shmem: fix faulting into a hole while it's punched
[deliverable/linux.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
381760ea
MG
120#include <net/sock.h>
121
1da177e4
LT
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
4dee6b64
SR
126#include <trace/events/kmem.h>
127
072bb0aa
MG
128#include "internal.h"
129
b9ce5ef4
GC
130#include "slab.h"
131
1da177e4 132/*
50953fe9 133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
1da177e4
LT
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
87a927c7 154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 155
1da177e4
LT
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
f315e3fa
JK
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
30321c7b 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 170
072bb0aa
MG
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
1da177e4
LT
177/*
178 * struct array_cache
179 *
1da177e4
LT
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
e498be7d 194 spinlock_t lock;
bda5b655 195 void *entry[]; /*
a737b3e2
AM
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
198 * the entries.
072bb0aa
MG
199 *
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 203 */
1da177e4
LT
204};
205
072bb0aa
MG
206#define SLAB_OBJ_PFMEMALLOC 1
207static inline bool is_obj_pfmemalloc(void *objp)
208{
209 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
210}
211
212static inline void set_obj_pfmemalloc(void **objp)
213{
214 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
215 return;
216}
217
218static inline void clear_obj_pfmemalloc(void **objp)
219{
220 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
221}
222
a737b3e2
AM
223/*
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
1da177e4
LT
226 */
227#define BOOT_CPUCACHE_ENTRIES 1
228struct arraycache_init {
229 struct array_cache cache;
b28a02de 230 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
231};
232
e498be7d
CL
233/*
234 * Need this for bootstrapping a per node allocator.
235 */
556a169d 236#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
ce8eb6c4 237static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 238#define CACHE_CACHE 0
556a169d 239#define SIZE_AC MAX_NUMNODES
ce8eb6c4 240#define SIZE_NODE (2 * MAX_NUMNODES)
e498be7d 241
ed11d9eb 242static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 243 struct kmem_cache_node *n, int tofree);
ed11d9eb
CL
244static void free_block(struct kmem_cache *cachep, void **objpp, int len,
245 int node);
83b519e8 246static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 247static void cache_reap(struct work_struct *unused);
ed11d9eb 248
e0a42726
IM
249static int slab_early_init = 1;
250
e3366016 251#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
ce8eb6c4 252#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 253
ce8eb6c4 254static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
255{
256 INIT_LIST_HEAD(&parent->slabs_full);
257 INIT_LIST_HEAD(&parent->slabs_partial);
258 INIT_LIST_HEAD(&parent->slabs_free);
259 parent->shared = NULL;
260 parent->alien = NULL;
2e1217cf 261 parent->colour_next = 0;
e498be7d
CL
262 spin_lock_init(&parent->list_lock);
263 parent->free_objects = 0;
264 parent->free_touched = 0;
265}
266
a737b3e2
AM
267#define MAKE_LIST(cachep, listp, slab, nodeid) \
268 do { \
269 INIT_LIST_HEAD(listp); \
6a67368c 270 list_splice(&(cachep->node[nodeid]->slab), listp); \
e498be7d
CL
271 } while (0)
272
a737b3e2
AM
273#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
274 do { \
e498be7d
CL
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
278 } while (0)
1da177e4 279
1da177e4
LT
280#define CFLGS_OFF_SLAB (0x80000000UL)
281#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
282
283#define BATCHREFILL_LIMIT 16
a737b3e2
AM
284/*
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
1da177e4 287 *
dc6f3f27 288 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
289 * which could lock up otherwise freeable slabs.
290 */
5f0985bb
JZ
291#define REAPTIMEOUT_AC (2*HZ)
292#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
293
294#if STATS
295#define STATS_INC_ACTIVE(x) ((x)->num_active++)
296#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 299#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
300#define STATS_SET_HIGH(x) \
301 do { \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
304 } while (0)
1da177e4
LT
305#define STATS_INC_ERR(x) ((x)->errors++)
306#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 307#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 308#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
309#define STATS_SET_FREEABLE(x, i) \
310 do { \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
313 } while (0)
1da177e4
LT
314#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
318#else
319#define STATS_INC_ACTIVE(x) do { } while (0)
320#define STATS_DEC_ACTIVE(x) do { } while (0)
321#define STATS_INC_ALLOCED(x) do { } while (0)
322#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 323#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
324#define STATS_SET_HIGH(x) do { } while (0)
325#define STATS_INC_ERR(x) do { } while (0)
326#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 327#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 328#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 329#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
330#define STATS_INC_ALLOCHIT(x) do { } while (0)
331#define STATS_INC_ALLOCMISS(x) do { } while (0)
332#define STATS_INC_FREEHIT(x) do { } while (0)
333#define STATS_INC_FREEMISS(x) do { } while (0)
334#endif
335
336#if DEBUG
1da177e4 337
a737b3e2
AM
338/*
339 * memory layout of objects:
1da177e4 340 * 0 : objp
3dafccf2 341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
3dafccf2 344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 345 * redzone word.
3dafccf2 346 * cachep->obj_offset: The real object.
3b0efdfa
CL
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 349 * [BYTES_PER_WORD long]
1da177e4 350 */
343e0d7a 351static int obj_offset(struct kmem_cache *cachep)
1da177e4 352{
3dafccf2 353 return cachep->obj_offset;
1da177e4
LT
354}
355
b46b8f19 356static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
357{
358 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
359 return (unsigned long long*) (objp + obj_offset(cachep) -
360 sizeof(unsigned long long));
1da177e4
LT
361}
362
b46b8f19 363static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
364{
365 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
366 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 367 return (unsigned long long *)(objp + cachep->size -
b46b8f19 368 sizeof(unsigned long long) -
87a927c7 369 REDZONE_ALIGN);
3b0efdfa 370 return (unsigned long long *) (objp + cachep->size -
b46b8f19 371 sizeof(unsigned long long));
1da177e4
LT
372}
373
343e0d7a 374static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
375{
376 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 377 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
378}
379
380#else
381
3dafccf2 382#define obj_offset(x) 0
b46b8f19
DW
383#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
385#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
386
387#endif
388
1da177e4 389/*
3df1cccd
DR
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
1da177e4 392 */
543585cc
DR
393#define SLAB_MAX_ORDER_HI 1
394#define SLAB_MAX_ORDER_LO 0
395static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 396static bool slab_max_order_set __initdata;
1da177e4 397
6ed5eb22
PE
398static inline struct kmem_cache *virt_to_cache(const void *obj)
399{
b49af68f 400 struct page *page = virt_to_head_page(obj);
35026088 401 return page->slab_cache;
6ed5eb22
PE
402}
403
8456a648 404static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
405 unsigned int idx)
406{
8456a648 407 return page->s_mem + cache->size * idx;
8fea4e96
PE
408}
409
6a2d7a95 410/*
3b0efdfa
CL
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
6a2d7a95
ED
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
415 */
416static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 417 const struct page *page, void *obj)
8fea4e96 418{
8456a648 419 u32 offset = (obj - page->s_mem);
6a2d7a95 420 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
421}
422
1da177e4 423static struct arraycache_init initarray_generic =
b28a02de 424 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
425
426/* internal cache of cache description objs */
9b030cb8 427static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
428 .batchcount = 1,
429 .limit = BOOT_CPUCACHE_ENTRIES,
430 .shared = 1,
3b0efdfa 431 .size = sizeof(struct kmem_cache),
b28a02de 432 .name = "kmem_cache",
1da177e4
LT
433};
434
056c6241
RT
435#define BAD_ALIEN_MAGIC 0x01020304ul
436
f1aaee53
AV
437#ifdef CONFIG_LOCKDEP
438
439/*
440 * Slab sometimes uses the kmalloc slabs to store the slab headers
441 * for other slabs "off slab".
442 * The locking for this is tricky in that it nests within the locks
443 * of all other slabs in a few places; to deal with this special
444 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
445 *
446 * We set lock class for alien array caches which are up during init.
447 * The lock annotation will be lost if all cpus of a node goes down and
448 * then comes back up during hotplug
f1aaee53 449 */
056c6241
RT
450static struct lock_class_key on_slab_l3_key;
451static struct lock_class_key on_slab_alc_key;
452
83835b3d
PZ
453static struct lock_class_key debugobj_l3_key;
454static struct lock_class_key debugobj_alc_key;
455
456static void slab_set_lock_classes(struct kmem_cache *cachep,
457 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
458 int q)
459{
460 struct array_cache **alc;
ce8eb6c4 461 struct kmem_cache_node *n;
83835b3d
PZ
462 int r;
463
ce8eb6c4
CL
464 n = cachep->node[q];
465 if (!n)
83835b3d
PZ
466 return;
467
ce8eb6c4
CL
468 lockdep_set_class(&n->list_lock, l3_key);
469 alc = n->alien;
83835b3d
PZ
470 /*
471 * FIXME: This check for BAD_ALIEN_MAGIC
472 * should go away when common slab code is taught to
473 * work even without alien caches.
474 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
475 * for alloc_alien_cache,
476 */
477 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
478 return;
479 for_each_node(r) {
480 if (alc[r])
481 lockdep_set_class(&alc[r]->lock, alc_key);
482 }
483}
484
485static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
486{
487 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
488}
489
490static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
491{
492 int node;
493
494 for_each_online_node(node)
495 slab_set_debugobj_lock_classes_node(cachep, node);
496}
497
ce79ddc8 498static void init_node_lock_keys(int q)
f1aaee53 499{
e3366016 500 int i;
056c6241 501
97d06609 502 if (slab_state < UP)
ce79ddc8
PE
503 return;
504
0f8f8094 505 for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
ce8eb6c4 506 struct kmem_cache_node *n;
e3366016
CL
507 struct kmem_cache *cache = kmalloc_caches[i];
508
509 if (!cache)
510 continue;
ce79ddc8 511
ce8eb6c4
CL
512 n = cache->node[q];
513 if (!n || OFF_SLAB(cache))
00afa758 514 continue;
83835b3d 515
e3366016 516 slab_set_lock_classes(cache, &on_slab_l3_key,
83835b3d 517 &on_slab_alc_key, q);
f1aaee53
AV
518 }
519}
ce79ddc8 520
6ccfb5bc
GC
521static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
522{
6a67368c 523 if (!cachep->node[q])
6ccfb5bc
GC
524 return;
525
526 slab_set_lock_classes(cachep, &on_slab_l3_key,
527 &on_slab_alc_key, q);
528}
529
530static inline void on_slab_lock_classes(struct kmem_cache *cachep)
531{
532 int node;
533
534 VM_BUG_ON(OFF_SLAB(cachep));
535 for_each_node(node)
536 on_slab_lock_classes_node(cachep, node);
537}
538
ce79ddc8
PE
539static inline void init_lock_keys(void)
540{
541 int node;
542
543 for_each_node(node)
544 init_node_lock_keys(node);
545}
f1aaee53 546#else
ce79ddc8
PE
547static void init_node_lock_keys(int q)
548{
549}
550
056c6241 551static inline void init_lock_keys(void)
f1aaee53
AV
552{
553}
83835b3d 554
6ccfb5bc
GC
555static inline void on_slab_lock_classes(struct kmem_cache *cachep)
556{
557}
558
559static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
560{
561}
562
83835b3d
PZ
563static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
564{
565}
566
567static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
568{
569}
f1aaee53
AV
570#endif
571
1871e52c 572static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 573
343e0d7a 574static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
575{
576 return cachep->array[smp_processor_id()];
577}
578
9cef2e2b
JK
579static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
580 size_t idx_size, size_t align)
1da177e4 581{
9cef2e2b
JK
582 int nr_objs;
583 size_t freelist_size;
584
585 /*
586 * Ignore padding for the initial guess. The padding
587 * is at most @align-1 bytes, and @buffer_size is at
588 * least @align. In the worst case, this result will
589 * be one greater than the number of objects that fit
590 * into the memory allocation when taking the padding
591 * into account.
592 */
593 nr_objs = slab_size / (buffer_size + idx_size);
594
595 /*
596 * This calculated number will be either the right
597 * amount, or one greater than what we want.
598 */
599 freelist_size = slab_size - nr_objs * buffer_size;
600 if (freelist_size < ALIGN(nr_objs * idx_size, align))
601 nr_objs--;
602
603 return nr_objs;
fbaccacf 604}
1da177e4 605
a737b3e2
AM
606/*
607 * Calculate the number of objects and left-over bytes for a given buffer size.
608 */
fbaccacf
SR
609static void cache_estimate(unsigned long gfporder, size_t buffer_size,
610 size_t align, int flags, size_t *left_over,
611 unsigned int *num)
612{
613 int nr_objs;
614 size_t mgmt_size;
615 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 616
fbaccacf
SR
617 /*
618 * The slab management structure can be either off the slab or
619 * on it. For the latter case, the memory allocated for a
620 * slab is used for:
621 *
16025177 622 * - One unsigned int for each object
fbaccacf
SR
623 * - Padding to respect alignment of @align
624 * - @buffer_size bytes for each object
625 *
626 * If the slab management structure is off the slab, then the
627 * alignment will already be calculated into the size. Because
628 * the slabs are all pages aligned, the objects will be at the
629 * correct alignment when allocated.
630 */
631 if (flags & CFLGS_OFF_SLAB) {
632 mgmt_size = 0;
633 nr_objs = slab_size / buffer_size;
634
fbaccacf 635 } else {
9cef2e2b 636 nr_objs = calculate_nr_objs(slab_size, buffer_size,
a41adfaa
JK
637 sizeof(freelist_idx_t), align);
638 mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
fbaccacf
SR
639 }
640 *num = nr_objs;
641 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
642}
643
f28510d3 644#if DEBUG
d40cee24 645#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 646
a737b3e2
AM
647static void __slab_error(const char *function, struct kmem_cache *cachep,
648 char *msg)
1da177e4
LT
649{
650 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 651 function, cachep->name, msg);
1da177e4 652 dump_stack();
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 654}
f28510d3 655#endif
1da177e4 656
3395ee05
PM
657/*
658 * By default on NUMA we use alien caches to stage the freeing of
659 * objects allocated from other nodes. This causes massive memory
660 * inefficiencies when using fake NUMA setup to split memory into a
661 * large number of small nodes, so it can be disabled on the command
662 * line
663 */
664
665static int use_alien_caches __read_mostly = 1;
666static int __init noaliencache_setup(char *s)
667{
668 use_alien_caches = 0;
669 return 1;
670}
671__setup("noaliencache", noaliencache_setup);
672
3df1cccd
DR
673static int __init slab_max_order_setup(char *str)
674{
675 get_option(&str, &slab_max_order);
676 slab_max_order = slab_max_order < 0 ? 0 :
677 min(slab_max_order, MAX_ORDER - 1);
678 slab_max_order_set = true;
679
680 return 1;
681}
682__setup("slab_max_order=", slab_max_order_setup);
683
8fce4d8e
CL
684#ifdef CONFIG_NUMA
685/*
686 * Special reaping functions for NUMA systems called from cache_reap().
687 * These take care of doing round robin flushing of alien caches (containing
688 * objects freed on different nodes from which they were allocated) and the
689 * flushing of remote pcps by calling drain_node_pages.
690 */
1871e52c 691static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
692
693static void init_reap_node(int cpu)
694{
695 int node;
696
7d6e6d09 697 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 698 if (node == MAX_NUMNODES)
442295c9 699 node = first_node(node_online_map);
8fce4d8e 700
1871e52c 701 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
702}
703
704static void next_reap_node(void)
705{
909ea964 706 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 707
8fce4d8e
CL
708 node = next_node(node, node_online_map);
709 if (unlikely(node >= MAX_NUMNODES))
710 node = first_node(node_online_map);
909ea964 711 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
712}
713
714#else
715#define init_reap_node(cpu) do { } while (0)
716#define next_reap_node(void) do { } while (0)
717#endif
718
1da177e4
LT
719/*
720 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
721 * via the workqueue/eventd.
722 * Add the CPU number into the expiration time to minimize the possibility of
723 * the CPUs getting into lockstep and contending for the global cache chain
724 * lock.
725 */
0db0628d 726static void start_cpu_timer(int cpu)
1da177e4 727{
1871e52c 728 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
729
730 /*
731 * When this gets called from do_initcalls via cpucache_init(),
732 * init_workqueues() has already run, so keventd will be setup
733 * at that time.
734 */
52bad64d 735 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 736 init_reap_node(cpu);
203b42f7 737 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
738 schedule_delayed_work_on(cpu, reap_work,
739 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
740 }
741}
742
e498be7d 743static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 744 int batchcount, gfp_t gfp)
1da177e4 745{
b28a02de 746 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
747 struct array_cache *nc = NULL;
748
83b519e8 749 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
750 /*
751 * The array_cache structures contain pointers to free object.
25985edc 752 * However, when such objects are allocated or transferred to another
d5cff635
CM
753 * cache the pointers are not cleared and they could be counted as
754 * valid references during a kmemleak scan. Therefore, kmemleak must
755 * not scan such objects.
