slub: get_map() function to establish map of free objects in a slab
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
4fdccdfb 220static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be
CL
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
272 __p += (__s)->size)
273
7656c72b
CL
274/* Determine object index from a given position */
275static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
276{
277 return (p - addr) / s->size;
278}
279
d71f606f
MK
280static inline size_t slab_ksize(const struct kmem_cache *s)
281{
282#ifdef CONFIG_SLUB_DEBUG
283 /*
284 * Debugging requires use of the padding between object
285 * and whatever may come after it.
286 */
287 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
288 return s->objsize;
289
290#endif
291 /*
292 * If we have the need to store the freelist pointer
293 * back there or track user information then we can
294 * only use the space before that information.
295 */
296 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
297 return s->inuse;
298 /*
299 * Else we can use all the padding etc for the allocation
300 */
301 return s->size;
302}
303
ab9a0f19
LJ
304static inline int order_objects(int order, unsigned long size, int reserved)
305{
306 return ((PAGE_SIZE << order) - reserved) / size;
307}
308
834f3d11 309static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 310 unsigned long size, int reserved)
834f3d11
CL
311{
312 struct kmem_cache_order_objects x = {
ab9a0f19 313 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
314 };
315
316 return x;
317}
318
319static inline int oo_order(struct kmem_cache_order_objects x)
320{
210b5c06 321 return x.x >> OO_SHIFT;
834f3d11
CL
322}
323
324static inline int oo_objects(struct kmem_cache_order_objects x)
325{
210b5c06 326 return x.x & OO_MASK;
834f3d11
CL
327}
328
5f80b13a
CL
329/*
330 * Determine a map of object in use on a page.
331 *
332 * Slab lock or node listlock must be held to guarantee that the page does
333 * not vanish from under us.
334 */
335static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
336{
337 void *p;
338 void *addr = page_address(page);
339
340 for (p = page->freelist; p; p = get_freepointer(s, p))
341 set_bit(slab_index(p, s, addr), map);
342}
343
41ecc55b
CL
344#ifdef CONFIG_SLUB_DEBUG
345/*
346 * Debug settings:
347 */
f0630fff
CL
348#ifdef CONFIG_SLUB_DEBUG_ON
349static int slub_debug = DEBUG_DEFAULT_FLAGS;
350#else
41ecc55b 351static int slub_debug;
f0630fff 352#endif
41ecc55b
CL
353
354static char *slub_debug_slabs;
fa5ec8a1 355static int disable_higher_order_debug;
41ecc55b 356
81819f0f
CL
357/*
358 * Object debugging
359 */
360static void print_section(char *text, u8 *addr, unsigned int length)
361{
362 int i, offset;
363 int newline = 1;
364 char ascii[17];
365
366 ascii[16] = 0;
367
368 for (i = 0; i < length; i++) {
369 if (newline) {
24922684 370 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
371 newline = 0;
372 }
06428780 373 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
374 offset = i % 16;
375 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
376 if (offset == 15) {
06428780 377 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
378 newline = 1;
379 }
380 }
381 if (!newline) {
382 i %= 16;
383 while (i < 16) {
06428780 384 printk(KERN_CONT " ");
81819f0f
CL
385 ascii[i] = ' ';
386 i++;
387 }
06428780 388 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
389 }
390}
391
81819f0f
CL
392static struct track *get_track(struct kmem_cache *s, void *object,
393 enum track_item alloc)
394{
395 struct track *p;
396
397 if (s->offset)
398 p = object + s->offset + sizeof(void *);
399 else
400 p = object + s->inuse;
401
402 return p + alloc;
403}
404
405static void set_track(struct kmem_cache *s, void *object,
ce71e27c 406 enum track_item alloc, unsigned long addr)
81819f0f 407{
1a00df4a 408 struct track *p = get_track(s, object, alloc);
81819f0f 409
81819f0f
CL
410 if (addr) {
411 p->addr = addr;
412 p->cpu = smp_processor_id();
88e4ccf2 413 p->pid = current->pid;
81819f0f
CL
414 p->when = jiffies;
415 } else
416 memset(p, 0, sizeof(struct track));
417}
418
81819f0f
CL
419static void init_tracking(struct kmem_cache *s, void *object)
420{
24922684
CL
421 if (!(s->flags & SLAB_STORE_USER))
422 return;
423
ce71e27c
EGM
424 set_track(s, object, TRACK_FREE, 0UL);
425 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
426}
427
428static void print_track(const char *s, struct track *t)
429{
430 if (!t->addr)
431 return;
432
7daf705f 433 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 434 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
435}
436
437static void print_tracking(struct kmem_cache *s, void *object)
438{
439 if (!(s->flags & SLAB_STORE_USER))
440 return;
441
442 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
443 print_track("Freed", get_track(s, object, TRACK_FREE));
444}
445
446static void print_page_info(struct page *page)
447{
39b26464
CL
448 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
449 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
450
451}
452
453static void slab_bug(struct kmem_cache *s, char *fmt, ...)
454{
455 va_list args;
456 char buf[100];
457
458 va_start(args, fmt);
459 vsnprintf(buf, sizeof(buf), fmt, args);
460 va_end(args);
461 printk(KERN_ERR "========================================"
462 "=====================================\n");
463 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
464 printk(KERN_ERR "----------------------------------------"
465 "-------------------------------------\n\n");
81819f0f
CL
466}
467
24922684
CL
468static void slab_fix(struct kmem_cache *s, char *fmt, ...)
469{
470 va_list args;
471 char buf[100];
472
473 va_start(args, fmt);
474 vsnprintf(buf, sizeof(buf), fmt, args);
475 va_end(args);
476 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
477}
478
479static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
480{
481 unsigned int off; /* Offset of last byte */
a973e9dd 482 u8 *addr = page_address(page);
24922684
CL
483
484 print_tracking(s, p);
485
486 print_page_info(page);
487
488 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
489 p, p - addr, get_freepointer(s, p));
490
491 if (p > addr + 16)
492 print_section("Bytes b4", p - 16, 16);
493
0ebd652b 494 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
495
496 if (s->flags & SLAB_RED_ZONE)
497 print_section("Redzone", p + s->objsize,
498 s->inuse - s->objsize);
499
81819f0f
CL
500 if (s->offset)
501 off = s->offset + sizeof(void *);
502 else
503 off = s->inuse;
504
24922684 505 if (s->flags & SLAB_STORE_USER)
81819f0f 506 off += 2 * sizeof(struct track);
81819f0f
CL
507
508 if (off != s->size)
509 /* Beginning of the filler is the free pointer */
24922684
CL
510 print_section("Padding", p + off, s->size - off);
511
512 dump_stack();
81819f0f
CL
513}
514
515static void object_err(struct kmem_cache *s, struct page *page,
516 u8 *object, char *reason)
517{
3dc50637 518 slab_bug(s, "%s", reason);
24922684 519 print_trailer(s, page, object);
81819f0f
CL
520}
521
24922684 522static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
523{
524 va_list args;
525 char buf[100];
526
24922684
CL
527 va_start(args, fmt);
528 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 529 va_end(args);
3dc50637 530 slab_bug(s, "%s", buf);
24922684 531 print_page_info(page);
81819f0f
CL
532 dump_stack();
533}
534
f7cb1933 535static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
536{
537 u8 *p = object;
538
539 if (s->flags & __OBJECT_POISON) {
540 memset(p, POISON_FREE, s->objsize - 1);
06428780 541 p[s->objsize - 1] = POISON_END;
81819f0f
CL
542 }
543
544 if (s->flags & SLAB_RED_ZONE)
f7cb1933 545 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
546}
547
24922684 548static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
549{
550 while (bytes) {
551 if (*start != (u8)value)
24922684 552 return start;
81819f0f
CL
553 start++;
554 bytes--;
555 }
24922684
CL
556 return NULL;
557}
558
559static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
560 void *from, void *to)
561{
562 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
563 memset(from, data, to - from);
564}
565
566static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
567 u8 *object, char *what,
06428780 568 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
569{
570 u8 *fault;
571 u8 *end;
572
573 fault = check_bytes(start, value, bytes);
574 if (!fault)
575 return 1;
576
577 end = start + bytes;
578 while (end > fault && end[-1] == value)
579 end--;
580
581 slab_bug(s, "%s overwritten", what);
582 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
583 fault, end - 1, fault[0], value);
584 print_trailer(s, page, object);
585
586 restore_bytes(s, what, value, fault, end);
587 return 0;
81819f0f
CL
588}
589
81819f0f
CL
590/*
591 * Object layout:
592 *
593 * object address
594 * Bytes of the object to be managed.
595 * If the freepointer may overlay the object then the free
596 * pointer is the first word of the object.
672bba3a 597 *
81819f0f
CL
598 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
599 * 0xa5 (POISON_END)
600 *
601 * object + s->objsize
602 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
603 * Padding is extended by another word if Redzoning is enabled and
604 * objsize == inuse.
605 *
81819f0f
CL
606 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
607 * 0xcc (RED_ACTIVE) for objects in use.
608 *
609 * object + s->inuse
672bba3a
CL
610 * Meta data starts here.
611 *
81819f0f
CL
612 * A. Free pointer (if we cannot overwrite object on free)
613 * B. Tracking data for SLAB_STORE_USER
672bba3a 614 * C. Padding to reach required alignment boundary or at mininum
6446faa2 615 * one word if debugging is on to be able to detect writes
672bba3a
CL
616 * before the word boundary.
617 *
618 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
619 *
620 * object + s->size
672bba3a 621 * Nothing is used beyond s->size.
81819f0f 622 *
672bba3a
CL
623 * If slabcaches are merged then the objsize and inuse boundaries are mostly
624 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
625 * may be used with merged slabcaches.
626 */
627
81819f0f
CL
628static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
629{
630 unsigned long off = s->inuse; /* The end of info */
631
632 if (s->offset)
633 /* Freepointer is placed after the object. */
634 off += sizeof(void *);
635
636 if (s->flags & SLAB_STORE_USER)
637 /* We also have user information there */
638 off += 2 * sizeof(struct track);
639
640 if (s->size == off)
641 return 1;
642
24922684
CL
643 return check_bytes_and_report(s, page, p, "Object padding",
644 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
645}
646
39b26464 647/* Check the pad bytes at the end of a slab page */
81819f0f
CL
648static int slab_pad_check(struct kmem_cache *s, struct page *page)
649{
24922684
CL
650 u8 *start;
651 u8 *fault;
652 u8 *end;
653 int length;
654 int remainder;
81819f0f
CL
655
656 if (!(s->flags & SLAB_POISON))
657 return 1;
658
a973e9dd 659 start = page_address(page);
ab9a0f19 660 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
661 end = start + length;
662 remainder = length % s->size;
81819f0f
CL
663 if (!remainder)
664 return 1;
665
39b26464 666 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
667 if (!fault)
668 return 1;
669 while (end > fault && end[-1] == POISON_INUSE)
670 end--;
671
672 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 673 print_section("Padding", end - remainder, remainder);
24922684 674
8a3d271d 675 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 676 return 0;
81819f0f
CL
677}
678
679static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 680 void *object, u8 val)
81819f0f
CL
681{
682 u8 *p = object;
683 u8 *endobject = object + s->objsize;
684
685 if (s->flags & SLAB_RED_ZONE) {
24922684 686 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 687 endobject, val, s->inuse - s->objsize))
81819f0f 688 return 0;
81819f0f 689 } else {
3adbefee
IM
690 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
691 check_bytes_and_report(s, page, p, "Alignment padding",
692 endobject, POISON_INUSE, s->inuse - s->objsize);
693 }
81819f0f
CL
694 }
695
696 if (s->flags & SLAB_POISON) {
f7cb1933 697 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
698 (!check_bytes_and_report(s, page, p, "Poison", p,
699 POISON_FREE, s->objsize - 1) ||
700 !check_bytes_and_report(s, page, p, "Poison",
06428780 701 p + s->objsize - 1, POISON_END, 1)))
81819f0f 702 return 0;
81819f0f
CL
703 /*
704 * check_pad_bytes cleans up on its own.
705 */
706 check_pad_bytes(s, page, p);
707 }
708
f7cb1933 709 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
710 /*
711 * Object and freepointer overlap. Cannot check
712 * freepointer while object is allocated.
713 */
714 return 1;
715
716 /* Check free pointer validity */
717 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
718 object_err(s, page, p, "Freepointer corrupt");
719 /*
9f6c708e 720 * No choice but to zap it and thus lose the remainder
81819f0f 721 * of the free objects in this slab. May cause
672bba3a 722 * another error because the object count is now wrong.
81819f0f 723 */
a973e9dd 724 set_freepointer(s, p, NULL);
81819f0f
CL
725 return 0;
726 }
727 return 1;
728}
729
730static int check_slab(struct kmem_cache *s, struct page *page)
731{
39b26464
CL
732 int maxobj;
733
81819f0f
CL
734 VM_BUG_ON(!irqs_disabled());
735
736 if (!PageSlab(page)) {
24922684 737 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
738 return 0;
739 }
39b26464 740
ab9a0f19 741 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
742 if (page->objects > maxobj) {
743 slab_err(s, page, "objects %u > max %u",
744 s->name, page->objects, maxobj);
745 return 0;
746 }
747 if (page->inuse > page->objects) {
24922684 748 slab_err(s, page, "inuse %u > max %u",
39b26464 749 s->name, page->inuse, page->objects);
81819f0f
CL
750 return 0;
751 }
752 /* Slab_pad_check fixes things up after itself */
753 slab_pad_check(s, page);
754 return 1;
755}
756
757/*
672bba3a
CL
758 * Determine if a certain object on a page is on the freelist. Must hold the
759 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
760 */
761static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
762{
763 int nr = 0;
764 void *fp = page->freelist;
765 void *object = NULL;
224a88be 766 unsigned long max_objects;
81819f0f 767
39b26464 768 while (fp && nr <= page->objects) {
81819f0f
CL
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
a973e9dd 775 set_freepointer(s, object, NULL);
81819f0f
CL
776 break;
777 } else {
24922684 778 slab_err(s, page, "Freepointer corrupt");
a973e9dd 779 page->freelist = NULL;
39b26464 780 page->inuse = page->objects;
24922684 781 slab_fix(s, "Freelist cleared");
81819f0f
CL
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
ab9a0f19 791 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
792 if (max_objects > MAX_OBJS_PER_PAGE)
793 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
794
795 if (page->objects != max_objects) {
796 slab_err(s, page, "Wrong number of objects. Found %d but "
797 "should be %d", page->objects, max_objects);
798 page->objects = max_objects;
799 slab_fix(s, "Number of objects adjusted.");
800 }
39b26464 801 if (page->inuse != page->objects - nr) {
70d71228 802 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
803 "counted were %d", page->inuse, page->objects - nr);
804 page->inuse = page->objects - nr;
24922684 805 slab_fix(s, "Object count adjusted.");
81819f0f
CL
806 }
807 return search == NULL;
808}
809
0121c619
CL
810static void trace(struct kmem_cache *s, struct page *page, void *object,
811 int alloc)
3ec09742
CL
812{
813 if (s->flags & SLAB_TRACE) {
814 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
815 s->name,
816 alloc ? "alloc" : "free",
817 object, page->inuse,
818 page->freelist);
819
820 if (!alloc)
821 print_section("Object", (void *)object, s->objsize);
822
823 dump_stack();
824 }
825}
826
c016b0bd
CL
827/*
828 * Hooks for other subsystems that check memory allocations. In a typical
829 * production configuration these hooks all should produce no code at all.
830 */
831static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
832{
c1d50836 833 flags &= gfp_allowed_mask;
c016b0bd
CL
834 lockdep_trace_alloc(flags);
835 might_sleep_if(flags & __GFP_WAIT);
836
837 return should_failslab(s->objsize, flags, s->flags);
838}
839
840static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
841{
c1d50836 842 flags &= gfp_allowed_mask;
b3d41885 843 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
844 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
845}
846
847static inline void slab_free_hook(struct kmem_cache *s, void *x)
848{
849 kmemleak_free_recursive(x, s->flags);
c016b0bd 850
d3f661d6
CL
851 /*
852 * Trouble is that we may no longer disable interupts in the fast path
853 * So in order to make the debug calls that expect irqs to be
854 * disabled we need to disable interrupts temporarily.
855 */
856#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
857 {
858 unsigned long flags;
859
860 local_irq_save(flags);
861 kmemcheck_slab_free(s, x, s->objsize);
862 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
863 local_irq_restore(flags);
864 }
865#endif
f9b615de
TG
866 if (!(s->flags & SLAB_DEBUG_OBJECTS))
867 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
868}
869
643b1138 870/*
672bba3a 871 * Tracking of fully allocated slabs for debugging purposes.
643b1138 872 */
e95eed57 873static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 874{
643b1138
CL
875 spin_lock(&n->list_lock);
876 list_add(&page->lru, &n->full);
877 spin_unlock(&n->list_lock);
878}
879
880static void remove_full(struct kmem_cache *s, struct page *page)
881{
882 struct kmem_cache_node *n;
883
884 if (!(s->flags & SLAB_STORE_USER))
885 return;
886
887 n = get_node(s, page_to_nid(page));
888
889 spin_lock(&n->list_lock);
890 list_del(&page->lru);
891 spin_unlock(&n->list_lock);
892}
893
0f389ec6
CL
894/* Tracking of the number of slabs for debugging purposes */
895static inline unsigned long slabs_node(struct kmem_cache *s, int node)
896{
897 struct kmem_cache_node *n = get_node(s, node);
898
899 return atomic_long_read(&n->nr_slabs);
900}
901
26c02cf0
AB
902static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
903{
904 return atomic_long_read(&n->nr_slabs);
905}
906
205ab99d 907static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
908{
909 struct kmem_cache_node *n = get_node(s, node);
910
911 /*
912 * May be called early in order to allocate a slab for the
913 * kmem_cache_node structure. Solve the chicken-egg
914 * dilemma by deferring the increment of the count during
915 * bootstrap (see early_kmem_cache_node_alloc).
