slab: Use common kmalloc_index/kmalloc_size functions
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
072bb0aa
MG
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
1da177e4
LT
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
fa5b08d5 185typedef unsigned int kmem_bufctl_t;
1da177e4
LT
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 190
1da177e4
LT
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
1da177e4
LT
204 */
205struct slab_rcu {
b28a02de 206 struct rcu_head head;
343e0d7a 207 struct kmem_cache *cachep;
b28a02de 208 void *addr;
1da177e4
LT
209};
210
5bfe53a7
LJ
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219 union {
220 struct {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
227 };
228 struct slab_rcu __slab_cover_slab_rcu;
229 };
230};
231
1da177e4
LT
232/*
233 * struct array_cache
234 *
1da177e4
LT
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
e498be7d 249 spinlock_t lock;
bda5b655 250 void *entry[]; /*
a737b3e2
AM
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
072bb0aa
MG
254 *
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 258 */
1da177e4
LT
259};
260
072bb0aa
MG
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270 return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4
LT
290 */
291struct kmem_list3 {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
556a169d 308#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 309static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 310#define CACHE_CACHE 0
556a169d
PE
311#define SIZE_AC MAX_NUMNODES
312#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 313
ed11d9eb
CL
314static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
83b519e8 318static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e3366016
CL
321struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
322EXPORT_SYMBOL(kmalloc_caches);
323
324#ifdef CONFIG_ZONE_DMA
325struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
326EXPORT_SYMBOL(kmalloc_dma_caches);
327#endif
e498be7d 328
e0a42726
IM
329static int slab_early_init = 1;
330
e3366016
CL
331#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
332#define INDEX_L3 kmalloc_index(sizeof(struct kmem_list3))
1da177e4 333
5295a74c 334static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
335{
336 INIT_LIST_HEAD(&parent->slabs_full);
337 INIT_LIST_HEAD(&parent->slabs_partial);
338 INIT_LIST_HEAD(&parent->slabs_free);
339 parent->shared = NULL;
340 parent->alien = NULL;
2e1217cf 341 parent->colour_next = 0;
e498be7d
CL
342 spin_lock_init(&parent->list_lock);
343 parent->free_objects = 0;
344 parent->free_touched = 0;
345}
346
a737b3e2
AM
347#define MAKE_LIST(cachep, listp, slab, nodeid) \
348 do { \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
351 } while (0)
352
a737b3e2
AM
353#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
354 do { \
e498be7d
CL
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 } while (0)
1da177e4 359
1da177e4
LT
360#define CFLGS_OFF_SLAB (0x80000000UL)
361#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
362
363#define BATCHREFILL_LIMIT 16
a737b3e2
AM
364/*
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
1da177e4 367 *
dc6f3f27 368 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
369 * which could lock up otherwise freeable slabs.
370 */
371#define REAPTIMEOUT_CPUC (2*HZ)
372#define REAPTIMEOUT_LIST3 (4*HZ)
373
374#if STATS
375#define STATS_INC_ACTIVE(x) ((x)->num_active++)
376#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 379#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
380#define STATS_SET_HIGH(x) \
381 do { \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
384 } while (0)
1da177e4
LT
385#define STATS_INC_ERR(x) ((x)->errors++)
386#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 387#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 388#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
389#define STATS_SET_FREEABLE(x, i) \
390 do { \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
393 } while (0)
1da177e4
LT
394#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
398#else
399#define STATS_INC_ACTIVE(x) do { } while (0)
400#define STATS_DEC_ACTIVE(x) do { } while (0)
401#define STATS_INC_ALLOCED(x) do { } while (0)
402#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 403#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
404#define STATS_SET_HIGH(x) do { } while (0)
405#define STATS_INC_ERR(x) do { } while (0)
406#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 407#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 408#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 409#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
410#define STATS_INC_ALLOCHIT(x) do { } while (0)
411#define STATS_INC_ALLOCMISS(x) do { } while (0)
412#define STATS_INC_FREEHIT(x) do { } while (0)
413#define STATS_INC_FREEMISS(x) do { } while (0)
414#endif
415
416#if DEBUG
1da177e4 417
a737b3e2
AM
418/*
419 * memory layout of objects:
1da177e4 420 * 0 : objp
3dafccf2 421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
3dafccf2 424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 425 * redzone word.
3dafccf2 426 * cachep->obj_offset: The real object.
3b0efdfa
CL
427 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 429 * [BYTES_PER_WORD long]
1da177e4 430 */
343e0d7a 431static int obj_offset(struct kmem_cache *cachep)
1da177e4 432{
3dafccf2 433 return cachep->obj_offset;
1da177e4
LT
434}
435
b46b8f19 436static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
437{
438 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
439 return (unsigned long long*) (objp + obj_offset(cachep) -
440 sizeof(unsigned long long));
1da177e4
LT
441}
442
b46b8f19 443static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
444{
445 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
446 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 447 return (unsigned long long *)(objp + cachep->size -
b46b8f19 448 sizeof(unsigned long long) -
87a927c7 449 REDZONE_ALIGN);
3b0efdfa 450 return (unsigned long long *) (objp + cachep->size -
b46b8f19 451 sizeof(unsigned long long));
1da177e4
LT
452}
453
343e0d7a 454static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
455{
456 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 457 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
458}
459
460#else
461
3dafccf2 462#define obj_offset(x) 0
b46b8f19
DW
463#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
464#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
465#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
466
467#endif
468
1da177e4 469/*
3df1cccd
DR
470 * Do not go above this order unless 0 objects fit into the slab or
471 * overridden on the command line.
1da177e4 472 */
543585cc
DR
473#define SLAB_MAX_ORDER_HI 1
474#define SLAB_MAX_ORDER_LO 0
475static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 476static bool slab_max_order_set __initdata;
1da177e4 477
6ed5eb22
PE
478static inline struct kmem_cache *virt_to_cache(const void *obj)
479{
b49af68f 480 struct page *page = virt_to_head_page(obj);
35026088 481 return page->slab_cache;
6ed5eb22
PE
482}
483
484static inline struct slab *virt_to_slab(const void *obj)
485{
b49af68f 486 struct page *page = virt_to_head_page(obj);
35026088
CL
487
488 VM_BUG_ON(!PageSlab(page));
489 return page->slab_page;
6ed5eb22
PE
490}
491
8fea4e96
PE
492static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
493 unsigned int idx)
494{
3b0efdfa 495 return slab->s_mem + cache->size * idx;
8fea4e96
PE
496}
497
6a2d7a95 498/*
3b0efdfa
CL
499 * We want to avoid an expensive divide : (offset / cache->size)
500 * Using the fact that size is a constant for a particular cache,
501 * we can replace (offset / cache->size) by
6a2d7a95
ED
502 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
503 */
504static inline unsigned int obj_to_index(const struct kmem_cache *cache,
505 const struct slab *slab, void *obj)
8fea4e96 506{
6a2d7a95
ED
507 u32 offset = (obj - slab->s_mem);
508 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
509}
510
1da177e4 511static struct arraycache_init initarray_generic =
b28a02de 512 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
513
514/* internal cache of cache description objs */
9b030cb8 515static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
516 .batchcount = 1,
517 .limit = BOOT_CPUCACHE_ENTRIES,
518 .shared = 1,
3b0efdfa 519 .size = sizeof(struct kmem_cache),
b28a02de 520 .name = "kmem_cache",
1da177e4
LT
521};
522
056c6241
RT
523#define BAD_ALIEN_MAGIC 0x01020304ul
524
f1aaee53
AV
525#ifdef CONFIG_LOCKDEP
526
527/*
528 * Slab sometimes uses the kmalloc slabs to store the slab headers
529 * for other slabs "off slab".
530 * The locking for this is tricky in that it nests within the locks
531 * of all other slabs in a few places; to deal with this special
532 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
533 *
534 * We set lock class for alien array caches which are up during init.
535 * The lock annotation will be lost if all cpus of a node goes down and
536 * then comes back up during hotplug
f1aaee53 537 */
056c6241
RT
538static struct lock_class_key on_slab_l3_key;
539static struct lock_class_key on_slab_alc_key;
540
83835b3d
PZ
541static struct lock_class_key debugobj_l3_key;
542static struct lock_class_key debugobj_alc_key;
543
544static void slab_set_lock_classes(struct kmem_cache *cachep,
545 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
546 int q)
547{
548 struct array_cache **alc;
549 struct kmem_list3 *l3;
550 int r;
551
552 l3 = cachep->nodelists[q];
553 if (!l3)
554 return;
555
556 lockdep_set_class(&l3->list_lock, l3_key);
557 alc = l3->alien;
558 /*
559 * FIXME: This check for BAD_ALIEN_MAGIC
560 * should go away when common slab code is taught to
561 * work even without alien caches.
562 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
563 * for alloc_alien_cache,
564 */
565 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
566 return;
567 for_each_node(r) {
568 if (alc[r])
569 lockdep_set_class(&alc[r]->lock, alc_key);
570 }
571}
572
573static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
574{
575 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
576}
577
578static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
579{
580 int node;
581
582 for_each_online_node(node)
583 slab_set_debugobj_lock_classes_node(cachep, node);
584}
585
ce79ddc8 586static void init_node_lock_keys(int q)
f1aaee53 587{
e3366016 588 int i;
056c6241 589
97d06609 590 if (slab_state < UP)
ce79ddc8
PE
591 return;
592
e3366016 593 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
ce79ddc8 594 struct kmem_list3 *l3;
e3366016
CL
595 struct kmem_cache *cache = kmalloc_caches[i];
596
597 if (!cache)
598 continue;
ce79ddc8 599
e3366016
CL
600 l3 = cache->nodelists[q];
601 if (!l3 || OFF_SLAB(cache))
00afa758 602 continue;
83835b3d 603
e3366016 604 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 605 &on_slab_alc_key, q);
f1aaee53
AV
606 }
607}
ce79ddc8 608
6ccfb5bc
GC
609static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
610{
611 struct kmem_list3 *l3;
612 l3 = cachep->nodelists[q];
613 if (!l3)
614 return;
615
616 slab_set_lock_classes(cachep, &on_slab_l3_key,
617 &on_slab_alc_key, q);
618}
619
620static inline void on_slab_lock_classes(struct kmem_cache *cachep)
621{
622 int node;
623
624 VM_BUG_ON(OFF_SLAB(cachep));
625 for_each_node(node)
626 on_slab_lock_classes_node(cachep, node);
627}
628
ce79ddc8
PE
629static inline void init_lock_keys(void)
630{
631 int node;
632
633 for_each_node(node)
634 init_node_lock_keys(node);
635}
f1aaee53 636#else
ce79ddc8
PE
637static void init_node_lock_keys(int q)
638{
639}
640
056c6241 641static inline void init_lock_keys(void)
f1aaee53
AV
642{
643}
83835b3d 644
6ccfb5bc
GC
645static inline void on_slab_lock_classes(struct kmem_cache *cachep)
646{
647}
648
649static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
650{
651}
652
83835b3d
PZ
653static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
654{
655}
656
657static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
658{
659}
f1aaee53
AV
660#endif
661
1871e52c 662static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 663
343e0d7a 664static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
665{
666 return cachep->array[smp_processor_id()];
667}
668
a737b3e2
AM
669static inline struct kmem_cache *__find_general_cachep(size_t size,
670 gfp_t gfpflags)
1da177e4 671{
e3366016 672 int i;
1da177e4
LT
673
674#if DEBUG
675 /* This happens if someone tries to call
b28a02de
PE
676 * kmem_cache_create(), or __kmalloc(), before
677 * the generic caches are initialized.
678 */
e3366016 679 BUG_ON(kmalloc_caches[INDEX_AC] == NULL);
1da177e4 680#endif
6cb8f913
CL
681 if (!size)
682 return ZERO_SIZE_PTR;
683
e3366016 684 i = kmalloc_index(size);
1da177e4
LT
685
686 /*
0abf40c1 687 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
688 * has cs_{dma,}cachep==NULL. Thus no special case
689 * for large kmalloc calls required.
690 */
4b51d669 691#ifdef CONFIG_ZONE_DMA
1da177e4 692 if (unlikely(gfpflags & GFP_DMA))
e3366016 693 return kmalloc_dma_caches[i];
4b51d669 694#endif
e3366016 695 return kmalloc_caches[i];
1da177e4
LT
696}
697
b221385b 698static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
699{
700 return __find_general_cachep(size, gfpflags);
701}
97e2bde4 702
fbaccacf 703static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 704{
fbaccacf
SR
705 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
706}
1da177e4 707
a737b3e2
AM
708/*
709 * Calculate the number of objects and left-over bytes for a given buffer size.
710 */
fbaccacf
SR
711static void cache_estimate(unsigned long gfporder, size_t buffer_size,
712 size_t align, int flags, size_t *left_over,
713 unsigned int *num)
714{
715 int nr_objs;
716 size_t mgmt_size;
717 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 718
fbaccacf
SR
719 /*
720 * The slab management structure can be either off the slab or
721 * on it. For the latter case, the memory allocated for a
722 * slab is used for:
723 *
724 * - The struct slab
725 * - One kmem_bufctl_t for each object
726 * - Padding to respect alignment of @align
727 * - @buffer_size bytes for each object
728 *
729 * If the slab management structure is off the slab, then the
730 * alignment will already be calculated into the size. Because
731 * the slabs are all pages aligned, the objects will be at the
732 * correct alignment when allocated.
733 */
734 if (flags & CFLGS_OFF_SLAB) {
735 mgmt_size = 0;
736 nr_objs = slab_size / buffer_size;
737
738 if (nr_objs > SLAB_LIMIT)
739 nr_objs = SLAB_LIMIT;
740 } else {
741 /*
742 * Ignore padding for the initial guess. The padding
743 * is at most @align-1 bytes, and @buffer_size is at
744 * least @align. In the worst case, this result will
745 * be one greater than the number of objects that fit
746 * into the memory allocation when taking the padding
747 * into account.
748 */
749 nr_objs = (slab_size - sizeof(struct slab)) /
750 (buffer_size + sizeof(kmem_bufctl_t));
751
752 /*
753 * This calculated number will be either the right
754 * amount, or one greater than what we want.
755 */
756 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
757 > slab_size)
758 nr_objs--;
759
760 if (nr_objs > SLAB_LIMIT)
761 nr_objs = SLAB_LIMIT;
762
763 mgmt_size = slab_mgmt_size(nr_objs, align);
764 }
765 *num = nr_objs;
766 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
767}
768
f28510d3 769#if DEBUG
d40cee24 770#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 771
a737b3e2
AM
772static void __slab_error(const char *function, struct kmem_cache *cachep,
773 char *msg)
1da177e4
LT
774{
775 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 776 function, cachep->name, msg);
1da177e4 777 dump_stack();
645df230 778 add_taint(TAINT_BAD_PAGE);
1da177e4 779}
f28510d3 780#endif
1da177e4 781
3395ee05
PM
782/*
783 * By default on NUMA we use alien caches to stage the freeing of
784 * objects allocated from other nodes. This causes massive memory
785 * inefficiencies when using fake NUMA setup to split memory into a
786 * large number of small nodes, so it can be disabled on the command
787 * line
788 */
789
790static int use_alien_caches __read_mostly = 1;
791static int __init noaliencache_setup(char *s)
792{
793 use_alien_caches = 0;
794 return 1;
795}
796__setup("noaliencache", noaliencache_setup);
797
3df1cccd
DR
798static int __init slab_max_order_setup(char *str)
799{
800 get_option(&str, &slab_max_order);
801 slab_max_order = slab_max_order < 0 ? 0 :
802 min(slab_max_order, MAX_ORDER - 1);
803 slab_max_order_set = true;
804
805 return 1;
806}
807__setup("slab_max_order=", slab_max_order_setup);
808
8fce4d8e
CL
809#ifdef CONFIG_NUMA
810/*
811 * Special reaping functions for NUMA systems called from cache_reap().
812 * These take care of doing round robin flushing of alien caches (containing
813 * objects freed on different nodes from which they were allocated) and the
814 * flushing of remote pcps by calling drain_node_pages.
815 */
1871e52c 816static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
817
818static void init_reap_node(int cpu)
819{
820 int node;
821
7d6e6d09 822 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 823 if (node == MAX_NUMNODES)
442295c9 824 node = first_node(node_online_map);
8fce4d8e 825
1871e52c 826 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
827}
828
829static void next_reap_node(void)
830{
909ea964 831 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 832
8fce4d8e
CL
833 node = next_node(node, node_online_map);
834 if (unlikely(node >= MAX_NUMNODES))
835 node = first_node(node_online_map);
909ea964 836 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
837}
838
839#else
840#define init_reap_node(cpu) do { } while (0)
841#define next_reap_node(void) do { } while (0)
842#endif
843
1da177e4
LT
844/*
845 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
846 * via the workqueue/eventd.
847 * Add the CPU number into the expiration time to minimize the possibility of
848 * the CPUs getting into lockstep and contending for the global cache chain
849 * lock.
850 */
897e679b 851static void __cpuinit start_cpu_timer(int cpu)
1da177e4 852{
1871e52c 853 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
854
855 /*
856 * When this gets called from do_initcalls via cpucache_init(),
857 * init_workqueues() has already run, so keventd will be setup
858 * at that time.
