Merge branch 'slab/urgent' into slab/next
[deliverable/linux.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
ffc79d28
SAS
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
81819f0f
CL
472}
473
81819f0f
CL
474static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476{
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485}
486
487static void set_track(struct kmem_cache *s, void *object,
ce71e27c 488 enum track_item alloc, unsigned long addr)
81819f0f 489{
1a00df4a 490 struct track *p = get_track(s, object, alloc);
81819f0f 491
81819f0f 492 if (addr) {
d6543e39
BG
493#ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510#endif
81819f0f
CL
511 p->addr = addr;
512 p->cpu = smp_processor_id();
88e4ccf2 513 p->pid = current->pid;
81819f0f
CL
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517}
518
81819f0f
CL
519static void init_tracking(struct kmem_cache *s, void *object)
520{
24922684
CL
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
ce71e27c
EGM
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
526}
527
528static void print_track(const char *s, struct track *t)
529{
530 if (!t->addr)
531 return;
532
7daf705f 533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
535#ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544#endif
24922684
CL
545}
546
547static void print_tracking(struct kmem_cache *s, void *object)
548{
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554}
555
556static void print_page_info(struct page *page)
557{
39b26464
CL
558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
560
561}
562
563static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564{
565 va_list args;
566 char buf[100];
567
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "========================================"
572 "=====================================\n");
573 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
574 printk(KERN_ERR "----------------------------------------"
575 "-------------------------------------\n\n");
81819f0f
CL
576}
577
24922684
CL
578static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579{
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587}
588
589static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
590{
591 unsigned int off; /* Offset of last byte */
a973e9dd 592 u8 *addr = page_address(page);
24922684
CL
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
ffc79d28 602 print_section("Bytes b4 ", p - 16, 16);
81819f0f 603
ffc79d28
SAS
604 print_section("Object ", p, min_t(unsigned long, s->objsize,
605 PAGE_SIZE));
81819f0f 606 if (s->flags & SLAB_RED_ZONE)
ffc79d28 607 print_section("Redzone ", p + s->objsize,
81819f0f
CL
608 s->inuse - s->objsize);
609
81819f0f
CL
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
24922684 615 if (s->flags & SLAB_STORE_USER)
81819f0f 616 off += 2 * sizeof(struct track);
81819f0f
CL
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
ffc79d28 620 print_section("Padding ", p + off, s->size - off);
24922684
CL
621
622 dump_stack();
81819f0f
CL
623}
624
625static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627{
3dc50637 628 slab_bug(s, "%s", reason);
24922684 629 print_trailer(s, page, object);
81819f0f
CL
630}
631
24922684 632static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
633{
634 va_list args;
635 char buf[100];
636
24922684
CL
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 639 va_end(args);
3dc50637 640 slab_bug(s, "%s", buf);
24922684 641 print_page_info(page);
81819f0f
CL
642 dump_stack();
643}
644
f7cb1933 645static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
646{
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->objsize - 1);
06428780 651 p[s->objsize - 1] = POISON_END;
81819f0f
CL
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
f7cb1933 655 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
656}
657
c4089f98 658static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
659{
660 while (bytes) {
c4089f98 661 if (*start != value)
24922684 662 return start;
81819f0f
CL
663 start++;
664 bytes--;
665 }
24922684
CL
666 return NULL;
667}
668
c4089f98
MS
669static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
670{
671 u64 value64;
672 unsigned int words, prefix;
673
674 if (bytes <= 16)
675 return check_bytes8(start, value, bytes);
676
677 value64 = value | value << 8 | value << 16 | value << 24;
ef62fb32 678 value64 = (value64 & 0xffffffff) | value64 << 32;
c4089f98
MS
679 prefix = 8 - ((unsigned long)start) % 8;
680
681 if (prefix) {
682 u8 *r = check_bytes8(start, value, prefix);
683 if (r)
684 return r;
685 start += prefix;
686 bytes -= prefix;
687 }
688
689 words = bytes / 8;
690
691 while (words) {
692 if (*(u64 *)start != value64)
693 return check_bytes8(start, value, 8);
694 start += 8;
695 words--;
696 }
697
698 return check_bytes8(start, value, bytes % 8);
699}
700
24922684
CL
701static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
702 void *from, void *to)
703{
704 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
705 memset(from, data, to - from);
706}
707
708static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
709 u8 *object, char *what,
06428780 710 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
711{
712 u8 *fault;
713 u8 *end;
714
715 fault = check_bytes(start, value, bytes);
716 if (!fault)
717 return 1;
718
719 end = start + bytes;
720 while (end > fault && end[-1] == value)
721 end--;
722
723 slab_bug(s, "%s overwritten", what);
724 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
725 fault, end - 1, fault[0], value);
726 print_trailer(s, page, object);
727
728 restore_bytes(s, what, value, fault, end);
729 return 0;
81819f0f
CL
730}
731
81819f0f
CL
732/*
733 * Object layout:
734 *
735 * object address
736 * Bytes of the object to be managed.
737 * If the freepointer may overlay the object then the free
738 * pointer is the first word of the object.
672bba3a 739 *
81819f0f
CL
740 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
741 * 0xa5 (POISON_END)
742 *
743 * object + s->objsize
744 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
745 * Padding is extended by another word if Redzoning is enabled and
746 * objsize == inuse.
747 *
81819f0f
CL
748 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
749 * 0xcc (RED_ACTIVE) for objects in use.
750 *
751 * object + s->inuse
672bba3a
CL
752 * Meta data starts here.
753 *
81819f0f
CL
754 * A. Free pointer (if we cannot overwrite object on free)
755 * B. Tracking data for SLAB_STORE_USER
672bba3a 756 * C. Padding to reach required alignment boundary or at mininum
6446faa2 757 * one word if debugging is on to be able to detect writes
672bba3a
CL
758 * before the word boundary.
759 *
760 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
761 *
762 * object + s->size
672bba3a 763 * Nothing is used beyond s->size.
81819f0f 764 *
672bba3a
CL
765 * If slabcaches are merged then the objsize and inuse boundaries are mostly
766 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
767 * may be used with merged slabcaches.