756 */
757 kmemleak_no_scan(nc);
1da177e4
LT
758 if (nc) {
759 nc->avail = 0;
760 nc->limit = entries;
761 nc->batchcount = batchcount;
762 nc->touched = 0;
e498be7d 763 spin_lock_init(&nc->lock);
1da177e4
LT
764 }
765 return nc;
766}
767
8456a648 768static inline bool is_slab_pfmemalloc(struct page *page)
072bb0aa 769{
072bb0aa
MG
770 return PageSlabPfmemalloc(page);
771}
772
773/* Clears pfmemalloc_active if no slabs have pfmalloc set */
774static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
775 struct array_cache *ac)
776{
ce8eb6c4 777 struct kmem_cache_node *n = cachep->node[numa_mem_id()];
8456a648 778 struct page *page;
072bb0aa
MG
779 unsigned long flags;
780
781 if (!pfmemalloc_active)
782 return;
783
ce8eb6c4 784 spin_lock_irqsave(&n->list_lock, flags);
8456a648
JK
785 list_for_each_entry(page, &n->slabs_full, lru)
786 if (is_slab_pfmemalloc(page))
072bb0aa
MG
787 goto out;
788
8456a648
JK
789 list_for_each_entry(page, &n->slabs_partial, lru)
790 if (is_slab_pfmemalloc(page))
072bb0aa
MG
791 goto out;
792
8456a648
JK
793 list_for_each_entry(page, &n->slabs_free, lru)
794 if (is_slab_pfmemalloc(page))
072bb0aa
MG
795 goto out;
796
797 pfmemalloc_active = false;
798out:
ce8eb6c4 799 spin_unlock_irqrestore(&n->list_lock, flags);
072bb0aa
MG
800}
801
381760ea 802static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
803 gfp_t flags, bool force_refill)
804{
805 int i;
806 void *objp = ac->entry[--ac->avail];
807
808 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
809 if (unlikely(is_obj_pfmemalloc(objp))) {
ce8eb6c4 810 struct kmem_cache_node *n;
072bb0aa
MG
811
812 if (gfp_pfmemalloc_allowed(flags)) {
813 clear_obj_pfmemalloc(&objp);
814 return objp;
815 }
816
817 /* The caller cannot use PFMEMALLOC objects, find another one */
d014dc2e 818 for (i = 0; i < ac->avail; i++) {
072bb0aa
MG
819 /* If a !PFMEMALLOC object is found, swap them */
820 if (!is_obj_pfmemalloc(ac->entry[i])) {
821 objp = ac->entry[i];
822 ac->entry[i] = ac->entry[ac->avail];
823 ac->entry[ac->avail] = objp;
824 return objp;
825 }
826 }
827
828 /*
829 * If there are empty slabs on the slabs_free list and we are
830 * being forced to refill the cache, mark this one !pfmemalloc.
831 */
ce8eb6c4
CL
832 n = cachep->node[numa_mem_id()];
833 if (!list_empty(&n->slabs_free) && force_refill) {
8456a648 834 struct page *page = virt_to_head_page(objp);
7ecccf9d 835 ClearPageSlabPfmemalloc(page);
072bb0aa
MG
836 clear_obj_pfmemalloc(&objp);
837 recheck_pfmemalloc_active(cachep, ac);
838 return objp;
839 }
840
841 /* No !PFMEMALLOC objects available */
842 ac->avail++;
843 objp = NULL;
844 }
845
846 return objp;
847}
848
381760ea
MG
849static inline void *ac_get_obj(struct kmem_cache *cachep,
850 struct array_cache *ac, gfp_t flags, bool force_refill)
851{
852 void *objp;
853
854 if (unlikely(sk_memalloc_socks()))
855 objp = __ac_get_obj(cachep, ac, flags, force_refill);
856 else
857 objp = ac->entry[--ac->avail];
858
859 return objp;
860}
861
862static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
863 void *objp)
864{
865 if (unlikely(pfmemalloc_active)) {
866 /* Some pfmemalloc slabs exist, check if this is one */
30c29bea 867 struct page *page = virt_to_head_page(objp);
072bb0aa
MG
868 if (PageSlabPfmemalloc(page))
869 set_obj_pfmemalloc(&objp);
870 }
871
381760ea
MG
872 return objp;
873}
874
875static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
876 void *objp)
877{
878 if (unlikely(sk_memalloc_socks()))
879 objp = __ac_put_obj(cachep, ac, objp);
880
072bb0aa
MG
881 ac->entry[ac->avail++] = objp;
882}
883
3ded175a
CL
884/*
885 * Transfer objects in one arraycache to another.
886 * Locking must be handled by the caller.
887 *
888 * Return the number of entries transferred.
889 */
890static int transfer_objects(struct array_cache *to,
891 struct array_cache *from, unsigned int max)
892{
893 /* Figure out how many entries to transfer */
732eacc0 894 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
895
896 if (!nr)
897 return 0;
898
899 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
900 sizeof(void *) *nr);
901
902 from->avail -= nr;
903 to->avail += nr;
3ded175a
CL
904 return nr;
905}
906
765c4507
CL
907#ifndef CONFIG_NUMA
908
909#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 910#define reap_alien(cachep, n) do { } while (0)
765c4507 911
83b519e8 912static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
913{
914 return (struct array_cache **)BAD_ALIEN_MAGIC;
915}
916
917static inline void free_alien_cache(struct array_cache **ac_ptr)
918{
919}
920
921static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
922{
923 return 0;
924}
925
926static inline void *alternate_node_alloc(struct kmem_cache *cachep,
927 gfp_t flags)
928{
929 return NULL;
930}
931
8b98c169 932static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
933 gfp_t flags, int nodeid)
934{
935 return NULL;
936}
937
938#else /* CONFIG_NUMA */
939
8b98c169 940static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 941static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 942
83b519e8 943static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
944{
945 struct array_cache **ac_ptr;
8ef82866 946 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
947 int i;
948
949 if (limit > 1)
950 limit = 12;
f3186a9c 951 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
952 if (ac_ptr) {
953 for_each_node(i) {
f3186a9c 954 if (i == node || !node_online(i))
e498be7d 955 continue;
83b519e8 956 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 957 if (!ac_ptr[i]) {
cc550def 958 for (i--; i >= 0; i--)
e498be7d
CL
959 kfree(ac_ptr[i]);
960 kfree(ac_ptr);
961 return NULL;
962 }
963 }
964 }
965 return ac_ptr;
966}
967
5295a74c 968static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
969{
970 int i;
971
972 if (!ac_ptr)
973 return;
e498be7d 974 for_each_node(i)
b28a02de 975 kfree(ac_ptr[i]);
e498be7d
CL
976 kfree(ac_ptr);
977}
978
343e0d7a 979static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 980 struct array_cache *ac, int node)
e498be7d 981{
ce8eb6c4 982 struct kmem_cache_node *n = cachep->node[node];
e498be7d
CL
983
984 if (ac->avail) {
ce8eb6c4 985 spin_lock(&n->list_lock);
e00946fe
CL
986 /*
987 * Stuff objects into the remote nodes shared array first.
988 * That way we could avoid the overhead of putting the objects
989 * into the free lists and getting them back later.
990 */
ce8eb6c4
CL
991 if (n->shared)
992 transfer_objects(n->shared, ac, ac->limit);
e00946fe 993
ff69416e 994 free_block(cachep, ac->entry, ac->avail, node);
e498be7d 995 ac->avail = 0;
ce8eb6c4 996 spin_unlock(&n->list_lock);
e498be7d
CL
997 }
998}
999
8fce4d8e
CL
1000/*
1001 * Called from cache_reap() to regularly drain alien caches round robin.
1002 */
ce8eb6c4 1003static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 1004{
909ea964 1005 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 1006
ce8eb6c4
CL
1007 if (n->alien) {
1008 struct array_cache *ac = n->alien[node];
e00946fe
CL
1009
1010 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1011 __drain_alien_cache(cachep, ac, node);
1012 spin_unlock_irq(&ac->lock);
1013 }
1014 }
1015}
1016
a737b3e2
AM
1017static void drain_alien_cache(struct kmem_cache *cachep,
1018 struct array_cache **alien)
e498be7d 1019{
b28a02de 1020 int i = 0;
e498be7d
CL
1021 struct array_cache *ac;
1022 unsigned long flags;
1023
1024 for_each_online_node(i) {
4484ebf1 1025 ac = alien[i];
e498be7d
CL
1026 if (ac) {
1027 spin_lock_irqsave(&ac->lock, flags);
1028 __drain_alien_cache(cachep, ac, i);
1029 spin_unlock_irqrestore(&ac->lock, flags);
1030 }
1031 }
1032}
729bd0b7 1033
873623df 1034static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7 1035{
1ea991b0 1036 int nodeid = page_to_nid(virt_to_page(objp));
ce8eb6c4 1037 struct kmem_cache_node *n;
729bd0b7 1038 struct array_cache *alien = NULL;
1ca4cb24
PE
1039 int node;
1040
7d6e6d09 1041 node = numa_mem_id();
729bd0b7
PE
1042
1043 /*
1044 * Make sure we are not freeing a object from another node to the array
1045 * cache on this cpu.
1046 */
1ea991b0 1047 if (likely(nodeid == node))
729bd0b7
PE
1048 return 0;
1049
ce8eb6c4 1050 n = cachep->node[node];
729bd0b7 1051 STATS_INC_NODEFREES(cachep);
ce8eb6c4
CL
1052 if (n->alien && n->alien[nodeid]) {
1053 alien = n->alien[nodeid];
873623df 1054 spin_lock(&alien->lock);
729bd0b7
PE
1055 if (unlikely(alien->avail == alien->limit)) {
1056 STATS_INC_ACOVERFLOW(cachep);
1057 __drain_alien_cache(cachep, alien, nodeid);
1058 }
072bb0aa 1059 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1060 spin_unlock(&alien->lock);
1061 } else {
6a67368c 1062 spin_lock(&(cachep->node[nodeid])->list_lock);
729bd0b7 1063 free_block(cachep, &objp, 1, nodeid);
6a67368c 1064 spin_unlock(&(cachep->node[nodeid])->list_lock);
729bd0b7
PE
1065 }
1066 return 1;
1067}
e498be7d
CL
1068#endif
1069
8f9f8d9e 1070/*
6a67368c 1071 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 1072 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 1073 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 1074 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
1075 * already in use.
1076 *
18004c5d 1077 * Must hold slab_mutex.
8f9f8d9e 1078 */
6a67368c 1079static int init_cache_node_node(int node)
8f9f8d9e
DR
1080{
1081 struct kmem_cache *cachep;
ce8eb6c4 1082 struct kmem_cache_node *n;
6744f087 1083 const int memsize = sizeof(struct kmem_cache_node);
8f9f8d9e 1084
18004c5d 1085 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e 1086 /*
5f0985bb 1087 * Set up the kmem_cache_node for cpu before we can
8f9f8d9e
DR
1088 * begin anything. Make sure some other cpu on this
1089 * node has not already allocated this
1090 */
6a67368c 1091 if (!cachep->node[node]) {
ce8eb6c4
CL
1092 n = kmalloc_node(memsize, GFP_KERNEL, node);
1093 if (!n)
8f9f8d9e 1094 return -ENOMEM;
ce8eb6c4 1095 kmem_cache_node_init(n);
5f0985bb
JZ
1096 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1097 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
8f9f8d9e
DR
1098
1099 /*
5f0985bb
JZ
1100 * The kmem_cache_nodes don't come and go as CPUs
1101 * come and go. slab_mutex is sufficient
8f9f8d9e
DR
1102 * protection here.
1103 */
ce8eb6c4 1104 cachep->node[node] = n;
8f9f8d9e
DR
1105 }
1106
6a67368c
CL
1107 spin_lock_irq(&cachep->node[node]->list_lock);
1108 cachep->node[node]->free_limit =
8f9f8d9e
DR
1109 (1 + nr_cpus_node(node)) *
1110 cachep->batchcount + cachep->num;
6a67368c 1111 spin_unlock_irq(&cachep->node[node]->list_lock);
8f9f8d9e
DR
1112 }
1113 return 0;
1114}
1115
0fa8103b
WL
1116static inline int slabs_tofree(struct kmem_cache *cachep,
1117 struct kmem_cache_node *n)
1118{
1119 return (n->free_objects + cachep->num - 1) / cachep->num;
1120}
1121
0db0628d 1122static void cpuup_canceled(long cpu)
fbf1e473
AM
1123{
1124 struct kmem_cache *cachep;
ce8eb6c4 1125 struct kmem_cache_node *n = NULL;
7d6e6d09 1126 int node = cpu_to_mem(cpu);
a70f7302 1127 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1128
18004c5d 1129 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1130 struct array_cache *nc;
1131 struct array_cache *shared;
1132 struct array_cache **alien;
fbf1e473 1133
fbf1e473
AM
1134 /* cpu is dead; no one can alloc from it. */
1135 nc = cachep->array[cpu];
1136 cachep->array[cpu] = NULL;
ce8eb6c4 1137 n = cachep->node[node];
fbf1e473 1138
ce8eb6c4 1139 if (!n)
fbf1e473
AM
1140 goto free_array_cache;
1141
ce8eb6c4 1142 spin_lock_irq(&n->list_lock);
fbf1e473 1143
ce8eb6c4
CL
1144 /* Free limit for this kmem_cache_node */
1145 n->free_limit -= cachep->batchcount;
fbf1e473
AM
1146 if (nc)
1147 free_block(cachep, nc->entry, nc->avail, node);
1148
58463c1f 1149 if (!cpumask_empty(mask)) {
ce8eb6c4 1150 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1151 goto free_array_cache;
1152 }
1153
ce8eb6c4 1154 shared = n->shared;
fbf1e473
AM
1155 if (shared) {
1156 free_block(cachep, shared->entry,
1157 shared->avail, node);
ce8eb6c4 1158 n->shared = NULL;
fbf1e473
AM
1159 }
1160
ce8eb6c4
CL
1161 alien = n->alien;
1162 n->alien = NULL;
fbf1e473 1163
ce8eb6c4 1164 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1165
1166 kfree(shared);
1167 if (alien) {
1168 drain_alien_cache(cachep, alien);
1169 free_alien_cache(alien);
1170 }
1171free_array_cache:
1172 kfree(nc);
1173 }
1174 /*
1175 * In the previous loop, all the objects were freed to
1176 * the respective cache's slabs, now we can go ahead and
1177 * shrink each nodelist to its limit.
1178 */
18004c5d 1179 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4
CL
1180 n = cachep->node[node];
1181 if (!n)
fbf1e473 1182 continue;
0fa8103b 1183 drain_freelist(cachep, n, slabs_tofree(cachep, n));
fbf1e473
AM
1184 }
1185}
1186
0db0628d 1187static int cpuup_prepare(long cpu)
1da177e4 1188{
343e0d7a 1189 struct kmem_cache *cachep;
ce8eb6c4 1190 struct kmem_cache_node *n = NULL;
7d6e6d09 1191 int node = cpu_to_mem(cpu);
8f9f8d9e 1192 int err;
1da177e4 1193
fbf1e473
AM
1194 /*
1195 * We need to do this right in the beginning since
1196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1198 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1199 */
6a67368c 1200 err = init_cache_node_node(node);
8f9f8d9e
DR
1201 if (err < 0)
1202 goto bad;
fbf1e473
AM
1203
1204 /*
1205 * Now we can go ahead with allocating the shared arrays and
1206 * array caches
1207 */
18004c5d 1208 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1209 struct array_cache *nc;
1210 struct array_cache *shared = NULL;
1211 struct array_cache **alien = NULL;
1212
1213 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1214 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1215 if (!nc)
1216 goto bad;
1217 if (cachep->shared) {
1218 shared = alloc_arraycache(node,
1219 cachep->shared * cachep->batchcount,
83b519e8 1220 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1221 if (!shared) {
1222 kfree(nc);
1da177e4 1223 goto bad;
12d00f6a 1224 }
fbf1e473
AM
1225 }
1226 if (use_alien_caches) {
83b519e8 1227 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1228 if (!alien) {
1229 kfree(shared);
1230 kfree(nc);
fbf1e473 1231 goto bad;
12d00f6a 1232 }
fbf1e473
AM
1233 }
1234 cachep->array[cpu] = nc;
ce8eb6c4
CL
1235 n = cachep->node[node];
1236 BUG_ON(!n);
fbf1e473 1237
ce8eb6c4
CL
1238 spin_lock_irq(&n->list_lock);
1239 if (!n->shared) {
fbf1e473
AM
1240 /*
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1243 */
ce8eb6c4 1244 n->shared = shared;
fbf1e473
AM
1245 shared = NULL;
1246 }
4484ebf1 1247#ifdef CONFIG_NUMA
ce8eb6c4
CL
1248 if (!n->alien) {
1249 n->alien = alien;
fbf1e473 1250 alien = NULL;
1da177e4 1251 }
fbf1e473 1252#endif
ce8eb6c4 1253 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1254 kfree(shared);
1255 free_alien_cache(alien);
83835b3d
PZ
1256 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1257 slab_set_debugobj_lock_classes_node(cachep, node);
6ccfb5bc
GC
1258 else if (!OFF_SLAB(cachep) &&
1259 !(cachep->flags & SLAB_DESTROY_BY_RCU))
1260 on_slab_lock_classes_node(cachep, node);
fbf1e473 1261 }
ce79ddc8
PE
1262 init_node_lock_keys(node);
1263
fbf1e473
AM
1264 return 0;
1265bad:
12d00f6a 1266 cpuup_canceled(cpu);
fbf1e473
AM
1267 return -ENOMEM;
1268}
1269
0db0628d 1270static int cpuup_callback(struct notifier_block *nfb,
fbf1e473
AM
1271 unsigned long action, void *hcpu)
1272{
1273 long cpu = (long)hcpu;
1274 int err = 0;
1275
1276 switch (action) {
fbf1e473
AM
1277 case CPU_UP_PREPARE:
1278 case CPU_UP_PREPARE_FROZEN:
18004c5d 1279 mutex_lock(&slab_mutex);
fbf1e473 1280 err = cpuup_prepare(cpu);
18004c5d 1281 mutex_unlock(&slab_mutex);
1da177e4
LT
1282 break;
1283 case CPU_ONLINE:
8bb78442 1284 case CPU_ONLINE_FROZEN:
1da177e4
LT
1285 start_cpu_timer(cpu);
1286 break;
1287#ifdef CONFIG_HOTPLUG_CPU
5830c590 1288 case CPU_DOWN_PREPARE:
8bb78442 1289 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1290 /*
18004c5d 1291 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1295 */
afe2c511 1296 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1297 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1298 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1299 break;
1300 case CPU_DOWN_FAILED:
8bb78442 1301 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1302 start_cpu_timer(cpu);
1303 break;
1da177e4 1304 case CPU_DEAD:
8bb78442 1305 case CPU_DEAD_FROZEN:
4484ebf1
RT
1306 /*
1307 * Even if all the cpus of a node are down, we don't free the
ce8eb6c4 1308 * kmem_cache_node of any cache. This to avoid a race between
4484ebf1 1309 * cpu_down, and a kmalloc allocation from another cpu for
ce8eb6c4 1310 * memory from the node of the cpu going down. The node
4484ebf1
RT
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1313 */
183ff22b 1314 /* fall through */
8f5be20b 1315#endif
1da177e4 1316 case CPU_UP_CANCELED:
8bb78442 1317 case CPU_UP_CANCELED_FROZEN:
18004c5d 1318 mutex_lock(&slab_mutex);
fbf1e473 1319 cpuup_canceled(cpu);
18004c5d 1320 mutex_unlock(&slab_mutex);
1da177e4 1321 break;
1da177e4 1322 }
eac40680 1323 return notifier_from_errno(err);
1da177e4
LT
1324}
1325
0db0628d 1326static struct notifier_block cpucache_notifier = {
74b85f37
CS
1327 &cpuup_callback, NULL, 0
1328};
1da177e4 1329
8f9f8d9e
DR
1330#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1331/*
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1334 * removed.
