slub: add hooks for kmemcheck
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
02af61bb 105#include <linux/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
1da177e4 117
1da177e4
LT
118#include <asm/cacheflush.h>
119#include <asm/tlbflush.h>
120#include <asm/page.h>
121
122/*
50953fe9 123 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * STATS - 1 to collect stats for /proc/slabinfo.
127 * 0 for faster, smaller code (especially in the critical paths).
128 *
129 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
130 */
131
132#ifdef CONFIG_DEBUG_SLAB
133#define DEBUG 1
134#define STATS 1
135#define FORCED_DEBUG 1
136#else
137#define DEBUG 0
138#define STATS 0
139#define FORCED_DEBUG 0
140#endif
141
1da177e4
LT
142/* Shouldn't this be in a header file somewhere? */
143#define BYTES_PER_WORD sizeof(void *)
87a927c7 144#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 145
1da177e4
LT
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
d5cff635 182 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
1da177e4 183#else
ac2b898c 184# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 185 SLAB_CACHE_DMA | \
1da177e4 186 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 187 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
d5cff635 188 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
1da177e4
LT
189#endif
190
191/*
192 * kmem_bufctl_t:
193 *
194 * Bufctl's are used for linking objs within a slab
195 * linked offsets.
196 *
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 */
209
fa5b08d5 210typedef unsigned int kmem_bufctl_t;
1da177e4
LT
211#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
212#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
213#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
214#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 215
1da177e4
LT
216/*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223struct slab {
b28a02de
PE
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
1da177e4
LT
230};
231
232/*
233 * struct slab_rcu
234 *
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU. This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking. We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
242 *
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
245 *
246 * We assume struct slab_rcu can overlay struct slab when destroying.
247 */
248struct slab_rcu {
b28a02de 249 struct rcu_head head;
343e0d7a 250 struct kmem_cache *cachep;
b28a02de 251 void *addr;
1da177e4
LT
252};
253
254/*
255 * struct array_cache
256 *
1da177e4
LT
257 * Purpose:
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
261 *
262 * The limit is stored in the per-cpu structure to reduce the data cache
263 * footprint.
264 *
265 */
266struct array_cache {
267 unsigned int avail;
268 unsigned int limit;
269 unsigned int batchcount;
270 unsigned int touched;
e498be7d 271 spinlock_t lock;
bda5b655 272 void *entry[]; /*
a737b3e2
AM
273 * Must have this definition in here for the proper
274 * alignment of array_cache. Also simplifies accessing
275 * the entries.
a737b3e2 276 */
1da177e4
LT
277};
278
a737b3e2
AM
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
1da177e4
LT
282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
b28a02de 286 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
287};
288
289/*
e498be7d 290 * The slab lists for all objects.
1da177e4
LT
291 */
292struct kmem_list3 {
b28a02de
PE
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
b28a02de 297 unsigned int free_limit;
2e1217cf 298 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
35386e3b
CL
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
1da177e4
LT
304};
305
e498be7d
CL
306/*
307 * Need this for bootstrapping a per node allocator.
308 */
556a169d 309#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
310struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311#define CACHE_CACHE 0
556a169d
PE
312#define SIZE_AC MAX_NUMNODES
313#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 314
ed11d9eb
CL
315static int drain_freelist(struct kmem_cache *cache,
316 struct kmem_list3 *l3, int tofree);
317static void free_block(struct kmem_cache *cachep, void **objpp, int len,
318 int node);
83b519e8 319static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 320static void cache_reap(struct work_struct *unused);
ed11d9eb 321
e498be7d 322/*
a737b3e2
AM
323 * This function must be completely optimized away if a constant is passed to
324 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 325 */
7243cc05 326static __always_inline int index_of(const size_t size)
e498be7d 327{
5ec8a847
SR
328 extern void __bad_size(void);
329
e498be7d
CL
330 if (__builtin_constant_p(size)) {
331 int i = 0;
332
333#define CACHE(x) \
334 if (size <=x) \
335 return i; \
336 else \
337 i++;
1c61fc40 338#include <linux/kmalloc_sizes.h>
e498be7d 339#undef CACHE
5ec8a847 340 __bad_size();
7243cc05 341 } else
5ec8a847 342 __bad_size();
e498be7d
CL
343 return 0;
344}
345
e0a42726
IM
346static int slab_early_init = 1;
347
e498be7d
CL
348#define INDEX_AC index_of(sizeof(struct arraycache_init))
349#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 350
5295a74c 351static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
352{
353 INIT_LIST_HEAD(&parent->slabs_full);
354 INIT_LIST_HEAD(&parent->slabs_partial);
355 INIT_LIST_HEAD(&parent->slabs_free);
356 parent->shared = NULL;
357 parent->alien = NULL;
2e1217cf 358 parent->colour_next = 0;
e498be7d
CL
359 spin_lock_init(&parent->list_lock);
360 parent->free_objects = 0;
361 parent->free_touched = 0;
362}
363
a737b3e2
AM
364#define MAKE_LIST(cachep, listp, slab, nodeid) \
365 do { \
366 INIT_LIST_HEAD(listp); \
367 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
368 } while (0)
369
a737b3e2
AM
370#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
371 do { \
e498be7d
CL
372 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
375 } while (0)
1da177e4 376
1da177e4
LT
377#define CFLGS_OFF_SLAB (0x80000000UL)
378#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
379
380#define BATCHREFILL_LIMIT 16
a737b3e2
AM
381/*
382 * Optimization question: fewer reaps means less probability for unnessary
383 * cpucache drain/refill cycles.
1da177e4 384 *
dc6f3f27 385 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
386 * which could lock up otherwise freeable slabs.
387 */
388#define REAPTIMEOUT_CPUC (2*HZ)
389#define REAPTIMEOUT_LIST3 (4*HZ)
390
391#if STATS
392#define STATS_INC_ACTIVE(x) ((x)->num_active++)
393#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
394#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
395#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 396#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
397#define STATS_SET_HIGH(x) \
398 do { \
399 if ((x)->num_active > (x)->high_mark) \
400 (x)->high_mark = (x)->num_active; \
401 } while (0)
1da177e4
LT
402#define STATS_INC_ERR(x) ((x)->errors++)
403#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 404#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 405#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
406#define STATS_SET_FREEABLE(x, i) \
407 do { \
408 if ((x)->max_freeable < i) \
409 (x)->max_freeable = i; \
410 } while (0)
1da177e4
LT
411#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
412#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
413#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
414#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
415#else
416#define STATS_INC_ACTIVE(x) do { } while (0)
417#define STATS_DEC_ACTIVE(x) do { } while (0)
418#define STATS_INC_ALLOCED(x) do { } while (0)
419#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 420#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
421#define STATS_SET_HIGH(x) do { } while (0)
422#define STATS_INC_ERR(x) do { } while (0)
423#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 424#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 425#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 426#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
427#define STATS_INC_ALLOCHIT(x) do { } while (0)
428#define STATS_INC_ALLOCMISS(x) do { } while (0)
429#define STATS_INC_FREEHIT(x) do { } while (0)
430#define STATS_INC_FREEMISS(x) do { } while (0)
431#endif
432
433#if DEBUG
1da177e4 434
a737b3e2
AM
435/*
436 * memory layout of objects:
1da177e4 437 * 0 : objp
3dafccf2 438 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
439 * the end of an object is aligned with the end of the real
440 * allocation. Catches writes behind the end of the allocation.
3dafccf2 441 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 442 * redzone word.
3dafccf2
MS
443 * cachep->obj_offset: The real object.
444 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
445 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
446 * [BYTES_PER_WORD long]
1da177e4 447 */
343e0d7a 448static int obj_offset(struct kmem_cache *cachep)
1da177e4 449{
3dafccf2 450 return cachep->obj_offset;
1da177e4
LT
451}
452
343e0d7a 453static int obj_size(struct kmem_cache *cachep)
1da177e4 454{
3dafccf2 455 return cachep->obj_size;
1da177e4
LT
456}
457
b46b8f19 458static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
459{
460 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
461 return (unsigned long long*) (objp + obj_offset(cachep) -
462 sizeof(unsigned long long));
1da177e4
LT
463}
464
b46b8f19 465static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
466{
467 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
468 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
469 return (unsigned long long *)(objp + cachep->buffer_size -
470 sizeof(unsigned long long) -
87a927c7 471 REDZONE_ALIGN);
b46b8f19
DW
472 return (unsigned long long *) (objp + cachep->buffer_size -
473 sizeof(unsigned long long));
1da177e4
LT
474}
475
343e0d7a 476static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
477{
478 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 479 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
480}
481
482#else
483
3dafccf2
MS
484#define obj_offset(x) 0
485#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
486#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
487#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
488#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
489
490#endif
491
36555751
EGM
492#ifdef CONFIG_KMEMTRACE
493size_t slab_buffer_size(struct kmem_cache *cachep)
494{
495 return cachep->buffer_size;
496}
497EXPORT_SYMBOL(slab_buffer_size);
498#endif
499
1da177e4
LT
500/*
501 * Do not go above this order unless 0 objects fit into the slab.
502 */
503#define BREAK_GFP_ORDER_HI 1
504#define BREAK_GFP_ORDER_LO 0
505static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
506
a737b3e2
AM
507/*
508 * Functions for storing/retrieving the cachep and or slab from the page
509 * allocator. These are used to find the slab an obj belongs to. With kfree(),
510 * these are used to find the cache which an obj belongs to.
1da177e4 511 */
065d41cb
PE
512static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
513{
514 page->lru.next = (struct list_head *)cache;
515}
516
517static inline struct kmem_cache *page_get_cache(struct page *page)
518{
d85f3385 519 page = compound_head(page);
ddc2e812 520 BUG_ON(!PageSlab(page));
065d41cb
PE
521 return (struct kmem_cache *)page->lru.next;
522}
523
524static inline void page_set_slab(struct page *page, struct slab *slab)
525{
526 page->lru.prev = (struct list_head *)slab;
527}
528
529static inline struct slab *page_get_slab(struct page *page)
530{
ddc2e812 531 BUG_ON(!PageSlab(page));
065d41cb
PE
532 return (struct slab *)page->lru.prev;
533}
1da177e4 534
6ed5eb22
PE
535static inline struct kmem_cache *virt_to_cache(const void *obj)
536{
b49af68f 537 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
538 return page_get_cache(page);
539}
540
541static inline struct slab *virt_to_slab(const void *obj)
542{
b49af68f 543 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
544 return page_get_slab(page);
545}
546
8fea4e96
PE
547static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
548 unsigned int idx)
549{
550 return slab->s_mem + cache->buffer_size * idx;
551}
552
6a2d7a95
ED
553/*
554 * We want to avoid an expensive divide : (offset / cache->buffer_size)
555 * Using the fact that buffer_size is a constant for a particular cache,
556 * we can replace (offset / cache->buffer_size) by
557 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
558 */
559static inline unsigned int obj_to_index(const struct kmem_cache *cache,
560 const struct slab *slab, void *obj)
8fea4e96 561{
6a2d7a95
ED
562 u32 offset = (obj - slab->s_mem);
563 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
564}
565
a737b3e2
AM
566/*
567 * These are the default caches for kmalloc. Custom caches can have other sizes.
568 */
1da177e4
LT
569struct cache_sizes malloc_sizes[] = {
570#define CACHE(x) { .cs_size = (x) },
571#include <linux/kmalloc_sizes.h>
572 CACHE(ULONG_MAX)
573#undef CACHE
574};
575EXPORT_SYMBOL(malloc_sizes);
576
577/* Must match cache_sizes above. Out of line to keep cache footprint low. */
578struct cache_names {
579 char *name;
580 char *name_dma;
581};
582
583static struct cache_names __initdata cache_names[] = {
584#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
585#include <linux/kmalloc_sizes.h>
b28a02de 586 {NULL,}
1da177e4
LT
587#undef CACHE
588};
589
590static struct arraycache_init initarray_cache __initdata =
b28a02de 591 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 592static struct arraycache_init initarray_generic =
b28a02de 593 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
594
595/* internal cache of cache description objs */
343e0d7a 596static struct kmem_cache cache_cache = {
b28a02de
PE
597 .batchcount = 1,
598 .limit = BOOT_CPUCACHE_ENTRIES,
599 .shared = 1,
343e0d7a 600 .buffer_size = sizeof(struct kmem_cache),
b28a02de 601 .name = "kmem_cache",
1da177e4
LT
602};
603
056c6241
RT
604#define BAD_ALIEN_MAGIC 0x01020304ul
605
f1aaee53
AV
606#ifdef CONFIG_LOCKDEP
607
608/*
609 * Slab sometimes uses the kmalloc slabs to store the slab headers
610 * for other slabs "off slab".
611 * The locking for this is tricky in that it nests within the locks
612 * of all other slabs in a few places; to deal with this special
613 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
614 *
615 * We set lock class for alien array caches which are up during init.
616 * The lock annotation will be lost if all cpus of a node goes down and
617 * then comes back up during hotplug
f1aaee53 618 */
056c6241
RT
619static struct lock_class_key on_slab_l3_key;
620static struct lock_class_key on_slab_alc_key;
621
622static inline void init_lock_keys(void)
f1aaee53 623
f1aaee53
AV
624{
625 int q;
056c6241
RT
626 struct cache_sizes *s = malloc_sizes;
627
628 while (s->cs_size != ULONG_MAX) {
629 for_each_node(q) {
630 struct array_cache **alc;
631 int r;
632 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
633 if (!l3 || OFF_SLAB(s->cs_cachep))
634 continue;
635 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
636 alc = l3->alien;
637 /*
638 * FIXME: This check for BAD_ALIEN_MAGIC
639 * should go away when common slab code is taught to
640 * work even without alien caches.
641 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
642 * for alloc_alien_cache,
643 */
644 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
645 continue;
646 for_each_node(r) {
647 if (alc[r])
648 lockdep_set_class(&alc[r]->lock,
649 &on_slab_alc_key);
650 }
651 }
652 s++;
f1aaee53
AV
653 }
654}
f1aaee53 655#else
056c6241 656static inline void init_lock_keys(void)
f1aaee53
AV
657{
658}
659#endif
660
8f5be20b 661/*
95402b38 662 * Guard access to the cache-chain.
8f5be20b 663 */
fc0abb14 664static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
665static struct list_head cache_chain;
666
1da177e4
LT
667/*
668 * chicken and egg problem: delay the per-cpu array allocation
669 * until the general caches are up.
670 */
671static enum {
672 NONE,
e498be7d
CL
673 PARTIAL_AC,
674 PARTIAL_L3,
1da177e4
LT
675 FULL
676} g_cpucache_up;
677
39d24e64
MK
678/*
679 * used by boot code to determine if it can use slab based allocator
680 */
681int slab_is_available(void)
682{
683 return g_cpucache_up == FULL;
684}
685
52bad64d 686static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 687
343e0d7a 688static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
689{
690 return cachep->array[smp_processor_id()];
691}
692
a737b3e2
AM
693static inline struct kmem_cache *__find_general_cachep(size_t size,
694 gfp_t gfpflags)
1da177e4
LT
695{
696 struct cache_sizes *csizep = malloc_sizes;
697
698#if DEBUG
699 /* This happens if someone tries to call
b28a02de
PE
700 * kmem_cache_create(), or __kmalloc(), before
701 * the generic caches are initialized.
702 */
c7e43c78 703 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 704#endif
6cb8f913
CL
705 if (!size)
706 return ZERO_SIZE_PTR;
707
1da177e4
LT
708 while (size > csizep->cs_size)
709 csizep++;
710
711 /*
0abf40c1 712 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
713 * has cs_{dma,}cachep==NULL. Thus no special case
714 * for large kmalloc calls required.
715 */
4b51d669 716#ifdef CONFIG_ZONE_DMA
1da177e4
LT
717 if (unlikely(gfpflags & GFP_DMA))
718 return csizep->cs_dmacachep;
4b51d669 719#endif
1da177e4
LT
720 return csizep->cs_cachep;
721}
722
b221385b 723static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
724{
725 return __find_general_cachep(size, gfpflags);
726}
97e2bde4 727
fbaccacf 728static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 729{
fbaccacf
SR
730 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
731}
1da177e4 732
a737b3e2
AM
733/*
734 * Calculate the number of objects and left-over bytes for a given buffer size.
735 */
fbaccacf
SR
736static void cache_estimate(unsigned long gfporder, size_t buffer_size,
737 size_t align, int flags, size_t *left_over,
738 unsigned int *num)
739{
740 int nr_objs;
741 size_t mgmt_size;
742 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 743
fbaccacf
SR
744 /*
745 * The slab management structure can be either off the slab or
746 * on it. For the latter case, the memory allocated for a
747 * slab is used for:
748 *
749 * - The struct slab
750 * - One kmem_bufctl_t for each object
751 * - Padding to respect alignment of @align
752 * - @buffer_size bytes for each object
753 *
754 * If the slab management structure is off the slab, then the
755 * alignment will already be calculated into the size. Because
756 * the slabs are all pages aligned, the objects will be at the
757 * correct alignment when allocated.