859 */
52bad64d 860 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 861 init_reap_node(cpu);
203b42f7 862 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
863 schedule_delayed_work_on(cpu, reap_work,
864 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
865 }
866}
867
e498be7d 868static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 869 int batchcount, gfp_t gfp)
1da177e4 870{
b28a02de 871 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
872 struct array_cache *nc = NULL;
873
83b519e8 874 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
875 /*
876 * The array_cache structures contain pointers to free object.
25985edc 877 * However, when such objects are allocated or transferred to another
d5cff635
CM
878 * cache the pointers are not cleared and they could be counted as
879 * valid references during a kmemleak scan. Therefore, kmemleak must
880 * not scan such objects.
881 */
882 kmemleak_no_scan(nc);
1da177e4
LT
883 if (nc) {
884 nc->avail = 0;
885 nc->limit = entries;
886 nc->batchcount = batchcount;
887 nc->touched = 0;
e498be7d 888 spin_lock_init(&nc->lock);
1da177e4
LT
889 }
890 return nc;
891}
892
072bb0aa
MG
893static inline bool is_slab_pfmemalloc(struct slab *slabp)
894{
895 struct page *page = virt_to_page(slabp->s_mem);
896
897 return PageSlabPfmemalloc(page);
898}
899
900/* Clears pfmemalloc_active if no slabs have pfmalloc set */
901static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
902 struct array_cache *ac)
903{
904 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
905 struct slab *slabp;
906 unsigned long flags;
907
908 if (!pfmemalloc_active)
909 return;
910
911 spin_lock_irqsave(&l3->list_lock, flags);
912 list_for_each_entry(slabp, &l3->slabs_full, list)
913 if (is_slab_pfmemalloc(slabp))
914 goto out;
915
916 list_for_each_entry(slabp, &l3->slabs_partial, list)
917 if (is_slab_pfmemalloc(slabp))
918 goto out;
919
920 list_for_each_entry(slabp, &l3->slabs_free, list)
921 if (is_slab_pfmemalloc(slabp))
922 goto out;
923
924 pfmemalloc_active = false;
925out:
926 spin_unlock_irqrestore(&l3->list_lock, flags);
927}
928
381760ea 929static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
930 gfp_t flags, bool force_refill)
931{
932 int i;
933 void *objp = ac->entry[--ac->avail];
934
935 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
936 if (unlikely(is_obj_pfmemalloc(objp))) {
937 struct kmem_list3 *l3;
938
939 if (gfp_pfmemalloc_allowed(flags)) {
940 clear_obj_pfmemalloc(&objp);
941 return objp;
942 }
943
944 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 945 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
946 /* If a !PFMEMALLOC object is found, swap them */
947 if (!is_obj_pfmemalloc(ac->entry[i])) {
948 objp = ac->entry[i];
949 ac->entry[i] = ac->entry[ac->avail];
950 ac->entry[ac->avail] = objp;
951 return objp;
952 }
953 }
954
955 /*
956 * If there are empty slabs on the slabs_free list and we are
957 * being forced to refill the cache, mark this one !pfmemalloc.
958 */
959 l3 = cachep->nodelists[numa_mem_id()];
960 if (!list_empty(&l3->slabs_free) && force_refill) {
961 struct slab *slabp = virt_to_slab(objp);
30c29bea 962 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
072bb0aa
MG
963 clear_obj_pfmemalloc(&objp);
964 recheck_pfmemalloc_active(cachep, ac);
965 return objp;
966 }
967
968 /* No !PFMEMALLOC objects available */
969 ac->avail++;
970 objp = NULL;
971 }
972
973 return objp;
974}
975
381760ea
MG
976static inline void *ac_get_obj(struct kmem_cache *cachep,
977 struct array_cache *ac, gfp_t flags, bool force_refill)
978{
979 void *objp;
980
981 if (unlikely(sk_memalloc_socks()))
982 objp = __ac_get_obj(cachep, ac, flags, force_refill);
983 else
984 objp = ac->entry[--ac->avail];
985
986 return objp;
987}
988
989static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
990 void *objp)
991{
992 if (unlikely(pfmemalloc_active)) {
993 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 994 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
995 if (PageSlabPfmemalloc(page))
996 set_obj_pfmemalloc(&objp);
997 }
998
381760ea
MG
999 return objp;
1000}
1001
1002static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1003 void *objp)
1004{
1005 if (unlikely(sk_memalloc_socks()))
1006 objp = __ac_put_obj(cachep, ac, objp);
1007
072bb0aa
MG
1008 ac->entry[ac->avail++] = objp;
1009}
1010
3ded175a
CL
1011/*
1012 * Transfer objects in one arraycache to another.
1013 * Locking must be handled by the caller.
1014 *
1015 * Return the number of entries transferred.
1016 */
1017static int transfer_objects(struct array_cache *to,
1018 struct array_cache *from, unsigned int max)
1019{
1020 /* Figure out how many entries to transfer */
732eacc0 1021 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1022
1023 if (!nr)
1024 return 0;
1025
1026 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1027 sizeof(void *) *nr);
1028
1029 from->avail -= nr;
1030 to->avail += nr;
3ded175a
CL
1031 return nr;
1032}
1033
765c4507
CL
1034#ifndef CONFIG_NUMA
1035
1036#define drain_alien_cache(cachep, alien) do { } while (0)
1037#define reap_alien(cachep, l3) do { } while (0)
1038
83b519e8 1039static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1040{
1041 return (struct array_cache **)BAD_ALIEN_MAGIC;
1042}
1043
1044static inline void free_alien_cache(struct array_cache **ac_ptr)
1045{
1046}
1047
1048static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1049{
1050 return 0;
1051}
1052
1053static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1054 gfp_t flags)
1055{
1056 return NULL;
1057}
1058
8b98c169 1059static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1060 gfp_t flags, int nodeid)
1061{
1062 return NULL;
1063}
1064
1065#else /* CONFIG_NUMA */
1066
8b98c169 1067static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1068static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1069
83b519e8 1070static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1071{
1072 struct array_cache **ac_ptr;
8ef82866 1073 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1074 int i;
1075
1076 if (limit > 1)
1077 limit = 12;
f3186a9c 1078 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1079 if (ac_ptr) {
1080 for_each_node(i) {
f3186a9c 1081 if (i == node || !node_online(i))
e498be7d 1082 continue;
83b519e8 1083 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1084 if (!ac_ptr[i]) {
cc550def 1085 for (i--; i >= 0; i--)
e498be7d
CL
1086 kfree(ac_ptr[i]);
1087 kfree(ac_ptr);
1088 return NULL;
1089 }
1090 }
1091 }
1092 return ac_ptr;
1093}
1094
5295a74c 1095static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1096{
1097 int i;
1098
1099 if (!ac_ptr)
1100 return;
e498be7d 1101 for_each_node(i)
b28a02de 1102 kfree(ac_ptr[i]);
e498be7d
CL
1103 kfree(ac_ptr);
1104}
1105
343e0d7a 1106static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1107 struct array_cache *ac, int node)
e498be7d
CL
1108{
1109 struct kmem_list3 *rl3 = cachep->nodelists[node];
1110
1111 if (ac->avail) {
1112 spin_lock(&rl3->list_lock);
e00946fe
CL
1113 /*
1114 * Stuff objects into the remote nodes shared array first.
1115 * That way we could avoid the overhead of putting the objects
1116 * into the free lists and getting them back later.
1117 */
693f7d36 1118 if (rl3->shared)
1119 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1120
ff69416e 1121 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1122 ac->avail = 0;
1123 spin_unlock(&rl3->list_lock);
1124 }
1125}
1126
8fce4d8e
CL
1127/*
1128 * Called from cache_reap() to regularly drain alien caches round robin.
1129 */
1130static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1131{
909ea964 1132 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1133
1134 if (l3->alien) {
1135 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1136
1137 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1138 __drain_alien_cache(cachep, ac, node);
1139 spin_unlock_irq(&ac->lock);
1140 }
1141 }
1142}
1143
a737b3e2
AM
1144static void drain_alien_cache(struct kmem_cache *cachep,
1145 struct array_cache **alien)
e498be7d 1146{
b28a02de 1147 int i = 0;
e498be7d
CL
1148 struct array_cache *ac;
1149 unsigned long flags;
1150
1151 for_each_online_node(i) {
4484ebf1 1152 ac = alien[i];
e498be7d
CL
1153 if (ac) {
1154 spin_lock_irqsave(&ac->lock, flags);
1155 __drain_alien_cache(cachep, ac, i);
1156 spin_unlock_irqrestore(&ac->lock, flags);
1157 }
1158 }
1159}
729bd0b7 1160
873623df 1161static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1162{
1163 struct slab *slabp = virt_to_slab(objp);
1164 int nodeid = slabp->nodeid;
1165 struct kmem_list3 *l3;
1166 struct array_cache *alien = NULL;
1ca4cb24
PE
1167 int node;
1168
7d6e6d09 1169 node = numa_mem_id();
729bd0b7
PE
1170
1171 /*
1172 * Make sure we are not freeing a object from another node to the array
1173 * cache on this cpu.
1174 */
62918a03 1175 if (likely(slabp->nodeid == node))
729bd0b7
PE
1176 return 0;
1177
1ca4cb24 1178 l3 = cachep->nodelists[node];
729bd0b7
PE
1179 STATS_INC_NODEFREES(cachep);
1180 if (l3->alien && l3->alien[nodeid]) {
1181 alien = l3->alien[nodeid];
873623df 1182 spin_lock(&alien->lock);
729bd0b7
PE
1183 if (unlikely(alien->avail == alien->limit)) {
1184 STATS_INC_ACOVERFLOW(cachep);
1185 __drain_alien_cache(cachep, alien, nodeid);
1186 }
072bb0aa 1187 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1188 spin_unlock(&alien->lock);
1189 } else {
1190 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1191 free_block(cachep, &objp, 1, nodeid);
1192 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1193 }
1194 return 1;
1195}
e498be7d
CL
1196#endif
1197
8f9f8d9e
DR
1198/*
1199 * Allocates and initializes nodelists for a node on each slab cache, used for
1200 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1201 * will be allocated off-node since memory is not yet online for the new node.
1202 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1203 * already in use.
1204 *
18004c5d 1205 * Must hold slab_mutex.
8f9f8d9e
DR
1206 */
1207static int init_cache_nodelists_node(int node)
1208{
1209 struct kmem_cache *cachep;
1210 struct kmem_list3 *l3;
1211 const int memsize = sizeof(struct kmem_list3);
1212
18004c5d 1213 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1214 /*
1215 * Set up the size64 kmemlist for cpu before we can
1216 * begin anything. Make sure some other cpu on this
1217 * node has not already allocated this
1218 */
1219 if (!cachep->nodelists[node]) {
1220 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1221 if (!l3)
1222 return -ENOMEM;
1223 kmem_list3_init(l3);
1224 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1225 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1226
1227 /*
1228 * The l3s don't come and go as CPUs come and
18004c5d 1229 * go. slab_mutex is sufficient
8f9f8d9e
DR
1230 * protection here.
1231 */
1232 cachep->nodelists[node] = l3;
1233 }
1234
1235 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1236 cachep->nodelists[node]->free_limit =
1237 (1 + nr_cpus_node(node)) *
1238 cachep->batchcount + cachep->num;
1239 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1240 }
1241 return 0;
1242}
1243
fbf1e473
AM
1244static void __cpuinit cpuup_canceled(long cpu)
1245{
1246 struct kmem_cache *cachep;
1247 struct kmem_list3 *l3 = NULL;
7d6e6d09 1248 int node = cpu_to_mem(cpu);
a70f7302 1249 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1250
18004c5d 1251 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1252 struct array_cache *nc;
1253 struct array_cache *shared;
1254 struct array_cache **alien;
fbf1e473 1255
fbf1e473
AM
1256 /* cpu is dead; no one can alloc from it. */
1257 nc = cachep->array[cpu];
1258 cachep->array[cpu] = NULL;
1259 l3 = cachep->nodelists[node];
1260
1261 if (!l3)
1262 goto free_array_cache;
1263
1264 spin_lock_irq(&l3->list_lock);
1265
1266 /* Free limit for this kmem_list3 */
1267 l3->free_limit -= cachep->batchcount;
1268 if (nc)
1269 free_block(cachep, nc->entry, nc->avail, node);
1270
58463c1f 1271 if (!cpumask_empty(mask)) {
fbf1e473
AM
1272 spin_unlock_irq(&l3->list_lock);
1273 goto free_array_cache;
1274 }
1275
1276 shared = l3->shared;
1277 if (shared) {
1278 free_block(cachep, shared->entry,
1279 shared->avail, node);
1280 l3->shared = NULL;
1281 }
1282
1283 alien = l3->alien;
1284 l3->alien = NULL;
1285
1286 spin_unlock_irq(&l3->list_lock);
1287
1288 kfree(shared);
1289 if (alien) {
1290 drain_alien_cache(cachep, alien);
1291 free_alien_cache(alien);
1292 }
1293free_array_cache:
1294 kfree(nc);
1295 }
1296 /*
1297 * In the previous loop, all the objects were freed to
1298 * the respective cache's slabs, now we can go ahead and
1299 * shrink each nodelist to its limit.
1300 */
18004c5d 1301 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1302 l3 = cachep->nodelists[node];
1303 if (!l3)
1304 continue;
1305 drain_freelist(cachep, l3, l3->free_objects);
1306 }
1307}
1308
1309static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1310{
343e0d7a 1311 struct kmem_cache *cachep;
e498be7d 1312 struct kmem_list3 *l3 = NULL;
7d6e6d09 1313 int node = cpu_to_mem(cpu);
8f9f8d9e 1314 int err;
1da177e4 1315
fbf1e473
AM
1316 /*
1317 * We need to do this right in the beginning since
1318 * alloc_arraycache's are going to use this list.
1319 * kmalloc_node allows us to add the slab to the right
1320 * kmem_list3 and not this cpu's kmem_list3
1321 */
8f9f8d9e
DR
1322 err = init_cache_nodelists_node(node);
1323 if (err < 0)
1324 goto bad;
fbf1e473
AM
1325
1326 /*
1327 * Now we can go ahead with allocating the shared arrays and
1328 * array caches
1329 */
18004c5d 1330 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1331 struct array_cache *nc;
1332 struct array_cache *shared = NULL;
1333 struct array_cache **alien = NULL;
1334
1335 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1336 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1337 if (!nc)
1338 goto bad;
1339 if (cachep->shared) {
1340 shared = alloc_arraycache(node,
1341 cachep->shared * cachep->batchcount,
83b519e8 1342 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1343 if (!shared) {
1344 kfree(nc);
1da177e4 1345 goto bad;
12d00f6a 1346 }
fbf1e473
AM
1347 }
1348 if (use_alien_caches) {
83b519e8 1349 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1350 if (!alien) {
1351 kfree(shared);
1352 kfree(nc);
fbf1e473 1353 goto bad;
12d00f6a 1354 }
fbf1e473
AM
1355 }
1356 cachep->array[cpu] = nc;
1357 l3 = cachep->nodelists[node];
1358 BUG_ON(!l3);
1359
1360 spin_lock_irq(&l3->list_lock);
1361 if (!l3->shared) {
1362 /*
1363 * We are serialised from CPU_DEAD or
1364 * CPU_UP_CANCELLED by the cpucontrol lock
1365 */
1366 l3->shared = shared;
1367 shared = NULL;
1368 }
4484ebf1 1369#ifdef CONFIG_NUMA
fbf1e473
AM
1370 if (!l3->alien) {
1371 l3->alien = alien;
1372 alien = NULL;
1da177e4 1373 }
fbf1e473
AM
1374#endif
1375 spin_unlock_irq(&l3->list_lock);
1376 kfree(shared);
1377 free_alien_cache(alien);
83835b3d
PZ
1378 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1379 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1380 else if (!OFF_SLAB(cachep) &&
1381 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1382 on_slab_lock_classes_node(cachep, node);
fbf1e473 1383 }
ce79ddc8
PE
1384 init_node_lock_keys(node);
1385
fbf1e473
AM
1386 return 0;
1387bad:
12d00f6a 1388 cpuup_canceled(cpu);
fbf1e473
AM
1389 return -ENOMEM;
1390}
1391
1392static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1393 unsigned long action, void *hcpu)
1394{
1395 long cpu = (long)hcpu;
1396 int err = 0;
1397
1398 switch (action) {
fbf1e473
AM
1399 case CPU_UP_PREPARE:
1400 case CPU_UP_PREPARE_FROZEN:
18004c5d 1401 mutex_lock(&slab_mutex);
fbf1e473 1402 err = cpuup_prepare(cpu);
18004c5d 1403 mutex_unlock(&slab_mutex);
1da177e4
LT
1404 break;
1405 case CPU_ONLINE:
8bb78442 1406 case CPU_ONLINE_FROZEN:
1da177e4
LT
1407 start_cpu_timer(cpu);
1408 break;
1409#ifdef CONFIG_HOTPLUG_CPU
5830c590 1410 case CPU_DOWN_PREPARE:
8bb78442 1411 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1412 /*
18004c5d 1413 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1414 * held so that if cache_reap() is invoked it cannot do
1415 * anything expensive but will only modify reap_work
1416 * and reschedule the timer.