916 */
7340cc84 917 if (n) {
0f389ec6 918 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
919 atomic_long_add(objects, &n->total_objects);
920 }
0f389ec6 921}
205ab99d 922static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
923{
924 struct kmem_cache_node *n = get_node(s, node);
925
926 atomic_long_dec(&n->nr_slabs);
205ab99d 927 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
928}
929
930/* Object debug checks for alloc/free paths */
3ec09742
CL
931static void setup_object_debug(struct kmem_cache *s, struct page *page,
932 void *object)
933{
934 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
935 return;
936
f7cb1933 937 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
938 init_tracking(s, object);
939}
940
1537066c 941static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 942 void *object, unsigned long addr)
81819f0f
CL
943{
944 if (!check_slab(s, page))
945 goto bad;
946
d692ef6d 947 if (!on_freelist(s, page, object)) {
24922684 948 object_err(s, page, object, "Object already allocated");
70d71228 949 goto bad;
81819f0f
CL
950 }
951
952 if (!check_valid_pointer(s, page, object)) {
953 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 954 goto bad;
81819f0f
CL
955 }
956
f7cb1933 957 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 958 goto bad;
81819f0f 959
3ec09742
CL
960 /* Success perform special debug activities for allocs */
961 if (s->flags & SLAB_STORE_USER)
962 set_track(s, object, TRACK_ALLOC, addr);
963 trace(s, page, object, 1);
f7cb1933 964 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 965 return 1;
3ec09742 966
81819f0f
CL
967bad:
968 if (PageSlab(page)) {
969 /*
970 * If this is a slab page then lets do the best we can
971 * to avoid issues in the future. Marking all objects
672bba3a 972 * as used avoids touching the remaining objects.
81819f0f 973 */
24922684 974 slab_fix(s, "Marking all objects used");
39b26464 975 page->inuse = page->objects;
a973e9dd 976 page->freelist = NULL;
81819f0f
CL
977 }
978 return 0;
979}
980
1537066c
CL
981static noinline int free_debug_processing(struct kmem_cache *s,
982 struct page *page, void *object, unsigned long addr)
81819f0f
CL
983{
984 if (!check_slab(s, page))
985 goto fail;
986
987 if (!check_valid_pointer(s, page, object)) {
70d71228 988 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
989 goto fail;
990 }
991
992 if (on_freelist(s, page, object)) {
24922684 993 object_err(s, page, object, "Object already free");
81819f0f
CL
994 goto fail;
995 }
996
f7cb1933 997 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
998 return 0;
999
1000 if (unlikely(s != page->slab)) {
3adbefee 1001 if (!PageSlab(page)) {
70d71228
CL
1002 slab_err(s, page, "Attempt to free object(0x%p) "
1003 "outside of slab", object);
3adbefee 1004 } else if (!page->slab) {
81819f0f 1005 printk(KERN_ERR
70d71228 1006 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1007 object);
70d71228 1008 dump_stack();
06428780 1009 } else
24922684
CL
1010 object_err(s, page, object,
1011 "page slab pointer corrupt.");
81819f0f
CL
1012 goto fail;
1013 }
3ec09742
CL
1014
1015 /* Special debug activities for freeing objects */
8a38082d 1016 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
1017 remove_full(s, page);
1018 if (s->flags & SLAB_STORE_USER)
1019 set_track(s, object, TRACK_FREE, addr);
1020 trace(s, page, object, 0);
f7cb1933 1021 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1022 return 1;
3ec09742 1023
81819f0f 1024fail:
24922684 1025 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1026 return 0;
1027}
1028
41ecc55b
CL
1029static int __init setup_slub_debug(char *str)
1030{
f0630fff
CL
1031 slub_debug = DEBUG_DEFAULT_FLAGS;
1032 if (*str++ != '=' || !*str)
1033 /*
1034 * No options specified. Switch on full debugging.
1035 */
1036 goto out;
1037
1038 if (*str == ',')
1039 /*
1040 * No options but restriction on slabs. This means full
1041 * debugging for slabs matching a pattern.
1042 */
1043 goto check_slabs;
1044
fa5ec8a1
DR
1045 if (tolower(*str) == 'o') {
1046 /*
1047 * Avoid enabling debugging on caches if its minimum order
1048 * would increase as a result.
1049 */
1050 disable_higher_order_debug = 1;
1051 goto out;
1052 }
1053
f0630fff
CL
1054 slub_debug = 0;
1055 if (*str == '-')
1056 /*
1057 * Switch off all debugging measures.
1058 */
1059 goto out;
1060
1061 /*
1062 * Determine which debug features should be switched on
1063 */
06428780 1064 for (; *str && *str != ','; str++) {
f0630fff
CL
1065 switch (tolower(*str)) {
1066 case 'f':
1067 slub_debug |= SLAB_DEBUG_FREE;
1068 break;
1069 case 'z':
1070 slub_debug |= SLAB_RED_ZONE;
1071 break;
1072 case 'p':
1073 slub_debug |= SLAB_POISON;
1074 break;
1075 case 'u':
1076 slub_debug |= SLAB_STORE_USER;
1077 break;
1078 case 't':
1079 slub_debug |= SLAB_TRACE;
1080 break;
4c13dd3b
DM
1081 case 'a':
1082 slub_debug |= SLAB_FAILSLAB;
1083 break;
f0630fff
CL
1084 default:
1085 printk(KERN_ERR "slub_debug option '%c' "
06428780 1086 "unknown. skipped\n", *str);
f0630fff 1087 }
41ecc55b
CL
1088 }
1089
f0630fff 1090check_slabs:
41ecc55b
CL
1091 if (*str == ',')
1092 slub_debug_slabs = str + 1;
f0630fff 1093out:
41ecc55b
CL
1094 return 1;
1095}
1096
1097__setup("slub_debug", setup_slub_debug);
1098
ba0268a8
CL
1099static unsigned long kmem_cache_flags(unsigned long objsize,
1100 unsigned long flags, const char *name,
51cc5068 1101 void (*ctor)(void *))
41ecc55b
CL
1102{
1103 /*
e153362a 1104 * Enable debugging if selected on the kernel commandline.
41ecc55b 1105 */
e153362a 1106 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1107 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1108 flags |= slub_debug;
ba0268a8
CL
1109
1110 return flags;
41ecc55b
CL
1111}
1112#else
3ec09742
CL
1113static inline void setup_object_debug(struct kmem_cache *s,
1114 struct page *page, void *object) {}
41ecc55b 1115
3ec09742 1116static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1117 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1118
3ec09742 1119static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1120 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1121
41ecc55b
CL
1122static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1123 { return 1; }
1124static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1125 void *object, u8 val) { return 1; }
3ec09742 1126static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1127static inline unsigned long kmem_cache_flags(unsigned long objsize,
1128 unsigned long flags, const char *name,
51cc5068 1129 void (*ctor)(void *))
ba0268a8
CL
1130{
1131 return flags;
1132}
41ecc55b 1133#define slub_debug 0
0f389ec6 1134
fdaa45e9
IM
1135#define disable_higher_order_debug 0
1136
0f389ec6
CL
1137static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1138 { return 0; }
26c02cf0
AB
1139static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1140 { return 0; }
205ab99d
CL
1141static inline void inc_slabs_node(struct kmem_cache *s, int node,
1142 int objects) {}
1143static inline void dec_slabs_node(struct kmem_cache *s, int node,
1144 int objects) {}
7d550c56
CL
1145
1146static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1147 { return 0; }
1148
1149static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1150 void *object) {}
1151
1152static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1153
ab4d5ed5 1154#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1155
81819f0f
CL
1156/*
1157 * Slab allocation and freeing
1158 */
65c3376a
CL
1159static inline struct page *alloc_slab_page(gfp_t flags, int node,
1160 struct kmem_cache_order_objects oo)
1161{
1162 int order = oo_order(oo);
1163
b1eeab67
VN
1164 flags |= __GFP_NOTRACK;
1165
2154a336 1166 if (node == NUMA_NO_NODE)
65c3376a
CL
1167 return alloc_pages(flags, order);
1168 else
6b65aaf3 1169 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1170}
1171
81819f0f
CL
1172static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1173{
06428780 1174 struct page *page;
834f3d11 1175 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1176 gfp_t alloc_gfp;
81819f0f 1177
b7a49f0d 1178 flags |= s->allocflags;
e12ba74d 1179
ba52270d
PE
1180 /*
1181 * Let the initial higher-order allocation fail under memory pressure
1182 * so we fall-back to the minimum order allocation.
1183 */
1184 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1185
1186 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1187 if (unlikely(!page)) {
1188 oo = s->min;
1189 /*
1190 * Allocation may have failed due to fragmentation.
1191 * Try a lower order alloc if possible
1192 */
1193 page = alloc_slab_page(flags, node, oo);
1194 if (!page)
1195 return NULL;
81819f0f 1196
84e554e6 1197 stat(s, ORDER_FALLBACK);
65c3376a 1198 }
5a896d9e
VN
1199
1200 if (kmemcheck_enabled
5086c389 1201 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1202 int pages = 1 << oo_order(oo);
1203
1204 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1205
1206 /*
1207 * Objects from caches that have a constructor don't get
1208 * cleared when they're allocated, so we need to do it here.
1209 */
1210 if (s->ctor)
1211 kmemcheck_mark_uninitialized_pages(page, pages);
1212 else
1213 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1214 }
1215
834f3d11 1216 page->objects = oo_objects(oo);
81819f0f
CL
1217 mod_zone_page_state(page_zone(page),
1218 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1219 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1220 1 << oo_order(oo));
81819f0f
CL
1221
1222 return page;
1223}
1224
1225static void setup_object(struct kmem_cache *s, struct page *page,
1226 void *object)
1227{
3ec09742 1228 setup_object_debug(s, page, object);
4f104934 1229 if (unlikely(s->ctor))
51cc5068 1230 s->ctor(object);
81819f0f
CL
1231}
1232
1233static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1234{
1235 struct page *page;
81819f0f 1236 void *start;
81819f0f
CL
1237 void *last;
1238 void *p;
1239
6cb06229 1240 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1241
6cb06229
CL
1242 page = allocate_slab(s,
1243 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1244 if (!page)
1245 goto out;
1246
205ab99d 1247 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1248 page->slab = s;
1249 page->flags |= 1 << PG_slab;
81819f0f
CL
1250
1251 start = page_address(page);
81819f0f
CL
1252
1253 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1254 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1255
1256 last = start;
224a88be 1257 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1258 setup_object(s, page, last);
1259 set_freepointer(s, last, p);
1260 last = p;
1261 }
1262 setup_object(s, page, last);
a973e9dd 1263 set_freepointer(s, last, NULL);
81819f0f
CL
1264
1265 page->freelist = start;
1266 page->inuse = 0;
1267out:
81819f0f
CL
1268 return page;
1269}
1270
1271static void __free_slab(struct kmem_cache *s, struct page *page)
1272{
834f3d11
CL
1273 int order = compound_order(page);
1274 int pages = 1 << order;
81819f0f 1275
af537b0a 1276 if (kmem_cache_debug(s)) {
81819f0f
CL
1277 void *p;
1278
1279 slab_pad_check(s, page);
224a88be
CL
1280 for_each_object(p, s, page_address(page),
1281 page->objects)
f7cb1933 1282 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1283 }
1284
b1eeab67 1285 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1286
81819f0f
CL
1287 mod_zone_page_state(page_zone(page),
1288 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1289 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1290 -pages);
81819f0f 1291
49bd5221
CL
1292 __ClearPageSlab(page);
1293 reset_page_mapcount(page);
1eb5ac64
NP
1294 if (current->reclaim_state)
1295 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1296 __free_pages(page, order);
81819f0f
CL
1297}
1298
da9a638c
LJ
1299#define need_reserve_slab_rcu \
1300 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1301
81819f0f
CL
1302static void rcu_free_slab(struct rcu_head *h)
1303{
1304 struct page *page;
1305
da9a638c
LJ
1306 if (need_reserve_slab_rcu)
1307 page = virt_to_head_page(h);
1308 else
1309 page = container_of((struct list_head *)h, struct page, lru);
1310
81819f0f
CL
1311 __free_slab(page->slab, page);
1312}
1313
1314static void free_slab(struct kmem_cache *s, struct page *page)
1315{
1316 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1317 struct rcu_head *head;
1318
1319 if (need_reserve_slab_rcu) {
1320 int order = compound_order(page);
1321 int offset = (PAGE_SIZE << order) - s->reserved;
1322
1323 VM_BUG_ON(s->reserved != sizeof(*head));
1324 head = page_address(page) + offset;
1325 } else {
1326 /*
1327 * RCU free overloads the RCU head over the LRU
1328 */
1329 head = (void *)&page->lru;
1330 }
81819f0f
CL
1331
1332 call_rcu(head, rcu_free_slab);
1333 } else
1334 __free_slab(s, page);
1335}
1336
1337static void discard_slab(struct kmem_cache *s, struct page *page)
1338{
205ab99d 1339 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1340 free_slab(s, page);
1341}
1342
1343/*
1344 * Per slab locking using the pagelock
1345 */
1346static __always_inline void slab_lock(struct page *page)
1347{
1348 bit_spin_lock(PG_locked, &page->flags);
1349}
1350
1351static __always_inline void slab_unlock(struct page *page)
1352{
a76d3546 1353 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1354}
1355
1356static __always_inline int slab_trylock(struct page *page)
1357{
1358 int rc = 1;
1359
1360 rc = bit_spin_trylock(PG_locked, &page->flags);
1361 return rc;
1362}
1363
1364/*
1365 * Management of partially allocated slabs
1366 */
7c2e132c
CL
1367static void add_partial(struct kmem_cache_node *n,
1368 struct page *page, int tail)
81819f0f 1369{
e95eed57
CL
1370 spin_lock(&n->list_lock);
1371 n->nr_partial++;
7c2e132c
CL
1372 if (tail)
1373 list_add_tail(&page->lru, &n->partial);
1374 else
1375 list_add(&page->lru, &n->partial);
81819f0f
CL
1376 spin_unlock(&n->list_lock);
1377}
1378
62e346a8
CL
1379static inline void __remove_partial(struct kmem_cache_node *n,
1380 struct page *page)
1381{
1382 list_del(&page->lru);
1383 n->nr_partial--;
1384}
1385
0121c619 1386static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1387{
1388 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1389
1390 spin_lock(&n->list_lock);
62e346a8 1391 __remove_partial(n, page);
81819f0f
CL
1392 spin_unlock(&n->list_lock);
1393}
1394
1395/*
672bba3a 1396 * Lock slab and remove from the partial list.
81819f0f 1397 *
672bba3a 1398 * Must hold list_lock.
81819f0f 1399 */
0121c619
CL
1400static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1401 struct page *page)
81819f0f
CL
1402{
1403 if (slab_trylock(page)) {
62e346a8 1404 __remove_partial(n, page);
8a38082d 1405 __SetPageSlubFrozen(page);
81819f0f
CL
1406 return 1;
1407 }
1408 return 0;
1409}
1410
1411/*
672bba3a 1412 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1413 */
1414static struct page *get_partial_node(struct kmem_cache_node *n)
1415{
1416 struct page *page;
1417
1418 /*
1419 * Racy check. If we mistakenly see no partial slabs then we
1420 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1421 * partial slab and there is none available then get_partials()
1422 * will return NULL.
81819f0f
CL
1423 */
1424 if (!n || !n->nr_partial)
1425 return NULL;
1426
1427 spin_lock(&n->list_lock);
1428 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1429 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1430 goto out;
1431 page = NULL;
1432out:
1433 spin_unlock(&n->list_lock);
1434 return page;
1435}
1436
1437/*
672bba3a 1438 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1439 */
1440static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1441{
1442#ifdef CONFIG_NUMA
1443 struct zonelist *zonelist;
dd1a239f 1444 struct zoneref *z;
54a6eb5c
MG
1445 struct zone *zone;
1446 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1447 struct page *page;
1448
1449 /*
672bba3a
CL
1450 * The defrag ratio allows a configuration of the tradeoffs between
1451 * inter node defragmentation and node local allocations. A lower
1452 * defrag_ratio increases the tendency to do local allocations
1453 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1454 *
672bba3a
CL
1455 * If the defrag_ratio is set to 0 then kmalloc() always
1456 * returns node local objects. If the ratio is higher then kmalloc()
1457 * may return off node objects because partial slabs are obtained
1458 * from other nodes and filled up.
81819f0f 1459 *
6446faa2 1460 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1461 * defrag_ratio = 1000) then every (well almost) allocation will
1462 * first attempt to defrag slab caches on other nodes. This means
1463 * scanning over all nodes to look for partial slabs which may be
1464 * expensive if we do it every time we are trying to find a slab
1465 * with available objects.
81819f0f 1466 */
9824601e
CL
1467 if (!s->remote_node_defrag_ratio ||
1468 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1469 return NULL;
1470
c0ff7453 1471 get_mems_allowed();
0e88460d 1472 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1473 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1474 struct kmem_cache_node *n;
1475
54a6eb5c 1476 n = get_node(s, zone_to_nid(zone));
81819f0f 1477
54a6eb5c 1478 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1479 n->nr_partial > s->min_partial) {
81819f0f 1480 page = get_partial_node(n);
c0ff7453
MX
1481 if (page) {
1482 put_mems_allowed();
81819f0f 1483 return page;
c0ff7453 1484 }
81819f0f
CL
1485 }
1486 }
c0ff7453 1487 put_mems_allowed();
81819f0f
CL
1488#endif
1489 return NULL;
1490}
1491
1492/*
1493 * Get a partial page, lock it and return it.
1494 */
1495static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1496{
1497 struct page *page;
2154a336 1498 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1499
1500 page = get_partial_node(get_node(s, searchnode));
33de04ec 1501 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1502 return page;
1503
1504 return get_any_partial(s, flags);
1505}
1506
1507/*
1508 * Move a page back to the lists.
1509 *
1510 * Must be called with the slab lock held.
1511 *
1512 * On exit the slab lock will have been dropped.