1335 *
18004c5d 1336 * Must hold slab_mutex.
8f9f8d9e 1337 */
6a67368c 1338static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1339{
1340 struct kmem_cache *cachep;
1341 int ret = 0;
1342
18004c5d 1343 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1344 struct kmem_cache_node *n;
8f9f8d9e 1345
ce8eb6c4
CL
1346 n = cachep->node[node];
1347 if (!n)
8f9f8d9e
DR
1348 continue;
1349
0fa8103b 1350 drain_freelist(cachep, n, slabs_tofree(cachep, n));
8f9f8d9e 1351
ce8eb6c4
CL
1352 if (!list_empty(&n->slabs_full) ||
1353 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1354 ret = -EBUSY;
1355 break;
1356 }
1357 }
1358 return ret;
1359}
1360
1361static int __meminit slab_memory_callback(struct notifier_block *self,
1362 unsigned long action, void *arg)
1363{
1364 struct memory_notify *mnb = arg;
1365 int ret = 0;
1366 int nid;
1367
1368 nid = mnb->status_change_nid;
1369 if (nid < 0)
1370 goto out;
1371
1372 switch (action) {
1373 case MEM_GOING_ONLINE:
18004c5d 1374 mutex_lock(&slab_mutex);
6a67368c 1375 ret = init_cache_node_node(nid);
18004c5d 1376 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1377 break;
1378 case MEM_GOING_OFFLINE:
18004c5d 1379 mutex_lock(&slab_mutex);
6a67368c 1380 ret = drain_cache_node_node(nid);
18004c5d 1381 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1382 break;
1383 case MEM_ONLINE:
1384 case MEM_OFFLINE:
1385 case MEM_CANCEL_ONLINE:
1386 case MEM_CANCEL_OFFLINE:
1387 break;
1388 }
1389out:
5fda1bd5 1390 return notifier_from_errno(ret);
8f9f8d9e
DR
1391}
1392#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1393
e498be7d 1394/*
ce8eb6c4 1395 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1396 */
6744f087 1397static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1398 int nodeid)
e498be7d 1399{
6744f087 1400 struct kmem_cache_node *ptr;
e498be7d 1401
6744f087 1402 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1403 BUG_ON(!ptr);
1404
6744f087 1405 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1406 /*
1407 * Do not assume that spinlocks can be initialized via memcpy:
1408 */
1409 spin_lock_init(&ptr->list_lock);
1410
e498be7d 1411 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1412 cachep->node[nodeid] = ptr;
e498be7d
CL
1413}
1414
556a169d 1415/*
ce8eb6c4
CL
1416 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1417 * size of kmem_cache_node.
556a169d 1418 */
ce8eb6c4 1419static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1420{
1421 int node;
1422
1423 for_each_online_node(node) {
ce8eb6c4 1424 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1425 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1426 REAPTIMEOUT_NODE +
1427 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1428 }
1429}
1430
3c583465
CL
1431/*
1432 * The memory after the last cpu cache pointer is used for the
6a67368c 1433 * the node pointer.
3c583465 1434 */
6a67368c 1435static void setup_node_pointer(struct kmem_cache *cachep)
3c583465 1436{
6a67368c 1437 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
3c583465
CL
1438}
1439
a737b3e2
AM
1440/*
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1da177e4
LT
1443 */
1444void __init kmem_cache_init(void)
1445{
e498be7d
CL
1446 int i;
1447
68126702
JK
1448 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1449 sizeof(struct rcu_head));
9b030cb8 1450 kmem_cache = &kmem_cache_boot;
6a67368c 1451 setup_node_pointer(kmem_cache);
9b030cb8 1452
b6e68bc1 1453 if (num_possible_nodes() == 1)
62918a03
SS
1454 use_alien_caches = 0;
1455
3c583465 1456 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1457 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1458
ce8eb6c4 1459 set_up_node(kmem_cache, CACHE_CACHE);
1da177e4
LT
1460
1461 /*
1462 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1463 * page orders on machines with more than 32MB of memory if
1464 * not overridden on the command line.
1da177e4 1465 */
3df1cccd 1466 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1467 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1468
1da177e4
LT
1469 /* Bootstrap is tricky, because several objects are allocated
1470 * from caches that do not exist yet:
9b030cb8
CL
1471 * 1) initialize the kmem_cache cache: it contains the struct
1472 * kmem_cache structures of all caches, except kmem_cache itself:
1473 * kmem_cache is statically allocated.
e498be7d 1474 * Initially an __init data area is used for the head array and the
ce8eb6c4 1475 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1476 * array at the end of the bootstrap.
1da177e4 1477 * 2) Create the first kmalloc cache.
343e0d7a 1478 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1479 * An __init data area is used for the head array.
1480 * 3) Create the remaining kmalloc caches, with minimally sized
1481 * head arrays.
9b030cb8 1482 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1483 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1484 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1485 * the other cache's with kmalloc allocated memory.
1486 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1487 */
1488
9b030cb8 1489 /* 1) create the kmem_cache */
1da177e4 1490
8da3430d 1491 /*
b56efcf0 1492 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1493 */
2f9baa9f
CL
1494 create_boot_cache(kmem_cache, "kmem_cache",
1495 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
6744f087 1496 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1497 SLAB_HWCACHE_ALIGN);
1498 list_add(&kmem_cache->list, &slab_caches);
1da177e4
LT
1499
1500 /* 2+3) create the kmalloc caches */
1da177e4 1501
a737b3e2
AM
1502 /*
1503 * Initialize the caches that provide memory for the array cache and the
ce8eb6c4 1504 * kmem_cache_node structures first. Without this, further allocations will
a737b3e2 1505 * bug.
e498be7d
CL
1506 */
1507
e3366016
CL
1508 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1509 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
45530c44 1510
ce8eb6c4
CL
1511 if (INDEX_AC != INDEX_NODE)
1512 kmalloc_caches[INDEX_NODE] =
1513 create_kmalloc_cache("kmalloc-node",
1514 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
e498be7d 1515
e0a42726
IM
1516 slab_early_init = 0;
1517
1da177e4
LT
1518 /* 4) Replace the bootstrap head arrays */
1519 {
2b2d5493 1520 struct array_cache *ptr;
e498be7d 1521
83b519e8 1522 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1523
9b030cb8 1524 memcpy(ptr, cpu_cache_get(kmem_cache),
b28a02de 1525 sizeof(struct arraycache_init));
2b2d5493
IM
1526 /*
1527 * Do not assume that spinlocks can be initialized via memcpy:
1528 */
1529 spin_lock_init(&ptr->lock);
1530
9b030cb8 1531 kmem_cache->array[smp_processor_id()] = ptr;
e498be7d 1532
83b519e8 1533 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1534
e3366016 1535 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
b28a02de 1536 != &initarray_generic.cache);
e3366016 1537 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
b28a02de 1538 sizeof(struct arraycache_init));
2b2d5493
IM
1539 /*
1540 * Do not assume that spinlocks can be initialized via memcpy:
1541 */
1542 spin_lock_init(&ptr->lock);
1543
e3366016 1544 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1da177e4 1545 }
ce8eb6c4 1546 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1547 {
1ca4cb24
PE
1548 int nid;
1549
9c09a95c 1550 for_each_online_node(nid) {
ce8eb6c4 1551 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1552
e3366016 1553 init_list(kmalloc_caches[INDEX_AC],
ce8eb6c4 1554 &init_kmem_cache_node[SIZE_AC + nid], nid);
e498be7d 1555
ce8eb6c4
CL
1556 if (INDEX_AC != INDEX_NODE) {
1557 init_list(kmalloc_caches[INDEX_NODE],
1558 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1559 }
1560 }
1561 }
1da177e4 1562
f97d5f63 1563 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1564}
1565
1566void __init kmem_cache_init_late(void)
1567{
1568 struct kmem_cache *cachep;
1569
97d06609 1570 slab_state = UP;
52cef189 1571
8429db5c 1572 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1573 mutex_lock(&slab_mutex);
1574 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1575 if (enable_cpucache(cachep, GFP_NOWAIT))
1576 BUG();
18004c5d 1577 mutex_unlock(&slab_mutex);
056c6241 1578
947ca185
MW
1579 /* Annotate slab for lockdep -- annotate the malloc caches */
1580 init_lock_keys();
1581
97d06609
CL
1582 /* Done! */
1583 slab_state = FULL;
1584
a737b3e2
AM
1585 /*
1586 * Register a cpu startup notifier callback that initializes
1587 * cpu_cache_get for all new cpus
1da177e4
LT
1588 */
1589 register_cpu_notifier(&cpucache_notifier);
1da177e4 1590
8f9f8d9e
DR
1591#ifdef CONFIG_NUMA
1592 /*
1593 * Register a memory hotplug callback that initializes and frees
6a67368c 1594 * node.
8f9f8d9e
DR
1595 */
1596 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1597#endif
1598
a737b3e2
AM
1599 /*
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1da177e4
LT
1602 */
1603}
1604
1605static int __init cpucache_init(void)
1606{
1607 int cpu;
1608
a737b3e2
AM
1609 /*
1610 * Register the timers that return unneeded pages to the page allocator
1da177e4 1611 */
e498be7d 1612 for_each_online_cpu(cpu)
a737b3e2 1613 start_cpu_timer(cpu);
a164f896
GC
1614
1615 /* Done! */
97d06609 1616 slab_state = FULL;
1da177e4
LT
1617 return 0;
1618}
1da177e4
LT
1619__initcall(cpucache_init);
1620
8bdec192
RA
1621static noinline void
1622slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1623{
9a02d699 1624#if DEBUG
ce8eb6c4 1625 struct kmem_cache_node *n;
8456a648 1626 struct page *page;
8bdec192
RA
1627 unsigned long flags;
1628 int node;
9a02d699
DR
1629 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1630 DEFAULT_RATELIMIT_BURST);
1631
1632 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1633 return;
8bdec192
RA
1634
1635 printk(KERN_WARNING
1636 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1637 nodeid, gfpflags);
1638 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1639 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1640
1641 for_each_online_node(node) {
1642 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1643 unsigned long active_slabs = 0, num_slabs = 0;
1644
ce8eb6c4
CL
1645 n = cachep->node[node];
1646 if (!n)
8bdec192
RA
1647 continue;
1648
ce8eb6c4 1649 spin_lock_irqsave(&n->list_lock, flags);
8456a648 1650 list_for_each_entry(page, &n->slabs_full, lru) {
8bdec192
RA
1651 active_objs += cachep->num;
1652 active_slabs++;
1653 }
8456a648
JK
1654 list_for_each_entry(page, &n->slabs_partial, lru) {
1655 active_objs += page->active;
8bdec192
RA
1656 active_slabs++;
1657 }
8456a648 1658 list_for_each_entry(page, &n->slabs_free, lru)
8bdec192
RA
1659 num_slabs++;
1660
ce8eb6c4
CL
1661 free_objects += n->free_objects;
1662 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192
RA
1663
1664 num_slabs += active_slabs;
1665 num_objs = num_slabs * cachep->num;
1666 printk(KERN_WARNING
1667 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1668 node, active_slabs, num_slabs, active_objs, num_objs,
1669 free_objects);
1670 }
9a02d699 1671#endif
8bdec192
RA
1672}
1673
1da177e4
LT
1674/*
1675 * Interface to system's page allocator. No need to hold the cache-lock.
1676 *
1677 * If we requested dmaable memory, we will get it. Even if we
1678 * did not request dmaable memory, we might get it, but that
1679 * would be relatively rare and ignorable.
1680 */
0c3aa83e
JK
1681static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1682 int nodeid)
1da177e4
LT
1683{
1684 struct page *page;
e1b6aa6f 1685 int nr_pages;
765c4507 1686
a618e89f 1687 flags |= cachep->allocflags;
e12ba74d
MG
1688 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1689 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1690
5dfb4175
VD
1691 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1692 return NULL;
1693
517d0869 1694 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1695 if (!page) {
5dfb4175 1696 memcg_uncharge_slab(cachep, cachep->gfporder);
9a02d699 1697 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1698 return NULL;
8bdec192 1699 }
1da177e4 1700
b37f1dd0 1701 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1702 if (unlikely(page->pfmemalloc))
1703 pfmemalloc_active = true;
1704
e1b6aa6f 1705 nr_pages = (1 << cachep->gfporder);
1da177e4 1706 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1707 add_zone_page_state(page_zone(page),
1708 NR_SLAB_RECLAIMABLE, nr_pages);
1709 else
1710 add_zone_page_state(page_zone(page),
1711 NR_SLAB_UNRECLAIMABLE, nr_pages);
a57a4988
JK
1712 __SetPageSlab(page);
1713 if (page->pfmemalloc)
1714 SetPageSlabPfmemalloc(page);
072bb0aa 1715
b1eeab67
VN
1716 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1717 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1718
1719 if (cachep->ctor)
1720 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1721 else
1722 kmemcheck_mark_unallocated_pages(page, nr_pages);
1723 }
c175eea4 1724
0c3aa83e 1725 return page;
1da177e4
LT
1726}
1727
1728/*
1729 * Interface to system's page release.