1417 */
afe2c511 1418 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1419 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1420 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1421 break;
1422 case CPU_DOWN_FAILED:
8bb78442 1423 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1424 start_cpu_timer(cpu);
1425 break;
1da177e4 1426 case CPU_DEAD:
8bb78442 1427 case CPU_DEAD_FROZEN:
4484ebf1
RT
1428 /*
1429 * Even if all the cpus of a node are down, we don't free the
1430 * kmem_list3 of any cache. This to avoid a race between
1431 * cpu_down, and a kmalloc allocation from another cpu for
1432 * memory from the node of the cpu going down. The list3
1433 * structure is usually allocated from kmem_cache_create() and
1434 * gets destroyed at kmem_cache_destroy().
1435 */
183ff22b 1436 /* fall through */
8f5be20b 1437#endif
1da177e4 1438 case CPU_UP_CANCELED:
8bb78442 1439 case CPU_UP_CANCELED_FROZEN:
18004c5d 1440 mutex_lock(&slab_mutex);
fbf1e473 1441 cpuup_canceled(cpu);
18004c5d 1442 mutex_unlock(&slab_mutex);
1da177e4 1443 break;
1da177e4 1444 }
eac40680 1445 return notifier_from_errno(err);
1da177e4
LT
1446}
1447
74b85f37
CS
1448static struct notifier_block __cpuinitdata cpucache_notifier = {
1449 &cpuup_callback, NULL, 0
1450};
1da177e4 1451
8f9f8d9e
DR
1452#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1453/*
1454 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1455 * Returns -EBUSY if all objects cannot be drained so that the node is not
1456 * removed.
1457 *
18004c5d 1458 * Must hold slab_mutex.
8f9f8d9e
DR
1459 */
1460static int __meminit drain_cache_nodelists_node(int node)
1461{
1462 struct kmem_cache *cachep;
1463 int ret = 0;
1464
18004c5d 1465 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1466 struct kmem_list3 *l3;
1467
1468 l3 = cachep->nodelists[node];
1469 if (!l3)
1470 continue;
1471
1472 drain_freelist(cachep, l3, l3->free_objects);
1473
1474 if (!list_empty(&l3->slabs_full) ||
1475 !list_empty(&l3->slabs_partial)) {
1476 ret = -EBUSY;
1477 break;
1478 }
1479 }
1480 return ret;
1481}
1482
1483static int __meminit slab_memory_callback(struct notifier_block *self,
1484 unsigned long action, void *arg)
1485{
1486 struct memory_notify *mnb = arg;
1487 int ret = 0;
1488 int nid;
1489
1490 nid = mnb->status_change_nid;
1491 if (nid < 0)
1492 goto out;
1493
1494 switch (action) {
1495 case MEM_GOING_ONLINE:
18004c5d 1496 mutex_lock(&slab_mutex);
8f9f8d9e 1497 ret = init_cache_nodelists_node(nid);
18004c5d 1498 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1499 break;
1500 case MEM_GOING_OFFLINE:
18004c5d 1501 mutex_lock(&slab_mutex);
8f9f8d9e 1502 ret = drain_cache_nodelists_node(nid);
18004c5d 1503 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1504 break;
1505 case MEM_ONLINE:
1506 case MEM_OFFLINE:
1507 case MEM_CANCEL_ONLINE:
1508 case MEM_CANCEL_OFFLINE:
1509 break;
1510 }
1511out:
5fda1bd5 1512 return notifier_from_errno(ret);
8f9f8d9e
DR
1513}
1514#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1515
e498be7d
CL
1516/*
1517 * swap the static kmem_list3 with kmalloced memory
1518 */
8f9f8d9e
DR
1519static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1520 int nodeid)
e498be7d
CL
1521{
1522 struct kmem_list3 *ptr;
1523
83b519e8 1524 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1525 BUG_ON(!ptr);
1526
e498be7d 1527 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1528 /*
1529 * Do not assume that spinlocks can be initialized via memcpy:
1530 */
1531 spin_lock_init(&ptr->list_lock);
1532
e498be7d
CL
1533 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1534 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1535}
1536
556a169d
PE
1537/*
1538 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1539 * size of kmem_list3.
1540 */
1541static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1542{
1543 int node;
1544
1545 for_each_online_node(node) {
1546 cachep->nodelists[node] = &initkmem_list3[index + node];
1547 cachep->nodelists[node]->next_reap = jiffies +
1548 REAPTIMEOUT_LIST3 +
1549 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1550 }
1551}
1552
3c583465
CL
1553/*
1554 * The memory after the last cpu cache pointer is used for the
1555 * the nodelists pointer.
1556 */
1557static void setup_nodelists_pointer(struct kmem_cache *cachep)
1558{
1559 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1560}
1561
a737b3e2
AM
1562/*
1563 * Initialisation. Called after the page allocator have been initialised and
1564 * before smp_init().
1da177e4
LT
1565 */
1566void __init kmem_cache_init(void)
1567{
e498be7d
CL
1568 int i;
1569
9b030cb8 1570 kmem_cache = &kmem_cache_boot;
3c583465 1571 setup_nodelists_pointer(kmem_cache);
9b030cb8 1572
b6e68bc1 1573 if (num_possible_nodes() == 1)
62918a03
SS
1574 use_alien_caches = 0;
1575
3c583465 1576 for (i = 0; i < NUM_INIT_LISTS; i++)
e498be7d 1577 kmem_list3_init(&initkmem_list3[i]);
3c583465 1578
9b030cb8 1579 set_up_list3s(kmem_cache, CACHE_CACHE);
1da177e4
LT
1580
1581 /*
1582 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1583 * page orders on machines with more than 32MB of memory if
1584 * not overridden on the command line.
1da177e4 1585 */
3df1cccd 1586 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1587 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1588
1da177e4
LT
1589 /* Bootstrap is tricky, because several objects are allocated
1590 * from caches that do not exist yet:
9b030cb8
CL
1591 * 1) initialize the kmem_cache cache: it contains the struct
1592 * kmem_cache structures of all caches, except kmem_cache itself:
1593 * kmem_cache is statically allocated.
e498be7d
CL
1594 * Initially an __init data area is used for the head array and the
1595 * kmem_list3 structures, it's replaced with a kmalloc allocated
1596 * array at the end of the bootstrap.
1da177e4 1597 * 2) Create the first kmalloc cache.
343e0d7a 1598 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1599 * An __init data area is used for the head array.
1600 * 3) Create the remaining kmalloc caches, with minimally sized
1601 * head arrays.
9b030cb8 1602 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1603 * kmalloc cache with kmalloc allocated arrays.
9b030cb8 1604 * 5) Replace the __init data for kmem_list3 for kmem_cache and
e498be7d
CL
1605 * the other cache's with kmalloc allocated memory.
1606 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1607 */
1608
9b030cb8 1609 /* 1) create the kmem_cache */
1da177e4 1610
8da3430d 1611 /*
b56efcf0 1612 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1613 */
2f9baa9f
CL
1614 create_boot_cache(kmem_cache, "kmem_cache",
1615 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1616 nr_node_ids * sizeof(struct kmem_list3 *),
1617 SLAB_HWCACHE_ALIGN);
1618 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1619
1620 /* 2+3) create the kmalloc caches */
1da177e4 1621
a737b3e2
AM
1622 /*
1623 * Initialize the caches that provide memory for the array cache and the
1624 * kmem_list3 structures first. Without this, further allocations will
1625 * bug.
e498be7d
CL
1626 */
1627
e3366016
CL
1628 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1629 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44
CL
1630
1631 if (INDEX_AC != INDEX_L3)
e3366016
CL
1632 kmalloc_caches[INDEX_L3] =
1633 create_kmalloc_cache("kmalloc-l3",
1634 kmalloc_size(INDEX_L3), ARCH_KMALLOC_FLAGS);
e498be7d 1635
e0a42726
IM
1636 slab_early_init = 0;
1637
e3366016
CL
1638 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
1639 size_t cs_size = kmalloc_size(i);
1640
1641 if (cs_size < KMALLOC_MIN_SIZE)
1642 continue;
1643
1644 if (!kmalloc_caches[i]) {
1645 /*
1646 * For performance, all the general caches are L1 aligned.
1647 * This should be particularly beneficial on SMP boxes, as it
1648 * eliminates "false sharing".
1649 * Note for systems short on memory removing the alignment will
1650 * allow tighter packing of the smaller caches.
1651 */
1652 kmalloc_caches[i] = create_kmalloc_cache("kmalloc",
1653 cs_size, ARCH_KMALLOC_FLAGS);
1654 }
45530c44 1655
4b51d669 1656#ifdef CONFIG_ZONE_DMA
e3366016
CL
1657 kmalloc_dma_caches[i] = create_kmalloc_cache(
1658 "kmalloc-dma", cs_size,
45530c44 1659 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
4b51d669 1660#endif
1da177e4
LT
1661 }
1662 /* 4) Replace the bootstrap head arrays */
1663 {
2b2d5493 1664 struct array_cache *ptr;
e498be7d 1665
83b519e8 1666 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1667
9b030cb8 1668 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1669 sizeof(struct arraycache_init));
2b2d5493
IM
1670 /*
1671 * Do not assume that spinlocks can be initialized via memcpy:
1672 */
1673 spin_lock_init(&ptr->lock);
1674
9b030cb8 1675 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1676
83b519e8 1677 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1678
e3366016 1679 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1680 != &initarray_generic.cache);
e3366016 1681 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1682 sizeof(struct arraycache_init));
2b2d5493
IM
1683 /*
1684 * Do not assume that spinlocks can be initialized via memcpy:
1685 */
1686 spin_lock_init(&ptr->lock);
1687
e3366016 1688 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1689 }
e498be7d
CL
1690 /* 5) Replace the bootstrap kmem_list3's */
1691 {
1ca4cb24
PE
1692 int nid;
1693
9c09a95c 1694 for_each_online_node(nid) {
9b030cb8 1695 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1696
e3366016 1697 init_list(kmalloc_caches[INDEX_AC],
1ca4cb24 1698 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1699
1700 if (INDEX_AC != INDEX_L3) {
e3366016 1701 init_list(kmalloc_caches[INDEX_L3],
1ca4cb24 1702 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1703 }
1704 }
1705 }
1da177e4 1706
97d06609 1707 slab_state = UP;
e3366016
CL
1708
1709 /* Create the proper names */
1710 for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) {
1711 char *s;
1712 struct kmem_cache *c = kmalloc_caches[i];
1713
1714 if (!c)
1715 continue;
1716
1717 s = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
1718
1719 BUG_ON(!s);
1720 c->name = s;
1721
1722#ifdef CONFIG_ZONE_DMA
1723 c = kmalloc_dma_caches[i];
1724 BUG_ON(!c);
1725 s = kasprintf(GFP_NOWAIT, "dma-kmalloc-%d", kmalloc_size(i));
1726 BUG_ON(!s);
1727 c->name = s;
1728#endif
1729 }
8429db5c
PE
1730}
1731
1732void __init kmem_cache_init_late(void)
1733{
1734 struct kmem_cache *cachep;
1735
97d06609 1736 slab_state = UP;
52cef189 1737
8429db5c 1738 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1739 mutex_lock(&slab_mutex);
1740 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1741 if (enable_cpucache(cachep, GFP_NOWAIT))
1742 BUG();
18004c5d 1743 mutex_unlock(&slab_mutex);
056c6241 1744
947ca185
MW
1745 /* Annotate slab for lockdep -- annotate the malloc caches */
1746 init_lock_keys();
1747
97d06609
CL
1748 /* Done! */
1749 slab_state = FULL;
1750
a737b3e2
AM
1751 /*
1752 * Register a cpu startup notifier callback that initializes
1753 * cpu_cache_get for all new cpus
1da177e4
LT
1754 */
1755 register_cpu_notifier(&cpucache_notifier);
1da177e4 1756
8f9f8d9e
DR
1757#ifdef CONFIG_NUMA
1758 /*
1759 * Register a memory hotplug callback that initializes and frees
1760 * nodelists.
1761 */
1762 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1763#endif
1764
a737b3e2
AM
1765 /*
1766 * The reap timers are started later, with a module init call: That part
1767 * of the kernel is not yet operational.
1da177e4
LT
1768 */
1769}
1770
1771static int __init cpucache_init(void)
1772{
1773 int cpu;
1774
a737b3e2
AM
1775 /*
1776 * Register the timers that return unneeded pages to the page allocator
1da177e4 1777 */
e498be7d 1778 for_each_online_cpu(cpu)
a737b3e2 1779 start_cpu_timer(cpu);
a164f896
GC
1780
1781 /* Done! */
97d06609 1782 slab_state = FULL;
1da177e4
LT
1783 return 0;
1784}
1da177e4
LT
1785__initcall(cpucache_init);
1786
8bdec192
RA
1787static noinline void
1788slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1789{
1790 struct kmem_list3 *l3;
1791 struct slab *slabp;
1792 unsigned long flags;
1793 int node;
1794
1795 printk(KERN_WARNING
1796 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1797 nodeid, gfpflags);
1798 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1799 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1800
1801 for_each_online_node(node) {
1802 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1803 unsigned long active_slabs = 0, num_slabs = 0;
1804
1805 l3 = cachep->nodelists[node];
1806 if (!l3)
1807 continue;
1808
1809 spin_lock_irqsave(&l3->list_lock, flags);
1810 list_for_each_entry(slabp, &l3->slabs_full, list) {
1811 active_objs += cachep->num;
1812 active_slabs++;
1813 }
1814 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1815 active_objs += slabp->inuse;
1816 active_slabs++;
1817 }
1818 list_for_each_entry(slabp, &l3->slabs_free, list)
1819 num_slabs++;
1820
1821 free_objects += l3->free_objects;
1822 spin_unlock_irqrestore(&l3->list_lock, flags);
1823
1824 num_slabs += active_slabs;
1825 num_objs = num_slabs * cachep->num;
1826 printk(KERN_WARNING
1827 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1828 node, active_slabs, num_slabs, active_objs, num_objs,
1829 free_objects);
1830 }
1831}
1832
1da177e4
LT
1833/*
1834 * Interface to system's page allocator. No need to hold the cache-lock.
1835 *
1836 * If we requested dmaable memory, we will get it. Even if we
1837 * did not request dmaable memory, we might get it, but that
1838 * would be relatively rare and ignorable.
1839 */
343e0d7a 1840static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1841{
1842 struct page *page;
e1b6aa6f 1843 int nr_pages;
1da177e4
LT
1844 int i;
1845
d6fef9da 1846#ifndef CONFIG_MMU
e1b6aa6f
CH
1847 /*
1848 * Nommu uses slab's for process anonymous memory allocations, and thus
1849 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1850 */
e1b6aa6f 1851 flags |= __GFP_COMP;
d6fef9da 1852#endif
765c4507 1853
a618e89f 1854 flags |= cachep->allocflags;
e12ba74d
MG
1855 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1856 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1857
517d0869 1858 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1859 if (!page) {
1860 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1861 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1862 return NULL;
8bdec192 1863 }
1da177e4 1864
b37f1dd0 1865 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1866 if (unlikely(page->pfmemalloc))
1867 pfmemalloc_active = true;
1868
e1b6aa6f 1869 nr_pages = (1 << cachep->gfporder);
1da177e4 1870 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1871 add_zone_page_state(page_zone(page),
1872 NR_SLAB_RECLAIMABLE, nr_pages);
1873 else
1874 add_zone_page_state(page_zone(page),
1875 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1876 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1877 __SetPageSlab(page + i);
c175eea4 1878
072bb0aa
MG
1879 if (page->pfmemalloc)
1880 SetPageSlabPfmemalloc(page + i);
1881 }
1f458cbf 1882 memcg_bind_pages(cachep, cachep->gfporder);
072bb0aa 1883
b1eeab67
VN
1884 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1885 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1886
1887 if (cachep->ctor)
1888 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1889 else
1890 kmemcheck_mark_unallocated_pages(page, nr_pages);
1891 }
c175eea4 1892
e1b6aa6f 1893 return page_address(page);
1da177e4
LT
1894}
1895
1896/*
1897 * Interface to system's page release.