1513 */
7c2e132c 1514static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1515 __releases(bitlock)
81819f0f 1516{
e95eed57
CL
1517 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1518
8a38082d 1519 __ClearPageSlubFrozen(page);
81819f0f 1520 if (page->inuse) {
e95eed57 1521
a973e9dd 1522 if (page->freelist) {
7c2e132c 1523 add_partial(n, page, tail);
84e554e6 1524 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1525 } else {
84e554e6 1526 stat(s, DEACTIVATE_FULL);
af537b0a 1527 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1528 add_full(n, page);
1529 }
81819f0f
CL
1530 slab_unlock(page);
1531 } else {
84e554e6 1532 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1533 if (n->nr_partial < s->min_partial) {
e95eed57 1534 /*
672bba3a
CL
1535 * Adding an empty slab to the partial slabs in order
1536 * to avoid page allocator overhead. This slab needs
1537 * to come after the other slabs with objects in
6446faa2
CL
1538 * so that the others get filled first. That way the
1539 * size of the partial list stays small.
1540 *
0121c619
CL
1541 * kmem_cache_shrink can reclaim any empty slabs from
1542 * the partial list.
e95eed57 1543 */
7c2e132c 1544 add_partial(n, page, 1);
e95eed57
CL
1545 slab_unlock(page);
1546 } else {
1547 slab_unlock(page);
84e554e6 1548 stat(s, FREE_SLAB);
e95eed57
CL
1549 discard_slab(s, page);
1550 }
81819f0f
CL
1551 }
1552}
1553
8a5ec0ba
CL
1554#ifdef CONFIG_CMPXCHG_LOCAL
1555#ifdef CONFIG_PREEMPT
1556/*
1557 * Calculate the next globally unique transaction for disambiguiation
1558 * during cmpxchg. The transactions start with the cpu number and are then
1559 * incremented by CONFIG_NR_CPUS.
1560 */
1561#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1562#else
1563/*
1564 * No preemption supported therefore also no need to check for
1565 * different cpus.
1566 */
1567#define TID_STEP 1
1568#endif
1569
1570static inline unsigned long next_tid(unsigned long tid)
1571{
1572 return tid + TID_STEP;
1573}
1574
1575static inline unsigned int tid_to_cpu(unsigned long tid)
1576{
1577 return tid % TID_STEP;
1578}
1579
1580static inline unsigned long tid_to_event(unsigned long tid)
1581{
1582 return tid / TID_STEP;
1583}
1584
1585static inline unsigned int init_tid(int cpu)
1586{
1587 return cpu;
1588}
1589
1590static inline void note_cmpxchg_failure(const char *n,
1591 const struct kmem_cache *s, unsigned long tid)
1592{
1593#ifdef SLUB_DEBUG_CMPXCHG
1594 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1595
1596 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1597
1598#ifdef CONFIG_PREEMPT
1599 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1600 printk("due to cpu change %d -> %d\n",
1601 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1602 else
1603#endif
1604 if (tid_to_event(tid) != tid_to_event(actual_tid))
1605 printk("due to cpu running other code. Event %ld->%ld\n",
1606 tid_to_event(tid), tid_to_event(actual_tid));
1607 else
1608 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1609 actual_tid, tid, next_tid(tid));
1610#endif
4fdccdfb 1611 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1612}
1613
1614#endif
1615
1616void init_kmem_cache_cpus(struct kmem_cache *s)
1617{
b8c4c96e 1618#ifdef CONFIG_CMPXCHG_LOCAL
8a5ec0ba
CL
1619 int cpu;
1620
1621 for_each_possible_cpu(cpu)
1622 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1623#endif
1624
1625}
81819f0f
CL
1626/*
1627 * Remove the cpu slab
1628 */
dfb4f096 1629static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1630 __releases(bitlock)
81819f0f 1631{
dfb4f096 1632 struct page *page = c->page;
7c2e132c 1633 int tail = 1;
8ff12cfc 1634
b773ad73 1635 if (page->freelist)
84e554e6 1636 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1637 /*
6446faa2 1638 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1639 * because both freelists are empty. So this is unlikely
1640 * to occur.
1641 */
a973e9dd 1642 while (unlikely(c->freelist)) {
894b8788
CL
1643 void **object;
1644
7c2e132c
CL
1645 tail = 0; /* Hot objects. Put the slab first */
1646
894b8788 1647 /* Retrieve object from cpu_freelist */
dfb4f096 1648 object = c->freelist;
ff12059e 1649 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1650
1651 /* And put onto the regular freelist */
ff12059e 1652 set_freepointer(s, object, page->freelist);
894b8788
CL
1653 page->freelist = object;
1654 page->inuse--;
1655 }
dfb4f096 1656 c->page = NULL;
8a5ec0ba
CL
1657#ifdef CONFIG_CMPXCHG_LOCAL
1658 c->tid = next_tid(c->tid);
1659#endif
7c2e132c 1660 unfreeze_slab(s, page, tail);
81819f0f
CL
1661}
1662
dfb4f096 1663static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1664{
84e554e6 1665 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1666 slab_lock(c->page);
1667 deactivate_slab(s, c);
81819f0f
CL
1668}
1669
1670/*
1671 * Flush cpu slab.
6446faa2 1672 *
81819f0f
CL
1673 * Called from IPI handler with interrupts disabled.
1674 */
0c710013 1675static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1676{
9dfc6e68 1677 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1678
dfb4f096
CL
1679 if (likely(c && c->page))
1680 flush_slab(s, c);
81819f0f
CL
1681}
1682
1683static void flush_cpu_slab(void *d)
1684{
1685 struct kmem_cache *s = d;
81819f0f 1686
dfb4f096 1687 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1688}
1689
1690static void flush_all(struct kmem_cache *s)
1691{
15c8b6c1 1692 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1693}
1694
dfb4f096
CL
1695/*
1696 * Check if the objects in a per cpu structure fit numa
1697 * locality expectations.
1698 */
1699static inline int node_match(struct kmem_cache_cpu *c, int node)
1700{
1701#ifdef CONFIG_NUMA
2154a336 1702 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1703 return 0;
1704#endif
1705 return 1;
1706}
1707
781b2ba6
PE
1708static int count_free(struct page *page)
1709{
1710 return page->objects - page->inuse;
1711}
1712
1713static unsigned long count_partial(struct kmem_cache_node *n,
1714 int (*get_count)(struct page *))
1715{
1716 unsigned long flags;
1717 unsigned long x = 0;
1718 struct page *page;
1719
1720 spin_lock_irqsave(&n->list_lock, flags);
1721 list_for_each_entry(page, &n->partial, lru)
1722 x += get_count(page);
1723 spin_unlock_irqrestore(&n->list_lock, flags);
1724 return x;
1725}
1726
26c02cf0
AB
1727static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1728{
1729#ifdef CONFIG_SLUB_DEBUG
1730 return atomic_long_read(&n->total_objects);
1731#else
1732 return 0;
1733#endif
1734}
1735
781b2ba6
PE
1736static noinline void
1737slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1738{
1739 int node;
1740
1741 printk(KERN_WARNING
1742 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1743 nid, gfpflags);
1744 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1745 "default order: %d, min order: %d\n", s->name, s->objsize,
1746 s->size, oo_order(s->oo), oo_order(s->min));
1747
fa5ec8a1
DR
1748 if (oo_order(s->min) > get_order(s->objsize))
1749 printk(KERN_WARNING " %s debugging increased min order, use "
1750 "slub_debug=O to disable.\n", s->name);
1751
781b2ba6
PE
1752 for_each_online_node(node) {
1753 struct kmem_cache_node *n = get_node(s, node);
1754 unsigned long nr_slabs;
1755 unsigned long nr_objs;
1756 unsigned long nr_free;
1757
1758 if (!n)
1759 continue;
1760
26c02cf0
AB
1761 nr_free = count_partial(n, count_free);
1762 nr_slabs = node_nr_slabs(n);
1763 nr_objs = node_nr_objs(n);
781b2ba6
PE
1764
1765 printk(KERN_WARNING
1766 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1767 node, nr_slabs, nr_objs, nr_free);
1768 }
1769}
1770
81819f0f 1771/*
894b8788
CL
1772 * Slow path. The lockless freelist is empty or we need to perform
1773 * debugging duties.
1774 *
1775 * Interrupts are disabled.
81819f0f 1776 *
894b8788
CL
1777 * Processing is still very fast if new objects have been freed to the
1778 * regular freelist. In that case we simply take over the regular freelist
1779 * as the lockless freelist and zap the regular freelist.
81819f0f 1780 *
894b8788
CL
1781 * If that is not working then we fall back to the partial lists. We take the
1782 * first element of the freelist as the object to allocate now and move the
1783 * rest of the freelist to the lockless freelist.
81819f0f 1784 *
894b8788 1785 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1786 * we need to allocate a new slab. This is the slowest path since it involves
1787 * a call to the page allocator and the setup of a new slab.
81819f0f 1788 */
ce71e27c
EGM
1789static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1790 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1791{
81819f0f 1792 void **object;
dfb4f096 1793 struct page *new;
8a5ec0ba
CL
1794#ifdef CONFIG_CMPXCHG_LOCAL
1795 unsigned long flags;
1796
1797 local_irq_save(flags);
1798#ifdef CONFIG_PREEMPT
1799 /*
1800 * We may have been preempted and rescheduled on a different
1801 * cpu before disabling interrupts. Need to reload cpu area
1802 * pointer.
1803 */
1804 c = this_cpu_ptr(s->cpu_slab);
1805#endif
1806#endif
81819f0f 1807
e72e9c23
LT
1808 /* We handle __GFP_ZERO in the caller */
1809 gfpflags &= ~__GFP_ZERO;
1810
dfb4f096 1811 if (!c->page)
81819f0f
CL
1812 goto new_slab;
1813
dfb4f096
CL
1814 slab_lock(c->page);
1815 if (unlikely(!node_match(c, node)))
81819f0f 1816 goto another_slab;
6446faa2 1817
84e554e6 1818 stat(s, ALLOC_REFILL);
6446faa2 1819
894b8788 1820load_freelist:
dfb4f096 1821 object = c->page->freelist;
a973e9dd 1822 if (unlikely(!object))
81819f0f 1823 goto another_slab;
af537b0a 1824 if (kmem_cache_debug(s))
81819f0f
CL
1825 goto debug;
1826
ff12059e 1827 c->freelist = get_freepointer(s, object);
39b26464 1828 c->page->inuse = c->page->objects;
a973e9dd 1829 c->page->freelist = NULL;
dfb4f096 1830 c->node = page_to_nid(c->page);
1f84260c 1831unlock_out:
dfb4f096 1832 slab_unlock(c->page);
8a5ec0ba
CL
1833#ifdef CONFIG_CMPXCHG_LOCAL
1834 c->tid = next_tid(c->tid);
1835 local_irq_restore(flags);
1836#endif
84e554e6 1837 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1838 return object;
1839
1840another_slab:
dfb4f096 1841 deactivate_slab(s, c);
81819f0f
CL
1842
1843new_slab:
dfb4f096
CL
1844 new = get_partial(s, gfpflags, node);
1845 if (new) {
1846 c->page = new;
84e554e6 1847 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1848 goto load_freelist;
81819f0f
CL
1849 }
1850
c1d50836 1851 gfpflags &= gfp_allowed_mask;
b811c202
CL
1852 if (gfpflags & __GFP_WAIT)
1853 local_irq_enable();
1854
dfb4f096 1855 new = new_slab(s, gfpflags, node);
b811c202
CL
1856
1857 if (gfpflags & __GFP_WAIT)
1858 local_irq_disable();
1859
dfb4f096 1860 if (new) {
9dfc6e68 1861 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1862 stat(s, ALLOC_SLAB);
05aa3450 1863 if (c->page)
dfb4f096 1864 flush_slab(s, c);
dfb4f096 1865 slab_lock(new);
8a38082d 1866 __SetPageSlubFrozen(new);
dfb4f096 1867 c->page = new;
4b6f0750 1868 goto load_freelist;
81819f0f 1869 }
95f85989
PE
1870 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1871 slab_out_of_memory(s, gfpflags, node);
2fd66c51
CL
1872#ifdef CONFIG_CMPXCHG_LOCAL
1873 local_irq_restore(flags);
1874#endif
71c7a06f 1875 return NULL;
81819f0f 1876debug:
dfb4f096 1877 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1878 goto another_slab;
894b8788 1879
dfb4f096 1880 c->page->inuse++;
ff12059e 1881 c->page->freelist = get_freepointer(s, object);
15b7c514 1882 c->node = NUMA_NO_NODE;
1f84260c 1883 goto unlock_out;
894b8788
CL
1884}
1885
1886/*
1887 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1888 * have the fastpath folded into their functions. So no function call
1889 * overhead for requests that can be satisfied on the fastpath.
1890 *
1891 * The fastpath works by first checking if the lockless freelist can be used.
1892 * If not then __slab_alloc is called for slow processing.
1893 *
1894 * Otherwise we can simply pick the next object from the lockless free list.
1895 */
06428780 1896static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1897 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1898{
894b8788 1899 void **object;
dfb4f096 1900 struct kmem_cache_cpu *c;
8a5ec0ba
CL
1901#ifdef CONFIG_CMPXCHG_LOCAL
1902 unsigned long tid;
1903#else
1f84260c 1904 unsigned long flags;
8a5ec0ba 1905#endif
1f84260c 1906
c016b0bd 1907 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1908 return NULL;
1f84260c 1909
8a5ec0ba 1910#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 1911 local_irq_save(flags);
8a5ec0ba
CL
1912#else
1913redo:
1914#endif
1915
1916 /*
1917 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1918 * enabled. We may switch back and forth between cpus while
1919 * reading from one cpu area. That does not matter as long
1920 * as we end up on the original cpu again when doing the cmpxchg.
1921 */
9dfc6e68 1922 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba
CL
1923
1924#ifdef CONFIG_CMPXCHG_LOCAL
1925 /*
1926 * The transaction ids are globally unique per cpu and per operation on
1927 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1928 * occurs on the right processor and that there was no operation on the
1929 * linked list in between.
1930 */
1931 tid = c->tid;
1932 barrier();
1933#endif
1934
9dfc6e68 1935 object = c->freelist;
9dfc6e68 1936 if (unlikely(!object || !node_match(c, node)))
894b8788 1937
dfb4f096 1938 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1939
1940 else {
8a5ec0ba
CL
1941#ifdef CONFIG_CMPXCHG_LOCAL
1942 /*
1943 * The cmpxchg will only match if there was no additonal
1944 * operation and if we are on the right processor.
1945 *
1946 * The cmpxchg does the following atomically (without lock semantics!)
1947 * 1. Relocate first pointer to the current per cpu area.
1948 * 2. Verify that tid and freelist have not been changed
1949 * 3. If they were not changed replace tid and freelist
1950 *
1951 * Since this is without lock semantics the protection is only against
1952 * code executing on this cpu *not* from access by other cpus.
1953 */
1954 if (unlikely(!this_cpu_cmpxchg_double(
1955 s->cpu_slab->freelist, s->cpu_slab->tid,
1956 object, tid,
1957 get_freepointer(s, object), next_tid(tid)))) {
1958
1959 note_cmpxchg_failure("slab_alloc", s, tid);
1960 goto redo;
1961 }
1962#else
ff12059e 1963 c->freelist = get_freepointer(s, object);
8a5ec0ba 1964#endif
84e554e6 1965 stat(s, ALLOC_FASTPATH);
894b8788 1966 }
8a5ec0ba
CL
1967
1968#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 1969 local_irq_restore(flags);
8a5ec0ba 1970#endif
d07dbea4 1971
74e2134f 1972 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1973 memset(object, 0, s->objsize);
d07dbea4 1974
c016b0bd 1975 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1976
894b8788 1977 return object;
81819f0f
CL
1978}
1979
1980void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1981{
2154a336 1982 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1983
ca2b84cb 1984 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1985
1986 return ret;
81819f0f
CL
1987}
1988EXPORT_SYMBOL(kmem_cache_alloc);
1989
0f24f128 1990#ifdef CONFIG_TRACING
4a92379b
RK
1991void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1992{
1993 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1994 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1995 return ret;
1996}
1997EXPORT_SYMBOL(kmem_cache_alloc_trace);
1998
1999void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2000{
4a92379b
RK
2001 void *ret = kmalloc_order(size, flags, order);
2002 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2003 return ret;
5b882be4 2004}
4a92379b 2005EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2006#endif
2007
81819f0f
CL
2008#ifdef CONFIG_NUMA
2009void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2010{
5b882be4
EGM
2011 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2012
ca2b84cb
EGM
2013 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2014 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2015
2016 return ret;
81819f0f
CL
2017}
2018EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2019
0f24f128 2020#ifdef CONFIG_TRACING
4a92379b 2021void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2022 gfp_t gfpflags,
4a92379b 2023 int node, size_t size)
5b882be4 2024{
4a92379b
RK
2025 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2026
2027 trace_kmalloc_node(_RET_IP_, ret,
2028 size, s->size, gfpflags, node);
2029 return ret;
5b882be4 2030}
4a92379b 2031EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2032#endif
5d1f57e4 2033#endif
5b882be4 2034
81819f0f 2035/*
894b8788
CL
2036 * Slow patch handling. This may still be called frequently since objects
2037 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2038 *
894b8788
CL
2039 * So we still attempt to reduce cache line usage. Just take the slab
2040 * lock and free the item. If there is no additional partial page
2041 * handling required then we can return immediately.
