mm/slab_common.c: suppress warning
[deliverable/linux.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
77be4b13 33#ifdef CONFIG_DEBUG_VM
794b1248 34static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
35{
36 struct kmem_cache *s = NULL;
37
039363f3
CL
38 if (!name || in_interrupt() || size < sizeof(void *) ||
39 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
40 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
41 return -EINVAL;
039363f3 42 }
b920536a 43
20cea968
CL
44 list_for_each_entry(s, &slab_caches, list) {
45 char tmp;
46 int res;
47
48 /*
49 * This happens when the module gets unloaded and doesn't
50 * destroy its slab cache and no-one else reuses the vmalloc
51 * area of the module. Print a warning.
52 */
53 res = probe_kernel_address(s->name, tmp);
54 if (res) {
77be4b13 55 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
56 s->object_size);
57 continue;
58 }
59
69461747 60#if !defined(CONFIG_SLUB)
794b1248 61 if (!strcmp(s->name, name)) {
77be4b13
SK
62 pr_err("%s (%s): Cache name already exists.\n",
63 __func__, name);
20cea968
CL
64 dump_stack();
65 s = NULL;
77be4b13 66 return -EINVAL;
20cea968 67 }
3e374919 68#endif
20cea968
CL
69 }
70
71 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
72 return 0;
73}
74#else
794b1248 75static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
76{
77 return 0;
78}
20cea968
CL
79#endif
80
55007d84
GC
81#ifdef CONFIG_MEMCG_KMEM
82int memcg_update_all_caches(int num_memcgs)
83{
84 struct kmem_cache *s;
85 int ret = 0;
86 mutex_lock(&slab_mutex);
87
88 list_for_each_entry(s, &slab_caches, list) {
89 if (!is_root_cache(s))
90 continue;
91
92 ret = memcg_update_cache_size(s, num_memcgs);
93 /*
94 * See comment in memcontrol.c, memcg_update_cache_size:
95 * Instead of freeing the memory, we'll just leave the caches
96 * up to this point in an updated state.
97 */
98 if (ret)
99 goto out;
100 }
101
102 memcg_update_array_size(num_memcgs);
103out:
104 mutex_unlock(&slab_mutex);
105 return ret;
106}
107#endif
108
45906855
CL
109/*
110 * Figure out what the alignment of the objects will be given a set of
111 * flags, a user specified alignment and the size of the objects.
112 */
113unsigned long calculate_alignment(unsigned long flags,
114 unsigned long align, unsigned long size)
115{
116 /*
117 * If the user wants hardware cache aligned objects then follow that
118 * suggestion if the object is sufficiently large.
119 *
120 * The hardware cache alignment cannot override the specified
121 * alignment though. If that is greater then use it.
122 */
123 if (flags & SLAB_HWCACHE_ALIGN) {
124 unsigned long ralign = cache_line_size();
125 while (size <= ralign / 2)
126 ralign /= 2;
127 align = max(align, ralign);
128 }
129
130 if (align < ARCH_SLAB_MINALIGN)
131 align = ARCH_SLAB_MINALIGN;
132
133 return ALIGN(align, sizeof(void *));
134}
135
794b1248
VD
136static struct kmem_cache *
137do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
138 unsigned long flags, void (*ctor)(void *),
139 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
140{
141 struct kmem_cache *s;
142 int err;
143
144 err = -ENOMEM;
145 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
146 if (!s)
147 goto out;
148
149 s->name = name;
150 s->object_size = object_size;
151 s->size = size;
152 s->align = align;
153 s->ctor = ctor;
154
155 err = memcg_alloc_cache_params(memcg, s, root_cache);
156 if (err)
157 goto out_free_cache;
158
159 err = __kmem_cache_create(s, flags);
160 if (err)
161 goto out_free_cache;
162
163 s->refcount = 1;
164 list_add(&s->list, &slab_caches);
794b1248
VD
165out:
166 if (err)
167 return ERR_PTR(err);
168 return s;
169
170out_free_cache:
171 memcg_free_cache_params(s);
172 kfree(s);
173 goto out;
174}
45906855 175
77be4b13
SK
176/*
177 * kmem_cache_create - Create a cache.
178 * @name: A string which is used in /proc/slabinfo to identify this cache.
179 * @size: The size of objects to be created in this cache.
180 * @align: The required alignment for the objects.