1898 */
343e0d7a 1899static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1900{
b28a02de 1901 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1902 struct page *page = virt_to_page(addr);
1903 const unsigned long nr_freed = i;
1904
b1eeab67 1905 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1906
972d1a7b
CL
1907 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1908 sub_zone_page_state(page_zone(page),
1909 NR_SLAB_RECLAIMABLE, nr_freed);
1910 else
1911 sub_zone_page_state(page_zone(page),
1912 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1913 while (i--) {
f205b2fe 1914 BUG_ON(!PageSlab(page));
072bb0aa 1915 __ClearPageSlabPfmemalloc(page);
f205b2fe 1916 __ClearPageSlab(page);
1da177e4
LT
1917 page++;
1918 }
1f458cbf
GC
1919
1920 memcg_release_pages(cachep, cachep->gfporder);
1da177e4
LT
1921 if (current->reclaim_state)
1922 current->reclaim_state->reclaimed_slab += nr_freed;
d79923fa 1923 free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1924}
1925
1926static void kmem_rcu_free(struct rcu_head *head)
1927{
b28a02de 1928 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1929 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1930
1931 kmem_freepages(cachep, slab_rcu->addr);
1932 if (OFF_SLAB(cachep))
1933 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1934}
1935
1936#if DEBUG
1937
1938#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1939static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1940 unsigned long caller)
1da177e4 1941{
8c138bc0 1942 int size = cachep->object_size;
1da177e4 1943
3dafccf2 1944 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1945
b28a02de 1946 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1947 return;
1948
b28a02de
PE
1949 *addr++ = 0x12345678;
1950 *addr++ = caller;
1951 *addr++ = smp_processor_id();
1952 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1953 {
1954 unsigned long *sptr = &caller;
1955 unsigned long svalue;
1956
1957 while (!kstack_end(sptr)) {
1958 svalue = *sptr++;
1959 if (kernel_text_address(svalue)) {
b28a02de 1960 *addr++ = svalue;
1da177e4
LT
1961 size -= sizeof(unsigned long);
1962 if (size <= sizeof(unsigned long))
1963 break;
1964 }
1965 }
1966
1967 }
b28a02de 1968 *addr++ = 0x87654321;
1da177e4
LT
1969}
1970#endif
1971
343e0d7a 1972static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1973{
8c138bc0 1974 int size = cachep->object_size;
3dafccf2 1975 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1976
1977 memset(addr, val, size);
b28a02de 1978 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1979}
1980
1981static void dump_line(char *data, int offset, int limit)
1982{
1983 int i;
aa83aa40
DJ
1984 unsigned char error = 0;
1985 int bad_count = 0;
1986
fdde6abb 1987 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1988 for (i = 0; i < limit; i++) {
1989 if (data[offset + i] != POISON_FREE) {
1990 error = data[offset + i];
1991 bad_count++;
1992 }
aa83aa40 1993 }
fdde6abb
SAS
1994 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1995 &data[offset], limit, 1);
aa83aa40
DJ
1996
1997 if (bad_count == 1) {
1998 error ^= POISON_FREE;
1999 if (!(error & (error - 1))) {
2000 printk(KERN_ERR "Single bit error detected. Probably "
2001 "bad RAM.\n");
2002#ifdef CONFIG_X86
2003 printk(KERN_ERR "Run memtest86+ or a similar memory "
2004 "test tool.\n");
2005#else
2006 printk(KERN_ERR "Run a memory test tool.\n");
2007#endif
2008 }
2009 }
1da177e4
LT
2010}
2011#endif
2012
2013#if DEBUG
2014
343e0d7a 2015static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2016{
2017 int i, size;
2018 char *realobj;
2019
2020 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2021 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2022 *dbg_redzone1(cachep, objp),
2023 *dbg_redzone2(cachep, objp));
1da177e4
LT
2024 }
2025
2026 if (cachep->flags & SLAB_STORE_USER) {
2027 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2028 *dbg_userword(cachep, objp));
1da177e4 2029 print_symbol("(%s)",
a737b3e2 2030 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2031 printk("\n");
2032 }
3dafccf2 2033 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2034 size = cachep->object_size;
b28a02de 2035 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2036 int limit;
2037 limit = 16;
b28a02de
PE
2038 if (i + limit > size)
2039 limit = size - i;
1da177e4
LT
2040 dump_line(realobj, i, limit);
2041 }
2042}
2043
343e0d7a 2044static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2045{
2046 char *realobj;
2047 int size, i;
2048 int lines = 0;
2049
3dafccf2 2050 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2051 size = cachep->object_size;
1da177e4 2052
b28a02de 2053 for (i = 0; i < size; i++) {
1da177e4 2054 char exp = POISON_FREE;
b28a02de 2055 if (i == size - 1)
1da177e4
LT
2056 exp = POISON_END;
2057 if (realobj[i] != exp) {
2058 int limit;
2059 /* Mismatch ! */
2060 /* Print header */
2061 if (lines == 0) {
b28a02de 2062 printk(KERN_ERR
face37f5
DJ
2063 "Slab corruption (%s): %s start=%p, len=%d\n",
2064 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2065 print_objinfo(cachep, objp, 0);
2066 }
2067 /* Hexdump the affected line */
b28a02de 2068 i = (i / 16) * 16;
1da177e4 2069 limit = 16;
b28a02de
PE
2070 if (i + limit > size)
2071 limit = size - i;
1da177e4
LT
2072 dump_line(realobj, i, limit);
2073 i += 16;
2074 lines++;
2075 /* Limit to 5 lines */
2076 if (lines > 5)
2077 break;
2078 }
2079 }
2080 if (lines != 0) {
2081 /* Print some data about the neighboring objects, if they
2082 * exist:
2083 */
6ed5eb22 2084 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2085 unsigned int objnr;
1da177e4 2086
8fea4e96 2087 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2088 if (objnr) {
8fea4e96 2089 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2090 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2091 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2092 realobj, size);
1da177e4
LT
2093 print_objinfo(cachep, objp, 2);
2094 }
b28a02de 2095 if (objnr + 1 < cachep->num) {
8fea4e96 2096 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2097 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2098 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2099 realobj, size);
1da177e4
LT
2100 print_objinfo(cachep, objp, 2);
2101 }
2102 }
2103}
2104#endif
2105
12dd36fa 2106#if DEBUG
e79aec29 2107static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2108{
1da177e4
LT
2109 int i;
2110 for (i = 0; i < cachep->num; i++) {
8fea4e96 2111 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2112
2113 if (cachep->flags & SLAB_POISON) {
2114#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2115 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2116 OFF_SLAB(cachep))
b28a02de 2117 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2118 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2119 else
2120 check_poison_obj(cachep, objp);
2121#else
2122 check_poison_obj(cachep, objp);
2123#endif
2124 }
2125 if (cachep->flags & SLAB_RED_ZONE) {
2126 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2127 slab_error(cachep, "start of a freed object "
b28a02de 2128 "was overwritten");
1da177e4
LT
2129 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2130 slab_error(cachep, "end of a freed object "
b28a02de 2131 "was overwritten");
1da177e4 2132 }
1da177e4 2133 }
12dd36fa 2134}
1da177e4 2135#else
e79aec29 2136static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2137{
12dd36fa 2138}
1da177e4
LT
2139#endif
2140
911851e6
RD
2141/**
2142 * slab_destroy - destroy and release all objects in a slab
2143 * @cachep: cache pointer being destroyed
2144 * @slabp: slab pointer being destroyed
2145 *
12dd36fa 2146 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2147 * Before calling the slab must have been unlinked from the cache. The
2148 * cache-lock is not held/needed.
12dd36fa 2149 */
343e0d7a 2150static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2151{
2152 void *addr = slabp->s_mem - slabp->colouroff;
2153
e79aec29 2154 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2155 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2156 struct slab_rcu *slab_rcu;
2157
b28a02de 2158 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2159 slab_rcu->cachep = cachep;
2160 slab_rcu->addr = addr;
2161 call_rcu(&slab_rcu->head, kmem_rcu_free);
2162 } else {
2163 kmem_freepages(cachep, addr);
873623df
IM
2164 if (OFF_SLAB(cachep))
2165 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2166 }
2167}
2168
4d268eba 2169/**
a70773dd
RD
2170 * calculate_slab_order - calculate size (page order) of slabs
2171 * @cachep: pointer to the cache that is being created
2172 * @size: size of objects to be created in this cache.
2173 * @align: required alignment for the objects.
2174 * @flags: slab allocation flags
2175 *
2176 * Also calculates the number of objects per slab.
4d268eba
PE
2177 *
2178 * This could be made much more intelligent. For now, try to avoid using
2179 * high order pages for slabs. When the gfp() functions are more friendly
2180 * towards high-order requests, this should be changed.
2181 */
a737b3e2 2182static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2183 size_t size, size_t align, unsigned long flags)
4d268eba 2184{
b1ab41c4 2185 unsigned long offslab_limit;
4d268eba 2186 size_t left_over = 0;
9888e6fa 2187 int gfporder;
4d268eba 2188
0aa817f0 2189 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2190 unsigned int num;
2191 size_t remainder;
2192
9888e6fa 2193 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2194 if (!num)
2195 continue;
9888e6fa 2196
b1ab41c4
IM
2197 if (flags & CFLGS_OFF_SLAB) {
2198 /*
2199 * Max number of objs-per-slab for caches which
2200 * use off-slab slabs. Needed to avoid a possible
2201 * looping condition in cache_grow().
2202 */
2203 offslab_limit = size - sizeof(struct slab);
2204 offslab_limit /= sizeof(kmem_bufctl_t);
2205
2206 if (num > offslab_limit)
2207 break;
2208 }
4d268eba 2209
9888e6fa 2210 /* Found something acceptable - save it away */
4d268eba 2211 cachep->num = num;
9888e6fa 2212 cachep->gfporder = gfporder;
4d268eba
PE
2213 left_over = remainder;
2214
f78bb8ad
LT
2215 /*
2216 * A VFS-reclaimable slab tends to have most allocations
2217 * as GFP_NOFS and we really don't want to have to be allocating
2218 * higher-order pages when we are unable to shrink dcache.
2219 */
2220 if (flags & SLAB_RECLAIM_ACCOUNT)
2221 break;
2222
4d268eba
PE
2223 /*
2224 * Large number of objects is good, but very large slabs are
2225 * currently bad for the gfp()s.
2226 */
543585cc 2227 if (gfporder >= slab_max_order)
4d268eba
PE
2228 break;
2229
9888e6fa
LT
2230 /*
2231 * Acceptable internal fragmentation?
2232 */
a737b3e2 2233 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2234 break;
2235 }
2236 return left_over;
2237}
2238
83b519e8 2239static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2240{
97d06609 2241 if (slab_state >= FULL)
83b519e8 2242 return enable_cpucache(cachep, gfp);
2ed3a4ef 2243
97d06609 2244 if (slab_state == DOWN) {
f30cf7d1 2245 /*
2f9baa9f
CL
2246 * Note: Creation of first cache (kmem_cache).
2247 * The setup_list3s is taken care
2248 * of by the caller of __kmem_cache_create
2249 */
2250 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2251 slab_state = PARTIAL;
2252 } else if (slab_state == PARTIAL) {
2253 /*
2254 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2255 * that's used by kmalloc(24), otherwise the creation of
2256 * further caches will BUG().
2257 */
2258 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2259
2260 /*
2261 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2f9baa9f 2262 * the second cache, then we need to set up all its list3s,
f30cf7d1
PE
2263 * otherwise the creation of further caches will BUG().
2264 */
2265 set_up_list3s(cachep, SIZE_AC);
2266 if (INDEX_AC == INDEX_L3)
97d06609 2267 slab_state = PARTIAL_L3;
f30cf7d1 2268 else
97d06609 2269 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2270 } else {
2f9baa9f 2271 /* Remaining boot caches */
f30cf7d1 2272 cachep->array[smp_processor_id()] =
83b519e8 2273 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2274
97d06609 2275 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2276 set_up_list3s(cachep, SIZE_L3);
97d06609 2277 slab_state = PARTIAL_L3;
f30cf7d1
PE
2278 } else {
2279 int node;
556a169d 2280 for_each_online_node(node) {
f30cf7d1
PE
2281 cachep->nodelists[node] =
2282 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2283 gfp, node);
f30cf7d1
PE
2284 BUG_ON(!cachep->nodelists[node]);
2285 kmem_list3_init(cachep->nodelists[node]);
2286 }
2287 }
2288 }
7d6e6d09 2289 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2290 jiffies + REAPTIMEOUT_LIST3 +
2291 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2292
2293 cpu_cache_get(cachep)->avail = 0;
2294 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2295 cpu_cache_get(cachep)->batchcount = 1;
2296 cpu_cache_get(cachep)->touched = 0;
2297 cachep->batchcount = 1;
2298 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2299 return 0;
f30cf7d1
PE
2300}
2301
1da177e4 2302/**
039363f3 2303 * __kmem_cache_create - Create a cache.
a755b76a 2304 * @cachep: cache management descriptor
1da177e4 2305 * @flags: SLAB flags
1da177e4
LT
2306 *
2307 * Returns a ptr to the cache on success, NULL on failure.
2308 * Cannot be called within a int, but can be interrupted.
20c2df83 2309 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2310 *
1da177e4
LT
2311 * The flags are
2312 *
2313 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2314 * to catch references to uninitialised memory.
2315 *
2316 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2317 * for buffer overruns.
2318 *
1da177e4
LT
2319 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2320 * cacheline. This can be beneficial if you're counting cycles as closely
2321 * as davem.
2322 */
278b1bb1 2323int
8a13a4cc 2324__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4
LT
2325{
2326 size_t left_over, slab_size, ralign;
83b519e8 2327 gfp_t gfp;
278b1bb1 2328 int err;
8a13a4cc 2329 size_t size = cachep->size;
1da177e4 2330
1da177e4 2331#if DEBUG
1da177e4
LT
2332#if FORCED_DEBUG
2333 /*
2334 * Enable redzoning and last user accounting, except for caches with
2335 * large objects, if the increased size would increase the object size
2336 * above the next power of two: caches with object sizes just above a
2337 * power of two have a significant amount of internal fragmentation.
2338 */
87a927c7
DW
2339 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2340 2 * sizeof(unsigned long long)))
b28a02de 2341 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2342 if (!(flags & SLAB_DESTROY_BY_RCU))
2343 flags |= SLAB_POISON;
2344#endif
2345 if (flags & SLAB_DESTROY_BY_RCU)
2346 BUG_ON(flags & SLAB_POISON);
2347#endif
1da177e4 2348
a737b3e2
AM
2349 /*
2350 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2351 * unaligned accesses for some archs when redzoning is used, and makes
2352 * sure any on-slab bufctl's are also correctly aligned.
2353 */
b28a02de
PE
2354 if (size & (BYTES_PER_WORD - 1)) {
2355 size += (BYTES_PER_WORD - 1);
2356 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2357 }
2358
ca5f9703 2359 /*
87a927c7
DW
2360 * Redzoning and user store require word alignment or possibly larger.
2361 * Note this will be overridden by architecture or caller mandated
2362 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2363 */
87a927c7
DW
2364 if (flags & SLAB_STORE_USER)
2365 ralign = BYTES_PER_WORD;
2366
2367 if (flags & SLAB_RED_ZONE) {
2368 ralign = REDZONE_ALIGN;
2369 /* If redzoning, ensure that the second redzone is suitably
2370 * aligned, by adjusting the object size accordingly. */
2371 size += REDZONE_ALIGN - 1;
2372 size &= ~(REDZONE_ALIGN - 1);
2373 }
ca5f9703 2374
a44b56d3 2375 /* 3) caller mandated alignment */
8a13a4cc
CL
2376 if (ralign < cachep->align) {
2377 ralign = cachep->align;
1da177e4 2378 }
3ff84a7f
PE
2379 /* disable debug if necessary */
2380 if (ralign > __alignof__(unsigned long long))
a44b56d3 2381 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2382 /*
ca5f9703 2383 * 4) Store it.
1da177e4 2384 */
8a13a4cc 2385 cachep->align = ralign;
1da177e4 2386
83b519e8
PE
2387 if (slab_is_available())
2388 gfp = GFP_KERNEL;
2389 else
2390 gfp = GFP_NOWAIT;
2391
3c583465 2392 setup_nodelists_pointer(cachep);
1da177e4 2393#if DEBUG
1da177e4 2394
ca5f9703
PE
2395 /*
2396 * Both debugging options require word-alignment which is calculated
2397 * into align above.
2398 */
1da177e4 2399 if (flags & SLAB_RED_ZONE) {
1da177e4 2400 /* add space for red zone words */
3ff84a7f
PE
2401 cachep->obj_offset += sizeof(unsigned long long);
2402 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2403 }
2404 if (flags & SLAB_STORE_USER) {
ca5f9703 2405 /* user store requires one word storage behind the end of
87a927c7
DW
2406 * the real object. But if the second red zone needs to be
2407 * aligned to 64 bits, we must allow that much space.
1da177e4 2408 */
87a927c7
DW
2409 if (flags & SLAB_RED_ZONE)
2410 size += REDZONE_ALIGN;
2411 else
2412 size += BYTES_PER_WORD;
1da177e4
LT
2413 }
2414#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
e3366016
CL
2415 if (size >= kmalloc_size(INDEX_L3 + 1)
2416 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2417 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2418 size = PAGE_SIZE;
2419 }
2420#endif
2421#endif
2422
e0a42726
IM
2423 /*
2424 * Determine if the slab management is 'on' or 'off' slab.
2425 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2426 * it too early on. Always use on-slab management when
2427 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2428 */
e7cb55b9
CM
2429 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2430 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2431 /*
2432 * Size is large, assume best to place the slab management obj
2433 * off-slab (should allow better packing of objs).
2434 */
2435 flags |= CFLGS_OFF_SLAB;
2436
8a13a4cc 2437 size = ALIGN(size, cachep->align);
1da177e4 2438
8a13a4cc 2439 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2440
8a13a4cc 2441 if (!cachep->num)
278b1bb1 2442 return -E2BIG;
1da177e4 2443
b28a02de 2444 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
8a13a4cc 2445 + sizeof(struct slab), cachep->align);
1da177e4
LT
2446
2447 /*
2448 * If the slab has been placed off-slab, and we have enough space then
2449 * move it on-slab. This is at the expense of any extra colouring.
2450 */
2451 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2452 flags &= ~CFLGS_OFF_SLAB;
2453 left_over -= slab_size;
2454 }
2455
2456 if (flags & CFLGS_OFF_SLAB) {
2457 /* really off slab. No need for manual alignment */
b28a02de
PE
2458 slab_size =
2459 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2460
2461#ifdef CONFIG_PAGE_POISONING
2462 /* If we're going to use the generic kernel_map_pages()
2463 * poisoning, then it's going to smash the contents of
2464 * the redzone and userword anyhow, so switch them off.