81819f0f 2042 */
894b8788 2043static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2044 void *x, unsigned long addr)
81819f0f
CL
2045{
2046 void *prior;
2047 void **object = (void *)x;
8a5ec0ba
CL
2048#ifdef CONFIG_CMPXCHG_LOCAL
2049 unsigned long flags;
81819f0f 2050
8a5ec0ba
CL
2051 local_irq_save(flags);
2052#endif
81819f0f 2053 slab_lock(page);
8a5ec0ba 2054 stat(s, FREE_SLOWPATH);
81819f0f 2055
af537b0a 2056 if (kmem_cache_debug(s))
81819f0f 2057 goto debug;
6446faa2 2058
81819f0f 2059checks_ok:
ff12059e
CL
2060 prior = page->freelist;
2061 set_freepointer(s, object, prior);
81819f0f
CL
2062 page->freelist = object;
2063 page->inuse--;
2064
8a38082d 2065 if (unlikely(PageSlubFrozen(page))) {
84e554e6 2066 stat(s, FREE_FROZEN);
81819f0f 2067 goto out_unlock;
8ff12cfc 2068 }
81819f0f
CL
2069
2070 if (unlikely(!page->inuse))
2071 goto slab_empty;
2072
2073 /*
6446faa2 2074 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2075 * then add it.
2076 */
a973e9dd 2077 if (unlikely(!prior)) {
7c2e132c 2078 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2079 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2080 }
81819f0f
CL
2081
2082out_unlock:
2083 slab_unlock(page);
8a5ec0ba
CL
2084#ifdef CONFIG_CMPXCHG_LOCAL
2085 local_irq_restore(flags);
2086#endif
81819f0f
CL
2087 return;
2088
2089slab_empty:
a973e9dd 2090 if (prior) {
81819f0f 2091 /*
672bba3a 2092 * Slab still on the partial list.
81819f0f
CL
2093 */
2094 remove_partial(s, page);
84e554e6 2095 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2096 }
81819f0f 2097 slab_unlock(page);
8a5ec0ba
CL
2098#ifdef CONFIG_CMPXCHG_LOCAL
2099 local_irq_restore(flags);
2100#endif
84e554e6 2101 stat(s, FREE_SLAB);
81819f0f 2102 discard_slab(s, page);
81819f0f
CL
2103 return;
2104
2105debug:
3ec09742 2106 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 2107 goto out_unlock;
77c5e2d0 2108 goto checks_ok;
81819f0f
CL
2109}
2110
894b8788
CL
2111/*
2112 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2113 * can perform fastpath freeing without additional function calls.
2114 *
2115 * The fastpath is only possible if we are freeing to the current cpu slab
2116 * of this processor. This typically the case if we have just allocated
2117 * the item before.
2118 *
2119 * If fastpath is not possible then fall back to __slab_free where we deal
2120 * with all sorts of special processing.
2121 */
06428780 2122static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2123 struct page *page, void *x, unsigned long addr)
894b8788
CL
2124{
2125 void **object = (void *)x;
dfb4f096 2126 struct kmem_cache_cpu *c;
8a5ec0ba
CL
2127#ifdef CONFIG_CMPXCHG_LOCAL
2128 unsigned long tid;
2129#else
1f84260c 2130 unsigned long flags;
8a5ec0ba 2131#endif
1f84260c 2132
c016b0bd
CL
2133 slab_free_hook(s, x);
2134
8a5ec0ba 2135#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 2136 local_irq_save(flags);
8a5ec0ba 2137
a24c5a0e 2138#else
8a5ec0ba 2139redo:
a24c5a0e
CL
2140#endif
2141
8a5ec0ba
CL
2142 /*
2143 * Determine the currently cpus per cpu slab.
2144 * The cpu may change afterward. However that does not matter since
2145 * data is retrieved via this pointer. If we are on the same cpu
2146 * during the cmpxchg then the free will succedd.
2147 */
9dfc6e68 2148 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2149
8a5ec0ba
CL
2150#ifdef CONFIG_CMPXCHG_LOCAL
2151 tid = c->tid;
2152 barrier();
2153#endif
c016b0bd 2154
15b7c514 2155 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 2156 set_freepointer(s, object, c->freelist);
8a5ec0ba
CL
2157
2158#ifdef CONFIG_CMPXCHG_LOCAL
2159 if (unlikely(!this_cpu_cmpxchg_double(
2160 s->cpu_slab->freelist, s->cpu_slab->tid,
2161 c->freelist, tid,
2162 object, next_tid(tid)))) {
2163
2164 note_cmpxchg_failure("slab_free", s, tid);
2165 goto redo;
2166 }
2167#else
dfb4f096 2168 c->freelist = object;
8a5ec0ba 2169#endif
84e554e6 2170 stat(s, FREE_FASTPATH);
894b8788 2171 } else
ff12059e 2172 __slab_free(s, page, x, addr);
894b8788 2173
8a5ec0ba 2174#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 2175 local_irq_restore(flags);
8a5ec0ba 2176#endif
894b8788
CL
2177}
2178
81819f0f
CL
2179void kmem_cache_free(struct kmem_cache *s, void *x)
2180{
77c5e2d0 2181 struct page *page;
81819f0f 2182
b49af68f 2183 page = virt_to_head_page(x);
81819f0f 2184
ce71e27c 2185 slab_free(s, page, x, _RET_IP_);
5b882be4 2186
ca2b84cb 2187 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2188}
2189EXPORT_SYMBOL(kmem_cache_free);
2190
81819f0f 2191/*
672bba3a
CL
2192 * Object placement in a slab is made very easy because we always start at
2193 * offset 0. If we tune the size of the object to the alignment then we can
2194 * get the required alignment by putting one properly sized object after
2195 * another.
81819f0f
CL
2196 *
2197 * Notice that the allocation order determines the sizes of the per cpu
2198 * caches. Each processor has always one slab available for allocations.
2199 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2200 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2201 * locking overhead.
81819f0f
CL
2202 */
2203
2204/*
2205 * Mininum / Maximum order of slab pages. This influences locking overhead
2206 * and slab fragmentation. A higher order reduces the number of partial slabs
2207 * and increases the number of allocations possible without having to
2208 * take the list_lock.
2209 */
2210static int slub_min_order;
114e9e89 2211static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2212static int slub_min_objects;
81819f0f
CL
2213
2214/*
2215 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2216 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2217 */
2218static int slub_nomerge;
2219
81819f0f
CL
2220/*
2221 * Calculate the order of allocation given an slab object size.
2222 *
672bba3a
CL
2223 * The order of allocation has significant impact on performance and other
2224 * system components. Generally order 0 allocations should be preferred since
2225 * order 0 does not cause fragmentation in the page allocator. Larger objects
2226 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2227 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2228 * would be wasted.
2229 *
2230 * In order to reach satisfactory performance we must ensure that a minimum
2231 * number of objects is in one slab. Otherwise we may generate too much
2232 * activity on the partial lists which requires taking the list_lock. This is
2233 * less a concern for large slabs though which are rarely used.
81819f0f 2234 *
672bba3a
CL
2235 * slub_max_order specifies the order where we begin to stop considering the
2236 * number of objects in a slab as critical. If we reach slub_max_order then
2237 * we try to keep the page order as low as possible. So we accept more waste
2238 * of space in favor of a small page order.
81819f0f 2239 *
672bba3a
CL
2240 * Higher order allocations also allow the placement of more objects in a
2241 * slab and thereby reduce object handling overhead. If the user has
2242 * requested a higher mininum order then we start with that one instead of
2243 * the smallest order which will fit the object.
81819f0f 2244 */
5e6d444e 2245static inline int slab_order(int size, int min_objects,
ab9a0f19 2246 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2247{
2248 int order;
2249 int rem;
6300ea75 2250 int min_order = slub_min_order;
81819f0f 2251
ab9a0f19 2252 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2253 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2254
6300ea75 2255 for (order = max(min_order,
5e6d444e
CL
2256 fls(min_objects * size - 1) - PAGE_SHIFT);
2257 order <= max_order; order++) {
81819f0f 2258
5e6d444e 2259 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2260
ab9a0f19 2261 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2262 continue;
2263
ab9a0f19 2264 rem = (slab_size - reserved) % size;
81819f0f 2265
5e6d444e 2266 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2267 break;
2268
2269 }
672bba3a 2270
81819f0f
CL
2271 return order;
2272}
2273
ab9a0f19 2274static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2275{
2276 int order;
2277 int min_objects;
2278 int fraction;
e8120ff1 2279 int max_objects;
5e6d444e
CL
2280
2281 /*
2282 * Attempt to find best configuration for a slab. This
2283 * works by first attempting to generate a layout with
2284 * the best configuration and backing off gradually.
2285 *
2286 * First we reduce the acceptable waste in a slab. Then
2287 * we reduce the minimum objects required in a slab.
2288 */
2289 min_objects = slub_min_objects;
9b2cd506
CL
2290 if (!min_objects)
2291 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2292 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2293 min_objects = min(min_objects, max_objects);
2294
5e6d444e 2295 while (min_objects > 1) {
c124f5b5 2296 fraction = 16;
5e6d444e
CL
2297 while (fraction >= 4) {
2298 order = slab_order(size, min_objects,
ab9a0f19 2299 slub_max_order, fraction, reserved);
5e6d444e
CL
2300 if (order <= slub_max_order)
2301 return order;
2302 fraction /= 2;
2303 }
5086c389 2304 min_objects--;
5e6d444e
CL
2305 }
2306
2307 /*
2308 * We were unable to place multiple objects in a slab. Now
2309 * lets see if we can place a single object there.
2310 */
ab9a0f19 2311 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2312 if (order <= slub_max_order)
2313 return order;
2314
2315 /*
2316 * Doh this slab cannot be placed using slub_max_order.
2317 */
ab9a0f19 2318 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2319 if (order < MAX_ORDER)
5e6d444e
CL
2320 return order;
2321 return -ENOSYS;
2322}
2323
81819f0f 2324/*
672bba3a 2325 * Figure out what the alignment of the objects will be.
81819f0f
CL
2326 */
2327static unsigned long calculate_alignment(unsigned long flags,
2328 unsigned long align, unsigned long size)
2329{
2330 /*
6446faa2
CL
2331 * If the user wants hardware cache aligned objects then follow that
2332 * suggestion if the object is sufficiently large.
81819f0f 2333 *
6446faa2
CL
2334 * The hardware cache alignment cannot override the specified
2335 * alignment though. If that is greater then use it.
81819f0f 2336 */
b6210386
NP
2337 if (flags & SLAB_HWCACHE_ALIGN) {
2338 unsigned long ralign = cache_line_size();
2339 while (size <= ralign / 2)
2340 ralign /= 2;
2341 align = max(align, ralign);
2342 }
81819f0f
CL
2343
2344 if (align < ARCH_SLAB_MINALIGN)
b6210386 2345 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2346
2347 return ALIGN(align, sizeof(void *));
2348}
2349
5595cffc
PE
2350static void
2351init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2352{
2353 n->nr_partial = 0;
81819f0f
CL
2354 spin_lock_init(&n->list_lock);
2355 INIT_LIST_HEAD(&n->partial);
8ab1372f 2356#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2357 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2358 atomic_long_set(&n->total_objects, 0);
643b1138 2359 INIT_LIST_HEAD(&n->full);
8ab1372f 2360#endif
81819f0f
CL
2361}
2362
55136592 2363static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2364{
6c182dc0
CL
2365 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2366 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2367
8a5ec0ba
CL
2368#ifdef CONFIG_CMPXCHG_LOCAL
2369 /*
2370 * Must align to double word boundary for the double cmpxchg instructions
2371 * to work.
2372 */
2373 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2374#else
2375 /* Regular alignment is sufficient */
6c182dc0 2376 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
8a5ec0ba
CL
2377#endif
2378
2379 if (!s->cpu_slab)
2380 return 0;
2381
2382 init_kmem_cache_cpus(s);
4c93c355 2383
8a5ec0ba 2384 return 1;
4c93c355 2385}
4c93c355 2386
51df1142
CL
2387static struct kmem_cache *kmem_cache_node;
2388
81819f0f
CL
2389/*
2390 * No kmalloc_node yet so do it by hand. We know that this is the first
2391 * slab on the node for this slabcache. There are no concurrent accesses
2392 * possible.
2393 *
2394 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2395 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2396 * memory on a fresh node that has no slab structures yet.
81819f0f 2397 */
55136592 2398static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2399{
2400 struct page *page;
2401 struct kmem_cache_node *n;
ba84c73c 2402 unsigned long flags;
81819f0f 2403
51df1142 2404 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2405
51df1142 2406 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2407
2408 BUG_ON(!page);
a2f92ee7
CL
2409 if (page_to_nid(page) != node) {
2410 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2411 "node %d\n", node);
2412 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2413 "in order to be able to continue\n");
2414 }
2415
81819f0f
CL
2416 n = page->freelist;
2417 BUG_ON(!n);
51df1142 2418 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2419 page->inuse++;
51df1142 2420 kmem_cache_node->node[node] = n;
8ab1372f 2421#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2422 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2423 init_tracking(kmem_cache_node, n);
8ab1372f 2424#endif
51df1142
CL
2425 init_kmem_cache_node(n, kmem_cache_node);
2426 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2427
ba84c73c 2428 /*
2429 * lockdep requires consistent irq usage for each lock
2430 * so even though there cannot be a race this early in
2431 * the boot sequence, we still disable irqs.
2432 */
2433 local_irq_save(flags);
7c2e132c 2434 add_partial(n, page, 0);
ba84c73c 2435 local_irq_restore(flags);
81819f0f
CL
2436}
2437
2438static void free_kmem_cache_nodes(struct kmem_cache *s)
2439{
2440 int node;
2441
f64dc58c 2442 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2443 struct kmem_cache_node *n = s->node[node];
51df1142 2444
73367bd8 2445 if (n)
51df1142
CL
2446 kmem_cache_free(kmem_cache_node, n);
2447
81819f0f
CL
2448 s->node[node] = NULL;
2449 }
2450}
2451
55136592 2452static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2453{
2454 int node;
81819f0f 2455
f64dc58c 2456 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2457 struct kmem_cache_node *n;
2458
73367bd8 2459 if (slab_state == DOWN) {
55136592 2460 early_kmem_cache_node_alloc(node);
73367bd8
AD
2461 continue;
2462 }
51df1142 2463 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2464 GFP_KERNEL, node);
81819f0f 2465
73367bd8
AD
2466 if (!n) {
2467 free_kmem_cache_nodes(s);
2468 return 0;
81819f0f 2469 }
73367bd8 2470
81819f0f 2471 s->node[node] = n;
5595cffc 2472 init_kmem_cache_node(n, s);
81819f0f
CL
2473 }
2474 return 1;
2475}
81819f0f 2476
c0bdb232 2477static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2478{
2479 if (min < MIN_PARTIAL)
2480 min = MIN_PARTIAL;
2481 else if (min > MAX_PARTIAL)
2482 min = MAX_PARTIAL;
2483 s->min_partial = min;
2484}
2485
81819f0f
CL
2486/*
2487 * calculate_sizes() determines the order and the distribution of data within
2488 * a slab object.
2489 */
06b285dc 2490static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2491{
2492 unsigned long flags = s->flags;
2493 unsigned long size = s->objsize;
2494 unsigned long align = s->align;
834f3d11 2495 int order;
81819f0f 2496
d8b42bf5
CL
2497 /*
2498 * Round up object size to the next word boundary. We can only
2499 * place the free pointer at word boundaries and this determines
2500 * the possible location of the free pointer.
2501 */
2502 size = ALIGN(size, sizeof(void *));
2503
2504#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2505 /*
2506 * Determine if we can poison the object itself. If the user of
2507 * the slab may touch the object after free or before allocation
2508 * then we should never poison the object itself.
2509 */
2510 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2511 !s->ctor)
81819f0f
CL
2512 s->flags |= __OBJECT_POISON;
2513 else
2514 s->flags &= ~__OBJECT_POISON;
2515
81819f0f
CL
2516
2517 /*
672bba3a 2518 * If we are Redzoning then check if there is some space between the
81819f0f 2519 * end of the object and the free pointer. If not then add an
672bba3a 2520 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2521 */
2522 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2523 size += sizeof(void *);
41ecc55b 2524#endif
81819f0f
CL
2525
2526 /*
672bba3a
CL
2527 * With that we have determined the number of bytes in actual use
2528 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2529 */
2530 s->inuse = size;
2531
2532 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2533 s->ctor)) {
81819f0f
CL
2534 /*
2535 * Relocate free pointer after the object if it is not
2536 * permitted to overwrite the first word of the object on
2537 * kmem_cache_free.
2538 *
2539 * This is the case if we do RCU, have a constructor or
2540 * destructor or are poisoning the objects.
2541 */
2542 s->offset = size;
2543 size += sizeof(void *);
2544 }
2545
c12b3c62 2546#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2547 if (flags & SLAB_STORE_USER)
2548 /*
2549 * Need to store information about allocs and frees after
2550 * the object.
2551 */
2552 size += 2 * sizeof(struct track);
2553
be7b3fbc 2554 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2555 /*
2556 * Add some empty padding so that we can catch
2557 * overwrites from earlier objects rather than let
2558 * tracking information or the free pointer be
0211a9c8 2559 * corrupted if a user writes before the start
81819f0f
CL
2560 * of the object.
2561 */
2562 size += sizeof(void *);
41ecc55b 2563#endif
672bba3a 2564
81819f0f
CL
2565 /*
2566 * Determine the alignment based on various parameters that the
65c02d4c
CL
2567 * user specified and the dynamic determination of cache line size
2568 * on bootup.
81819f0f
CL
2569 */
2570 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2571 s->align = align;
81819f0f
CL
2572
2573 /*
2574 * SLUB stores one object immediately after another beginning from
2575 * offset 0. In order to align the objects we have to simply size
2576 * each object to conform to the alignment.