181 * @flags: SLAB flags
182 * @ctor: A constructor for the objects.
183 *
184 * Returns a ptr to the cache on success, NULL on failure.
185 * Cannot be called within a interrupt, but can be interrupted.
186 * The @ctor is run when new pages are allocated by the cache.
187 *
188 * The flags are
189 *
190 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
191 * to catch references to uninitialised memory.
192 *
193 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
194 * for buffer overruns.
195 *
196 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
197 * cacheline. This can be beneficial if you're counting cycles as closely
198 * as davem.
199 */
2633d7a0 200struct kmem_cache *
794b1248
VD
201kmem_cache_create(const char *name, size_t size, size_t align,
202 unsigned long flags, void (*ctor)(void *))
77be4b13 203{
794b1248
VD
204 struct kmem_cache *s;
205 char *cache_name;
3965fc36 206 int err;
039363f3 207
77be4b13 208 get_online_cpus();
03afc0e2
VD
209 get_online_mems();
210
77be4b13 211 mutex_lock(&slab_mutex);
686d550d 212
794b1248 213 err = kmem_cache_sanity_check(name, size);
3aa24f51
AM
214 if (err) {
215 s = NULL; /* suppress uninit var warning */
3965fc36 216 goto out_unlock;
3aa24f51 217 }
686d550d 218
d8843922
GC
219 /*
220 * Some allocators will constraint the set of valid flags to a subset
221 * of all flags. We expect them to define CACHE_CREATE_MASK in this
222 * case, and we'll just provide them with a sanitized version of the
223 * passed flags.
224 */
225 flags &= CACHE_CREATE_MASK;
686d550d 226
794b1248
VD
227 s = __kmem_cache_alias(name, size, align, flags, ctor);
228 if (s)
3965fc36 229 goto out_unlock;
2633d7a0 230
794b1248
VD
231 cache_name = kstrdup(name, GFP_KERNEL);
232 if (!cache_name) {
233 err = -ENOMEM;
234 goto out_unlock;
235 }
7c9adf5a 236
794b1248
VD
237 s = do_kmem_cache_create(cache_name, size, size,
238 calculate_alignment(flags, align, size),
239 flags, ctor, NULL, NULL);
240 if (IS_ERR(s)) {
241 err = PTR_ERR(s);
242 kfree(cache_name);
243 }
3965fc36
VD
244
245out_unlock:
20cea968 246 mutex_unlock(&slab_mutex);
03afc0e2
VD
247
248 put_online_mems();
20cea968
CL
249 put_online_cpus();
250
ba3253c7 251 if (err) {
686d550d
CL
252 if (flags & SLAB_PANIC)
253 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
254 name, err);
255 else {
256 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
257 name, err);
258 dump_stack();
259 }
686d550d
CL
260 return NULL;
261 }
039363f3
CL
262 return s;
263}
794b1248 264EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 265
794b1248
VD
266#ifdef CONFIG_MEMCG_KMEM
267/*
776ed0f0 268 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
269 * @memcg: The memory cgroup the new cache is for.
270 * @root_cache: The parent of the new cache.
073ee1c6 271 * @memcg_name: The name of the memory cgroup (used for naming the new cache).
794b1248
VD
272 *
273 * This function attempts to create a kmem cache that will serve allocation
274 * requests going from @memcg to @root_cache. The new cache inherits properties
275 * from its parent.