2465 */
2466 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2467 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2468#endif
1da177e4
LT
2469 }
2470
2471 cachep->colour_off = cache_line_size();
2472 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2473 if (cachep->colour_off < cachep->align)
2474 cachep->colour_off = cachep->align;
b28a02de 2475 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2476 cachep->slab_size = slab_size;
2477 cachep->flags = flags;
a618e89f 2478 cachep->allocflags = 0;
4b51d669 2479 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2480 cachep->allocflags |= GFP_DMA;
3b0efdfa 2481 cachep->size = size;
6a2d7a95 2482 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2483
e5ac9c5a 2484 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2485 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2486 /*
2487 * This is a possibility for one of the malloc_sizes caches.
2488 * But since we go off slab only for object size greater than
2489 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2490 * this should not happen at all.
2491 * But leave a BUG_ON for some lucky dude.
2492 */
6cb8f913 2493 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2494 }
1da177e4 2495
278b1bb1
CL
2496 err = setup_cpu_cache(cachep, gfp);
2497 if (err) {
12c3667f 2498 __kmem_cache_shutdown(cachep);
278b1bb1 2499 return err;
2ed3a4ef 2500 }
1da177e4 2501
83835b3d
PZ
2502 if (flags & SLAB_DEBUG_OBJECTS) {
2503 /*
2504 * Would deadlock through slab_destroy()->call_rcu()->
2505 * debug_object_activate()->kmem_cache_alloc().
2506 */
2507 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2508
2509 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2510 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2511 on_slab_lock_classes(cachep);
83835b3d 2512
278b1bb1 2513 return 0;
1da177e4 2514}
1da177e4
LT
2515
2516#if DEBUG
2517static void check_irq_off(void)
2518{
2519 BUG_ON(!irqs_disabled());
2520}
2521
2522static void check_irq_on(void)
2523{
2524 BUG_ON(irqs_disabled());
2525}
2526
343e0d7a 2527static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2528{
2529#ifdef CONFIG_SMP
2530 check_irq_off();
7d6e6d09 2531 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2532#endif
2533}
e498be7d 2534
343e0d7a 2535static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2536{
2537#ifdef CONFIG_SMP
2538 check_irq_off();
2539 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2540#endif
2541}
2542
1da177e4
LT
2543#else
2544#define check_irq_off() do { } while(0)
2545#define check_irq_on() do { } while(0)
2546#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2547#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2548#endif
2549
aab2207c
CL
2550static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2551 struct array_cache *ac,
2552 int force, int node);
2553
1da177e4
LT
2554static void do_drain(void *arg)
2555{
a737b3e2 2556 struct kmem_cache *cachep = arg;
1da177e4 2557 struct array_cache *ac;
7d6e6d09 2558 int node = numa_mem_id();
1da177e4
LT
2559
2560 check_irq_off();
9a2dba4b 2561 ac = cpu_cache_get(cachep);
ff69416e
CL
2562 spin_lock(&cachep->nodelists[node]->list_lock);
2563 free_block(cachep, ac->entry, ac->avail, node);
2564 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2565 ac->avail = 0;
2566}
2567
343e0d7a 2568static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2569{
e498be7d
CL
2570 struct kmem_list3 *l3;
2571 int node;
2572
15c8b6c1 2573 on_each_cpu(do_drain, cachep, 1);
1da177e4 2574 check_irq_on();
b28a02de 2575 for_each_online_node(node) {
e498be7d 2576 l3 = cachep->nodelists[node];
a4523a8b
RD
2577 if (l3 && l3->alien)
2578 drain_alien_cache(cachep, l3->alien);
2579 }
2580
2581 for_each_online_node(node) {
2582 l3 = cachep->nodelists[node];
2583 if (l3)
aab2207c 2584 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2585 }
1da177e4
LT
2586}
2587
ed11d9eb
CL
2588/*
2589 * Remove slabs from the list of free slabs.
2590 * Specify the number of slabs to drain in tofree.
2591 *
2592 * Returns the actual number of slabs released.
2593 */
2594static int drain_freelist(struct kmem_cache *cache,
2595 struct kmem_list3 *l3, int tofree)
1da177e4 2596{
ed11d9eb
CL
2597 struct list_head *p;
2598 int nr_freed;
1da177e4 2599 struct slab *slabp;
1da177e4 2600
ed11d9eb
CL
2601 nr_freed = 0;
2602 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2603
ed11d9eb 2604 spin_lock_irq(&l3->list_lock);
e498be7d 2605 p = l3->slabs_free.prev;
ed11d9eb
CL
2606 if (p == &l3->slabs_free) {
2607 spin_unlock_irq(&l3->list_lock);
2608 goto out;
2609 }
1da177e4 2610
ed11d9eb 2611 slabp = list_entry(p, struct slab, list);
1da177e4 2612#if DEBUG
40094fa6 2613 BUG_ON(slabp->inuse);
1da177e4
LT
2614#endif
2615 list_del(&slabp->list);
ed11d9eb
CL
2616 /*
2617 * Safe to drop the lock. The slab is no longer linked
2618 * to the cache.
2619 */
2620 l3->free_objects -= cache->num;
e498be7d 2621 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2622 slab_destroy(cache, slabp);
2623 nr_freed++;
1da177e4 2624 }
ed11d9eb
CL
2625out:
2626 return nr_freed;
1da177e4
LT
2627}
2628
18004c5d 2629/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2630static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2631{
2632 int ret = 0, i = 0;
2633 struct kmem_list3 *l3;
2634
2635 drain_cpu_caches(cachep);
2636
2637 check_irq_on();
2638 for_each_online_node(i) {
2639 l3 = cachep->nodelists[i];
ed11d9eb
CL
2640 if (!l3)
2641 continue;
2642
2643 drain_freelist(cachep, l3, l3->free_objects);
2644
2645 ret += !list_empty(&l3->slabs_full) ||
2646 !list_empty(&l3->slabs_partial);
e498be7d
CL
2647 }
2648 return (ret ? 1 : 0);
2649}
2650
1da177e4
LT
2651/**
2652 * kmem_cache_shrink - Shrink a cache.
2653 * @cachep: The cache to shrink.
2654 *
2655 * Releases as many slabs as possible for a cache.
2656 * To help debugging, a zero exit status indicates all slabs were released.
2657 */
343e0d7a 2658int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2659{
8f5be20b 2660 int ret;
40094fa6 2661 BUG_ON(!cachep || in_interrupt());
1da177e4 2662
95402b38 2663 get_online_cpus();
18004c5d 2664 mutex_lock(&slab_mutex);
8f5be20b 2665 ret = __cache_shrink(cachep);
18004c5d 2666 mutex_unlock(&slab_mutex);
95402b38 2667 put_online_cpus();
8f5be20b 2668 return ret;
1da177e4
LT
2669}
2670EXPORT_SYMBOL(kmem_cache_shrink);
2671
945cf2b6 2672int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2673{
12c3667f
CL
2674 int i;
2675 struct kmem_list3 *l3;
2676 int rc = __cache_shrink(cachep);
1da177e4 2677
12c3667f
CL
2678 if (rc)
2679 return rc;
1da177e4 2680
12c3667f
CL
2681 for_each_online_cpu(i)
2682 kfree(cachep->array[i]);
1da177e4 2683
12c3667f
CL
2684 /* NUMA: free the list3 structures */
2685 for_each_online_node(i) {
2686 l3 = cachep->nodelists[i];
2687 if (l3) {
2688 kfree(l3->shared);
2689 free_alien_cache(l3->alien);
2690 kfree(l3);
2691 }
2692 }
2693 return 0;
1da177e4 2694}
1da177e4 2695
e5ac9c5a
RT
2696/*
2697 * Get the memory for a slab management obj.
2698 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2699 * always come from malloc_sizes caches. The slab descriptor cannot
2700 * come from the same cache which is getting created because,
2701 * when we are searching for an appropriate cache for these
2702 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2703 * If we are creating a malloc_sizes cache here it would not be visible to
2704 * kmem_find_general_cachep till the initialization is complete.
2705 * Hence we cannot have slabp_cache same as the original cache.
2706 */
343e0d7a 2707static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2708 int colour_off, gfp_t local_flags,
2709 int nodeid)
1da177e4
LT
2710{
2711 struct slab *slabp;
b28a02de 2712
1da177e4
LT
2713 if (OFF_SLAB(cachep)) {
2714 /* Slab management obj is off-slab. */
5b74ada7 2715 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2716 local_flags, nodeid);
d5cff635
CM
2717 /*
2718 * If the first object in the slab is leaked (it's allocated
2719 * but no one has a reference to it), we want to make sure
2720 * kmemleak does not treat the ->s_mem pointer as a reference
2721 * to the object. Otherwise we will not report the leak.
2722 */
c017b4be
CM
2723 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2724 local_flags);
1da177e4
LT
2725 if (!slabp)
2726 return NULL;
2727 } else {
b28a02de 2728 slabp = objp + colour_off;
1da177e4
LT
2729 colour_off += cachep->slab_size;
2730 }
2731 slabp->inuse = 0;
2732 slabp->colouroff = colour_off;
b28a02de 2733 slabp->s_mem = objp + colour_off;
5b74ada7 2734 slabp->nodeid = nodeid;
e51bfd0a 2735 slabp->free = 0;
1da177e4
LT
2736 return slabp;
2737}
2738
2739static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2740{
b28a02de 2741 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2742}
2743
343e0d7a 2744static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2745 struct slab *slabp)
1da177e4
LT
2746{
2747 int i;
2748
2749 for (i = 0; i < cachep->num; i++) {
8fea4e96 2750 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2751#if DEBUG
2752 /* need to poison the objs? */
2753 if (cachep->flags & SLAB_POISON)
2754 poison_obj(cachep, objp, POISON_FREE);
2755 if (cachep->flags & SLAB_STORE_USER)
2756 *dbg_userword(cachep, objp) = NULL;
2757
2758 if (cachep->flags & SLAB_RED_ZONE) {
2759 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2760 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2761 }
2762 /*
a737b3e2
AM
2763 * Constructors are not allowed to allocate memory from the same
2764 * cache which they are a constructor for. Otherwise, deadlock.
2765 * They must also be threaded.
1da177e4
LT
2766 */
2767 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2768 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2769
2770 if (cachep->flags & SLAB_RED_ZONE) {
2771 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2772 slab_error(cachep, "constructor overwrote the"
b28a02de 2773 " end of an object");
1da177e4
LT
2774 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2775 slab_error(cachep, "constructor overwrote the"
b28a02de 2776 " start of an object");
1da177e4 2777 }
3b0efdfa 2778 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2779 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2780 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2781 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2782#else
2783 if (cachep->ctor)
51cc5068 2784 cachep->ctor(objp);
1da177e4 2785#endif
b28a02de 2786 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2787 }
b28a02de 2788 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2789}
2790
343e0d7a 2791static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2792{
4b51d669
CL
2793 if (CONFIG_ZONE_DMA_FLAG) {
2794 if (flags & GFP_DMA)
a618e89f 2795 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2796 else
a618e89f 2797 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2798 }
1da177e4
LT
2799}
2800
a737b3e2
AM
2801static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2802 int nodeid)
78d382d7 2803{
8fea4e96 2804 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2805 kmem_bufctl_t next;
2806
2807 slabp->inuse++;
2808 next = slab_bufctl(slabp)[slabp->free];
2809#if DEBUG
2810 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2811 WARN_ON(slabp->nodeid != nodeid);
2812#endif
2813 slabp->free = next;
2814
2815 return objp;
2816}
2817
a737b3e2
AM
2818static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2819 void *objp, int nodeid)
78d382d7 2820{
8fea4e96 2821 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2822
2823#if DEBUG
2824 /* Verify that the slab belongs to the intended node */
2825 WARN_ON(slabp->nodeid != nodeid);
2826
871751e2 2827 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2828 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2829 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2830 BUG();
2831 }
2832#endif
2833 slab_bufctl(slabp)[objnr] = slabp->free;
2834 slabp->free = objnr;
2835 slabp->inuse--;
2836}
2837
4776874f
PE
2838/*
2839 * Map pages beginning at addr to the given cache and slab. This is required
2840 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2841 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2842 */
2843static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2844 void *addr)
1da177e4 2845{
4776874f 2846 int nr_pages;
1da177e4
LT
2847 struct page *page;
2848
4776874f 2849 page = virt_to_page(addr);
84097518 2850
4776874f 2851 nr_pages = 1;
84097518 2852 if (likely(!PageCompound(page)))
4776874f
PE
2853 nr_pages <<= cache->gfporder;
2854
1da177e4 2855 do {
35026088
CL
2856 page->slab_cache = cache;
2857 page->slab_page = slab;
1da177e4 2858 page++;
4776874f 2859 } while (--nr_pages);
1da177e4
LT
2860}
2861
2862/*
2863 * Grow (by 1) the number of slabs within a cache. This is called by
2864 * kmem_cache_alloc() when there are no active objs left in a cache.
2865 */
3c517a61
CL
2866static int cache_grow(struct kmem_cache *cachep,
2867 gfp_t flags, int nodeid, void *objp)
1da177e4 2868{
b28a02de 2869 struct slab *slabp;
b28a02de
PE
2870 size_t offset;
2871 gfp_t local_flags;
e498be7d 2872 struct kmem_list3 *l3;
1da177e4 2873
a737b3e2
AM
2874 /*
2875 * Be lazy and only check for valid flags here, keeping it out of the
2876 * critical path in kmem_cache_alloc().
1da177e4 2877 */
6cb06229
CL
2878 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2879 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2880
2e1217cf 2881 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2882 check_irq_off();
2e1217cf
RT
2883 l3 = cachep->nodelists[nodeid];
2884 spin_lock(&l3->list_lock);
1da177e4
LT
2885
2886 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2887 offset = l3->colour_next;
2888 l3->colour_next++;
2889 if (l3->colour_next >= cachep->colour)
2890 l3->colour_next = 0;
2891 spin_unlock(&l3->list_lock);
1da177e4 2892
2e1217cf 2893 offset *= cachep->colour_off;
1da177e4
LT
2894
2895 if (local_flags & __GFP_WAIT)
2896 local_irq_enable();
2897
2898 /*
2899 * The test for missing atomic flag is performed here, rather than
2900 * the more obvious place, simply to reduce the critical path length
2901 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2902 * will eventually be caught here (where it matters).
2903 */
2904 kmem_flagcheck(cachep, flags);
2905
a737b3e2
AM
2906 /*
2907 * Get mem for the objs. Attempt to allocate a physical page from
2908 * 'nodeid'.
e498be7d 2909 */
3c517a61 2910 if (!objp)
b8c1c5da 2911 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2912 if (!objp)
1da177e4
LT
2913 goto failed;
2914
2915 /* Get slab management. */
3c517a61 2916 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2917 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2918 if (!slabp)
1da177e4
LT
2919 goto opps1;
2920
4776874f 2921 slab_map_pages(cachep, slabp, objp);
1da177e4 2922
a35afb83 2923 cache_init_objs(cachep, slabp);
1da177e4
LT
2924
2925 if (local_flags & __GFP_WAIT)
2926 local_irq_disable();
2927 check_irq_off();
e498be7d 2928 spin_lock(&l3->list_lock);
1da177e4
LT
2929
2930 /* Make slab active. */
e498be7d 2931 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2932 STATS_INC_GROWN(cachep);
e498be7d
CL
2933 l3->free_objects += cachep->num;
2934 spin_unlock(&l3->list_lock);
1da177e4 2935 return 1;
a737b3e2 2936opps1:
1da177e4 2937 kmem_freepages(cachep, objp);
a737b3e2 2938failed:
1da177e4
LT
2939 if (local_flags & __GFP_WAIT)
2940 local_irq_disable();
2941 return 0;
2942}
2943
2944#if DEBUG
2945
2946/*
2947 * Perform extra freeing checks:
2948 * - detect bad pointers.
2949 * - POISON/RED_ZONE checking
1da177e4
LT
2950 */
2951static void kfree_debugcheck(const void *objp)
2952{
1da177e4
LT
2953 if (!virt_addr_valid(objp)) {
2954 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2955 (unsigned long)objp);
2956 BUG();
1da177e4 2957 }
1da177e4
LT
2958}
2959
58ce1fd5
PE
2960static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2961{
b46b8f19 2962 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2963
2964 redzone1 = *dbg_redzone1(cache, obj);
2965 redzone2 = *dbg_redzone2(cache, obj);
2966
2967 /*
2968 * Redzone is ok.