768 */
769
81819f0f
CL
770static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
771{
772 unsigned long off = s->inuse; /* The end of info */
773
774 if (s->offset)
775 /* Freepointer is placed after the object. */
776 off += sizeof(void *);
777
778 if (s->flags & SLAB_STORE_USER)
779 /* We also have user information there */
780 off += 2 * sizeof(struct track);
781
782 if (s->size == off)
783 return 1;
784
24922684
CL
785 return check_bytes_and_report(s, page, p, "Object padding",
786 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
787}
788
39b26464 789/* Check the pad bytes at the end of a slab page */
81819f0f
CL
790static int slab_pad_check(struct kmem_cache *s, struct page *page)
791{
24922684
CL
792 u8 *start;
793 u8 *fault;
794 u8 *end;
795 int length;
796 int remainder;
81819f0f
CL
797
798 if (!(s->flags & SLAB_POISON))
799 return 1;
800
a973e9dd 801 start = page_address(page);
ab9a0f19 802 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
803 end = start + length;
804 remainder = length % s->size;
81819f0f
CL
805 if (!remainder)
806 return 1;
807
39b26464 808 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
809 if (!fault)
810 return 1;
811 while (end > fault && end[-1] == POISON_INUSE)
812 end--;
813
814 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 815 print_section("Padding ", end - remainder, remainder);
24922684 816
8a3d271d 817 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 818 return 0;
81819f0f
CL
819}
820
821static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 822 void *object, u8 val)
81819f0f
CL
823{
824 u8 *p = object;
825 u8 *endobject = object + s->objsize;
826
827 if (s->flags & SLAB_RED_ZONE) {
24922684 828 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 829 endobject, val, s->inuse - s->objsize))
81819f0f 830 return 0;
81819f0f 831 } else {
3adbefee
IM
832 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
833 check_bytes_and_report(s, page, p, "Alignment padding",
834 endobject, POISON_INUSE, s->inuse - s->objsize);
835 }
81819f0f
CL
836 }
837
838 if (s->flags & SLAB_POISON) {
f7cb1933 839 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
840 (!check_bytes_and_report(s, page, p, "Poison", p,
841 POISON_FREE, s->objsize - 1) ||
842 !check_bytes_and_report(s, page, p, "Poison",
06428780 843 p + s->objsize - 1, POISON_END, 1)))
81819f0f 844 return 0;
81819f0f
CL
845 /*
846 * check_pad_bytes cleans up on its own.
847 */
848 check_pad_bytes(s, page, p);
849 }
850
f7cb1933 851 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
852 /*
853 * Object and freepointer overlap. Cannot check
854 * freepointer while object is allocated.
855 */
856 return 1;
857
858 /* Check free pointer validity */
859 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
860 object_err(s, page, p, "Freepointer corrupt");
861 /*
9f6c708e 862 * No choice but to zap it and thus lose the remainder
81819f0f 863 * of the free objects in this slab. May cause
672bba3a 864 * another error because the object count is now wrong.
81819f0f 865 */
a973e9dd 866 set_freepointer(s, p, NULL);
81819f0f
CL
867 return 0;
868 }
869 return 1;
870}
871
872static int check_slab(struct kmem_cache *s, struct page *page)
873{
39b26464
CL
874 int maxobj;
875
81819f0f
CL
876 VM_BUG_ON(!irqs_disabled());
877
878 if (!PageSlab(page)) {
24922684 879 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
880 return 0;
881 }
39b26464 882
ab9a0f19 883 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
884 if (page->objects > maxobj) {
885 slab_err(s, page, "objects %u > max %u",
886 s->name, page->objects, maxobj);
887 return 0;
888 }
889 if (page->inuse > page->objects) {
24922684 890 slab_err(s, page, "inuse %u > max %u",
39b26464 891 s->name, page->inuse, page->objects);
81819f0f
CL
892 return 0;
893 }
894 /* Slab_pad_check fixes things up after itself */
895 slab_pad_check(s, page);
896 return 1;
897}
898
899/*
672bba3a
CL
900 * Determine if a certain object on a page is on the freelist. Must hold the
901 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
902 */
903static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
904{
905 int nr = 0;
881db7fb 906 void *fp;
81819f0f 907 void *object = NULL;
224a88be 908 unsigned long max_objects;
81819f0f 909
881db7fb 910 fp = page->freelist;
39b26464 911 while (fp && nr <= page->objects) {
81819f0f
CL
912 if (fp == search)
913 return 1;
914 if (!check_valid_pointer(s, page, fp)) {
915 if (object) {
916 object_err(s, page, object,
917 "Freechain corrupt");
a973e9dd 918 set_freepointer(s, object, NULL);
81819f0f
CL
919 break;
920 } else {
24922684 921 slab_err(s, page, "Freepointer corrupt");
a973e9dd 922 page->freelist = NULL;
39b26464 923 page->inuse = page->objects;
24922684 924 slab_fix(s, "Freelist cleared");
81819f0f
CL
925 return 0;
926 }
927 break;
928 }
929 object = fp;
930 fp = get_freepointer(s, object);
931 nr++;
932 }
933
ab9a0f19 934 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
935 if (max_objects > MAX_OBJS_PER_PAGE)
936 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
937
938 if (page->objects != max_objects) {
939 slab_err(s, page, "Wrong number of objects. Found %d but "
940 "should be %d", page->objects, max_objects);
941 page->objects = max_objects;
942 slab_fix(s, "Number of objects adjusted.");
943 }
39b26464 944 if (page->inuse != page->objects - nr) {
70d71228 945 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
946 "counted were %d", page->inuse, page->objects - nr);
947 page->inuse = page->objects - nr;
24922684 948 slab_fix(s, "Object count adjusted.");
81819f0f
CL
949 }
950 return search == NULL;
951}
952
0121c619
CL
953static void trace(struct kmem_cache *s, struct page *page, void *object,
954 int alloc)
3ec09742
CL
955{
956 if (s->flags & SLAB_TRACE) {
957 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
958 s->name,
959 alloc ? "alloc" : "free",
960 object, page->inuse,
961 page->freelist);
962
963 if (!alloc)
ffc79d28 964 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
965
966 dump_stack();
967 }
968}
969
c016b0bd
CL
970/*
971 * Hooks for other subsystems that check memory allocations. In a typical
972 * production configuration these hooks all should produce no code at all.
