[PATCH] slab: have index_of bug at compile time
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
543537bd 104#include <linux/string.h>
e498be7d 105#include <linux/nodemask.h>
dc85da15 106#include <linux/mempolicy.h>
fc0abb14 107#include <linux/mutex.h>
1da177e4
LT
108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
1da177e4
LT
135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
fa5b08d5 203typedef unsigned int kmem_bufctl_t;
1da177e4
LT
204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de
PE
246 struct rcu_head head;
247 kmem_cache_t *cachep;
248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d
CL
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
277/* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
1da177e4
LT
300};
301
e498be7d
CL
302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define CACHE_CACHE 0
308#define SIZE_AC 1
309#define SIZE_L3 (1 + MAX_NUMNODES)
310
311/*
7243cc05 312 * This function must be completely optimized away if
e498be7d
CL
313 * a constant is passed to it. Mostly the same as
314 * what is in linux/slab.h except it returns an
315 * index.
316 */
7243cc05 317static __always_inline int index_of(const size_t size)
e498be7d 318{
5ec8a847
SR
319 extern void __bad_size(void);
320
e498be7d
CL
321 if (__builtin_constant_p(size)) {
322 int i = 0;
323
324#define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329#include "linux/kmalloc_sizes.h"
330#undef CACHE
5ec8a847 331 __bad_size();
7243cc05 332 } else
5ec8a847 333 __bad_size();
e498be7d
CL
334 return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 339
e498be7d
CL
340static inline void kmem_list3_init(struct kmem_list3 *parent)
341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 spin_lock_init(&parent->list_lock);
348 parent->free_objects = 0;
349 parent->free_touched = 0;
350}
351
352#define MAKE_LIST(cachep, listp, slab, nodeid) \
353 do { \
354 INIT_LIST_HEAD(listp); \
355 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356 } while (0)
357
358#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 do { \
360 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
363 } while (0)
1da177e4
LT
364
365/*
366 * kmem_cache_t
367 *
368 * manages a cache.
369 */
b28a02de 370
2109a2d1 371struct kmem_cache {
1da177e4 372/* 1) per-cpu data, touched during every alloc/free */
b28a02de
PE
373 struct array_cache *array[NR_CPUS];
374 unsigned int batchcount;
375 unsigned int limit;
376 unsigned int shared;
3dafccf2 377 unsigned int buffer_size;
e498be7d 378/* 2) touched by every alloc & free from the backend */
b28a02de
PE
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
380 unsigned int flags; /* constant flags */
381 unsigned int num; /* # of objs per slab */
382 spinlock_t spinlock;
1da177e4
LT
383
384/* 3) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
b28a02de 386 unsigned int gfporder;
1da177e4
LT
387
388 /* force GFP flags, e.g. GFP_DMA */
b28a02de 389 gfp_t gfpflags;
1da177e4 390
b28a02de
PE
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 unsigned int colour_next; /* cache colouring */
394 kmem_cache_t *slabp_cache;
395 unsigned int slab_size;
396 unsigned int dflags; /* dynamic flags */
1da177e4
LT
397
398 /* constructor func */
b28a02de 399 void (*ctor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
400
401 /* de-constructor func */
b28a02de 402 void (*dtor) (void *, kmem_cache_t *, unsigned long);
1da177e4
LT
403
404/* 4) cache creation/removal */
b28a02de
PE
405 const char *name;
406 struct list_head next;
1da177e4
LT
407
408/* 5) statistics */
409#if STATS
b28a02de
PE
410 unsigned long num_active;
411 unsigned long num_allocations;
412 unsigned long high_mark;
413 unsigned long grown;
414 unsigned long reaped;
415 unsigned long errors;
416 unsigned long max_freeable;
417 unsigned long node_allocs;
418 unsigned long node_frees;
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
1da177e4
LT
423#endif
424#if DEBUG
3dafccf2
MS
425 /*
426 * If debugging is enabled, then the allocator can add additional
427 * fields and/or padding to every object. buffer_size contains the total
428 * object size including these internal fields, the following two
429 * variables contain the offset to the user object and its size.
430 */
431 int obj_offset;
432 int obj_size;
1da177e4
LT
433#endif
434};
435
436#define CFLGS_OFF_SLAB (0x80000000UL)
437#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
438
439#define BATCHREFILL_LIMIT 16
440/* Optimization question: fewer reaps means less
441 * probability for unnessary cpucache drain/refill cycles.
442 *
dc6f3f27 443 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
444 * which could lock up otherwise freeable slabs.
445 */
446#define REAPTIMEOUT_CPUC (2*HZ)
447#define REAPTIMEOUT_LIST3 (4*HZ)
448
449#if STATS
450#define STATS_INC_ACTIVE(x) ((x)->num_active++)
451#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
452#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
453#define STATS_INC_GROWN(x) ((x)->grown++)
454#define STATS_INC_REAPED(x) ((x)->reaped++)
455#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
456 (x)->high_mark = (x)->num_active; \
457 } while (0)
458#define STATS_INC_ERR(x) ((x)->errors++)
459#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 460#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
1da177e4
LT
461#define STATS_SET_FREEABLE(x, i) \
462 do { if ((x)->max_freeable < i) \
463 (x)->max_freeable = i; \
464 } while (0)
465
466#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
467#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
468#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
469#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
470#else
471#define STATS_INC_ACTIVE(x) do { } while (0)
472#define STATS_DEC_ACTIVE(x) do { } while (0)
473#define STATS_INC_ALLOCED(x) do { } while (0)
474#define STATS_INC_GROWN(x) do { } while (0)
475#define STATS_INC_REAPED(x) do { } while (0)
476#define STATS_SET_HIGH(x) do { } while (0)
477#define STATS_INC_ERR(x) do { } while (0)
478#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 479#define STATS_INC_NODEFREES(x) do { } while (0)
1da177e4
LT
480#define STATS_SET_FREEABLE(x, i) \
481 do { } while (0)
482
483#define STATS_INC_ALLOCHIT(x) do { } while (0)
484#define STATS_INC_ALLOCMISS(x) do { } while (0)
485#define STATS_INC_FREEHIT(x) do { } while (0)
486#define STATS_INC_FREEMISS(x) do { } while (0)
487#endif
488
489#if DEBUG
490/* Magic nums for obj red zoning.
491 * Placed in the first word before and the first word after an obj.
492 */
493#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
494#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
495
496/* ...and for poisoning */
497#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
498#define POISON_FREE 0x6b /* for use-after-free poisoning */
499#define POISON_END 0xa5 /* end-byte of poisoning */
500
501/* memory layout of objects:
502 * 0 : objp
3dafccf2 503 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
504 * the end of an object is aligned with the end of the real
505 * allocation. Catches writes behind the end of the allocation.
3dafccf2 506 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 507 * redzone word.
3dafccf2
MS
508 * cachep->obj_offset: The real object.
509 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
510 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
1da177e4 511 */
3dafccf2 512static int obj_offset(kmem_cache_t *cachep)
1da177e4 513{
3dafccf2 514 return cachep->obj_offset;
1da177e4
LT
515}
516
3dafccf2 517static int obj_size(kmem_cache_t *cachep)
1da177e4 518{
3dafccf2 519 return cachep->obj_size;
1da177e4
LT
520}
521
522static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
523{
524 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 525 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
526}
527
528static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 532 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 533 2 * BYTES_PER_WORD);
3dafccf2 534 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
535}
536
537static void **dbg_userword(kmem_cache_t *cachep, void *objp)
538{
539 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 540 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
543#else
544
3dafccf2
MS
545#define obj_offset(x) 0
546#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
547#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
548#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
550
551#endif
552
553/*
554 * Maximum size of an obj (in 2^order pages)
555 * and absolute limit for the gfp order.
556 */
557#if defined(CONFIG_LARGE_ALLOCS)
558#define MAX_OBJ_ORDER 13 /* up to 32Mb */
559#define MAX_GFP_ORDER 13 /* up to 32Mb */
560#elif defined(CONFIG_MMU)
561#define MAX_OBJ_ORDER 5 /* 32 pages */
562#define MAX_GFP_ORDER 5 /* 32 pages */
563#else
564#define MAX_OBJ_ORDER 8 /* up to 1Mb */
565#define MAX_GFP_ORDER 8 /* up to 1Mb */
566#endif
567
568/*
569 * Do not go above this order unless 0 objects fit into the slab.
570 */
571#define BREAK_GFP_ORDER_HI 1
572#define BREAK_GFP_ORDER_LO 0
573static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
574
065d41cb 575/* Functions for storing/retrieving the cachep and or slab from the
1da177e4
LT
576 * global 'mem_map'. These are used to find the slab an obj belongs to.
577 * With kfree(), these are used to find the cache which an obj belongs to.
578 */
065d41cb
PE
579static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
580{
581 page->lru.next = (struct list_head *)cache;
582}
583
584static inline struct kmem_cache *page_get_cache(struct page *page)
585{
586 return (struct kmem_cache *)page->lru.next;
587}
588
589static inline void page_set_slab(struct page *page, struct slab *slab)
590{
591 page->lru.prev = (struct list_head *)slab;
592}
593
594static inline struct slab *page_get_slab(struct page *page)
595{
596 return (struct slab *)page->lru.prev;
597}
1da177e4
LT
598
599/* These are the default caches for kmalloc. Custom caches can have other sizes. */
600struct cache_sizes malloc_sizes[] = {
601#define CACHE(x) { .cs_size = (x) },
602#include <linux/kmalloc_sizes.h>
603 CACHE(ULONG_MAX)
604#undef CACHE
605};
606EXPORT_SYMBOL(malloc_sizes);
607
608/* Must match cache_sizes above. Out of line to keep cache footprint low. */
609struct cache_names {
610 char *name;
611 char *name_dma;
612};
613
614static struct cache_names __initdata cache_names[] = {
615#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
616#include <linux/kmalloc_sizes.h>
b28a02de 617 {NULL,}
1da177e4
LT
618#undef CACHE
619};
620
621static struct arraycache_init initarray_cache __initdata =
b28a02de 622 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 623static struct arraycache_init initarray_generic =
b28a02de 624 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
625
626/* internal cache of cache description objs */
627static kmem_cache_t cache_cache = {
b28a02de
PE
628 .batchcount = 1,
629 .limit = BOOT_CPUCACHE_ENTRIES,
630 .shared = 1,
3dafccf2 631 .buffer_size = sizeof(kmem_cache_t),
b28a02de
PE
632 .flags = SLAB_NO_REAP,
633 .spinlock = SPIN_LOCK_UNLOCKED,
634 .name = "kmem_cache",
1da177e4 635#if DEBUG
3dafccf2 636 .obj_size = sizeof(kmem_cache_t),
1da177e4
LT
637#endif
638};
639
640/* Guard access to the cache-chain. */
fc0abb14 641static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
642static struct list_head cache_chain;
643
644/*
645 * vm_enough_memory() looks at this to determine how many
646 * slab-allocated pages are possibly freeable under pressure
647 *
648 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
649 */
650atomic_t slab_reclaim_pages;
1da177e4
LT
651
652/*
653 * chicken and egg problem: delay the per-cpu array allocation
654 * until the general caches are up.
655 */
656static enum {
657 NONE,
e498be7d
CL
658 PARTIAL_AC,
659 PARTIAL_L3,
1da177e4
LT
660 FULL
661} g_cpucache_up;
662
663static DEFINE_PER_CPU(struct work_struct, reap_work);
664
b28a02de
PE
665static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
666static void enable_cpucache(kmem_cache_t *cachep);
667static void cache_reap(void *unused);
e498be7d 668static int __node_shrink(kmem_cache_t *cachep, int node);
1da177e4
LT
669
670static inline struct array_cache *ac_data(kmem_cache_t *cachep)
671{
672 return cachep->array[smp_processor_id()];
673}
674
dd0fc66f 675static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
1da177e4
LT
676{
677 struct cache_sizes *csizep = malloc_sizes;
678
679#if DEBUG
680 /* This happens if someone tries to call
b28a02de
PE
681 * kmem_cache_create(), or __kmalloc(), before
682 * the generic caches are initialized.
683 */
c7e43c78 684 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
685#endif
686 while (size > csizep->cs_size)
687 csizep++;
688
689 /*
0abf40c1 690 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
691 * has cs_{dma,}cachep==NULL. Thus no special case
692 * for large kmalloc calls required.
693 */
694 if (unlikely(gfpflags & GFP_DMA))
695 return csizep->cs_dmacachep;
696 return csizep->cs_cachep;
697}
698
dd0fc66f 699kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
700{
701 return __find_general_cachep(size, gfpflags);
702}
703EXPORT_SYMBOL(kmem_find_general_cachep);
704
1da177e4
LT
705/* Cal the num objs, wastage, and bytes left over for a given slab size. */
706static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
b28a02de 707 int flags, size_t *left_over, unsigned int *num)
1da177e4
LT
708{
709 int i;
b28a02de 710 size_t wastage = PAGE_SIZE << gfporder;
1da177e4
LT
711 size_t extra = 0;
712 size_t base = 0;
713
714 if (!(flags & CFLGS_OFF_SLAB)) {
715 base = sizeof(struct slab);
716 extra = sizeof(kmem_bufctl_t);
717 }
718 i = 0;
b28a02de 719 while (i * size + ALIGN(base + i * extra, align) <= wastage)
1da177e4
LT
720 i++;
721 if (i > 0)
722 i--;
723
724 if (i > SLAB_LIMIT)
725 i = SLAB_LIMIT;
726
727 *num = i;
b28a02de
PE
728 wastage -= i * size;
729 wastage -= ALIGN(base + i * extra, align);
1da177e4
LT
730 *left_over = wastage;
731}
732
733#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
734
735static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
736{
737 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 738 function, cachep->name, msg);
1da177e4
LT
739 dump_stack();
740}
741
742/*
743 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
744 * via the workqueue/eventd.
745 * Add the CPU number into the expiration time to minimize the possibility of
746 * the CPUs getting into lockstep and contending for the global cache chain
747 * lock.
748 */
749static void __devinit start_cpu_timer(int cpu)
750{
751 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
752
753 /*
754 * When this gets called from do_initcalls via cpucache_init(),
755 * init_workqueues() has already run, so keventd will be setup
756 * at that time.