1730 */
0c3aa83e 1731static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1732{
a57a4988 1733 const unsigned long nr_freed = (1 << cachep->gfporder);
1da177e4 1734
b1eeab67 1735 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1736
972d1a7b
CL
1737 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1738 sub_zone_page_state(page_zone(page),
1739 NR_SLAB_RECLAIMABLE, nr_freed);
1740 else
1741 sub_zone_page_state(page_zone(page),
1742 NR_SLAB_UNRECLAIMABLE, nr_freed);
73293c2f 1743
a57a4988 1744 BUG_ON(!PageSlab(page));
73293c2f 1745 __ClearPageSlabPfmemalloc(page);
a57a4988 1746 __ClearPageSlab(page);
8456a648
JK
1747 page_mapcount_reset(page);
1748 page->mapping = NULL;
1f458cbf 1749
1da177e4
LT
1750 if (current->reclaim_state)
1751 current->reclaim_state->reclaimed_slab += nr_freed;
5dfb4175
VD
1752 __free_pages(page, cachep->gfporder);
1753 memcg_uncharge_slab(cachep, cachep->gfporder);
1da177e4
LT
1754}
1755
1756static void kmem_rcu_free(struct rcu_head *head)
1757{
68126702
JK
1758 struct kmem_cache *cachep;
1759 struct page *page;
1da177e4 1760
68126702
JK
1761 page = container_of(head, struct page, rcu_head);
1762 cachep = page->slab_cache;
1763
1764 kmem_freepages(cachep, page);
1da177e4
LT
1765}
1766
1767#if DEBUG
1768
1769#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1770static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1771 unsigned long caller)
1da177e4 1772{
8c138bc0 1773 int size = cachep->object_size;
1da177e4 1774
3dafccf2 1775 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1776
b28a02de 1777 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1778 return;
1779
b28a02de
PE
1780 *addr++ = 0x12345678;
1781 *addr++ = caller;
1782 *addr++ = smp_processor_id();
1783 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1784 {
1785 unsigned long *sptr = &caller;
1786 unsigned long svalue;
1787
1788 while (!kstack_end(sptr)) {
1789 svalue = *sptr++;
1790 if (kernel_text_address(svalue)) {
b28a02de 1791 *addr++ = svalue;
1da177e4
LT
1792 size -= sizeof(unsigned long);
1793 if (size <= sizeof(unsigned long))
1794 break;
1795 }
1796 }
1797
1798 }
b28a02de 1799 *addr++ = 0x87654321;
1da177e4
LT
1800}
1801#endif
1802
343e0d7a 1803static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1804{
8c138bc0 1805 int size = cachep->object_size;
3dafccf2 1806 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1807
1808 memset(addr, val, size);
b28a02de 1809 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1810}
1811
1812static void dump_line(char *data, int offset, int limit)
1813{
1814 int i;
aa83aa40
DJ
1815 unsigned char error = 0;
1816 int bad_count = 0;
1817
fdde6abb 1818 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1819 for (i = 0; i < limit; i++) {
1820 if (data[offset + i] != POISON_FREE) {
1821 error = data[offset + i];
1822 bad_count++;
1823 }
aa83aa40 1824 }
fdde6abb
SAS
1825 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1826 &data[offset], limit, 1);
aa83aa40
DJ
1827
1828 if (bad_count == 1) {
1829 error ^= POISON_FREE;
1830 if (!(error & (error - 1))) {
1831 printk(KERN_ERR "Single bit error detected. Probably "
1832 "bad RAM.\n");
1833#ifdef CONFIG_X86
1834 printk(KERN_ERR "Run memtest86+ or a similar memory "
1835 "test tool.\n");
1836#else
1837 printk(KERN_ERR "Run a memory test tool.\n");
1838#endif
1839 }
1840 }
1da177e4
LT
1841}
1842#endif
1843
1844#if DEBUG
1845
343e0d7a 1846static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1847{
1848 int i, size;
1849 char *realobj;
1850
1851 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1852 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1853 *dbg_redzone1(cachep, objp),
1854 *dbg_redzone2(cachep, objp));
1da177e4
LT
1855 }
1856
1857 if (cachep->flags & SLAB_STORE_USER) {
071361d3
JP
1858 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1859 *dbg_userword(cachep, objp),
1860 *dbg_userword(cachep, objp));
1da177e4 1861 }
3dafccf2 1862 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1863 size = cachep->object_size;
b28a02de 1864 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1865 int limit;
1866 limit = 16;
b28a02de
PE
1867 if (i + limit > size)
1868 limit = size - i;
1da177e4
LT
1869 dump_line(realobj, i, limit);
1870 }
1871}
1872
343e0d7a 1873static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1874{
1875 char *realobj;
1876 int size, i;
1877 int lines = 0;
1878
3dafccf2 1879 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1880 size = cachep->object_size;
1da177e4 1881
b28a02de 1882 for (i = 0; i < size; i++) {
1da177e4 1883 char exp = POISON_FREE;
b28a02de 1884 if (i == size - 1)
1da177e4
LT
1885 exp = POISON_END;
1886 if (realobj[i] != exp) {
1887 int limit;
1888 /* Mismatch ! */
1889 /* Print header */
1890 if (lines == 0) {
b28a02de 1891 printk(KERN_ERR
face37f5
DJ
1892 "Slab corruption (%s): %s start=%p, len=%d\n",
1893 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1894 print_objinfo(cachep, objp, 0);
1895 }
1896 /* Hexdump the affected line */
b28a02de 1897 i = (i / 16) * 16;
1da177e4 1898 limit = 16;
b28a02de
PE
1899 if (i + limit > size)
1900 limit = size - i;
1da177e4
LT
1901 dump_line(realobj, i, limit);
1902 i += 16;
1903 lines++;
1904 /* Limit to 5 lines */
1905 if (lines > 5)
1906 break;
1907 }
1908 }
1909 if (lines != 0) {
1910 /* Print some data about the neighboring objects, if they
1911 * exist:
1912 */
8456a648 1913 struct page *page = virt_to_head_page(objp);
8fea4e96 1914 unsigned int objnr;
1da177e4 1915
8456a648 1916 objnr = obj_to_index(cachep, page, objp);
1da177e4 1917 if (objnr) {
8456a648 1918 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1919 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1920 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1921 realobj, size);
1da177e4
LT
1922 print_objinfo(cachep, objp, 2);
1923 }
b28a02de 1924 if (objnr + 1 < cachep->num) {
8456a648 1925 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1926 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1927 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1928 realobj, size);
1da177e4
LT
1929 print_objinfo(cachep, objp, 2);
1930 }
1931 }
1932}
1933#endif
1934
12dd36fa 1935#if DEBUG
8456a648
JK
1936static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1937 struct page *page)
1da177e4 1938{
1da177e4
LT
1939 int i;
1940 for (i = 0; i < cachep->num; i++) {
8456a648 1941 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1942
1943 if (cachep->flags & SLAB_POISON) {
1944#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 1945 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 1946 OFF_SLAB(cachep))
b28a02de 1947 kernel_map_pages(virt_to_page(objp),
3b0efdfa 1948 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
1949 else
1950 check_poison_obj(cachep, objp);
1951#else
1952 check_poison_obj(cachep, objp);
1953#endif
1954 }
1955 if (cachep->flags & SLAB_RED_ZONE) {
1956 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1957 slab_error(cachep, "start of a freed object "
b28a02de 1958 "was overwritten");
1da177e4
LT
1959 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1960 slab_error(cachep, "end of a freed object "
b28a02de 1961 "was overwritten");
1da177e4 1962 }
1da177e4 1963 }
12dd36fa 1964}
1da177e4 1965#else
8456a648
JK
1966static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1967 struct page *page)
12dd36fa 1968{
12dd36fa 1969}
1da177e4
LT
1970#endif
1971
911851e6
RD
1972/**
1973 * slab_destroy - destroy and release all objects in a slab
1974 * @cachep: cache pointer being destroyed
cb8ee1a3 1975 * @page: page pointer being destroyed
911851e6 1976 *
12dd36fa 1977 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1978 * Before calling the slab must have been unlinked from the cache. The
1979 * cache-lock is not held/needed.
12dd36fa 1980 */
8456a648 1981static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1982{
7e007355 1983 void *freelist;
12dd36fa 1984
8456a648
JK
1985 freelist = page->freelist;
1986 slab_destroy_debugcheck(cachep, page);
1da177e4 1987 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
68126702
JK
1988 struct rcu_head *head;
1989
1990 /*
1991 * RCU free overloads the RCU head over the LRU.
1992 * slab_page has been overloeaded over the LRU,
1993 * however it is not used from now on so that
1994 * we can use it safely.
1995 */
1996 head = (void *)&page->rcu_head;
1997 call_rcu(head, kmem_rcu_free);
1da177e4 1998
1da177e4 1999 } else {
0c3aa83e 2000 kmem_freepages(cachep, page);
1da177e4 2001 }
68126702
JK
2002
2003 /*
8456a648 2004 * From now on, we don't use freelist
68126702
JK
2005 * although actual page can be freed in rcu context
2006 */
2007 if (OFF_SLAB(cachep))
8456a648 2008 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
2009}
2010
4d268eba 2011/**
a70773dd
RD
2012 * calculate_slab_order - calculate size (page order) of slabs
2013 * @cachep: pointer to the cache that is being created
2014 * @size: size of objects to be created in this cache.
2015 * @align: required alignment for the objects.
2016 * @flags: slab allocation flags
2017 *
2018 * Also calculates the number of objects per slab.
4d268eba
PE
2019 *
2020 * This could be made much more intelligent. For now, try to avoid using
2021 * high order pages for slabs. When the gfp() functions are more friendly
2022 * towards high-order requests, this should be changed.
2023 */
a737b3e2 2024static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2025 size_t size, size_t align, unsigned long flags)
4d268eba 2026{
b1ab41c4 2027 unsigned long offslab_limit;
4d268eba 2028 size_t left_over = 0;
9888e6fa 2029 int gfporder;
4d268eba 2030
0aa817f0 2031 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2032 unsigned int num;
2033 size_t remainder;
2034
9888e6fa 2035 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2036 if (!num)
2037 continue;
9888e6fa 2038
f315e3fa
JK
2039 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2040 if (num > SLAB_OBJ_MAX_NUM)
2041 break;
2042
b1ab41c4
IM
2043 if (flags & CFLGS_OFF_SLAB) {
2044 /*
2045 * Max number of objs-per-slab for caches which
2046 * use off-slab slabs. Needed to avoid a possible
2047 * looping condition in cache_grow().
2048 */
8456a648 2049 offslab_limit = size;
a41adfaa 2050 offslab_limit /= sizeof(freelist_idx_t);
b1ab41c4
IM
2051
2052 if (num > offslab_limit)
2053 break;
2054 }
4d268eba 2055
9888e6fa 2056 /* Found something acceptable - save it away */
4d268eba 2057 cachep->num = num;
9888e6fa 2058 cachep->gfporder = gfporder;
4d268eba
PE
2059 left_over = remainder;
2060
f78bb8ad
LT
2061 /*
2062 * A VFS-reclaimable slab tends to have most allocations
2063 * as GFP_NOFS and we really don't want to have to be allocating
2064 * higher-order pages when we are unable to shrink dcache.
2065 */
2066 if (flags & SLAB_RECLAIM_ACCOUNT)
2067 break;
2068
4d268eba
PE
2069 /*
2070 * Large number of objects is good, but very large slabs are
2071 * currently bad for the gfp()s.
2072 */
543585cc 2073 if (gfporder >= slab_max_order)
4d268eba
PE
2074 break;
2075
9888e6fa
LT
2076 /*
2077 * Acceptable internal fragmentation?
2078 */
a737b3e2 2079 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2080 break;
2081 }
2082 return left_over;
2083}
2084
83b519e8 2085static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2086{
97d06609 2087 if (slab_state >= FULL)
83b519e8 2088 return enable_cpucache(cachep, gfp);
2ed3a4ef 2089
97d06609 2090 if (slab_state == DOWN) {
f30cf7d1 2091 /*
2f9baa9f 2092 * Note: Creation of first cache (kmem_cache).
ce8eb6c4 2093 * The setup_node is taken care
2f9baa9f
CL
2094 * of by the caller of __kmem_cache_create
2095 */
2096 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097 slab_state = PARTIAL;
2098 } else if (slab_state == PARTIAL) {
2099 /*
2100 * Note: the second kmem_cache_create must create the cache
f30cf7d1
PE
2101 * that's used by kmalloc(24), otherwise the creation of
2102 * further caches will BUG().
2103 */
2104 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2105
2106 /*
ce8eb6c4
CL
2107 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2108 * the second cache, then we need to set up all its node/,
f30cf7d1
PE
2109 * otherwise the creation of further caches will BUG().
2110 */
ce8eb6c4
CL
2111 set_up_node(cachep, SIZE_AC);
2112 if (INDEX_AC == INDEX_NODE)
2113 slab_state = PARTIAL_NODE;
f30cf7d1 2114 else
97d06609 2115 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1 2116 } else {
2f9baa9f 2117 /* Remaining boot caches */
f30cf7d1 2118 cachep->array[smp_processor_id()] =
83b519e8 2119 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2120
97d06609 2121 if (slab_state == PARTIAL_ARRAYCACHE) {
ce8eb6c4
CL
2122 set_up_node(cachep, SIZE_NODE);
2123 slab_state = PARTIAL_NODE;
f30cf7d1
PE
2124 } else {
2125 int node;
556a169d 2126 for_each_online_node(node) {
6a67368c 2127 cachep->node[node] =
6744f087 2128 kmalloc_node(sizeof(struct kmem_cache_node),
eb91f1d0 2129 gfp, node);
6a67368c 2130 BUG_ON(!cachep->node[node]);
ce8eb6c4 2131 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
2132 }
2133 }
2134 }
6a67368c 2135 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
2136 jiffies + REAPTIMEOUT_NODE +
2137 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
2138
2139 cpu_cache_get(cachep)->avail = 0;
2140 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2141 cpu_cache_get(cachep)->batchcount = 1;
2142 cpu_cache_get(cachep)->touched = 0;
2143 cachep->batchcount = 1;
2144 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2145 return 0;
f30cf7d1
PE
2146}
2147
1da177e4 2148/**
039363f3 2149 * __kmem_cache_create - Create a cache.
a755b76a 2150 * @cachep: cache management descriptor
1da177e4 2151 * @flags: SLAB flags
1da177e4
LT
2152 *
2153 * Returns a ptr to the cache on success, NULL on failure.
2154 * Cannot be called within a int, but can be interrupted.
20c2df83 2155 * The @ctor is run when new pages are allocated by the cache.
1da177e4 2156 *
1da177e4
LT
2157 * The flags are
2158 *
2159 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2160 * to catch references to uninitialised memory.
2161 *
2162 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2163 * for buffer overruns.
2164 *
1da177e4
LT
2165 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2166 * cacheline. This can be beneficial if you're counting cycles as closely
2167 * as davem.
2168 */
278b1bb1 2169int
8a13a4cc 2170__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2171{
8456a648 2172 size_t left_over, freelist_size, ralign;
83b519e8 2173 gfp_t gfp;
278b1bb1 2174 int err;
8a13a4cc 2175 size_t size = cachep->size;
1da177e4 2176
1da177e4 2177#if DEBUG
1da177e4
LT
2178#if FORCED_DEBUG
2179 /*
2180 * Enable redzoning and last user accounting, except for caches with
2181 * large objects, if the increased size would increase the object size
2182 * above the next power of two: caches with object sizes just above a
2183 * power of two have a significant amount of internal fragmentation.
2184 */
87a927c7
DW
2185 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2186 2 * sizeof(unsigned long long)))
b28a02de 2187 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2188 if (!(flags & SLAB_DESTROY_BY_RCU))
2189 flags |= SLAB_POISON;
2190#endif
2191 if (flags & SLAB_DESTROY_BY_RCU)
2192 BUG_ON(flags & SLAB_POISON);
2193#endif
1da177e4 2194
a737b3e2
AM
2195 /*
2196 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2197 * unaligned accesses for some archs when redzoning is used, and makes
2198 * sure any on-slab bufctl's are also correctly aligned.
2199 */
b28a02de
PE
2200 if (size & (BYTES_PER_WORD - 1)) {
2201 size += (BYTES_PER_WORD - 1);
2202 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2203 }
2204
ca5f9703 2205 /*
87a927c7
DW
2206 * Redzoning and user store require word alignment or possibly larger.
2207 * Note this will be overridden by architecture or caller mandated
2208 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2209 */
87a927c7
DW
2210 if (flags & SLAB_STORE_USER)
2211 ralign = BYTES_PER_WORD;
2212
2213 if (flags & SLAB_RED_ZONE) {
2214 ralign = REDZONE_ALIGN;
2215 /* If redzoning, ensure that the second redzone is suitably
2216 * aligned, by adjusting the object size accordingly. */
2217 size += REDZONE_ALIGN - 1;
2218 size &= ~(REDZONE_ALIGN - 1);
2219 }
ca5f9703 2220
a44b56d3 2221 /* 3) caller mandated alignment */
8a13a4cc
CL
2222 if (ralign < cachep->align) {
2223 ralign = cachep->align;
1da177e4 2224 }
3ff84a7f
PE
2225 /* disable debug if necessary */
2226 if (ralign > __alignof__(unsigned long long))
a44b56d3 2227 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2228 /*
ca5f9703 2229 * 4) Store it.
1da177e4 2230 */
8a13a4cc 2231 cachep->align = ralign;
1da177e4 2232
83b519e8
PE
2233 if (slab_is_available())
2234 gfp = GFP_KERNEL;
2235 else
2236 gfp = GFP_NOWAIT;
2237
6a67368c 2238 setup_node_pointer(cachep);
1da177e4 2239#if DEBUG
1da177e4 2240
ca5f9703
PE
2241 /*
2242 * Both debugging options require word-alignment which is calculated
2243 * into align above.
2244 */
1da177e4 2245 if (flags & SLAB_RED_ZONE) {
1da177e4 2246 /* add space for red zone words */
3ff84a7f
PE
2247 cachep->obj_offset += sizeof(unsigned long long);
2248 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2249 }
2250 if (flags & SLAB_STORE_USER) {
ca5f9703 2251 /* user store requires one word storage behind the end of
87a927c7
DW
2252 * the real object. But if the second red zone needs to be
2253 * aligned to 64 bits, we must allow that much space.
1da177e4 2254 */
87a927c7
DW
2255 if (flags & SLAB_RED_ZONE)
2256 size += REDZONE_ALIGN;
2257 else
2258 size += BYTES_PER_WORD;
1da177e4
LT
2259 }
2260#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
ce8eb6c4 2261 if (size >= kmalloc_size(INDEX_NODE + 1)
608da7e3
TH
2262 && cachep->object_size > cache_line_size()
2263 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2264 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
1da177e4
LT
2265 size = PAGE_SIZE;
2266 }
2267#endif
2268#endif
2269
e0a42726
IM
2270 /*
2271 * Determine if the slab management is 'on' or 'off' slab.
2272 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2273 * it too early on. Always use on-slab management when
2274 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2275 */
8fc9cf42 2276 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
e7cb55b9 2277 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2278 /*
2279 * Size is large, assume best to place the slab management obj
2280 * off-slab (should allow better packing of objs).
2281 */
2282 flags |= CFLGS_OFF_SLAB;
2283
8a13a4cc 2284 size = ALIGN(size, cachep->align);
f315e3fa
JK
2285 /*
2286 * We should restrict the number of objects in a slab to implement
2287 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2288 */
2289 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2290 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
1da177e4 2291
8a13a4cc 2292 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
1da177e4 2293
8a13a4cc 2294 if (!cachep->num)
278b1bb1 2295 return -E2BIG;
1da177e4 2296
8456a648 2297 freelist_size =
a41adfaa 2298 ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);
1da177e4
LT
2299
2300 /*
2301 * If the slab has been placed off-slab, and we have enough space then
2302 * move it on-slab. This is at the expense of any extra colouring.
2303 */
8456a648 2304 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
1da177e4 2305 flags &= ~CFLGS_OFF_SLAB;
8456a648 2306 left_over -= freelist_size;
1da177e4
LT
2307 }
2308
2309 if (flags & CFLGS_OFF_SLAB) {
2310 /* really off slab. No need for manual alignment */
a41adfaa 2311 freelist_size = cachep->num * sizeof(freelist_idx_t);
67461365
RL
2312
2313#ifdef CONFIG_PAGE_POISONING
2314 /* If we're going to use the generic kernel_map_pages()
2315 * poisoning, then it's going to smash the contents of
2316 * the redzone and userword anyhow, so switch them off.