758 */
759 if (flags & CFLGS_OFF_SLAB) {
760 mgmt_size = 0;
761 nr_objs = slab_size / buffer_size;
762
763 if (nr_objs > SLAB_LIMIT)
764 nr_objs = SLAB_LIMIT;
765 } else {
766 /*
767 * Ignore padding for the initial guess. The padding
768 * is at most @align-1 bytes, and @buffer_size is at
769 * least @align. In the worst case, this result will
770 * be one greater than the number of objects that fit
771 * into the memory allocation when taking the padding
772 * into account.
773 */
774 nr_objs = (slab_size - sizeof(struct slab)) /
775 (buffer_size + sizeof(kmem_bufctl_t));
776
777 /*
778 * This calculated number will be either the right
779 * amount, or one greater than what we want.
780 */
781 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
782 > slab_size)
783 nr_objs--;
784
785 if (nr_objs > SLAB_LIMIT)
786 nr_objs = SLAB_LIMIT;
787
788 mgmt_size = slab_mgmt_size(nr_objs, align);
789 }
790 *num = nr_objs;
791 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
792}
793
d40cee24 794#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 795
a737b3e2
AM
796static void __slab_error(const char *function, struct kmem_cache *cachep,
797 char *msg)
1da177e4
LT
798{
799 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 800 function, cachep->name, msg);
1da177e4
LT
801 dump_stack();
802}
803
3395ee05
PM
804/*
805 * By default on NUMA we use alien caches to stage the freeing of
806 * objects allocated from other nodes. This causes massive memory
807 * inefficiencies when using fake NUMA setup to split memory into a
808 * large number of small nodes, so it can be disabled on the command
809 * line
810 */
811
812static int use_alien_caches __read_mostly = 1;
1807a1aa 813static int numa_platform __read_mostly = 1;
3395ee05
PM
814static int __init noaliencache_setup(char *s)
815{
816 use_alien_caches = 0;
817 return 1;
818}
819__setup("noaliencache", noaliencache_setup);
820
8fce4d8e
CL
821#ifdef CONFIG_NUMA
822/*
823 * Special reaping functions for NUMA systems called from cache_reap().
824 * These take care of doing round robin flushing of alien caches (containing
825 * objects freed on different nodes from which they were allocated) and the
826 * flushing of remote pcps by calling drain_node_pages.
827 */
828static DEFINE_PER_CPU(unsigned long, reap_node);
829
830static void init_reap_node(int cpu)
831{
832 int node;
833
834 node = next_node(cpu_to_node(cpu), node_online_map);
835 if (node == MAX_NUMNODES)
442295c9 836 node = first_node(node_online_map);
8fce4d8e 837
7f6b8876 838 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
839}
840
841static void next_reap_node(void)
842{
843 int node = __get_cpu_var(reap_node);
844
8fce4d8e
CL
845 node = next_node(node, node_online_map);
846 if (unlikely(node >= MAX_NUMNODES))
847 node = first_node(node_online_map);
848 __get_cpu_var(reap_node) = node;
849}
850
851#else
852#define init_reap_node(cpu) do { } while (0)
853#define next_reap_node(void) do { } while (0)
854#endif
855
1da177e4
LT
856/*
857 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
858 * via the workqueue/eventd.
859 * Add the CPU number into the expiration time to minimize the possibility of
860 * the CPUs getting into lockstep and contending for the global cache chain
861 * lock.
862 */
897e679b 863static void __cpuinit start_cpu_timer(int cpu)
1da177e4 864{
52bad64d 865 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
866
867 /*
868 * When this gets called from do_initcalls via cpucache_init(),
869 * init_workqueues() has already run, so keventd will be setup
870 * at that time.
871 */
52bad64d 872 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 873 init_reap_node(cpu);
65f27f38 874 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
875 schedule_delayed_work_on(cpu, reap_work,
876 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
877 }
878}
879
e498be7d 880static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 881 int batchcount, gfp_t gfp)
1da177e4 882{
b28a02de 883 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
884 struct array_cache *nc = NULL;
885
83b519e8 886 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
887 /*
888 * The array_cache structures contain pointers to free object.
889 * However, when such objects are allocated or transfered to another
890 * cache the pointers are not cleared and they could be counted as
891 * valid references during a kmemleak scan. Therefore, kmemleak must
892 * not scan such objects.
893 */
894 kmemleak_no_scan(nc);
1da177e4
LT
895 if (nc) {
896 nc->avail = 0;
897 nc->limit = entries;
898 nc->batchcount = batchcount;
899 nc->touched = 0;
e498be7d 900 spin_lock_init(&nc->lock);
1da177e4
LT
901 }
902 return nc;
903}
904
3ded175a
CL
905/*
906 * Transfer objects in one arraycache to another.
907 * Locking must be handled by the caller.
908 *
909 * Return the number of entries transferred.
910 */
911static int transfer_objects(struct array_cache *to,
912 struct array_cache *from, unsigned int max)
913{
914 /* Figure out how many entries to transfer */
915 int nr = min(min(from->avail, max), to->limit - to->avail);
916
917 if (!nr)
918 return 0;
919
920 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
921 sizeof(void *) *nr);
922
923 from->avail -= nr;
924 to->avail += nr;
925 to->touched = 1;
926 return nr;
927}
928
765c4507
CL
929#ifndef CONFIG_NUMA
930
931#define drain_alien_cache(cachep, alien) do { } while (0)
932#define reap_alien(cachep, l3) do { } while (0)
933
83b519e8 934static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
935{
936 return (struct array_cache **)BAD_ALIEN_MAGIC;
937}
938
939static inline void free_alien_cache(struct array_cache **ac_ptr)
940{
941}
942
943static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
944{
945 return 0;
946}
947
948static inline void *alternate_node_alloc(struct kmem_cache *cachep,
949 gfp_t flags)
950{
951 return NULL;
952}
953
8b98c169 954static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
955 gfp_t flags, int nodeid)
956{
957 return NULL;
958}
959
960#else /* CONFIG_NUMA */
961
8b98c169 962static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 963static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 964
83b519e8 965static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
966{
967 struct array_cache **ac_ptr;
8ef82866 968 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
969 int i;
970
971 if (limit > 1)
972 limit = 12;
83b519e8 973 ac_ptr = kmalloc_node(memsize, gfp, node);
e498be7d
CL
974 if (ac_ptr) {
975 for_each_node(i) {
976 if (i == node || !node_online(i)) {
977 ac_ptr[i] = NULL;
978 continue;
979 }
83b519e8 980 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 981 if (!ac_ptr[i]) {
cc550def 982 for (i--; i >= 0; i--)
e498be7d
CL
983 kfree(ac_ptr[i]);
984 kfree(ac_ptr);
985 return NULL;
986 }
987 }
988 }
989 return ac_ptr;
990}
991
5295a74c 992static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
993{
994 int i;
995
996 if (!ac_ptr)
997 return;
e498be7d 998 for_each_node(i)
b28a02de 999 kfree(ac_ptr[i]);
e498be7d
CL
1000 kfree(ac_ptr);
1001}
1002
343e0d7a 1003static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1004 struct array_cache *ac, int node)
e498be7d
CL
1005{
1006 struct kmem_list3 *rl3 = cachep->nodelists[node];
1007
1008 if (ac->avail) {
1009 spin_lock(&rl3->list_lock);
e00946fe
CL
1010 /*
1011 * Stuff objects into the remote nodes shared array first.
1012 * That way we could avoid the overhead of putting the objects
1013 * into the free lists and getting them back later.
1014 */
693f7d36 1015 if (rl3->shared)
1016 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1017
ff69416e 1018 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1019 ac->avail = 0;
1020 spin_unlock(&rl3->list_lock);
1021 }
1022}
1023
8fce4d8e
CL
1024/*
1025 * Called from cache_reap() to regularly drain alien caches round robin.
1026 */
1027static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1028{
1029 int node = __get_cpu_var(reap_node);
1030
1031 if (l3->alien) {
1032 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1033
1034 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1035 __drain_alien_cache(cachep, ac, node);
1036 spin_unlock_irq(&ac->lock);
1037 }
1038 }
1039}
1040
a737b3e2
AM
1041static void drain_alien_cache(struct kmem_cache *cachep,
1042 struct array_cache **alien)
e498be7d 1043{
b28a02de 1044 int i = 0;
e498be7d
CL
1045 struct array_cache *ac;
1046 unsigned long flags;
1047
1048 for_each_online_node(i) {
4484ebf1 1049 ac = alien[i];
e498be7d
CL
1050 if (ac) {
1051 spin_lock_irqsave(&ac->lock, flags);
1052 __drain_alien_cache(cachep, ac, i);
1053 spin_unlock_irqrestore(&ac->lock, flags);
1054 }
1055 }
1056}
729bd0b7 1057
873623df 1058static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1059{
1060 struct slab *slabp = virt_to_slab(objp);
1061 int nodeid = slabp->nodeid;
1062 struct kmem_list3 *l3;
1063 struct array_cache *alien = NULL;
1ca4cb24
PE
1064 int node;
1065
1066 node = numa_node_id();
729bd0b7
PE
1067
1068 /*
1069 * Make sure we are not freeing a object from another node to the array
1070 * cache on this cpu.
1071 */
62918a03 1072 if (likely(slabp->nodeid == node))
729bd0b7
PE
1073 return 0;
1074
1ca4cb24 1075 l3 = cachep->nodelists[node];
729bd0b7
PE
1076 STATS_INC_NODEFREES(cachep);
1077 if (l3->alien && l3->alien[nodeid]) {
1078 alien = l3->alien[nodeid];
873623df 1079 spin_lock(&alien->lock);
729bd0b7
PE
1080 if (unlikely(alien->avail == alien->limit)) {
1081 STATS_INC_ACOVERFLOW(cachep);
1082 __drain_alien_cache(cachep, alien, nodeid);
1083 }
1084 alien->entry[alien->avail++] = objp;
1085 spin_unlock(&alien->lock);
1086 } else {
1087 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1088 free_block(cachep, &objp, 1, nodeid);
1089 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1090 }
1091 return 1;
1092}
e498be7d
CL
1093#endif
1094
fbf1e473
AM
1095static void __cpuinit cpuup_canceled(long cpu)
1096{
1097 struct kmem_cache *cachep;
1098 struct kmem_list3 *l3 = NULL;
1099 int node = cpu_to_node(cpu);
a70f7302 1100 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1101
1102 list_for_each_entry(cachep, &cache_chain, next) {
1103 struct array_cache *nc;
1104 struct array_cache *shared;
1105 struct array_cache **alien;
fbf1e473 1106
fbf1e473
AM
1107 /* cpu is dead; no one can alloc from it. */
1108 nc = cachep->array[cpu];
1109 cachep->array[cpu] = NULL;
1110 l3 = cachep->nodelists[node];
1111
1112 if (!l3)
1113 goto free_array_cache;
1114
1115 spin_lock_irq(&l3->list_lock);
1116
1117 /* Free limit for this kmem_list3 */
1118 l3->free_limit -= cachep->batchcount;
1119 if (nc)
1120 free_block(cachep, nc->entry, nc->avail, node);
1121
c5f59f08 1122 if (!cpus_empty(*mask)) {
fbf1e473
AM
1123 spin_unlock_irq(&l3->list_lock);
1124 goto free_array_cache;
1125 }
1126
1127 shared = l3->shared;
1128 if (shared) {
1129 free_block(cachep, shared->entry,
1130 shared->avail, node);
1131 l3->shared = NULL;
1132 }
1133
1134 alien = l3->alien;
1135 l3->alien = NULL;
1136
1137 spin_unlock_irq(&l3->list_lock);
1138
1139 kfree(shared);
1140 if (alien) {
1141 drain_alien_cache(cachep, alien);
1142 free_alien_cache(alien);
1143 }
1144free_array_cache:
1145 kfree(nc);
1146 }
1147 /*
1148 * In the previous loop, all the objects were freed to
1149 * the respective cache's slabs, now we can go ahead and
1150 * shrink each nodelist to its limit.
1151 */
1152 list_for_each_entry(cachep, &cache_chain, next) {
1153 l3 = cachep->nodelists[node];
1154 if (!l3)
1155 continue;
1156 drain_freelist(cachep, l3, l3->free_objects);
1157 }
1158}
1159
1160static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1161{
343e0d7a 1162 struct kmem_cache *cachep;
e498be7d
CL
1163 struct kmem_list3 *l3 = NULL;
1164 int node = cpu_to_node(cpu);
ea02e3dd 1165 const int memsize = sizeof(struct kmem_list3);
1da177e4 1166
fbf1e473
AM
1167 /*
1168 * We need to do this right in the beginning since
1169 * alloc_arraycache's are going to use this list.
1170 * kmalloc_node allows us to add the slab to the right
1171 * kmem_list3 and not this cpu's kmem_list3
1172 */
1173
1174 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1175 /*
fbf1e473
AM
1176 * Set up the size64 kmemlist for cpu before we can
1177 * begin anything. Make sure some other cpu on this
1178 * node has not already allocated this
e498be7d 1179 */
fbf1e473
AM
1180 if (!cachep->nodelists[node]) {
1181 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1182 if (!l3)
1183 goto bad;
1184 kmem_list3_init(l3);
1185 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1186 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1187
a737b3e2 1188 /*
fbf1e473
AM
1189 * The l3s don't come and go as CPUs come and
1190 * go. cache_chain_mutex is sufficient
1191 * protection here.
e498be7d 1192 */
fbf1e473 1193 cachep->nodelists[node] = l3;
e498be7d
CL
1194 }
1195
fbf1e473
AM
1196 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1197 cachep->nodelists[node]->free_limit =
1198 (1 + nr_cpus_node(node)) *
1199 cachep->batchcount + cachep->num;
1200 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1201 }
1202
1203 /*
1204 * Now we can go ahead with allocating the shared arrays and
1205 * array caches
1206 */
1207 list_for_each_entry(cachep, &cache_chain, next) {
1208 struct array_cache *nc;
1209 struct array_cache *shared = NULL;
1210 struct array_cache **alien = NULL;
1211
1212 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1213 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1214 if (!nc)
1215 goto bad;
1216 if (cachep->shared) {
1217 shared = alloc_arraycache(node,
1218 cachep->shared * cachep->batchcount,
83b519e8 1219 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1220 if (!shared) {
1221 kfree(nc);
1da177e4 1222 goto bad;
12d00f6a 1223 }
fbf1e473
AM
1224 }
1225 if (use_alien_caches) {
83b519e8 1226 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1227 if (!alien) {
1228 kfree(shared);
1229 kfree(nc);
fbf1e473 1230 goto bad;
12d00f6a 1231 }
fbf1e473
AM
1232 }
1233 cachep->array[cpu] = nc;
1234 l3 = cachep->nodelists[node];
1235 BUG_ON(!l3);
1236
1237 spin_lock_irq(&l3->list_lock);
1238 if (!l3->shared) {
1239 /*
1240 * We are serialised from CPU_DEAD or
1241 * CPU_UP_CANCELLED by the cpucontrol lock
1242 */
1243 l3->shared = shared;
1244 shared = NULL;
1245 }
4484ebf1 1246#ifdef CONFIG_NUMA
fbf1e473
AM
1247 if (!l3->alien) {
1248 l3->alien = alien;
1249 alien = NULL;
1da177e4 1250 }
fbf1e473
AM
1251#endif
1252 spin_unlock_irq(&l3->list_lock);
1253 kfree(shared);
1254 free_alien_cache(alien);
1255 }
1256 return 0;
1257bad:
12d00f6a 1258 cpuup_canceled(cpu);
fbf1e473
AM
1259 return -ENOMEM;
1260}
1261
1262static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1263 unsigned long action, void *hcpu)
1264{
1265 long cpu = (long)hcpu;
1266 int err = 0;
1267
1268 switch (action) {
fbf1e473
AM
1269 case CPU_UP_PREPARE:
1270 case CPU_UP_PREPARE_FROZEN:
95402b38 1271 mutex_lock(&cache_chain_mutex);
fbf1e473 1272 err = cpuup_prepare(cpu);
95402b38 1273 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1274 break;
1275 case CPU_ONLINE:
8bb78442 1276 case CPU_ONLINE_FROZEN:
1da177e4
LT
1277 start_cpu_timer(cpu);
1278 break;
1279#ifdef CONFIG_HOTPLUG_CPU
5830c590 1280 case CPU_DOWN_PREPARE:
8bb78442 1281 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1282 /*
1283 * Shutdown cache reaper. Note that the cache_chain_mutex is
1284 * held so that if cache_reap() is invoked it cannot do
1285 * anything expensive but will only modify reap_work
1286 * and reschedule the timer.
1287 */
1288 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1289 /* Now the cache_reaper is guaranteed to be not running. */
1290 per_cpu(reap_work, cpu).work.func = NULL;
1291 break;
1292 case CPU_DOWN_FAILED:
8bb78442 1293 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1294 start_cpu_timer(cpu);
1295 break;
1da177e4 1296 case CPU_DEAD:
8bb78442 1297 case CPU_DEAD_FROZEN:
4484ebf1
RT
1298 /*
1299 * Even if all the cpus of a node are down, we don't free the
1300 * kmem_list3 of any cache. This to avoid a race between
1301 * cpu_down, and a kmalloc allocation from another cpu for
1302 * memory from the node of the cpu going down. The list3
1303 * structure is usually allocated from kmem_cache_create() and
1304 * gets destroyed at kmem_cache_destroy().