757 */
758 if (keventd_up() && reap_work->func == NULL) {
759 INIT_WORK(reap_work, cache_reap, NULL);
760 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
761 }
762}
763
e498be7d 764static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 765 int batchcount)
1da177e4 766{
b28a02de 767 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
768 struct array_cache *nc = NULL;
769
e498be7d 770 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
771 if (nc) {
772 nc->avail = 0;
773 nc->limit = entries;
774 nc->batchcount = batchcount;
775 nc->touched = 0;
e498be7d 776 spin_lock_init(&nc->lock);
1da177e4
LT
777 }
778 return nc;
779}
780
e498be7d 781#ifdef CONFIG_NUMA
dc85da15
CL
782static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);
783
e498be7d
CL
784static inline struct array_cache **alloc_alien_cache(int node, int limit)
785{
786 struct array_cache **ac_ptr;
b28a02de 787 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
788 int i;
789
790 if (limit > 1)
791 limit = 12;
792 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
793 if (ac_ptr) {
794 for_each_node(i) {
795 if (i == node || !node_online(i)) {
796 ac_ptr[i] = NULL;
797 continue;
798 }
799 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
800 if (!ac_ptr[i]) {
b28a02de 801 for (i--; i <= 0; i--)
e498be7d
CL
802 kfree(ac_ptr[i]);
803 kfree(ac_ptr);
804 return NULL;
805 }
806 }
807 }
808 return ac_ptr;
809}
810
811static inline void free_alien_cache(struct array_cache **ac_ptr)
812{
813 int i;
814
815 if (!ac_ptr)
816 return;
817
818 for_each_node(i)
b28a02de 819 kfree(ac_ptr[i]);
e498be7d
CL
820
821 kfree(ac_ptr);
822}
823
b28a02de
PE
824static inline void __drain_alien_cache(kmem_cache_t *cachep,
825 struct array_cache *ac, int node)
e498be7d
CL
826{
827 struct kmem_list3 *rl3 = cachep->nodelists[node];
828
829 if (ac->avail) {
830 spin_lock(&rl3->list_lock);
ff69416e 831 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
832 ac->avail = 0;
833 spin_unlock(&rl3->list_lock);
834 }
835}
836
837static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
838{
b28a02de 839 int i = 0;
e498be7d
CL
840 struct array_cache *ac;
841 unsigned long flags;
842
843 for_each_online_node(i) {
844 ac = l3->alien[i];
845 if (ac) {
846 spin_lock_irqsave(&ac->lock, flags);
847 __drain_alien_cache(cachep, ac, i);
848 spin_unlock_irqrestore(&ac->lock, flags);
849 }
850 }
851}
852#else
853#define alloc_alien_cache(node, limit) do { } while (0)
854#define free_alien_cache(ac_ptr) do { } while (0)
855#define drain_alien_cache(cachep, l3) do { } while (0)
856#endif
857
1da177e4 858static int __devinit cpuup_callback(struct notifier_block *nfb,
b28a02de 859 unsigned long action, void *hcpu)
1da177e4
LT
860{
861 long cpu = (long)hcpu;
b28a02de 862 kmem_cache_t *cachep;
e498be7d
CL
863 struct kmem_list3 *l3 = NULL;
864 int node = cpu_to_node(cpu);
865 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
866
867 switch (action) {
868 case CPU_UP_PREPARE:
fc0abb14 869 mutex_lock(&cache_chain_mutex);
e498be7d
CL
870 /* we need to do this right in the beginning since
871 * alloc_arraycache's are going to use this list.
872 * kmalloc_node allows us to add the slab to the right
873 * kmem_list3 and not this cpu's kmem_list3
874 */
875
1da177e4 876 list_for_each_entry(cachep, &cache_chain, next) {
e498be7d
CL
877 /* setup the size64 kmemlist for cpu before we can
878 * begin anything. Make sure some other cpu on this
879 * node has not already allocated this
880 */
881 if (!cachep->nodelists[node]) {
882 if (!(l3 = kmalloc_node(memsize,
b28a02de 883 GFP_KERNEL, node)))
e498be7d
CL
884 goto bad;
885 kmem_list3_init(l3);
886 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 887 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
888
889 cachep->nodelists[node] = l3;
890 }
1da177e4 891
e498be7d
CL
892 spin_lock_irq(&cachep->nodelists[node]->list_lock);
893 cachep->nodelists[node]->free_limit =
b28a02de
PE
894 (1 + nr_cpus_node(node)) *
895 cachep->batchcount + cachep->num;
e498be7d
CL
896 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
897 }
898
899 /* Now we can go ahead with allocating the shared array's
b28a02de 900 & array cache's */
e498be7d 901 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4
TK
902 struct array_cache *nc;
903
e498be7d 904 nc = alloc_arraycache(node, cachep->limit,
b28a02de 905 cachep->batchcount);
1da177e4
LT
906 if (!nc)
907 goto bad;
1da177e4 908 cachep->array[cpu] = nc;
1da177e4 909
e498be7d
CL
910 l3 = cachep->nodelists[node];
911 BUG_ON(!l3);
912 if (!l3->shared) {
913 if (!(nc = alloc_arraycache(node,
b28a02de
PE
914 cachep->shared *
915 cachep->batchcount,
916 0xbaadf00d)))
917 goto bad;
e498be7d
CL
918
919 /* we are serialised from CPU_DEAD or
b28a02de 920 CPU_UP_CANCELLED by the cpucontrol lock */
e498be7d
CL
921 l3->shared = nc;
922 }
1da177e4 923 }
fc0abb14 924 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
925 break;
926 case CPU_ONLINE:
927 start_cpu_timer(cpu);
928 break;
929#ifdef CONFIG_HOTPLUG_CPU
930 case CPU_DEAD:
931 /* fall thru */
932 case CPU_UP_CANCELED:
fc0abb14 933 mutex_lock(&cache_chain_mutex);
1da177e4
LT
934
935 list_for_each_entry(cachep, &cache_chain, next) {
936 struct array_cache *nc;
e498be7d 937 cpumask_t mask;
1da177e4 938
e498be7d 939 mask = node_to_cpumask(node);
1da177e4
LT
940 spin_lock_irq(&cachep->spinlock);
941 /* cpu is dead; no one can alloc from it. */
942 nc = cachep->array[cpu];
943 cachep->array[cpu] = NULL;
e498be7d
CL
944 l3 = cachep->nodelists[node];
945
946 if (!l3)
947 goto unlock_cache;
948
949 spin_lock(&l3->list_lock);
950
951 /* Free limit for this kmem_list3 */
952 l3->free_limit -= cachep->batchcount;
953 if (nc)
ff69416e 954 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
955
956 if (!cpus_empty(mask)) {
b28a02de
PE
957 spin_unlock(&l3->list_lock);
958 goto unlock_cache;
959 }
e498be7d
CL
960
961 if (l3->shared) {
962 free_block(cachep, l3->shared->entry,
b28a02de 963 l3->shared->avail, node);
e498be7d
CL
964 kfree(l3->shared);
965 l3->shared = NULL;
966 }
967 if (l3->alien) {
968 drain_alien_cache(cachep, l3);
969 free_alien_cache(l3->alien);
970 l3->alien = NULL;
971 }
972
973 /* free slabs belonging to this node */
974 if (__node_shrink(cachep, node)) {
975 cachep->nodelists[node] = NULL;
976 spin_unlock(&l3->list_lock);
977 kfree(l3);
978 } else {
979 spin_unlock(&l3->list_lock);
980 }
b28a02de 981 unlock_cache:
1da177e4
LT
982 spin_unlock_irq(&cachep->spinlock);
983 kfree(nc);
984 }
fc0abb14 985 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
986 break;
987#endif
988 }
989 return NOTIFY_OK;
b28a02de 990 bad:
fc0abb14 991 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
992 return NOTIFY_BAD;
993}
994
995static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
996
e498be7d
CL
997/*
998 * swap the static kmem_list3 with kmalloced memory
999 */
b28a02de 1000static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
e498be7d
CL
1001{
1002 struct kmem_list3 *ptr;
1003
1004 BUG_ON(cachep->nodelists[nodeid] != list);
1005 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1006 BUG_ON(!ptr);
1007
1008 local_irq_disable();
1009 memcpy(ptr, list, sizeof(struct kmem_list3));
1010 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1011 cachep->nodelists[nodeid] = ptr;
1012 local_irq_enable();
1013}
1014
1da177e4
LT
1015/* Initialisation.
1016 * Called after the gfp() functions have been enabled, and before smp_init().
1017 */
1018void __init kmem_cache_init(void)
1019{
1020 size_t left_over;
1021 struct cache_sizes *sizes;
1022 struct cache_names *names;
e498be7d
CL
1023 int i;
1024
1025 for (i = 0; i < NUM_INIT_LISTS; i++) {
1026 kmem_list3_init(&initkmem_list3[i]);
1027 if (i < MAX_NUMNODES)
1028 cache_cache.nodelists[i] = NULL;
1029 }
1da177e4
LT
1030
1031 /*
1032 * Fragmentation resistance on low memory - only use bigger
1033 * page orders on machines with more than 32MB of memory.
1034 */
1035 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1036 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1037
1da177e4
LT
1038 /* Bootstrap is tricky, because several objects are allocated
1039 * from caches that do not exist yet:
1040 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1041 * structures of all caches, except cache_cache itself: cache_cache
1042 * is statically allocated.
e498be7d
CL
1043 * Initially an __init data area is used for the head array and the
1044 * kmem_list3 structures, it's replaced with a kmalloc allocated
1045 * array at the end of the bootstrap.
1da177e4 1046 * 2) Create the first kmalloc cache.
e498be7d
CL
1047 * The kmem_cache_t for the new cache is allocated normally.
1048 * An __init data area is used for the head array.
1049 * 3) Create the remaining kmalloc caches, with minimally sized
1050 * head arrays.
1da177e4
LT
1051 * 4) Replace the __init data head arrays for cache_cache and the first
1052 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1053 * 5) Replace the __init data for kmem_list3 for cache_cache and
1054 * the other cache's with kmalloc allocated memory.
1055 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1056 */
1057
1058 /* 1) create the cache_cache */
1da177e4
LT
1059 INIT_LIST_HEAD(&cache_chain);
1060 list_add(&cache_cache.next, &cache_chain);
1061 cache_cache.colour_off = cache_line_size();
1062 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1063 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1064
3dafccf2 1065 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
1da177e4 1066
3dafccf2 1067 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
b28a02de 1068 &left_over, &cache_cache.num);
1da177e4
LT
1069 if (!cache_cache.num)
1070 BUG();
1071
b28a02de 1072 cache_cache.colour = left_over / cache_cache.colour_off;
1da177e4 1073 cache_cache.colour_next = 0;
b28a02de
PE
1074 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1075 sizeof(struct slab), cache_line_size());
1da177e4
LT
1076
1077 /* 2+3) create the kmalloc caches */
1078 sizes = malloc_sizes;
1079 names = cache_names;
1080
e498be7d
CL
1081 /* Initialize the caches that provide memory for the array cache
1082 * and the kmem_list3 structures first.
1083 * Without this, further allocations will bug
1084 */
1085
1086 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
b28a02de
PE
1087 sizes[INDEX_AC].cs_size,
1088 ARCH_KMALLOC_MINALIGN,
1089 (ARCH_KMALLOC_FLAGS |
1090 SLAB_PANIC), NULL, NULL);
e498be7d
CL
1091
1092 if (INDEX_AC != INDEX_L3)
1093 sizes[INDEX_L3].cs_cachep =
b28a02de
PE
1094 kmem_cache_create(names[INDEX_L3].name,
1095 sizes[INDEX_L3].cs_size,
1096 ARCH_KMALLOC_MINALIGN,
1097 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1098 NULL);
e498be7d 1099
1da177e4 1100 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1101 /*
1102 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1103 * This should be particularly beneficial on SMP boxes, as it
1104 * eliminates "false sharing".
1105 * Note for systems short on memory removing the alignment will
e498be7d
CL
1106 * allow tighter packing of the smaller caches.
1107 */
b28a02de 1108 if (!sizes->cs_cachep)
e498be7d 1109 sizes->cs_cachep = kmem_cache_create(names->name,
b28a02de
PE
1110 sizes->cs_size,
1111 ARCH_KMALLOC_MINALIGN,
1112 (ARCH_KMALLOC_FLAGS
1113 | SLAB_PANIC),
1114 NULL, NULL);
1da177e4
LT
1115
1116 /* Inc off-slab bufctl limit until the ceiling is hit. */
1117 if (!(OFF_SLAB(sizes->cs_cachep))) {
b28a02de 1118 offslab_limit = sizes->cs_size - sizeof(struct slab);
1da177e4
LT
1119 offslab_limit /= sizeof(kmem_bufctl_t);
1120 }
1121
1122 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
b28a02de
PE
1123 sizes->cs_size,
1124 ARCH_KMALLOC_MINALIGN,
1125 (ARCH_KMALLOC_FLAGS |
1126 SLAB_CACHE_DMA |
1127 SLAB_PANIC), NULL,
1128 NULL);
1da177e4
LT
1129
1130 sizes++;
1131 names++;
1132 }
1133 /* 4) Replace the bootstrap head arrays */
1134 {
b28a02de 1135 void *ptr;
e498be7d 1136
1da177e4 1137 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1138
1da177e4
LT
1139 local_irq_disable();
1140 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
e498be7d 1141 memcpy(ptr, ac_data(&cache_cache),
b28a02de 1142 sizeof(struct arraycache_init));
1da177e4
LT
1143 cache_cache.array[smp_processor_id()] = ptr;
1144 local_irq_enable();
e498be7d 1145
1da177e4 1146 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1147
1da177e4 1148 local_irq_disable();
e498be7d 1149 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1150 != &initarray_generic.cache);
e498be7d 1151 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1152 sizeof(struct arraycache_init));
e498be7d 1153 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1154 ptr;
1da177e4
LT
1155 local_irq_enable();
1156 }
e498be7d
CL
1157 /* 5) Replace the bootstrap kmem_list3's */
1158 {
1159 int node;
1160 /* Replace the static kmem_list3 structures for the boot cpu */
1161 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1162 numa_node_id());
e498be7d
CL
1163
1164 for_each_online_node(node) {
1165 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1166 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1167
1168 if (INDEX_AC != INDEX_L3) {
1169 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1170 &initkmem_list3[SIZE_L3 + node],
1171 node);
e498be7d
CL
1172 }
1173 }
1174 }
1da177e4 1175
e498be7d 1176 /* 6) resize the head arrays to their final sizes */
1da177e4
LT
1177 {
1178 kmem_cache_t *cachep;
fc0abb14 1179 mutex_lock(&cache_chain_mutex);
1da177e4 1180 list_for_each_entry(cachep, &cache_chain, next)
b28a02de 1181 enable_cpucache(cachep);
fc0abb14 1182 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1183 }
1184
1185 /* Done! */
1186 g_cpucache_up = FULL;
1187
1188 /* Register a cpu startup notifier callback
1189 * that initializes ac_data for all new cpus
1190 */
1191 register_cpu_notifier(&cpucache_notifier);
1da177e4
LT
1192
1193 /* The reap timers are started later, with a module init call:
1194 * That part of the kernel is not yet operational.