973 */
974static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
975{
c1d50836 976 flags &= gfp_allowed_mask;
c016b0bd
CL
977 lockdep_trace_alloc(flags);
978 might_sleep_if(flags & __GFP_WAIT);
979
980 return should_failslab(s->objsize, flags, s->flags);
981}
982
983static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
984{
c1d50836 985 flags &= gfp_allowed_mask;
b3d41885 986 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
987 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
988}
989
990static inline void slab_free_hook(struct kmem_cache *s, void *x)
991{
992 kmemleak_free_recursive(x, s->flags);
c016b0bd 993
d3f661d6
CL
994 /*
995 * Trouble is that we may no longer disable interupts in the fast path
996 * So in order to make the debug calls that expect irqs to be
997 * disabled we need to disable interrupts temporarily.
998 */
999#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1000 {
1001 unsigned long flags;
1002
1003 local_irq_save(flags);
1004 kmemcheck_slab_free(s, x, s->objsize);
1005 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
1006 local_irq_restore(flags);
1007 }
1008#endif
f9b615de
TG
1009 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1010 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
1011}
1012
643b1138 1013/*
672bba3a 1014 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
1015 *
1016 * list_lock must be held.
643b1138 1017 */
5cc6eee8
CL
1018static void add_full(struct kmem_cache *s,
1019 struct kmem_cache_node *n, struct page *page)
643b1138 1020{
5cc6eee8
CL
1021 if (!(s->flags & SLAB_STORE_USER))
1022 return;
1023
643b1138 1024 list_add(&page->lru, &n->full);
643b1138
CL
1025}
1026
5cc6eee8
CL
1027/*
1028 * list_lock must be held.
1029 */
643b1138
CL
1030static void remove_full(struct kmem_cache *s, struct page *page)
1031{
643b1138
CL
1032 if (!(s->flags & SLAB_STORE_USER))
1033 return;
1034
643b1138 1035 list_del(&page->lru);
643b1138
CL
1036}
1037
0f389ec6
CL
1038/* Tracking of the number of slabs for debugging purposes */
1039static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1040{
1041 struct kmem_cache_node *n = get_node(s, node);
1042
1043 return atomic_long_read(&n->nr_slabs);
1044}
1045
26c02cf0
AB
1046static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1047{
1048 return atomic_long_read(&n->nr_slabs);
1049}
1050
205ab99d 1051static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 /*
1056 * May be called early in order to allocate a slab for the
1057 * kmem_cache_node structure. Solve the chicken-egg
1058 * dilemma by deferring the increment of the count during
1059 * bootstrap (see early_kmem_cache_node_alloc).
1060 */
7340cc84 1061 if (n) {
0f389ec6 1062 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1063 atomic_long_add(objects, &n->total_objects);
1064 }
0f389ec6 1065}
205ab99d 1066static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1067{
1068 struct kmem_cache_node *n = get_node(s, node);
1069
1070 atomic_long_dec(&n->nr_slabs);
205ab99d 1071 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1072}
1073
1074/* Object debug checks for alloc/free paths */
3ec09742
CL
1075static void setup_object_debug(struct kmem_cache *s, struct page *page,
1076 void *object)
1077{
1078 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1079 return;
1080
f7cb1933 1081 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1082 init_tracking(s, object);
1083}
1084
1537066c 1085static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1086 void *object, unsigned long addr)
81819f0f
CL
1087{
1088 if (!check_slab(s, page))
1089 goto bad;
1090
81819f0f
CL
1091 if (!check_valid_pointer(s, page, object)) {
1092 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1093 goto bad;
81819f0f
CL
1094 }
1095
f7cb1933 1096 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1097 goto bad;
81819f0f 1098
3ec09742
CL
1099 /* Success perform special debug activities for allocs */
1100 if (s->flags & SLAB_STORE_USER)
1101 set_track(s, object, TRACK_ALLOC, addr);
1102 trace(s, page, object, 1);
f7cb1933 1103 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1104 return 1;
3ec09742 1105
81819f0f
CL
1106bad:
1107 if (PageSlab(page)) {
1108 /*
1109 * If this is a slab page then lets do the best we can
1110 * to avoid issues in the future. Marking all objects
672bba3a 1111 * as used avoids touching the remaining objects.
81819f0f 1112 */
24922684 1113 slab_fix(s, "Marking all objects used");
39b26464 1114 page->inuse = page->objects;
a973e9dd 1115 page->freelist = NULL;
81819f0f
CL
1116 }
1117 return 0;
1118}
1119
1537066c
CL
1120static noinline int free_debug_processing(struct kmem_cache *s,
1121 struct page *page, void *object, unsigned long addr)
81819f0f 1122{
5c2e4bbb
CL
1123 unsigned long flags;
1124 int rc = 0;
1125
1126 local_irq_save(flags);
881db7fb
CL
1127 slab_lock(page);
1128
81819f0f
CL
1129 if (!check_slab(s, page))
1130 goto fail;
1131
1132 if (!check_valid_pointer(s, page, object)) {
70d71228 1133 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1134 goto fail;
1135 }
1136
1137 if (on_freelist(s, page, object)) {
24922684 1138 object_err(s, page, object, "Object already free");
81819f0f
CL
1139 goto fail;
1140 }
1141
f7cb1933 1142 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1143 goto out;
81819f0f
CL
1144
1145 if (unlikely(s != page->slab)) {
3adbefee 1146 if (!PageSlab(page)) {
70d71228
CL
1147 slab_err(s, page, "Attempt to free object(0x%p) "
1148 "outside of slab", object);
3adbefee 1149 } else if (!page->slab) {
81819f0f 1150 printk(KERN_ERR
70d71228 1151 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1152 object);
70d71228 1153 dump_stack();
06428780 1154 } else
24922684
CL
1155 object_err(s, page, object,
1156 "page slab pointer corrupt.");
81819f0f
CL
1157 goto fail;
1158 }
3ec09742 1159
3ec09742
CL
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_FREE, addr);
1162 trace(s, page, object, 0);
f7cb1933 1163 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1164 rc = 1;
1165out:
881db7fb 1166 slab_unlock(page);
5c2e4bbb
CL
1167 local_irq_restore(flags);
1168 return rc;
3ec09742 1169
81819f0f 1170fail:
24922684 1171 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1172 goto out;
81819f0f
CL
1173}
1174
41ecc55b
CL
1175static int __init setup_slub_debug(char *str)
1176{
f0630fff
CL
1177 slub_debug = DEBUG_DEFAULT_FLAGS;
1178 if (*str++ != '=' || !*str)
1179 /*
1180 * No options specified. Switch on full debugging.