1305 */
183ff22b 1306 /* fall through */
8f5be20b 1307#endif
1da177e4 1308 case CPU_UP_CANCELED:
8bb78442 1309 case CPU_UP_CANCELED_FROZEN:
95402b38 1310 mutex_lock(&cache_chain_mutex);
fbf1e473 1311 cpuup_canceled(cpu);
fc0abb14 1312 mutex_unlock(&cache_chain_mutex);
1da177e4 1313 break;
1da177e4 1314 }
fbf1e473 1315 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1316}
1317
74b85f37
CS
1318static struct notifier_block __cpuinitdata cpucache_notifier = {
1319 &cpuup_callback, NULL, 0
1320};
1da177e4 1321
e498be7d
CL
1322/*
1323 * swap the static kmem_list3 with kmalloced memory
1324 */
a737b3e2
AM
1325static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1326 int nodeid)
e498be7d
CL
1327{
1328 struct kmem_list3 *ptr;
1329
83b519e8 1330 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1331 BUG_ON(!ptr);
1332
e498be7d 1333 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1334 /*
1335 * Do not assume that spinlocks can be initialized via memcpy:
1336 */
1337 spin_lock_init(&ptr->list_lock);
1338
e498be7d
CL
1339 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1340 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1341}
1342
556a169d
PE
1343/*
1344 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1345 * size of kmem_list3.
1346 */
1347static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1348{
1349 int node;
1350
1351 for_each_online_node(node) {
1352 cachep->nodelists[node] = &initkmem_list3[index + node];
1353 cachep->nodelists[node]->next_reap = jiffies +
1354 REAPTIMEOUT_LIST3 +
1355 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1356 }
1357}
1358
a737b3e2
AM
1359/*
1360 * Initialisation. Called after the page allocator have been initialised and
1361 * before smp_init().
1da177e4
LT
1362 */
1363void __init kmem_cache_init(void)
1364{
1365 size_t left_over;
1366 struct cache_sizes *sizes;
1367 struct cache_names *names;
e498be7d 1368 int i;
07ed76b2 1369 int order;
1ca4cb24 1370 int node;
e498be7d 1371
1807a1aa 1372 if (num_possible_nodes() == 1) {
62918a03 1373 use_alien_caches = 0;
1807a1aa
SS
1374 numa_platform = 0;
1375 }
62918a03 1376
e498be7d
CL
1377 for (i = 0; i < NUM_INIT_LISTS; i++) {
1378 kmem_list3_init(&initkmem_list3[i]);
1379 if (i < MAX_NUMNODES)
1380 cache_cache.nodelists[i] = NULL;
1381 }
556a169d 1382 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1383
1384 /*
1385 * Fragmentation resistance on low memory - only use bigger
1386 * page orders on machines with more than 32MB of memory.
1387 */
1388 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1389 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1390
1da177e4
LT
1391 /* Bootstrap is tricky, because several objects are allocated
1392 * from caches that do not exist yet:
a737b3e2
AM
1393 * 1) initialize the cache_cache cache: it contains the struct
1394 * kmem_cache structures of all caches, except cache_cache itself:
1395 * cache_cache is statically allocated.
e498be7d
CL
1396 * Initially an __init data area is used for the head array and the
1397 * kmem_list3 structures, it's replaced with a kmalloc allocated
1398 * array at the end of the bootstrap.
1da177e4 1399 * 2) Create the first kmalloc cache.
343e0d7a 1400 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1401 * An __init data area is used for the head array.
1402 * 3) Create the remaining kmalloc caches, with minimally sized
1403 * head arrays.
1da177e4
LT
1404 * 4) Replace the __init data head arrays for cache_cache and the first
1405 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1406 * 5) Replace the __init data for kmem_list3 for cache_cache and
1407 * the other cache's with kmalloc allocated memory.
1408 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1409 */
1410
1ca4cb24
PE
1411 node = numa_node_id();
1412
1da177e4 1413 /* 1) create the cache_cache */
1da177e4
LT
1414 INIT_LIST_HEAD(&cache_chain);
1415 list_add(&cache_cache.next, &cache_chain);
1416 cache_cache.colour_off = cache_line_size();
1417 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1418 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1419
8da3430d
ED
1420 /*
1421 * struct kmem_cache size depends on nr_node_ids, which
1422 * can be less than MAX_NUMNODES.
1423 */
1424 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1425 nr_node_ids * sizeof(struct kmem_list3 *);
1426#if DEBUG
1427 cache_cache.obj_size = cache_cache.buffer_size;
1428#endif
a737b3e2
AM
1429 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1430 cache_line_size());
6a2d7a95
ED
1431 cache_cache.reciprocal_buffer_size =
1432 reciprocal_value(cache_cache.buffer_size);
1da177e4 1433
07ed76b2
JS
1434 for (order = 0; order < MAX_ORDER; order++) {
1435 cache_estimate(order, cache_cache.buffer_size,
1436 cache_line_size(), 0, &left_over, &cache_cache.num);
1437 if (cache_cache.num)
1438 break;
1439 }
40094fa6 1440 BUG_ON(!cache_cache.num);
07ed76b2 1441 cache_cache.gfporder = order;
b28a02de 1442 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1443 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1444 sizeof(struct slab), cache_line_size());
1da177e4
LT
1445
1446 /* 2+3) create the kmalloc caches */
1447 sizes = malloc_sizes;
1448 names = cache_names;
1449
a737b3e2
AM
1450 /*
1451 * Initialize the caches that provide memory for the array cache and the
1452 * kmem_list3 structures first. Without this, further allocations will
1453 * bug.
e498be7d
CL
1454 */
1455
1456 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1457 sizes[INDEX_AC].cs_size,
1458 ARCH_KMALLOC_MINALIGN,
1459 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1460 NULL);
e498be7d 1461
a737b3e2 1462 if (INDEX_AC != INDEX_L3) {
e498be7d 1463 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1464 kmem_cache_create(names[INDEX_L3].name,
1465 sizes[INDEX_L3].cs_size,
1466 ARCH_KMALLOC_MINALIGN,
1467 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1468 NULL);
a737b3e2 1469 }
e498be7d 1470
e0a42726
IM
1471 slab_early_init = 0;
1472
1da177e4 1473 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1474 /*
1475 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1476 * This should be particularly beneficial on SMP boxes, as it
1477 * eliminates "false sharing".
1478 * Note for systems short on memory removing the alignment will
e498be7d
CL
1479 * allow tighter packing of the smaller caches.
1480 */
a737b3e2 1481 if (!sizes->cs_cachep) {
e498be7d 1482 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1483 sizes->cs_size,
1484 ARCH_KMALLOC_MINALIGN,
1485 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1486 NULL);
a737b3e2 1487 }
4b51d669
CL
1488#ifdef CONFIG_ZONE_DMA
1489 sizes->cs_dmacachep = kmem_cache_create(
1490 names->name_dma,
a737b3e2
AM
1491 sizes->cs_size,
1492 ARCH_KMALLOC_MINALIGN,
1493 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1494 SLAB_PANIC,
20c2df83 1495 NULL);
4b51d669 1496#endif
1da177e4
LT
1497 sizes++;
1498 names++;
1499 }
1500 /* 4) Replace the bootstrap head arrays */
1501 {
2b2d5493 1502 struct array_cache *ptr;
e498be7d 1503
83b519e8 1504 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1505
9a2dba4b
PE
1506 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1507 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1508 sizeof(struct arraycache_init));
2b2d5493
IM
1509 /*
1510 * Do not assume that spinlocks can be initialized via memcpy:
1511 */
1512 spin_lock_init(&ptr->lock);
1513
1da177e4 1514 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1515
83b519e8 1516 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1517
9a2dba4b 1518 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1519 != &initarray_generic.cache);
9a2dba4b 1520 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1521 sizeof(struct arraycache_init));
2b2d5493
IM
1522 /*
1523 * Do not assume that spinlocks can be initialized via memcpy:
1524 */
1525 spin_lock_init(&ptr->lock);
1526
e498be7d 1527 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1528 ptr;
1da177e4 1529 }
e498be7d
CL
1530 /* 5) Replace the bootstrap kmem_list3's */
1531 {
1ca4cb24
PE
1532 int nid;
1533
9c09a95c 1534 for_each_online_node(nid) {
ec1f5eee 1535 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1536
e498be7d 1537 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1538 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1539
1540 if (INDEX_AC != INDEX_L3) {
1541 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1542 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1543 }
1544 }
1545 }
1da177e4 1546
e498be7d 1547 /* 6) resize the head arrays to their final sizes */
1da177e4 1548 {
343e0d7a 1549 struct kmem_cache *cachep;
fc0abb14 1550 mutex_lock(&cache_chain_mutex);
1da177e4 1551 list_for_each_entry(cachep, &cache_chain, next)
83b519e8 1552 if (enable_cpucache(cachep, GFP_NOWAIT))
2ed3a4ef 1553 BUG();
fc0abb14 1554 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1555 }
1556
056c6241
RT
1557 /* Annotate slab for lockdep -- annotate the malloc caches */
1558 init_lock_keys();
1559
1560
1da177e4
LT
1561 /* Done! */
1562 g_cpucache_up = FULL;
1563
a737b3e2
AM
1564 /*
1565 * Register a cpu startup notifier callback that initializes
1566 * cpu_cache_get for all new cpus
1da177e4
LT
1567 */
1568 register_cpu_notifier(&cpucache_notifier);
1da177e4 1569
a737b3e2
AM
1570 /*
1571 * The reap timers are started later, with a module init call: That part
1572 * of the kernel is not yet operational.
1da177e4
LT
1573 */
1574}
1575
1576static int __init cpucache_init(void)
1577{
1578 int cpu;
1579
a737b3e2
AM
1580 /*
1581 * Register the timers that return unneeded pages to the page allocator
1da177e4 1582 */
e498be7d 1583 for_each_online_cpu(cpu)
a737b3e2 1584 start_cpu_timer(cpu);
1da177e4
LT
1585 return 0;
1586}
1da177e4
LT
1587__initcall(cpucache_init);
1588
1589/*
1590 * Interface to system's page allocator. No need to hold the cache-lock.
1591 *
1592 * If we requested dmaable memory, we will get it. Even if we
1593 * did not request dmaable memory, we might get it, but that
1594 * would be relatively rare and ignorable.
1595 */
343e0d7a 1596static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1597{
1598 struct page *page;
e1b6aa6f 1599 int nr_pages;
1da177e4
LT
1600 int i;
1601
d6fef9da 1602#ifndef CONFIG_MMU
e1b6aa6f
CH
1603 /*
1604 * Nommu uses slab's for process anonymous memory allocations, and thus
1605 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1606 */
e1b6aa6f 1607 flags |= __GFP_COMP;
d6fef9da 1608#endif
765c4507 1609
3c517a61 1610 flags |= cachep->gfpflags;
e12ba74d
MG
1611 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1612 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1613
1614 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1615 if (!page)
1616 return NULL;
1da177e4 1617
e1b6aa6f 1618 nr_pages = (1 << cachep->gfporder);
1da177e4 1619 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1620 add_zone_page_state(page_zone(page),
1621 NR_SLAB_RECLAIMABLE, nr_pages);
1622 else
1623 add_zone_page_state(page_zone(page),
1624 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1625 for (i = 0; i < nr_pages; i++)
1626 __SetPageSlab(page + i);
1627 return page_address(page);
1da177e4
LT
1628}
1629
1630/*
1631 * Interface to system's page release.
1632 */
343e0d7a 1633static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1634{
b28a02de 1635 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1636 struct page *page = virt_to_page(addr);
1637 const unsigned long nr_freed = i;
1638
972d1a7b
CL
1639 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1640 sub_zone_page_state(page_zone(page),
1641 NR_SLAB_RECLAIMABLE, nr_freed);
1642 else
1643 sub_zone_page_state(page_zone(page),
1644 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1645 while (i--) {
f205b2fe
NP
1646 BUG_ON(!PageSlab(page));
1647 __ClearPageSlab(page);
1da177e4
LT
1648 page++;
1649 }
1da177e4
LT
1650 if (current->reclaim_state)
1651 current->reclaim_state->reclaimed_slab += nr_freed;
1652 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1653}
1654
1655static void kmem_rcu_free(struct rcu_head *head)
1656{
b28a02de 1657 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1658 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1659
1660 kmem_freepages(cachep, slab_rcu->addr);
1661 if (OFF_SLAB(cachep))
1662 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1663}
1664
1665#if DEBUG
1666
1667#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1668static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1669 unsigned long caller)
1da177e4 1670{
3dafccf2 1671 int size = obj_size(cachep);
1da177e4 1672
3dafccf2 1673 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1674
b28a02de 1675 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1676 return;
1677
b28a02de
PE
1678 *addr++ = 0x12345678;
1679 *addr++ = caller;
1680 *addr++ = smp_processor_id();
1681 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1682 {
1683 unsigned long *sptr = &caller;
1684 unsigned long svalue;
1685
1686 while (!kstack_end(sptr)) {
1687 svalue = *sptr++;
1688 if (kernel_text_address(svalue)) {
b28a02de 1689 *addr++ = svalue;
1da177e4
LT
1690 size -= sizeof(unsigned long);
1691 if (size <= sizeof(unsigned long))
1692 break;
1693 }
1694 }
1695
1696 }
b28a02de 1697 *addr++ = 0x87654321;
1da177e4
LT
1698}
1699#endif
1700
343e0d7a 1701static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1702{
3dafccf2
MS
1703 int size = obj_size(cachep);
1704 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1705
1706 memset(addr, val, size);
b28a02de 1707 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1708}
1709
1710static void dump_line(char *data, int offset, int limit)
1711{
1712 int i;
aa83aa40
DJ
1713 unsigned char error = 0;
1714 int bad_count = 0;
1715
1da177e4 1716 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1717 for (i = 0; i < limit; i++) {
1718 if (data[offset + i] != POISON_FREE) {
1719 error = data[offset + i];
1720 bad_count++;
1721 }
b28a02de 1722 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1723 }
1da177e4 1724 printk("\n");
aa83aa40
DJ
1725
1726 if (bad_count == 1) {
1727 error ^= POISON_FREE;
1728 if (!(error & (error - 1))) {
1729 printk(KERN_ERR "Single bit error detected. Probably "
1730 "bad RAM.\n");
1731#ifdef CONFIG_X86
1732 printk(KERN_ERR "Run memtest86+ or a similar memory "
1733 "test tool.\n");
1734#else
1735 printk(KERN_ERR "Run a memory test tool.\n");
1736#endif
1737 }
1738 }
1da177e4
LT
1739}
1740#endif
1741
1742#if DEBUG
1743
343e0d7a 1744static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1745{
1746 int i, size;
1747 char *realobj;
1748
1749 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1750 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1751 *dbg_redzone1(cachep, objp),
1752 *dbg_redzone2(cachep, objp));
1da177e4
LT
1753 }
1754
1755 if (cachep->flags & SLAB_STORE_USER) {
1756 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1757 *dbg_userword(cachep, objp));
1da177e4 1758 print_symbol("(%s)",
a737b3e2 1759 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1760 printk("\n");
1761 }
3dafccf2
MS
1762 realobj = (char *)objp + obj_offset(cachep);
1763 size = obj_size(cachep);
b28a02de 1764 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1765 int limit;
1766 limit = 16;
b28a02de
PE
1767 if (i + limit > size)
1768 limit = size - i;
1da177e4
LT
1769 dump_line(realobj, i, limit);
1770 }
1771}
1772
343e0d7a 1773static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1774{
1775 char *realobj;
1776 int size, i;
1777 int lines = 0;
1778
3dafccf2
MS
1779 realobj = (char *)objp + obj_offset(cachep);
1780 size = obj_size(cachep);
1da177e4 1781
b28a02de 1782 for (i = 0; i < size; i++) {
1da177e4 1783 char exp = POISON_FREE;
b28a02de 1784 if (i == size - 1)
1da177e4
LT
1785 exp = POISON_END;
1786 if (realobj[i] != exp) {
1787 int limit;
1788 /* Mismatch ! */
1789 /* Print header */
1790 if (lines == 0) {
b28a02de 1791 printk(KERN_ERR
e94a40c5
DH
1792 "Slab corruption: %s start=%p, len=%d\n",
1793 cachep->name, realobj, size);
1da177e4
LT
1794 print_objinfo(cachep, objp, 0);
1795 }
1796 /* Hexdump the affected line */
b28a02de 1797 i = (i / 16) * 16;
1da177e4 1798 limit = 16;
b28a02de
PE
1799 if (i + limit > size)
1800 limit = size - i;
1da177e4
LT
1801 dump_line(realobj, i, limit);
1802 i += 16;
1803 lines++;
1804 /* Limit to 5 lines */
1805 if (lines > 5)
1806 break;
1807 }
1808 }
1809 if (lines != 0) {
1810 /* Print some data about the neighboring objects, if they
1811 * exist:
1812 */
6ed5eb22 1813 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1814 unsigned int objnr;
1da177e4 1815
8fea4e96 1816 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1817 if (objnr) {
8fea4e96 1818 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1819 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1820 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1821 realobj, size);
1da177e4
LT
1822 print_objinfo(cachep, objp, 2);
1823 }
b28a02de 1824 if (objnr + 1 < cachep->num) {
8fea4e96 1825 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1826 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1827 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1828 realobj, size);
1da177e4
LT
1829 print_objinfo(cachep, objp, 2);
1830 }
1831 }
1832}
1833#endif
1834
12dd36fa 1835#if DEBUG
e79aec29 1836static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1837{
1da177e4
LT
1838 int i;
1839 for (i = 0; i < cachep->num; i++) {
8fea4e96 1840 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1841
1842 if (cachep->flags & SLAB_POISON) {
1843#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1844 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1845 OFF_SLAB(cachep))
b28a02de 1846 kernel_map_pages(virt_to_page(objp),
a737b3e2 1847 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1848 else
1849 check_poison_obj(cachep, objp);
1850#else
1851 check_poison_obj(cachep, objp);
1852#endif
1853 }
1854 if (cachep->flags & SLAB_RED_ZONE) {
1855 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1856 slab_error(cachep, "start of a freed object "
b28a02de 1857 "was overwritten");
1da177e4
LT
1858 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1859 slab_error(cachep, "end of a freed object "
b28a02de 1860 "was overwritten");
1da177e4 1861 }
1da177e4 1862 }
12dd36fa 1863}
1da177e4 1864#else
e79aec29 1865static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1866{
12dd36fa 1867}
1da177e4
LT
1868#endif
1869
911851e6
RD
1870/**
1871 * slab_destroy - destroy and release all objects in a slab
1872 * @cachep: cache pointer being destroyed
1873 * @slabp: slab pointer being destroyed
1874 *
12dd36fa 1875 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1876 * Before calling the slab must have been unlinked from the cache. The
1877 * cache-lock is not held/needed.