1195 */
1196}
1197
1198static int __init cpucache_init(void)
1199{
1200 int cpu;
1201
1202 /*
1203 * Register the timers that return unneeded
1204 * pages to gfp.
1205 */
e498be7d 1206 for_each_online_cpu(cpu)
b28a02de 1207 start_cpu_timer(cpu);
1da177e4
LT
1208
1209 return 0;
1210}
1211
1212__initcall(cpucache_init);
1213
1214/*
1215 * Interface to system's page allocator. No need to hold the cache-lock.
1216 *
1217 * If we requested dmaable memory, we will get it. Even if we
1218 * did not request dmaable memory, we might get it, but that
1219 * would be relatively rare and ignorable.
1220 */
dd0fc66f 1221static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1222{
1223 struct page *page;
1224 void *addr;
1225 int i;
1226
1227 flags |= cachep->gfpflags;
50c85a19 1228 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1229 if (!page)
1230 return NULL;
1231 addr = page_address(page);
1232
1233 i = (1 << cachep->gfporder);
1234 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1235 atomic_add(i, &slab_reclaim_pages);
1236 add_page_state(nr_slab, i);
1237 while (i--) {
1238 SetPageSlab(page);
1239 page++;
1240 }
1241 return addr;
1242}
1243
1244/*
1245 * Interface to system's page release.
1246 */
1247static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1248{
b28a02de 1249 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1250 struct page *page = virt_to_page(addr);
1251 const unsigned long nr_freed = i;
1252
1253 while (i--) {
1254 if (!TestClearPageSlab(page))
1255 BUG();
1256 page++;
1257 }
1258 sub_page_state(nr_slab, nr_freed);
1259 if (current->reclaim_state)
1260 current->reclaim_state->reclaimed_slab += nr_freed;
1261 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1262 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1263 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1264}
1265
1266static void kmem_rcu_free(struct rcu_head *head)
1267{
b28a02de 1268 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1da177e4
LT
1269 kmem_cache_t *cachep = slab_rcu->cachep;
1270
1271 kmem_freepages(cachep, slab_rcu->addr);
1272 if (OFF_SLAB(cachep))
1273 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1274}
1275
1276#if DEBUG
1277
1278#ifdef CONFIG_DEBUG_PAGEALLOC
1279static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
b28a02de 1280 unsigned long caller)
1da177e4 1281{
3dafccf2 1282 int size = obj_size(cachep);
1da177e4 1283
3dafccf2 1284 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1285
b28a02de 1286 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1287 return;
1288
b28a02de
PE
1289 *addr++ = 0x12345678;
1290 *addr++ = caller;
1291 *addr++ = smp_processor_id();
1292 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1293 {
1294 unsigned long *sptr = &caller;
1295 unsigned long svalue;
1296
1297 while (!kstack_end(sptr)) {
1298 svalue = *sptr++;
1299 if (kernel_text_address(svalue)) {
b28a02de 1300 *addr++ = svalue;
1da177e4
LT
1301 size -= sizeof(unsigned long);
1302 if (size <= sizeof(unsigned long))
1303 break;
1304 }
1305 }
1306
1307 }
b28a02de 1308 *addr++ = 0x87654321;
1da177e4
LT
1309}
1310#endif
1311
1312static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1313{
3dafccf2
MS
1314 int size = obj_size(cachep);
1315 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1316
1317 memset(addr, val, size);
b28a02de 1318 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1319}
1320
1321static void dump_line(char *data, int offset, int limit)
1322{
1323 int i;
1324 printk(KERN_ERR "%03x:", offset);
b28a02de
PE
1325 for (i = 0; i < limit; i++) {
1326 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1327 }
1328 printk("\n");
1329}
1330#endif
1331
1332#if DEBUG
1333
1334static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1335{
1336 int i, size;
1337 char *realobj;
1338
1339 if (cachep->flags & SLAB_RED_ZONE) {
1340 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
b28a02de
PE
1341 *dbg_redzone1(cachep, objp),
1342 *dbg_redzone2(cachep, objp));
1da177e4
LT
1343 }
1344
1345 if (cachep->flags & SLAB_STORE_USER) {
1346 printk(KERN_ERR "Last user: [<%p>]",
b28a02de 1347 *dbg_userword(cachep, objp));
1da177e4 1348 print_symbol("(%s)",
b28a02de 1349 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1350 printk("\n");
1351 }
3dafccf2
MS
1352 realobj = (char *)objp + obj_offset(cachep);
1353 size = obj_size(cachep);
b28a02de 1354 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1355 int limit;
1356 limit = 16;
b28a02de
PE
1357 if (i + limit > size)
1358 limit = size - i;
1da177e4
LT
1359 dump_line(realobj, i, limit);
1360 }
1361}
1362
1363static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1364{
1365 char *realobj;
1366 int size, i;
1367 int lines = 0;
1368
3dafccf2
MS
1369 realobj = (char *)objp + obj_offset(cachep);
1370 size = obj_size(cachep);
1da177e4 1371
b28a02de 1372 for (i = 0; i < size; i++) {
1da177e4 1373 char exp = POISON_FREE;
b28a02de 1374 if (i == size - 1)
1da177e4
LT
1375 exp = POISON_END;
1376 if (realobj[i] != exp) {
1377 int limit;
1378 /* Mismatch ! */
1379 /* Print header */
1380 if (lines == 0) {
b28a02de
PE
1381 printk(KERN_ERR
1382 "Slab corruption: start=%p, len=%d\n",
1383 realobj, size);
1da177e4
LT
1384 print_objinfo(cachep, objp, 0);
1385 }
1386 /* Hexdump the affected line */
b28a02de 1387 i = (i / 16) * 16;
1da177e4 1388 limit = 16;
b28a02de
PE
1389 if (i + limit > size)
1390 limit = size - i;
1da177e4
LT
1391 dump_line(realobj, i, limit);
1392 i += 16;
1393 lines++;
1394 /* Limit to 5 lines */
1395 if (lines > 5)
1396 break;
1397 }
1398 }
1399 if (lines != 0) {
1400 /* Print some data about the neighboring objects, if they
1401 * exist:
1402 */
065d41cb 1403 struct slab *slabp = page_get_slab(virt_to_page(objp));
1da177e4
LT
1404 int objnr;
1405
3dafccf2 1406 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1da177e4 1407 if (objnr) {
3dafccf2
MS
1408 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1409 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1410 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1411 realobj, size);
1da177e4
LT
1412 print_objinfo(cachep, objp, 2);
1413 }
b28a02de 1414 if (objnr + 1 < cachep->num) {
3dafccf2
MS
1415 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1416 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1417 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1418 realobj, size);
1da177e4
LT
1419 print_objinfo(cachep, objp, 2);
1420 }
1421 }
1422}
1423#endif
1424
1425/* Destroy all the objs in a slab, and release the mem back to the system.
1426 * Before calling the slab must have been unlinked from the cache.
1427 * The cache-lock is not held/needed.
1428 */
b28a02de 1429static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1da177e4
LT
1430{
1431 void *addr = slabp->s_mem - slabp->colouroff;
1432
1433#if DEBUG
1434 int i;
1435 for (i = 0; i < cachep->num; i++) {
3dafccf2 1436 void *objp = slabp->s_mem + cachep->buffer_size * i;
1da177e4
LT
1437
1438 if (cachep->flags & SLAB_POISON) {
1439#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 1440 if ((cachep->buffer_size % PAGE_SIZE) == 0
b28a02de
PE
1441 && OFF_SLAB(cachep))
1442 kernel_map_pages(virt_to_page(objp),
3dafccf2 1443 cachep->buffer_size / PAGE_SIZE,
b28a02de 1444 1);
1da177e4
LT
1445 else
1446 check_poison_obj(cachep, objp);
1447#else
1448 check_poison_obj(cachep, objp);
1449#endif
1450 }
1451 if (cachep->flags & SLAB_RED_ZONE) {
1452 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1453 slab_error(cachep, "start of a freed object "
b28a02de 1454 "was overwritten");
1da177e4
LT
1455 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1456 slab_error(cachep, "end of a freed object "
b28a02de 1457 "was overwritten");
1da177e4
LT
1458 }
1459 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1460 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4
LT
1461 }
1462#else
1463 if (cachep->dtor) {
1464 int i;
1465 for (i = 0; i < cachep->num; i++) {
3dafccf2 1466 void *objp = slabp->s_mem + cachep->buffer_size * i;
b28a02de 1467 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1468 }
1469 }
1470#endif
1471
1472 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1473 struct slab_rcu *slab_rcu;
1474
b28a02de 1475 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1476 slab_rcu->cachep = cachep;
1477 slab_rcu->addr = addr;
1478 call_rcu(&slab_rcu->head, kmem_rcu_free);
1479 } else {
1480 kmem_freepages(cachep, addr);
1481 if (OFF_SLAB(cachep))
1482 kmem_cache_free(cachep->slabp_cache, slabp);
1483 }
1484}
1485
3dafccf2 1486/* For setting up all the kmem_list3s for cache whose buffer_size is same
e498be7d
CL
1487 as size of kmem_list3. */
1488static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1489{
1490 int node;
1491
1492 for_each_online_node(node) {
b28a02de 1493 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1494 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1495 REAPTIMEOUT_LIST3 +
1496 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1497 }
1498}
1499
4d268eba
PE
1500/**
1501 * calculate_slab_order - calculate size (page order) of slabs and the number
1502 * of objects per slab.
1503 *
1504 * This could be made much more intelligent. For now, try to avoid using
1505 * high order pages for slabs. When the gfp() functions are more friendly
1506 * towards high-order requests, this should be changed.
1507 */
1508static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1509 size_t align, gfp_t flags)
1510{
1511 size_t left_over = 0;
1512
b28a02de 1513 for (;; cachep->gfporder++) {
4d268eba
PE
1514 unsigned int num;
1515 size_t remainder;
1516
1517 if (cachep->gfporder > MAX_GFP_ORDER) {
1518 cachep->num = 0;
1519 break;
1520 }
1521
1522 cache_estimate(cachep->gfporder, size, align, flags,
1523 &remainder, &num);
1524 if (!num)
1525 continue;
1526 /* More than offslab_limit objects will cause problems */
1527 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1528 break;
1529
1530 cachep->num = num;
1531 left_over = remainder;
1532
1533 /*
1534 * Large number of objects is good, but very large slabs are
1535 * currently bad for the gfp()s.
1536 */
1537 if (cachep->gfporder >= slab_break_gfp_order)
1538 break;
1539
1540 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1541 /* Acceptable internal fragmentation */
1542 break;
1543 }
1544 return left_over;
1545}
1546
1da177e4
LT
1547/**
1548 * kmem_cache_create - Create a cache.
1549 * @name: A string which is used in /proc/slabinfo to identify this cache.
1550 * @size: The size of objects to be created in this cache.
1551 * @align: The required alignment for the objects.
1552 * @flags: SLAB flags
1553 * @ctor: A constructor for the objects.
1554 * @dtor: A destructor for the objects.
1555 *
1556 * Returns a ptr to the cache on success, NULL on failure.
1557 * Cannot be called within a int, but can be interrupted.
1558 * The @ctor is run when new pages are allocated by the cache
1559 * and the @dtor is run before the pages are handed back.
1560 *
1561 * @name must be valid until the cache is destroyed. This implies that
1562 * the module calling this has to destroy the cache before getting
1563 * unloaded.
1564 *
1565 * The flags are
1566 *
1567 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1568 * to catch references to uninitialised memory.
1569 *
1570 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1571 * for buffer overruns.
1572 *
1573 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1574 * memory pressure.
1575 *
1576 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1577 * cacheline. This can be beneficial if you're counting cycles as closely
1578 * as davem.
1579 */
1580kmem_cache_t *
1581kmem_cache_create (const char *name, size_t size, size_t align,
1582 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1583 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1584{
1585 size_t left_over, slab_size, ralign;
1586 kmem_cache_t *cachep = NULL;
4f12bb4f 1587 struct list_head *p;
1da177e4
LT
1588
1589 /*
1590 * Sanity checks... these are all serious usage bugs.
1591 */
1592 if ((!name) ||
b28a02de
PE
1593 in_interrupt() ||
1594 (size < BYTES_PER_WORD) ||
1595 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1596 printk(KERN_ERR "%s: Early error in slab %s\n",
1597 __FUNCTION__, name);
1598 BUG();
1599 }
1da177e4 1600
fc0abb14 1601 mutex_lock(&cache_chain_mutex);
4f12bb4f
AM
1602
1603 list_for_each(p, &cache_chain) {
1604 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1605 mm_segment_t old_fs = get_fs();
1606 char tmp;
1607 int res;
1608
1609 /*
1610 * This happens when the module gets unloaded and doesn't
1611 * destroy its slab cache and no-one else reuses the vmalloc
1612 * area of the module. Print a warning.