2577 */
2578 size = ALIGN(size, align);
2579 s->size = size;
06b285dc
CL
2580 if (forced_order >= 0)
2581 order = forced_order;
2582 else
ab9a0f19 2583 order = calculate_order(size, s->reserved);
81819f0f 2584
834f3d11 2585 if (order < 0)
81819f0f
CL
2586 return 0;
2587
b7a49f0d 2588 s->allocflags = 0;
834f3d11 2589 if (order)
b7a49f0d
CL
2590 s->allocflags |= __GFP_COMP;
2591
2592 if (s->flags & SLAB_CACHE_DMA)
2593 s->allocflags |= SLUB_DMA;
2594
2595 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2596 s->allocflags |= __GFP_RECLAIMABLE;
2597
81819f0f
CL
2598 /*
2599 * Determine the number of objects per slab
2600 */
ab9a0f19
LJ
2601 s->oo = oo_make(order, size, s->reserved);
2602 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2603 if (oo_objects(s->oo) > oo_objects(s->max))
2604 s->max = s->oo;
81819f0f 2605
834f3d11 2606 return !!oo_objects(s->oo);
81819f0f
CL
2607
2608}
2609
55136592 2610static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2611 const char *name, size_t size,
2612 size_t align, unsigned long flags,
51cc5068 2613 void (*ctor)(void *))
81819f0f
CL
2614{
2615 memset(s, 0, kmem_size);
2616 s->name = name;
2617 s->ctor = ctor;
81819f0f 2618 s->objsize = size;
81819f0f 2619 s->align = align;
ba0268a8 2620 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2621 s->reserved = 0;
81819f0f 2622
da9a638c
LJ
2623 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2624 s->reserved = sizeof(struct rcu_head);
81819f0f 2625
06b285dc 2626 if (!calculate_sizes(s, -1))
81819f0f 2627 goto error;
3de47213
DR
2628 if (disable_higher_order_debug) {
2629 /*
2630 * Disable debugging flags that store metadata if the min slab
2631 * order increased.
2632 */
2633 if (get_order(s->size) > get_order(s->objsize)) {
2634 s->flags &= ~DEBUG_METADATA_FLAGS;
2635 s->offset = 0;
2636 if (!calculate_sizes(s, -1))
2637 goto error;
2638 }
2639 }
81819f0f 2640
3b89d7d8
DR
2641 /*
2642 * The larger the object size is, the more pages we want on the partial
2643 * list to avoid pounding the page allocator excessively.
2644 */
c0bdb232 2645 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2646 s->refcount = 1;
2647#ifdef CONFIG_NUMA
e2cb96b7 2648 s->remote_node_defrag_ratio = 1000;
81819f0f 2649#endif
55136592 2650 if (!init_kmem_cache_nodes(s))
dfb4f096 2651 goto error;
81819f0f 2652
55136592 2653 if (alloc_kmem_cache_cpus(s))
81819f0f 2654 return 1;
ff12059e 2655
4c93c355 2656 free_kmem_cache_nodes(s);
81819f0f
CL
2657error:
2658 if (flags & SLAB_PANIC)
2659 panic("Cannot create slab %s size=%lu realsize=%u "
2660 "order=%u offset=%u flags=%lx\n",
834f3d11 2661 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2662 s->offset, flags);
2663 return 0;
2664}
81819f0f 2665
81819f0f
CL
2666/*
2667 * Determine the size of a slab object
2668 */
2669unsigned int kmem_cache_size(struct kmem_cache *s)
2670{
2671 return s->objsize;
2672}
2673EXPORT_SYMBOL(kmem_cache_size);
2674
33b12c38
CL
2675static void list_slab_objects(struct kmem_cache *s, struct page *page,
2676 const char *text)
2677{
2678#ifdef CONFIG_SLUB_DEBUG
2679 void *addr = page_address(page);
2680 void *p;
a5dd5c11
NK
2681 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2682 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2683 if (!map)
2684 return;
33b12c38
CL
2685 slab_err(s, page, "%s", text);
2686 slab_lock(page);
33b12c38 2687
5f80b13a 2688 get_map(s, page, map);
33b12c38
CL
2689 for_each_object(p, s, addr, page->objects) {
2690
2691 if (!test_bit(slab_index(p, s, addr), map)) {
2692 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2693 p, p - addr);
2694 print_tracking(s, p);
2695 }
2696 }
2697 slab_unlock(page);
bbd7d57b 2698 kfree(map);
33b12c38
CL
2699#endif
2700}
2701
81819f0f 2702/*
599870b1 2703 * Attempt to free all partial slabs on a node.
81819f0f 2704 */
599870b1 2705static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2706{
81819f0f
CL
2707 unsigned long flags;
2708 struct page *page, *h;
2709
2710 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2711 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2712 if (!page->inuse) {
62e346a8 2713 __remove_partial(n, page);
81819f0f 2714 discard_slab(s, page);
33b12c38
CL
2715 } else {
2716 list_slab_objects(s, page,
2717 "Objects remaining on kmem_cache_close()");
599870b1 2718 }
33b12c38 2719 }
81819f0f 2720 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2721}
2722
2723/*
672bba3a 2724 * Release all resources used by a slab cache.
81819f0f 2725 */
0c710013 2726static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2727{
2728 int node;
2729
2730 flush_all(s);
9dfc6e68 2731 free_percpu(s->cpu_slab);
81819f0f 2732 /* Attempt to free all objects */
f64dc58c 2733 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2734 struct kmem_cache_node *n = get_node(s, node);
2735
599870b1
CL
2736 free_partial(s, n);
2737 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2738 return 1;
2739 }
2740 free_kmem_cache_nodes(s);
2741 return 0;
2742}
2743
2744/*
2745 * Close a cache and release the kmem_cache structure
2746 * (must be used for caches created using kmem_cache_create)
2747 */
2748void kmem_cache_destroy(struct kmem_cache *s)
2749{
2750 down_write(&slub_lock);
2751 s->refcount--;
2752 if (!s->refcount) {
2753 list_del(&s->list);
d629d819
PE
2754 if (kmem_cache_close(s)) {
2755 printk(KERN_ERR "SLUB %s: %s called for cache that "
2756 "still has objects.\n", s->name, __func__);
2757 dump_stack();
2758 }
d76b1590
ED
2759 if (s->flags & SLAB_DESTROY_BY_RCU)
2760 rcu_barrier();
81819f0f 2761 sysfs_slab_remove(s);
2bce6485
CL
2762 }
2763 up_write(&slub_lock);
81819f0f
CL
2764}
2765EXPORT_SYMBOL(kmem_cache_destroy);
2766
2767/********************************************************************
2768 * Kmalloc subsystem
2769 *******************************************************************/
2770
51df1142 2771struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2772EXPORT_SYMBOL(kmalloc_caches);
2773
51df1142
CL
2774static struct kmem_cache *kmem_cache;
2775
55136592 2776#ifdef CONFIG_ZONE_DMA
51df1142 2777static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2778#endif
2779
81819f0f
CL
2780static int __init setup_slub_min_order(char *str)
2781{
06428780 2782 get_option(&str, &slub_min_order);
81819f0f
CL
2783
2784 return 1;
2785}
2786
2787__setup("slub_min_order=", setup_slub_min_order);
2788
2789static int __init setup_slub_max_order(char *str)
2790{
06428780 2791 get_option(&str, &slub_max_order);
818cf590 2792 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2793
2794 return 1;
2795}
2796
2797__setup("slub_max_order=", setup_slub_max_order);
2798
2799static int __init setup_slub_min_objects(char *str)
2800{
06428780 2801 get_option(&str, &slub_min_objects);
81819f0f
CL
2802
2803 return 1;
2804}
2805
2806__setup("slub_min_objects=", setup_slub_min_objects);
2807
2808static int __init setup_slub_nomerge(char *str)
2809{
2810 slub_nomerge = 1;
2811 return 1;
2812}
2813
2814__setup("slub_nomerge", setup_slub_nomerge);
2815
51df1142
CL
2816static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2817 int size, unsigned int flags)
81819f0f 2818{
51df1142
CL
2819 struct kmem_cache *s;
2820
2821 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2822
83b519e8
PE
2823 /*
2824 * This function is called with IRQs disabled during early-boot on
2825 * single CPU so there's no need to take slub_lock here.
2826 */
55136592 2827 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2828 flags, NULL))
81819f0f
CL
2829 goto panic;
2830
2831 list_add(&s->list, &slab_caches);
51df1142 2832 return s;
81819f0f
CL
2833
2834panic:
2835 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2836 return NULL;
81819f0f
CL
2837}
2838
f1b26339
CL
2839/*
2840 * Conversion table for small slabs sizes / 8 to the index in the
2841 * kmalloc array. This is necessary for slabs < 192 since we have non power
2842 * of two cache sizes there. The size of larger slabs can be determined using
2843 * fls.
2844 */
2845static s8 size_index[24] = {
2846 3, /* 8 */
2847 4, /* 16 */
2848 5, /* 24 */
2849 5, /* 32 */
2850 6, /* 40 */
2851 6, /* 48 */
2852 6, /* 56 */
2853 6, /* 64 */
2854 1, /* 72 */
2855 1, /* 80 */
2856 1, /* 88 */
2857 1, /* 96 */
2858 7, /* 104 */
2859 7, /* 112 */
2860 7, /* 120 */
2861 7, /* 128 */
2862 2, /* 136 */
2863 2, /* 144 */
2864 2, /* 152 */
2865 2, /* 160 */
2866 2, /* 168 */
2867 2, /* 176 */
2868 2, /* 184 */
2869 2 /* 192 */
2870};
2871
acdfcd04
AK
2872static inline int size_index_elem(size_t bytes)
2873{
2874 return (bytes - 1) / 8;
2875}
2876
81819f0f
CL
2877static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2878{
f1b26339 2879 int index;
81819f0f 2880
f1b26339
CL
2881 if (size <= 192) {
2882 if (!size)
2883 return ZERO_SIZE_PTR;
81819f0f 2884
acdfcd04 2885 index = size_index[size_index_elem(size)];
aadb4bc4 2886 } else
f1b26339 2887 index = fls(size - 1);
81819f0f
CL
2888
2889#ifdef CONFIG_ZONE_DMA
f1b26339 2890 if (unlikely((flags & SLUB_DMA)))
51df1142 2891 return kmalloc_dma_caches[index];
f1b26339 2892
81819f0f 2893#endif
51df1142 2894 return kmalloc_caches[index];
81819f0f
CL
2895}
2896
2897void *__kmalloc(size_t size, gfp_t flags)
2898{
aadb4bc4 2899 struct kmem_cache *s;
5b882be4 2900 void *ret;
81819f0f 2901
ffadd4d0 2902 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2903 return kmalloc_large(size, flags);
aadb4bc4
CL
2904
2905 s = get_slab(size, flags);
2906
2907 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2908 return s;
2909
2154a336 2910 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2911
ca2b84cb 2912 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2913
2914 return ret;
81819f0f
CL
2915}
2916EXPORT_SYMBOL(__kmalloc);
2917
5d1f57e4 2918#ifdef CONFIG_NUMA
f619cfe1
CL
2919static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2920{
b1eeab67 2921 struct page *page;
e4f7c0b4 2922 void *ptr = NULL;
f619cfe1 2923
b1eeab67
VN
2924 flags |= __GFP_COMP | __GFP_NOTRACK;
2925 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2926 if (page)
e4f7c0b4
CM
2927 ptr = page_address(page);
2928
2929 kmemleak_alloc(ptr, size, 1, flags);
2930 return ptr;
f619cfe1
CL
2931}
2932
81819f0f
CL
2933void *__kmalloc_node(size_t size, gfp_t flags, int node)
2934{
aadb4bc4 2935 struct kmem_cache *s;
5b882be4 2936 void *ret;
81819f0f 2937
057685cf 2938 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2939 ret = kmalloc_large_node(size, flags, node);
2940
ca2b84cb
EGM
2941 trace_kmalloc_node(_RET_IP_, ret,
2942 size, PAGE_SIZE << get_order(size),
2943 flags, node);
5b882be4
EGM
2944
2945 return ret;
2946 }
aadb4bc4
CL
2947
2948 s = get_slab(size, flags);
2949
2950 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2951 return s;
2952
5b882be4
EGM
2953 ret = slab_alloc(s, flags, node, _RET_IP_);
2954
ca2b84cb 2955 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2956
2957 return ret;
81819f0f
CL
2958}
2959EXPORT_SYMBOL(__kmalloc_node);
2960#endif
2961
2962size_t ksize(const void *object)
2963{
272c1d21 2964 struct page *page;
81819f0f 2965
ef8b4520 2966 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2967 return 0;
2968
294a80a8 2969 page = virt_to_head_page(object);
294a80a8 2970
76994412
PE
2971 if (unlikely(!PageSlab(page))) {
2972 WARN_ON(!PageCompound(page));
294a80a8 2973 return PAGE_SIZE << compound_order(page);
76994412 2974 }
81819f0f 2975
b3d41885 2976 return slab_ksize(page->slab);
81819f0f 2977}
b1aabecd 2978EXPORT_SYMBOL(ksize);
81819f0f
CL
2979
2980void kfree(const void *x)
2981{
81819f0f 2982 struct page *page;
5bb983b0 2983 void *object = (void *)x;
81819f0f 2984
2121db74
PE
2985 trace_kfree(_RET_IP_, x);
2986
2408c550 2987 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2988 return;
2989
b49af68f 2990 page = virt_to_head_page(x);
aadb4bc4 2991 if (unlikely(!PageSlab(page))) {
0937502a 2992 BUG_ON(!PageCompound(page));
e4f7c0b4 2993 kmemleak_free(x);
aadb4bc4
CL
2994 put_page(page);
2995 return;
2996 }
ce71e27c 2997 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2998}
2999EXPORT_SYMBOL(kfree);
3000
2086d26a 3001/*
672bba3a
CL
3002 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3003 * the remaining slabs by the number of items in use. The slabs with the
3004 * most items in use come first. New allocations will then fill those up
3005 * and thus they can be removed from the partial lists.
3006 *
3007 * The slabs with the least items are placed last. This results in them
3008 * being allocated from last increasing the chance that the last objects
3009 * are freed in them.
2086d26a
CL
3010 */
3011int kmem_cache_shrink(struct kmem_cache *s)
3012{
3013 int node;
3014 int i;
3015 struct kmem_cache_node *n;
3016 struct page *page;
3017 struct page *t;
205ab99d 3018 int objects = oo_objects(s->max);
2086d26a 3019 struct list_head *slabs_by_inuse =
834f3d11 3020 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3021 unsigned long flags;
3022
3023 if (!slabs_by_inuse)
3024 return -ENOMEM;
3025
3026 flush_all(s);
f64dc58c 3027 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3028 n = get_node(s, node);
3029
3030 if (!n->nr_partial)
3031 continue;
3032
834f3d11 3033 for (i = 0; i < objects; i++)
2086d26a
CL
3034 INIT_LIST_HEAD(slabs_by_inuse + i);
3035
3036 spin_lock_irqsave(&n->list_lock, flags);
3037
3038 /*
672bba3a 3039 * Build lists indexed by the items in use in each slab.
2086d26a 3040 *
672bba3a
CL
3041 * Note that concurrent frees may occur while we hold the
3042 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3043 */
3044 list_for_each_entry_safe(page, t, &n->partial, lru) {
3045 if (!page->inuse && slab_trylock(page)) {
3046 /*
3047 * Must hold slab lock here because slab_free
3048 * may have freed the last object and be
3049 * waiting to release the slab.
3050 */
62e346a8 3051 __remove_partial(n, page);
2086d26a
CL
3052 slab_unlock(page);
3053 discard_slab(s, page);
3054 } else {
fcda3d89
CL
3055 list_move(&page->lru,
3056 slabs_by_inuse + page->inuse);
2086d26a
CL
3057 }
3058 }
3059
2086d26a 3060 /*
672bba3a
CL
3061 * Rebuild the partial list with the slabs filled up most
3062 * first and the least used slabs at the end.
2086d26a 3063 */
834f3d11 3064 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3065 list_splice(slabs_by_inuse + i, n->partial.prev);
3066
2086d26a
CL
3067 spin_unlock_irqrestore(&n->list_lock, flags);
3068 }
3069
3070 kfree(slabs_by_inuse);
3071 return 0;
3072}
3073EXPORT_SYMBOL(kmem_cache_shrink);
3074
92a5bbc1 3075#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3076static int slab_mem_going_offline_callback(void *arg)
3077{
3078 struct kmem_cache *s;
3079
3080 down_read(&slub_lock);
3081 list_for_each_entry(s, &slab_caches, list)
3082 kmem_cache_shrink(s);
3083 up_read(&slub_lock);
3084
3085 return 0;
3086}
3087
3088static void slab_mem_offline_callback(void *arg)
3089{
3090 struct kmem_cache_node *n;
3091 struct kmem_cache *s;
3092 struct memory_notify *marg = arg;
3093 int offline_node;
3094
3095 offline_node = marg->status_change_nid;
3096
3097 /*
3098 * If the node still has available memory. we need kmem_cache_node
3099 * for it yet.
3100 */
3101 if (offline_node < 0)
3102 return;
3103
3104 down_read(&slub_lock);
3105 list_for_each_entry(s, &slab_caches, list) {
3106 n = get_node(s, offline_node);
3107 if (n) {
3108 /*
3109 * if n->nr_slabs > 0, slabs still exist on the node
3110 * that is going down. We were unable to free them,
c9404c9c 3111 * and offline_pages() function shouldn't call this
b9049e23
YG
3112 * callback. So, we must fail.
3113 */
0f389ec6 3114 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3115
3116 s->node[offline_node] = NULL;
8de66a0c 3117 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3118 }
3119 }
3120 up_read(&slub_lock);
3121}
3122
3123static int slab_mem_going_online_callback(void *arg)
3124{
3125 struct kmem_cache_node *n;
3126 struct kmem_cache *s;
3127 struct memory_notify *marg = arg;
3128 int nid = marg->status_change_nid;
3129 int ret = 0;
3130
3131 /*
3132 * If the node's memory is already available, then kmem_cache_node is
3133 * already created. Nothing to do.
3134 */
3135 if (nid < 0)
3136 return 0;
3137
3138 /*
0121c619 3139 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3140 * allocate a kmem_cache_node structure in order to bring the node
3141 * online.
3142 */
3143 down_read(&slub_lock);
3144 list_for_each_entry(s, &slab_caches, list) {
3145 /*
3146 * XXX: kmem_cache_alloc_node will fallback to other nodes
3147 * since memory is not yet available from the node that
3148 * is brought up.