12dd36fa 1878 */
343e0d7a 1879static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1880{
1881 void *addr = slabp->s_mem - slabp->colouroff;
1882
e79aec29 1883 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1884 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1885 struct slab_rcu *slab_rcu;
1886
b28a02de 1887 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1888 slab_rcu->cachep = cachep;
1889 slab_rcu->addr = addr;
1890 call_rcu(&slab_rcu->head, kmem_rcu_free);
1891 } else {
1892 kmem_freepages(cachep, addr);
873623df
IM
1893 if (OFF_SLAB(cachep))
1894 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1895 }
1896}
1897
117f6eb1
CL
1898static void __kmem_cache_destroy(struct kmem_cache *cachep)
1899{
1900 int i;
1901 struct kmem_list3 *l3;
1902
1903 for_each_online_cpu(i)
1904 kfree(cachep->array[i]);
1905
1906 /* NUMA: free the list3 structures */
1907 for_each_online_node(i) {
1908 l3 = cachep->nodelists[i];
1909 if (l3) {
1910 kfree(l3->shared);
1911 free_alien_cache(l3->alien);
1912 kfree(l3);
1913 }
1914 }
1915 kmem_cache_free(&cache_cache, cachep);
1916}
1917
1918
4d268eba 1919/**
a70773dd
RD
1920 * calculate_slab_order - calculate size (page order) of slabs
1921 * @cachep: pointer to the cache that is being created
1922 * @size: size of objects to be created in this cache.
1923 * @align: required alignment for the objects.
1924 * @flags: slab allocation flags
1925 *
1926 * Also calculates the number of objects per slab.
4d268eba
PE
1927 *
1928 * This could be made much more intelligent. For now, try to avoid using
1929 * high order pages for slabs. When the gfp() functions are more friendly
1930 * towards high-order requests, this should be changed.
1931 */
a737b3e2 1932static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1933 size_t size, size_t align, unsigned long flags)
4d268eba 1934{
b1ab41c4 1935 unsigned long offslab_limit;
4d268eba 1936 size_t left_over = 0;
9888e6fa 1937 int gfporder;
4d268eba 1938
0aa817f0 1939 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1940 unsigned int num;
1941 size_t remainder;
1942
9888e6fa 1943 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1944 if (!num)
1945 continue;
9888e6fa 1946
b1ab41c4
IM
1947 if (flags & CFLGS_OFF_SLAB) {
1948 /*
1949 * Max number of objs-per-slab for caches which
1950 * use off-slab slabs. Needed to avoid a possible
1951 * looping condition in cache_grow().
1952 */
1953 offslab_limit = size - sizeof(struct slab);
1954 offslab_limit /= sizeof(kmem_bufctl_t);
1955
1956 if (num > offslab_limit)
1957 break;
1958 }
4d268eba 1959
9888e6fa 1960 /* Found something acceptable - save it away */
4d268eba 1961 cachep->num = num;
9888e6fa 1962 cachep->gfporder = gfporder;
4d268eba
PE
1963 left_over = remainder;
1964
f78bb8ad
LT
1965 /*
1966 * A VFS-reclaimable slab tends to have most allocations
1967 * as GFP_NOFS and we really don't want to have to be allocating
1968 * higher-order pages when we are unable to shrink dcache.
1969 */
1970 if (flags & SLAB_RECLAIM_ACCOUNT)
1971 break;
1972
4d268eba
PE
1973 /*
1974 * Large number of objects is good, but very large slabs are
1975 * currently bad for the gfp()s.
1976 */
9888e6fa 1977 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1978 break;
1979
9888e6fa
LT
1980 /*
1981 * Acceptable internal fragmentation?
1982 */
a737b3e2 1983 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1984 break;
1985 }
1986 return left_over;
1987}
1988
83b519e8 1989static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1990{
2ed3a4ef 1991 if (g_cpucache_up == FULL)
83b519e8 1992 return enable_cpucache(cachep, gfp);
2ed3a4ef 1993
f30cf7d1
PE
1994 if (g_cpucache_up == NONE) {
1995 /*
1996 * Note: the first kmem_cache_create must create the cache
1997 * that's used by kmalloc(24), otherwise the creation of
1998 * further caches will BUG().
1999 */
2000 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2001
2002 /*
2003 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2004 * the first cache, then we need to set up all its list3s,
2005 * otherwise the creation of further caches will BUG().
2006 */
2007 set_up_list3s(cachep, SIZE_AC);
2008 if (INDEX_AC == INDEX_L3)
2009 g_cpucache_up = PARTIAL_L3;
2010 else
2011 g_cpucache_up = PARTIAL_AC;
2012 } else {
2013 cachep->array[smp_processor_id()] =
83b519e8 2014 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2015
2016 if (g_cpucache_up == PARTIAL_AC) {
2017 set_up_list3s(cachep, SIZE_L3);
2018 g_cpucache_up = PARTIAL_L3;
2019 } else {
2020 int node;
556a169d 2021 for_each_online_node(node) {
f30cf7d1
PE
2022 cachep->nodelists[node] =
2023 kmalloc_node(sizeof(struct kmem_list3),
2024 GFP_KERNEL, node);
2025 BUG_ON(!cachep->nodelists[node]);
2026 kmem_list3_init(cachep->nodelists[node]);
2027 }
2028 }
2029 }
2030 cachep->nodelists[numa_node_id()]->next_reap =
2031 jiffies + REAPTIMEOUT_LIST3 +
2032 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2033
2034 cpu_cache_get(cachep)->avail = 0;
2035 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2036 cpu_cache_get(cachep)->batchcount = 1;
2037 cpu_cache_get(cachep)->touched = 0;
2038 cachep->batchcount = 1;
2039 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2040 return 0;
f30cf7d1
PE
2041}
2042
1da177e4
LT
2043/**
2044 * kmem_cache_create - Create a cache.
2045 * @name: A string which is used in /proc/slabinfo to identify this cache.
2046 * @size: The size of objects to be created in this cache.
2047 * @align: The required alignment for the objects.
2048 * @flags: SLAB flags
2049 * @ctor: A constructor for the objects.
1da177e4
LT
2050 *
2051 * Returns a ptr to the cache on success, NULL on failure.
2052 * Cannot be called within a int, but can be interrupted.
20c2df83 2053 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2054 *
2055 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2056 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2057 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2058 * therefore applications must manage it themselves.
a737b3e2 2059 *
1da177e4
LT
2060 * The flags are
2061 *
2062 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2063 * to catch references to uninitialised memory.
2064 *
2065 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2066 * for buffer overruns.
2067 *
1da177e4
LT
2068 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2069 * cacheline. This can be beneficial if you're counting cycles as closely
2070 * as davem.
2071 */
343e0d7a 2072struct kmem_cache *
1da177e4 2073kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2074 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2075{
2076 size_t left_over, slab_size, ralign;
7a7c381d 2077 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2078 gfp_t gfp;
1da177e4
LT
2079
2080 /*
2081 * Sanity checks... these are all serious usage bugs.
2082 */
a737b3e2 2083 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2084 size > KMALLOC_MAX_SIZE) {
d40cee24 2085 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2086 name);
b28a02de
PE
2087 BUG();
2088 }
1da177e4 2089
f0188f47 2090 /*
8f5be20b 2091 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2092 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2093 */
83b519e8
PE
2094 if (slab_is_available()) {
2095 get_online_cpus();
2096 mutex_lock(&cache_chain_mutex);
2097 }
4f12bb4f 2098
7a7c381d 2099 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2100 char tmp;
2101 int res;
2102
2103 /*
2104 * This happens when the module gets unloaded and doesn't
2105 * destroy its slab cache and no-one else reuses the vmalloc
2106 * area of the module. Print a warning.
2107 */
138ae663 2108 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2109 if (res) {
b4169525 2110 printk(KERN_ERR
2111 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2112 pc->buffer_size);
4f12bb4f
AM
2113 continue;
2114 }
2115
b28a02de 2116 if (!strcmp(pc->name, name)) {
b4169525 2117 printk(KERN_ERR
2118 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2119 dump_stack();
2120 goto oops;
2121 }
2122 }
2123
1da177e4
LT
2124#if DEBUG
2125 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2126#if FORCED_DEBUG
2127 /*
2128 * Enable redzoning and last user accounting, except for caches with
2129 * large objects, if the increased size would increase the object size
2130 * above the next power of two: caches with object sizes just above a
2131 * power of two have a significant amount of internal fragmentation.
2132 */
87a927c7
DW
2133 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2134 2 * sizeof(unsigned long long)))
b28a02de 2135 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2136 if (!(flags & SLAB_DESTROY_BY_RCU))
2137 flags |= SLAB_POISON;
2138#endif
2139 if (flags & SLAB_DESTROY_BY_RCU)
2140 BUG_ON(flags & SLAB_POISON);
2141#endif
1da177e4 2142 /*
a737b3e2
AM
2143 * Always checks flags, a caller might be expecting debug support which
2144 * isn't available.
1da177e4 2145 */
40094fa6 2146 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2147
a737b3e2
AM
2148 /*
2149 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2150 * unaligned accesses for some archs when redzoning is used, and makes
2151 * sure any on-slab bufctl's are also correctly aligned.
2152 */
b28a02de
PE
2153 if (size & (BYTES_PER_WORD - 1)) {
2154 size += (BYTES_PER_WORD - 1);
2155 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2156 }
2157
a737b3e2
AM
2158 /* calculate the final buffer alignment: */
2159
1da177e4
LT
2160 /* 1) arch recommendation: can be overridden for debug */
2161 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2162 /*
2163 * Default alignment: as specified by the arch code. Except if
2164 * an object is really small, then squeeze multiple objects into
2165 * one cacheline.
1da177e4
LT
2166 */
2167 ralign = cache_line_size();
b28a02de 2168 while (size <= ralign / 2)
1da177e4
LT
2169 ralign /= 2;
2170 } else {
2171 ralign = BYTES_PER_WORD;
2172 }
ca5f9703
PE
2173
2174 /*
87a927c7
DW
2175 * Redzoning and user store require word alignment or possibly larger.
2176 * Note this will be overridden by architecture or caller mandated
2177 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2178 */
87a927c7
DW
2179 if (flags & SLAB_STORE_USER)
2180 ralign = BYTES_PER_WORD;
2181
2182 if (flags & SLAB_RED_ZONE) {
2183 ralign = REDZONE_ALIGN;
2184 /* If redzoning, ensure that the second redzone is suitably
2185 * aligned, by adjusting the object size accordingly. */
2186 size += REDZONE_ALIGN - 1;
2187 size &= ~(REDZONE_ALIGN - 1);
2188 }
ca5f9703 2189
a44b56d3 2190 /* 2) arch mandated alignment */
1da177e4
LT
2191 if (ralign < ARCH_SLAB_MINALIGN) {
2192 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2193 }
a44b56d3 2194 /* 3) caller mandated alignment */
1da177e4
LT
2195 if (ralign < align) {
2196 ralign = align;
1da177e4 2197 }
a44b56d3 2198 /* disable debug if necessary */
b46b8f19 2199 if (ralign > __alignof__(unsigned long long))
a44b56d3 2200 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2201 /*
ca5f9703 2202 * 4) Store it.
1da177e4
LT
2203 */
2204 align = ralign;
2205
83b519e8
PE
2206 if (slab_is_available())
2207 gfp = GFP_KERNEL;
2208 else
2209 gfp = GFP_NOWAIT;
2210
1da177e4 2211 /* Get cache's description obj. */
83b519e8 2212 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2213 if (!cachep)
4f12bb4f 2214 goto oops;
1da177e4
LT
2215
2216#if DEBUG
3dafccf2 2217 cachep->obj_size = size;
1da177e4 2218
ca5f9703
PE
2219 /*
2220 * Both debugging options require word-alignment which is calculated
2221 * into align above.
2222 */
1da177e4 2223 if (flags & SLAB_RED_ZONE) {
1da177e4 2224 /* add space for red zone words */
b46b8f19
DW
2225 cachep->obj_offset += sizeof(unsigned long long);
2226 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2227 }
2228 if (flags & SLAB_STORE_USER) {
ca5f9703 2229 /* user store requires one word storage behind the end of
87a927c7
DW
2230 * the real object. But if the second red zone needs to be
2231 * aligned to 64 bits, we must allow that much space.
1da177e4 2232 */
87a927c7
DW
2233 if (flags & SLAB_RED_ZONE)
2234 size += REDZONE_ALIGN;
2235 else
2236 size += BYTES_PER_WORD;
1da177e4
LT
2237 }
2238#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2239 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2240 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2241 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2242 size = PAGE_SIZE;
2243 }
2244#endif
2245#endif
2246
e0a42726
IM
2247 /*
2248 * Determine if the slab management is 'on' or 'off' slab.
2249 * (bootstrapping cannot cope with offslab caches so don't do
2250 * it too early on.)
2251 */
2252 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2253 /*
2254 * Size is large, assume best to place the slab management obj
2255 * off-slab (should allow better packing of objs).
2256 */
2257 flags |= CFLGS_OFF_SLAB;
2258
2259 size = ALIGN(size, align);
2260
f78bb8ad 2261 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2262
2263 if (!cachep->num) {
b4169525 2264 printk(KERN_ERR
2265 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2266 kmem_cache_free(&cache_cache, cachep);
2267 cachep = NULL;
4f12bb4f 2268 goto oops;
1da177e4 2269 }
b28a02de
PE
2270 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2271 + sizeof(struct slab), align);
1da177e4
LT
2272
2273 /*
2274 * If the slab has been placed off-slab, and we have enough space then
2275 * move it on-slab. This is at the expense of any extra colouring.
2276 */
2277 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2278 flags &= ~CFLGS_OFF_SLAB;
2279 left_over -= slab_size;
2280 }
2281
2282 if (flags & CFLGS_OFF_SLAB) {
2283 /* really off slab. No need for manual alignment */
b28a02de
PE
2284 slab_size =
2285 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2286 }
2287
2288 cachep->colour_off = cache_line_size();
2289 /* Offset must be a multiple of the alignment. */
2290 if (cachep->colour_off < align)
2291 cachep->colour_off = align;
b28a02de 2292 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2293 cachep->slab_size = slab_size;
2294 cachep->flags = flags;
2295 cachep->gfpflags = 0;
4b51d669 2296 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2297 cachep->gfpflags |= GFP_DMA;
3dafccf2 2298 cachep->buffer_size = size;
6a2d7a95 2299 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2300
e5ac9c5a 2301 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2302 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2303 /*
2304 * This is a possibility for one of the malloc_sizes caches.
2305 * But since we go off slab only for object size greater than
2306 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2307 * this should not happen at all.
2308 * But leave a BUG_ON for some lucky dude.