1613 */
1614 set_fs(KERNEL_DS);
1615 res = __get_user(tmp, pc->name);
1616 set_fs(old_fs);
1617 if (res) {
1618 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 1619 pc->buffer_size);
4f12bb4f
AM
1620 continue;
1621 }
1622
b28a02de 1623 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
1624 printk("kmem_cache_create: duplicate cache %s\n", name);
1625 dump_stack();
1626 goto oops;
1627 }
1628 }
1629
1da177e4
LT
1630#if DEBUG
1631 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1632 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1633 /* No constructor, but inital state check requested */
1634 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 1635 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
1636 flags &= ~SLAB_DEBUG_INITIAL;
1637 }
1da177e4
LT
1638#if FORCED_DEBUG
1639 /*
1640 * Enable redzoning and last user accounting, except for caches with
1641 * large objects, if the increased size would increase the object size
1642 * above the next power of two: caches with object sizes just above a
1643 * power of two have a significant amount of internal fragmentation.
1644 */
b28a02de
PE
1645 if ((size < 4096
1646 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1647 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
1648 if (!(flags & SLAB_DESTROY_BY_RCU))
1649 flags |= SLAB_POISON;
1650#endif
1651 if (flags & SLAB_DESTROY_BY_RCU)
1652 BUG_ON(flags & SLAB_POISON);
1653#endif
1654 if (flags & SLAB_DESTROY_BY_RCU)
1655 BUG_ON(dtor);
1656
1657 /*
1658 * Always checks flags, a caller might be expecting debug
1659 * support which isn't available.
1660 */
1661 if (flags & ~CREATE_MASK)
1662 BUG();
1663
1664 /* Check that size is in terms of words. This is needed to avoid
1665 * unaligned accesses for some archs when redzoning is used, and makes
1666 * sure any on-slab bufctl's are also correctly aligned.
1667 */
b28a02de
PE
1668 if (size & (BYTES_PER_WORD - 1)) {
1669 size += (BYTES_PER_WORD - 1);
1670 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
1671 }
1672
1673 /* calculate out the final buffer alignment: */
1674 /* 1) arch recommendation: can be overridden for debug */
1675 if (flags & SLAB_HWCACHE_ALIGN) {
1676 /* Default alignment: as specified by the arch code.
1677 * Except if an object is really small, then squeeze multiple
1678 * objects into one cacheline.
1679 */
1680 ralign = cache_line_size();
b28a02de 1681 while (size <= ralign / 2)
1da177e4
LT
1682 ralign /= 2;
1683 } else {
1684 ralign = BYTES_PER_WORD;
1685 }
1686 /* 2) arch mandated alignment: disables debug if necessary */
1687 if (ralign < ARCH_SLAB_MINALIGN) {
1688 ralign = ARCH_SLAB_MINALIGN;
1689 if (ralign > BYTES_PER_WORD)
b28a02de 1690 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1691 }
1692 /* 3) caller mandated alignment: disables debug if necessary */
1693 if (ralign < align) {
1694 ralign = align;
1695 if (ralign > BYTES_PER_WORD)
b28a02de 1696 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
1697 }
1698 /* 4) Store it. Note that the debug code below can reduce
1699 * the alignment to BYTES_PER_WORD.
1700 */
1701 align = ralign;
1702
1703 /* Get cache's description obj. */
1704 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1705 if (!cachep)
4f12bb4f 1706 goto oops;
1da177e4
LT
1707 memset(cachep, 0, sizeof(kmem_cache_t));
1708
1709#if DEBUG
3dafccf2 1710 cachep->obj_size = size;
1da177e4
LT
1711
1712 if (flags & SLAB_RED_ZONE) {
1713 /* redzoning only works with word aligned caches */
1714 align = BYTES_PER_WORD;
1715
1716 /* add space for red zone words */
3dafccf2 1717 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 1718 size += 2 * BYTES_PER_WORD;
1da177e4
LT
1719 }
1720 if (flags & SLAB_STORE_USER) {
1721 /* user store requires word alignment and
1722 * one word storage behind the end of the real
1723 * object.
1724 */
1725 align = BYTES_PER_WORD;
1726 size += BYTES_PER_WORD;
1727 }
1728#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 1729 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
1730 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1731 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
1732 size = PAGE_SIZE;
1733 }
1734#endif
1735#endif
1736
1737 /* Determine if the slab management is 'on' or 'off' slab. */
b28a02de 1738 if (size >= (PAGE_SIZE >> 3))
1da177e4
LT
1739 /*
1740 * Size is large, assume best to place the slab management obj
1741 * off-slab (should allow better packing of objs).
1742 */
1743 flags |= CFLGS_OFF_SLAB;
1744
1745 size = ALIGN(size, align);
1746
1747 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1748 /*
1749 * A VFS-reclaimable slab tends to have most allocations
1750 * as GFP_NOFS and we really don't want to have to be allocating
1751 * higher-order pages when we are unable to shrink dcache.
1752 */
1753 cachep->gfporder = 0;
1754 cache_estimate(cachep->gfporder, size, align, flags,
b28a02de 1755 &left_over, &cachep->num);
4d268eba
PE
1756 } else
1757 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
1758
1759 if (!cachep->num) {
1760 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1761 kmem_cache_free(&cache_cache, cachep);
1762 cachep = NULL;
4f12bb4f 1763 goto oops;
1da177e4 1764 }
b28a02de
PE
1765 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1766 + sizeof(struct slab), align);
1da177e4
LT
1767
1768 /*
1769 * If the slab has been placed off-slab, and we have enough space then
1770 * move it on-slab. This is at the expense of any extra colouring.
1771 */
1772 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1773 flags &= ~CFLGS_OFF_SLAB;
1774 left_over -= slab_size;
1775 }
1776
1777 if (flags & CFLGS_OFF_SLAB) {
1778 /* really off slab. No need for manual alignment */
b28a02de
PE
1779 slab_size =
1780 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
1781 }
1782
1783 cachep->colour_off = cache_line_size();
1784 /* Offset must be a multiple of the alignment. */
1785 if (cachep->colour_off < align)
1786 cachep->colour_off = align;
b28a02de 1787 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
1788 cachep->slab_size = slab_size;
1789 cachep->flags = flags;
1790 cachep->gfpflags = 0;
1791 if (flags & SLAB_CACHE_DMA)
1792 cachep->gfpflags |= GFP_DMA;
1793 spin_lock_init(&cachep->spinlock);
3dafccf2 1794 cachep->buffer_size = size;
1da177e4
LT
1795
1796 if (flags & CFLGS_OFF_SLAB)
b2d55073 1797 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1da177e4
LT
1798 cachep->ctor = ctor;
1799 cachep->dtor = dtor;
1800 cachep->name = name;
1801
1802 /* Don't let CPUs to come and go */
1803 lock_cpu_hotplug();
1804
1805 if (g_cpucache_up == FULL) {
1806 enable_cpucache(cachep);
1807 } else {
1808 if (g_cpucache_up == NONE) {
1809 /* Note: the first kmem_cache_create must create
1810 * the cache that's used by kmalloc(24), otherwise
1811 * the creation of further caches will BUG().
1812 */
e498be7d 1813 cachep->array[smp_processor_id()] =
b28a02de 1814 &initarray_generic.cache;
e498be7d
CL
1815
1816 /* If the cache that's used by
1817 * kmalloc(sizeof(kmem_list3)) is the first cache,
1818 * then we need to set up all its list3s, otherwise
1819 * the creation of further caches will BUG().
1820 */
1821 set_up_list3s(cachep, SIZE_AC);
1822 if (INDEX_AC == INDEX_L3)
1823 g_cpucache_up = PARTIAL_L3;
1824 else
1825 g_cpucache_up = PARTIAL_AC;
1da177e4 1826 } else {
e498be7d 1827 cachep->array[smp_processor_id()] =
b28a02de 1828 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d
CL
1829
1830 if (g_cpucache_up == PARTIAL_AC) {
1831 set_up_list3s(cachep, SIZE_L3);
1832 g_cpucache_up = PARTIAL_L3;
1833 } else {
1834 int node;
1835 for_each_online_node(node) {
1836
1837 cachep->nodelists[node] =
b28a02de
PE
1838 kmalloc_node(sizeof
1839 (struct kmem_list3),
1840 GFP_KERNEL, node);
e498be7d 1841 BUG_ON(!cachep->nodelists[node]);
b28a02de
PE
1842 kmem_list3_init(cachep->
1843 nodelists[node]);
e498be7d
CL
1844 }
1845 }
1da177e4 1846 }
e498be7d 1847 cachep->nodelists[numa_node_id()]->next_reap =
b28a02de
PE
1848 jiffies + REAPTIMEOUT_LIST3 +
1849 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1850
1da177e4
LT
1851 BUG_ON(!ac_data(cachep));
1852 ac_data(cachep)->avail = 0;
1853 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1854 ac_data(cachep)->batchcount = 1;
1855 ac_data(cachep)->touched = 0;
1856 cachep->batchcount = 1;
1857 cachep->limit = BOOT_CPUCACHE_ENTRIES;
b28a02de 1858 }
1da177e4 1859
1da177e4
LT
1860 /* cache setup completed, link it into the list */
1861 list_add(&cachep->next, &cache_chain);
1da177e4 1862 unlock_cpu_hotplug();
b28a02de 1863 oops:
1da177e4
LT
1864 if (!cachep && (flags & SLAB_PANIC))
1865 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 1866 name);
fc0abb14 1867 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1868 return cachep;
1869}
1870EXPORT_SYMBOL(kmem_cache_create);
1871
1872#if DEBUG
1873static void check_irq_off(void)
1874{
1875 BUG_ON(!irqs_disabled());
1876}
1877
1878static void check_irq_on(void)
1879{
1880 BUG_ON(irqs_disabled());
1881}
1882
1883static void check_spinlock_acquired(kmem_cache_t *cachep)
1884{
1885#ifdef CONFIG_SMP
1886 check_irq_off();
e498be7d 1887 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
1888#endif
1889}
e498be7d
CL
1890
1891static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1892{
1893#ifdef CONFIG_SMP
1894 check_irq_off();
1895 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1896#endif
1897}
1898
1da177e4
LT
1899#else
1900#define check_irq_off() do { } while(0)
1901#define check_irq_on() do { } while(0)
1902#define check_spinlock_acquired(x) do { } while(0)
e498be7d 1903#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
1904#endif
1905
1906/*
1907 * Waits for all CPUs to execute func().
1908 */
b28a02de 1909static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1da177e4
LT
1910{
1911 check_irq_on();
1912 preempt_disable();
1913
1914 local_irq_disable();
1915 func(arg);
1916 local_irq_enable();
1917
1918 if (smp_call_function(func, arg, 1, 1))
1919 BUG();
1920
1921 preempt_enable();
1922}
1923
b28a02de
PE
1924static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1925 int force, int node);
1da177e4
LT
1926
1927static void do_drain(void *arg)
1928{
b28a02de 1929 kmem_cache_t *cachep = (kmem_cache_t *) arg;
1da177e4 1930 struct array_cache *ac;
ff69416e 1931 int node = numa_node_id();
1da177e4
LT
1932
1933 check_irq_off();
1934 ac = ac_data(cachep);
ff69416e
CL
1935 spin_lock(&cachep->nodelists[node]->list_lock);
1936 free_block(cachep, ac->entry, ac->avail, node);
1937 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
1938 ac->avail = 0;
1939}
1940
1941static void drain_cpu_caches(kmem_cache_t *cachep)
1942{
e498be7d
CL
1943 struct kmem_list3 *l3;
1944 int node;
1945
1da177e4
LT
1946 smp_call_function_all_cpus(do_drain, cachep);
1947 check_irq_on();
1948 spin_lock_irq(&cachep->spinlock);
b28a02de 1949 for_each_online_node(node) {
e498be7d
CL
1950 l3 = cachep->nodelists[node];
1951 if (l3) {
1952 spin_lock(&l3->list_lock);
1953 drain_array_locked(cachep, l3->shared, 1, node);
1954 spin_unlock(&l3->list_lock);
1955 if (l3->alien)
1956 drain_alien_cache(cachep, l3);
1957 }
1958 }
1da177e4
LT
1959 spin_unlock_irq(&cachep->spinlock);
1960}
1961
e498be7d 1962static int __node_shrink(kmem_cache_t *cachep, int node)
1da177e4
LT
1963{
1964 struct slab *slabp;
e498be7d 1965 struct kmem_list3 *l3 = cachep->nodelists[node];
1da177e4
LT
1966 int ret;
1967
e498be7d 1968 for (;;) {
1da177e4
LT
1969 struct list_head *p;
1970
e498be7d
CL
1971 p = l3->slabs_free.prev;
1972 if (p == &l3->slabs_free)
1da177e4
LT
1973 break;
1974
e498be7d 1975 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1da177e4
LT
1976#if DEBUG
1977 if (slabp->inuse)
1978 BUG();
1979#endif
1980 list_del(&slabp->list);
1981
e498be7d
CL
1982 l3->free_objects -= cachep->num;
1983 spin_unlock_irq(&l3->list_lock);
1da177e4 1984 slab_destroy(cachep, slabp);
e498be7d 1985 spin_lock_irq(&l3->list_lock);
1da177e4 1986 }
b28a02de 1987 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1da177e4
LT
1988 return ret;
1989}
1990
e498be7d
CL
1991static int __cache_shrink(kmem_cache_t *cachep)
1992{
1993 int ret = 0, i = 0;
1994 struct kmem_list3 *l3;
1995
1996 drain_cpu_caches(cachep);
1997
1998 check_irq_on();
1999 for_each_online_node(i) {
2000 l3 = cachep->nodelists[i];
2001 if (l3) {
2002 spin_lock_irq(&l3->list_lock);
2003 ret += __node_shrink(cachep, i);
2004 spin_unlock_irq(&l3->list_lock);
2005 }
2006 }
2007 return (ret ? 1 : 0);
2008}
2009
1da177e4
LT
2010/**
2011 * kmem_cache_shrink - Shrink a cache.
2012 * @cachep: The cache to shrink.
2013 *
2014 * Releases as many slabs as possible for a cache.
2015 * To help debugging, a zero exit status indicates all slabs were released.
2016 */
2017int kmem_cache_shrink(kmem_cache_t *cachep)
2018{
2019 if (!cachep || in_interrupt())
2020 BUG();
2021
2022 return __cache_shrink(cachep);
2023}
2024EXPORT_SYMBOL(kmem_cache_shrink);
2025
2026/**
2027 * kmem_cache_destroy - delete a cache
2028 * @cachep: the cache to destroy
2029 *
2030 * Remove a kmem_cache_t object from the slab cache.