2317 */
2318 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2319 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2320#endif
1da177e4
LT
2321 }
2322
2323 cachep->colour_off = cache_line_size();
2324 /* Offset must be a multiple of the alignment. */
8a13a4cc
CL
2325 if (cachep->colour_off < cachep->align)
2326 cachep->colour_off = cachep->align;
b28a02de 2327 cachep->colour = left_over / cachep->colour_off;
8456a648 2328 cachep->freelist_size = freelist_size;
1da177e4 2329 cachep->flags = flags;
a57a4988 2330 cachep->allocflags = __GFP_COMP;
4b51d669 2331 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2332 cachep->allocflags |= GFP_DMA;
3b0efdfa 2333 cachep->size = size;
6a2d7a95 2334 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2335
e5ac9c5a 2336 if (flags & CFLGS_OFF_SLAB) {
8456a648 2337 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
e5ac9c5a 2338 /*
5f0985bb 2339 * This is a possibility for one of the kmalloc_{dma,}_caches.
e5ac9c5a 2340 * But since we go off slab only for object size greater than
5f0985bb
JZ
2341 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2342 * in ascending order,this should not happen at all.
e5ac9c5a
RT
2343 * But leave a BUG_ON for some lucky dude.
2344 */
8456a648 2345 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
e5ac9c5a 2346 }
1da177e4 2347
278b1bb1
CL
2348 err = setup_cpu_cache(cachep, gfp);
2349 if (err) {
12c3667f 2350 __kmem_cache_shutdown(cachep);
278b1bb1 2351 return err;
2ed3a4ef 2352 }
1da177e4 2353
83835b3d
PZ
2354 if (flags & SLAB_DEBUG_OBJECTS) {
2355 /*
2356 * Would deadlock through slab_destroy()->call_rcu()->
2357 * debug_object_activate()->kmem_cache_alloc().
2358 */
2359 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2360
2361 slab_set_debugobj_lock_classes(cachep);
6ccfb5bc
GC
2362 } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2363 on_slab_lock_classes(cachep);
83835b3d 2364
278b1bb1 2365 return 0;
1da177e4 2366}
1da177e4
LT
2367
2368#if DEBUG
2369static void check_irq_off(void)
2370{
2371 BUG_ON(!irqs_disabled());
2372}
2373
2374static void check_irq_on(void)
2375{
2376 BUG_ON(irqs_disabled());
2377}
2378
343e0d7a 2379static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2380{
2381#ifdef CONFIG_SMP
2382 check_irq_off();
6a67368c 2383 assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
1da177e4
LT
2384#endif
2385}
e498be7d 2386
343e0d7a 2387static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2388{
2389#ifdef CONFIG_SMP
2390 check_irq_off();
6a67368c 2391 assert_spin_locked(&cachep->node[node]->list_lock);
e498be7d
CL
2392#endif
2393}
2394
1da177e4
LT
2395#else
2396#define check_irq_off() do { } while(0)
2397#define check_irq_on() do { } while(0)
2398#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2399#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2400#endif
2401
ce8eb6c4 2402static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
aab2207c
CL
2403 struct array_cache *ac,
2404 int force, int node);
2405
1da177e4
LT
2406static void do_drain(void *arg)
2407{
a737b3e2 2408 struct kmem_cache *cachep = arg;
1da177e4 2409 struct array_cache *ac;
7d6e6d09 2410 int node = numa_mem_id();
1da177e4
LT
2411
2412 check_irq_off();
9a2dba4b 2413 ac = cpu_cache_get(cachep);
6a67368c 2414 spin_lock(&cachep->node[node]->list_lock);
ff69416e 2415 free_block(cachep, ac->entry, ac->avail, node);
6a67368c 2416 spin_unlock(&cachep->node[node]->list_lock);
1da177e4
LT
2417 ac->avail = 0;
2418}
2419
343e0d7a 2420static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2421{
ce8eb6c4 2422 struct kmem_cache_node *n;
e498be7d
CL
2423 int node;
2424
15c8b6c1 2425 on_each_cpu(do_drain, cachep, 1);
1da177e4 2426 check_irq_on();
b28a02de 2427 for_each_online_node(node) {
ce8eb6c4
CL
2428 n = cachep->node[node];
2429 if (n && n->alien)
2430 drain_alien_cache(cachep, n->alien);
a4523a8b
RD
2431 }
2432
2433 for_each_online_node(node) {
ce8eb6c4
CL
2434 n = cachep->node[node];
2435 if (n)
2436 drain_array(cachep, n, n->shared, 1, node);
e498be7d 2437 }
1da177e4
LT
2438}
2439
ed11d9eb
CL
2440/*
2441 * Remove slabs from the list of free slabs.
2442 * Specify the number of slabs to drain in tofree.
2443 *
2444 * Returns the actual number of slabs released.
2445 */
2446static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2447 struct kmem_cache_node *n, int tofree)
1da177e4 2448{
ed11d9eb
CL
2449 struct list_head *p;
2450 int nr_freed;
8456a648 2451 struct page *page;
1da177e4 2452
ed11d9eb 2453 nr_freed = 0;
ce8eb6c4 2454 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2455
ce8eb6c4
CL
2456 spin_lock_irq(&n->list_lock);
2457 p = n->slabs_free.prev;
2458 if (p == &n->slabs_free) {
2459 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2460 goto out;
2461 }
1da177e4 2462
8456a648 2463 page = list_entry(p, struct page, lru);
1da177e4 2464#if DEBUG
8456a648 2465 BUG_ON(page->active);
1da177e4 2466#endif
8456a648 2467 list_del(&page->lru);
ed11d9eb
CL
2468 /*
2469 * Safe to drop the lock. The slab is no longer linked
2470 * to the cache.
2471 */
ce8eb6c4
CL
2472 n->free_objects -= cache->num;
2473 spin_unlock_irq(&n->list_lock);
8456a648 2474 slab_destroy(cache, page);
ed11d9eb 2475 nr_freed++;
1da177e4 2476 }
ed11d9eb
CL
2477out:
2478 return nr_freed;
1da177e4
LT
2479}
2480
03afc0e2 2481int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2482{
2483 int ret = 0, i = 0;
ce8eb6c4 2484 struct kmem_cache_node *n;
e498be7d
CL
2485
2486 drain_cpu_caches(cachep);
2487
2488 check_irq_on();
2489 for_each_online_node(i) {
ce8eb6c4
CL
2490 n = cachep->node[i];
2491 if (!n)
ed11d9eb
CL
2492 continue;
2493
0fa8103b 2494 drain_freelist(cachep, n, slabs_tofree(cachep, n));
ed11d9eb 2495
ce8eb6c4
CL
2496 ret += !list_empty(&n->slabs_full) ||
2497 !list_empty(&n->slabs_partial);
e498be7d
CL
2498 }
2499 return (ret ? 1 : 0);
2500}
2501
945cf2b6 2502int __kmem_cache_shutdown(struct kmem_cache *cachep)
1da177e4 2503{
12c3667f 2504 int i;
ce8eb6c4 2505 struct kmem_cache_node *n;
03afc0e2 2506 int rc = __kmem_cache_shrink(cachep);
1da177e4 2507
12c3667f
CL
2508 if (rc)
2509 return rc;
1da177e4 2510
12c3667f
CL
2511 for_each_online_cpu(i)
2512 kfree(cachep->array[i]);
1da177e4 2513
ce8eb6c4 2514 /* NUMA: free the node structures */
12c3667f 2515 for_each_online_node(i) {
ce8eb6c4
CL
2516 n = cachep->node[i];
2517 if (n) {
2518 kfree(n->shared);
2519 free_alien_cache(n->alien);
2520 kfree(n);
12c3667f
CL
2521 }
2522 }
2523 return 0;
1da177e4 2524}
1da177e4 2525
e5ac9c5a
RT
2526/*
2527 * Get the memory for a slab management obj.
5f0985bb
JZ
2528 *
2529 * For a slab cache when the slab descriptor is off-slab, the
2530 * slab descriptor can't come from the same cache which is being created,
2531 * Because if it is the case, that means we defer the creation of
2532 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2533 * And we eventually call down to __kmem_cache_create(), which
2534 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2535 * This is a "chicken-and-egg" problem.
2536 *
2537 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2538 * which are all initialized during kmem_cache_init().
e5ac9c5a 2539 */
7e007355 2540static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2541 struct page *page, int colour_off,
2542 gfp_t local_flags, int nodeid)
1da177e4 2543{
7e007355 2544 void *freelist;
0c3aa83e 2545 void *addr = page_address(page);
b28a02de 2546
1da177e4
LT
2547 if (OFF_SLAB(cachep)) {
2548 /* Slab management obj is off-slab. */
8456a648 2549 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2550 local_flags, nodeid);
8456a648 2551 if (!freelist)
1da177e4
LT
2552 return NULL;
2553 } else {
8456a648
JK
2554 freelist = addr + colour_off;
2555 colour_off += cachep->freelist_size;
1da177e4 2556 }
8456a648
JK
2557 page->active = 0;
2558 page->s_mem = addr + colour_off;
2559 return freelist;
1da177e4
LT
2560}
2561
7cc68973 2562static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2563{
a41adfaa 2564 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2565}
2566
2567static inline void set_free_obj(struct page *page,
7cc68973 2568 unsigned int idx, freelist_idx_t val)
e5c58dfd 2569{
a41adfaa 2570 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2571}
2572
343e0d7a 2573static void cache_init_objs(struct kmem_cache *cachep,
8456a648 2574 struct page *page)
1da177e4
LT
2575{
2576 int i;
2577
2578 for (i = 0; i < cachep->num; i++) {
8456a648 2579 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
2580#if DEBUG
2581 /* need to poison the objs? */
2582 if (cachep->flags & SLAB_POISON)
2583 poison_obj(cachep, objp, POISON_FREE);
2584 if (cachep->flags & SLAB_STORE_USER)
2585 *dbg_userword(cachep, objp) = NULL;
2586
2587 if (cachep->flags & SLAB_RED_ZONE) {
2588 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2589 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2590 }
2591 /*
a737b3e2
AM
2592 * Constructors are not allowed to allocate memory from the same
2593 * cache which they are a constructor for. Otherwise, deadlock.
2594 * They must also be threaded.
1da177e4
LT
2595 */
2596 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2597 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2598
2599 if (cachep->flags & SLAB_RED_ZONE) {
2600 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2601 slab_error(cachep, "constructor overwrote the"
b28a02de 2602 " end of an object");
1da177e4
LT
2603 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2604 slab_error(cachep, "constructor overwrote the"
b28a02de 2605 " start of an object");
1da177e4 2606 }
3b0efdfa 2607 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2608 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2609 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2610 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2611#else
2612 if (cachep->ctor)
51cc5068 2613 cachep->ctor(objp);
1da177e4 2614#endif
e5c58dfd 2615 set_free_obj(page, i, i);
1da177e4 2616 }
1da177e4
LT
2617}
2618
343e0d7a 2619static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2620{
4b51d669
CL
2621 if (CONFIG_ZONE_DMA_FLAG) {
2622 if (flags & GFP_DMA)
a618e89f 2623 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2624 else
a618e89f 2625 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2626 }
1da177e4
LT
2627}
2628
8456a648 2629static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2630 int nodeid)
78d382d7 2631{
b1cb0982 2632 void *objp;
78d382d7 2633
e5c58dfd 2634 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2635 page->active++;
78d382d7 2636#if DEBUG
1ea991b0 2637 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2638#endif
78d382d7
MD
2639
2640 return objp;
2641}
2642
8456a648 2643static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
a737b3e2 2644 void *objp, int nodeid)
78d382d7 2645{
8456a648 2646 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2647#if DEBUG
16025177 2648 unsigned int i;
b1cb0982 2649
78d382d7 2650 /* Verify that the slab belongs to the intended node */
1ea991b0 2651 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
78d382d7 2652
b1cb0982 2653 /* Verify double free bug */
8456a648 2654 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2655 if (get_free_obj(page, i) == objnr) {
b1cb0982
JK
2656 printk(KERN_ERR "slab: double free detected in cache "
2657 "'%s', objp %p\n", cachep->name, objp);
2658 BUG();
2659 }
78d382d7
MD
2660 }
2661#endif
8456a648 2662 page->active--;
e5c58dfd 2663 set_free_obj(page, page->active, objnr);
78d382d7
MD
2664}
2665
4776874f
PE
2666/*
2667 * Map pages beginning at addr to the given cache and slab. This is required
2668 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2669 * virtual address for kfree, ksize, and slab debugging.
4776874f 2670 */
8456a648 2671static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2672 void *freelist)
1da177e4 2673{
a57a4988 2674 page->slab_cache = cache;
8456a648 2675 page->freelist = freelist;
1da177e4
LT
2676}
2677
2678/*
2679 * Grow (by 1) the number of slabs within a cache. This is called by
2680 * kmem_cache_alloc() when there are no active objs left in a cache.
2681 */
3c517a61 2682static int cache_grow(struct kmem_cache *cachep,
0c3aa83e 2683 gfp_t flags, int nodeid, struct page *page)
1da177e4 2684{
7e007355 2685 void *freelist;
b28a02de
PE
2686 size_t offset;
2687 gfp_t local_flags;
ce8eb6c4 2688 struct kmem_cache_node *n;
1da177e4 2689
a737b3e2
AM
2690 /*
2691 * Be lazy and only check for valid flags here, keeping it out of the
2692 * critical path in kmem_cache_alloc().
1da177e4 2693 */
6cb06229
CL
2694 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2695 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2696
ce8eb6c4 2697 /* Take the node list lock to change the colour_next on this node */
1da177e4 2698 check_irq_off();
ce8eb6c4
CL
2699 n = cachep->node[nodeid];
2700 spin_lock(&n->list_lock);
1da177e4
LT
2701
2702 /* Get colour for the slab, and cal the next value. */
ce8eb6c4
CL
2703 offset = n->colour_next;
2704 n->colour_next++;
2705 if (n->colour_next >= cachep->colour)
2706 n->colour_next = 0;
2707 spin_unlock(&n->list_lock);
1da177e4 2708
2e1217cf 2709 offset *= cachep->colour_off;
1da177e4
LT
2710
2711 if (local_flags & __GFP_WAIT)
2712 local_irq_enable();
2713
2714 /*
2715 * The test for missing atomic flag is performed here, rather than
2716 * the more obvious place, simply to reduce the critical path length
2717 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2718 * will eventually be caught here (where it matters).
2719 */
2720 kmem_flagcheck(cachep, flags);
2721
a737b3e2
AM
2722 /*
2723 * Get mem for the objs. Attempt to allocate a physical page from
2724 * 'nodeid'.
e498be7d 2725 */
0c3aa83e
JK
2726 if (!page)
2727 page = kmem_getpages(cachep, local_flags, nodeid);
2728 if (!page)
1da177e4
LT
2729 goto failed;
2730
2731 /* Get slab management. */
8456a648 2732 freelist = alloc_slabmgmt(cachep, page, offset,
6cb06229 2733 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
8456a648 2734 if (!freelist)
1da177e4
LT
2735 goto opps1;
2736
8456a648 2737 slab_map_pages(cachep, page, freelist);
1da177e4 2738
8456a648 2739 cache_init_objs(cachep, page);
1da177e4
LT
2740
2741 if (local_flags & __GFP_WAIT)
2742 local_irq_disable();
2743 check_irq_off();
ce8eb6c4 2744 spin_lock(&n->list_lock);
1da177e4
LT
2745
2746 /* Make slab active. */
8456a648 2747 list_add_tail(&page->lru, &(n->slabs_free));
1da177e4 2748 STATS_INC_GROWN(cachep);
ce8eb6c4
CL
2749 n->free_objects += cachep->num;
2750 spin_unlock(&n->list_lock);
1da177e4 2751 return 1;
a737b3e2 2752opps1:
0c3aa83e 2753 kmem_freepages(cachep, page);
a737b3e2 2754failed:
1da177e4
LT
2755 if (local_flags & __GFP_WAIT)
2756 local_irq_disable();
2757 return 0;
2758}
2759
2760#if DEBUG
2761
2762/*
2763 * Perform extra freeing checks:
2764 * - detect bad pointers.
2765 * - POISON/RED_ZONE checking
1da177e4
LT
2766 */
2767static void kfree_debugcheck(const void *objp)
2768{
1da177e4
LT
2769 if (!virt_addr_valid(objp)) {
2770 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2771 (unsigned long)objp);
2772 BUG();
1da177e4 2773 }
1da177e4
LT
2774}
2775
58ce1fd5
PE
2776static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2777{
b46b8f19 2778 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2779
2780 redzone1 = *dbg_redzone1(cache, obj);
2781 redzone2 = *dbg_redzone2(cache, obj);
2782
2783 /*
2784 * Redzone is ok.
2785 */
2786 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2787 return;
2788
2789 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2790 slab_error(cache, "double free detected");
2791 else
2792 slab_error(cache, "memory outside object was overwritten");
2793
b46b8f19 2794 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2795 obj, redzone1, redzone2);
2796}
2797
343e0d7a 2798static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2799 unsigned long caller)
1da177e4 2800{
1da177e4 2801 unsigned int objnr;
8456a648 2802 struct page *page;
1da177e4 2803
80cbd911
MW
2804 BUG_ON(virt_to_cache(objp) != cachep);
2805
3dafccf2 2806 objp -= obj_offset(cachep);
1da177e4 2807 kfree_debugcheck(objp);
b49af68f 2808 page = virt_to_head_page(objp);
1da177e4 2809
1da177e4 2810 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2811 verify_redzone_free(cachep, objp);
1da177e4
LT
2812 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2813 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2814 }
2815 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2816 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4 2817
8456a648 2818 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2819
2820 BUG_ON(objnr >= cachep->num);
8456a648 2821 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2822
1da177e4
LT
2823 if (cachep->flags & SLAB_POISON) {
2824#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2825 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
7c0cb9c6 2826 store_stackinfo(cachep, objp, caller);
b28a02de 2827 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2828 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2829 } else {
2830 poison_obj(cachep, objp, POISON_FREE);
2831 }
2832#else
2833 poison_obj(cachep, objp, POISON_FREE);
2834#endif
2835 }
2836 return objp;
2837}
2838
1da177e4
LT
2839#else
2840#define kfree_debugcheck(x) do { } while(0)
2841#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2842#endif
2843
072bb0aa
MG
2844static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2845 bool force_refill)
1da177e4
LT
2846{
2847 int batchcount;
ce8eb6c4 2848 struct kmem_cache_node *n;
1da177e4 2849 struct array_cache *ac;
1ca4cb24
PE
2850 int node;
2851
1da177e4 2852 check_irq_off();
7d6e6d09 2853 node = numa_mem_id();
072bb0aa
MG
2854 if (unlikely(force_refill))
2855 goto force_grow;
2856retry:
9a2dba4b 2857 ac = cpu_cache_get(cachep);
1da177e4
LT
2858 batchcount = ac->batchcount;
2859 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2860 /*
2861 * If there was little recent activity on this cache, then
2862 * perform only a partial refill. Otherwise we could generate
2863 * refill bouncing.