2309 */
6cb8f913 2310 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2311 }
1da177e4 2312 cachep->ctor = ctor;
1da177e4
LT
2313 cachep->name = name;
2314
83b519e8 2315 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2316 __kmem_cache_destroy(cachep);
2317 cachep = NULL;
2318 goto oops;
2319 }
1da177e4 2320
1da177e4
LT
2321 /* cache setup completed, link it into the list */
2322 list_add(&cachep->next, &cache_chain);
a737b3e2 2323oops:
1da177e4
LT
2324 if (!cachep && (flags & SLAB_PANIC))
2325 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2326 name);
83b519e8
PE
2327 if (slab_is_available()) {
2328 mutex_unlock(&cache_chain_mutex);
2329 put_online_cpus();
2330 }
1da177e4
LT
2331 return cachep;
2332}
2333EXPORT_SYMBOL(kmem_cache_create);
2334
2335#if DEBUG
2336static void check_irq_off(void)
2337{
2338 BUG_ON(!irqs_disabled());
2339}
2340
2341static void check_irq_on(void)
2342{
2343 BUG_ON(irqs_disabled());
2344}
2345
343e0d7a 2346static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2347{
2348#ifdef CONFIG_SMP
2349 check_irq_off();
e498be7d 2350 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2351#endif
2352}
e498be7d 2353
343e0d7a 2354static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2355{
2356#ifdef CONFIG_SMP
2357 check_irq_off();
2358 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2359#endif
2360}
2361
1da177e4
LT
2362#else
2363#define check_irq_off() do { } while(0)
2364#define check_irq_on() do { } while(0)
2365#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2366#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2367#endif
2368
aab2207c
CL
2369static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2370 struct array_cache *ac,
2371 int force, int node);
2372
1da177e4
LT
2373static void do_drain(void *arg)
2374{
a737b3e2 2375 struct kmem_cache *cachep = arg;
1da177e4 2376 struct array_cache *ac;
ff69416e 2377 int node = numa_node_id();
1da177e4
LT
2378
2379 check_irq_off();
9a2dba4b 2380 ac = cpu_cache_get(cachep);
ff69416e
CL
2381 spin_lock(&cachep->nodelists[node]->list_lock);
2382 free_block(cachep, ac->entry, ac->avail, node);
2383 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2384 ac->avail = 0;
2385}
2386
343e0d7a 2387static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2388{
e498be7d
CL
2389 struct kmem_list3 *l3;
2390 int node;
2391
15c8b6c1 2392 on_each_cpu(do_drain, cachep, 1);
1da177e4 2393 check_irq_on();
b28a02de 2394 for_each_online_node(node) {
e498be7d 2395 l3 = cachep->nodelists[node];
a4523a8b
RD
2396 if (l3 && l3->alien)
2397 drain_alien_cache(cachep, l3->alien);
2398 }
2399
2400 for_each_online_node(node) {
2401 l3 = cachep->nodelists[node];
2402 if (l3)
aab2207c 2403 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2404 }
1da177e4
LT
2405}
2406
ed11d9eb
CL
2407/*
2408 * Remove slabs from the list of free slabs.
2409 * Specify the number of slabs to drain in tofree.
2410 *
2411 * Returns the actual number of slabs released.
2412 */
2413static int drain_freelist(struct kmem_cache *cache,
2414 struct kmem_list3 *l3, int tofree)
1da177e4 2415{
ed11d9eb
CL
2416 struct list_head *p;
2417 int nr_freed;
1da177e4 2418 struct slab *slabp;
1da177e4 2419
ed11d9eb
CL
2420 nr_freed = 0;
2421 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2422
ed11d9eb 2423 spin_lock_irq(&l3->list_lock);
e498be7d 2424 p = l3->slabs_free.prev;
ed11d9eb
CL
2425 if (p == &l3->slabs_free) {
2426 spin_unlock_irq(&l3->list_lock);
2427 goto out;
2428 }
1da177e4 2429
ed11d9eb 2430 slabp = list_entry(p, struct slab, list);
1da177e4 2431#if DEBUG
40094fa6 2432 BUG_ON(slabp->inuse);
1da177e4
LT
2433#endif
2434 list_del(&slabp->list);
ed11d9eb
CL
2435 /*
2436 * Safe to drop the lock. The slab is no longer linked
2437 * to the cache.
2438 */
2439 l3->free_objects -= cache->num;
e498be7d 2440 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2441 slab_destroy(cache, slabp);
2442 nr_freed++;
1da177e4 2443 }
ed11d9eb
CL
2444out:
2445 return nr_freed;
1da177e4
LT
2446}
2447
8f5be20b 2448/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2449static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2450{
2451 int ret = 0, i = 0;
2452 struct kmem_list3 *l3;
2453
2454 drain_cpu_caches(cachep);
2455
2456 check_irq_on();
2457 for_each_online_node(i) {
2458 l3 = cachep->nodelists[i];
ed11d9eb
CL
2459 if (!l3)
2460 continue;
2461
2462 drain_freelist(cachep, l3, l3->free_objects);
2463
2464 ret += !list_empty(&l3->slabs_full) ||
2465 !list_empty(&l3->slabs_partial);
e498be7d
CL
2466 }
2467 return (ret ? 1 : 0);
2468}
2469
1da177e4
LT
2470/**
2471 * kmem_cache_shrink - Shrink a cache.
2472 * @cachep: The cache to shrink.
2473 *
2474 * Releases as many slabs as possible for a cache.
2475 * To help debugging, a zero exit status indicates all slabs were released.
2476 */
343e0d7a 2477int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2478{
8f5be20b 2479 int ret;
40094fa6 2480 BUG_ON(!cachep || in_interrupt());
1da177e4 2481
95402b38 2482 get_online_cpus();
8f5be20b
RT
2483 mutex_lock(&cache_chain_mutex);
2484 ret = __cache_shrink(cachep);
2485 mutex_unlock(&cache_chain_mutex);
95402b38 2486 put_online_cpus();
8f5be20b 2487 return ret;
1da177e4
LT
2488}
2489EXPORT_SYMBOL(kmem_cache_shrink);
2490
2491/**
2492 * kmem_cache_destroy - delete a cache
2493 * @cachep: the cache to destroy
2494 *
72fd4a35 2495 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2496 *
2497 * It is expected this function will be called by a module when it is
2498 * unloaded. This will remove the cache completely, and avoid a duplicate
2499 * cache being allocated each time a module is loaded and unloaded, if the
2500 * module doesn't have persistent in-kernel storage across loads and unloads.
2501 *
2502 * The cache must be empty before calling this function.
2503 *
2504 * The caller must guarantee that noone will allocate memory from the cache
2505 * during the kmem_cache_destroy().
2506 */
133d205a 2507void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2508{
40094fa6 2509 BUG_ON(!cachep || in_interrupt());
1da177e4 2510
1da177e4 2511 /* Find the cache in the chain of caches. */
95402b38 2512 get_online_cpus();
fc0abb14 2513 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2514 /*
2515 * the chain is never empty, cache_cache is never destroyed
2516 */
2517 list_del(&cachep->next);
1da177e4
LT
2518 if (__cache_shrink(cachep)) {
2519 slab_error(cachep, "Can't free all objects");
b28a02de 2520 list_add(&cachep->next, &cache_chain);
fc0abb14 2521 mutex_unlock(&cache_chain_mutex);
95402b38 2522 put_online_cpus();
133d205a 2523 return;
1da177e4
LT
2524 }
2525
2526 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2527 synchronize_rcu();
1da177e4 2528
117f6eb1 2529 __kmem_cache_destroy(cachep);
8f5be20b 2530 mutex_unlock(&cache_chain_mutex);
95402b38 2531 put_online_cpus();
1da177e4
LT
2532}
2533EXPORT_SYMBOL(kmem_cache_destroy);
2534
e5ac9c5a
RT
2535/*
2536 * Get the memory for a slab management obj.
2537 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2538 * always come from malloc_sizes caches. The slab descriptor cannot
2539 * come from the same cache which is getting created because,
2540 * when we are searching for an appropriate cache for these
2541 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2542 * If we are creating a malloc_sizes cache here it would not be visible to
2543 * kmem_find_general_cachep till the initialization is complete.
2544 * Hence we cannot have slabp_cache same as the original cache.
2545 */
343e0d7a 2546static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2547 int colour_off, gfp_t local_flags,
2548 int nodeid)
1da177e4
LT
2549{
2550 struct slab *slabp;
b28a02de 2551
1da177e4
LT
2552 if (OFF_SLAB(cachep)) {
2553 /* Slab management obj is off-slab. */
5b74ada7 2554 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2555 local_flags, nodeid);
d5cff635
CM
2556 /*
2557 * If the first object in the slab is leaked (it's allocated
2558 * but no one has a reference to it), we want to make sure
2559 * kmemleak does not treat the ->s_mem pointer as a reference
2560 * to the object. Otherwise we will not report the leak.
2561 */
2562 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2563 sizeof(struct list_head), local_flags);
1da177e4
LT
2564 if (!slabp)
2565 return NULL;
2566 } else {
b28a02de 2567 slabp = objp + colour_off;
1da177e4
LT
2568 colour_off += cachep->slab_size;
2569 }
2570 slabp->inuse = 0;
2571 slabp->colouroff = colour_off;
b28a02de 2572 slabp->s_mem = objp + colour_off;
5b74ada7 2573 slabp->nodeid = nodeid;
e51bfd0a 2574 slabp->free = 0;
1da177e4
LT
2575 return slabp;
2576}
2577
2578static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2579{
b28a02de 2580 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2581}
2582
343e0d7a 2583static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2584 struct slab *slabp)
1da177e4
LT
2585{
2586 int i;
2587
2588 for (i = 0; i < cachep->num; i++) {
8fea4e96 2589 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2590#if DEBUG
2591 /* need to poison the objs? */
2592 if (cachep->flags & SLAB_POISON)
2593 poison_obj(cachep, objp, POISON_FREE);
2594 if (cachep->flags & SLAB_STORE_USER)
2595 *dbg_userword(cachep, objp) = NULL;
2596
2597 if (cachep->flags & SLAB_RED_ZONE) {
2598 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2599 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2600 }
2601 /*
a737b3e2
AM
2602 * Constructors are not allowed to allocate memory from the same
2603 * cache which they are a constructor for. Otherwise, deadlock.
2604 * They must also be threaded.
1da177e4
LT
2605 */
2606 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2607 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2608
2609 if (cachep->flags & SLAB_RED_ZONE) {
2610 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2611 slab_error(cachep, "constructor overwrote the"
b28a02de 2612 " end of an object");
1da177e4
LT
2613 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2614 slab_error(cachep, "constructor overwrote the"
b28a02de 2615 " start of an object");
1da177e4 2616 }
a737b3e2
AM
2617 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2618 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2619 kernel_map_pages(virt_to_page(objp),
3dafccf2 2620 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2621#else
2622 if (cachep->ctor)
51cc5068 2623 cachep->ctor(objp);
1da177e4 2624#endif
b28a02de 2625 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2626 }
b28a02de 2627 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2628}
2629
343e0d7a 2630static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2631{
4b51d669
CL
2632 if (CONFIG_ZONE_DMA_FLAG) {
2633 if (flags & GFP_DMA)
2634 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2635 else
2636 BUG_ON(cachep->gfpflags & GFP_DMA);
2637 }
1da177e4
LT
2638}
2639
a737b3e2
AM
2640static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2641 int nodeid)
78d382d7 2642{
8fea4e96 2643 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2644 kmem_bufctl_t next;
2645
2646 slabp->inuse++;
2647 next = slab_bufctl(slabp)[slabp->free];
2648#if DEBUG
2649 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2650 WARN_ON(slabp->nodeid != nodeid);
2651#endif
2652 slabp->free = next;
2653
2654 return objp;
2655}
2656
a737b3e2
AM
2657static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2658 void *objp, int nodeid)
78d382d7 2659{
8fea4e96 2660 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2661
2662#if DEBUG
2663 /* Verify that the slab belongs to the intended node */
2664 WARN_ON(slabp->nodeid != nodeid);
2665
871751e2 2666 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2667 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2668 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2669 BUG();
2670 }
2671#endif
2672 slab_bufctl(slabp)[objnr] = slabp->free;
2673 slabp->free = objnr;
2674 slabp->inuse--;
2675}
2676
4776874f
PE
2677/*
2678 * Map pages beginning at addr to the given cache and slab. This is required
2679 * for the slab allocator to be able to lookup the cache and slab of a
2680 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2681 */
2682static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2683 void *addr)
1da177e4 2684{
4776874f 2685 int nr_pages;
1da177e4
LT
2686 struct page *page;
2687
4776874f 2688 page = virt_to_page(addr);
84097518 2689
4776874f 2690 nr_pages = 1;
84097518 2691 if (likely(!PageCompound(page)))
4776874f
PE
2692 nr_pages <<= cache->gfporder;
2693
1da177e4 2694 do {
4776874f
PE
2695 page_set_cache(page, cache);
2696 page_set_slab(page, slab);
1da177e4 2697 page++;
4776874f 2698 } while (--nr_pages);
1da177e4
LT
2699}
2700
2701/*
2702 * Grow (by 1) the number of slabs within a cache. This is called by
2703 * kmem_cache_alloc() when there are no active objs left in a cache.
2704 */
3c517a61
CL
2705static int cache_grow(struct kmem_cache *cachep,
2706 gfp_t flags, int nodeid, void *objp)
1da177e4 2707{
b28a02de 2708 struct slab *slabp;
b28a02de
PE
2709 size_t offset;
2710 gfp_t local_flags;
e498be7d 2711 struct kmem_list3 *l3;
1da177e4 2712
a737b3e2
AM
2713 /*
2714 * Be lazy and only check for valid flags here, keeping it out of the
2715 * critical path in kmem_cache_alloc().
1da177e4 2716 */
6cb06229
CL
2717 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2718 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2719
2e1217cf 2720 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2721 check_irq_off();
2e1217cf
RT
2722 l3 = cachep->nodelists[nodeid];
2723 spin_lock(&l3->list_lock);
1da177e4
LT
2724
2725 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2726 offset = l3->colour_next;
2727 l3->colour_next++;
2728 if (l3->colour_next >= cachep->colour)
2729 l3->colour_next = 0;
2730 spin_unlock(&l3->list_lock);
1da177e4 2731
2e1217cf 2732 offset *= cachep->colour_off;
1da177e4
LT
2733
2734 if (local_flags & __GFP_WAIT)
2735 local_irq_enable();
2736
2737 /*
2738 * The test for missing atomic flag is performed here, rather than
2739 * the more obvious place, simply to reduce the critical path length
2740 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2741 * will eventually be caught here (where it matters).
2742 */
2743 kmem_flagcheck(cachep, flags);
2744
a737b3e2
AM
2745 /*
2746 * Get mem for the objs. Attempt to allocate a physical page from
2747 * 'nodeid'.
e498be7d 2748 */
3c517a61 2749 if (!objp)
b8c1c5da 2750 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2751 if (!objp)
1da177e4
LT
2752 goto failed;
2753
2754 /* Get slab management. */
3c517a61 2755 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2756 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2757 if (!slabp)
1da177e4
LT
2758 goto opps1;
2759
4776874f 2760 slab_map_pages(cachep, slabp, objp);
1da177e4 2761
a35afb83 2762 cache_init_objs(cachep, slabp);
1da177e4
LT
2763
2764 if (local_flags & __GFP_WAIT)
2765 local_irq_disable();
2766 check_irq_off();
e498be7d 2767 spin_lock(&l3->list_lock);
1da177e4
LT
2768
2769 /* Make slab active. */
e498be7d 2770 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2771 STATS_INC_GROWN(cachep);
e498be7d
CL
2772 l3->free_objects += cachep->num;
2773 spin_unlock(&l3->list_lock);
1da177e4 2774 return 1;
a737b3e2 2775opps1:
1da177e4 2776 kmem_freepages(cachep, objp);
a737b3e2 2777failed:
1da177e4
LT
2778 if (local_flags & __GFP_WAIT)
2779 local_irq_disable();
2780 return 0;
2781}
2782
2783#if DEBUG
2784
2785/*
2786 * Perform extra freeing checks:
2787 * - detect bad pointers.
2788 * - POISON/RED_ZONE checking
1da177e4
LT
2789 */
2790static void kfree_debugcheck(const void *objp)
2791{
1da177e4
LT
2792 if (!virt_addr_valid(objp)) {
2793 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2794 (unsigned long)objp);
2795 BUG();
1da177e4 2796 }
1da177e4
LT
2797}
2798
58ce1fd5
PE
2799static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2800{
b46b8f19 2801 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2802
2803 redzone1 = *dbg_redzone1(cache, obj);
2804 redzone2 = *dbg_redzone2(cache, obj);
2805
2806 /*
2807 * Redzone is ok.