2969 */
2970 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2971 return;
2972
2973 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2974 slab_error(cache, "double free detected");
2975 else
2976 slab_error(cache, "memory outside object was overwritten");
2977
b46b8f19 2978 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2979 obj, redzone1, redzone2);
2980}
2981
343e0d7a 2982static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2983 unsigned long caller)
1da177e4
LT
2984{
2985 struct page *page;
2986 unsigned int objnr;
2987 struct slab *slabp;
2988
80cbd911
MW
2989 BUG_ON(virt_to_cache(objp) != cachep);
2990
3dafccf2 2991 objp -= obj_offset(cachep);
1da177e4 2992 kfree_debugcheck(objp);
b49af68f 2993 page = virt_to_head_page(objp);
1da177e4 2994
35026088 2995 slabp = page->slab_page;
1da177e4
LT
2996
2997 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2998 verify_redzone_free(cachep, objp);
1da177e4
LT
2999 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3000 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3001 }
3002 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3003 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 3004
8fea4e96 3005 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3006
3007 BUG_ON(objnr >= cachep->num);
8fea4e96 3008 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3009
871751e2
AV
3010#ifdef CONFIG_DEBUG_SLAB_LEAK
3011 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3012#endif
1da177e4
LT
3013 if (cachep->flags & SLAB_POISON) {
3014#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3015 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 3016 store_stackinfo(cachep, objp, caller);
b28a02de 3017 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3018 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3019 } else {
3020 poison_obj(cachep, objp, POISON_FREE);
3021 }
3022#else
3023 poison_obj(cachep, objp, POISON_FREE);
3024#endif
3025 }
3026 return objp;
3027}
3028
343e0d7a 3029static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3030{
3031 kmem_bufctl_t i;
3032 int entries = 0;
b28a02de 3033
1da177e4
LT
3034 /* Check slab's freelist to see if this obj is there. */
3035 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3036 entries++;
3037 if (entries > cachep->num || i >= cachep->num)
3038 goto bad;
3039 }
3040 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3041bad:
3042 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3043 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3044 cachep->name, cachep->num, slabp, slabp->inuse,
3045 print_tainted());
fdde6abb
SAS
3046 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3047 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3048 1);
1da177e4
LT
3049 BUG();
3050 }
3051}
3052#else
3053#define kfree_debugcheck(x) do { } while(0)
3054#define cache_free_debugcheck(x,objp,z) (objp)
3055#define check_slabp(x,y) do { } while(0)
3056#endif
3057
072bb0aa
MG
3058static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3059 bool force_refill)
1da177e4
LT
3060{
3061 int batchcount;
3062 struct kmem_list3 *l3;
3063 struct array_cache *ac;
1ca4cb24
PE
3064 int node;
3065
1da177e4 3066 check_irq_off();
7d6e6d09 3067 node = numa_mem_id();
072bb0aa
MG
3068 if (unlikely(force_refill))
3069 goto force_grow;
3070retry:
9a2dba4b 3071 ac = cpu_cache_get(cachep);
1da177e4
LT
3072 batchcount = ac->batchcount;
3073 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3074 /*
3075 * If there was little recent activity on this cache, then
3076 * perform only a partial refill. Otherwise we could generate
3077 * refill bouncing.
1da177e4
LT
3078 */
3079 batchcount = BATCHREFILL_LIMIT;
3080 }
1ca4cb24 3081 l3 = cachep->nodelists[node];
e498be7d
CL
3082
3083 BUG_ON(ac->avail > 0 || !l3);
3084 spin_lock(&l3->list_lock);
1da177e4 3085
3ded175a 3086 /* See if we can refill from the shared array */
44b57f1c
NP
3087 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3088 l3->shared->touched = 1;
3ded175a 3089 goto alloc_done;
44b57f1c 3090 }
3ded175a 3091
1da177e4
LT
3092 while (batchcount > 0) {
3093 struct list_head *entry;
3094 struct slab *slabp;
3095 /* Get slab alloc is to come from. */
3096 entry = l3->slabs_partial.next;
3097 if (entry == &l3->slabs_partial) {
3098 l3->free_touched = 1;
3099 entry = l3->slabs_free.next;
3100 if (entry == &l3->slabs_free)
3101 goto must_grow;
3102 }
3103
3104 slabp = list_entry(entry, struct slab, list);
3105 check_slabp(cachep, slabp);
3106 check_spinlock_acquired(cachep);
714b8171
PE
3107
3108 /*
3109 * The slab was either on partial or free list so
3110 * there must be at least one object available for
3111 * allocation.
3112 */
249b9f33 3113 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3114
1da177e4 3115 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3116 STATS_INC_ALLOCED(cachep);
3117 STATS_INC_ACTIVE(cachep);
3118 STATS_SET_HIGH(cachep);
3119
072bb0aa
MG
3120 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3121 node));
1da177e4
LT
3122 }
3123 check_slabp(cachep, slabp);
3124
3125 /* move slabp to correct slabp list: */
3126 list_del(&slabp->list);
3127 if (slabp->free == BUFCTL_END)
3128 list_add(&slabp->list, &l3->slabs_full);
3129 else
3130 list_add(&slabp->list, &l3->slabs_partial);
3131 }
3132
a737b3e2 3133must_grow:
1da177e4 3134 l3->free_objects -= ac->avail;
a737b3e2 3135alloc_done:
e498be7d 3136 spin_unlock(&l3->list_lock);
1da177e4
LT
3137
3138 if (unlikely(!ac->avail)) {
3139 int x;
072bb0aa 3140force_grow:
3c517a61 3141 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3142
a737b3e2 3143 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3144 ac = cpu_cache_get(cachep);
51cd8e6f 3145 node = numa_mem_id();
072bb0aa
MG
3146
3147 /* no objects in sight? abort */
3148 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3149 return NULL;
3150
a737b3e2 3151 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3152 goto retry;
3153 }
3154 ac->touched = 1;
072bb0aa
MG
3155
3156 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3157}
3158
a737b3e2
AM
3159static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3160 gfp_t flags)
1da177e4
LT
3161{
3162 might_sleep_if(flags & __GFP_WAIT);
3163#if DEBUG
3164 kmem_flagcheck(cachep, flags);
3165#endif
3166}
3167
3168#if DEBUG
a737b3e2 3169static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3170 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3171{
b28a02de 3172 if (!objp)
1da177e4 3173 return objp;
b28a02de 3174 if (cachep->flags & SLAB_POISON) {
1da177e4 3175#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3176 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3177 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3178 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3179 else
3180 check_poison_obj(cachep, objp);
3181#else
3182 check_poison_obj(cachep, objp);
3183#endif
3184 poison_obj(cachep, objp, POISON_INUSE);
3185 }
3186 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3187 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3188
3189 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3190 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3191 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3192 slab_error(cachep, "double free, or memory outside"
3193 " object was overwritten");
b28a02de 3194 printk(KERN_ERR
b46b8f19 3195 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3196 objp, *dbg_redzone1(cachep, objp),
3197 *dbg_redzone2(cachep, objp));
1da177e4
LT
3198 }
3199 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3200 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3201 }
871751e2
AV
3202#ifdef CONFIG_DEBUG_SLAB_LEAK
3203 {
3204 struct slab *slabp;
3205 unsigned objnr;
3206
35026088 3207 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3208 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3209 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3210 }
3211#endif
3dafccf2 3212 objp += obj_offset(cachep);
4f104934 3213 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3214 cachep->ctor(objp);
7ea466f2
TH
3215 if (ARCH_SLAB_MINALIGN &&
3216 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3217 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3218 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3219 }
1da177e4
LT
3220 return objp;
3221}
3222#else
3223#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3224#endif
3225
773ff60e 3226static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3227{
9b030cb8 3228 if (cachep == kmem_cache)
773ff60e 3229 return false;
8a8b6502 3230
8c138bc0 3231 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3232}
3233
343e0d7a 3234static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3235{
b28a02de 3236 void *objp;
1da177e4 3237 struct array_cache *ac;
072bb0aa 3238 bool force_refill = false;
1da177e4 3239
5c382300 3240 check_irq_off();
8a8b6502 3241
9a2dba4b 3242 ac = cpu_cache_get(cachep);
1da177e4 3243 if (likely(ac->avail)) {
1da177e4 3244 ac->touched = 1;
072bb0aa
MG
3245 objp = ac_get_obj(cachep, ac, flags, false);
3246
ddbf2e83 3247 /*
072bb0aa
MG
3248 * Allow for the possibility all avail objects are not allowed
3249 * by the current flags
ddbf2e83 3250 */
072bb0aa
MG
3251 if (objp) {
3252 STATS_INC_ALLOCHIT(cachep);
3253 goto out;
3254 }
3255 force_refill = true;
1da177e4 3256 }
072bb0aa
MG
3257
3258 STATS_INC_ALLOCMISS(cachep);
3259 objp = cache_alloc_refill(cachep, flags, force_refill);
3260 /*
3261 * the 'ac' may be updated by cache_alloc_refill(),
3262 * and kmemleak_erase() requires its correct value.
3263 */
3264 ac = cpu_cache_get(cachep);
3265
3266out:
d5cff635
CM
3267 /*
3268 * To avoid a false negative, if an object that is in one of the
3269 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3270 * treat the array pointers as a reference to the object.
3271 */
f3d8b53a
O
3272 if (objp)
3273 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3274 return objp;
3275}
3276
e498be7d 3277#ifdef CONFIG_NUMA
c61afb18 3278/*
b2455396 3279 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3280 *
3281 * If we are in_interrupt, then process context, including cpusets and
3282 * mempolicy, may not apply and should not be used for allocation policy.
3283 */
3284static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3285{
3286 int nid_alloc, nid_here;
3287
765c4507 3288 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3289 return NULL;
7d6e6d09 3290 nid_alloc = nid_here = numa_mem_id();
c61afb18 3291 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3292 nid_alloc = cpuset_slab_spread_node();
c61afb18 3293 else if (current->mempolicy)
e7b691b0 3294 nid_alloc = slab_node();
c61afb18 3295 if (nid_alloc != nid_here)
8b98c169 3296 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3297 return NULL;
3298}
3299
765c4507
CL
3300/*
3301 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3302 * certain node and fall back is permitted. First we scan all the
3303 * available nodelists for available objects. If that fails then we
3304 * perform an allocation without specifying a node. This allows the page
3305 * allocator to do its reclaim / fallback magic. We then insert the
3306 * slab into the proper nodelist and then allocate from it.
765c4507 3307 */
8c8cc2c1 3308static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3309{
8c8cc2c1
PE
3310 struct zonelist *zonelist;
3311 gfp_t local_flags;
dd1a239f 3312 struct zoneref *z;
54a6eb5c
MG
3313 struct zone *zone;
3314 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3315 void *obj = NULL;
3c517a61 3316 int nid;
cc9a6c87 3317 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3318
3319 if (flags & __GFP_THISNODE)
3320 return NULL;
3321
6cb06229 3322 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3323
cc9a6c87
MG
3324retry_cpuset:
3325 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3326 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3327
3c517a61
CL
3328retry:
3329 /*
3330 * Look through allowed nodes for objects available
3331 * from existing per node queues.
3332 */
54a6eb5c
MG
3333 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3334 nid = zone_to_nid(zone);
aedb0eb1 3335
54a6eb5c 3336 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3337 cache->nodelists[nid] &&
481c5346 3338 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3339 obj = ____cache_alloc_node(cache,
3340 flags | GFP_THISNODE, nid);
481c5346
CL
3341 if (obj)
3342 break;
3343 }
3c517a61
CL
3344 }
3345
cfce6604 3346 if (!obj) {
3c517a61
CL
3347 /*
3348 * This allocation will be performed within the constraints
3349 * of the current cpuset / memory policy requirements.
3350 * We may trigger various forms of reclaim on the allowed
3351 * set and go into memory reserves if necessary.
3352 */
dd47ea75
CL
3353 if (local_flags & __GFP_WAIT)
3354 local_irq_enable();
3355 kmem_flagcheck(cache, flags);
7d6e6d09 3356 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3357 if (local_flags & __GFP_WAIT)
3358 local_irq_disable();
3c517a61
CL
3359 if (obj) {
3360 /*
3361 * Insert into the appropriate per node queues
3362 */
3363 nid = page_to_nid(virt_to_page(obj));
3364 if (cache_grow(cache, flags, nid, obj)) {
3365 obj = ____cache_alloc_node(cache,
3366 flags | GFP_THISNODE, nid);
3367 if (!obj)
3368 /*
3369 * Another processor may allocate the
3370 * objects in the slab since we are
3371 * not holding any locks.
3372 */
3373 goto retry;
3374 } else {
b6a60451 3375 /* cache_grow already freed obj */
3c517a61
CL
3376 obj = NULL;
3377 }
3378 }
aedb0eb1 3379 }
cc9a6c87
MG
3380
3381 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3382 goto retry_cpuset;
765c4507
CL
3383 return obj;
3384}
3385
e498be7d
CL
3386/*
3387 * A interface to enable slab creation on nodeid
1da177e4 3388 */
8b98c169 3389static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3390 int nodeid)
e498be7d
CL
3391{
3392 struct list_head *entry;
b28a02de
PE
3393 struct slab *slabp;
3394 struct kmem_list3 *l3;
3395 void *obj;
b28a02de
PE
3396 int x;
3397
3398 l3 = cachep->nodelists[nodeid];
3399 BUG_ON(!l3);
3400
a737b3e2 3401retry:
ca3b9b91 3402 check_irq_off();
b28a02de
PE
3403 spin_lock(&l3->list_lock);
3404 entry = l3->slabs_partial.next;
3405 if (entry == &l3->slabs_partial) {
3406 l3->free_touched = 1;
3407 entry = l3->slabs_free.next;
3408 if (entry == &l3->slabs_free)
3409 goto must_grow;
3410 }
3411
3412 slabp = list_entry(entry, struct slab, list);
3413 check_spinlock_acquired_node(cachep, nodeid);
3414 check_slabp(cachep, slabp);
3415
3416 STATS_INC_NODEALLOCS(cachep);
3417 STATS_INC_ACTIVE(cachep);
3418 STATS_SET_HIGH(cachep);
3419
3420 BUG_ON(slabp->inuse == cachep->num);
3421
78d382d7 3422 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3423 check_slabp(cachep, slabp);
3424 l3->free_objects--;
3425 /* move slabp to correct slabp list: */
3426 list_del(&slabp->list);
3427
a737b3e2 3428 if (slabp->free == BUFCTL_END)
b28a02de 3429 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3430 else
b28a02de 3431 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3432
b28a02de
PE
3433 spin_unlock(&l3->list_lock);
3434 goto done;
e498be7d 3435
a737b3e2 3436must_grow:
b28a02de 3437 spin_unlock(&l3->list_lock);
3c517a61 3438 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3439 if (x)
3440 goto retry;
1da177e4 3441
8c8cc2c1 3442 return fallback_alloc(cachep, flags);
e498be7d 3443
a737b3e2 3444done:
b28a02de 3445 return obj;
e498be7d 3446}
8c8cc2c1
PE
3447
3448/**
3449 * kmem_cache_alloc_node - Allocate an object on the specified node
3450 * @cachep: The cache to allocate from.
3451 * @flags: See kmalloc().
3452 * @nodeid: node number of the target node.
3453 * @caller: return address of caller, used for debug information
3454 *
3455 * Identical to kmem_cache_alloc but it will allocate memory on the given
3456 * node, which can improve the performance for cpu bound structures.
3457 *
3458 * Fallback to other node is possible if __GFP_THISNODE is not set.
3459 */
3460static __always_inline void *
48356303 3461slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3462 unsigned long caller)
8c8cc2c1
PE
3463{
3464 unsigned long save_flags;
3465 void *ptr;
7d6e6d09 3466 int slab_node = numa_mem_id();
8c8cc2c1 3467
dcce284a 3468 flags &= gfp_allowed_mask;
7e85ee0c 3469
cf40bd16
NP
3470 lockdep_trace_alloc(flags);
3471
773ff60e 3472 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3473 return NULL;
3474
d79923fa
GC
3475 cachep = memcg_kmem_get_cache(cachep, flags);
3476
8c8cc2c1
PE
3477 cache_alloc_debugcheck_before(cachep, flags);
3478 local_irq_save(save_flags);
3479
eacbbae3 3480 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3481 nodeid = slab_node;
8c8cc2c1
PE
3482
3483 if (unlikely(!cachep->nodelists[nodeid])) {
3484 /* Node not bootstrapped yet */
3485 ptr = fallback_alloc(cachep, flags);
3486 goto out;
3487 }
3488
7d6e6d09 3489 if (nodeid == slab_node) {
8c8cc2c1
PE
3490 /*
3491 * Use the locally cached objects if possible.
3492 * However ____cache_alloc does not allow fallback
3493 * to other nodes. It may fail while we still have
3494 * objects on other nodes available.
3495 */
3496 ptr = ____cache_alloc(cachep, flags);
3497 if (ptr)
3498 goto out;
3499 }
3500 /* ___cache_alloc_node can fall back to other nodes */
3501 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3502 out:
3503 local_irq_restore(save_flags);
3504 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3505 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3506 flags);
8c8cc2c1 3507
c175eea4 3508 if (likely(ptr))
8c138bc0 3509 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3510
d07dbea4 3511 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3512 memset(ptr, 0, cachep->object_size);
d07dbea4 3513
8c8cc2c1
PE
3514 return ptr;
3515}
3516
3517static __always_inline void *
3518__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3519{
3520 void *objp;
3521
3522 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3523 objp = alternate_node_alloc(cache, flags);
3524 if (objp)
3525 goto out;
3526 }
3527 objp = ____cache_alloc(cache, flags);
3528
3529 /*
3530 * We may just have run out of memory on the local node.
