 0;
4242 }
db845067
CL
4243 for (i = 0; i < x[1]; i++) {
4244 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4245 show_symbol(m, x[2*i+2]);
871751e2
AV
4246 seq_putc(m, '\n');
4247 }
d2e7b7d0 4248
871751e2
AV
4249 return 0;
4250}
4251
a0ec95a8 4252static const struct seq_operations slabstats_op = {
1df3b26f 4253 .start = slab_start,
276a2439
WL
4254 .next = slab_next,
4255 .stop = slab_stop,
871751e2
AV
4256 .show = leaks_show,
4257};
a0ec95a8
AD
4258
4259static int slabstats_open(struct inode *inode, struct file *file)
4260{
b208ce32
RJ
4261 unsigned long *n;
4262
4263 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4264 if (!n)
4265 return -ENOMEM;
4266
4267 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4268
4269 return 0;
a0ec95a8
AD
4270}
4271
4272static const struct file_operations proc_slabstats_operations = {
4273 .open = slabstats_open,
4274 .read = seq_read,
4275 .llseek = seq_lseek,
4276 .release = seq_release_private,
4277};
4278#endif
4279
4280static int __init slab_proc_init(void)
4281{
4282#ifdef CONFIG_DEBUG_SLAB_LEAK
4283 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4284#endif
a0ec95a8
AD
4285 return 0;
4286}
4287module_init(slab_proc_init);
1da177e4
LT
4288#endif
4289
00e145b6
MS
4290/**
4291 * ksize - get the actual amount of memory allocated for a given object
4292 * @objp: Pointer to the object
4293 *
4294 * kmalloc may internally round up allocations and return more memory
4295 * than requested. ksize() can be used to determine the actual amount of
4296 * memory allocated. The caller may use this additional memory, even though
4297 * a smaller amount of memory was initially specified with the kmalloc call.
4298 * The caller must guarantee that objp points to a valid object previously
4299 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4300 * must not be freed during the duration of the call.
4301 */
fd76bab2 4302size_t ksize(const void *objp)
1da177e4 4303{
ef8b4520
CL
4304 BUG_ON(!objp);
4305 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4306 return 0;
1da177e4 4307
8c138bc0 4308 return virt_to_cache(objp)->object_size;
1da177e4 4309}
b1aabecd 4310EXPORT_SYMBOL(ksize);
This page took 1.310994 seconds and 5 git commands to generate.