1da177e4
LT
2864 */
2865 batchcount = BATCHREFILL_LIMIT;
2866 }
ce8eb6c4 2867 n = cachep->node[node];
e498be7d 2868
ce8eb6c4
CL
2869 BUG_ON(ac->avail > 0 || !n);
2870 spin_lock(&n->list_lock);
1da177e4 2871
3ded175a 2872 /* See if we can refill from the shared array */
ce8eb6c4
CL
2873 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2874 n->shared->touched = 1;
3ded175a 2875 goto alloc_done;
44b57f1c 2876 }
3ded175a 2877
1da177e4
LT
2878 while (batchcount > 0) {
2879 struct list_head *entry;
8456a648 2880 struct page *page;
1da177e4 2881 /* Get slab alloc is to come from. */
ce8eb6c4
CL
2882 entry = n->slabs_partial.next;
2883 if (entry == &n->slabs_partial) {
2884 n->free_touched = 1;
2885 entry = n->slabs_free.next;
2886 if (entry == &n->slabs_free)
1da177e4
LT
2887 goto must_grow;
2888 }
2889
8456a648 2890 page = list_entry(entry, struct page, lru);
1da177e4 2891 check_spinlock_acquired(cachep);
714b8171
PE
2892
2893 /*
2894 * The slab was either on partial or free list so
2895 * there must be at least one object available for
2896 * allocation.
2897 */
8456a648 2898 BUG_ON(page->active >= cachep->num);
714b8171 2899
8456a648 2900 while (page->active < cachep->num && batchcount--) {
1da177e4
LT
2901 STATS_INC_ALLOCED(cachep);
2902 STATS_INC_ACTIVE(cachep);
2903 STATS_SET_HIGH(cachep);
2904
8456a648 2905 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
072bb0aa 2906 node));
1da177e4 2907 }
1da177e4
LT
2908
2909 /* move slabp to correct slabp list: */
8456a648
JK
2910 list_del(&page->lru);
2911 if (page->active == cachep->num)
34bf6ef9 2912 list_add(&page->lru, &n->slabs_full);
1da177e4 2913 else
34bf6ef9 2914 list_add(&page->lru, &n->slabs_partial);
1da177e4
LT
2915 }
2916
a737b3e2 2917must_grow:
ce8eb6c4 2918 n->free_objects -= ac->avail;
a737b3e2 2919alloc_done:
ce8eb6c4 2920 spin_unlock(&n->list_lock);
1da177e4
LT
2921
2922 if (unlikely(!ac->avail)) {
2923 int x;
072bb0aa 2924force_grow:
3c517a61 2925 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2926
a737b3e2 2927 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2928 ac = cpu_cache_get(cachep);
51cd8e6f 2929 node = numa_mem_id();
072bb0aa
MG
2930
2931 /* no objects in sight? abort */
2932 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
2933 return NULL;
2934
a737b3e2 2935 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2936 goto retry;
2937 }
2938 ac->touched = 1;
072bb0aa
MG
2939
2940 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
2941}
2942
a737b3e2
AM
2943static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2944 gfp_t flags)
1da177e4
LT
2945{
2946 might_sleep_if(flags & __GFP_WAIT);
2947#if DEBUG
2948 kmem_flagcheck(cachep, flags);
2949#endif
2950}
2951
2952#if DEBUG
a737b3e2 2953static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 2954 gfp_t flags, void *objp, unsigned long caller)
1da177e4 2955{
b28a02de 2956 if (!objp)
1da177e4 2957 return objp;
b28a02de 2958 if (cachep->flags & SLAB_POISON) {
1da177e4 2959#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2960 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2961 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2962 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2963 else
2964 check_poison_obj(cachep, objp);
2965#else
2966 check_poison_obj(cachep, objp);
2967#endif
2968 poison_obj(cachep, objp, POISON_INUSE);
2969 }
2970 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 2971 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
2972
2973 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2974 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2975 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2976 slab_error(cachep, "double free, or memory outside"
2977 " object was overwritten");
b28a02de 2978 printk(KERN_ERR
b46b8f19 2979 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
2980 objp, *dbg_redzone1(cachep, objp),
2981 *dbg_redzone2(cachep, objp));
1da177e4
LT
2982 }
2983 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2984 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2985 }
3dafccf2 2986 objp += obj_offset(cachep);
4f104934 2987 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 2988 cachep->ctor(objp);
7ea466f2
TH
2989 if (ARCH_SLAB_MINALIGN &&
2990 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 2991 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 2992 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 2993 }
1da177e4
LT
2994 return objp;
2995}
2996#else
2997#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2998#endif
2999
773ff60e 3000static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502 3001{
9b030cb8 3002 if (cachep == kmem_cache)
773ff60e 3003 return false;
8a8b6502 3004
8c138bc0 3005 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3006}
3007
343e0d7a 3008static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3009{
b28a02de 3010 void *objp;
1da177e4 3011 struct array_cache *ac;
072bb0aa 3012 bool force_refill = false;
1da177e4 3013
5c382300 3014 check_irq_off();
8a8b6502 3015
9a2dba4b 3016 ac = cpu_cache_get(cachep);
1da177e4 3017 if (likely(ac->avail)) {
1da177e4 3018 ac->touched = 1;
072bb0aa
MG
3019 objp = ac_get_obj(cachep, ac, flags, false);
3020
ddbf2e83 3021 /*
072bb0aa
MG
3022 * Allow for the possibility all avail objects are not allowed
3023 * by the current flags
ddbf2e83 3024 */
072bb0aa
MG
3025 if (objp) {
3026 STATS_INC_ALLOCHIT(cachep);
3027 goto out;
3028 }
3029 force_refill = true;
1da177e4 3030 }
072bb0aa
MG
3031
3032 STATS_INC_ALLOCMISS(cachep);
3033 objp = cache_alloc_refill(cachep, flags, force_refill);
3034 /*
3035 * the 'ac' may be updated by cache_alloc_refill(),
3036 * and kmemleak_erase() requires its correct value.
3037 */
3038 ac = cpu_cache_get(cachep);
3039
3040out:
d5cff635
CM
3041 /*
3042 * To avoid a false negative, if an object that is in one of the
3043 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3044 * treat the array pointers as a reference to the object.
3045 */
f3d8b53a
O
3046 if (objp)
3047 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3048 return objp;
3049}
3050
e498be7d 3051#ifdef CONFIG_NUMA
c61afb18 3052/*
f0432d15 3053 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3054 *
3055 * If we are in_interrupt, then process context, including cpusets and
3056 * mempolicy, may not apply and should not be used for allocation policy.
3057 */
3058static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3059{
3060 int nid_alloc, nid_here;
3061
765c4507 3062 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3063 return NULL;
7d6e6d09 3064 nid_alloc = nid_here = numa_mem_id();
c61afb18 3065 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3066 nid_alloc = cpuset_slab_spread_node();
c61afb18 3067 else if (current->mempolicy)
2a389610 3068 nid_alloc = mempolicy_slab_node();
c61afb18 3069 if (nid_alloc != nid_here)
8b98c169 3070 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3071 return NULL;
3072}
3073
765c4507
CL
3074/*
3075 * Fallback function if there was no memory available and no objects on a
3c517a61 3076 * certain node and fall back is permitted. First we scan all the
6a67368c 3077 * available node for available objects. If that fails then we
3c517a61
CL
3078 * perform an allocation without specifying a node. This allows the page
3079 * allocator to do its reclaim / fallback magic. We then insert the
3080 * slab into the proper nodelist and then allocate from it.
765c4507 3081 */
8c8cc2c1 3082static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3083{
8c8cc2c1
PE
3084 struct zonelist *zonelist;
3085 gfp_t local_flags;
dd1a239f 3086 struct zoneref *z;
54a6eb5c
MG
3087 struct zone *zone;
3088 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3089 void *obj = NULL;
3c517a61 3090 int nid;
cc9a6c87 3091 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3092
3093 if (flags & __GFP_THISNODE)
3094 return NULL;
3095
6cb06229 3096 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3097
cc9a6c87 3098retry_cpuset:
d26914d1 3099 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3100 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3101
3c517a61
CL
3102retry:
3103 /*
3104 * Look through allowed nodes for objects available
3105 * from existing per node queues.
3106 */
54a6eb5c
MG
3107 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3108 nid = zone_to_nid(zone);
aedb0eb1 3109
54a6eb5c 3110 if (cpuset_zone_allowed_hardwall(zone, flags) &&
6a67368c
CL
3111 cache->node[nid] &&
3112 cache->node[nid]->free_objects) {
3c517a61
CL
3113 obj = ____cache_alloc_node(cache,
3114 flags | GFP_THISNODE, nid);
481c5346
CL
3115 if (obj)
3116 break;
3117 }
3c517a61
CL
3118 }
3119
cfce6604 3120 if (!obj) {
3c517a61
CL
3121 /*
3122 * This allocation will be performed within the constraints
3123 * of the current cpuset / memory policy requirements.
3124 * We may trigger various forms of reclaim on the allowed
3125 * set and go into memory reserves if necessary.
3126 */
0c3aa83e
JK
3127 struct page *page;
3128
dd47ea75
CL
3129 if (local_flags & __GFP_WAIT)
3130 local_irq_enable();
3131 kmem_flagcheck(cache, flags);
0c3aa83e 3132 page = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3133 if (local_flags & __GFP_WAIT)
3134 local_irq_disable();
0c3aa83e 3135 if (page) {
3c517a61
CL
3136 /*
3137 * Insert into the appropriate per node queues
3138 */
0c3aa83e
JK
3139 nid = page_to_nid(page);
3140 if (cache_grow(cache, flags, nid, page)) {
3c517a61
CL
3141 obj = ____cache_alloc_node(cache,
3142 flags | GFP_THISNODE, nid);
3143 if (!obj)
3144 /*
3145 * Another processor may allocate the
3146 * objects in the slab since we are
3147 * not holding any locks.
3148 */
3149 goto retry;
3150 } else {
b6a60451 3151 /* cache_grow already freed obj */
3c517a61
CL
3152 obj = NULL;
3153 }
3154 }
aedb0eb1 3155 }
cc9a6c87 3156
d26914d1 3157 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3158 goto retry_cpuset;
765c4507
CL
3159 return obj;
3160}
3161
e498be7d
CL
3162/*
3163 * A interface to enable slab creation on nodeid
1da177e4 3164 */
8b98c169 3165static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3166 int nodeid)
e498be7d
CL
3167{
3168 struct list_head *entry;
8456a648 3169 struct page *page;
ce8eb6c4 3170 struct kmem_cache_node *n;
b28a02de 3171 void *obj;
b28a02de
PE
3172 int x;
3173
14e50c6a 3174 VM_BUG_ON(nodeid > num_online_nodes());
ce8eb6c4
CL
3175 n = cachep->node[nodeid];
3176 BUG_ON(!n);
b28a02de 3177
a737b3e2 3178retry:
ca3b9b91 3179 check_irq_off();
ce8eb6c4
CL
3180 spin_lock(&n->list_lock);
3181 entry = n->slabs_partial.next;
3182 if (entry == &n->slabs_partial) {
3183 n->free_touched = 1;
3184 entry = n->slabs_free.next;
3185 if (entry == &n->slabs_free)
b28a02de
PE
3186 goto must_grow;
3187 }
3188
8456a648 3189 page = list_entry(entry, struct page, lru);
b28a02de 3190 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3191
3192 STATS_INC_NODEALLOCS(cachep);
3193 STATS_INC_ACTIVE(cachep);
3194 STATS_SET_HIGH(cachep);
3195
8456a648 3196 BUG_ON(page->active == cachep->num);
b28a02de 3197
8456a648 3198 obj = slab_get_obj(cachep, page, nodeid);
ce8eb6c4 3199 n->free_objects--;
b28a02de 3200 /* move slabp to correct slabp list: */
8456a648 3201 list_del(&page->lru);
b28a02de 3202
8456a648
JK
3203 if (page->active == cachep->num)
3204 list_add(&page->lru, &n->slabs_full);
a737b3e2 3205 else
8456a648 3206 list_add(&page->lru, &n->slabs_partial);
e498be7d 3207
ce8eb6c4 3208 spin_unlock(&n->list_lock);
b28a02de 3209 goto done;
e498be7d 3210
a737b3e2 3211must_grow:
ce8eb6c4 3212 spin_unlock(&n->list_lock);
3c517a61 3213 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3214 if (x)
3215 goto retry;
1da177e4 3216
8c8cc2c1 3217 return fallback_alloc(cachep, flags);
e498be7d 3218
a737b3e2 3219done:
b28a02de 3220 return obj;
e498be7d 3221}
8c8cc2c1 3222
8c8cc2c1 3223static __always_inline void *
48356303 3224slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3225 unsigned long caller)
8c8cc2c1
PE
3226{
3227 unsigned long save_flags;
3228 void *ptr;
7d6e6d09 3229 int slab_node = numa_mem_id();
8c8cc2c1 3230
dcce284a 3231 flags &= gfp_allowed_mask;
7e85ee0c 3232
cf40bd16
NP
3233 lockdep_trace_alloc(flags);
3234
773ff60e 3235 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3236 return NULL;
3237
d79923fa
GC
3238 cachep = memcg_kmem_get_cache(cachep, flags);
3239
8c8cc2c1
PE
3240 cache_alloc_debugcheck_before(cachep, flags);
3241 local_irq_save(save_flags);
3242
eacbbae3 3243 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3244 nodeid = slab_node;
8c8cc2c1 3245
6a67368c 3246 if (unlikely(!cachep->node[nodeid])) {
8c8cc2c1
PE
3247 /* Node not bootstrapped yet */
3248 ptr = fallback_alloc(cachep, flags);
3249 goto out;
3250 }
3251
7d6e6d09 3252 if (nodeid == slab_node) {
8c8cc2c1
PE
3253 /*
3254 * Use the locally cached objects if possible.
3255 * However ____cache_alloc does not allow fallback
3256 * to other nodes. It may fail while we still have
3257 * objects on other nodes available.
3258 */
3259 ptr = ____cache_alloc(cachep, flags);
3260 if (ptr)
3261 goto out;
3262 }
3263 /* ___cache_alloc_node can fall back to other nodes */
3264 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3265 out:
3266 local_irq_restore(save_flags);
3267 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3268 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3269 flags);
8c8cc2c1 3270
5087c822 3271 if (likely(ptr)) {
8c138bc0 3272 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
5087c822
JP
3273 if (unlikely(flags & __GFP_ZERO))
3274 memset(ptr, 0, cachep->object_size);
3275 }
d07dbea4 3276
8c8cc2c1
PE
3277 return ptr;
3278}
3279
3280static __always_inline void *
3281__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3282{
3283 void *objp;
3284
f0432d15 3285 if (current->mempolicy || unlikely(current->flags & PF_SPREAD_SLAB)) {
8c8cc2c1
PE
3286 objp = alternate_node_alloc(cache, flags);
3287 if (objp)
3288 goto out;
3289 }
3290 objp = ____cache_alloc(cache, flags);
3291
3292 /*
3293 * We may just have run out of memory on the local node.
3294 * ____cache_alloc_node() knows how to locate memory on other nodes
3295 */
7d6e6d09
LS
3296 if (!objp)
3297 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3298
3299 out:
3300 return objp;
3301}
3302#else
3303
3304static __always_inline void *
3305__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3306{
3307 return ____cache_alloc(cachep, flags);
3308}
3309
3310#endif /* CONFIG_NUMA */
3311
3312static __always_inline void *
48356303 3313slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3314{
3315 unsigned long save_flags;
3316 void *objp;
3317
dcce284a 3318 flags &= gfp_allowed_mask;
7e85ee0c 3319
cf40bd16
NP
3320 lockdep_trace_alloc(flags);
3321
773ff60e 3322 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3323 return NULL;
3324
d79923fa
GC
3325 cachep = memcg_kmem_get_cache(cachep, flags);
3326
8c8cc2c1
PE
3327 cache_alloc_debugcheck_before(cachep, flags);
3328 local_irq_save(save_flags);
3329 objp = __do_cache_alloc(cachep, flags);
3330 local_irq_restore(save_flags);
3331 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3332 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3333 flags);
8c8cc2c1
PE
3334 prefetchw(objp);
3335
5087c822 3336 if (likely(objp)) {
8c138bc0 3337 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
5087c822
JP
3338 if (unlikely(flags & __GFP_ZERO))
3339 memset(objp, 0, cachep->object_size);
3340 }
d07dbea4 3341
8c8cc2c1
PE
3342 return objp;
3343}
e498be7d
CL
3344
3345/*
5f0985bb 3346 * Caller needs to acquire correct kmem_cache_node's list_lock
e498be7d 3347 */
343e0d7a 3348static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3349 int node)
1da177e4
LT
3350{
3351 int i;
ce8eb6c4 3352 struct kmem_cache_node *n;
1da177e4
LT
3353
3354 for (i = 0; i < nr_objects; i++) {
072bb0aa 3355 void *objp;
8456a648 3356 struct page *page;
1da177e4 3357
072bb0aa
MG
3358 clear_obj_pfmemalloc(&objpp[i]);
3359 objp = objpp[i];
3360
8456a648 3361 page = virt_to_head_page(objp);
ce8eb6c4 3362 n = cachep->node[node];
8456a648 3363 list_del(&page->lru);
ff69416e 3364 check_spinlock_acquired_node(cachep, node);
8456a648 3365 slab_put_obj(cachep, page, objp, node);
1da177e4 3366 STATS_DEC_ACTIVE(cachep);
ce8eb6c4 3367 n->free_objects++;
1da177e4
LT
3368
3369 /* fixup slab chains */
8456a648 3370 if (page->active == 0) {
ce8eb6c4
CL
3371 if (n->free_objects > n->free_limit) {
3372 n->free_objects -= cachep->num;
e5ac9c5a
RT
3373 /* No need to drop any previously held
3374 * lock here, even if we have a off-slab slab
3375 * descriptor it is guaranteed to come from
3376 * a different cache, refer to comments before
3377 * alloc_slabmgmt.