3149 */
8de66a0c 3150 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3151 if (!n) {
3152 ret = -ENOMEM;
3153 goto out;
3154 }
5595cffc 3155 init_kmem_cache_node(n, s);
b9049e23
YG
3156 s->node[nid] = n;
3157 }
3158out:
3159 up_read(&slub_lock);
3160 return ret;
3161}
3162
3163static int slab_memory_callback(struct notifier_block *self,
3164 unsigned long action, void *arg)
3165{
3166 int ret = 0;
3167
3168 switch (action) {
3169 case MEM_GOING_ONLINE:
3170 ret = slab_mem_going_online_callback(arg);
3171 break;
3172 case MEM_GOING_OFFLINE:
3173 ret = slab_mem_going_offline_callback(arg);
3174 break;
3175 case MEM_OFFLINE:
3176 case MEM_CANCEL_ONLINE:
3177 slab_mem_offline_callback(arg);
3178 break;
3179 case MEM_ONLINE:
3180 case MEM_CANCEL_OFFLINE:
3181 break;
3182 }
dc19f9db
KH
3183 if (ret)
3184 ret = notifier_from_errno(ret);
3185 else
3186 ret = NOTIFY_OK;
b9049e23
YG
3187 return ret;
3188}
3189
3190#endif /* CONFIG_MEMORY_HOTPLUG */
3191
81819f0f
CL
3192/********************************************************************
3193 * Basic setup of slabs
3194 *******************************************************************/
3195
51df1142
CL
3196/*
3197 * Used for early kmem_cache structures that were allocated using
3198 * the page allocator
3199 */
3200
3201static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3202{
3203 int node;
3204
3205 list_add(&s->list, &slab_caches);
3206 s->refcount = -1;
3207
3208 for_each_node_state(node, N_NORMAL_MEMORY) {
3209 struct kmem_cache_node *n = get_node(s, node);
3210 struct page *p;
3211
3212 if (n) {
3213 list_for_each_entry(p, &n->partial, lru)
3214 p->slab = s;
3215
607bf324 3216#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3217 list_for_each_entry(p, &n->full, lru)
3218 p->slab = s;
3219#endif
3220 }
3221 }
3222}
3223
81819f0f
CL
3224void __init kmem_cache_init(void)
3225{
3226 int i;
4b356be0 3227 int caches = 0;
51df1142
CL
3228 struct kmem_cache *temp_kmem_cache;
3229 int order;
51df1142
CL
3230 struct kmem_cache *temp_kmem_cache_node;
3231 unsigned long kmalloc_size;
3232
3233 kmem_size = offsetof(struct kmem_cache, node) +
3234 nr_node_ids * sizeof(struct kmem_cache_node *);
3235
3236 /* Allocate two kmem_caches from the page allocator */
3237 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3238 order = get_order(2 * kmalloc_size);
3239 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3240
81819f0f
CL
3241 /*
3242 * Must first have the slab cache available for the allocations of the
672bba3a 3243 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3244 * kmem_cache_open for slab_state == DOWN.
3245 */
51df1142
CL
3246 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3247
3248 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3249 sizeof(struct kmem_cache_node),
3250 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3251
0c40ba4f 3252 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3253
3254 /* Able to allocate the per node structures */
3255 slab_state = PARTIAL;
3256
51df1142
CL
3257 temp_kmem_cache = kmem_cache;
3258 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3259 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3260 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3261 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3262
51df1142
CL
3263 /*
3264 * Allocate kmem_cache_node properly from the kmem_cache slab.
3265 * kmem_cache_node is separately allocated so no need to
3266 * update any list pointers.
3267 */
3268 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3269
51df1142
CL
3270 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3271 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3272
3273 kmem_cache_bootstrap_fixup(kmem_cache_node);
3274
3275 caches++;
51df1142
CL
3276 kmem_cache_bootstrap_fixup(kmem_cache);
3277 caches++;
3278 /* Free temporary boot structure */
3279 free_pages((unsigned long)temp_kmem_cache, order);
3280
3281 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3282
3283 /*
3284 * Patch up the size_index table if we have strange large alignment
3285 * requirements for the kmalloc array. This is only the case for
6446faa2 3286 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3287 *
3288 * Largest permitted alignment is 256 bytes due to the way we
3289 * handle the index determination for the smaller caches.
3290 *
3291 * Make sure that nothing crazy happens if someone starts tinkering
3292 * around with ARCH_KMALLOC_MINALIGN
3293 */
3294 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3295 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3296
acdfcd04
AK
3297 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3298 int elem = size_index_elem(i);
3299 if (elem >= ARRAY_SIZE(size_index))
3300 break;
3301 size_index[elem] = KMALLOC_SHIFT_LOW;
3302 }
f1b26339 3303
acdfcd04
AK
3304 if (KMALLOC_MIN_SIZE == 64) {
3305 /*
3306 * The 96 byte size cache is not used if the alignment
3307 * is 64 byte.
3308 */
3309 for (i = 64 + 8; i <= 96; i += 8)
3310 size_index[size_index_elem(i)] = 7;
3311 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3312 /*
3313 * The 192 byte sized cache is not used if the alignment
3314 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3315 * instead.
3316 */
3317 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3318 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3319 }
3320
51df1142
CL
3321 /* Caches that are not of the two-to-the-power-of size */
3322 if (KMALLOC_MIN_SIZE <= 32) {
3323 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3324 caches++;
3325 }
3326
3327 if (KMALLOC_MIN_SIZE <= 64) {
3328 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3329 caches++;
3330 }
3331
3332 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3333 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3334 caches++;
3335 }
3336
81819f0f
CL
3337 slab_state = UP;
3338
3339 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3340 if (KMALLOC_MIN_SIZE <= 32) {
3341 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3342 BUG_ON(!kmalloc_caches[1]->name);
3343 }
3344
3345 if (KMALLOC_MIN_SIZE <= 64) {
3346 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3347 BUG_ON(!kmalloc_caches[2]->name);
3348 }
3349
d7278bd7
CL
3350 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3351 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3352
3353 BUG_ON(!s);
51df1142 3354 kmalloc_caches[i]->name = s;
d7278bd7 3355 }
81819f0f
CL
3356
3357#ifdef CONFIG_SMP
3358 register_cpu_notifier(&slab_notifier);
9dfc6e68 3359#endif
81819f0f 3360
55136592 3361#ifdef CONFIG_ZONE_DMA
51df1142
CL
3362 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3363 struct kmem_cache *s = kmalloc_caches[i];
55136592 3364
51df1142 3365 if (s && s->size) {
55136592
CL
3366 char *name = kasprintf(GFP_NOWAIT,
3367 "dma-kmalloc-%d", s->objsize);
3368
3369 BUG_ON(!name);
51df1142
CL
3370 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3371 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3372 }
3373 }
3374#endif
3adbefee
IM
3375 printk(KERN_INFO
3376 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3377 " CPUs=%d, Nodes=%d\n",
3378 caches, cache_line_size(),
81819f0f
CL
3379 slub_min_order, slub_max_order, slub_min_objects,
3380 nr_cpu_ids, nr_node_ids);
3381}
3382
7e85ee0c
PE
3383void __init kmem_cache_init_late(void)
3384{
7e85ee0c
PE
3385}
3386
81819f0f
CL
3387/*
3388 * Find a mergeable slab cache
3389 */
3390static int slab_unmergeable(struct kmem_cache *s)
3391{
3392 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3393 return 1;
3394
c59def9f 3395 if (s->ctor)
81819f0f
CL
3396 return 1;
3397
8ffa6875
CL
3398 /*
3399 * We may have set a slab to be unmergeable during bootstrap.
3400 */
3401 if (s->refcount < 0)
3402 return 1;
3403
81819f0f
CL
3404 return 0;
3405}
3406
3407static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3408 size_t align, unsigned long flags, const char *name,
51cc5068 3409 void (*ctor)(void *))
81819f0f 3410{
5b95a4ac 3411 struct kmem_cache *s;
81819f0f
CL
3412
3413 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3414 return NULL;
3415
c59def9f 3416 if (ctor)
81819f0f
CL
3417 return NULL;
3418
3419 size = ALIGN(size, sizeof(void *));
3420 align = calculate_alignment(flags, align, size);
3421 size = ALIGN(size, align);
ba0268a8 3422 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3423
5b95a4ac 3424 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3425 if (slab_unmergeable(s))
3426 continue;
3427
3428 if (size > s->size)
3429 continue;
3430
ba0268a8 3431 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3432 continue;
3433 /*
3434 * Check if alignment is compatible.
3435 * Courtesy of Adrian Drzewiecki
3436 */
06428780 3437 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3438 continue;
3439
3440 if (s->size - size >= sizeof(void *))
3441 continue;
3442
3443 return s;
3444 }
3445 return NULL;
3446}
3447
3448struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3449 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3450{
3451 struct kmem_cache *s;
84c1cf62 3452 char *n;
81819f0f 3453
fe1ff49d
BH
3454 if (WARN_ON(!name))
3455 return NULL;
3456
81819f0f 3457 down_write(&slub_lock);
ba0268a8 3458 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3459 if (s) {
3460 s->refcount++;
3461 /*
3462 * Adjust the object sizes so that we clear
3463 * the complete object on kzalloc.
3464 */
3465 s->objsize = max(s->objsize, (int)size);
3466 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3467
7b8f3b66 3468 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3469 s->refcount--;
81819f0f 3470 goto err;
7b8f3b66 3471 }
2bce6485 3472 up_write(&slub_lock);
a0e1d1be
CL
3473 return s;
3474 }
6446faa2 3475
84c1cf62
PE
3476 n = kstrdup(name, GFP_KERNEL);
3477 if (!n)
3478 goto err;
3479
a0e1d1be
CL
3480 s = kmalloc(kmem_size, GFP_KERNEL);
3481 if (s) {
84c1cf62 3482 if (kmem_cache_open(s, n,
c59def9f 3483 size, align, flags, ctor)) {
81819f0f 3484 list_add(&s->list, &slab_caches);
7b8f3b66 3485 if (sysfs_slab_add(s)) {
7b8f3b66 3486 list_del(&s->list);
84c1cf62 3487 kfree(n);
7b8f3b66 3488 kfree(s);
a0e1d1be 3489 goto err;
7b8f3b66 3490 }
2bce6485 3491 up_write(&slub_lock);
a0e1d1be
CL
3492 return s;
3493 }
84c1cf62 3494 kfree(n);
a0e1d1be 3495 kfree(s);
81819f0f 3496 }
68cee4f1 3497err:
81819f0f 3498 up_write(&slub_lock);
81819f0f 3499
81819f0f
CL
3500 if (flags & SLAB_PANIC)
3501 panic("Cannot create slabcache %s\n", name);
3502 else
3503 s = NULL;
3504 return s;
3505}
3506EXPORT_SYMBOL(kmem_cache_create);
3507
81819f0f 3508#ifdef CONFIG_SMP
81819f0f 3509/*
672bba3a
CL
3510 * Use the cpu notifier to insure that the cpu slabs are flushed when
3511 * necessary.
81819f0f
CL
3512 */
3513static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3514 unsigned long action, void *hcpu)
3515{
3516 long cpu = (long)hcpu;
5b95a4ac
CL
3517 struct kmem_cache *s;
3518 unsigned long flags;
81819f0f
CL
3519
3520 switch (action) {
3521 case CPU_UP_CANCELED:
8bb78442 3522 case CPU_UP_CANCELED_FROZEN:
81819f0f 3523 case CPU_DEAD:
8bb78442 3524 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3525 down_read(&slub_lock);
3526 list_for_each_entry(s, &slab_caches, list) {
3527 local_irq_save(flags);
3528 __flush_cpu_slab(s, cpu);
3529 local_irq_restore(flags);
3530 }
3531 up_read(&slub_lock);
81819f0f
CL
3532 break;
3533 default:
3534 break;
3535 }
3536 return NOTIFY_OK;
3537}
3538
06428780 3539static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3540 .notifier_call = slab_cpuup_callback
06428780 3541};
81819f0f
CL
3542
3543#endif
3544
ce71e27c 3545void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3546{
aadb4bc4 3547 struct kmem_cache *s;
94b528d0 3548 void *ret;
aadb4bc4 3549
ffadd4d0 3550 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3551 return kmalloc_large(size, gfpflags);
3552
aadb4bc4 3553 s = get_slab(size, gfpflags);
81819f0f 3554
2408c550 3555 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3556 return s;
81819f0f 3557
2154a336 3558 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3559
3560 /* Honor the call site pointer we recieved. */
ca2b84cb 3561 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3562
3563 return ret;
81819f0f
CL
3564}
3565
5d1f57e4 3566#ifdef CONFIG_NUMA
81819f0f 3567void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3568 int node, unsigned long caller)
81819f0f 3569{
aadb4bc4 3570 struct kmem_cache *s;
94b528d0 3571 void *ret;
aadb4bc4 3572
d3e14aa3
XF
3573 if (unlikely(size > SLUB_MAX_SIZE)) {
3574 ret = kmalloc_large_node(size, gfpflags, node);
3575
3576 trace_kmalloc_node(caller, ret,
3577 size, PAGE_SIZE << get_order(size),
3578 gfpflags, node);
3579
3580 return ret;
3581 }
eada35ef 3582
aadb4bc4 3583 s = get_slab(size, gfpflags);
81819f0f 3584
2408c550 3585 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3586 return s;
81819f0f 3587
94b528d0
EGM
3588 ret = slab_alloc(s, gfpflags, node, caller);
3589
3590 /* Honor the call site pointer we recieved. */
ca2b84cb 3591 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3592
3593 return ret;
81819f0f 3594}
5d1f57e4 3595#endif
81819f0f 3596
ab4d5ed5 3597#ifdef CONFIG_SYSFS
205ab99d
CL
3598static int count_inuse(struct page *page)
3599{
3600 return page->inuse;
3601}
3602
3603static int count_total(struct page *page)
3604{
3605 return page->objects;
3606}
ab4d5ed5 3607#endif
205ab99d 3608
ab4d5ed5 3609#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3610static int validate_slab(struct kmem_cache *s, struct page *page,
3611 unsigned long *map)
53e15af0
CL
3612{
3613 void *p;
a973e9dd 3614 void *addr = page_address(page);
53e15af0
CL
3615
3616 if (!check_slab(s, page) ||
3617 !on_freelist(s, page, NULL))
3618 return 0;
3619
3620 /* Now we know that a valid freelist exists */
39b26464 3621 bitmap_zero(map, page->objects);
53e15af0 3622
5f80b13a
CL
3623 get_map(s, page, map);
3624 for_each_object(p, s, addr, page->objects) {
3625 if (test_bit(slab_index(p, s, addr), map))
3626 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3627 return 0;
53e15af0
CL
3628 }
3629
224a88be 3630 for_each_object(p, s, addr, page->objects)
7656c72b 3631 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3632 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3633 return 0;
3634 return 1;
3635}
3636
434e245d
CL
3637static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3638 unsigned long *map)
53e15af0
CL
3639{
3640 if (slab_trylock(page)) {
434e245d 3641 validate_slab(s, page, map);
53e15af0
CL
3642 slab_unlock(page);
3643 } else
3644 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3645 s->name, page);
53e15af0
CL
3646}
3647
434e245d
CL
3648static int validate_slab_node(struct kmem_cache *s,
3649 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3650{
3651 unsigned long count = 0;
3652 struct page *page;
3653 unsigned long flags;
3654
3655 spin_lock_irqsave(&n->list_lock, flags);
3656
3657 list_for_each_entry(page, &n->partial, lru) {
434e245d 3658 validate_slab_slab(s, page, map);
53e15af0
CL
3659 count++;
3660 }
3661 if (count != n->nr_partial)
3662 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3663 "counter=%ld\n", s->name, count, n->nr_partial);
3664
3665 if (!(s->flags & SLAB_STORE_USER))
3666 goto out;
3667
3668 list_for_each_entry(page, &n->full, lru) {
434e245d 3669 validate_slab_slab(s, page, map);
53e15af0
CL
3670 count++;
3671 }
3672 if (count != atomic_long_read(&n->nr_slabs))
3673 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3674 "counter=%ld\n", s->name, count,
3675 atomic_long_read(&n->nr_slabs));
3676
3677out:
3678 spin_unlock_irqrestore(&n->list_lock, flags);
3679 return count;
3680}
3681
434e245d 3682static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3683{
3684 int node;
3685 unsigned long count = 0;
205ab99d 3686 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3687 sizeof(unsigned long), GFP_KERNEL);
3688
3689 if (!map)
3690 return -ENOMEM;
53e15af0
CL
3691
3692 flush_all(s);
f64dc58c 3693 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3694 struct kmem_cache_node *n = get_node(s, node);
3695
434e245d 3696 count += validate_slab_node(s, n, map);
53e15af0 3697 }
434e245d 3698 kfree(map);
53e15af0
CL
3699 return count;
3700}
88a420e4 3701/*
672bba3a 3702 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3703 * and freed.
3704 */
3705
3706struct location {
3707 unsigned long count;
ce71e27c 3708 unsigned long addr;
45edfa58
CL
3709 long long sum_time;
3710 long min_time;
3711 long max_time;
3712 long min_pid;
3713 long max_pid;
174596a0 3714 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3715 nodemask_t nodes;
88a420e4
CL
3716};
3717
3718struct loc_track {
3719 unsigned long max;
3720 unsigned long count;
3721 struct location *loc;
3722};
3723
3724static void free_loc_track(struct loc_track *t)
3725{
3726 if (t->max)
3727 free_pages((unsigned long)t->loc,
3728 get_order(sizeof(struct location) * t->max));
3729}
3730
68dff6a9 3731static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3732{
3733 struct location *l;
3734 int order;
3735
88a420e4
CL
3736 order = get_order(sizeof(struct location) * max);
3737
68dff6a9 3738 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3739 if (!l)
3740 return 0;
3741
3742 if (t->count) {
3743 memcpy(l, t->loc, sizeof(struct location) * t->count);
3744 free_loc_track(t);
3745 }
3746 t->max = max;
3747 t->loc = l;
3748 return 1;
3749}
3750
3751static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3752 const struct track *track)
88a420e4
CL
3753{
3754 long start, end, pos;
3755 struct location *l;
ce71e27c 3756 unsigned long caddr;
45edfa58 3757 unsigned long age = jiffies - track->when;
88a420e4
CL
3758
3759 start = -1;
3760 end = t->count;
3761
3762 for ( ; ; ) {
3763 pos = start + (end - start + 1) / 2;
3764
3765 /*
3766 * There is nothing at "end". If we end up there
3767 * we need to add something to before end.