276 */
776ed0f0 277struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
073ee1c6
VD
278 struct kmem_cache *root_cache,
279 const char *memcg_name)
2633d7a0 280{
bd673145 281 struct kmem_cache *s = NULL;
794b1248
VD
282 char *cache_name;
283
284 get_online_cpus();
03afc0e2
VD
285 get_online_mems();
286
794b1248
VD
287 mutex_lock(&slab_mutex);
288
073ee1c6
VD
289 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
290 memcg_cache_id(memcg), memcg_name);
794b1248
VD
291 if (!cache_name)
292 goto out_unlock;
293
294 s = do_kmem_cache_create(cache_name, root_cache->object_size,
295 root_cache->size, root_cache->align,
296 root_cache->flags, root_cache->ctor,
297 memcg, root_cache);
bd673145 298 if (IS_ERR(s)) {
794b1248 299 kfree(cache_name);
bd673145
VD
300 s = NULL;
301 }
794b1248
VD
302
303out_unlock:
304 mutex_unlock(&slab_mutex);
03afc0e2
VD
305
306 put_online_mems();
794b1248 307 put_online_cpus();
bd673145
VD
308
309 return s;
2633d7a0 310}
b8529907 311
776ed0f0 312static int memcg_cleanup_cache_params(struct kmem_cache *s)
b8529907
VD
313{
314 int rc;
315
316 if (!s->memcg_params ||
317 !s->memcg_params->is_root_cache)
318 return 0;
319
320 mutex_unlock(&slab_mutex);
776ed0f0 321 rc = __memcg_cleanup_cache_params(s);
b8529907
VD
322 mutex_lock(&slab_mutex);
323
324 return rc;
325}
326#else
776ed0f0 327static int memcg_cleanup_cache_params(struct kmem_cache *s)
b8529907
VD
328{
329 return 0;
330}
794b1248 331#endif /* CONFIG_MEMCG_KMEM */
97d06609 332
41a21285
CL
333void slab_kmem_cache_release(struct kmem_cache *s)
334{
335 kfree(s->name);
336 kmem_cache_free(kmem_cache, s);
337}
338
945cf2b6
CL
339void kmem_cache_destroy(struct kmem_cache *s)
340{
341 get_online_cpus();
03afc0e2
VD
342 get_online_mems();
343
945cf2b6 344 mutex_lock(&slab_mutex);
b8529907 345
945cf2b6 346 s->refcount--;
b8529907
VD
347 if (s->refcount)
348 goto out_unlock;
349
776ed0f0 350 if (memcg_cleanup_cache_params(s) != 0)
b8529907
VD
351 goto out_unlock;
352
b8529907 353 if (__kmem_cache_shutdown(s) != 0) {
b8529907
VD
354 printk(KERN_ERR "kmem_cache_destroy %s: "
355 "Slab cache still has objects\n", s->name);
356 dump_stack();
357 goto out_unlock;
945cf2b6 358 }
b8529907 359
0bd62b11
VD
360 list_del(&s->list);
361
b8529907
VD
362 mutex_unlock(&slab_mutex);
363 if (s->flags & SLAB_DESTROY_BY_RCU)
364 rcu_barrier();
365
366 memcg_free_cache_params(s);
41a21285
CL
367#ifdef SLAB_SUPPORTS_SYSFS
368 sysfs_slab_remove(s);
369#else
370 slab_kmem_cache_release(s);
371#endif
03afc0e2 372 goto out;
b8529907
VD
373
374out_unlock:
375 mutex_unlock(&slab_mutex);
03afc0e2
VD
376out:
377 put_online_mems();
945cf2b6
CL
378 put_online_cpus();
379}
380EXPORT_SYMBOL(kmem_cache_destroy);
381
03afc0e2
VD
382/**
383 * kmem_cache_shrink - Shrink a cache.
384 * @cachep: The cache to shrink.
385 *
386 * Releases as many slabs as possible for a cache.
387 * To help debugging, a zero exit status indicates all slabs were released.
388 */
389int kmem_cache_shrink(struct kmem_cache *cachep)
390{
391 int ret;
392
393 get_online_cpus();
394 get_online_mems();
395 ret = __kmem_cache_shrink(cachep);
396 put_online_mems();
397 put_online_cpus();
398 return ret;
399}
400EXPORT_SYMBOL(kmem_cache_shrink);
401
97d06609
CL
402int slab_is_available(void)
403{
404 return slab_state >= UP;
405}
b7454ad3 406
45530c44
CL
407#ifndef CONFIG_SLOB
408/* Create a cache during boot when no slab services are available yet */
409void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
410 unsigned long flags)
411{
412 int err;
413
414 s->name = name;
415 s->size = s->object_size = size;
45906855 416 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
45530c44
CL
417 err = __kmem_cache_create(s, flags);
418
419 if (err)
31ba7346 420 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
421 name, size, err);
422
423 s->refcount = -1; /* Exempt from merging for now */
424}
425
426struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
427 unsigned long flags)
428{
429 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
430
431 if (!s)
432 panic("Out of memory when creating slab %s\n", name);
433
434 create_boot_cache(s, name, size, flags);
435 list_add(&s->list, &slab_caches);
436 s->refcount = 1;
437 return s;
438}
439
9425c58e
CL
440struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
441EXPORT_SYMBOL(kmalloc_caches);
442
443#ifdef CONFIG_ZONE_DMA
444struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
445EXPORT_SYMBOL(kmalloc_dma_caches);
446#endif
447
2c59dd65
CL
448/*
449 * Conversion table for small slabs sizes / 8 to the index in the
450 * kmalloc array. This is necessary for slabs < 192 since we have non power
451 * of two cache sizes there. The size of larger slabs can be determined using
452 * fls.