3378 */
8456a648 3379 slab_destroy(cachep, page);
1da177e4 3380 } else {
8456a648 3381 list_add(&page->lru, &n->slabs_free);
1da177e4
LT
3382 }
3383 } else {
3384 /* Unconditionally move a slab to the end of the
3385 * partial list on free - maximum time for the
3386 * other objects to be freed, too.
3387 */
8456a648 3388 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3389 }
3390 }
3391}
3392
343e0d7a 3393static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3394{
3395 int batchcount;
ce8eb6c4 3396 struct kmem_cache_node *n;
7d6e6d09 3397 int node = numa_mem_id();
1da177e4
LT
3398
3399 batchcount = ac->batchcount;
3400#if DEBUG
3401 BUG_ON(!batchcount || batchcount > ac->avail);
3402#endif
3403 check_irq_off();
ce8eb6c4
CL
3404 n = cachep->node[node];
3405 spin_lock(&n->list_lock);
3406 if (n->shared) {
3407 struct array_cache *shared_array = n->shared;
b28a02de 3408 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3409 if (max) {
3410 if (batchcount > max)
3411 batchcount = max;
e498be7d 3412 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3413 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3414 shared_array->avail += batchcount;
3415 goto free_done;
3416 }
3417 }
3418
ff69416e 3419 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3420free_done:
1da177e4
LT
3421#if STATS
3422 {
3423 int i = 0;
3424 struct list_head *p;
3425
ce8eb6c4
CL
3426 p = n->slabs_free.next;
3427 while (p != &(n->slabs_free)) {
8456a648 3428 struct page *page;
1da177e4 3429
8456a648
JK
3430 page = list_entry(p, struct page, lru);
3431 BUG_ON(page->active);
1da177e4
LT
3432
3433 i++;
3434 p = p->next;
3435 }
3436 STATS_SET_FREEABLE(cachep, i);
3437 }
3438#endif
ce8eb6c4 3439 spin_unlock(&n->list_lock);
1da177e4 3440 ac->avail -= batchcount;
a737b3e2 3441 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3442}
3443
3444/*
a737b3e2
AM
3445 * Release an obj back to its cache. If the obj has a constructed state, it must
3446 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3447 */
a947eb95 3448static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3449 unsigned long caller)
1da177e4 3450{
9a2dba4b 3451 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3452
3453 check_irq_off();
d5cff635 3454 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3455 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3456
8c138bc0 3457 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3458
1807a1aa
SS
3459 /*
3460 * Skip calling cache_free_alien() when the platform is not numa.
3461 * This will avoid cache misses that happen while accessing slabp (which
3462 * is per page memory reference) to get nodeid. Instead use a global
3463 * variable to skip the call, which is mostly likely to be present in
3464 * the cache.
3465 */
b6e68bc1 3466 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3467 return;
3468
1da177e4
LT
3469 if (likely(ac->avail < ac->limit)) {
3470 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3471 } else {
3472 STATS_INC_FREEMISS(cachep);
3473 cache_flusharray(cachep, ac);
1da177e4 3474 }
42c8c99c 3475
072bb0aa 3476 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3477}
3478
3479/**
3480 * kmem_cache_alloc - Allocate an object
3481 * @cachep: The cache to allocate from.
3482 * @flags: See kmalloc().
3483 *
3484 * Allocate an object from this cache. The flags are only relevant
3485 * if the cache has no available objects.
3486 */
343e0d7a 3487void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3488{
48356303 3489 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3490
ca2b84cb 3491 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3492 cachep->object_size, cachep->size, flags);
36555751
EGM
3493
3494 return ret;
1da177e4
LT
3495}
3496EXPORT_SYMBOL(kmem_cache_alloc);
3497
0f24f128 3498#ifdef CONFIG_TRACING
85beb586 3499void *
4052147c 3500kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3501{
85beb586
SR
3502 void *ret;
3503
48356303 3504 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586
SR
3505
3506 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3507 size, cachep->size, flags);
85beb586 3508 return ret;
36555751 3509}
85beb586 3510EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3511#endif
3512
1da177e4 3513#ifdef CONFIG_NUMA
d0d04b78
ZL
3514/**
3515 * kmem_cache_alloc_node - Allocate an object on the specified node
3516 * @cachep: The cache to allocate from.
3517 * @flags: See kmalloc().
3518 * @nodeid: node number of the target node.
3519 *
3520 * Identical to kmem_cache_alloc but it will allocate memory on the given
3521 * node, which can improve the performance for cpu bound structures.
3522 *
3523 * Fallback to other node is possible if __GFP_THISNODE is not set.
3524 */
8b98c169
CH
3525void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3526{
48356303 3527 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3528
ca2b84cb 3529 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3530 cachep->object_size, cachep->size,
ca2b84cb 3531 flags, nodeid);
36555751
EGM
3532
3533 return ret;
8b98c169 3534}
1da177e4
LT
3535EXPORT_SYMBOL(kmem_cache_alloc_node);
3536
0f24f128 3537#ifdef CONFIG_TRACING
4052147c 3538void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3539 gfp_t flags,
4052147c
EG
3540 int nodeid,
3541 size_t size)
36555751 3542{
85beb586
SR
3543 void *ret;
3544
592f4145 3545 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
7c0cb9c6 3546
85beb586 3547 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3548 size, cachep->size,
85beb586
SR
3549 flags, nodeid);
3550 return ret;
36555751 3551}
85beb586 3552EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3553#endif
3554
8b98c169 3555static __always_inline void *
7c0cb9c6 3556__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3557{
343e0d7a 3558 struct kmem_cache *cachep;
97e2bde4 3559
2c59dd65 3560 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3561 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3562 return cachep;
4052147c 3563 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
97e2bde4 3564}
8b98c169 3565
0bb38a5c 3566#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3567void *__kmalloc_node(size_t size, gfp_t flags, int node)
3568{
7c0cb9c6 3569 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3570}
dbe5e69d 3571EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3572
3573void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3574 int node, unsigned long caller)
8b98c169 3575{
7c0cb9c6 3576 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3577}
3578EXPORT_SYMBOL(__kmalloc_node_track_caller);
3579#else
3580void *__kmalloc_node(size_t size, gfp_t flags, int node)
3581{
7c0cb9c6 3582 return __do_kmalloc_node(size, flags, node, 0);
8b98c169
CH
3583}
3584EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3585#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3586#endif /* CONFIG_NUMA */
1da177e4
LT
3587
3588/**
800590f5 3589 * __do_kmalloc - allocate memory
1da177e4 3590 * @size: how many bytes of memory are required.
800590f5 3591 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3592 * @caller: function caller for debug tracking of the caller
1da177e4 3593 */
7fd6b141 3594static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3595 unsigned long caller)
1da177e4 3596{
343e0d7a 3597 struct kmem_cache *cachep;
36555751 3598 void *ret;
1da177e4 3599
2c59dd65 3600 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3601 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3602 return cachep;
48356303 3603 ret = slab_alloc(cachep, flags, caller);
36555751 3604
7c0cb9c6 3605 trace_kmalloc(caller, ret,
3b0efdfa 3606 size, cachep->size, flags);
36555751
EGM
3607
3608 return ret;
7fd6b141
PE
3609}
3610
7fd6b141 3611
0bb38a5c 3612#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3613void *__kmalloc(size_t size, gfp_t flags)
3614{
7c0cb9c6 3615 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3616}
3617EXPORT_SYMBOL(__kmalloc);
3618
ce71e27c 3619void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3620{
7c0cb9c6 3621 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3622}
3623EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3624
3625#else
3626void *__kmalloc(size_t size, gfp_t flags)
3627{
7c0cb9c6 3628 return __do_kmalloc(size, flags, 0);
1d2c8eea
CH
3629}
3630EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3631#endif
3632
1da177e4
LT
3633/**
3634 * kmem_cache_free - Deallocate an object
3635 * @cachep: The cache the allocation was from.
3636 * @objp: The previously allocated object.
3637 *
3638 * Free an object which was previously allocated from this
3639 * cache.
3640 */
343e0d7a 3641void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3642{
3643 unsigned long flags;
b9ce5ef4
GC
3644 cachep = cache_from_obj(cachep, objp);
3645 if (!cachep)
3646 return;
1da177e4
LT
3647
3648 local_irq_save(flags);
d97d476b 3649 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3650 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3651 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3652 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3653 local_irq_restore(flags);
36555751 3654
ca2b84cb 3655 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3656}
3657EXPORT_SYMBOL(kmem_cache_free);
3658
1da177e4
LT
3659/**
3660 * kfree - free previously allocated memory
3661 * @objp: pointer returned by kmalloc.
3662 *
80e93eff
PE
3663 * If @objp is NULL, no operation is performed.
3664 *
1da177e4
LT
3665 * Don't free memory not originally allocated by kmalloc()
3666 * or you will run into trouble.
3667 */
3668void kfree(const void *objp)
3669{
343e0d7a 3670 struct kmem_cache *c;
1da177e4
LT
3671 unsigned long flags;
3672
2121db74
PE
3673 trace_kfree(_RET_IP_, objp);
3674
6cb8f913 3675 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3676 return;
3677 local_irq_save(flags);
3678 kfree_debugcheck(objp);
6ed5eb22 3679 c = virt_to_cache(objp);
8c138bc0
CL
3680 debug_check_no_locks_freed(objp, c->object_size);
3681
3682 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3683 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3684 local_irq_restore(flags);
3685}
3686EXPORT_SYMBOL(kfree);
3687
e498be7d 3688/*
ce8eb6c4 3689 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3690 */
5f0985bb 3691static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3692{
3693 int node;
ce8eb6c4 3694 struct kmem_cache_node *n;
cafeb02e 3695 struct array_cache *new_shared;
3395ee05 3696 struct array_cache **new_alien = NULL;
e498be7d 3697
9c09a95c 3698 for_each_online_node(node) {
cafeb02e 3699
3395ee05 3700 if (use_alien_caches) {
83b519e8 3701 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3702 if (!new_alien)
3703 goto fail;
3704 }
cafeb02e 3705
63109846
ED
3706 new_shared = NULL;
3707 if (cachep->shared) {
3708 new_shared = alloc_arraycache(node,
0718dc2a 3709 cachep->shared*cachep->batchcount,
83b519e8 3710 0xbaadf00d, gfp);
63109846
ED
3711 if (!new_shared) {
3712 free_alien_cache(new_alien);
3713 goto fail;
3714 }
0718dc2a 3715 }
cafeb02e 3716
ce8eb6c4
CL
3717 n = cachep->node[node];
3718 if (n) {
3719 struct array_cache *shared = n->shared;
cafeb02e 3720
ce8eb6c4 3721 spin_lock_irq(&n->list_lock);
e498be7d 3722
cafeb02e 3723 if (shared)
0718dc2a
CL
3724 free_block(cachep, shared->entry,
3725 shared->avail, node);
e498be7d 3726
ce8eb6c4
CL
3727 n->shared = new_shared;
3728 if (!n->alien) {
3729 n->alien = new_alien;
e498be7d
CL
3730 new_alien = NULL;
3731 }
ce8eb6c4 3732 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3733 cachep->batchcount + cachep->num;
ce8eb6c4 3734 spin_unlock_irq(&n->list_lock);
cafeb02e 3735 kfree(shared);
e498be7d
CL
3736 free_alien_cache(new_alien);
3737 continue;
3738 }
ce8eb6c4
CL
3739 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3740 if (!n) {
0718dc2a
CL
3741 free_alien_cache(new_alien);
3742 kfree(new_shared);
e498be7d 3743 goto fail;
0718dc2a 3744 }
e498be7d 3745
ce8eb6c4 3746 kmem_cache_node_init(n);
5f0985bb
JZ
3747 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3748 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
ce8eb6c4
CL
3749 n->shared = new_shared;
3750 n->alien = new_alien;
3751 n->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3752 cachep->batchcount + cachep->num;
ce8eb6c4 3753 cachep->node[node] = n;
e498be7d 3754 }
cafeb02e 3755 return 0;
0718dc2a 3756
a737b3e2 3757fail:
3b0efdfa 3758 if (!cachep->list.next) {
0718dc2a
CL
3759 /* Cache is not active yet. Roll back what we did */
3760 node--;
3761 while (node >= 0) {
6a67368c 3762 if (cachep->node[node]) {
ce8eb6c4 3763 n = cachep->node[node];
0718dc2a 3764
ce8eb6c4
CL
3765 kfree(n->shared);
3766 free_alien_cache(n->alien);
3767 kfree(n);
6a67368c 3768 cachep->node[node] = NULL;
0718dc2a
CL
3769 }
3770 node--;
3771 }
3772 }
cafeb02e 3773 return -ENOMEM;
e498be7d
CL
3774}
3775
1da177e4 3776struct ccupdate_struct {
343e0d7a 3777 struct kmem_cache *cachep;
acfe7d74 3778 struct array_cache *new[0];
1da177e4
LT
3779};
3780
3781static void do_ccupdate_local(void *info)
3782{
a737b3e2 3783 struct ccupdate_struct *new = info;
1da177e4
LT
3784 struct array_cache *old;
3785
3786 check_irq_off();
9a2dba4b 3787 old = cpu_cache_get(new->cachep);
e498be7d 3788
1da177e4
LT
3789 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3790 new->new[smp_processor_id()] = old;
3791}
3792
18004c5d 3793/* Always called with the slab_mutex held */
943a451a 3794static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3795 int batchcount, int shared, gfp_t gfp)
1da177e4 3796{
d2e7b7d0 3797 struct ccupdate_struct *new;
2ed3a4ef 3798 int i;
1da177e4 3799
acfe7d74
ED
3800 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3801 gfp);
d2e7b7d0
SS
3802 if (!new)
3803 return -ENOMEM;
3804
e498be7d 3805 for_each_online_cpu(i) {
7d6e6d09 3806 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3807 batchcount, gfp);
d2e7b7d0 3808 if (!new->new[i]) {
b28a02de 3809 for (i--; i >= 0; i--)
d2e7b7d0
SS
3810 kfree(new->new[i]);
3811 kfree(new);
e498be7d 3812 return -ENOMEM;
1da177e4
LT
3813 }
3814 }
d2e7b7d0 3815 new->cachep = cachep;
1da177e4 3816
15c8b6c1 3817 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3818
1da177e4 3819 check_irq_on();
1da177e4
LT
3820 cachep->batchcount = batchcount;
3821 cachep->limit = limit;
e498be7d 3822 cachep->shared = shared;
1da177e4 3823
e498be7d 3824 for_each_online_cpu(i) {
d2e7b7d0 3825 struct array_cache *ccold = new->new[i];
1da177e4
LT
3826 if (!ccold)
3827 continue;
6a67368c 3828 spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
7d6e6d09 3829 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
6a67368c 3830 spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
1da177e4
LT
3831 kfree(ccold);
3832 }
d2e7b7d0 3833 kfree(new);
5f0985bb 3834 return alloc_kmem_cache_node(cachep, gfp);
1da177e4
LT
3835}
3836
943a451a
GC
3837static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3838 int batchcount, int shared, gfp_t gfp)
3839{
3840 int ret;
3841 struct kmem_cache *c = NULL;
3842 int i = 0;
3843
3844 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3845
3846 if (slab_state < FULL)
3847 return ret;
3848
3849 if ((ret < 0) || !is_root_cache(cachep))
3850 return ret;
3851
ebe945c2 3852 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
943a451a 3853 for_each_memcg_cache_index(i) {
2ade4de8 3854 c = cache_from_memcg_idx(cachep, i);
943a451a
GC
3855 if (c)
3856 /* return value determined by the parent cache only */
3857 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3858 }
3859
3860 return ret;
3861}
3862
18004c5d 3863/* Called with slab_mutex held always */
83b519e8 3864static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3865{
3866 int err;
943a451a
GC
3867 int limit = 0;
3868 int shared = 0;
3869 int batchcount = 0;
3870
3871 if (!is_root_cache(cachep)) {
3872 struct kmem_cache *root = memcg_root_cache(cachep);
3873 limit = root->limit;
3874 shared = root->shared;
3875 batchcount = root->batchcount;
3876 }
1da177e4 3877
943a451a
GC
3878 if (limit && shared && batchcount)
3879 goto skip_setup;
a737b3e2
AM
3880 /*
3881 * The head array serves three purposes:
1da177e4
LT
3882 * - create a LIFO ordering, i.e. return objects that are cache-warm
3883 * - reduce the number of spinlock operations.
a737b3e2 3884 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3885 * bufctl chains: array operations are cheaper.