3531 * ____cache_alloc_node() knows how to locate memory on other nodes
3532 */
7d6e6d09
LS
3533 if (!objp)
3534 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3535
3536 out:
3537 return objp;
3538}
3539#else
3540
3541static __always_inline void *
3542__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3543{
3544 return ____cache_alloc(cachep, flags);
3545}
3546
3547#endif /* CONFIG_NUMA */
3548
3549static __always_inline void *
48356303 3550slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3551{
3552 unsigned long save_flags;
3553 void *objp;
3554
dcce284a 3555 flags &= gfp_allowed_mask;
7e85ee0c 3556
cf40bd16
NP
3557 lockdep_trace_alloc(flags);
3558
773ff60e 3559 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3560 return NULL;
3561
d79923fa
GC
3562 cachep = memcg_kmem_get_cache(cachep, flags);
3563
8c8cc2c1
PE
3564 cache_alloc_debugcheck_before(cachep, flags);
3565 local_irq_save(save_flags);
3566 objp = __do_cache_alloc(cachep, flags);
3567 local_irq_restore(save_flags);
3568 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3569 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3570 flags);
8c8cc2c1
PE
3571 prefetchw(objp);
3572
c175eea4 3573 if (likely(objp))
8c138bc0 3574 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3575
d07dbea4 3576 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3577 memset(objp, 0, cachep->object_size);
d07dbea4 3578
8c8cc2c1
PE
3579 return objp;
3580}
e498be7d
CL
3581
3582/*
3583 * Caller needs to acquire correct kmem_list's list_lock
3584 */
343e0d7a 3585static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3586 int node)
1da177e4
LT
3587{
3588 int i;
e498be7d 3589 struct kmem_list3 *l3;
1da177e4
LT
3590
3591 for (i = 0; i < nr_objects; i++) {
072bb0aa 3592 void *objp;
1da177e4 3593 struct slab *slabp;
1da177e4 3594
072bb0aa
MG
3595 clear_obj_pfmemalloc(&objpp[i]);
3596 objp = objpp[i];
3597
6ed5eb22 3598 slabp = virt_to_slab(objp);
ff69416e 3599 l3 = cachep->nodelists[node];
1da177e4 3600 list_del(&slabp->list);
ff69416e 3601 check_spinlock_acquired_node(cachep, node);
1da177e4 3602 check_slabp(cachep, slabp);
78d382d7 3603 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3604 STATS_DEC_ACTIVE(cachep);
e498be7d 3605 l3->free_objects++;
1da177e4
LT
3606 check_slabp(cachep, slabp);
3607
3608 /* fixup slab chains */
3609 if (slabp->inuse == 0) {
e498be7d
CL
3610 if (l3->free_objects > l3->free_limit) {
3611 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3612 /* No need to drop any previously held
3613 * lock here, even if we have a off-slab slab
3614 * descriptor it is guaranteed to come from
3615 * a different cache, refer to comments before
3616 * alloc_slabmgmt.
3617 */
1da177e4
LT
3618 slab_destroy(cachep, slabp);
3619 } else {
e498be7d 3620 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3621 }
3622 } else {
3623 /* Unconditionally move a slab to the end of the
3624 * partial list on free - maximum time for the
3625 * other objects to be freed, too.
3626 */
e498be7d 3627 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3628 }
3629 }
3630}
3631
343e0d7a 3632static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3633{
3634 int batchcount;
e498be7d 3635 struct kmem_list3 *l3;
7d6e6d09 3636 int node = numa_mem_id();
1da177e4
LT
3637
3638 batchcount = ac->batchcount;
3639#if DEBUG
3640 BUG_ON(!batchcount || batchcount > ac->avail);
3641#endif
3642 check_irq_off();
ff69416e 3643 l3 = cachep->nodelists[node];
873623df 3644 spin_lock(&l3->list_lock);
e498be7d
CL
3645 if (l3->shared) {
3646 struct array_cache *shared_array = l3->shared;
b28a02de 3647 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3648 if (max) {
3649 if (batchcount > max)
3650 batchcount = max;
e498be7d 3651 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3652 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3653 shared_array->avail += batchcount;
3654 goto free_done;
3655 }
3656 }
3657
ff69416e 3658 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3659free_done:
1da177e4
LT
3660#if STATS
3661 {
3662 int i = 0;
3663 struct list_head *p;
3664
e498be7d
CL
3665 p = l3->slabs_free.next;
3666 while (p != &(l3->slabs_free)) {
1da177e4
LT
3667 struct slab *slabp;
3668
3669 slabp = list_entry(p, struct slab, list);
3670 BUG_ON(slabp->inuse);
3671
3672 i++;
3673 p = p->next;
3674 }
3675 STATS_SET_FREEABLE(cachep, i);
3676 }
3677#endif
e498be7d 3678 spin_unlock(&l3->list_lock);
1da177e4 3679 ac->avail -= batchcount;
a737b3e2 3680 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3681}
3682
3683/*
a737b3e2
AM
3684 * Release an obj back to its cache. If the obj has a constructed state, it must
3685 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3686 */
a947eb95 3687static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3688 unsigned long caller)
1da177e4 3689{
9a2dba4b 3690 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3691
3692 check_irq_off();
d5cff635 3693 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3694 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3695
8c138bc0 3696 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3697
1807a1aa
SS
3698 /*
3699 * Skip calling cache_free_alien() when the platform is not numa.
3700 * This will avoid cache misses that happen while accessing slabp (which
3701 * is per page memory reference) to get nodeid. Instead use a global
3702 * variable to skip the call, which is mostly likely to be present in
3703 * the cache.
3704 */
b6e68bc1 3705 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3706 return;
3707
1da177e4
LT
3708 if (likely(ac->avail < ac->limit)) {
3709 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3710 } else {
3711 STATS_INC_FREEMISS(cachep);
3712 cache_flusharray(cachep, ac);
1da177e4 3713 }
42c8c99c 3714
072bb0aa 3715 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3716}
3717
3718/**
3719 * kmem_cache_alloc - Allocate an object
3720 * @cachep: The cache to allocate from.
3721 * @flags: See kmalloc().
3722 *
3723 * Allocate an object from this cache. The flags are only relevant
3724 * if the cache has no available objects.
3725 */
343e0d7a 3726void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3727{
48356303 3728 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3729
ca2b84cb 3730 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3731 cachep->object_size, cachep->size, flags);
36555751
EGM
3732
3733 return ret;
1da177e4
LT
3734}
3735EXPORT_SYMBOL(kmem_cache_alloc);
3736
0f24f128 3737#ifdef CONFIG_TRACING
85beb586 3738void *
4052147c 3739kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3740{
85beb586
SR
3741 void *ret;
3742
48356303 3743 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3744
3745 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3746 size, cachep->size, flags);
85beb586 3747 return ret;
36555751 3748}
85beb586 3749EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3750#endif
3751
1da177e4 3752#ifdef CONFIG_NUMA
8b98c169
CH
3753void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3754{
48356303 3755 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3756
ca2b84cb 3757 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3758 cachep->object_size, cachep->size,
ca2b84cb 3759 flags, nodeid);
36555751
EGM
3760
3761 return ret;
8b98c169 3762}
1da177e4
LT
3763EXPORT_SYMBOL(kmem_cache_alloc_node);
3764
0f24f128 3765#ifdef CONFIG_TRACING
4052147c 3766void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3767 gfp_t flags,
4052147c
EG
3768 int nodeid,
3769 size_t size)
36555751 3770{
85beb586
SR
3771 void *ret;
3772
592f4145 3773 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3774
85beb586 3775 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3776 size, cachep->size,
85beb586
SR
3777 flags, nodeid);
3778 return ret;
36555751 3779}
85beb586 3780EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3781#endif
3782
8b98c169 3783static __always_inline void *
7c0cb9c6 3784__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3785{
343e0d7a 3786 struct kmem_cache *cachep;
97e2bde4
MS
3787
3788 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3789 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3790 return cachep;
4052147c 3791 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3792}
8b98c169 3793
0bb38a5c 3794#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3795void *__kmalloc_node(size_t size, gfp_t flags, int node)
3796{
7c0cb9c6 3797 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3798}
dbe5e69d 3799EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3800
3801void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3802 int node, unsigned long caller)
8b98c169 3803{
7c0cb9c6 3804 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3805}
3806EXPORT_SYMBOL(__kmalloc_node_track_caller);
3807#else
3808void *__kmalloc_node(size_t size, gfp_t flags, int node)
3809{
7c0cb9c6 3810 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3811}
3812EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3813#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3814#endif /* CONFIG_NUMA */
1da177e4
LT
3815
3816/**
800590f5 3817 * __do_kmalloc - allocate memory
1da177e4 3818 * @size: how many bytes of memory are required.
800590f5 3819 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3820 * @caller: function caller for debug tracking of the caller
1da177e4 3821 */
7fd6b141 3822static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3823 unsigned long caller)
1da177e4 3824{
343e0d7a 3825 struct kmem_cache *cachep;
36555751 3826 void *ret;
1da177e4 3827
97e2bde4
MS
3828 /* If you want to save a few bytes .text space: replace
3829 * __ with kmem_.
3830 * Then kmalloc uses the uninlined functions instead of the inline
3831 * functions.
3832 */
3833 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3834 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3835 return cachep;
48356303 3836 ret = slab_alloc(cachep, flags, caller);
36555751 3837
7c0cb9c6 3838 trace_kmalloc(caller, ret,
3b0efdfa 3839 size, cachep->size, flags);
36555751
EGM
3840
3841 return ret;
7fd6b141
PE
3842}
3843
7fd6b141 3844
0bb38a5c 3845#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3846void *__kmalloc(size_t size, gfp_t flags)
3847{
7c0cb9c6 3848 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3849}
3850EXPORT_SYMBOL(__kmalloc);
3851
ce71e27c 3852void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3853{
7c0cb9c6 3854 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3855}
3856EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3857
3858#else
3859void *__kmalloc(size_t size, gfp_t flags)
3860{
7c0cb9c6 3861 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3862}
3863EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3864#endif
3865
1da177e4
LT
3866/**
3867 * kmem_cache_free - Deallocate an object
3868 * @cachep: The cache the allocation was from.
3869 * @objp: The previously allocated object.
3870 *
3871 * Free an object which was previously allocated from this
3872 * cache.
3873 */
343e0d7a 3874void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3875{
3876 unsigned long flags;
b9ce5ef4
GC
3877 cachep = cache_from_obj(cachep, objp);
3878 if (!cachep)
3879 return;
1da177e4
LT
3880
3881 local_irq_save(flags);
d97d476b 3882 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3883 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3884 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3885 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3886 local_irq_restore(flags);
36555751 3887
ca2b84cb 3888 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3889}
3890EXPORT_SYMBOL(kmem_cache_free);
3891
1da177e4
LT
3892/**
3893 * kfree - free previously allocated memory
3894 * @objp: pointer returned by kmalloc.
3895 *
80e93eff
PE
3896 * If @objp is NULL, no operation is performed.
3897 *
1da177e4
LT
3898 * Don't free memory not originally allocated by kmalloc()
3899 * or you will run into trouble.
3900 */
3901void kfree(const void *objp)
3902{
343e0d7a 3903 struct kmem_cache *c;
1da177e4
LT
3904 unsigned long flags;
3905
2121db74
PE
3906 trace_kfree(_RET_IP_, objp);
3907
6cb8f913 3908 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3909 return;
3910 local_irq_save(flags);
3911 kfree_debugcheck(objp);
6ed5eb22 3912 c = virt_to_cache(objp);
8c138bc0
CL
3913 debug_check_no_locks_freed(objp, c->object_size);
3914
3915 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3916 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3917 local_irq_restore(flags);
3918}
3919EXPORT_SYMBOL(kfree);
3920
e498be7d 3921/*
183ff22b 3922 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3923 */
83b519e8 3924static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3925{
3926 int node;
3927 struct kmem_list3 *l3;
cafeb02e 3928 struct array_cache *new_shared;
3395ee05 3929 struct array_cache **new_alien = NULL;
e498be7d 3930
9c09a95c 3931 for_each_online_node(node) {
cafeb02e 3932
3395ee05 3933 if (use_alien_caches) {
83b519e8 3934 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3935 if (!new_alien)
3936 goto fail;
3937 }
cafeb02e 3938
63109846
ED
3939 new_shared = NULL;
3940 if (cachep->shared) {
3941 new_shared = alloc_arraycache(node,
0718dc2a 3942 cachep->shared*cachep->batchcount,
83b519e8 3943 0xbaadf00d, gfp);
63109846
ED
3944 if (!new_shared) {
3945 free_alien_cache(new_alien);
3946 goto fail;
3947 }
0718dc2a 3948 }
cafeb02e 3949
a737b3e2
AM
3950 l3 = cachep->nodelists[node];
3951 if (l3) {
cafeb02e
CL
3952 struct array_cache *shared = l3->shared;
3953
e498be7d
CL
3954 spin_lock_irq(&l3->list_lock);
3955
cafeb02e 3956 if (shared)
0718dc2a
CL
3957 free_block(cachep, shared->entry,
3958 shared->avail, node);
e498be7d 3959
cafeb02e
CL
3960 l3->shared = new_shared;
3961 if (!l3->alien) {
e498be7d
CL
3962 l3->alien = new_alien;
3963 new_alien = NULL;
3964 }
b28a02de 3965 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3966 cachep->batchcount + cachep->num;
e498be7d 3967 spin_unlock_irq(&l3->list_lock);
cafeb02e 3968 kfree(shared);
e498be7d
CL
3969 free_alien_cache(new_alien);
3970 continue;
3971 }
83b519e8 3972 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3973 if (!l3) {
3974 free_alien_cache(new_alien);
3975 kfree(new_shared);
e498be7d 3976 goto fail;
0718dc2a 3977 }
e498be7d
CL
3978
3979 kmem_list3_init(l3);
3980 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3981 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3982 l3->shared = new_shared;
e498be7d 3983 l3->alien = new_alien;
b28a02de 3984 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3985 cachep->batchcount + cachep->num;
e498be7d
CL
3986 cachep->nodelists[node] = l3;
3987 }
cafeb02e 3988 return 0;
0718dc2a 3989
a737b3e2 3990fail:
3b0efdfa 3991 if (!cachep->list.next) {
0718dc2a
CL
3992 /* Cache is not active yet. Roll back what we did */
3993 node--;
3994 while (node >= 0) {
3995 if (cachep->nodelists[node]) {
3996 l3 = cachep->nodelists[node];
3997
3998 kfree(l3->shared);
3999 free_alien_cache(l3->alien);
4000 kfree(l3);
4001 cachep->nodelists[node] = NULL;
4002 }
4003 node--;
4004 }
4005 }
cafeb02e 4006 return -ENOMEM;
e498be7d
CL
4007}
4008
1da177e4 4009struct ccupdate_struct {
343e0d7a 4010 struct kmem_cache *cachep;
acfe7d74 4011 struct array_cache *new[0];
1da177e4
LT
4012};
4013
4014static void do_ccupdate_local(void *info)
4015{
a737b3e2 4016 struct ccupdate_struct *new = info;
1da177e4
LT
4017 struct array_cache *old;
4018
4019 check_irq_off();
9a2dba4b 4020 old = cpu_cache_get(new->cachep);
e498be7d 4021
1da177e4
LT
4022 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4023 new->new[smp_processor_id()] = old;
4024}
4025
18004c5d 4026/* Always called with the slab_mutex held */
943a451a 4027static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4028 int batchcount, int shared, gfp_t gfp)
1da177e4 4029{
d2e7b7d0 4030 struct ccupdate_struct *new;
2ed3a4ef 4031 int i;
1da177e4 4032
acfe7d74
ED
4033 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4034 gfp);
d2e7b7d0
SS
4035 if (!new)
4036 return -ENOMEM;
4037
e498be7d 4038 for_each_online_cpu(i) {
7d6e6d09 4039 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4040 batchcount, gfp);
d2e7b7d0 4041 if (!new->new[i]) {
b28a02de 4042 for (i--; i >= 0; i--)
d2e7b7d0
SS
4043 kfree(new->new[i]);
4044 kfree(new);
e498be7d 4045 return -ENOMEM;
1da177e4
LT
4046 }
4047 }
d2e7b7d0 4048 new->cachep = cachep;
1da177e4 4049
15c8b6c1 4050 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4051
1da177e4 4052 check_irq_on();
1da177e4
LT
4053 cachep->batchcount = batchcount;
4054 cachep->limit = limit;
e498be7d 4055 cachep->shared = shared;
1da177e4 4056
e498be7d 4057 for_each_online_cpu(i) {
d2e7b7d0 4058 struct array_cache *ccold = new->new[i];
1da177e4
LT
4059 if (!ccold)
4060 continue;
7d6e6d09
LS
4061 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4062 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4063 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4064 kfree(ccold);
4065 }
d2e7b7d0 4066 kfree(new);
83b519e8 4067 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4068}
4069
943a451a
GC
4070static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4071 int batchcount, int shared, gfp_t gfp)
4072{
4073 int ret;
4074 struct kmem_cache *c = NULL;
4075 int i = 0;
4076
4077 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4078
4079 if (slab_state < FULL)
4080 return ret;
4081
4082 if ((ret < 0) || !is_root_cache(cachep))
4083 return ret;
4084
ebe945c2 4085 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a
GC
4086 for_each_memcg_cache_index(i) {
4087 c = cache_from_memcg(cachep, i);
4088 if (c)
4089 /* return value determined by the parent cache only */
4090 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
4091 }
4092
4093 return ret;
4094}
4095
18004c5d 4096/* Called with slab_mutex held always */
83b519e8 4097static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4098{
4099 int err;
943a451a
GC
4100 int limit = 0;
4101 int shared = 0;
4102 int batchcount = 0;
4103
4104 if (!is_root_cache(cachep)) {
4105 struct kmem_cache *root = memcg_root_cache(cachep);
4106 limit = root->limit;
4107 shared = root->shared;
4108 batchcount = root->batchcount;
4109 }
1da177e4 4110
943a451a
GC
4111 if (limit && shared && batchcount)
4112 goto skip_setup;
a737b3e2
AM
4113 /*
4114 * The head array serves three purposes:
1da177e4
LT
4115 * - create a LIFO ordering, i.e. return objects that are cache-warm
4116 * - reduce the number of spinlock operations.
a737b3e2 4117 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4118 * bufctl chains: array operations are cheaper.