1181 */
1182 goto out;
1183
1184 if (*str == ',')
1185 /*
1186 * No options but restriction on slabs. This means full
1187 * debugging for slabs matching a pattern.
1188 */
1189 goto check_slabs;
1190
fa5ec8a1
DR
1191 if (tolower(*str) == 'o') {
1192 /*
1193 * Avoid enabling debugging on caches if its minimum order
1194 * would increase as a result.
1195 */
1196 disable_higher_order_debug = 1;
1197 goto out;
1198 }
1199
f0630fff
CL
1200 slub_debug = 0;
1201 if (*str == '-')
1202 /*
1203 * Switch off all debugging measures.
1204 */
1205 goto out;
1206
1207 /*
1208 * Determine which debug features should be switched on
1209 */
06428780 1210 for (; *str && *str != ','; str++) {
f0630fff
CL
1211 switch (tolower(*str)) {
1212 case 'f':
1213 slub_debug |= SLAB_DEBUG_FREE;
1214 break;
1215 case 'z':
1216 slub_debug |= SLAB_RED_ZONE;
1217 break;
1218 case 'p':
1219 slub_debug |= SLAB_POISON;
1220 break;
1221 case 'u':
1222 slub_debug |= SLAB_STORE_USER;
1223 break;
1224 case 't':
1225 slub_debug |= SLAB_TRACE;
1226 break;
4c13dd3b
DM
1227 case 'a':
1228 slub_debug |= SLAB_FAILSLAB;
1229 break;
f0630fff
CL
1230 default:
1231 printk(KERN_ERR "slub_debug option '%c' "
06428780 1232 "unknown. skipped\n", *str);
f0630fff 1233 }
41ecc55b
CL
1234 }
1235
f0630fff 1236check_slabs:
41ecc55b
CL
1237 if (*str == ',')
1238 slub_debug_slabs = str + 1;
f0630fff 1239out:
41ecc55b
CL
1240 return 1;
1241}
1242
1243__setup("slub_debug", setup_slub_debug);
1244
ba0268a8
CL
1245static unsigned long kmem_cache_flags(unsigned long objsize,
1246 unsigned long flags, const char *name,
51cc5068 1247 void (*ctor)(void *))
41ecc55b
CL
1248{
1249 /*
e153362a 1250 * Enable debugging if selected on the kernel commandline.
41ecc55b 1251 */
e153362a 1252 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1253 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1254 flags |= slub_debug;
ba0268a8
CL
1255
1256 return flags;
41ecc55b
CL
1257}
1258#else
3ec09742
CL
1259static inline void setup_object_debug(struct kmem_cache *s,
1260 struct page *page, void *object) {}
41ecc55b 1261
3ec09742 1262static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1263 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1264
3ec09742 1265static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1266 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1267
41ecc55b
CL
1268static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1269 { return 1; }
1270static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1271 void *object, u8 val) { return 1; }
5cc6eee8
CL
1272static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1273 struct page *page) {}
2cfb7455 1274static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1275static inline unsigned long kmem_cache_flags(unsigned long objsize,
1276 unsigned long flags, const char *name,
51cc5068 1277 void (*ctor)(void *))
ba0268a8
CL
1278{
1279 return flags;
1280}
41ecc55b 1281#define slub_debug 0
0f389ec6 1282
fdaa45e9
IM
1283#define disable_higher_order_debug 0
1284
0f389ec6
CL
1285static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1286 { return 0; }
26c02cf0
AB
1287static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1288 { return 0; }
205ab99d
CL
1289static inline void inc_slabs_node(struct kmem_cache *s, int node,
1290 int objects) {}
1291static inline void dec_slabs_node(struct kmem_cache *s, int node,
1292 int objects) {}
7d550c56
CL
1293
1294static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1295 { return 0; }
1296
1297static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 void *object) {}
1299
1300static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1301
ab4d5ed5 1302#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1303
81819f0f
CL
1304/*
1305 * Slab allocation and freeing
1306 */
65c3376a
CL
1307static inline struct page *alloc_slab_page(gfp_t flags, int node,
1308 struct kmem_cache_order_objects oo)
1309{
1310 int order = oo_order(oo);
1311
b1eeab67
VN
1312 flags |= __GFP_NOTRACK;
1313
2154a336 1314 if (node == NUMA_NO_NODE)
65c3376a
CL
1315 return alloc_pages(flags, order);
1316 else
6b65aaf3 1317 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1318}
1319
81819f0f
CL
1320static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1321{
06428780 1322 struct page *page;
834f3d11 1323 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1324 gfp_t alloc_gfp;
81819f0f 1325
7e0528da
CL
1326 flags &= gfp_allowed_mask;
1327
1328 if (flags & __GFP_WAIT)
1329 local_irq_enable();
1330
b7a49f0d 1331 flags |= s->allocflags;
e12ba74d 1332
ba52270d
PE
1333 /*
1334 * Let the initial higher-order allocation fail under memory pressure
1335 * so we fall-back to the minimum order allocation.