2031 * Returns 0 on success.
2032 *
2033 * It is expected this function will be called by a module when it is
2034 * unloaded. This will remove the cache completely, and avoid a duplicate
2035 * cache being allocated each time a module is loaded and unloaded, if the
2036 * module doesn't have persistent in-kernel storage across loads and unloads.
2037 *
2038 * The cache must be empty before calling this function.
2039 *
2040 * The caller must guarantee that noone will allocate memory from the cache
2041 * during the kmem_cache_destroy().
2042 */
b28a02de 2043int kmem_cache_destroy(kmem_cache_t *cachep)
1da177e4
LT
2044{
2045 int i;
e498be7d 2046 struct kmem_list3 *l3;
1da177e4
LT
2047
2048 if (!cachep || in_interrupt())
2049 BUG();
2050
2051 /* Don't let CPUs to come and go */
2052 lock_cpu_hotplug();
2053
2054 /* Find the cache in the chain of caches. */
fc0abb14 2055 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2056 /*
2057 * the chain is never empty, cache_cache is never destroyed
2058 */
2059 list_del(&cachep->next);
fc0abb14 2060 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2061
2062 if (__cache_shrink(cachep)) {
2063 slab_error(cachep, "Can't free all objects");
fc0abb14 2064 mutex_lock(&cache_chain_mutex);
b28a02de 2065 list_add(&cachep->next, &cache_chain);
fc0abb14 2066 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2067 unlock_cpu_hotplug();
2068 return 1;
2069 }
2070
2071 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2072 synchronize_rcu();
1da177e4 2073
e498be7d 2074 for_each_online_cpu(i)
b28a02de 2075 kfree(cachep->array[i]);
1da177e4
LT
2076
2077 /* NUMA: free the list3 structures */
e498be7d
CL
2078 for_each_online_node(i) {
2079 if ((l3 = cachep->nodelists[i])) {
2080 kfree(l3->shared);
2081 free_alien_cache(l3->alien);
2082 kfree(l3);
2083 }
2084 }
1da177e4
LT
2085 kmem_cache_free(&cache_cache, cachep);
2086
2087 unlock_cpu_hotplug();
2088
2089 return 0;
2090}
2091EXPORT_SYMBOL(kmem_cache_destroy);
2092
2093/* Get the memory for a slab management obj. */
b28a02de
PE
2094static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2095 int colour_off, gfp_t local_flags)
1da177e4
LT
2096{
2097 struct slab *slabp;
b28a02de 2098
1da177e4
LT
2099 if (OFF_SLAB(cachep)) {
2100 /* Slab management obj is off-slab. */
2101 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2102 if (!slabp)
2103 return NULL;
2104 } else {
b28a02de 2105 slabp = objp + colour_off;
1da177e4
LT
2106 colour_off += cachep->slab_size;
2107 }
2108 slabp->inuse = 0;
2109 slabp->colouroff = colour_off;
b28a02de 2110 slabp->s_mem = objp + colour_off;
1da177e4
LT
2111
2112 return slabp;
2113}
2114
2115static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2116{
b28a02de 2117 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2118}
2119
2120static void cache_init_objs(kmem_cache_t *cachep,
b28a02de 2121 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2122{
2123 int i;
2124
2125 for (i = 0; i < cachep->num; i++) {
3dafccf2 2126 void *objp = slabp->s_mem + cachep->buffer_size * i;
1da177e4
LT
2127#if DEBUG
2128 /* need to poison the objs? */
2129 if (cachep->flags & SLAB_POISON)
2130 poison_obj(cachep, objp, POISON_FREE);
2131 if (cachep->flags & SLAB_STORE_USER)
2132 *dbg_userword(cachep, objp) = NULL;
2133
2134 if (cachep->flags & SLAB_RED_ZONE) {
2135 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2136 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2137 }
2138 /*
2139 * Constructors are not allowed to allocate memory from
2140 * the same cache which they are a constructor for.
2141 * Otherwise, deadlock. They must also be threaded.
2142 */
2143 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2144 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2145 ctor_flags);
1da177e4
LT
2146
2147 if (cachep->flags & SLAB_RED_ZONE) {
2148 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2149 slab_error(cachep, "constructor overwrote the"
b28a02de 2150 " end of an object");
1da177e4
LT
2151 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2152 slab_error(cachep, "constructor overwrote the"
b28a02de 2153 " start of an object");
1da177e4 2154 }
3dafccf2 2155 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
b28a02de
PE
2156 && cachep->flags & SLAB_POISON)
2157 kernel_map_pages(virt_to_page(objp),
3dafccf2 2158 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2159#else
2160 if (cachep->ctor)
2161 cachep->ctor(objp, cachep, ctor_flags);
2162#endif
b28a02de 2163 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2164 }
b28a02de 2165 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2166 slabp->free = 0;
2167}
2168
6daa0e28 2169static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2170{
2171 if (flags & SLAB_DMA) {
2172 if (!(cachep->gfpflags & GFP_DMA))
2173 BUG();
2174 } else {
2175 if (cachep->gfpflags & GFP_DMA)
2176 BUG();
2177 }
2178}
2179
2180static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2181{
2182 int i;
2183 struct page *page;
2184
2185 /* Nasty!!!!!! I hope this is OK. */
2186 i = 1 << cachep->gfporder;
2187 page = virt_to_page(objp);
2188 do {
065d41cb
PE
2189 page_set_cache(page, cachep);
2190 page_set_slab(page, slabp);
1da177e4
LT
2191 page++;
2192 } while (--i);
2193}
2194
2195/*
2196 * Grow (by 1) the number of slabs within a cache. This is called by
2197 * kmem_cache_alloc() when there are no active objs left in a cache.
2198 */
dd0fc66f 2199static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2200{
b28a02de
PE
2201 struct slab *slabp;
2202 void *objp;
2203 size_t offset;
2204 gfp_t local_flags;
2205 unsigned long ctor_flags;
e498be7d 2206 struct kmem_list3 *l3;
1da177e4
LT
2207
2208 /* Be lazy and only check for valid flags here,
b28a02de 2209 * keeping it out of the critical path in kmem_cache_alloc().
1da177e4 2210 */
b28a02de 2211 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
1da177e4
LT
2212 BUG();
2213 if (flags & SLAB_NO_GROW)
2214 return 0;
2215
2216 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2217 local_flags = (flags & SLAB_LEVEL_MASK);
2218 if (!(local_flags & __GFP_WAIT))
2219 /*
2220 * Not allowed to sleep. Need to tell a constructor about
2221 * this - it might need to know...
2222 */
2223 ctor_flags |= SLAB_CTOR_ATOMIC;
2224
2225 /* About to mess with non-constant members - lock. */
2226 check_irq_off();
2227 spin_lock(&cachep->spinlock);
2228
2229 /* Get colour for the slab, and cal the next value. */
2230 offset = cachep->colour_next;
2231 cachep->colour_next++;
2232 if (cachep->colour_next >= cachep->colour)
2233 cachep->colour_next = 0;
2234 offset *= cachep->colour_off;
2235
2236 spin_unlock(&cachep->spinlock);
2237
e498be7d 2238 check_irq_off();
1da177e4
LT
2239 if (local_flags & __GFP_WAIT)
2240 local_irq_enable();
2241
2242 /*
2243 * The test for missing atomic flag is performed here, rather than
2244 * the more obvious place, simply to reduce the critical path length
2245 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2246 * will eventually be caught here (where it matters).
2247 */
2248 kmem_flagcheck(cachep, flags);
2249
e498be7d
CL
2250 /* Get mem for the objs.
2251 * Attempt to allocate a physical page from 'nodeid',
2252 */
1da177e4
LT
2253 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2254 goto failed;
2255
2256 /* Get slab management. */
2257 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2258 goto opps1;
2259
e498be7d 2260 slabp->nodeid = nodeid;
1da177e4
LT
2261 set_slab_attr(cachep, slabp, objp);
2262
2263 cache_init_objs(cachep, slabp, ctor_flags);
2264
2265 if (local_flags & __GFP_WAIT)
2266 local_irq_disable();
2267 check_irq_off();
e498be7d
CL
2268 l3 = cachep->nodelists[nodeid];
2269 spin_lock(&l3->list_lock);
1da177e4
LT
2270
2271 /* Make slab active. */
e498be7d 2272 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2273 STATS_INC_GROWN(cachep);
e498be7d
CL
2274 l3->free_objects += cachep->num;
2275 spin_unlock(&l3->list_lock);
1da177e4 2276 return 1;
b28a02de 2277 opps1:
1da177e4 2278 kmem_freepages(cachep, objp);
b28a02de 2279 failed:
1da177e4
LT
2280 if (local_flags & __GFP_WAIT)
2281 local_irq_disable();
2282 return 0;
2283}
2284
2285#if DEBUG
2286
2287/*
2288 * Perform extra freeing checks:
2289 * - detect bad pointers.
2290 * - POISON/RED_ZONE checking
2291 * - destructor calls, for caches with POISON+dtor
2292 */
2293static void kfree_debugcheck(const void *objp)
2294{
2295 struct page *page;
2296
2297 if (!virt_addr_valid(objp)) {
2298 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2299 (unsigned long)objp);
2300 BUG();
1da177e4
LT
2301 }
2302 page = virt_to_page(objp);
2303 if (!PageSlab(page)) {
b28a02de
PE
2304 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2305 (unsigned long)objp);
1da177e4
LT
2306 BUG();
2307 }
2308}
2309
2310static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
b28a02de 2311 void *caller)
1da177e4
LT
2312{
2313 struct page *page;
2314 unsigned int objnr;
2315 struct slab *slabp;
2316
3dafccf2 2317 objp -= obj_offset(cachep);
1da177e4
LT
2318 kfree_debugcheck(objp);
2319 page = virt_to_page(objp);
2320
065d41cb 2321 if (page_get_cache(page) != cachep) {
b28a02de
PE
2322 printk(KERN_ERR
2323 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2324 page_get_cache(page), cachep);
1da177e4 2325 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
b28a02de
PE
2326 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2327 page_get_cache(page)->name);
1da177e4
LT
2328 WARN_ON(1);
2329 }
065d41cb 2330 slabp = page_get_slab(page);
1da177e4
LT
2331
2332 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2333 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2334 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2335 slab_error(cachep,
2336 "double free, or memory outside"
2337 " object was overwritten");
2338 printk(KERN_ERR
2339 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2340 objp, *dbg_redzone1(cachep, objp),
2341 *dbg_redzone2(cachep, objp));
1da177e4
LT
2342 }
2343 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2344 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2345 }
2346 if (cachep->flags & SLAB_STORE_USER)
2347 *dbg_userword(cachep, objp) = caller;
2348
3dafccf2 2349 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
1da177e4
LT
2350
2351 BUG_ON(objnr >= cachep->num);
3dafccf2 2352 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
1da177e4
LT
2353
2354 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2355 /* Need to call the slab's constructor so the
2356 * caller can perform a verify of its state (debugging).
2357 * Called without the cache-lock held.
2358 */
3dafccf2 2359 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2360 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2361 }
2362 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2363 /* we want to cache poison the object,
2364 * call the destruction callback
2365 */
3dafccf2 2366 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4
LT
2367 }
2368 if (cachep->flags & SLAB_POISON) {
2369#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2370 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
1da177e4 2371 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2372 kernel_map_pages(virt_to_page(objp),
3dafccf2 2373 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2374 } else {
2375 poison_obj(cachep, objp, POISON_FREE);
2376 }
2377#else
2378 poison_obj(cachep, objp, POISON_FREE);
2379#endif
2380 }
2381 return objp;
2382}
2383
2384static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2385{
2386 kmem_bufctl_t i;
2387 int entries = 0;
b28a02de 2388
1da177e4
LT
2389 /* Check slab's freelist to see if this obj is there. */
2390 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2391 entries++;
2392 if (entries > cachep->num || i >= cachep->num)
2393 goto bad;
2394 }
2395 if (entries != cachep->num - slabp->inuse) {
b28a02de
PE
2396 bad:
2397 printk(KERN_ERR
2398 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2399 cachep->name, cachep->num, slabp, slabp->inuse);
2400 for (i = 0;
2401 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2402 i++) {
2403 if ((i % 16) == 0)
1da177e4 2404 printk("\n%03x:", i);
b28a02de 2405 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2406 }
2407 printk("\n");
2408 BUG();
2409 }
2410}
2411#else
2412#define kfree_debugcheck(x) do { } while(0)
2413#define cache_free_debugcheck(x,objp,z) (objp)
2414#define check_slabp(x,y) do { } while(0)
2415#endif
2416
dd0fc66f 2417static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2418{
2419 int batchcount;
2420 struct kmem_list3 *l3;
2421 struct array_cache *ac;
2422
2423 check_irq_off();
2424 ac = ac_data(cachep);
b28a02de 2425 retry:
1da177e4
LT
2426 batchcount = ac->batchcount;
2427 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2428 /* if there was little recent activity on this
2429 * cache, then perform only a partial refill.
2430 * Otherwise we could generate refill bouncing.