453 */
454static s8 size_index[24] = {
455 3, /* 8 */
456 4, /* 16 */
457 5, /* 24 */
458 5, /* 32 */
459 6, /* 40 */
460 6, /* 48 */
461 6, /* 56 */
462 6, /* 64 */
463 1, /* 72 */
464 1, /* 80 */
465 1, /* 88 */
466 1, /* 96 */
467 7, /* 104 */
468 7, /* 112 */
469 7, /* 120 */
470 7, /* 128 */
471 2, /* 136 */
472 2, /* 144 */
473 2, /* 152 */
474 2, /* 160 */
475 2, /* 168 */
476 2, /* 176 */
477 2, /* 184 */
478 2 /* 192 */
479};
480
481static inline int size_index_elem(size_t bytes)
482{
483 return (bytes - 1) / 8;
484}
485
486/*
487 * Find the kmem_cache structure that serves a given size of
488 * allocation
489 */
490struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
491{
492 int index;
493
9de1bc87 494 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 495 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 496 return NULL;
907985f4 497 }
6286ae97 498
2c59dd65
CL
499 if (size <= 192) {
500 if (!size)
501 return ZERO_SIZE_PTR;
502
503 index = size_index[size_index_elem(size)];
504 } else
505 index = fls(size - 1);
506
507#ifdef CONFIG_ZONE_DMA
b1e05416 508 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
509 return kmalloc_dma_caches[index];
510
511#endif
512 return kmalloc_caches[index];
513}
514
f97d5f63
CL
515/*
516 * Create the kmalloc array. Some of the regular kmalloc arrays
517 * may already have been created because they were needed to
518 * enable allocations for slab creation.
519 */
520void __init create_kmalloc_caches(unsigned long flags)
521{
522 int i;
523
2c59dd65
CL
524 /*
525 * Patch up the size_index table if we have strange large alignment
526 * requirements for the kmalloc array. This is only the case for
527 * MIPS it seems. The standard arches will not generate any code here.
528 *
529 * Largest permitted alignment is 256 bytes due to the way we
530 * handle the index determination for the smaller caches.
531 *
532 * Make sure that nothing crazy happens if someone starts tinkering
533 * around with ARCH_KMALLOC_MINALIGN
534 */
535 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
536 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
537
538 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
539 int elem = size_index_elem(i);
540
541 if (elem >= ARRAY_SIZE(size_index))
542 break;
543 size_index[elem] = KMALLOC_SHIFT_LOW;
544 }
545
546 if (KMALLOC_MIN_SIZE >= 64) {
547 /*
548 * The 96 byte size cache is not used if the alignment
549 * is 64 byte.
550 */
551 for (i = 64 + 8; i <= 96; i += 8)
552 size_index[size_index_elem(i)] = 7;
553
554 }
555
556 if (KMALLOC_MIN_SIZE >= 128) {
557 /*
558 * The 192 byte sized cache is not used if the alignment
559 * is 128 byte. Redirect kmalloc to use the 256 byte cache
560 * instead.
561 */
562 for (i = 128 + 8; i <= 192; i += 8)
563 size_index[size_index_elem(i)] = 8;
564 }
8a965b3b
CL
565 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
566 if (!kmalloc_caches[i]) {
f97d5f63
CL
567 kmalloc_caches[i] = create_kmalloc_cache(NULL,
568 1 << i, flags);
956e46ef 569 }
f97d5f63 570
956e46ef
CM
571 /*
572 * Caches that are not of the two-to-the-power-of size.