3768 */
3769 if (pos == end)
3770 break;
3771
3772 caddr = t->loc[pos].addr;
45edfa58
CL
3773 if (track->addr == caddr) {
3774
3775 l = &t->loc[pos];
3776 l->count++;
3777 if (track->when) {
3778 l->sum_time += age;
3779 if (age < l->min_time)
3780 l->min_time = age;
3781 if (age > l->max_time)
3782 l->max_time = age;
3783
3784 if (track->pid < l->min_pid)
3785 l->min_pid = track->pid;
3786 if (track->pid > l->max_pid)
3787 l->max_pid = track->pid;
3788
174596a0
RR
3789 cpumask_set_cpu(track->cpu,
3790 to_cpumask(l->cpus));
45edfa58
CL
3791 }
3792 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3793 return 1;
3794 }
3795
45edfa58 3796 if (track->addr < caddr)
88a420e4
CL
3797 end = pos;
3798 else
3799 start = pos;
3800 }
3801
3802 /*
672bba3a 3803 * Not found. Insert new tracking element.
88a420e4 3804 */
68dff6a9 3805 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3806 return 0;
3807
3808 l = t->loc + pos;
3809 if (pos < t->count)
3810 memmove(l + 1, l,
3811 (t->count - pos) * sizeof(struct location));
3812 t->count++;
3813 l->count = 1;
45edfa58
CL
3814 l->addr = track->addr;
3815 l->sum_time = age;
3816 l->min_time = age;
3817 l->max_time = age;
3818 l->min_pid = track->pid;
3819 l->max_pid = track->pid;
174596a0
RR
3820 cpumask_clear(to_cpumask(l->cpus));
3821 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3822 nodes_clear(l->nodes);
3823 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3824 return 1;
3825}
3826
3827static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3828 struct page *page, enum track_item alloc,
a5dd5c11 3829 unsigned long *map)
88a420e4 3830{
a973e9dd 3831 void *addr = page_address(page);
88a420e4
CL
3832 void *p;
3833
39b26464 3834 bitmap_zero(map, page->objects);
5f80b13a 3835 get_map(s, page, map);
88a420e4 3836
224a88be 3837 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3838 if (!test_bit(slab_index(p, s, addr), map))
3839 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3840}
3841
3842static int list_locations(struct kmem_cache *s, char *buf,
3843 enum track_item alloc)
3844{
e374d483 3845 int len = 0;
88a420e4 3846 unsigned long i;
68dff6a9 3847 struct loc_track t = { 0, 0, NULL };
88a420e4 3848 int node;
bbd7d57b
ED
3849 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3850 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3851
bbd7d57b
ED
3852 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3853 GFP_TEMPORARY)) {
3854 kfree(map);
68dff6a9 3855 return sprintf(buf, "Out of memory\n");
bbd7d57b 3856 }
88a420e4
CL
3857 /* Push back cpu slabs */
3858 flush_all(s);
3859
f64dc58c 3860 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3861 struct kmem_cache_node *n = get_node(s, node);
3862 unsigned long flags;
3863 struct page *page;
3864
9e86943b 3865 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3866 continue;
3867
3868 spin_lock_irqsave(&n->list_lock, flags);
3869 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3870 process_slab(&t, s, page, alloc, map);
88a420e4 3871 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3872 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3873 spin_unlock_irqrestore(&n->list_lock, flags);
3874 }
3875
3876 for (i = 0; i < t.count; i++) {
45edfa58 3877 struct location *l = &t.loc[i];
88a420e4 3878
9c246247 3879 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3880 break;
e374d483 3881 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3882
3883 if (l->addr)
62c70bce 3884 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3885 else
e374d483 3886 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3887
3888 if (l->sum_time != l->min_time) {
e374d483 3889 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3890 l->min_time,
3891 (long)div_u64(l->sum_time, l->count),
3892 l->max_time);
45edfa58 3893 } else
e374d483 3894 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3895 l->min_time);
3896
3897 if (l->min_pid != l->max_pid)
e374d483 3898 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3899 l->min_pid, l->max_pid);
3900 else
e374d483 3901 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3902 l->min_pid);
3903
174596a0
RR
3904 if (num_online_cpus() > 1 &&
3905 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3906 len < PAGE_SIZE - 60) {
3907 len += sprintf(buf + len, " cpus=");
3908 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3909 to_cpumask(l->cpus));
45edfa58
CL
3910 }
3911
62bc62a8 3912 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3913 len < PAGE_SIZE - 60) {
3914 len += sprintf(buf + len, " nodes=");
3915 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3916 l->nodes);
3917 }
3918
e374d483 3919 len += sprintf(buf + len, "\n");
88a420e4
CL
3920 }
3921
3922 free_loc_track(&t);
bbd7d57b 3923 kfree(map);
88a420e4 3924 if (!t.count)
e374d483
HH
3925 len += sprintf(buf, "No data\n");
3926 return len;
88a420e4 3927}
ab4d5ed5 3928#endif
88a420e4 3929
a5a84755
CL
3930#ifdef SLUB_RESILIENCY_TEST
3931static void resiliency_test(void)
3932{
3933 u8 *p;
3934
3935 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3936
3937 printk(KERN_ERR "SLUB resiliency testing\n");
3938 printk(KERN_ERR "-----------------------\n");
3939 printk(KERN_ERR "A. Corruption after allocation\n");
3940
3941 p = kzalloc(16, GFP_KERNEL);
3942 p[16] = 0x12;
3943 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3944 " 0x12->0x%p\n\n", p + 16);
3945
3946 validate_slab_cache(kmalloc_caches[4]);
3947
3948 /* Hmmm... The next two are dangerous */
3949 p = kzalloc(32, GFP_KERNEL);
3950 p[32 + sizeof(void *)] = 0x34;
3951 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3952 " 0x34 -> -0x%p\n", p);
3953 printk(KERN_ERR
3954 "If allocated object is overwritten then not detectable\n\n");
3955
3956 validate_slab_cache(kmalloc_caches[5]);
3957 p = kzalloc(64, GFP_KERNEL);
3958 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3959 *p = 0x56;
3960 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3961 p);
3962 printk(KERN_ERR
3963 "If allocated object is overwritten then not detectable\n\n");
3964 validate_slab_cache(kmalloc_caches[6]);
3965
3966 printk(KERN_ERR "\nB. Corruption after free\n");
3967 p = kzalloc(128, GFP_KERNEL);
3968 kfree(p);
3969 *p = 0x78;
3970 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3971 validate_slab_cache(kmalloc_caches[7]);
3972
3973 p = kzalloc(256, GFP_KERNEL);
3974 kfree(p);
3975 p[50] = 0x9a;
3976 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3977 p);
3978 validate_slab_cache(kmalloc_caches[8]);
3979
3980 p = kzalloc(512, GFP_KERNEL);
3981 kfree(p);
3982 p[512] = 0xab;
3983 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3984 validate_slab_cache(kmalloc_caches[9]);
3985}
3986#else
3987#ifdef CONFIG_SYSFS
3988static void resiliency_test(void) {};
3989#endif
3990#endif
3991
ab4d5ed5 3992#ifdef CONFIG_SYSFS
81819f0f 3993enum slab_stat_type {
205ab99d
CL
3994 SL_ALL, /* All slabs */
3995 SL_PARTIAL, /* Only partially allocated slabs */
3996 SL_CPU, /* Only slabs used for cpu caches */
3997 SL_OBJECTS, /* Determine allocated objects not slabs */
3998 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3999};
4000
205ab99d 4001#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4002#define SO_PARTIAL (1 << SL_PARTIAL)
4003#define SO_CPU (1 << SL_CPU)
4004#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4005#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4006
62e5c4b4
CG
4007static ssize_t show_slab_objects(struct kmem_cache *s,
4008 char *buf, unsigned long flags)
81819f0f
CL
4009{
4010 unsigned long total = 0;
81819f0f
CL
4011 int node;
4012 int x;
4013 unsigned long *nodes;
4014 unsigned long *per_cpu;
4015
4016 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4017 if (!nodes)
4018 return -ENOMEM;
81819f0f
CL
4019 per_cpu = nodes + nr_node_ids;
4020
205ab99d
CL
4021 if (flags & SO_CPU) {
4022 int cpu;
81819f0f 4023
205ab99d 4024 for_each_possible_cpu(cpu) {
9dfc6e68 4025 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4026
205ab99d
CL
4027 if (!c || c->node < 0)
4028 continue;
4029
4030 if (c->page) {
4031 if (flags & SO_TOTAL)
4032 x = c->page->objects;
4033 else if (flags & SO_OBJECTS)
4034 x = c->page->inuse;
81819f0f
CL
4035 else
4036 x = 1;
205ab99d 4037
81819f0f 4038 total += x;
205ab99d 4039 nodes[c->node] += x;
81819f0f 4040 }
205ab99d 4041 per_cpu[c->node]++;
81819f0f
CL
4042 }
4043 }
4044
04d94879 4045 lock_memory_hotplug();
ab4d5ed5 4046#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4047 if (flags & SO_ALL) {
4048 for_each_node_state(node, N_NORMAL_MEMORY) {
4049 struct kmem_cache_node *n = get_node(s, node);
4050
4051 if (flags & SO_TOTAL)
4052 x = atomic_long_read(&n->total_objects);
4053 else if (flags & SO_OBJECTS)
4054 x = atomic_long_read(&n->total_objects) -
4055 count_partial(n, count_free);
81819f0f 4056
81819f0f 4057 else
205ab99d 4058 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4059 total += x;
4060 nodes[node] += x;
4061 }
4062
ab4d5ed5
CL
4063 } else
4064#endif
4065 if (flags & SO_PARTIAL) {
205ab99d
CL
4066 for_each_node_state(node, N_NORMAL_MEMORY) {
4067 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4068
205ab99d
CL
4069 if (flags & SO_TOTAL)
4070 x = count_partial(n, count_total);
4071 else if (flags & SO_OBJECTS)
4072 x = count_partial(n, count_inuse);
81819f0f 4073 else
205ab99d 4074 x = n->nr_partial;
81819f0f
CL
4075 total += x;
4076 nodes[node] += x;
4077 }
4078 }
81819f0f
CL
4079 x = sprintf(buf, "%lu", total);
4080#ifdef CONFIG_NUMA
f64dc58c 4081 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4082 if (nodes[node])
4083 x += sprintf(buf + x, " N%d=%lu",
4084 node, nodes[node]);
4085#endif
04d94879 4086 unlock_memory_hotplug();
81819f0f
CL
4087 kfree(nodes);
4088 return x + sprintf(buf + x, "\n");
4089}
4090
ab4d5ed5 4091#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4092static int any_slab_objects(struct kmem_cache *s)
4093{
4094 int node;
81819f0f 4095
dfb4f096 4096 for_each_online_node(node) {
81819f0f
CL
4097 struct kmem_cache_node *n = get_node(s, node);
4098
dfb4f096
CL
4099 if (!n)
4100 continue;
4101
4ea33e2d 4102 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4103 return 1;
4104 }
4105 return 0;
4106}
ab4d5ed5 4107#endif
81819f0f
CL
4108
4109#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4110#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4111
4112struct slab_attribute {
4113 struct attribute attr;
4114 ssize_t (*show)(struct kmem_cache *s, char *buf);
4115 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4116};
4117
4118#define SLAB_ATTR_RO(_name) \
4119 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4120
4121#define SLAB_ATTR(_name) \
4122 static struct slab_attribute _name##_attr = \
4123 __ATTR(_name, 0644, _name##_show, _name##_store)
4124
81819f0f
CL
4125static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4126{
4127 return sprintf(buf, "%d\n", s->size);
4128}
4129SLAB_ATTR_RO(slab_size);
4130
4131static ssize_t align_show(struct kmem_cache *s, char *buf)
4132{
4133 return sprintf(buf, "%d\n", s->align);
4134}
4135SLAB_ATTR_RO(align);
4136
4137static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4138{
4139 return sprintf(buf, "%d\n", s->objsize);
4140}
4141SLAB_ATTR_RO(object_size);
4142
4143static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4144{
834f3d11 4145 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4146}
4147SLAB_ATTR_RO(objs_per_slab);
4148
06b285dc
CL
4149static ssize_t order_store(struct kmem_cache *s,
4150 const char *buf, size_t length)
4151{
0121c619
CL
4152 unsigned long order;
4153 int err;
4154
4155 err = strict_strtoul(buf, 10, &order);
4156 if (err)
4157 return err;
06b285dc
CL
4158
4159 if (order > slub_max_order || order < slub_min_order)
4160 return -EINVAL;
4161
4162 calculate_sizes(s, order);
4163 return length;
4164}
4165
81819f0f
CL
4166static ssize_t order_show(struct kmem_cache *s, char *buf)
4167{
834f3d11 4168 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4169}
06b285dc 4170SLAB_ATTR(order);
81819f0f 4171
73d342b1
DR
4172static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4173{
4174 return sprintf(buf, "%lu\n", s->min_partial);
4175}
4176
4177static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4178 size_t length)
4179{
4180 unsigned long min;
4181 int err;
4182
4183 err = strict_strtoul(buf, 10, &min);
4184 if (err)
4185 return err;
4186
c0bdb232 4187 set_min_partial(s, min);
73d342b1
DR
4188 return length;
4189}
4190SLAB_ATTR(min_partial);
4191
81819f0f
CL
4192static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4193{
62c70bce
JP
4194 if (!s->ctor)
4195 return 0;
4196 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4197}
4198SLAB_ATTR_RO(ctor);
4199
81819f0f
CL
4200static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4201{
4202 return sprintf(buf, "%d\n", s->refcount - 1);
4203}
4204SLAB_ATTR_RO(aliases);
4205
81819f0f
CL
4206static ssize_t partial_show(struct kmem_cache *s, char *buf)
4207{
d9acf4b7 4208 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4209}
4210SLAB_ATTR_RO(partial);
4211
4212static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4213{
d9acf4b7 4214 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4215}
4216SLAB_ATTR_RO(cpu_slabs);
4217
4218static ssize_t objects_show(struct kmem_cache *s, char *buf)
4219{
205ab99d 4220 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4221}
4222SLAB_ATTR_RO(objects);
4223
205ab99d
CL
4224static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4225{
4226 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4227}
4228SLAB_ATTR_RO(objects_partial);
4229
a5a84755
CL
4230static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4231{
4232 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4233}
4234
4235static ssize_t reclaim_account_store(struct kmem_cache *s,
4236 const char *buf, size_t length)
4237{
4238 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4239 if (buf[0] == '1')
4240 s->flags |= SLAB_RECLAIM_ACCOUNT;
4241 return length;
4242}
4243SLAB_ATTR(reclaim_account);
4244
4245static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4246{
4247 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4248}
4249SLAB_ATTR_RO(hwcache_align);
4250
4251#ifdef CONFIG_ZONE_DMA
4252static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4253{
4254 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4255}
4256SLAB_ATTR_RO(cache_dma);
4257#endif
4258
4259static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4260{
4261 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4262}
4263SLAB_ATTR_RO(destroy_by_rcu);
4264
ab9a0f19
LJ
4265static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4266{
4267 return sprintf(buf, "%d\n", s->reserved);
4268}
4269SLAB_ATTR_RO(reserved);
4270
ab4d5ed5 4271#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4272static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4273{
4274 return show_slab_objects(s, buf, SO_ALL);
4275}
4276SLAB_ATTR_RO(slabs);
4277
205ab99d
CL
4278static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4279{
4280 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4281}
4282SLAB_ATTR_RO(total_objects);
4283
81819f0f
CL
4284static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4285{
4286 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4287}
4288
4289static ssize_t sanity_checks_store(struct kmem_cache *s,
4290 const char *buf, size_t length)
4291{
4292 s->flags &= ~SLAB_DEBUG_FREE;
4293 if (buf[0] == '1')
4294 s->flags |= SLAB_DEBUG_FREE;
4295 return length;
4296}
4297SLAB_ATTR(sanity_checks);
4298
4299static ssize_t trace_show(struct kmem_cache *s, char *buf)
4300{
4301 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4302}
4303
4304static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4305 size_t length)
4306{
4307 s->flags &= ~SLAB_TRACE;
4308 if (buf[0] == '1')
4309 s->flags |= SLAB_TRACE;
4310 return length;
4311}
4312SLAB_ATTR(trace);
4313
81819f0f
CL
4314static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4315{
4316 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4317}
4318
4319static ssize_t red_zone_store(struct kmem_cache *s,
4320 const char *buf, size_t length)
4321{
4322 if (any_slab_objects(s))
4323 return -EBUSY;
4324
4325 s->flags &= ~SLAB_RED_ZONE;
4326 if (buf[0] == '1')
4327 s->flags |= SLAB_RED_ZONE;
06b285dc 4328 calculate_sizes(s, -1);
81819f0f
CL
4329 return length;
4330}
4331SLAB_ATTR(red_zone);
4332
4333static ssize_t poison_show(struct kmem_cache *s, char *buf)
4334{
4335 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4336}
4337
4338static ssize_t poison_store(struct kmem_cache *s,
4339 const char *buf, size_t length)
4340{
4341 if (any_slab_objects(s))