2431 */
2432 batchcount = BATCHREFILL_LIMIT;
2433 }
e498be7d
CL
2434 l3 = cachep->nodelists[numa_node_id()];
2435
2436 BUG_ON(ac->avail > 0 || !l3);
2437 spin_lock(&l3->list_lock);
1da177e4 2438
1da177e4
LT
2439 if (l3->shared) {
2440 struct array_cache *shared_array = l3->shared;
2441 if (shared_array->avail) {
2442 if (batchcount > shared_array->avail)
2443 batchcount = shared_array->avail;
2444 shared_array->avail -= batchcount;
2445 ac->avail = batchcount;
e498be7d 2446 memcpy(ac->entry,
b28a02de
PE
2447 &(shared_array->entry[shared_array->avail]),
2448 sizeof(void *) * batchcount);
1da177e4
LT
2449 shared_array->touched = 1;
2450 goto alloc_done;
2451 }
2452 }
2453 while (batchcount > 0) {
2454 struct list_head *entry;
2455 struct slab *slabp;
2456 /* Get slab alloc is to come from. */
2457 entry = l3->slabs_partial.next;
2458 if (entry == &l3->slabs_partial) {
2459 l3->free_touched = 1;
2460 entry = l3->slabs_free.next;
2461 if (entry == &l3->slabs_free)
2462 goto must_grow;
2463 }
2464
2465 slabp = list_entry(entry, struct slab, list);
2466 check_slabp(cachep, slabp);
2467 check_spinlock_acquired(cachep);
2468 while (slabp->inuse < cachep->num && batchcount--) {
2469 kmem_bufctl_t next;
2470 STATS_INC_ALLOCED(cachep);
2471 STATS_INC_ACTIVE(cachep);
2472 STATS_SET_HIGH(cachep);
2473
2474 /* get obj pointer */
e498be7d 2475 ac->entry[ac->avail++] = slabp->s_mem +
3dafccf2 2476 slabp->free * cachep->buffer_size;
1da177e4
LT
2477
2478 slabp->inuse++;
2479 next = slab_bufctl(slabp)[slabp->free];
2480#if DEBUG
2481 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
09ad4bbc 2482 WARN_ON(numa_node_id() != slabp->nodeid);
1da177e4 2483#endif
b28a02de 2484 slabp->free = next;
1da177e4
LT
2485 }
2486 check_slabp(cachep, slabp);
2487
2488 /* move slabp to correct slabp list: */
2489 list_del(&slabp->list);
2490 if (slabp->free == BUFCTL_END)
2491 list_add(&slabp->list, &l3->slabs_full);
2492 else
2493 list_add(&slabp->list, &l3->slabs_partial);
2494 }
2495
b28a02de 2496 must_grow:
1da177e4 2497 l3->free_objects -= ac->avail;
b28a02de 2498 alloc_done:
e498be7d 2499 spin_unlock(&l3->list_lock);
1da177e4
LT
2500
2501 if (unlikely(!ac->avail)) {
2502 int x;
e498be7d
CL
2503 x = cache_grow(cachep, flags, numa_node_id());
2504
1da177e4
LT
2505 // cache_grow can reenable interrupts, then ac could change.
2506 ac = ac_data(cachep);
2507 if (!x && ac->avail == 0) // no objects in sight? abort
2508 return NULL;
2509
b28a02de 2510 if (!ac->avail) // objects refilled by interrupt?
1da177e4
LT
2511 goto retry;
2512 }
2513 ac->touched = 1;
e498be7d 2514 return ac->entry[--ac->avail];
1da177e4
LT
2515}
2516
2517static inline void
dd0fc66f 2518cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2519{
2520 might_sleep_if(flags & __GFP_WAIT);
2521#if DEBUG
2522 kmem_flagcheck(cachep, flags);
2523#endif
2524}
2525
2526#if DEBUG
b28a02de
PE
2527static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2528 void *objp, void *caller)
1da177e4 2529{
b28a02de 2530 if (!objp)
1da177e4 2531 return objp;
b28a02de 2532 if (cachep->flags & SLAB_POISON) {
1da177e4 2533#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2534 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2535 kernel_map_pages(virt_to_page(objp),
3dafccf2 2536 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2537 else
2538 check_poison_obj(cachep, objp);
2539#else
2540 check_poison_obj(cachep, objp);
2541#endif
2542 poison_obj(cachep, objp, POISON_INUSE);
2543 }
2544 if (cachep->flags & SLAB_STORE_USER)
2545 *dbg_userword(cachep, objp) = caller;
2546
2547 if (cachep->flags & SLAB_RED_ZONE) {
b28a02de
PE
2548 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2549 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2550 slab_error(cachep,
2551 "double free, or memory outside"
2552 " object was overwritten");
2553 printk(KERN_ERR
2554 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2555 objp, *dbg_redzone1(cachep, objp),
2556 *dbg_redzone2(cachep, objp));
1da177e4
LT
2557 }
2558 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2559 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2560 }
3dafccf2 2561 objp += obj_offset(cachep);
1da177e4 2562 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 2563 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
2564
2565 if (!(flags & __GFP_WAIT))
2566 ctor_flags |= SLAB_CTOR_ATOMIC;
2567
2568 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 2569 }
1da177e4
LT
2570 return objp;
2571}
2572#else
2573#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2574#endif
2575
dd0fc66f 2576static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4 2577{
b28a02de 2578 void *objp;
1da177e4
LT
2579 struct array_cache *ac;
2580
dc85da15 2581#ifdef CONFIG_NUMA
86c562a9 2582 if (unlikely(current->mempolicy && !in_interrupt())) {
dc85da15
CL
2583 int nid = slab_node(current->mempolicy);
2584
2585 if (nid != numa_node_id())
2586 return __cache_alloc_node(cachep, flags, nid);
2587 }
2588#endif
2589
5c382300 2590 check_irq_off();
1da177e4
LT
2591 ac = ac_data(cachep);
2592 if (likely(ac->avail)) {
2593 STATS_INC_ALLOCHIT(cachep);
2594 ac->touched = 1;
e498be7d 2595 objp = ac->entry[--ac->avail];
1da177e4
LT
2596 } else {
2597 STATS_INC_ALLOCMISS(cachep);
2598 objp = cache_alloc_refill(cachep, flags);
2599 }
5c382300
AK
2600 return objp;
2601}
2602
dd0fc66f 2603static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
5c382300
AK
2604{
2605 unsigned long save_flags;
b28a02de 2606 void *objp;
5c382300
AK
2607
2608 cache_alloc_debugcheck_before(cachep, flags);
2609
2610 local_irq_save(save_flags);
2611 objp = ____cache_alloc(cachep, flags);
1da177e4 2612 local_irq_restore(save_flags);
34342e86 2613 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
b28a02de 2614 __builtin_return_address(0));
34342e86 2615 prefetchw(objp);
1da177e4
LT
2616 return objp;
2617}
2618
e498be7d
CL
2619#ifdef CONFIG_NUMA
2620/*
2621 * A interface to enable slab creation on nodeid
1da177e4 2622 */
6daa0e28 2623static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
e498be7d
CL
2624{
2625 struct list_head *entry;
b28a02de
PE
2626 struct slab *slabp;
2627 struct kmem_list3 *l3;
2628 void *obj;
2629 kmem_bufctl_t next;
2630 int x;
2631
2632 l3 = cachep->nodelists[nodeid];
2633 BUG_ON(!l3);
2634
2635 retry:
2636 spin_lock(&l3->list_lock);
2637 entry = l3->slabs_partial.next;
2638 if (entry == &l3->slabs_partial) {
2639 l3->free_touched = 1;
2640 entry = l3->slabs_free.next;
2641 if (entry == &l3->slabs_free)
2642 goto must_grow;
2643 }
2644
2645 slabp = list_entry(entry, struct slab, list);
2646 check_spinlock_acquired_node(cachep, nodeid);
2647 check_slabp(cachep, slabp);
2648
2649 STATS_INC_NODEALLOCS(cachep);
2650 STATS_INC_ACTIVE(cachep);
2651 STATS_SET_HIGH(cachep);
2652
2653 BUG_ON(slabp->inuse == cachep->num);
2654
2655 /* get obj pointer */
3dafccf2 2656 obj = slabp->s_mem + slabp->free * cachep->buffer_size;
b28a02de
PE
2657 slabp->inuse++;
2658 next = slab_bufctl(slabp)[slabp->free];
e498be7d 2659#if DEBUG
b28a02de 2660 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
e498be7d 2661#endif
b28a02de
PE
2662 slabp->free = next;
2663 check_slabp(cachep, slabp);
2664 l3->free_objects--;
2665 /* move slabp to correct slabp list: */
2666 list_del(&slabp->list);
2667
2668 if (slabp->free == BUFCTL_END) {
2669 list_add(&slabp->list, &l3->slabs_full);
2670 } else {
2671 list_add(&slabp->list, &l3->slabs_partial);
2672 }
e498be7d 2673
b28a02de
PE
2674 spin_unlock(&l3->list_lock);
2675 goto done;
e498be7d 2676
b28a02de
PE
2677 must_grow:
2678 spin_unlock(&l3->list_lock);
2679 x = cache_grow(cachep, flags, nodeid);
1da177e4 2680
b28a02de
PE
2681 if (!x)
2682 return NULL;
e498be7d 2683
b28a02de
PE
2684 goto retry;
2685 done:
2686 return obj;
e498be7d
CL
2687}
2688#endif
2689
2690/*
2691 * Caller needs to acquire correct kmem_list's list_lock
2692 */
b28a02de
PE
2693static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2694 int node)
1da177e4
LT
2695{
2696 int i;
e498be7d 2697 struct kmem_list3 *l3;
1da177e4
LT
2698
2699 for (i = 0; i < nr_objects; i++) {
2700 void *objp = objpp[i];
2701 struct slab *slabp;
2702 unsigned int objnr;
2703
065d41cb 2704 slabp = page_get_slab(virt_to_page(objp));
ff69416e 2705 l3 = cachep->nodelists[node];
1da177e4 2706 list_del(&slabp->list);
3dafccf2 2707 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
ff69416e 2708 check_spinlock_acquired_node(cachep, node);
1da177e4 2709 check_slabp(cachep, slabp);
e498be7d 2710
1da177e4 2711#if DEBUG
09ad4bbc
CL
2712 /* Verify that the slab belongs to the intended node */
2713 WARN_ON(slabp->nodeid != node);
2714
1da177e4 2715 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
e498be7d 2716 printk(KERN_ERR "slab: double free detected in cache "
b28a02de 2717 "'%s', objp %p\n", cachep->name, objp);
1da177e4
LT
2718 BUG();
2719 }
2720#endif
2721 slab_bufctl(slabp)[objnr] = slabp->free;
2722 slabp->free = objnr;
2723 STATS_DEC_ACTIVE(cachep);
2724 slabp->inuse--;
e498be7d 2725 l3->free_objects++;
1da177e4
LT
2726 check_slabp(cachep, slabp);
2727
2728 /* fixup slab chains */
2729 if (slabp->inuse == 0) {
e498be7d
CL
2730 if (l3->free_objects > l3->free_limit) {
2731 l3->free_objects -= cachep->num;
1da177e4
LT
2732 slab_destroy(cachep, slabp);
2733 } else {
e498be7d 2734 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
2735 }
2736 } else {
2737 /* Unconditionally move a slab to the end of the
2738 * partial list on free - maximum time for the
2739 * other objects to be freed, too.
2740 */
e498be7d 2741 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
2742 }
2743 }
2744}
2745
2746static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2747{
2748 int batchcount;
e498be7d 2749 struct kmem_list3 *l3;
ff69416e 2750 int node = numa_node_id();
1da177e4
LT
2751
2752 batchcount = ac->batchcount;
2753#if DEBUG
2754 BUG_ON(!batchcount || batchcount > ac->avail);
2755#endif
2756 check_irq_off();
ff69416e 2757 l3 = cachep->nodelists[node];
e498be7d
CL
2758 spin_lock(&l3->list_lock);
2759 if (l3->shared) {
2760 struct array_cache *shared_array = l3->shared;
b28a02de 2761 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
2762 if (max) {
2763 if (batchcount > max)
2764 batchcount = max;
e498be7d 2765 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 2766 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
2767 shared_array->avail += batchcount;
2768 goto free_done;
2769 }
2770 }
2771
ff69416e 2772 free_block(cachep, ac->entry, batchcount, node);
b28a02de 2773 free_done:
1da177e4
LT
2774#if STATS
2775 {
2776 int i = 0;
2777 struct list_head *p;
2778
e498be7d
CL
2779 p = l3->slabs_free.next;
2780 while (p != &(l3->slabs_free)) {
1da177e4
LT
2781 struct slab *slabp;
2782
2783 slabp = list_entry(p, struct slab, list);
2784 BUG_ON(slabp->inuse);
2785
2786 i++;
2787 p = p->next;
2788 }
2789 STATS_SET_FREEABLE(cachep, i);
2790 }
2791#endif
e498be7d 2792 spin_unlock(&l3->list_lock);
1da177e4 2793 ac->avail -= batchcount;
e498be7d 2794 memmove(ac->entry, &(ac->entry[batchcount]),
b28a02de 2795 sizeof(void *) * ac->avail);
1da177e4
LT
2796}
2797
2798/*
2799 * __cache_free
2800 * Release an obj back to its cache. If the obj has a constructed
2801 * state, it must be in this state _before_ it is released.
2802 *
2803 * Called with disabled ints.
2804 */
2805static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2806{
2807 struct array_cache *ac = ac_data(cachep);
2808
2809 check_irq_off();
2810 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2811
e498be7d
CL
2812 /* Make sure we are not freeing a object from another
2813 * node to the array cache on this cpu.
2814 */
2815#ifdef CONFIG_NUMA
2816 {
2817 struct slab *slabp;
065d41cb 2818 slabp = page_get_slab(virt_to_page(objp));
e498be7d
CL
2819 if (unlikely(slabp->nodeid != numa_node_id())) {
2820 struct array_cache *alien = NULL;
2821 int nodeid = slabp->nodeid;
b28a02de
PE
2822 struct kmem_list3 *l3 =
2823 cachep->nodelists[numa_node_id()];
e498be7d
CL
2824
2825 STATS_INC_NODEFREES(cachep);
2826 if (l3->alien && l3->alien[nodeid]) {
2827 alien = l3->alien[nodeid];
2828 spin_lock(&alien->lock);
2829 if (unlikely(alien->avail == alien->limit))
2830 __drain_alien_cache(cachep,
b28a02de 2831 alien, nodeid);
e498be7d
CL
2832 alien->entry[alien->avail++] = objp;
2833 spin_unlock(&alien->lock);
2834 } else {
2835 spin_lock(&(cachep->nodelists[nodeid])->
b28a02de 2836 list_lock);
ff69416e 2837 free_block(cachep, &objp, 1, nodeid);
e498be7d 2838 spin_unlock(&(cachep->nodelists[nodeid])->
b28a02de 2839 list_lock);
e498be7d
CL
2840 }
2841 return;
2842 }
2843 }
2844#endif
1da177e4
LT
2845 if (likely(ac->avail < ac->limit)) {
2846 STATS_INC_FREEHIT(cachep);
e498be7d 2847 ac->entry[ac->avail++] = objp;
1da177e4
LT
2848 return;
2849 } else {
2850 STATS_INC_FREEMISS(cachep);
2851 cache_flusharray(cachep, ac);
e498be7d 2852 ac->entry[ac->avail++] = objp;
1da177e4
LT
2853 }
2854}
2855
2856/**
2857 * kmem_cache_alloc - Allocate an object
2858 * @cachep: The cache to allocate from.