1336 */
1337 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1338
1339 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1340 if (unlikely(!page)) {
1341 oo = s->min;
1342 /*
1343 * Allocation may have failed due to fragmentation.
1344 * Try a lower order alloc if possible
1345 */
1346 page = alloc_slab_page(flags, node, oo);
81819f0f 1347
7e0528da
CL
1348 if (page)
1349 stat(s, ORDER_FALLBACK);
65c3376a 1350 }
5a896d9e 1351
7e0528da
CL
1352 if (flags & __GFP_WAIT)
1353 local_irq_disable();
1354
1355 if (!page)
1356 return NULL;
1357
5a896d9e 1358 if (kmemcheck_enabled
5086c389 1359 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1360 int pages = 1 << oo_order(oo);
1361
1362 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1363
1364 /*
1365 * Objects from caches that have a constructor don't get
1366 * cleared when they're allocated, so we need to do it here.
1367 */
1368 if (s->ctor)
1369 kmemcheck_mark_uninitialized_pages(page, pages);
1370 else
1371 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1372 }
1373
834f3d11 1374 page->objects = oo_objects(oo);
81819f0f
CL
1375 mod_zone_page_state(page_zone(page),
1376 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1377 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1378 1 << oo_order(oo));
81819f0f
CL
1379
1380 return page;
1381}
1382
1383static void setup_object(struct kmem_cache *s, struct page *page,
1384 void *object)
1385{
3ec09742 1386 setup_object_debug(s, page, object);
4f104934 1387 if (unlikely(s->ctor))
51cc5068 1388 s->ctor(object);
81819f0f
CL
1389}
1390
1391static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1392{
1393 struct page *page;
81819f0f 1394 void *start;
81819f0f
CL
1395 void *last;
1396 void *p;
1397
6cb06229 1398 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1399
6cb06229
CL
1400 page = allocate_slab(s,
1401 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1402 if (!page)
1403 goto out;
1404
205ab99d 1405 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1406 page->slab = s;
1407 page->flags |= 1 << PG_slab;
81819f0f
CL
1408
1409 start = page_address(page);
81819f0f
CL
1410
1411 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1412 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1413
1414 last = start;
224a88be 1415 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1416 setup_object(s, page, last);
1417 set_freepointer(s, last, p);
1418 last = p;
1419 }
1420 setup_object(s, page, last);
a973e9dd 1421 set_freepointer(s, last, NULL);
81819f0f
CL
1422
1423 page->freelist = start;
1424 page->inuse = 0;
8cb0a506 1425 page->frozen = 1;
81819f0f 1426out:
81819f0f
CL
1427 return page;
1428}
1429
1430static void __free_slab(struct kmem_cache *s, struct page *page)
1431{
834f3d11
CL
1432 int order = compound_order(page);
1433 int pages = 1 << order;
81819f0f 1434
af537b0a 1435 if (kmem_cache_debug(s)) {
81819f0f
CL
1436 void *p;
1437
1438 slab_pad_check(s, page);
224a88be
CL
1439 for_each_object(p, s, page_address(page),
1440 page->objects)
f7cb1933 1441 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1442 }
1443
b1eeab67 1444 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1445
81819f0f
CL
1446 mod_zone_page_state(page_zone(page),
1447 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1448 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1449 -pages);
81819f0f 1450
49bd5221
CL
1451 __ClearPageSlab(page);
1452 reset_page_mapcount(page);
1eb5ac64
NP
1453 if (current->reclaim_state)
1454 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1455 __free_pages(page, order);
81819f0f
CL
1456}
1457
da9a638c
LJ
1458#define need_reserve_slab_rcu \
1459 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1460
81819f0f
CL
1461static void rcu_free_slab(struct rcu_head *h)
1462{
1463 struct page *page;
1464
da9a638c
LJ
1465 if (need_reserve_slab_rcu)
1466 page = virt_to_head_page(h);
1467 else
1468 page = container_of((struct list_head *)h, struct page, lru);
1469
81819f0f
CL
1470 __free_slab(page->slab, page);
1471}
1472
1473static void free_slab(struct kmem_cache *s, struct page *page)
1474{
1475 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1476 struct rcu_head *head;
1477
1478 if (need_reserve_slab_rcu) {
1479 int order = compound_order(page);
1480 int offset = (PAGE_SIZE << order) - s->reserved;
1481
1482 VM_BUG_ON(s->reserved != sizeof(*head));
1483 head = page_address(page) + offset;
1484 } else {
1485 /*
1486 * RCU free overloads the RCU head over the LRU
1487 */
1488 head = (void *)&page->lru;
1489 }
81819f0f
CL
1490
1491 call_rcu(head, rcu_free_slab);
1492 } else
1493 __free_slab(s, page);
1494}
1495
1496static void discard_slab(struct kmem_cache *s, struct page *page)
1497{
205ab99d 1498 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1499 free_slab(s, page);
1500}
1501
1502/*
5cc6eee8
CL
1503 * Management of partially allocated slabs.
1504 *
1505 * list_lock must be held.
81819f0f 1506 */
5cc6eee8 1507static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1508 struct page *page, int tail)
81819f0f 1509{
e95eed57 1510 n->nr_partial++;
136333d1 1511 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1512 list_add_tail(&page->lru, &n->partial);
1513 else
1514 list_add(&page->lru, &n->partial);
81819f0f
CL
1515}
1516
5cc6eee8
CL
1517/*
1518 * list_lock must be held.
1519 */
1520static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1521 struct page *page)
1522{
1523 list_del(&page->lru);
1524 n->nr_partial--;
1525}
1526
81819f0f 1527/*
5cc6eee8
CL
1528 * Lock slab, remove from the partial list and put the object into the
1529 * per cpu freelist.
81819f0f 1530 *
672bba3a 1531 * Must hold list_lock.
81819f0f 1532 */
881db7fb 1533static inline int acquire_slab(struct kmem_cache *s,
61728d1e 1534 struct kmem_cache_node *n, struct page *page)
81819f0f 1535{
2cfb7455
CL
1536 void *freelist;
1537 unsigned long counters;
1538 struct page new;
1539
2cfb7455
CL
1540 /*
1541 * Zap the freelist and set the frozen bit.