2808 */
2809 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2810 return;
2811
2812 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2813 slab_error(cache, "double free detected");
2814 else
2815 slab_error(cache, "memory outside object was overwritten");
2816
b46b8f19 2817 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2818 obj, redzone1, redzone2);
2819}
2820
343e0d7a 2821static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2822 void *caller)
1da177e4
LT
2823{
2824 struct page *page;
2825 unsigned int objnr;
2826 struct slab *slabp;
2827
80cbd911
MW
2828 BUG_ON(virt_to_cache(objp) != cachep);
2829
3dafccf2 2830 objp -= obj_offset(cachep);
1da177e4 2831 kfree_debugcheck(objp);
b49af68f 2832 page = virt_to_head_page(objp);
1da177e4 2833
065d41cb 2834 slabp = page_get_slab(page);
1da177e4
LT
2835
2836 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2837 verify_redzone_free(cachep, objp);
1da177e4
LT
2838 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2839 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2840 }
2841 if (cachep->flags & SLAB_STORE_USER)
2842 *dbg_userword(cachep, objp) = caller;
2843
8fea4e96 2844 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2845
2846 BUG_ON(objnr >= cachep->num);
8fea4e96 2847 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2848
871751e2
AV
2849#ifdef CONFIG_DEBUG_SLAB_LEAK
2850 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2851#endif
1da177e4
LT
2852 if (cachep->flags & SLAB_POISON) {
2853#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2854 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2855 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2856 kernel_map_pages(virt_to_page(objp),
3dafccf2 2857 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2858 } else {
2859 poison_obj(cachep, objp, POISON_FREE);
2860 }
2861#else
2862 poison_obj(cachep, objp, POISON_FREE);
2863#endif
2864 }
2865 return objp;
2866}
2867
343e0d7a 2868static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2869{
2870 kmem_bufctl_t i;
2871 int entries = 0;
b28a02de 2872
1da177e4
LT
2873 /* Check slab's freelist to see if this obj is there. */
2874 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2875 entries++;
2876 if (entries > cachep->num || i >= cachep->num)
2877 goto bad;
2878 }
2879 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2880bad:
2881 printk(KERN_ERR "slab: Internal list corruption detected in "
2882 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2883 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2884 for (i = 0;
264132bc 2885 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2886 i++) {
a737b3e2 2887 if (i % 16 == 0)
1da177e4 2888 printk("\n%03x:", i);
b28a02de 2889 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2890 }
2891 printk("\n");
2892 BUG();
2893 }
2894}
2895#else
2896#define kfree_debugcheck(x) do { } while(0)
2897#define cache_free_debugcheck(x,objp,z) (objp)
2898#define check_slabp(x,y) do { } while(0)
2899#endif
2900
343e0d7a 2901static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2902{
2903 int batchcount;
2904 struct kmem_list3 *l3;
2905 struct array_cache *ac;
1ca4cb24
PE
2906 int node;
2907
6d2144d3 2908retry:
1da177e4 2909 check_irq_off();
6d2144d3 2910 node = numa_node_id();
9a2dba4b 2911 ac = cpu_cache_get(cachep);
1da177e4
LT
2912 batchcount = ac->batchcount;
2913 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2914 /*
2915 * If there was little recent activity on this cache, then
2916 * perform only a partial refill. Otherwise we could generate
2917 * refill bouncing.
1da177e4
LT
2918 */
2919 batchcount = BATCHREFILL_LIMIT;
2920 }
1ca4cb24 2921 l3 = cachep->nodelists[node];
e498be7d
CL
2922
2923 BUG_ON(ac->avail > 0 || !l3);
2924 spin_lock(&l3->list_lock);
1da177e4 2925
3ded175a
CL
2926 /* See if we can refill from the shared array */
2927 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2928 goto alloc_done;
2929
1da177e4
LT
2930 while (batchcount > 0) {
2931 struct list_head *entry;
2932 struct slab *slabp;
2933 /* Get slab alloc is to come from. */
2934 entry = l3->slabs_partial.next;
2935 if (entry == &l3->slabs_partial) {
2936 l3->free_touched = 1;
2937 entry = l3->slabs_free.next;
2938 if (entry == &l3->slabs_free)
2939 goto must_grow;
2940 }
2941
2942 slabp = list_entry(entry, struct slab, list);
2943 check_slabp(cachep, slabp);
2944 check_spinlock_acquired(cachep);
714b8171
PE
2945
2946 /*
2947 * The slab was either on partial or free list so
2948 * there must be at least one object available for
2949 * allocation.
2950 */
249b9f33 2951 BUG_ON(slabp->inuse >= cachep->num);
714b8171 2952
1da177e4 2953 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2954 STATS_INC_ALLOCED(cachep);
2955 STATS_INC_ACTIVE(cachep);
2956 STATS_SET_HIGH(cachep);
2957
78d382d7 2958 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2959 node);
1da177e4
LT
2960 }
2961 check_slabp(cachep, slabp);
2962
2963 /* move slabp to correct slabp list: */
2964 list_del(&slabp->list);
2965 if (slabp->free == BUFCTL_END)
2966 list_add(&slabp->list, &l3->slabs_full);
2967 else
2968 list_add(&slabp->list, &l3->slabs_partial);
2969 }
2970
a737b3e2 2971must_grow:
1da177e4 2972 l3->free_objects -= ac->avail;
a737b3e2 2973alloc_done:
e498be7d 2974 spin_unlock(&l3->list_lock);
1da177e4
LT
2975
2976 if (unlikely(!ac->avail)) {
2977 int x;
3c517a61 2978 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2979
a737b3e2 2980 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2981 ac = cpu_cache_get(cachep);
a737b3e2 2982 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2983 return NULL;
2984
a737b3e2 2985 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2986 goto retry;
2987 }
2988 ac->touched = 1;
e498be7d 2989 return ac->entry[--ac->avail];
1da177e4
LT
2990}
2991
a737b3e2
AM
2992static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2993 gfp_t flags)
1da177e4
LT
2994{
2995 might_sleep_if(flags & __GFP_WAIT);
2996#if DEBUG
2997 kmem_flagcheck(cachep, flags);
2998#endif
2999}
3000
3001#if DEBUG
a737b3e2
AM
3002static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3003 gfp_t flags, void *objp, void *caller)
1da177e4 3004{
b28a02de 3005 if (!objp)
1da177e4 3006 return objp;
b28a02de 3007 if (cachep->flags & SLAB_POISON) {
1da177e4 3008#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3009 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3010 kernel_map_pages(virt_to_page(objp),
3dafccf2 3011 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3012 else
3013 check_poison_obj(cachep, objp);
3014#else
3015 check_poison_obj(cachep, objp);
3016#endif
3017 poison_obj(cachep, objp, POISON_INUSE);
3018 }
3019 if (cachep->flags & SLAB_STORE_USER)
3020 *dbg_userword(cachep, objp) = caller;
3021
3022 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3023 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3024 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3025 slab_error(cachep, "double free, or memory outside"
3026 " object was overwritten");
b28a02de 3027 printk(KERN_ERR
b46b8f19 3028 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3029 objp, *dbg_redzone1(cachep, objp),
3030 *dbg_redzone2(cachep, objp));
1da177e4
LT
3031 }
3032 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3033 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3034 }
871751e2
AV
3035#ifdef CONFIG_DEBUG_SLAB_LEAK
3036 {
3037 struct slab *slabp;
3038 unsigned objnr;
3039
b49af68f 3040 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3041 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3042 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3043 }
3044#endif
3dafccf2 3045 objp += obj_offset(cachep);
4f104934 3046 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3047 cachep->ctor(objp);
a44b56d3
KH
3048#if ARCH_SLAB_MINALIGN
3049 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3050 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3051 objp, ARCH_SLAB_MINALIGN);
3052 }
3053#endif
1da177e4
LT
3054 return objp;
3055}
3056#else
3057#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3058#endif
3059
773ff60e 3060static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3061{
3062 if (cachep == &cache_cache)
773ff60e 3063 return false;
8a8b6502 3064
773ff60e 3065 return should_failslab(obj_size(cachep), flags);
8a8b6502
AM
3066}
3067
343e0d7a 3068static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3069{
b28a02de 3070 void *objp;
1da177e4
LT
3071 struct array_cache *ac;
3072
5c382300 3073 check_irq_off();
8a8b6502 3074
9a2dba4b 3075 ac = cpu_cache_get(cachep);
1da177e4
LT
3076 if (likely(ac->avail)) {
3077 STATS_INC_ALLOCHIT(cachep);
3078 ac->touched = 1;
e498be7d 3079 objp = ac->entry[--ac->avail];
1da177e4
LT
3080 } else {
3081 STATS_INC_ALLOCMISS(cachep);
3082 objp = cache_alloc_refill(cachep, flags);
3083 }
d5cff635
CM
3084 /*
3085 * To avoid a false negative, if an object that is in one of the
3086 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3087 * treat the array pointers as a reference to the object.
3088 */
3089 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3090 return objp;
3091}
3092
e498be7d 3093#ifdef CONFIG_NUMA
c61afb18 3094/*
b2455396 3095 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3096 *
3097 * If we are in_interrupt, then process context, including cpusets and
3098 * mempolicy, may not apply and should not be used for allocation policy.
3099 */
3100static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3101{
3102 int nid_alloc, nid_here;
3103
765c4507 3104 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3105 return NULL;
3106 nid_alloc = nid_here = numa_node_id();
3107 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3108 nid_alloc = cpuset_mem_spread_node();
3109 else if (current->mempolicy)
3110 nid_alloc = slab_node(current->mempolicy);
3111 if (nid_alloc != nid_here)
8b98c169 3112 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3113 return NULL;
3114}
3115
765c4507
CL
3116/*
3117 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3118 * certain node and fall back is permitted. First we scan all the
3119 * available nodelists for available objects. If that fails then we
3120 * perform an allocation without specifying a node. This allows the page
3121 * allocator to do its reclaim / fallback magic. We then insert the
3122 * slab into the proper nodelist and then allocate from it.
765c4507 3123 */
8c8cc2c1 3124static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3125{
8c8cc2c1
PE
3126 struct zonelist *zonelist;
3127 gfp_t local_flags;
dd1a239f 3128 struct zoneref *z;
54a6eb5c
MG
3129 struct zone *zone;
3130 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3131 void *obj = NULL;
3c517a61 3132 int nid;
8c8cc2c1
PE
3133
3134 if (flags & __GFP_THISNODE)
3135 return NULL;
3136
0e88460d 3137 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3138 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3139
3c517a61
CL
3140retry:
3141 /*
3142 * Look through allowed nodes for objects available
3143 * from existing per node queues.
3144 */
54a6eb5c
MG
3145 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3146 nid = zone_to_nid(zone);
aedb0eb1 3147
54a6eb5c 3148 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3149 cache->nodelists[nid] &&
481c5346 3150 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3151 obj = ____cache_alloc_node(cache,
3152 flags | GFP_THISNODE, nid);
481c5346
CL
3153 if (obj)
3154 break;
3155 }
3c517a61
CL
3156 }
3157
cfce6604 3158 if (!obj) {
3c517a61
CL
3159 /*
3160 * This allocation will be performed within the constraints
3161 * of the current cpuset / memory policy requirements.
3162 * We may trigger various forms of reclaim on the allowed
3163 * set and go into memory reserves if necessary.
3164 */
dd47ea75
CL
3165 if (local_flags & __GFP_WAIT)
3166 local_irq_enable();
3167 kmem_flagcheck(cache, flags);
9ac33b2b 3168 obj = kmem_getpages(cache, local_flags, -1);
dd47ea75
CL
3169 if (local_flags & __GFP_WAIT)
3170 local_irq_disable();
3c517a61
CL
3171 if (obj) {
3172 /*
3173 * Insert into the appropriate per node queues
3174 */
3175 nid = page_to_nid(virt_to_page(obj));
3176 if (cache_grow(cache, flags, nid, obj)) {
3177 obj = ____cache_alloc_node(cache,
3178 flags | GFP_THISNODE, nid);
3179 if (!obj)
3180 /*
3181 * Another processor may allocate the
3182 * objects in the slab since we are
3183 * not holding any locks.
3184 */
3185 goto retry;
3186 } else {
b6a60451 3187 /* cache_grow already freed obj */
3c517a61
CL
3188 obj = NULL;
3189 }
3190 }
aedb0eb1 3191 }
765c4507
CL
3192 return obj;
3193}
3194
e498be7d
CL
3195/*
3196 * A interface to enable slab creation on nodeid
1da177e4 3197 */
8b98c169 3198static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3199 int nodeid)
e498be7d
CL
3200{
3201 struct list_head *entry;
b28a02de
PE
3202 struct slab *slabp;
3203 struct kmem_list3 *l3;
3204 void *obj;
b28a02de
PE
3205 int x;
3206
3207 l3 = cachep->nodelists[nodeid];
3208 BUG_ON(!l3);
3209
a737b3e2 3210retry:
ca3b9b91 3211 check_irq_off();
b28a02de
PE
3212 spin_lock(&l3->list_lock);
3213 entry = l3->slabs_partial.next;
3214 if (entry == &l3->slabs_partial) {
3215 l3->free_touched = 1;
3216 entry = l3->slabs_free.next;
3217 if (entry == &l3->slabs_free)
3218 goto must_grow;
3219 }
3220
3221 slabp = list_entry(entry, struct slab, list);
3222 check_spinlock_acquired_node(cachep, nodeid);
3223 check_slabp(cachep, slabp);
3224
3225 STATS_INC_NODEALLOCS(cachep);
3226 STATS_INC_ACTIVE(cachep);
3227 STATS_SET_HIGH(cachep);
3228
3229 BUG_ON(slabp->inuse == cachep->num);
3230
78d382d7 3231 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3232 check_slabp(cachep, slabp);
3233 l3->free_objects--;
3234 /* move slabp to correct slabp list: */
3235 list_del(&slabp->list);
3236
a737b3e2 3237 if (slabp->free == BUFCTL_END)
b28a02de 3238 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3239 else
b28a02de 3240 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3241
b28a02de
PE
3242 spin_unlock(&l3->list_lock);
3243 goto done;
e498be7d 3244
a737b3e2 3245must_grow:
b28a02de 3246 spin_unlock(&l3->list_lock);
3c517a61 3247 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3248 if (x)
3249 goto retry;
1da177e4 3250
8c8cc2c1 3251 return fallback_alloc(cachep, flags);
e498be7d 3252
a737b3e2 3253done:
b28a02de 3254 return obj;
e498be7d 3255}
8c8cc2c1
PE
3256
3257/**
3258 * kmem_cache_alloc_node - Allocate an object on the specified node
3259 * @cachep: The cache to allocate from.
3260 * @flags: See kmalloc().
3261 * @nodeid: node number of the target node.
3262 * @caller: return address of caller, used for debug information
3263 *
3264 * Identical to kmem_cache_alloc but it will allocate memory on the given
3265 * node, which can improve the performance for cpu bound structures.
3266 *
3267 * Fallback to other node is possible if __GFP_THISNODE is not set.
3268 */
3269static __always_inline void *
3270__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3271 void *caller)
3272{
3273 unsigned long save_flags;
3274 void *ptr;
3275
cf40bd16
NP
3276 lockdep_trace_alloc(flags);
3277
773ff60e 3278 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3279 return NULL;
3280
8c8cc2c1
PE
3281 cache_alloc_debugcheck_before(cachep, flags);
3282 local_irq_save(save_flags);
3283
3284 if (unlikely(nodeid == -1))
3285 nodeid = numa_node_id();
3286
3287 if (unlikely(!cachep->nodelists[nodeid])) {
3288 /* Node not bootstrapped yet */
3289 ptr = fallback_alloc(cachep, flags);
3290 goto out;
3291 }
3292
3293 if (nodeid == numa_node_id()) {
3294 /*
3295 * Use the locally cached objects if possible.
3296 * However ____cache_alloc does not allow fallback
3297 * to other nodes. It may fail while we still have
3298 * objects on other nodes available.
3299 */
3300 ptr = ____cache_alloc(cachep, flags);
3301 if (ptr)
3302 goto out;
3303 }
3304 /* ___cache_alloc_node can fall back to other nodes */
3305 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3306 out:
3307 local_irq_restore(save_flags);
3308 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3309 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3310 flags);
8c8cc2c1 3311
d07dbea4
CL
3312 if (unlikely((flags & __GFP_ZERO) && ptr))
3313 memset(ptr, 0, obj_size(cachep));
3314
8c8cc2c1
PE
3315 return ptr;
3316}
3317
3318static __always_inline void *
3319__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3320{
3321 void *objp;
3322
3323 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3324 objp = alternate_node_alloc(cache, flags);
3325 if (objp)
3326 goto out;
3327 }
3328 objp = ____cache_alloc(cache, flags);
3329
3330 /*
3331 * We may just have run out of memory on the local node.
3332 * ____cache_alloc_node() knows how to locate memory on other nodes
3333 */
3334 if (!objp)
3335 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3336
3337 out:
3338 return objp;
3339}
3340#else
3341
3342static __always_inline void *
3343__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3344{
3345 return ____cache_alloc(cachep, flags);
3346}
3347
3348#endif /* CONFIG_NUMA */
3349
3350static __always_inline void *
3351__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3352{
3353 unsigned long save_flags;
3354 void *objp;
3355
cf40bd16
NP
3356 lockdep_trace_alloc(flags);
3357
773ff60e 3358 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3359 return NULL;
3360
8c8cc2c1
PE
3361 cache_alloc_debugcheck_before(cachep, flags);
3362 local_irq_save(save_flags);
3363 objp = __do_cache_alloc(cachep, flags);
3364 local_irq_restore(save_flags);
3365 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3366 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3367 flags);
8c8cc2c1
PE
3368 prefetchw(objp);
3369
d07dbea4
CL
3370 if (unlikely((flags & __GFP_ZERO) && objp))
3371 memset(objp, 0, obj_size(cachep));
3372
8c8cc2c1
PE
3373 return objp;
3374}
e498be7d
CL
3375
3376/*
3377 * Caller needs to acquire correct kmem_list's list_lock
3378 */
343e0d7a 3379static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3380 int node)
1da177e4
LT
3381{
3382 int i;
e498be7d 3383 struct kmem_list3 *l3;
1da177e4
LT
3384
3385 for (i = 0; i < nr_objects; i++) {
3386 void *objp = objpp[i];
3387 struct slab *slabp;
1da177e4 3388
6ed5eb22 3389 slabp = virt_to_slab(objp);
ff69416e 3390 l3 = cachep->nodelists[node];
1da177e4 3391 list_del(&slabp->list);
ff69416e 3392 check_spinlock_acquired_node(cachep, node);
1da177e4 3393 check_slabp(cachep, slabp);
78d382d7 3394 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3395 STATS_DEC_ACTIVE(cachep);
e498be7d 3396 l3->free_objects++;
1da177e4
LT
3397 check_slabp(cachep, slabp);
3398
3399 /* fixup slab chains */
3400 if (slabp->inuse == 0) {
e498be7d
CL
3401 if (l3->free_objects > l3->free_limit) {
3402 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3403 /* No need to drop any previously held
3404 * lock here, even if we have a off-slab slab
3405 * descriptor it is guaranteed to come from
3406 * a different cache, refer to comments before
3407 * alloc_slabmgmt.