573 * These have to be created immediately after the
574 * earlier power of two caches
575 */
576 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
577 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
8a965b3b 578
956e46ef
CM
579 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
580 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
8a965b3b
CL
581 }
582
f97d5f63
CL
583 /* Kmalloc array is now usable */
584 slab_state = UP;
585
586 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
587 struct kmem_cache *s = kmalloc_caches[i];
588 char *n;
589
590 if (s) {
591 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
592
593 BUG_ON(!n);
594 s->name = n;
595 }
596 }
597
598#ifdef CONFIG_ZONE_DMA
599 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
600 struct kmem_cache *s = kmalloc_caches[i];
601
602 if (s) {
603 int size = kmalloc_size(i);
604 char *n = kasprintf(GFP_NOWAIT,
605 "dma-kmalloc-%d", size);
606
607 BUG_ON(!n);
608 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
609 size, SLAB_CACHE_DMA | flags);
610 }
611 }
612#endif
613}
45530c44
CL
614#endif /* !CONFIG_SLOB */
615
cea371f4
VD
616/*
617 * To avoid unnecessary overhead, we pass through large allocation requests
618 * directly to the page allocator. We use __GFP_COMP, because we will need to
619 * know the allocation order to free the pages properly in kfree.
620 */
52383431
VD
621void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
622{
623 void *ret;
624 struct page *page;
625
626 flags |= __GFP_COMP;
627 page = alloc_kmem_pages(flags, order);
628 ret = page ? page_address(page) : NULL;
629 kmemleak_alloc(ret, size, 1, flags);
630 return ret;
631}
632EXPORT_SYMBOL(kmalloc_order);
633
f1b6eb6e
CL
634#ifdef CONFIG_TRACING
635void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
636{
637 void *ret = kmalloc_order(size, flags, order);
638 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
639 return ret;
640}
641EXPORT_SYMBOL(kmalloc_order_trace);
642#endif
45530c44 643
b7454ad3 644#ifdef CONFIG_SLABINFO
e9b4db2b
WL
645
646#ifdef CONFIG_SLAB
647#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
648#else
649#define SLABINFO_RIGHTS S_IRUSR
650#endif
651
749c5415 652void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
653{
654 /*
655 * Output format version, so at least we can change it
656 * without _too_ many complaints.
657 */
658#ifdef CONFIG_DEBUG_SLAB
659 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
660#else
661 seq_puts(m, "slabinfo - version: 2.1\n");
662#endif
663 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
664 "<objperslab> <pagesperslab>");
665 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
666 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
667#ifdef CONFIG_DEBUG_SLAB
668 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
669 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
670 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
671#endif
672 seq_putc(m, '\n');
673}
674
b7454ad3
GC
675static void *s_start(struct seq_file *m, loff_t *pos)
676{
677 loff_t n = *pos;
678
679 mutex_lock(&slab_mutex);
680 if (!n)
681 print_slabinfo_header(m);
682
683 return seq_list_start(&slab_caches, *pos);
684}
685
276a2439 686void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
687{
688 return seq_list_next(p, &slab_caches, pos);
689}
690
276a2439 691void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
692{
693 mutex_unlock(&slab_mutex);
694}
695
749c5415
GC
696static void
697memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
698{
699 struct kmem_cache *c;
700 struct slabinfo sinfo;
701 int i;
702
703 if (!is_root_cache(s))
704 return;
705
706 for_each_memcg_cache_index(i) {
2ade4de8 707 c = cache_from_memcg_idx(s, i);
749c5415
GC
708 if (!c)
709 continue;
710
711 memset(&sinfo, 0, sizeof(sinfo));
712 get_slabinfo(c, &sinfo);
713
714 info->active_slabs += sinfo.active_slabs;
715 info->num_slabs += sinfo.num_slabs;
716 info->shared_avail += sinfo.shared_avail;
717 info->active_objs += sinfo.active_objs;
718 info->num_objs += sinfo.num_objs;
719 }
720}
721
722int cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 723{
0d7561c6
GC
724 struct slabinfo sinfo;
725
726 memset(&sinfo, 0, sizeof(sinfo));
727 get_slabinfo(s, &sinfo);
728
749c5415
GC
729 memcg_accumulate_slabinfo(s, &sinfo);
730
0d7561c6 731 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 732 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