1542 * The old freelist is the list of objects for the
1543 * per cpu allocation list.
1544 */
1545 do {
1546 freelist = page->freelist;
1547 counters = page->counters;
1548 new.counters = counters;
1549 new.inuse = page->objects;
1550
1551 VM_BUG_ON(new.frozen);
1552 new.frozen = 1;
1553
1d07171c 1554 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1555 freelist, counters,
1556 NULL, new.counters,
1557 "lock and freeze"));
1558
1559 remove_partial(n, page);
1560
1561 if (freelist) {
1562 /* Populate the per cpu freelist */
1563 this_cpu_write(s->cpu_slab->freelist, freelist);
1564 this_cpu_write(s->cpu_slab->page, page);
1565 this_cpu_write(s->cpu_slab->node, page_to_nid(page));
81819f0f 1566 return 1;
2cfb7455
CL
1567 } else {
1568 /*
1569 * Slab page came from the wrong list. No object to allocate
1570 * from. Put it onto the correct list and continue partial
1571 * scan.
1572 */
1573 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1574 " partial list\n", s->name);
2cfb7455 1575 return 0;
81819f0f 1576 }
81819f0f
CL
1577}
1578
1579/*
672bba3a 1580 * Try to allocate a partial slab from a specific node.
81819f0f 1581 */
61728d1e
CL
1582static struct page *get_partial_node(struct kmem_cache *s,
1583 struct kmem_cache_node *n)
81819f0f
CL
1584{
1585 struct page *page;
1586
1587 /*
1588 * Racy check. If we mistakenly see no partial slabs then we
1589 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1590 * partial slab and there is none available then get_partials()
1591 * will return NULL.
81819f0f
CL
1592 */
1593 if (!n || !n->nr_partial)
1594 return NULL;
1595
1596 spin_lock(&n->list_lock);
1597 list_for_each_entry(page, &n->partial, lru)
881db7fb 1598 if (acquire_slab(s, n, page))
81819f0f
CL
1599 goto out;
1600 page = NULL;
1601out:
1602 spin_unlock(&n->list_lock);
1603 return page;
1604}
1605
1606/*
672bba3a 1607 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1608 */
1609static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1610{
1611#ifdef CONFIG_NUMA
1612 struct zonelist *zonelist;
dd1a239f 1613 struct zoneref *z;
54a6eb5c
MG
1614 struct zone *zone;
1615 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1616 struct page *page;
1617
1618 /*
672bba3a
CL
1619 * The defrag ratio allows a configuration of the tradeoffs between
1620 * inter node defragmentation and node local allocations. A lower
1621 * defrag_ratio increases the tendency to do local allocations
1622 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1623 *
672bba3a
CL
1624 * If the defrag_ratio is set to 0 then kmalloc() always
1625 * returns node local objects. If the ratio is higher then kmalloc()
1626 * may return off node objects because partial slabs are obtained
1627 * from other nodes and filled up.
81819f0f 1628 *
6446faa2 1629 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1630 * defrag_ratio = 1000) then every (well almost) allocation will
1631 * first attempt to defrag slab caches on other nodes. This means
1632 * scanning over all nodes to look for partial slabs which may be
1633 * expensive if we do it every time we are trying to find a slab
1634 * with available objects.
81819f0f 1635 */
9824601e
CL
1636 if (!s->remote_node_defrag_ratio ||
1637 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1638 return NULL;
1639
c0ff7453 1640 get_mems_allowed();
0e88460d 1641 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1642 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1643 struct kmem_cache_node *n;
1644
54a6eb5c 1645 n = get_node(s, zone_to_nid(zone));
81819f0f 1646
54a6eb5c 1647 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1648 n->nr_partial > s->min_partial) {
61728d1e 1649 page = get_partial_node(s, n);
c0ff7453
MX
1650 if (page) {
1651 put_mems_allowed();
81819f0f 1652 return page;
c0ff7453 1653 }
81819f0f
CL
1654 }
1655 }
c0ff7453 1656 put_mems_allowed();
81819f0f
CL
1657#endif
1658 return NULL;
1659}
1660
1661/*
1662 * Get a partial page, lock it and return it.
1663 */
1664static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1665{
1666 struct page *page;
2154a336 1667 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1668
61728d1e 1669 page = get_partial_node(s, get_node(s, searchnode));
33de04ec 1670 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1671 return page;
1672
1673 return get_any_partial(s, flags);
1674}
1675
8a5ec0ba
CL
1676#ifdef CONFIG_PREEMPT
1677/*
1678 * Calculate the next globally unique transaction for disambiguiation
1679 * during cmpxchg. The transactions start with the cpu number and are then
1680 * incremented by CONFIG_NR_CPUS.
1681 */
1682#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1683#else
1684/*
1685 * No preemption supported therefore also no need to check for
1686 * different cpus.