2859 * @flags: See kmalloc().
2860 *
2861 * Allocate an object from this cache. The flags are only relevant
2862 * if the cache has no available objects.
2863 */
dd0fc66f 2864void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
1da177e4
LT
2865{
2866 return __cache_alloc(cachep, flags);
2867}
2868EXPORT_SYMBOL(kmem_cache_alloc);
2869
2870/**
2871 * kmem_ptr_validate - check if an untrusted pointer might
2872 * be a slab entry.
2873 * @cachep: the cache we're checking against
2874 * @ptr: pointer to validate
2875 *
2876 * This verifies that the untrusted pointer looks sane:
2877 * it is _not_ a guarantee that the pointer is actually
2878 * part of the slab cache in question, but it at least
2879 * validates that the pointer can be dereferenced and
2880 * looks half-way sane.
2881 *
2882 * Currently only used for dentry validation.
2883 */
2884int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2885{
b28a02de 2886 unsigned long addr = (unsigned long)ptr;
1da177e4 2887 unsigned long min_addr = PAGE_OFFSET;
b28a02de 2888 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 2889 unsigned long size = cachep->buffer_size;
1da177e4
LT
2890 struct page *page;
2891
2892 if (unlikely(addr < min_addr))
2893 goto out;
2894 if (unlikely(addr > (unsigned long)high_memory - size))
2895 goto out;
2896 if (unlikely(addr & align_mask))
2897 goto out;
2898 if (unlikely(!kern_addr_valid(addr)))
2899 goto out;
2900 if (unlikely(!kern_addr_valid(addr + size - 1)))
2901 goto out;
2902 page = virt_to_page(ptr);
2903 if (unlikely(!PageSlab(page)))
2904 goto out;
065d41cb 2905 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
2906 goto out;
2907 return 1;
b28a02de 2908 out:
1da177e4
LT
2909 return 0;
2910}
2911
2912#ifdef CONFIG_NUMA
2913/**
2914 * kmem_cache_alloc_node - Allocate an object on the specified node
2915 * @cachep: The cache to allocate from.
2916 * @flags: See kmalloc().
2917 * @nodeid: node number of the target node.
2918 *
2919 * Identical to kmem_cache_alloc, except that this function is slow
2920 * and can sleep. And it will allocate memory on the given node, which
2921 * can improve the performance for cpu bound structures.
e498be7d
CL
2922 * New and improved: it will now make sure that the object gets
2923 * put on the correct node list so that there is no false sharing.
1da177e4 2924 */
dd0fc66f 2925void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1da177e4 2926{
e498be7d
CL
2927 unsigned long save_flags;
2928 void *ptr;
1da177e4 2929
e498be7d
CL
2930 cache_alloc_debugcheck_before(cachep, flags);
2931 local_irq_save(save_flags);
18f820f6
CL
2932
2933 if (nodeid == -1 || nodeid == numa_node_id() ||
2934 !cachep->nodelists[nodeid])
5c382300
AK
2935 ptr = ____cache_alloc(cachep, flags);
2936 else
2937 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 2938 local_irq_restore(save_flags);
18f820f6
CL
2939
2940 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
2941 __builtin_return_address(0));
1da177e4 2942
e498be7d 2943 return ptr;
1da177e4
LT
2944}
2945EXPORT_SYMBOL(kmem_cache_alloc_node);
2946
dd0fc66f 2947void *kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4
MS
2948{
2949 kmem_cache_t *cachep;
2950
2951 cachep = kmem_find_general_cachep(size, flags);
2952 if (unlikely(cachep == NULL))
2953 return NULL;
2954 return kmem_cache_alloc_node(cachep, flags, node);
2955}
2956EXPORT_SYMBOL(kmalloc_node);
1da177e4
LT
2957#endif
2958
2959/**
2960 * kmalloc - allocate memory
2961 * @size: how many bytes of memory are required.
2962 * @flags: the type of memory to allocate.
2963 *
2964 * kmalloc is the normal method of allocating memory
2965 * in the kernel.
2966 *
2967 * The @flags argument may be one of:
2968 *
2969 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2970 *
2971 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2972 *
2973 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2974 *
2975 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2976 * must be suitable for DMA. This can mean different things on different
2977 * platforms. For example, on i386, it means that the memory must come
2978 * from the first 16MB.
2979 */
dd0fc66f 2980void *__kmalloc(size_t size, gfp_t flags)
1da177e4
LT
2981{
2982 kmem_cache_t *cachep;
2983
97e2bde4
MS
2984 /* If you want to save a few bytes .text space: replace
2985 * __ with kmem_.
2986 * Then kmalloc uses the uninlined functions instead of the inline
2987 * functions.
2988 */
2989 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
2990 if (unlikely(cachep == NULL))
2991 return NULL;
1da177e4
LT
2992 return __cache_alloc(cachep, flags);
2993}
2994EXPORT_SYMBOL(__kmalloc);
2995
2996#ifdef CONFIG_SMP
2997/**
2998 * __alloc_percpu - allocate one copy of the object for every present
2999 * cpu in the system, zeroing them.
3000 * Objects should be dereferenced using the per_cpu_ptr macro only.
3001 *
3002 * @size: how many bytes of memory are required.
1da177e4 3003 */
f9f75005 3004void *__alloc_percpu(size_t size)
1da177e4
LT
3005{
3006 int i;
b28a02de 3007 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
1da177e4
LT
3008
3009 if (!pdata)
3010 return NULL;
3011
e498be7d
CL
3012 /*
3013 * Cannot use for_each_online_cpu since a cpu may come online
3014 * and we have no way of figuring out how to fix the array
3015 * that we have allocated then....
3016 */
3017 for_each_cpu(i) {
3018 int node = cpu_to_node(i);
3019
3020 if (node_online(node))
3021 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3022 else
3023 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
1da177e4
LT
3024
3025 if (!pdata->ptrs[i])
3026 goto unwind_oom;
3027 memset(pdata->ptrs[i], 0, size);
3028 }
3029
3030 /* Catch derefs w/o wrappers */
b28a02de 3031 return (void *)(~(unsigned long)pdata);
1da177e4 3032
b28a02de 3033 unwind_oom:
1da177e4
LT
3034 while (--i >= 0) {
3035 if (!cpu_possible(i))
3036 continue;
3037 kfree(pdata->ptrs[i]);
3038 }
3039 kfree(pdata);
3040 return NULL;
3041}
3042EXPORT_SYMBOL(__alloc_percpu);
3043#endif
3044
3045/**
3046 * kmem_cache_free - Deallocate an object
3047 * @cachep: The cache the allocation was from.
3048 * @objp: The previously allocated object.
3049 *
3050 * Free an object which was previously allocated from this
3051 * cache.
3052 */
3053void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3054{
3055 unsigned long flags;
3056
3057 local_irq_save(flags);
3058 __cache_free(cachep, objp);
3059 local_irq_restore(flags);
3060}
3061EXPORT_SYMBOL(kmem_cache_free);
3062
1da177e4
LT
3063/**
3064 * kfree - free previously allocated memory
3065 * @objp: pointer returned by kmalloc.
3066 *
80e93eff
PE
3067 * If @objp is NULL, no operation is performed.
3068 *
1da177e4
LT
3069 * Don't free memory not originally allocated by kmalloc()
3070 * or you will run into trouble.
3071 */
3072void kfree(const void *objp)
3073{
3074 kmem_cache_t *c;
3075 unsigned long flags;
3076
3077 if (unlikely(!objp))
3078 return;
3079 local_irq_save(flags);
3080 kfree_debugcheck(objp);
065d41cb 3081 c = page_get_cache(virt_to_page(objp));
3dafccf2 3082 mutex_debug_check_no_locks_freed(objp, obj_size(c));
b28a02de 3083 __cache_free(c, (void *)objp);
1da177e4
LT
3084 local_irq_restore(flags);
3085}
3086EXPORT_SYMBOL(kfree);
3087
3088#ifdef CONFIG_SMP
3089/**
3090 * free_percpu - free previously allocated percpu memory
3091 * @objp: pointer returned by alloc_percpu.
3092 *
3093 * Don't free memory not originally allocated by alloc_percpu()
3094 * The complemented objp is to check for that.
3095 */
b28a02de 3096void free_percpu(const void *objp)
1da177e4
LT
3097{
3098 int i;
b28a02de 3099 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
1da177e4 3100
e498be7d
CL
3101 /*
3102 * We allocate for all cpus so we cannot use for online cpu here.
3103 */
3104 for_each_cpu(i)
b28a02de 3105 kfree(p->ptrs[i]);
1da177e4
LT
3106 kfree(p);
3107}
3108EXPORT_SYMBOL(free_percpu);
3109#endif
3110
3111unsigned int kmem_cache_size(kmem_cache_t *cachep)
3112{
3dafccf2 3113 return obj_size(cachep);
1da177e4
LT
3114}
3115EXPORT_SYMBOL(kmem_cache_size);
3116
1944972d
ACM
3117const char *kmem_cache_name(kmem_cache_t *cachep)
3118{
3119 return cachep->name;
3120}
3121EXPORT_SYMBOL_GPL(kmem_cache_name);
3122
e498be7d
CL
3123/*
3124 * This initializes kmem_list3 for all nodes.
3125 */
3126static int alloc_kmemlist(kmem_cache_t *cachep)
3127{
3128 int node;
3129 struct kmem_list3 *l3;
3130 int err = 0;
3131
3132 for_each_online_node(node) {
3133 struct array_cache *nc = NULL, *new;
3134 struct array_cache **new_alien = NULL;
3135#ifdef CONFIG_NUMA
3136 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3137 goto fail;
3138#endif
b28a02de
PE
3139 if (!(new = alloc_arraycache(node, (cachep->shared *
3140 cachep->batchcount),
3141 0xbaadf00d)))
e498be7d
CL
3142 goto fail;
3143 if ((l3 = cachep->nodelists[node])) {
3144
3145 spin_lock_irq(&l3->list_lock);
3146
3147 if ((nc = cachep->nodelists[node]->shared))
b28a02de 3148 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
3149
3150 l3->shared = new;
3151 if (!cachep->nodelists[node]->alien) {
3152 l3->alien = new_alien;
3153 new_alien = NULL;
3154 }
b28a02de
PE
3155 l3->free_limit = (1 + nr_cpus_node(node)) *
3156 cachep->batchcount + cachep->num;
e498be7d
CL
3157 spin_unlock_irq(&l3->list_lock);
3158 kfree(nc);
3159 free_alien_cache(new_alien);
3160 continue;
3161 }
3162 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
b28a02de 3163 GFP_KERNEL, node)))
e498be7d
CL
3164 goto fail;
3165
3166 kmem_list3_init(l3);
3167 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 3168 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
3169 l3->shared = new;
3170 l3->alien = new_alien;
b28a02de
PE
3171 l3->free_limit = (1 + nr_cpus_node(node)) *
3172 cachep->batchcount + cachep->num;
e498be7d
CL
3173 cachep->nodelists[node] = l3;
3174 }
3175 return err;
b28a02de 3176 fail:
e498be7d
CL
3177 err = -ENOMEM;
3178 return err;
3179}
3180
1da177e4
LT
3181struct ccupdate_struct {
3182 kmem_cache_t *cachep;
3183 struct array_cache *new[NR_CPUS];
3184};
3185
3186static void do_ccupdate_local(void *info)
3187{
3188 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3189 struct array_cache *old;
3190
3191 check_irq_off();
3192 old = ac_data(new->cachep);
e498be7d 3193
1da177e4
LT
3194 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3195 new->new[smp_processor_id()] = old;
3196}
3197
1da177e4 3198static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
b28a02de 3199 int shared)
1da177e4
LT
3200{
3201 struct ccupdate_struct new;
e498be7d 3202 int i, err;
1da177e4 3203
b28a02de 3204 memset(&new.new, 0, sizeof(new.new));
e498be7d 3205 for_each_online_cpu(i) {
b28a02de
PE
3206 new.new[i] =
3207 alloc_arraycache(cpu_to_node(i), limit, batchcount);
e498be7d 3208 if (!new.new[i]) {
b28a02de
PE
3209 for (i--; i >= 0; i--)
3210 kfree(new.new[i]);
e498be7d 3211 return -ENOMEM;
1da177e4
LT
3212 }
3213 }
3214 new.cachep = cachep;
3215
3216 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
e498be7d 3217
1da177e4
LT
3218 check_irq_on();
3219 spin_lock_irq(&cachep->spinlock);
3220 cachep->batchcount = batchcount;
3221 cachep->limit = limit;
e498be7d 3222 cachep->shared = shared;
1da177e4
LT
3223 spin_unlock_irq(&cachep->spinlock);
3224
e498be7d 3225 for_each_online_cpu(i) {
1da177e4
LT
3226 struct array_cache *ccold = new.new[i];
3227 if (!ccold)
3228 continue;
e498be7d 3229 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3230 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3231 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3232 kfree(ccold);
3233 }
1da177e4 3234
e498be7d
CL
3235 err = alloc_kmemlist(cachep);
3236 if (err) {
3237 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
b28a02de 3238 cachep->name, -err);
e498be7d 3239 BUG();
1da177e4 3240 }
1da177e4
LT
3241 return 0;
3242}
3243
1da177e4
LT
3244static void enable_cpucache(kmem_cache_t *cachep)
3245{
3246 int err;
3247 int limit, shared;
3248
3249 /* The head array serves three purposes:
3250 * - create a LIFO ordering, i.e. return objects that are cache-warm
3251 * - reduce the number of spinlock operations.
3252 * - reduce the number of linked list operations on the slab and
3253 * bufctl chains: array operations are cheaper.
3254 * The numbers are guessed, we should auto-tune as described by
3255 * Bonwick.