4342 return -EBUSY;
4343
4344 s->flags &= ~SLAB_POISON;
4345 if (buf[0] == '1')
4346 s->flags |= SLAB_POISON;
06b285dc 4347 calculate_sizes(s, -1);
81819f0f
CL
4348 return length;
4349}
4350SLAB_ATTR(poison);
4351
4352static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4353{
4354 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4355}
4356
4357static ssize_t store_user_store(struct kmem_cache *s,
4358 const char *buf, size_t length)
4359{
4360 if (any_slab_objects(s))
4361 return -EBUSY;
4362
4363 s->flags &= ~SLAB_STORE_USER;
4364 if (buf[0] == '1')
4365 s->flags |= SLAB_STORE_USER;
06b285dc 4366 calculate_sizes(s, -1);
81819f0f
CL
4367 return length;
4368}
4369SLAB_ATTR(store_user);
4370
53e15af0
CL
4371static ssize_t validate_show(struct kmem_cache *s, char *buf)
4372{
4373 return 0;
4374}
4375
4376static ssize_t validate_store(struct kmem_cache *s,
4377 const char *buf, size_t length)
4378{
434e245d
CL
4379 int ret = -EINVAL;
4380
4381 if (buf[0] == '1') {
4382 ret = validate_slab_cache(s);
4383 if (ret >= 0)
4384 ret = length;
4385 }
4386 return ret;
53e15af0
CL
4387}
4388SLAB_ATTR(validate);
a5a84755
CL
4389
4390static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4391{
4392 if (!(s->flags & SLAB_STORE_USER))
4393 return -ENOSYS;
4394 return list_locations(s, buf, TRACK_ALLOC);
4395}
4396SLAB_ATTR_RO(alloc_calls);
4397
4398static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4399{
4400 if (!(s->flags & SLAB_STORE_USER))
4401 return -ENOSYS;
4402 return list_locations(s, buf, TRACK_FREE);
4403}
4404SLAB_ATTR_RO(free_calls);
4405#endif /* CONFIG_SLUB_DEBUG */
4406
4407#ifdef CONFIG_FAILSLAB
4408static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4409{
4410 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4411}
4412
4413static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4414 size_t length)
4415{
4416 s->flags &= ~SLAB_FAILSLAB;
4417 if (buf[0] == '1')
4418 s->flags |= SLAB_FAILSLAB;
4419 return length;
4420}
4421SLAB_ATTR(failslab);
ab4d5ed5 4422#endif
53e15af0 4423
2086d26a
CL
4424static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4425{
4426 return 0;
4427}
4428
4429static ssize_t shrink_store(struct kmem_cache *s,
4430 const char *buf, size_t length)
4431{
4432 if (buf[0] == '1') {
4433 int rc = kmem_cache_shrink(s);
4434
4435 if (rc)
4436 return rc;
4437 } else
4438 return -EINVAL;
4439 return length;
4440}
4441SLAB_ATTR(shrink);
4442
81819f0f 4443#ifdef CONFIG_NUMA
9824601e 4444static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4445{
9824601e 4446 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4447}
4448
9824601e 4449static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4450 const char *buf, size_t length)
4451{
0121c619
CL
4452 unsigned long ratio;
4453 int err;
4454
4455 err = strict_strtoul(buf, 10, &ratio);
4456 if (err)
4457 return err;
4458
e2cb96b7 4459 if (ratio <= 100)
0121c619 4460 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4461
81819f0f
CL
4462 return length;
4463}
9824601e 4464SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4465#endif
4466
8ff12cfc 4467#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4468static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4469{
4470 unsigned long sum = 0;
4471 int cpu;
4472 int len;
4473 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4474
4475 if (!data)
4476 return -ENOMEM;
4477
4478 for_each_online_cpu(cpu) {
9dfc6e68 4479 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4480
4481 data[cpu] = x;
4482 sum += x;
4483 }
4484
4485 len = sprintf(buf, "%lu", sum);
4486
50ef37b9 4487#ifdef CONFIG_SMP
8ff12cfc
CL
4488 for_each_online_cpu(cpu) {
4489 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4490 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4491 }
50ef37b9 4492#endif
8ff12cfc
CL
4493 kfree(data);
4494 return len + sprintf(buf + len, "\n");
4495}
4496
78eb00cc
DR
4497static void clear_stat(struct kmem_cache *s, enum stat_item si)
4498{
4499 int cpu;
4500
4501 for_each_online_cpu(cpu)
9dfc6e68 4502 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4503}
4504
8ff12cfc
CL
4505#define STAT_ATTR(si, text) \
4506static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4507{ \
4508 return show_stat(s, buf, si); \
4509} \
78eb00cc
DR
4510static ssize_t text##_store(struct kmem_cache *s, \
4511 const char *buf, size_t length) \
4512{ \
4513 if (buf[0] != '0') \
4514 return -EINVAL; \
4515 clear_stat(s, si); \
4516 return length; \
4517} \
4518SLAB_ATTR(text); \
8ff12cfc
CL
4519
4520STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4521STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4522STAT_ATTR(FREE_FASTPATH, free_fastpath);
4523STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4524STAT_ATTR(FREE_FROZEN, free_frozen);
4525STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4526STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4527STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4528STAT_ATTR(ALLOC_SLAB, alloc_slab);
4529STAT_ATTR(ALLOC_REFILL, alloc_refill);
4530STAT_ATTR(FREE_SLAB, free_slab);
4531STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4532STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4533STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4534STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4535STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4536STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4537STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4538#endif
4539
06428780 4540static struct attribute *slab_attrs[] = {
81819f0f
CL
4541 &slab_size_attr.attr,
4542 &object_size_attr.attr,
4543 &objs_per_slab_attr.attr,
4544 &order_attr.attr,
73d342b1 4545 &min_partial_attr.attr,
81819f0f 4546 &objects_attr.attr,
205ab99d 4547 &objects_partial_attr.attr,
81819f0f
CL
4548 &partial_attr.attr,
4549 &cpu_slabs_attr.attr,
4550 &ctor_attr.attr,
81819f0f
CL
4551 &aliases_attr.attr,
4552 &align_attr.attr,
81819f0f
CL
4553 &hwcache_align_attr.attr,
4554 &reclaim_account_attr.attr,
4555 &destroy_by_rcu_attr.attr,
a5a84755 4556 &shrink_attr.attr,
ab9a0f19 4557 &reserved_attr.attr,
ab4d5ed5 4558#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4559 &total_objects_attr.attr,
4560 &slabs_attr.attr,
4561 &sanity_checks_attr.attr,
4562 &trace_attr.attr,
81819f0f
CL
4563 &red_zone_attr.attr,
4564 &poison_attr.attr,
4565 &store_user_attr.attr,
53e15af0 4566 &validate_attr.attr,
88a420e4
CL
4567 &alloc_calls_attr.attr,
4568 &free_calls_attr.attr,
ab4d5ed5 4569#endif
81819f0f
CL
4570#ifdef CONFIG_ZONE_DMA
4571 &cache_dma_attr.attr,
4572#endif
4573#ifdef CONFIG_NUMA
9824601e 4574 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4575#endif
4576#ifdef CONFIG_SLUB_STATS
4577 &alloc_fastpath_attr.attr,
4578 &alloc_slowpath_attr.attr,
4579 &free_fastpath_attr.attr,
4580 &free_slowpath_attr.attr,
4581 &free_frozen_attr.attr,
4582 &free_add_partial_attr.attr,
4583 &free_remove_partial_attr.attr,
4584 &alloc_from_partial_attr.attr,
4585 &alloc_slab_attr.attr,
4586 &alloc_refill_attr.attr,
4587 &free_slab_attr.attr,
4588 &cpuslab_flush_attr.attr,
4589 &deactivate_full_attr.attr,
4590 &deactivate_empty_attr.attr,
4591 &deactivate_to_head_attr.attr,
4592 &deactivate_to_tail_attr.attr,
4593 &deactivate_remote_frees_attr.attr,
65c3376a 4594 &order_fallback_attr.attr,
81819f0f 4595#endif
4c13dd3b
DM
4596#ifdef CONFIG_FAILSLAB
4597 &failslab_attr.attr,
4598#endif
4599
81819f0f
CL
4600 NULL
4601};
4602
4603static struct attribute_group slab_attr_group = {
4604 .attrs = slab_attrs,
4605};
4606
4607static ssize_t slab_attr_show(struct kobject *kobj,
4608 struct attribute *attr,
4609 char *buf)
4610{
4611 struct slab_attribute *attribute;
4612 struct kmem_cache *s;
4613 int err;
4614
4615 attribute = to_slab_attr(attr);
4616 s = to_slab(kobj);
4617
4618 if (!attribute->show)
4619 return -EIO;
4620
4621 err = attribute->show(s, buf);
4622
4623 return err;
4624}
4625
4626static ssize_t slab_attr_store(struct kobject *kobj,
4627 struct attribute *attr,
4628 const char *buf, size_t len)
4629{
4630 struct slab_attribute *attribute;
4631 struct kmem_cache *s;
4632 int err;
4633
4634 attribute = to_slab_attr(attr);
4635 s = to_slab(kobj);
4636
4637 if (!attribute->store)
4638 return -EIO;
4639
4640 err = attribute->store(s, buf, len);
4641
4642 return err;
4643}
4644
151c602f
CL
4645static void kmem_cache_release(struct kobject *kobj)
4646{
4647 struct kmem_cache *s = to_slab(kobj);
4648
84c1cf62 4649 kfree(s->name);
151c602f
CL
4650 kfree(s);
4651}
4652
52cf25d0 4653static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4654 .show = slab_attr_show,
4655 .store = slab_attr_store,
4656};
4657
4658static struct kobj_type slab_ktype = {
4659 .sysfs_ops = &slab_sysfs_ops,
151c602f 4660 .release = kmem_cache_release
81819f0f
CL
4661};
4662
4663static int uevent_filter(struct kset *kset, struct kobject *kobj)
4664{
4665 struct kobj_type *ktype = get_ktype(kobj);
4666
4667 if (ktype == &slab_ktype)
4668 return 1;
4669 return 0;
4670}
4671
9cd43611 4672static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4673 .filter = uevent_filter,
4674};
4675
27c3a314 4676static struct kset *slab_kset;
81819f0f
CL
4677
4678#define ID_STR_LENGTH 64
4679
4680/* Create a unique string id for a slab cache:
6446faa2
CL
4681 *
4682 * Format :[flags-]size
81819f0f
CL
4683 */
4684static char *create_unique_id(struct kmem_cache *s)
4685{
4686 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4687 char *p = name;
4688
4689 BUG_ON(!name);
4690
4691 *p++ = ':';
4692 /*
4693 * First flags affecting slabcache operations. We will only
4694 * get here for aliasable slabs so we do not need to support
4695 * too many flags. The flags here must cover all flags that
4696 * are matched during merging to guarantee that the id is
4697 * unique.
4698 */
4699 if (s->flags & SLAB_CACHE_DMA)
4700 *p++ = 'd';
4701 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4702 *p++ = 'a';
4703 if (s->flags & SLAB_DEBUG_FREE)
4704 *p++ = 'F';
5a896d9e
VN
4705 if (!(s->flags & SLAB_NOTRACK))
4706 *p++ = 't';
81819f0f
CL
4707 if (p != name + 1)
4708 *p++ = '-';
4709 p += sprintf(p, "%07d", s->size);
4710 BUG_ON(p > name + ID_STR_LENGTH - 1);
4711 return name;
4712}
4713
4714static int sysfs_slab_add(struct kmem_cache *s)
4715{
4716 int err;
4717 const char *name;
4718 int unmergeable;
4719
4720 if (slab_state < SYSFS)
4721 /* Defer until later */
4722 return 0;
4723
4724 unmergeable = slab_unmergeable(s);
4725 if (unmergeable) {
4726 /*
4727 * Slabcache can never be merged so we can use the name proper.
4728 * This is typically the case for debug situations. In that
4729 * case we can catch duplicate names easily.
4730 */
27c3a314 4731 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4732 name = s->name;
4733 } else {
4734 /*
4735 * Create a unique name for the slab as a target
4736 * for the symlinks.
4737 */
4738 name = create_unique_id(s);
4739 }
4740
27c3a314 4741 s->kobj.kset = slab_kset;
1eada11c
GKH
4742 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4743 if (err) {
4744 kobject_put(&s->kobj);
81819f0f 4745 return err;
1eada11c 4746 }
81819f0f
CL
4747
4748 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4749 if (err) {
4750 kobject_del(&s->kobj);
4751 kobject_put(&s->kobj);
81819f0f 4752 return err;
5788d8ad 4753 }
81819f0f
CL
4754 kobject_uevent(&s->kobj, KOBJ_ADD);
4755 if (!unmergeable) {
4756 /* Setup first alias */
4757 sysfs_slab_alias(s, s->name);
4758 kfree(name);
4759 }
4760 return 0;
4761}
4762
4763static void sysfs_slab_remove(struct kmem_cache *s)
4764{
2bce6485
CL
4765 if (slab_state < SYSFS)
4766 /*
4767 * Sysfs has not been setup yet so no need to remove the
4768 * cache from sysfs.
4769 */
4770 return;
4771
81819f0f
CL
4772 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4773 kobject_del(&s->kobj);
151c602f 4774 kobject_put(&s->kobj);
81819f0f
CL
4775}
4776
4777/*
4778 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4779 * available lest we lose that information.
81819f0f
CL
4780 */
4781struct saved_alias {
4782 struct kmem_cache *s;
4783 const char *name;
4784 struct saved_alias *next;
4785};
4786
5af328a5 4787static struct saved_alias *alias_list;
81819f0f
CL
4788
4789static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4790{
4791 struct saved_alias *al;
4792
4793 if (slab_state == SYSFS) {
4794 /*
4795 * If we have a leftover link then remove it.
4796 */
27c3a314
GKH
4797 sysfs_remove_link(&slab_kset->kobj, name);
4798 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4799 }
4800
4801 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4802 if (!al)
4803 return -ENOMEM;
4804
4805 al->s = s;
4806 al->name = name;
4807 al->next = alias_list;
4808 alias_list = al;
4809 return 0;
4810}
4811
4812static int __init slab_sysfs_init(void)
4813{
5b95a4ac 4814 struct kmem_cache *s;
81819f0f
CL
4815 int err;
4816
2bce6485
CL
4817 down_write(&slub_lock);
4818
0ff21e46 4819 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4820 if (!slab_kset) {
2bce6485 4821 up_write(&slub_lock);
81819f0f
CL
4822 printk(KERN_ERR "Cannot register slab subsystem.\n");
4823 return -ENOSYS;
4824 }
4825
26a7bd03
CL
4826 slab_state = SYSFS;
4827
5b95a4ac 4828 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4829 err = sysfs_slab_add(s);
5d540fb7
CL
4830 if (err)
4831 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4832 " to sysfs\n", s->name);
26a7bd03 4833 }
81819f0f
CL
4834
4835 while (alias_list) {
4836 struct saved_alias *al = alias_list;
4837
4838 alias_list = alias_list->next;
4839 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4840 if (err)
4841 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4842 " %s to sysfs\n", s->name);
81819f0f
CL
4843 kfree(al);
4844 }
4845
2bce6485 4846 up_write(&slub_lock);
81819f0f
CL
4847 resiliency_test();
4848 return 0;
4849}
4850
4851__initcall(slab_sysfs_init);
ab4d5ed5 4852#endif /* CONFIG_SYSFS */
57ed3eda
PE
4853
4854/*
4855 * The /proc/slabinfo ABI
4856 */
158a9624 4857#ifdef CONFIG_SLABINFO
57ed3eda
PE
4858static void print_slabinfo_header(struct seq_file *m)
4859{
4860 seq_puts(m, "slabinfo - version: 2.1\n");
4861 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4862 "<objperslab> <pagesperslab>");
4863 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4864 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4865 seq_putc(m, '\n');
4866}
4867
4868static void *s_start(struct seq_file *m, loff_t *pos)
4869{
4870 loff_t n = *pos;
4871
4872 down_read(&slub_lock);
4873 if (!n)
4874 print_slabinfo_header(m);
4875
4876 return seq_list_start(&slab_caches, *pos);
4877}
4878
4879static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4880{
4881 return seq_list_next(p, &slab_caches, pos);
4882}
4883
4884static void s_stop(struct seq_file *m, void *p)
4885{
4886 up_read(&slub_lock);
4887}
4888
4889static int s_show(struct seq_file *m, void *p)
4890{
4891 unsigned long nr_partials = 0;
4892 unsigned long nr_slabs = 0;
4893 unsigned long nr_inuse = 0;
205ab99d
CL
4894 unsigned long nr_objs = 0;
4895 unsigned long nr_free = 0;
57ed3eda
PE
4896 struct kmem_cache *s;
4897 int node;
4898
4899 s = list_entry(p, struct kmem_cache, list);
4900
4901 for_each_online_node(node) {
4902 struct kmem_cache_node *n = get_node(s, node);
4903
4904 if (!n)
4905 continue;
4906
4907 nr_partials += n->nr_partial;
4908 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4909 nr_objs += atomic_long_read(&n->total_objects);
4910 nr_free += count_partial(n, count_free);
57ed3eda
PE
4911 }
4912
205ab99d 4913 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4914
4915 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4916 nr_objs, s->size, oo_objects(s->oo),
4917 (1 << oo_order(s->oo)));
57ed3eda
PE
4918 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4919 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4920 0UL);
4921 seq_putc(m, '\n');
4922 return 0;
4923}
4924
7b3c3a50 4925static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4926 .start = s_start,
4927 .next = s_next,
4928 .stop = s_stop,
4929 .show = s_show,
4930};
4931
7b3c3a50
AD
4932static int slabinfo_open(struct inode *inode, struct file *file)
4933{
4934 return seq_open(file, &slabinfo_op);
4935}
4936
4937static const struct file_operations proc_slabinfo_operations = {
4938 .open = slabinfo_open,
4939 .read = seq_read,
4940 .llseek = seq_lseek,
4941 .release = seq_release,
4942};
4943
4944static int __init slab_proc_init(void)
4945{
cf5d1131 4946 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4947 return 0;
4948}
4949module_init(slab_proc_init);
158a9624 4950#endif /* CONFIG_SLABINFO */
This page took 0.840265 seconds and 5 git commands to generate.