1687 */
1688#define TID_STEP 1
1689#endif
1690
1691static inline unsigned long next_tid(unsigned long tid)
1692{
1693 return tid + TID_STEP;
1694}
1695
1696static inline unsigned int tid_to_cpu(unsigned long tid)
1697{
1698 return tid % TID_STEP;
1699}
1700
1701static inline unsigned long tid_to_event(unsigned long tid)
1702{
1703 return tid / TID_STEP;
1704}
1705
1706static inline unsigned int init_tid(int cpu)
1707{
1708 return cpu;
1709}
1710
1711static inline void note_cmpxchg_failure(const char *n,
1712 const struct kmem_cache *s, unsigned long tid)
1713{
1714#ifdef SLUB_DEBUG_CMPXCHG
1715 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1716
1717 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1718
1719#ifdef CONFIG_PREEMPT
1720 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1721 printk("due to cpu change %d -> %d\n",
1722 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1723 else
1724#endif
1725 if (tid_to_event(tid) != tid_to_event(actual_tid))
1726 printk("due to cpu running other code. Event %ld->%ld\n",
1727 tid_to_event(tid), tid_to_event(actual_tid));
1728 else
1729 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1730 actual_tid, tid, next_tid(tid));
1731#endif
4fdccdfb 1732 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1733}
1734
8a5ec0ba
CL
1735void init_kmem_cache_cpus(struct kmem_cache *s)
1736{
8a5ec0ba
CL
1737 int cpu;
1738
1739 for_each_possible_cpu(cpu)
1740 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1741}
2cfb7455
CL
1742/*
1743 * Remove the cpu slab
1744 */
1745
81819f0f
CL
1746/*
1747 * Remove the cpu slab
1748 */
dfb4f096 1749static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1750{
2cfb7455 1751 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1752 struct page *page = c->page;
2cfb7455
CL
1753 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1754 int lock = 0;
1755 enum slab_modes l = M_NONE, m = M_NONE;
1756 void *freelist;
1757 void *nextfree;
136333d1 1758 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1759 struct page new;
1760 struct page old;
1761
1762 if (page->freelist) {
84e554e6 1763 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1764 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1765 }
1766
1767 c->tid = next_tid(c->tid);
1768 c->page = NULL;
1769 freelist = c->freelist;
1770 c->freelist = NULL;
1771
894b8788 1772 /*
2cfb7455
CL
1773 * Stage one: Free all available per cpu objects back
1774 * to the page freelist while it is still frozen. Leave the
1775 * last one.
1776 *
1777 * There is no need to take the list->lock because the page
1778 * is still frozen.
1779 */
1780 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1781 void *prior;
1782 unsigned long counters;
1783
1784 do {
1785 prior = page->freelist;
1786 counters = page->counters;
1787 set_freepointer(s, freelist, prior);
1788 new.counters = counters;
1789 new.inuse--;
1790 VM_BUG_ON(!new.frozen);
1791
1d07171c 1792 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1793 prior, counters,
1794 freelist, new.counters,
1795 "drain percpu freelist"));
1796
1797 freelist = nextfree;
1798 }
1799
894b8788 1800 /*
2cfb7455
CL
1801 * Stage two: Ensure that the page is unfrozen while the
1802 * list presence reflects the actual number of objects
1803 * during unfreeze.
1804 *
1805 * We setup the list membership and then perform a cmpxchg
1806 * with the count. If there is a mismatch then the page
1807 * is not unfrozen but the page is on the wrong list.
1808 *
1809 * Then we restart the process which may have to remove
1810 * the page from the list that we just put it on again
1811 * because the number of objects in the slab may have
1812 * changed.
894b8788 1813 */
2cfb7455 1814redo:
894b8788 1815
2cfb7455
CL
1816 old.freelist = page->freelist;
1817 old.counters = page->counters;
1818 VM_BUG_ON(!old.frozen);
7c2e132c 1819
2cfb7455
CL
1820 /* Determine target state of the slab */
1821 new.counters = old.counters;
1822 if (freelist) {
1823 new.inuse--;
1824 set_freepointer(s, freelist, old.freelist);
1825 new.freelist = freelist;
1826 } else
1827 new.freelist = old.freelist;
1828
1829 new.frozen = 0;
1830
81107188 1831 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1832 m = M_FREE;
1833 else if (new.freelist) {
1834 m = M_PARTIAL;
1835 if (!lock) {
1836 lock = 1;
1837 /*
1838 * Taking the spinlock removes the possiblity
1839 * that acquire_slab() will see a slab page that
1840 * is frozen
1841 */
1842 spin_lock(&n->list_lock);
1843 }
1844 } else {
1845 m = M_FULL;
1846 if (kmem_cache_debug(s) && !lock) {
1847 lock = 1;
1848 /*
1849 * This also ensures that the scanning of full
1850 * slabs from diagnostic functions will not see
1851 * any frozen slabs.
1852 */
1853 spin_lock(&n->list_lock);
1854 }
1855 }
1856
1857 if (l != m) {
1858
1859 if (l == M_PARTIAL)
1860
1861 remove_partial(n, page);
1862
1863 else if (l == M_FULL)
894b8788 1864
2cfb7455
CL
1865 remove_full(s, page);
1866
1867 if (m == M_PARTIAL) {
1868
1869 add_partial(n, page, tail);
136333d1 1870 stat(s, tail);
2cfb7455
CL
1871
1872 } else if (m == M_FULL) {
894b8788 1873
2cfb7455
CL
1874 stat(s, DEACTIVATE_FULL);
1875 add_full(s, n, page);
1876
1877 }
1878 }
1879
1880 l = m;
1d07171c 1881 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1882 old.freelist, old.counters,
1883 new.freelist, new.counters,
1884 "unfreezing slab"))
1885 goto redo;
1886
2cfb7455
CL
1887 if (lock)
1888 spin_unlock(&n->list_lock);
1889
1890 if (m == M_FREE) {
1891 stat(s, DEACTIVATE_EMPTY);
1892 discard_slab(s, page);
1893 stat(s, FREE_SLAB);
894b8788 1894 }
81819f0f
CL
1895}
1896
dfb4f096 1897static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1898{
84e554e6 1899 stat(s, CPUSLAB_FLUSH);
dfb4f096 1900 deactivate_slab(s, c);
81819f0f
CL
1901}
1902
1903/*
1904 * Flush cpu slab.
6446faa2 1905 *
81819f0f
CL
1906 * Called from IPI handler with interrupts disabled.
1907 */
0c710013 1908static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1909{
9dfc6e68 1910 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1911
dfb4f096
CL
1912 if (likely(c && c->page))
1913 flush_slab(s, c);
81819f0f
CL
1914}
1915
1916static void flush_cpu_slab(void *d)
1917{
1918 struct kmem_cache *s = d;
81819f0f 1919
dfb4f096 1920 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1921}
1922
1923static void flush_all(struct kmem_cache *s)
1924{
15c8b6c1 1925 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1926}
1927
dfb4f096
CL
1928/*
1929 * Check if the objects in a per cpu structure fit numa
1930 * locality expectations.