3256 */
3dafccf2 3257 if (cachep->buffer_size > 131072)
1da177e4 3258 limit = 1;
3dafccf2 3259 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3260 limit = 8;
3dafccf2 3261 else if (cachep->buffer_size > 1024)
1da177e4 3262 limit = 24;
3dafccf2 3263 else if (cachep->buffer_size > 256)
1da177e4
LT
3264 limit = 54;
3265 else
3266 limit = 120;
3267
3268 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3269 * allocation behaviour: Most allocs on one cpu, most free operations
3270 * on another cpu. For these cases, an efficient object passing between
3271 * cpus is necessary. This is provided by a shared array. The array
3272 * replaces Bonwick's magazine layer.
3273 * On uniprocessor, it's functionally equivalent (but less efficient)
3274 * to a larger limit. Thus disabled by default.
3275 */
3276 shared = 0;
3277#ifdef CONFIG_SMP
3dafccf2 3278 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3279 shared = 8;
3280#endif
3281
3282#if DEBUG
3283 /* With debugging enabled, large batchcount lead to excessively
3284 * long periods with disabled local interrupts. Limit the
3285 * batchcount
3286 */
3287 if (limit > 32)
3288 limit = 32;
3289#endif
b28a02de 3290 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3291 if (err)
3292 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3293 cachep->name, -err);
1da177e4
LT
3294}
3295
b28a02de
PE
3296static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3297 int force, int node)
1da177e4
LT
3298{
3299 int tofree;
3300
e498be7d 3301 check_spinlock_acquired_node(cachep, node);
1da177e4
LT
3302 if (ac->touched && !force) {
3303 ac->touched = 0;
3304 } else if (ac->avail) {
b28a02de 3305 tofree = force ? ac->avail : (ac->limit + 4) / 5;
1da177e4 3306 if (tofree > ac->avail) {
b28a02de 3307 tofree = (ac->avail + 1) / 2;
1da177e4 3308 }
ff69416e 3309 free_block(cachep, ac->entry, tofree, node);
1da177e4 3310 ac->avail -= tofree;
e498be7d 3311 memmove(ac->entry, &(ac->entry[tofree]),
b28a02de 3312 sizeof(void *) * ac->avail);
1da177e4
LT
3313 }
3314}
3315
3316/**
3317 * cache_reap - Reclaim memory from caches.
1e5d5331 3318 * @unused: unused parameter
1da177e4
LT
3319 *
3320 * Called from workqueue/eventd every few seconds.
3321 * Purpose:
3322 * - clear the per-cpu caches for this CPU.
3323 * - return freeable pages to the main free memory pool.
3324 *
fc0abb14 3325 * If we cannot acquire the cache chain mutex then just give up - we'll
1da177e4
LT
3326 * try again on the next iteration.
3327 */
3328static void cache_reap(void *unused)
3329{
3330 struct list_head *walk;
e498be7d 3331 struct kmem_list3 *l3;
1da177e4 3332
fc0abb14 3333 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3334 /* Give up. Setup the next iteration. */
b28a02de
PE
3335 schedule_delayed_work(&__get_cpu_var(reap_work),
3336 REAPTIMEOUT_CPUC);
1da177e4
LT
3337 return;
3338 }
3339
3340 list_for_each(walk, &cache_chain) {
3341 kmem_cache_t *searchp;
b28a02de 3342 struct list_head *p;
1da177e4
LT
3343 int tofree;
3344 struct slab *slabp;
3345
3346 searchp = list_entry(walk, kmem_cache_t, next);
3347
3348 if (searchp->flags & SLAB_NO_REAP)
3349 goto next;
3350
3351 check_irq_on();
3352
e498be7d
CL
3353 l3 = searchp->nodelists[numa_node_id()];
3354 if (l3->alien)
3355 drain_alien_cache(searchp, l3);
3356 spin_lock_irq(&l3->list_lock);
1da177e4 3357
e498be7d 3358 drain_array_locked(searchp, ac_data(searchp), 0,
b28a02de 3359 numa_node_id());
1da177e4 3360
e498be7d 3361 if (time_after(l3->next_reap, jiffies))
1da177e4
LT
3362 goto next_unlock;
3363
e498be7d 3364 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3365
e498be7d
CL
3366 if (l3->shared)
3367 drain_array_locked(searchp, l3->shared, 0,
b28a02de 3368 numa_node_id());
1da177e4 3369
e498be7d
CL
3370 if (l3->free_touched) {
3371 l3->free_touched = 0;
1da177e4
LT
3372 goto next_unlock;
3373 }
3374
b28a02de
PE
3375 tofree =
3376 (l3->free_limit + 5 * searchp->num -
3377 1) / (5 * searchp->num);
1da177e4 3378 do {
e498be7d
CL
3379 p = l3->slabs_free.next;
3380 if (p == &(l3->slabs_free))
1da177e4
LT
3381 break;
3382
3383 slabp = list_entry(p, struct slab, list);
3384 BUG_ON(slabp->inuse);
3385 list_del(&slabp->list);
3386 STATS_INC_REAPED(searchp);
3387
3388 /* Safe to drop the lock. The slab is no longer
3389 * linked to the cache.
3390 * searchp cannot disappear, we hold
3391 * cache_chain_lock
3392 */
e498be7d
CL
3393 l3->free_objects -= searchp->num;
3394 spin_unlock_irq(&l3->list_lock);
1da177e4 3395 slab_destroy(searchp, slabp);
e498be7d 3396 spin_lock_irq(&l3->list_lock);
b28a02de
PE
3397 } while (--tofree > 0);
3398 next_unlock:
e498be7d 3399 spin_unlock_irq(&l3->list_lock);
b28a02de 3400 next:
1da177e4
LT
3401 cond_resched();
3402 }
3403 check_irq_on();
fc0abb14 3404 mutex_unlock(&cache_chain_mutex);
4ae7c039 3405 drain_remote_pages();
1da177e4 3406 /* Setup the next iteration */
cd61ef62 3407 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3408}
3409
3410#ifdef CONFIG_PROC_FS
3411
85289f98 3412static void print_slabinfo_header(struct seq_file *m)
1da177e4 3413{
85289f98
PE
3414 /*
3415 * Output format version, so at least we can change it
3416 * without _too_ many complaints.
3417 */
1da177e4 3418#if STATS
85289f98 3419 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3420#else
85289f98 3421 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3422#endif
85289f98
PE
3423 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3424 "<objperslab> <pagesperslab>");
3425 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3426 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3427#if STATS
85289f98
PE
3428 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3429 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3430 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3431#endif
85289f98
PE
3432 seq_putc(m, '\n');
3433}
3434
3435static void *s_start(struct seq_file *m, loff_t *pos)
3436{
3437 loff_t n = *pos;
3438 struct list_head *p;
3439
fc0abb14 3440 mutex_lock(&cache_chain_mutex);
85289f98
PE
3441 if (!n)
3442 print_slabinfo_header(m);
1da177e4
LT
3443 p = cache_chain.next;
3444 while (n--) {
3445 p = p->next;
3446 if (p == &cache_chain)
3447 return NULL;
3448 }
3449 return list_entry(p, kmem_cache_t, next);
3450}
3451
3452static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3453{
3454 kmem_cache_t *cachep = p;
3455 ++*pos;
3456 return cachep->next.next == &cache_chain ? NULL
b28a02de 3457 : list_entry(cachep->next.next, kmem_cache_t, next);
1da177e4
LT
3458}
3459
3460static void s_stop(struct seq_file *m, void *p)
3461{
fc0abb14 3462 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3463}
3464
3465static int s_show(struct seq_file *m, void *p)
3466{
3467 kmem_cache_t *cachep = p;
3468 struct list_head *q;
b28a02de
PE
3469 struct slab *slabp;
3470 unsigned long active_objs;
3471 unsigned long num_objs;
3472 unsigned long active_slabs = 0;
3473 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3474 const char *name;
1da177e4 3475 char *error = NULL;
e498be7d
CL
3476 int node;
3477 struct kmem_list3 *l3;
1da177e4
LT
3478
3479 check_irq_on();
3480 spin_lock_irq(&cachep->spinlock);
3481 active_objs = 0;
3482 num_slabs = 0;
e498be7d
CL
3483 for_each_online_node(node) {
3484 l3 = cachep->nodelists[node];
3485 if (!l3)
3486 continue;
3487
3488 spin_lock(&l3->list_lock);
3489
b28a02de 3490 list_for_each(q, &l3->slabs_full) {
e498be7d
CL
3491 slabp = list_entry(q, struct slab, list);
3492 if (slabp->inuse != cachep->num && !error)
3493 error = "slabs_full accounting error";
3494 active_objs += cachep->num;
3495 active_slabs++;
3496 }
b28a02de 3497 list_for_each(q, &l3->slabs_partial) {
e498be7d
CL
3498 slabp = list_entry(q, struct slab, list);
3499 if (slabp->inuse == cachep->num && !error)
3500 error = "slabs_partial inuse accounting error";
3501 if (!slabp->inuse && !error)
3502 error = "slabs_partial/inuse accounting error";
3503 active_objs += slabp->inuse;
3504 active_slabs++;
3505 }
b28a02de 3506 list_for_each(q, &l3->slabs_free) {
e498be7d
CL
3507 slabp = list_entry(q, struct slab, list);
3508 if (slabp->inuse && !error)
3509 error = "slabs_free/inuse accounting error";
3510 num_slabs++;
3511 }
3512 free_objects += l3->free_objects;
3513 shared_avail += l3->shared->avail;
3514
3515 spin_unlock(&l3->list_lock);
1da177e4 3516 }
b28a02de
PE
3517 num_slabs += active_slabs;
3518 num_objs = num_slabs * cachep->num;
e498be7d 3519 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3520 error = "free_objects accounting error";
3521
b28a02de 3522 name = cachep->name;
1da177e4
LT
3523 if (error)
3524 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3525
3526 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3527 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3528 cachep->num, (1 << cachep->gfporder));
1da177e4 3529 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3530 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3531 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3532 active_slabs, num_slabs, shared_avail);
1da177e4 3533#if STATS
b28a02de 3534 { /* list3 stats */
1da177e4
LT
3535 unsigned long high = cachep->high_mark;
3536 unsigned long allocs = cachep->num_allocations;
3537 unsigned long grown = cachep->grown;
3538 unsigned long reaped = cachep->reaped;
3539 unsigned long errors = cachep->errors;
3540 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3541 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3542 unsigned long node_frees = cachep->node_frees;
1da177e4 3543
e498be7d 3544 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
b28a02de 3545 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
1da177e4
LT
3546 }
3547 /* cpu stats */
3548 {
3549 unsigned long allochit = atomic_read(&cachep->allochit);
3550 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3551 unsigned long freehit = atomic_read(&cachep->freehit);
3552 unsigned long freemiss = atomic_read(&cachep->freemiss);
3553
3554 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3555 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3556 }
3557#endif
3558 seq_putc(m, '\n');
3559 spin_unlock_irq(&cachep->spinlock);
3560 return 0;
3561}
3562
3563/*
3564 * slabinfo_op - iterator that generates /proc/slabinfo
3565 *
3566 * Output layout:
3567 * cache-name
3568 * num-active-objs
3569 * total-objs
3570 * object size
3571 * num-active-slabs
3572 * total-slabs
3573 * num-pages-per-slab
3574 * + further values on SMP and with statistics enabled
3575 */
3576
3577struct seq_operations slabinfo_op = {
b28a02de
PE
3578 .start = s_start,
3579 .next = s_next,
3580 .stop = s_stop,
3581 .show = s_show,
1da177e4
LT
3582};
3583
3584#define MAX_SLABINFO_WRITE 128
3585/**
3586 * slabinfo_write - Tuning for the slab allocator
3587 * @file: unused
3588 * @buffer: user buffer
3589 * @count: data length
3590 * @ppos: unused
3591 */
b28a02de
PE
3592ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3593 size_t count, loff_t *ppos)
1da177e4 3594{
b28a02de 3595 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4
LT
3596 int limit, batchcount, shared, res;
3597 struct list_head *p;
b28a02de 3598
1da177e4
LT
3599 if (count > MAX_SLABINFO_WRITE)
3600 return -EINVAL;
3601 if (copy_from_user(&kbuf, buffer, count))
3602 return -EFAULT;
b28a02de 3603 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3604
3605 tmp = strchr(kbuf, ' ');
3606 if (!tmp)
3607 return -EINVAL;
3608 *tmp = '\0';
3609 tmp++;
3610 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3611 return -EINVAL;
3612
3613 /* Find the cache in the chain of caches. */
fc0abb14 3614 mutex_lock(&cache_chain_mutex);
1da177e4 3615 res = -EINVAL;
b28a02de 3616 list_for_each(p, &cache_chain) {
1da177e4
LT
3617 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3618
3619 if (!strcmp(cachep->name, kbuf)) {
3620 if (limit < 1 ||
3621 batchcount < 1 ||
b28a02de 3622 batchcount > limit || shared < 0) {
e498be7d 3623 res = 0;
1da177e4 3624 } else {
e498be7d 3625 res = do_tune_cpucache(cachep, limit,
b28a02de 3626 batchcount, shared);
1da177e4
LT
3627 }
3628 break;
3629 }
3630 }
fc0abb14 3631 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3632 if (res >= 0)
3633 res = count;
3634 return res;
3635}
3636#endif
3637
00e145b6
MS
3638/**
3639 * ksize - get the actual amount of memory allocated for a given object
3640 * @objp: Pointer to the object
3641 *
3642 * kmalloc may internally round up allocations and return more memory
3643 * than requested. ksize() can be used to determine the actual amount of
3644 * memory allocated. The caller may use this additional memory, even though
3645 * a smaller amount of memory was initially specified with the kmalloc call.
3646 * The caller must guarantee that objp points to a valid object previously
3647 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3648 * must not be freed during the duration of the call.
3649 */
1da177e4
LT
3650unsigned int ksize(const void *objp)
3651{
00e145b6
MS
3652 if (unlikely(objp == NULL))
3653 return 0;
1da177e4 3654
3dafccf2 3655 return obj_size(page_get_cache(virt_to_page(objp)));
1da177e4 3656}
This page took 0.279408 seconds and 5 git commands to generate.