3408 */
1da177e4
LT
3409 slab_destroy(cachep, slabp);
3410 } else {
e498be7d 3411 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3412 }
3413 } else {
3414 /* Unconditionally move a slab to the end of the
3415 * partial list on free - maximum time for the
3416 * other objects to be freed, too.
3417 */
e498be7d 3418 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3419 }
3420 }
3421}
3422
343e0d7a 3423static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3424{
3425 int batchcount;
e498be7d 3426 struct kmem_list3 *l3;
ff69416e 3427 int node = numa_node_id();
1da177e4
LT
3428
3429 batchcount = ac->batchcount;
3430#if DEBUG
3431 BUG_ON(!batchcount || batchcount > ac->avail);
3432#endif
3433 check_irq_off();
ff69416e 3434 l3 = cachep->nodelists[node];
873623df 3435 spin_lock(&l3->list_lock);
e498be7d
CL
3436 if (l3->shared) {
3437 struct array_cache *shared_array = l3->shared;
b28a02de 3438 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3439 if (max) {
3440 if (batchcount > max)
3441 batchcount = max;
e498be7d 3442 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3443 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3444 shared_array->avail += batchcount;
3445 goto free_done;
3446 }
3447 }
3448
ff69416e 3449 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3450free_done:
1da177e4
LT
3451#if STATS
3452 {
3453 int i = 0;
3454 struct list_head *p;
3455
e498be7d
CL
3456 p = l3->slabs_free.next;
3457 while (p != &(l3->slabs_free)) {
1da177e4
LT
3458 struct slab *slabp;
3459
3460 slabp = list_entry(p, struct slab, list);
3461 BUG_ON(slabp->inuse);
3462
3463 i++;
3464 p = p->next;
3465 }
3466 STATS_SET_FREEABLE(cachep, i);
3467 }
3468#endif
e498be7d 3469 spin_unlock(&l3->list_lock);
1da177e4 3470 ac->avail -= batchcount;
a737b3e2 3471 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3472}
3473
3474/*
a737b3e2
AM
3475 * Release an obj back to its cache. If the obj has a constructed state, it must
3476 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3477 */
873623df 3478static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3479{
9a2dba4b 3480 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3481
3482 check_irq_off();
d5cff635 3483 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3484 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3485
1807a1aa
SS
3486 /*
3487 * Skip calling cache_free_alien() when the platform is not numa.
3488 * This will avoid cache misses that happen while accessing slabp (which
3489 * is per page memory reference) to get nodeid. Instead use a global
3490 * variable to skip the call, which is mostly likely to be present in
3491 * the cache.
3492 */
3493 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3494 return;
3495
1da177e4
LT
3496 if (likely(ac->avail < ac->limit)) {
3497 STATS_INC_FREEHIT(cachep);
e498be7d 3498 ac->entry[ac->avail++] = objp;
1da177e4
LT
3499 return;
3500 } else {
3501 STATS_INC_FREEMISS(cachep);
3502 cache_flusharray(cachep, ac);
e498be7d 3503 ac->entry[ac->avail++] = objp;
1da177e4
LT
3504 }
3505}
3506
3507/**
3508 * kmem_cache_alloc - Allocate an object
3509 * @cachep: The cache to allocate from.
3510 * @flags: See kmalloc().
3511 *
3512 * Allocate an object from this cache. The flags are only relevant
3513 * if the cache has no available objects.
3514 */
343e0d7a 3515void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3516{
36555751
EGM
3517 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3518
ca2b84cb
EGM
3519 trace_kmem_cache_alloc(_RET_IP_, ret,
3520 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3521
3522 return ret;
1da177e4
LT
3523}
3524EXPORT_SYMBOL(kmem_cache_alloc);
3525
36555751
EGM
3526#ifdef CONFIG_KMEMTRACE
3527void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3528{
3529 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3530}
3531EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3532#endif
3533
1da177e4 3534/**
7682486b 3535 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3536 * @cachep: the cache we're checking against
3537 * @ptr: pointer to validate
3538 *
7682486b 3539 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3540 * it is _not_ a guarantee that the pointer is actually
3541 * part of the slab cache in question, but it at least
3542 * validates that the pointer can be dereferenced and
3543 * looks half-way sane.
3544 *
3545 * Currently only used for dentry validation.
3546 */
b7f869a2 3547int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3548{
b28a02de 3549 unsigned long addr = (unsigned long)ptr;
1da177e4 3550 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3551 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3552 unsigned long size = cachep->buffer_size;
1da177e4
LT
3553 struct page *page;
3554
3555 if (unlikely(addr < min_addr))
3556 goto out;
3557 if (unlikely(addr > (unsigned long)high_memory - size))
3558 goto out;
3559 if (unlikely(addr & align_mask))
3560 goto out;
3561 if (unlikely(!kern_addr_valid(addr)))
3562 goto out;
3563 if (unlikely(!kern_addr_valid(addr + size - 1)))
3564 goto out;
3565 page = virt_to_page(ptr);
3566 if (unlikely(!PageSlab(page)))
3567 goto out;
065d41cb 3568 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3569 goto out;
3570 return 1;
a737b3e2 3571out:
1da177e4
LT
3572 return 0;
3573}
3574
3575#ifdef CONFIG_NUMA
8b98c169
CH
3576void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3577{
36555751
EGM
3578 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3579 __builtin_return_address(0));
3580
ca2b84cb
EGM
3581 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3582 obj_size(cachep), cachep->buffer_size,
3583 flags, nodeid);
36555751
EGM
3584
3585 return ret;
8b98c169 3586}
1da177e4
LT
3587EXPORT_SYMBOL(kmem_cache_alloc_node);
3588
36555751
EGM
3589#ifdef CONFIG_KMEMTRACE
3590void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3591 gfp_t flags,
3592 int nodeid)
3593{
3594 return __cache_alloc_node(cachep, flags, nodeid,
3595 __builtin_return_address(0));
3596}
3597EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3598#endif
3599
8b98c169
CH
3600static __always_inline void *
3601__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3602{
343e0d7a 3603 struct kmem_cache *cachep;
36555751 3604 void *ret;
97e2bde4
MS
3605
3606 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3607 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3608 return cachep;
36555751
EGM
3609 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3610
ca2b84cb
EGM
3611 trace_kmalloc_node((unsigned long) caller, ret,
3612 size, cachep->buffer_size, flags, node);
36555751
EGM
3613
3614 return ret;
97e2bde4 3615}
8b98c169 3616
36555751 3617#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
8b98c169
CH
3618void *__kmalloc_node(size_t size, gfp_t flags, int node)
3619{
3620 return __do_kmalloc_node(size, flags, node,
3621 __builtin_return_address(0));
3622}
dbe5e69d 3623EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3624
3625void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3626 int node, unsigned long caller)
8b98c169 3627{
ce71e27c 3628 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3629}
3630EXPORT_SYMBOL(__kmalloc_node_track_caller);
3631#else
3632void *__kmalloc_node(size_t size, gfp_t flags, int node)
3633{
3634 return __do_kmalloc_node(size, flags, node, NULL);
3635}
3636EXPORT_SYMBOL(__kmalloc_node);
3637#endif /* CONFIG_DEBUG_SLAB */
3638#endif /* CONFIG_NUMA */
1da177e4
LT
3639
3640/**
800590f5 3641 * __do_kmalloc - allocate memory
1da177e4 3642 * @size: how many bytes of memory are required.
800590f5 3643 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3644 * @caller: function caller for debug tracking of the caller
1da177e4 3645 */
7fd6b141
PE
3646static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3647 void *caller)
1da177e4 3648{
343e0d7a 3649 struct kmem_cache *cachep;
36555751 3650 void *ret;
1da177e4 3651
97e2bde4
MS
3652 /* If you want to save a few bytes .text space: replace
3653 * __ with kmem_.
3654 * Then kmalloc uses the uninlined functions instead of the inline
3655 * functions.
3656 */
3657 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3658 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3659 return cachep;
36555751
EGM
3660 ret = __cache_alloc(cachep, flags, caller);
3661
ca2b84cb
EGM
3662 trace_kmalloc((unsigned long) caller, ret,
3663 size, cachep->buffer_size, flags);
36555751
EGM
3664
3665 return ret;
7fd6b141
PE
3666}
3667
7fd6b141 3668
36555751 3669#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
7fd6b141
PE
3670void *__kmalloc(size_t size, gfp_t flags)
3671{
871751e2 3672 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3673}
3674EXPORT_SYMBOL(__kmalloc);
3675
ce71e27c 3676void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3677{
ce71e27c 3678 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3679}
3680EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3681
3682#else
3683void *__kmalloc(size_t size, gfp_t flags)
3684{
3685 return __do_kmalloc(size, flags, NULL);
3686}
3687EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3688#endif
3689
1da177e4
LT
3690/**
3691 * kmem_cache_free - Deallocate an object
3692 * @cachep: The cache the allocation was from.
3693 * @objp: The previously allocated object.
3694 *
3695 * Free an object which was previously allocated from this
3696 * cache.
3697 */
343e0d7a 3698void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3699{
3700 unsigned long flags;
3701
3702 local_irq_save(flags);
898552c9 3703 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3704 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3705 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3706 __cache_free(cachep, objp);
1da177e4 3707 local_irq_restore(flags);
36555751 3708
ca2b84cb 3709 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3710}
3711EXPORT_SYMBOL(kmem_cache_free);
3712
1da177e4
LT
3713/**
3714 * kfree - free previously allocated memory
3715 * @objp: pointer returned by kmalloc.
3716 *
80e93eff
PE
3717 * If @objp is NULL, no operation is performed.
3718 *
1da177e4
LT
3719 * Don't free memory not originally allocated by kmalloc()
3720 * or you will run into trouble.
3721 */
3722void kfree(const void *objp)
3723{
343e0d7a 3724 struct kmem_cache *c;
1da177e4
LT
3725 unsigned long flags;
3726
2121db74
PE
3727 trace_kfree(_RET_IP_, objp);
3728
6cb8f913 3729 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3730 return;
3731 local_irq_save(flags);
3732 kfree_debugcheck(objp);
6ed5eb22 3733 c = virt_to_cache(objp);
f9b8404c 3734 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3735 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3736 __cache_free(c, (void *)objp);
1da177e4
LT
3737 local_irq_restore(flags);
3738}
3739EXPORT_SYMBOL(kfree);
3740
343e0d7a 3741unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3742{
3dafccf2 3743 return obj_size(cachep);
1da177e4
LT
3744}
3745EXPORT_SYMBOL(kmem_cache_size);
3746
343e0d7a 3747const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3748{
3749 return cachep->name;
3750}
3751EXPORT_SYMBOL_GPL(kmem_cache_name);
3752
e498be7d 3753/*
183ff22b 3754 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3755 */
83b519e8 3756static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3757{
3758 int node;
3759 struct kmem_list3 *l3;
cafeb02e 3760 struct array_cache *new_shared;
3395ee05 3761 struct array_cache **new_alien = NULL;
e498be7d 3762
9c09a95c 3763 for_each_online_node(node) {
cafeb02e 3764
3395ee05 3765 if (use_alien_caches) {
83b519e8 3766 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3767 if (!new_alien)
3768 goto fail;
3769 }
cafeb02e 3770
63109846
ED
3771 new_shared = NULL;
3772 if (cachep->shared) {
3773 new_shared = alloc_arraycache(node,
0718dc2a 3774 cachep->shared*cachep->batchcount,
83b519e8 3775 0xbaadf00d, gfp);
63109846
ED
3776 if (!new_shared) {
3777 free_alien_cache(new_alien);
3778 goto fail;
3779 }
0718dc2a 3780 }
cafeb02e 3781
a737b3e2
AM
3782 l3 = cachep->nodelists[node];
3783 if (l3) {
cafeb02e
CL
3784 struct array_cache *shared = l3->shared;
3785
e498be7d
CL
3786 spin_lock_irq(&l3->list_lock);
3787
cafeb02e 3788 if (shared)
0718dc2a
CL
3789 free_block(cachep, shared->entry,
3790 shared->avail, node);
e498be7d 3791
cafeb02e
CL
3792 l3->shared = new_shared;
3793 if (!l3->alien) {
e498be7d
CL
3794 l3->alien = new_alien;
3795 new_alien = NULL;
3796 }
b28a02de 3797 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3798 cachep->batchcount + cachep->num;
e498be7d 3799 spin_unlock_irq(&l3->list_lock);
cafeb02e 3800 kfree(shared);
e498be7d
CL
3801 free_alien_cache(new_alien);
3802 continue;
3803 }
83b519e8 3804 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3805 if (!l3) {
3806 free_alien_cache(new_alien);
3807 kfree(new_shared);
e498be7d 3808 goto fail;
0718dc2a 3809 }
e498be7d
CL
3810
3811 kmem_list3_init(l3);
3812 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3813 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3814 l3->shared = new_shared;
e498be7d 3815 l3->alien = new_alien;
b28a02de 3816 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3817 cachep->batchcount + cachep->num;
e498be7d
CL
3818 cachep->nodelists[node] = l3;
3819 }
cafeb02e 3820 return 0;
0718dc2a 3821
a737b3e2 3822fail:
0718dc2a
CL
3823 if (!cachep->next.next) {
3824 /* Cache is not active yet. Roll back what we did */
3825 node--;
3826 while (node >= 0) {
3827 if (cachep->nodelists[node]) {
3828 l3 = cachep->nodelists[node];
3829
3830 kfree(l3->shared);
3831 free_alien_cache(l3->alien);
3832 kfree(l3);
3833 cachep->nodelists[node] = NULL;
3834 }
3835 node--;
3836 }
3837 }
cafeb02e 3838 return -ENOMEM;
e498be7d
CL
3839}
3840
1da177e4 3841struct ccupdate_struct {
343e0d7a 3842 struct kmem_cache *cachep;
1da177e4
LT
3843 struct array_cache *new[NR_CPUS];
3844};
3845
3846static void do_ccupdate_local(void *info)
3847{
a737b3e2 3848 struct ccupdate_struct *new = info;
1da177e4
LT
3849 struct array_cache *old;
3850
3851 check_irq_off();
9a2dba4b 3852 old = cpu_cache_get(new->cachep);
e498be7d 3853
1da177e4
LT
3854 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3855 new->new[smp_processor_id()] = old;
3856}
3857
b5d8ca7c 3858/* Always called with the cache_chain_mutex held */
a737b3e2 3859static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3860 int batchcount, int shared, gfp_t gfp)
1da177e4 3861{
d2e7b7d0 3862 struct ccupdate_struct *new;
2ed3a4ef 3863 int i;
1da177e4 3864
83b519e8 3865 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3866 if (!new)
3867 return -ENOMEM;
3868
e498be7d 3869 for_each_online_cpu(i) {
d2e7b7d0 3870 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
83b519e8 3871 batchcount, gfp);
d2e7b7d0 3872 if (!new->new[i]) {
b28a02de 3873 for (i--; i >= 0; i--)
d2e7b7d0
SS
3874 kfree(new->new[i]);
3875 kfree(new);
e498be7d 3876 return -ENOMEM;
1da177e4
LT
3877 }
3878 }
d2e7b7d0 3879 new->cachep = cachep;
1da177e4 3880
15c8b6c1 3881 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3882
1da177e4 3883 check_irq_on();
1da177e4
LT
3884 cachep->batchcount = batchcount;
3885 cachep->limit = limit;
e498be7d 3886 cachep->shared = shared;
1da177e4 3887
e498be7d 3888 for_each_online_cpu(i) {
d2e7b7d0 3889 struct array_cache *ccold = new->new[i];
1da177e4
LT
3890 if (!ccold)
3891 continue;
e498be7d 3892 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3893 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3894 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3895 kfree(ccold);
3896 }
d2e7b7d0 3897 kfree(new);
83b519e8 3898 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3899}
3900
b5d8ca7c 3901/* Called with cache_chain_mutex held always */
83b519e8 3902static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3903{
3904 int err;
3905 int limit, shared;
3906
a737b3e2
AM
3907 /*
3908 * The head array serves three purposes:
1da177e4
LT
3909 * - create a LIFO ordering, i.e. return objects that are cache-warm
3910 * - reduce the number of spinlock operations.
a737b3e2 3911 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3912 * bufctl chains: array operations are cheaper.
3913 * The numbers are guessed, we should auto-tune as described by
3914 * Bonwick.