4119 * The numbers are guessed, we should auto-tune as described by
4120 * Bonwick.
4121 */
3b0efdfa 4122 if (cachep->size > 131072)
1da177e4 4123 limit = 1;
3b0efdfa 4124 else if (cachep->size > PAGE_SIZE)
1da177e4 4125 limit = 8;
3b0efdfa 4126 else if (cachep->size > 1024)
1da177e4 4127 limit = 24;
3b0efdfa 4128 else if (cachep->size > 256)
1da177e4
LT
4129 limit = 54;
4130 else
4131 limit = 120;
4132
a737b3e2
AM
4133 /*
4134 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4135 * allocation behaviour: Most allocs on one cpu, most free operations
4136 * on another cpu. For these cases, an efficient object passing between
4137 * cpus is necessary. This is provided by a shared array. The array
4138 * replaces Bonwick's magazine layer.
4139 * On uniprocessor, it's functionally equivalent (but less efficient)
4140 * to a larger limit. Thus disabled by default.
4141 */
4142 shared = 0;
3b0efdfa 4143 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4144 shared = 8;
1da177e4
LT
4145
4146#if DEBUG
a737b3e2
AM
4147 /*
4148 * With debugging enabled, large batchcount lead to excessively long
4149 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4150 */
4151 if (limit > 32)
4152 limit = 32;
4153#endif
943a451a
GC
4154 batchcount = (limit + 1) / 2;
4155skip_setup:
4156 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
4157 if (err)
4158 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4159 cachep->name, -err);
2ed3a4ef 4160 return err;
1da177e4
LT
4161}
4162
1b55253a
CL
4163/*
4164 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4165 * necessary. Note that the l3 listlock also protects the array_cache
4166 * if drain_array() is used on the shared array.
1b55253a 4167 */
68a1b195 4168static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4169 struct array_cache *ac, int force, int node)
1da177e4
LT
4170{
4171 int tofree;
4172
1b55253a
CL
4173 if (!ac || !ac->avail)
4174 return;
1da177e4
LT
4175 if (ac->touched && !force) {
4176 ac->touched = 0;
b18e7e65 4177 } else {
1b55253a 4178 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4179 if (ac->avail) {
4180 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4181 if (tofree > ac->avail)
4182 tofree = (ac->avail + 1) / 2;
4183 free_block(cachep, ac->entry, tofree, node);
4184 ac->avail -= tofree;
4185 memmove(ac->entry, &(ac->entry[tofree]),
4186 sizeof(void *) * ac->avail);
4187 }
1b55253a 4188 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4189 }
4190}
4191
4192/**
4193 * cache_reap - Reclaim memory from caches.
05fb6bf0 4194 * @w: work descriptor
1da177e4
LT
4195 *
4196 * Called from workqueue/eventd every few seconds.
4197 * Purpose:
4198 * - clear the per-cpu caches for this CPU.
4199 * - return freeable pages to the main free memory pool.
4200 *
a737b3e2
AM
4201 * If we cannot acquire the cache chain mutex then just give up - we'll try
4202 * again on the next iteration.
1da177e4 4203 */
7c5cae36 4204static void cache_reap(struct work_struct *w)
1da177e4 4205{
7a7c381d 4206 struct kmem_cache *searchp;
e498be7d 4207 struct kmem_list3 *l3;
7d6e6d09 4208 int node = numa_mem_id();
bf6aede7 4209 struct delayed_work *work = to_delayed_work(w);
1da177e4 4210
18004c5d 4211 if (!mutex_trylock(&slab_mutex))
1da177e4 4212 /* Give up. Setup the next iteration. */
7c5cae36 4213 goto out;
1da177e4 4214
18004c5d 4215 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4216 check_irq_on();
4217
35386e3b
CL
4218 /*
4219 * We only take the l3 lock if absolutely necessary and we
4220 * have established with reasonable certainty that
4221 * we can do some work if the lock was obtained.
4222 */
aab2207c 4223 l3 = searchp->nodelists[node];
35386e3b 4224
8fce4d8e 4225 reap_alien(searchp, l3);
1da177e4 4226
aab2207c 4227 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4228
35386e3b
CL
4229 /*
4230 * These are racy checks but it does not matter
4231 * if we skip one check or scan twice.
4232 */
e498be7d 4233 if (time_after(l3->next_reap, jiffies))
35386e3b 4234 goto next;
1da177e4 4235
e498be7d 4236 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4237
aab2207c 4238 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4239
ed11d9eb 4240 if (l3->free_touched)
e498be7d 4241 l3->free_touched = 0;
ed11d9eb
CL
4242 else {
4243 int freed;
1da177e4 4244
ed11d9eb
CL
4245 freed = drain_freelist(searchp, l3, (l3->free_limit +
4246 5 * searchp->num - 1) / (5 * searchp->num));
4247 STATS_ADD_REAPED(searchp, freed);
4248 }
35386e3b 4249next:
1da177e4
LT
4250 cond_resched();
4251 }
4252 check_irq_on();
18004c5d 4253 mutex_unlock(&slab_mutex);
8fce4d8e 4254 next_reap_node();
7c5cae36 4255out:
a737b3e2 4256 /* Set up the next iteration */
7c5cae36 4257 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4258}
4259
158a9624 4260#ifdef CONFIG_SLABINFO
0d7561c6 4261void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4262{
b28a02de
PE
4263 struct slab *slabp;
4264 unsigned long active_objs;
4265 unsigned long num_objs;
4266 unsigned long active_slabs = 0;
4267 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4268 const char *name;
1da177e4 4269 char *error = NULL;
e498be7d
CL
4270 int node;
4271 struct kmem_list3 *l3;
1da177e4 4272
1da177e4
LT
4273 active_objs = 0;
4274 num_slabs = 0;
e498be7d
CL
4275 for_each_online_node(node) {
4276 l3 = cachep->nodelists[node];
4277 if (!l3)
4278 continue;
4279
ca3b9b91
RT
4280 check_irq_on();
4281 spin_lock_irq(&l3->list_lock);
e498be7d 4282
7a7c381d 4283 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4284 if (slabp->inuse != cachep->num && !error)
4285 error = "slabs_full accounting error";
4286 active_objs += cachep->num;
4287 active_slabs++;
4288 }
7a7c381d 4289 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4290 if (slabp->inuse == cachep->num && !error)
4291 error = "slabs_partial inuse accounting error";
4292 if (!slabp->inuse && !error)
4293 error = "slabs_partial/inuse accounting error";
4294 active_objs += slabp->inuse;
4295 active_slabs++;
4296 }
7a7c381d 4297 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4298 if (slabp->inuse && !error)
4299 error = "slabs_free/inuse accounting error";
4300 num_slabs++;
4301 }
4302 free_objects += l3->free_objects;
4484ebf1
RT
4303 if (l3->shared)
4304 shared_avail += l3->shared->avail;
e498be7d 4305
ca3b9b91 4306 spin_unlock_irq(&l3->list_lock);
1da177e4 4307 }
b28a02de
PE
4308 num_slabs += active_slabs;
4309 num_objs = num_slabs * cachep->num;
e498be7d 4310 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4311 error = "free_objects accounting error";
4312
b28a02de 4313 name = cachep->name;
1da177e4
LT
4314 if (error)
4315 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4316
0d7561c6
GC
4317 sinfo->active_objs = active_objs;
4318 sinfo->num_objs = num_objs;
4319 sinfo->active_slabs = active_slabs;
4320 sinfo->num_slabs = num_slabs;
4321 sinfo->shared_avail = shared_avail;
4322 sinfo->limit = cachep->limit;
4323 sinfo->batchcount = cachep->batchcount;
4324 sinfo->shared = cachep->shared;
4325 sinfo->objects_per_slab = cachep->num;
4326 sinfo->cache_order = cachep->gfporder;
4327}
4328
4329void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4330{
1da177e4 4331#if STATS
b28a02de 4332 { /* list3 stats */
1da177e4
LT
4333 unsigned long high = cachep->high_mark;
4334 unsigned long allocs = cachep->num_allocations;
4335 unsigned long grown = cachep->grown;
4336 unsigned long reaped = cachep->reaped;
4337 unsigned long errors = cachep->errors;
4338 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4339 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4340 unsigned long node_frees = cachep->node_frees;
fb7faf33 4341 unsigned long overflows = cachep->node_overflow;
1da177e4 4342
e92dd4fd
JP
4343 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4344 "%4lu %4lu %4lu %4lu %4lu",
4345 allocs, high, grown,
4346 reaped, errors, max_freeable, node_allocs,
4347 node_frees, overflows);
1da177e4
LT
4348 }
4349 /* cpu stats */
4350 {
4351 unsigned long allochit = atomic_read(&cachep->allochit);
4352 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4353 unsigned long freehit = atomic_read(&cachep->freehit);
4354 unsigned long freemiss = atomic_read(&cachep->freemiss);
4355
4356 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4357 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4358 }
4359#endif
1da177e4
LT
4360}
4361
1da177e4
LT
4362#define MAX_SLABINFO_WRITE 128
4363/**
4364 * slabinfo_write - Tuning for the slab allocator
4365 * @file: unused
4366 * @buffer: user buffer
4367 * @count: data length
4368 * @ppos: unused
4369 */
b7454ad3 4370ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4371 size_t count, loff_t *ppos)
1da177e4 4372{
b28a02de 4373 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4374 int limit, batchcount, shared, res;
7a7c381d 4375 struct kmem_cache *cachep;
b28a02de 4376
1da177e4
LT
4377 if (count > MAX_SLABINFO_WRITE)
4378 return -EINVAL;
4379 if (copy_from_user(&kbuf, buffer, count))
4380 return -EFAULT;
b28a02de 4381 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4382
4383 tmp = strchr(kbuf, ' ');
4384 if (!tmp)
4385 return -EINVAL;
4386 *tmp = '\0';
4387 tmp++;
4388 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4389 return -EINVAL;
4390
4391 /* Find the cache in the chain of caches. */
18004c5d 4392 mutex_lock(&slab_mutex);
1da177e4 4393 res = -EINVAL;
18004c5d 4394 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4395 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4396 if (limit < 1 || batchcount < 1 ||
4397 batchcount > limit || shared < 0) {
e498be7d 4398 res = 0;
1da177e4 4399 } else {
e498be7d 4400 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4401 batchcount, shared,
4402 GFP_KERNEL);
1da177e4
LT
4403 }
4404 break;
4405 }
4406 }
18004c5d 4407 mutex_unlock(&slab_mutex);
1da177e4
LT
4408 if (res >= 0)
4409 res = count;
4410 return res;
4411}
871751e2
AV
4412
4413#ifdef CONFIG_DEBUG_SLAB_LEAK
4414
4415static void *leaks_start(struct seq_file *m, loff_t *pos)
4416{
18004c5d
CL
4417 mutex_lock(&slab_mutex);
4418 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4419}
4420
4421static inline int add_caller(unsigned long *n, unsigned long v)
4422{
4423 unsigned long *p;
4424 int l;
4425 if (!v)
4426 return 1;
4427 l = n[1];
4428 p = n + 2;
4429 while (l) {
4430 int i = l/2;
4431 unsigned long *q = p + 2 * i;
4432 if (*q == v) {
4433 q[1]++;
4434 return 1;
4435 }
4436 if (*q > v) {
4437 l = i;
4438 } else {
4439 p = q + 2;
4440 l -= i + 1;
4441 }
4442 }
4443 if (++n[1] == n[0])
4444 return 0;
4445 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4446 p[0] = v;
4447 p[1] = 1;
4448 return 1;
4449}
4450
4451static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4452{
4453 void *p;
4454 int i;
4455 if (n[0] == n[1])
4456 return;
3b0efdfa 4457 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4458 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4459 continue;
4460 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4461 return;
4462 }
4463}
4464
4465static void show_symbol(struct seq_file *m, unsigned long address)
4466{
4467#ifdef CONFIG_KALLSYMS
871751e2 4468 unsigned long offset, size;
9281acea 4469 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4470
a5c43dae 4471 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4472 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4473 if (modname[0])
871751e2
AV
4474 seq_printf(m, " [%s]", modname);
4475 return;
4476 }
4477#endif
4478 seq_printf(m, "%p", (void *)address);
4479}
4480
4481static int leaks_show(struct seq_file *m, void *p)
4482{
0672aa7c 4483 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4484 struct slab *slabp;
4485 struct kmem_list3 *l3;
4486 const char *name;
4487 unsigned long *n = m->private;
4488 int node;
4489 int i;
4490
4491 if (!(cachep->flags & SLAB_STORE_USER))
4492 return 0;
4493 if (!(cachep->flags & SLAB_RED_ZONE))
4494 return 0;
4495
4496 /* OK, we can do it */
4497
4498 n[1] = 0;
4499
4500 for_each_online_node(node) {
4501 l3 = cachep->nodelists[node];
4502 if (!l3)
4503 continue;
4504
4505 check_irq_on();
4506 spin_lock_irq(&l3->list_lock);
4507
7a7c381d 4508 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4509 handle_slab(n, cachep, slabp);
7a7c381d 4510 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4511 handle_slab(n, cachep, slabp);
871751e2
AV
4512 spin_unlock_irq(&l3->list_lock);
4513 }
4514 name = cachep->name;
4515 if (n[0] == n[1]) {
4516 /* Increase the buffer size */
18004c5d 4517 mutex_unlock(&slab_mutex);
871751e2
AV
4518 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4519 if (!m->private) {
4520 /* Too bad, we are really out */
4521 m->private = n;
18004c5d 4522 mutex_lock(&slab_mutex);
871751e2
AV
4523 return -ENOMEM;
4524 }
4525 *(unsigned long *)m->private = n[0] * 2;
4526 kfree(n);
18004c5d 4527 mutex_lock(&slab_mutex);
871751e2
AV
4528 /* Now make sure this entry will be retried */
4529 m->count = m->size;
4530 return 0;
4531 }
4532 for (i = 0; i < n[1]; i++) {
4533 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4534 show_symbol(m, n[2*i+2]);
4535 seq_putc(m, '\n');
4536 }
d2e7b7d0 4537
871751e2
AV
4538 return 0;
4539}
4540
b7454ad3
GC
4541static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4542{
4543 return seq_list_next(p, &slab_caches, pos);
4544}
4545
4546static void s_stop(struct seq_file *m, void *p)
4547{
4548 mutex_unlock(&slab_mutex);
4549}
4550
a0ec95a8 4551static const struct seq_operations slabstats_op = {
871751e2
AV
4552 .start = leaks_start,
4553 .next = s_next,
4554 .stop = s_stop,
4555 .show = leaks_show,
4556};
a0ec95a8
AD
4557
4558static int slabstats_open(struct inode *inode, struct file *file)
4559{
4560 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4561 int ret = -ENOMEM;
4562 if (n) {
4563 ret = seq_open(file, &slabstats_op);
4564 if (!ret) {
4565 struct seq_file *m = file->private_data;
4566 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4567 m->private = n;
4568 n = NULL;
4569 }
4570 kfree(n);
4571 }
4572 return ret;
4573}
4574
4575static const struct file_operations proc_slabstats_operations = {
4576 .open = slabstats_open,
4577 .read = seq_read,
4578 .llseek = seq_lseek,
4579 .release = seq_release_private,
4580};
4581#endif
4582
4583static int __init slab_proc_init(void)
4584{
4585#ifdef CONFIG_DEBUG_SLAB_LEAK
4586 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4587#endif
a0ec95a8
AD
4588 return 0;
4589}
4590module_init(slab_proc_init);
1da177e4
LT
4591#endif
4592
00e145b6
MS
4593/**
4594 * ksize - get the actual amount of memory allocated for a given object
4595 * @objp: Pointer to the object
4596 *
4597 * kmalloc may internally round up allocations and return more memory
4598 * than requested. ksize() can be used to determine the actual amount of
4599 * memory allocated. The caller may use this additional memory, even though
4600 * a smaller amount of memory was initially specified with the kmalloc call.
4601 * The caller must guarantee that objp points to a valid object previously
4602 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4603 * must not be freed during the duration of the call.
4604 */
fd76bab2 4605size_t ksize(const void *objp)
1da177e4 4606{
ef8b4520
CL
4607 BUG_ON(!objp);
4608 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4609 return 0;
1da177e4 4610
8c138bc0 4611 return virt_to_cache(objp)->object_size;
1da177e4 4612}
b1aabecd 4613EXPORT_SYMBOL(ksize);
This page took 1.14278 seconds and 5 git commands to generate.