733 sinfo.objects_per_slab, (1 << sinfo.cache_order));
734
735 seq_printf(m, " : tunables %4u %4u %4u",
736 sinfo.limit, sinfo.batchcount, sinfo.shared);
737 seq_printf(m, " : slabdata %6lu %6lu %6lu",
738 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
739 slabinfo_show_stats(m, s);
740 seq_putc(m, '\n');
741 return 0;
b7454ad3
GC
742}
743
749c5415
GC
744static int s_show(struct seq_file *m, void *p)
745{
746 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
747
748 if (!is_root_cache(s))
749 return 0;
750 return cache_show(s, m);
751}
752
b7454ad3
GC
753/*
754 * slabinfo_op - iterator that generates /proc/slabinfo
755 *
756 * Output layout:
757 * cache-name
758 * num-active-objs
759 * total-objs
760 * object size
761 * num-active-slabs
762 * total-slabs
763 * num-pages-per-slab
764 * + further values on SMP and with statistics enabled
765 */
766static const struct seq_operations slabinfo_op = {
767 .start = s_start,
276a2439
WL
768 .next = slab_next,
769 .stop = slab_stop,
b7454ad3
GC
770 .show = s_show,
771};
772
773static int slabinfo_open(struct inode *inode, struct file *file)
774{
775 return seq_open(file, &slabinfo_op);
776}
777
778static const struct file_operations proc_slabinfo_operations = {
779 .open = slabinfo_open,
780 .read = seq_read,
781 .write = slabinfo_write,
782 .llseek = seq_lseek,
783 .release = seq_release,
784};
785
786static int __init slab_proc_init(void)
787{
e9b4db2b
WL
788 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
789 &proc_slabinfo_operations);
b7454ad3
GC
790 return 0;
791}
792module_init(slab_proc_init);
793#endif /* CONFIG_SLABINFO */
928cec9c
AR
794
795static __always_inline void *__do_krealloc(const void *p, size_t new_size,
796 gfp_t flags)
797{
798 void *ret;
799 size_t ks = 0;
800
801 if (p)
802 ks = ksize(p);
803
804 if (ks >= new_size)
805 return (void *)p;
806
807 ret = kmalloc_track_caller(new_size, flags);
808 if (ret && p)
809 memcpy(ret, p, ks);
810
811 return ret;
812}
813
814/**
815 * __krealloc - like krealloc() but don't free @p.
816 * @p: object to reallocate memory for.
817 * @new_size: how many bytes of memory are required.
818 * @flags: the type of memory to allocate.
819 *
820 * This function is like krealloc() except it never frees the originally
821 * allocated buffer. Use this if you don't want to free the buffer immediately
822 * like, for example, with RCU.
823 */
824void *__krealloc(const void *p, size_t new_size, gfp_t flags)
825{
826 if (unlikely(!new_size))
827 return ZERO_SIZE_PTR;
828
829 return __do_krealloc(p, new_size, flags);
830
831}
832EXPORT_SYMBOL(__krealloc);
833
834/**
835 * krealloc - reallocate memory. The contents will remain unchanged.
836 * @p: object to reallocate memory for.
837 * @new_size: how many bytes of memory are required.
838 * @flags: the type of memory to allocate.
839 *
840 * The contents of the object pointed to are preserved up to the
841 * lesser of the new and old sizes. If @p is %NULL, krealloc()
842 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
843 * %NULL pointer, the object pointed to is freed.
844 */
845void *krealloc(const void *p, size_t new_size, gfp_t flags)
846{
847 void *ret;
848
849 if (unlikely(!new_size)) {
850 kfree(p);
851 return ZERO_SIZE_PTR;
852 }
853
854 ret = __do_krealloc(p, new_size, flags);
855 if (ret && p != ret)
856 kfree(p);
857
858 return ret;
859}
860EXPORT_SYMBOL(krealloc);
861
862/**
863 * kzfree - like kfree but zero memory
864 * @p: object to free memory of
865 *
866 * The memory of the object @p points to is zeroed before freed.
867 * If @p is %NULL, kzfree() does nothing.
868 *
869 * Note: this function zeroes the whole allocated buffer which can be a good
870 * deal bigger than the requested buffer size passed to kmalloc(). So be
871 * careful when using this function in performance sensitive code.
872 */
873void kzfree(const void *p)
874{
875 size_t ks;
876 void *mem = (void *)p;
877
878 if (unlikely(ZERO_OR_NULL_PTR(mem)))
879 return;
880 ks = ksize(mem);
881 memset(mem, 0, ks);
882 kfree(mem);
883}
884EXPORT_SYMBOL(kzfree);
885
886/* Tracepoints definitions. */
887EXPORT_TRACEPOINT_SYMBOL(kmalloc);
888EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
889EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
890EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
891EXPORT_TRACEPOINT_SYMBOL(kfree);
892EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
This page took 0.135489 seconds and 5 git commands to generate.