3915 */
3dafccf2 3916 if (cachep->buffer_size > 131072)
1da177e4 3917 limit = 1;
3dafccf2 3918 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3919 limit = 8;
3dafccf2 3920 else if (cachep->buffer_size > 1024)
1da177e4 3921 limit = 24;
3dafccf2 3922 else if (cachep->buffer_size > 256)
1da177e4
LT
3923 limit = 54;
3924 else
3925 limit = 120;
3926
a737b3e2
AM
3927 /*
3928 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3929 * allocation behaviour: Most allocs on one cpu, most free operations
3930 * on another cpu. For these cases, an efficient object passing between
3931 * cpus is necessary. This is provided by a shared array. The array
3932 * replaces Bonwick's magazine layer.
3933 * On uniprocessor, it's functionally equivalent (but less efficient)
3934 * to a larger limit. Thus disabled by default.
3935 */
3936 shared = 0;
364fbb29 3937 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3938 shared = 8;
1da177e4
LT
3939
3940#if DEBUG
a737b3e2
AM
3941 /*
3942 * With debugging enabled, large batchcount lead to excessively long
3943 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3944 */
3945 if (limit > 32)
3946 limit = 32;
3947#endif
83b519e8 3948 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
3949 if (err)
3950 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3951 cachep->name, -err);
2ed3a4ef 3952 return err;
1da177e4
LT
3953}
3954
1b55253a
CL
3955/*
3956 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3957 * necessary. Note that the l3 listlock also protects the array_cache
3958 * if drain_array() is used on the shared array.
1b55253a
CL
3959 */
3960void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3961 struct array_cache *ac, int force, int node)
1da177e4
LT
3962{
3963 int tofree;
3964
1b55253a
CL
3965 if (!ac || !ac->avail)
3966 return;
1da177e4
LT
3967 if (ac->touched && !force) {
3968 ac->touched = 0;
b18e7e65 3969 } else {
1b55253a 3970 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3971 if (ac->avail) {
3972 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3973 if (tofree > ac->avail)
3974 tofree = (ac->avail + 1) / 2;
3975 free_block(cachep, ac->entry, tofree, node);
3976 ac->avail -= tofree;
3977 memmove(ac->entry, &(ac->entry[tofree]),
3978 sizeof(void *) * ac->avail);
3979 }
1b55253a 3980 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3981 }
3982}
3983
3984/**
3985 * cache_reap - Reclaim memory from caches.
05fb6bf0 3986 * @w: work descriptor
1da177e4
LT
3987 *
3988 * Called from workqueue/eventd every few seconds.
3989 * Purpose:
3990 * - clear the per-cpu caches for this CPU.
3991 * - return freeable pages to the main free memory pool.
3992 *
a737b3e2
AM
3993 * If we cannot acquire the cache chain mutex then just give up - we'll try
3994 * again on the next iteration.
1da177e4 3995 */
7c5cae36 3996static void cache_reap(struct work_struct *w)
1da177e4 3997{
7a7c381d 3998 struct kmem_cache *searchp;
e498be7d 3999 struct kmem_list3 *l3;
aab2207c 4000 int node = numa_node_id();
bf6aede7 4001 struct delayed_work *work = to_delayed_work(w);
1da177e4 4002
7c5cae36 4003 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4004 /* Give up. Setup the next iteration. */
7c5cae36 4005 goto out;
1da177e4 4006
7a7c381d 4007 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4008 check_irq_on();
4009
35386e3b
CL
4010 /*
4011 * We only take the l3 lock if absolutely necessary and we
4012 * have established with reasonable certainty that
4013 * we can do some work if the lock was obtained.
4014 */
aab2207c 4015 l3 = searchp->nodelists[node];
35386e3b 4016
8fce4d8e 4017 reap_alien(searchp, l3);
1da177e4 4018
aab2207c 4019 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4020
35386e3b
CL
4021 /*
4022 * These are racy checks but it does not matter
4023 * if we skip one check or scan twice.
4024 */
e498be7d 4025 if (time_after(l3->next_reap, jiffies))
35386e3b 4026 goto next;
1da177e4 4027
e498be7d 4028 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4029
aab2207c 4030 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4031
ed11d9eb 4032 if (l3->free_touched)
e498be7d 4033 l3->free_touched = 0;
ed11d9eb
CL
4034 else {
4035 int freed;
1da177e4 4036
ed11d9eb
CL
4037 freed = drain_freelist(searchp, l3, (l3->free_limit +
4038 5 * searchp->num - 1) / (5 * searchp->num));
4039 STATS_ADD_REAPED(searchp, freed);
4040 }
35386e3b 4041next:
1da177e4
LT
4042 cond_resched();
4043 }
4044 check_irq_on();
fc0abb14 4045 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4046 next_reap_node();
7c5cae36 4047out:
a737b3e2 4048 /* Set up the next iteration */
7c5cae36 4049 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4050}
4051
158a9624 4052#ifdef CONFIG_SLABINFO
1da177e4 4053
85289f98 4054static void print_slabinfo_header(struct seq_file *m)
1da177e4 4055{
85289f98
PE
4056 /*
4057 * Output format version, so at least we can change it
4058 * without _too_ many complaints.
4059 */
1da177e4 4060#if STATS
85289f98 4061 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4062#else
85289f98 4063 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4064#endif
85289f98
PE
4065 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4066 "<objperslab> <pagesperslab>");
4067 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4068 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4069#if STATS
85289f98 4070 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4071 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4072 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4073#endif
85289f98
PE
4074 seq_putc(m, '\n');
4075}
4076
4077static void *s_start(struct seq_file *m, loff_t *pos)
4078{
4079 loff_t n = *pos;
85289f98 4080
fc0abb14 4081 mutex_lock(&cache_chain_mutex);
85289f98
PE
4082 if (!n)
4083 print_slabinfo_header(m);
b92151ba
PE
4084
4085 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4086}
4087
4088static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4089{
b92151ba 4090 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4091}
4092
4093static void s_stop(struct seq_file *m, void *p)
4094{
fc0abb14 4095 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4096}
4097
4098static int s_show(struct seq_file *m, void *p)
4099{
b92151ba 4100 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4101 struct slab *slabp;
4102 unsigned long active_objs;
4103 unsigned long num_objs;
4104 unsigned long active_slabs = 0;
4105 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4106 const char *name;
1da177e4 4107 char *error = NULL;
e498be7d
CL
4108 int node;
4109 struct kmem_list3 *l3;
1da177e4 4110
1da177e4
LT
4111 active_objs = 0;
4112 num_slabs = 0;
e498be7d
CL
4113 for_each_online_node(node) {
4114 l3 = cachep->nodelists[node];
4115 if (!l3)
4116 continue;
4117
ca3b9b91
RT
4118 check_irq_on();
4119 spin_lock_irq(&l3->list_lock);
e498be7d 4120
7a7c381d 4121 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4122 if (slabp->inuse != cachep->num && !error)
4123 error = "slabs_full accounting error";
4124 active_objs += cachep->num;
4125 active_slabs++;
4126 }
7a7c381d 4127 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4128 if (slabp->inuse == cachep->num && !error)
4129 error = "slabs_partial inuse accounting error";
4130 if (!slabp->inuse && !error)
4131 error = "slabs_partial/inuse accounting error";
4132 active_objs += slabp->inuse;
4133 active_slabs++;
4134 }
7a7c381d 4135 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4136 if (slabp->inuse && !error)
4137 error = "slabs_free/inuse accounting error";
4138 num_slabs++;
4139 }
4140 free_objects += l3->free_objects;
4484ebf1
RT
4141 if (l3->shared)
4142 shared_avail += l3->shared->avail;
e498be7d 4143
ca3b9b91 4144 spin_unlock_irq(&l3->list_lock);
1da177e4 4145 }
b28a02de
PE
4146 num_slabs += active_slabs;
4147 num_objs = num_slabs * cachep->num;
e498be7d 4148 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4149 error = "free_objects accounting error";
4150
b28a02de 4151 name = cachep->name;
1da177e4
LT
4152 if (error)
4153 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4154
4155 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4156 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4157 cachep->num, (1 << cachep->gfporder));
1da177e4 4158 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4159 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4160 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4161 active_slabs, num_slabs, shared_avail);
1da177e4 4162#if STATS
b28a02de 4163 { /* list3 stats */
1da177e4
LT
4164 unsigned long high = cachep->high_mark;
4165 unsigned long allocs = cachep->num_allocations;
4166 unsigned long grown = cachep->grown;
4167 unsigned long reaped = cachep->reaped;
4168 unsigned long errors = cachep->errors;
4169 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4170 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4171 unsigned long node_frees = cachep->node_frees;
fb7faf33 4172 unsigned long overflows = cachep->node_overflow;
1da177e4 4173
e498be7d 4174 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4175 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4176 reaped, errors, max_freeable, node_allocs,
fb7faf33 4177 node_frees, overflows);
1da177e4
LT
4178 }
4179 /* cpu stats */
4180 {
4181 unsigned long allochit = atomic_read(&cachep->allochit);
4182 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4183 unsigned long freehit = atomic_read(&cachep->freehit);
4184 unsigned long freemiss = atomic_read(&cachep->freemiss);
4185
4186 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4187 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4188 }
4189#endif
4190 seq_putc(m, '\n');
1da177e4
LT
4191 return 0;
4192}
4193
4194/*
4195 * slabinfo_op - iterator that generates /proc/slabinfo
4196 *
4197 * Output layout:
4198 * cache-name
4199 * num-active-objs
4200 * total-objs
4201 * object size
4202 * num-active-slabs
4203 * total-slabs
4204 * num-pages-per-slab
4205 * + further values on SMP and with statistics enabled
4206 */
4207
7b3c3a50 4208static const struct seq_operations slabinfo_op = {
b28a02de
PE
4209 .start = s_start,
4210 .next = s_next,
4211 .stop = s_stop,
4212 .show = s_show,
1da177e4
LT
4213};
4214
4215#define MAX_SLABINFO_WRITE 128
4216/**
4217 * slabinfo_write - Tuning for the slab allocator
4218 * @file: unused
4219 * @buffer: user buffer
4220 * @count: data length
4221 * @ppos: unused
4222 */
b28a02de
PE
4223ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4224 size_t count, loff_t *ppos)
1da177e4 4225{
b28a02de 4226 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4227 int limit, batchcount, shared, res;
7a7c381d 4228 struct kmem_cache *cachep;
b28a02de 4229
1da177e4
LT
4230 if (count > MAX_SLABINFO_WRITE)
4231 return -EINVAL;
4232 if (copy_from_user(&kbuf, buffer, count))
4233 return -EFAULT;
b28a02de 4234 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4235
4236 tmp = strchr(kbuf, ' ');
4237 if (!tmp)
4238 return -EINVAL;
4239 *tmp = '\0';
4240 tmp++;
4241 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4242 return -EINVAL;
4243
4244 /* Find the cache in the chain of caches. */
fc0abb14 4245 mutex_lock(&cache_chain_mutex);
1da177e4 4246 res = -EINVAL;
7a7c381d 4247 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4248 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4249 if (limit < 1 || batchcount < 1 ||
4250 batchcount > limit || shared < 0) {
e498be7d 4251 res = 0;
1da177e4 4252 } else {
e498be7d 4253 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4254 batchcount, shared,
4255 GFP_KERNEL);
1da177e4
LT
4256 }
4257 break;
4258 }
4259 }
fc0abb14 4260 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4261 if (res >= 0)
4262 res = count;
4263 return res;
4264}
871751e2 4265
7b3c3a50
AD
4266static int slabinfo_open(struct inode *inode, struct file *file)
4267{
4268 return seq_open(file, &slabinfo_op);
4269}
4270
4271static const struct file_operations proc_slabinfo_operations = {
4272 .open = slabinfo_open,
4273 .read = seq_read,
4274 .write = slabinfo_write,
4275 .llseek = seq_lseek,
4276 .release = seq_release,
4277};
4278
871751e2
AV
4279#ifdef CONFIG_DEBUG_SLAB_LEAK
4280
4281static void *leaks_start(struct seq_file *m, loff_t *pos)
4282{
871751e2 4283 mutex_lock(&cache_chain_mutex);
b92151ba 4284 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4285}
4286
4287static inline int add_caller(unsigned long *n, unsigned long v)
4288{
4289 unsigned long *p;
4290 int l;
4291 if (!v)
4292 return 1;
4293 l = n[1];
4294 p = n + 2;
4295 while (l) {
4296 int i = l/2;
4297 unsigned long *q = p + 2 * i;
4298 if (*q == v) {
4299 q[1]++;
4300 return 1;
4301 }
4302 if (*q > v) {
4303 l = i;
4304 } else {
4305 p = q + 2;
4306 l -= i + 1;
4307 }
4308 }
4309 if (++n[1] == n[0])
4310 return 0;
4311 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4312 p[0] = v;
4313 p[1] = 1;
4314 return 1;
4315}
4316
4317static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4318{
4319 void *p;
4320 int i;
4321 if (n[0] == n[1])
4322 return;
4323 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4324 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4325 continue;
4326 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4327 return;
4328 }
4329}
4330
4331static void show_symbol(struct seq_file *m, unsigned long address)
4332{
4333#ifdef CONFIG_KALLSYMS
871751e2 4334 unsigned long offset, size;
9281acea 4335 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4336
a5c43dae 4337 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4338 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4339 if (modname[0])
871751e2
AV
4340 seq_printf(m, " [%s]", modname);
4341 return;
4342 }
4343#endif
4344 seq_printf(m, "%p", (void *)address);
4345}
4346
4347static int leaks_show(struct seq_file *m, void *p)
4348{
b92151ba 4349 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4350 struct slab *slabp;
4351 struct kmem_list3 *l3;
4352 const char *name;
4353 unsigned long *n = m->private;
4354 int node;
4355 int i;
4356
4357 if (!(cachep->flags & SLAB_STORE_USER))
4358 return 0;
4359 if (!(cachep->flags & SLAB_RED_ZONE))
4360 return 0;
4361
4362 /* OK, we can do it */
4363
4364 n[1] = 0;
4365
4366 for_each_online_node(node) {
4367 l3 = cachep->nodelists[node];
4368 if (!l3)
4369 continue;
4370
4371 check_irq_on();
4372 spin_lock_irq(&l3->list_lock);
4373
7a7c381d 4374 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4375 handle_slab(n, cachep, slabp);
7a7c381d 4376 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4377 handle_slab(n, cachep, slabp);
871751e2
AV
4378 spin_unlock_irq(&l3->list_lock);
4379 }
4380 name = cachep->name;
4381 if (n[0] == n[1]) {
4382 /* Increase the buffer size */
4383 mutex_unlock(&cache_chain_mutex);
4384 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4385 if (!m->private) {
4386 /* Too bad, we are really out */
4387 m->private = n;
4388 mutex_lock(&cache_chain_mutex);
4389 return -ENOMEM;
4390 }
4391 *(unsigned long *)m->private = n[0] * 2;
4392 kfree(n);
4393 mutex_lock(&cache_chain_mutex);
4394 /* Now make sure this entry will be retried */
4395 m->count = m->size;
4396 return 0;
4397 }
4398 for (i = 0; i < n[1]; i++) {
4399 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4400 show_symbol(m, n[2*i+2]);
4401 seq_putc(m, '\n');
4402 }
d2e7b7d0 4403
871751e2
AV
4404 return 0;
4405}
4406
a0ec95a8 4407static const struct seq_operations slabstats_op = {
871751e2
AV
4408 .start = leaks_start,
4409 .next = s_next,
4410 .stop = s_stop,
4411 .show = leaks_show,
4412};
a0ec95a8
AD
4413
4414static int slabstats_open(struct inode *inode, struct file *file)
4415{
4416 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4417 int ret = -ENOMEM;
4418 if (n) {
4419 ret = seq_open(file, &slabstats_op);
4420 if (!ret) {
4421 struct seq_file *m = file->private_data;
4422 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4423 m->private = n;
4424 n = NULL;
4425 }
4426 kfree(n);
4427 }
4428 return ret;
4429}
4430
4431static const struct file_operations proc_slabstats_operations = {
4432 .open = slabstats_open,
4433 .read = seq_read,
4434 .llseek = seq_lseek,
4435 .release = seq_release_private,
4436};
4437#endif
4438
4439static int __init slab_proc_init(void)
4440{
7b3c3a50 4441 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4442#ifdef CONFIG_DEBUG_SLAB_LEAK
4443 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4444#endif
a0ec95a8
AD
4445 return 0;
4446}
4447module_init(slab_proc_init);
1da177e4
LT
4448#endif
4449
00e145b6
MS
4450/**
4451 * ksize - get the actual amount of memory allocated for a given object
4452 * @objp: Pointer to the object
4453 *
4454 * kmalloc may internally round up allocations and return more memory
4455 * than requested. ksize() can be used to determine the actual amount of
4456 * memory allocated. The caller may use this additional memory, even though
4457 * a smaller amount of memory was initially specified with the kmalloc call.
4458 * The caller must guarantee that objp points to a valid object previously
4459 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4460 * must not be freed during the duration of the call.
4461 */
fd76bab2 4462size_t ksize(const void *objp)
1da177e4 4463{
ef8b4520
CL
4464 BUG_ON(!objp);
4465 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4466 return 0;
1da177e4 4467
6ed5eb22 4468 return obj_size(virt_to_cache(objp));
1da177e4 4469}
b1aabecd 4470EXPORT_SYMBOL(ksize);
This page took 0.759994 seconds and 5 git commands to generate.