3886 * The numbers are guessed, we should auto-tune as described by
3887 * Bonwick.
3888 */
3b0efdfa 3889 if (cachep->size > 131072)
1da177e4 3890 limit = 1;
3b0efdfa 3891 else if (cachep->size > PAGE_SIZE)
1da177e4 3892 limit = 8;
3b0efdfa 3893 else if (cachep->size > 1024)
1da177e4 3894 limit = 24;
3b0efdfa 3895 else if (cachep->size > 256)
1da177e4
LT
3896 limit = 54;
3897 else
3898 limit = 120;
3899
a737b3e2
AM
3900 /*
3901 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3902 * allocation behaviour: Most allocs on one cpu, most free operations
3903 * on another cpu. For these cases, an efficient object passing between
3904 * cpus is necessary. This is provided by a shared array. The array
3905 * replaces Bonwick's magazine layer.
3906 * On uniprocessor, it's functionally equivalent (but less efficient)
3907 * to a larger limit. Thus disabled by default.
3908 */
3909 shared = 0;
3b0efdfa 3910 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3911 shared = 8;
1da177e4
LT
3912
3913#if DEBUG
a737b3e2
AM
3914 /*
3915 * With debugging enabled, large batchcount lead to excessively long
3916 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3917 */
3918 if (limit > 32)
3919 limit = 32;
3920#endif
943a451a
GC
3921 batchcount = (limit + 1) / 2;
3922skip_setup:
3923 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
1da177e4
LT
3924 if (err)
3925 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3926 cachep->name, -err);
2ed3a4ef 3927 return err;
1da177e4
LT
3928}
3929
1b55253a 3930/*
ce8eb6c4
CL
3931 * Drain an array if it contains any elements taking the node lock only if
3932 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 3933 * if drain_array() is used on the shared array.
1b55253a 3934 */
ce8eb6c4 3935static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
1b55253a 3936 struct array_cache *ac, int force, int node)
1da177e4
LT
3937{
3938 int tofree;
3939
1b55253a
CL
3940 if (!ac || !ac->avail)
3941 return;
1da177e4
LT
3942 if (ac->touched && !force) {
3943 ac->touched = 0;
b18e7e65 3944 } else {
ce8eb6c4 3945 spin_lock_irq(&n->list_lock);
b18e7e65
CL
3946 if (ac->avail) {
3947 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3948 if (tofree > ac->avail)
3949 tofree = (ac->avail + 1) / 2;
3950 free_block(cachep, ac->entry, tofree, node);
3951 ac->avail -= tofree;
3952 memmove(ac->entry, &(ac->entry[tofree]),
3953 sizeof(void *) * ac->avail);
3954 }
ce8eb6c4 3955 spin_unlock_irq(&n->list_lock);
1da177e4
LT
3956 }
3957}
3958
3959/**
3960 * cache_reap - Reclaim memory from caches.
05fb6bf0 3961 * @w: work descriptor
1da177e4
LT
3962 *
3963 * Called from workqueue/eventd every few seconds.
3964 * Purpose:
3965 * - clear the per-cpu caches for this CPU.
3966 * - return freeable pages to the main free memory pool.
3967 *
a737b3e2
AM
3968 * If we cannot acquire the cache chain mutex then just give up - we'll try
3969 * again on the next iteration.
1da177e4 3970 */
7c5cae36 3971static void cache_reap(struct work_struct *w)
1da177e4 3972{
7a7c381d 3973 struct kmem_cache *searchp;
ce8eb6c4 3974 struct kmem_cache_node *n;
7d6e6d09 3975 int node = numa_mem_id();
bf6aede7 3976 struct delayed_work *work = to_delayed_work(w);
1da177e4 3977
18004c5d 3978 if (!mutex_trylock(&slab_mutex))
1da177e4 3979 /* Give up. Setup the next iteration. */
7c5cae36 3980 goto out;
1da177e4 3981
18004c5d 3982 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
3983 check_irq_on();
3984
35386e3b 3985 /*
ce8eb6c4 3986 * We only take the node lock if absolutely necessary and we
35386e3b
CL
3987 * have established with reasonable certainty that
3988 * we can do some work if the lock was obtained.
3989 */
ce8eb6c4 3990 n = searchp->node[node];
35386e3b 3991
ce8eb6c4 3992 reap_alien(searchp, n);
1da177e4 3993
ce8eb6c4 3994 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
1da177e4 3995
35386e3b
CL
3996 /*
3997 * These are racy checks but it does not matter
3998 * if we skip one check or scan twice.
3999 */
ce8eb6c4 4000 if (time_after(n->next_reap, jiffies))
35386e3b 4001 goto next;
1da177e4 4002
5f0985bb 4003 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4004
ce8eb6c4 4005 drain_array(searchp, n, n->shared, 0, node);
1da177e4 4006
ce8eb6c4
CL
4007 if (n->free_touched)
4008 n->free_touched = 0;
ed11d9eb
CL
4009 else {
4010 int freed;
1da177e4 4011
ce8eb6c4 4012 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4013 5 * searchp->num - 1) / (5 * searchp->num));
4014 STATS_ADD_REAPED(searchp, freed);
4015 }
35386e3b 4016next:
1da177e4
LT
4017 cond_resched();
4018 }
4019 check_irq_on();
18004c5d 4020 mutex_unlock(&slab_mutex);
8fce4d8e 4021 next_reap_node();
7c5cae36 4022out:
a737b3e2 4023 /* Set up the next iteration */
5f0985bb 4024 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4025}
4026
158a9624 4027#ifdef CONFIG_SLABINFO
0d7561c6 4028void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4029{
8456a648 4030 struct page *page;
b28a02de
PE
4031 unsigned long active_objs;
4032 unsigned long num_objs;
4033 unsigned long active_slabs = 0;
4034 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4035 const char *name;
1da177e4 4036 char *error = NULL;
e498be7d 4037 int node;
ce8eb6c4 4038 struct kmem_cache_node *n;
1da177e4 4039
1da177e4
LT
4040 active_objs = 0;
4041 num_slabs = 0;
e498be7d 4042 for_each_online_node(node) {
ce8eb6c4
CL
4043 n = cachep->node[node];
4044 if (!n)
e498be7d
CL
4045 continue;
4046
ca3b9b91 4047 check_irq_on();
ce8eb6c4 4048 spin_lock_irq(&n->list_lock);
e498be7d 4049
8456a648
JK
4050 list_for_each_entry(page, &n->slabs_full, lru) {
4051 if (page->active != cachep->num && !error)
e498be7d
CL
4052 error = "slabs_full accounting error";
4053 active_objs += cachep->num;
4054 active_slabs++;
4055 }
8456a648
JK
4056 list_for_each_entry(page, &n->slabs_partial, lru) {
4057 if (page->active == cachep->num && !error)
106a74e1 4058 error = "slabs_partial accounting error";
8456a648 4059 if (!page->active && !error)
106a74e1 4060 error = "slabs_partial accounting error";
8456a648 4061 active_objs += page->active;
e498be7d
CL
4062 active_slabs++;
4063 }
8456a648
JK
4064 list_for_each_entry(page, &n->slabs_free, lru) {
4065 if (page->active && !error)
106a74e1 4066 error = "slabs_free accounting error";
e498be7d
CL
4067 num_slabs++;
4068 }
ce8eb6c4
CL
4069 free_objects += n->free_objects;
4070 if (n->shared)
4071 shared_avail += n->shared->avail;
e498be7d 4072
ce8eb6c4 4073 spin_unlock_irq(&n->list_lock);
1da177e4 4074 }
b28a02de
PE
4075 num_slabs += active_slabs;
4076 num_objs = num_slabs * cachep->num;
e498be7d 4077 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4078 error = "free_objects accounting error";
4079
b28a02de 4080 name = cachep->name;
1da177e4
LT
4081 if (error)
4082 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4083
0d7561c6
GC
4084 sinfo->active_objs = active_objs;
4085 sinfo->num_objs = num_objs;
4086 sinfo->active_slabs = active_slabs;
4087 sinfo->num_slabs = num_slabs;
4088 sinfo->shared_avail = shared_avail;
4089 sinfo->limit = cachep->limit;
4090 sinfo->batchcount = cachep->batchcount;
4091 sinfo->shared = cachep->shared;
4092 sinfo->objects_per_slab = cachep->num;
4093 sinfo->cache_order = cachep->gfporder;
4094}
4095
4096void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4097{
1da177e4 4098#if STATS
ce8eb6c4 4099 { /* node stats */
1da177e4
LT
4100 unsigned long high = cachep->high_mark;
4101 unsigned long allocs = cachep->num_allocations;
4102 unsigned long grown = cachep->grown;
4103 unsigned long reaped = cachep->reaped;
4104 unsigned long errors = cachep->errors;
4105 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4106 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4107 unsigned long node_frees = cachep->node_frees;
fb7faf33 4108 unsigned long overflows = cachep->node_overflow;
1da177e4 4109
e92dd4fd
JP
4110 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4111 "%4lu %4lu %4lu %4lu %4lu",
4112 allocs, high, grown,
4113 reaped, errors, max_freeable, node_allocs,
4114 node_frees, overflows);
1da177e4
LT
4115 }
4116 /* cpu stats */
4117 {
4118 unsigned long allochit = atomic_read(&cachep->allochit);
4119 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4120 unsigned long freehit = atomic_read(&cachep->freehit);
4121 unsigned long freemiss = atomic_read(&cachep->freemiss);
4122
4123 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4124 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4125 }
4126#endif
1da177e4
LT
4127}
4128
1da177e4
LT
4129#define MAX_SLABINFO_WRITE 128
4130/**
4131 * slabinfo_write - Tuning for the slab allocator
4132 * @file: unused
4133 * @buffer: user buffer
4134 * @count: data length
4135 * @ppos: unused
4136 */
b7454ad3 4137ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4138 size_t count, loff_t *ppos)
1da177e4 4139{
b28a02de 4140 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4141 int limit, batchcount, shared, res;
7a7c381d 4142 struct kmem_cache *cachep;
b28a02de 4143
1da177e4
LT
4144 if (count > MAX_SLABINFO_WRITE)
4145 return -EINVAL;
4146 if (copy_from_user(&kbuf, buffer, count))
4147 return -EFAULT;
b28a02de 4148 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4149
4150 tmp = strchr(kbuf, ' ');
4151 if (!tmp)
4152 return -EINVAL;
4153 *tmp = '\0';
4154 tmp++;
4155 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4156 return -EINVAL;
4157
4158 /* Find the cache in the chain of caches. */
18004c5d 4159 mutex_lock(&slab_mutex);
1da177e4 4160 res = -EINVAL;
18004c5d 4161 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4162 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4163 if (limit < 1 || batchcount < 1 ||
4164 batchcount > limit || shared < 0) {
e498be7d 4165 res = 0;
1da177e4 4166 } else {
e498be7d 4167 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4168 batchcount, shared,
4169 GFP_KERNEL);
1da177e4
LT
4170 }
4171 break;
4172 }
4173 }
18004c5d 4174 mutex_unlock(&slab_mutex);
1da177e4
LT
4175 if (res >= 0)
4176 res = count;
4177 return res;
4178}
871751e2
AV
4179
4180#ifdef CONFIG_DEBUG_SLAB_LEAK
4181
4182static void *leaks_start(struct seq_file *m, loff_t *pos)
4183{
18004c5d
CL
4184 mutex_lock(&slab_mutex);
4185 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4186}
4187
4188static inline int add_caller(unsigned long *n, unsigned long v)
4189{
4190 unsigned long *p;
4191 int l;
4192 if (!v)
4193 return 1;
4194 l = n[1];
4195 p = n + 2;
4196 while (l) {
4197 int i = l/2;
4198 unsigned long *q = p + 2 * i;
4199 if (*q == v) {
4200 q[1]++;
4201 return 1;
4202 }
4203 if (*q > v) {
4204 l = i;
4205 } else {
4206 p = q + 2;
4207 l -= i + 1;
4208 }
4209 }
4210 if (++n[1] == n[0])
4211 return 0;
4212 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4213 p[0] = v;
4214 p[1] = 1;
4215 return 1;
4216}
4217
8456a648
JK
4218static void handle_slab(unsigned long *n, struct kmem_cache *c,
4219 struct page *page)
871751e2
AV
4220{
4221 void *p;
b1cb0982
JK
4222 int i, j;
4223
871751e2
AV
4224 if (n[0] == n[1])
4225 return;
8456a648 4226 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
b1cb0982
JK
4227 bool active = true;
4228
8456a648 4229 for (j = page->active; j < c->num; j++) {
b1cb0982 4230 /* Skip freed item */
e5c58dfd 4231 if (get_free_obj(page, j) == i) {
b1cb0982
JK
4232 active = false;
4233 break;
4234 }
4235 }
4236 if (!active)
871751e2 4237 continue;
b1cb0982 4238
871751e2
AV
4239 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4240 return;
4241 }
4242}
4243
4244static void show_symbol(struct seq_file *m, unsigned long address)
4245{
4246#ifdef CONFIG_KALLSYMS
871751e2 4247 unsigned long offset, size;
9281acea 4248 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4249
a5c43dae 4250 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4251 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4252 if (modname[0])
871751e2
AV
4253 seq_printf(m, " [%s]", modname);
4254 return;
4255 }
4256#endif
4257 seq_printf(m, "%p", (void *)address);
4258}
4259
4260static int leaks_show(struct seq_file *m, void *p)
4261{
0672aa7c 4262 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4263 struct page *page;
ce8eb6c4 4264 struct kmem_cache_node *n;
871751e2 4265 const char *name;
db845067 4266 unsigned long *x = m->private;
871751e2
AV
4267 int node;
4268 int i;
4269
4270 if (!(cachep->flags & SLAB_STORE_USER))
4271 return 0;
4272 if (!(cachep->flags & SLAB_RED_ZONE))
4273 return 0;
4274
4275 /* OK, we can do it */
4276
db845067 4277 x[1] = 0;
871751e2
AV
4278
4279 for_each_online_node(node) {
ce8eb6c4
CL
4280 n = cachep->node[node];
4281 if (!n)
871751e2
AV
4282 continue;
4283
4284 check_irq_on();
ce8eb6c4 4285 spin_lock_irq(&n->list_lock);
871751e2 4286
8456a648
JK
4287 list_for_each_entry(page, &n->slabs_full, lru)
4288 handle_slab(x, cachep, page);
4289 list_for_each_entry(page, &n->slabs_partial, lru)
4290 handle_slab(x, cachep, page);
ce8eb6c4 4291 spin_unlock_irq(&n->list_lock);
871751e2
AV
4292 }
4293 name = cachep->name;
db845067 4294 if (x[0] == x[1]) {
871751e2 4295 /* Increase the buffer size */
18004c5d 4296 mutex_unlock(&slab_mutex);
db845067 4297 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4298 if (!m->private) {
4299 /* Too bad, we are really out */
db845067 4300 m->private = x;
18004c5d 4301 mutex_lock(&slab_mutex);
871751e2
AV
4302 return -ENOMEM;
4303 }
db845067
CL
4304 *(unsigned long *)m->private = x[0] * 2;
4305 kfree(x);
18004c5d 4306 mutex_lock(&slab_mutex);
871751e2
AV
4307 /* Now make sure this entry will be retried */
4308 m->count = m->size;
4309 return 0;
4310 }
db845067
CL
4311 for (i = 0; i < x[1]; i++) {
4312 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4313 show_symbol(m, x[2*i+2]);
871751e2
AV
4314 seq_putc(m, '\n');
4315 }
d2e7b7d0 4316
871751e2
AV
4317 return 0;
4318}
4319
a0ec95a8 4320static const struct seq_operations slabstats_op = {
871751e2 4321 .start = leaks_start,
276a2439
WL
4322 .next = slab_next,
4323 .stop = slab_stop,
871751e2
AV
4324 .show = leaks_show,
4325};
a0ec95a8
AD
4326
4327static int slabstats_open(struct inode *inode, struct file *file)
4328{
4329 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4330 int ret = -ENOMEM;
4331 if (n) {
4332 ret = seq_open(file, &slabstats_op);
4333 if (!ret) {
4334 struct seq_file *m = file->private_data;
4335 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4336 m->private = n;
4337 n = NULL;
4338 }
4339 kfree(n);
4340 }
4341 return ret;
4342}
4343
4344static const struct file_operations proc_slabstats_operations = {
4345 .open = slabstats_open,
4346 .read = seq_read,
4347 .llseek = seq_lseek,
4348 .release = seq_release_private,
4349};
4350#endif
4351
4352static int __init slab_proc_init(void)
4353{
4354#ifdef CONFIG_DEBUG_SLAB_LEAK
4355 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4356#endif
a0ec95a8
AD
4357 return 0;
4358}
4359module_init(slab_proc_init);
1da177e4
LT
4360#endif
4361
00e145b6
MS
4362/**
4363 * ksize - get the actual amount of memory allocated for a given object
4364 * @objp: Pointer to the object
4365 *
4366 * kmalloc may internally round up allocations and return more memory
4367 * than requested. ksize() can be used to determine the actual amount of
4368 * memory allocated. The caller may use this additional memory, even though
4369 * a smaller amount of memory was initially specified with the kmalloc call.
4370 * The caller must guarantee that objp points to a valid object previously
4371 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4372 * must not be freed during the duration of the call.
4373 */
fd76bab2 4374size_t ksize(const void *objp)
1da177e4 4375{
ef8b4520
CL
4376 BUG_ON(!objp);
4377 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4378 return 0;
1da177e4 4379
8c138bc0 4380 return virt_to_cache(objp)->object_size;
1da177e4 4381}
b1aabecd 4382EXPORT_SYMBOL(ksize);
This page took 1.272449 seconds and 5 git commands to generate.