1931 */
1932static inline int node_match(struct kmem_cache_cpu *c, int node)
1933{
1934#ifdef CONFIG_NUMA
2154a336 1935 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1936 return 0;
1937#endif
1938 return 1;
1939}
1940
781b2ba6
PE
1941static int count_free(struct page *page)
1942{
1943 return page->objects - page->inuse;
1944}
1945
1946static unsigned long count_partial(struct kmem_cache_node *n,
1947 int (*get_count)(struct page *))
1948{
1949 unsigned long flags;
1950 unsigned long x = 0;
1951 struct page *page;
1952
1953 spin_lock_irqsave(&n->list_lock, flags);
1954 list_for_each_entry(page, &n->partial, lru)
1955 x += get_count(page);
1956 spin_unlock_irqrestore(&n->list_lock, flags);
1957 return x;
1958}
1959
26c02cf0
AB
1960static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1961{
1962#ifdef CONFIG_SLUB_DEBUG
1963 return atomic_long_read(&n->total_objects);
1964#else
1965 return 0;
1966#endif
1967}
1968
781b2ba6
PE
1969static noinline void
1970slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1971{
1972 int node;
1973
1974 printk(KERN_WARNING
1975 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1976 nid, gfpflags);
1977 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1978 "default order: %d, min order: %d\n", s->name, s->objsize,
1979 s->size, oo_order(s->oo), oo_order(s->min));
1980
fa5ec8a1
DR
1981 if (oo_order(s->min) > get_order(s->objsize))
1982 printk(KERN_WARNING " %s debugging increased min order, use "
1983 "slub_debug=O to disable.\n", s->name);
1984
781b2ba6
PE
1985 for_each_online_node(node) {
1986 struct kmem_cache_node *n = get_node(s, node);
1987 unsigned long nr_slabs;
1988 unsigned long nr_objs;
1989 unsigned long nr_free;
1990
1991 if (!n)
1992 continue;
1993
26c02cf0
AB
1994 nr_free = count_partial(n, count_free);
1995 nr_slabs = node_nr_slabs(n);
1996 nr_objs = node_nr_objs(n);
781b2ba6
PE
1997
1998 printk(KERN_WARNING
1999 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2000 node, nr_slabs, nr_objs, nr_free);
2001 }
2002}
2003
81819f0f 2004/*
894b8788
CL
2005 * Slow path. The lockless freelist is empty or we need to perform
2006 * debugging duties.
2007 *
2008 * Interrupts are disabled.
81819f0f 2009 *
894b8788
CL
2010 * Processing is still very fast if new objects have been freed to the
2011 * regular freelist. In that case we simply take over the regular freelist
2012 * as the lockless freelist and zap the regular freelist.
81819f0f 2013 *
894b8788
CL
2014 * If that is not working then we fall back to the partial lists. We take the
2015 * first element of the freelist as the object to allocate now and move the
2016 * rest of the freelist to the lockless freelist.
81819f0f 2017 *
894b8788 2018 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2019 * we need to allocate a new slab. This is the slowest path since it involves
2020 * a call to the page allocator and the setup of a new slab.
81819f0f 2021 */
ce71e27c
EGM
2022static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2023 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2024{
81819f0f 2025 void **object;
01ad8a7b 2026 struct page *page;
8a5ec0ba 2027 unsigned long flags;
2cfb7455
CL
2028 struct page new;
2029 unsigned long counters;
8a5ec0ba
CL
2030
2031 local_irq_save(flags);
2032#ifdef CONFIG_PREEMPT
2033 /*
2034 * We may have been preempted and rescheduled on a different
2035 * cpu before disabling interrupts. Need to reload cpu area
2036 * pointer.
2037 */
2038 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2039#endif
81819f0f 2040
e72e9c23
LT
2041 /* We handle __GFP_ZERO in the caller */
2042 gfpflags &= ~__GFP_ZERO;
2043
01ad8a7b
CL
2044 page = c->page;
2045 if (!page)
81819f0f
CL
2046 goto new_slab;
2047
fc59c053 2048 if (unlikely(!node_match(c, node))) {
e36a2652 2049 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2050 deactivate_slab(s, c);
2051 goto new_slab;
2052 }
6446faa2 2053
2cfb7455
CL
2054 stat(s, ALLOC_SLOWPATH);
2055
2056 do {
2057 object = page->freelist;
2058 counters = page->counters;
2059 new.counters = counters;
2cfb7455
CL
2060 VM_BUG_ON(!new.frozen);
2061
03e404af
CL
2062 /*
2063 * If there is no object left then we use this loop to
2064 * deactivate the slab which is simple since no objects
2065 * are left in the slab and therefore we do not need to
2066 * put the page back onto the partial list.
2067 *
2068 * If there are objects left then we retrieve them
2069 * and use them to refill the per cpu queue.
2070 */
2071
2072 new.inuse = page->objects;
2073 new.frozen = object != NULL;
2074
1d07171c 2075 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2076 object, counters,
2077 NULL, new.counters,
2078 "__slab_alloc"));
6446faa2 2079
03e404af
CL
2080 if (unlikely(!object)) {
2081 c->page = NULL;
2082 stat(s, DEACTIVATE_BYPASS);
fc59c053 2083 goto new_slab;
03e404af 2084 }
6446faa2 2085
84e554e6 2086 stat(s, ALLOC_REFILL);
6446faa2 2087
894b8788 2088load_freelist:
4eade540 2089 VM_BUG_ON(!page->frozen);
ff12059e 2090 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2091 c->tid = next_tid(c->tid);
2092 local_irq_restore(flags);
81819f0f
CL
2093 return object;
2094
81819f0f 2095new_slab:
01ad8a7b
CL
2096 page = get_partial(s, gfpflags, node);
2097 if (page) {
84e554e6 2098 stat(s, ALLOC_FROM_PARTIAL);
2cfb7455
CL
2099 object = c->freelist;
2100
2101 if (kmem_cache_debug(s))
2102 goto debug;
894b8788 2103 goto load_freelist;
81819f0f
CL
2104 }
2105
01ad8a7b 2106 page = new_slab(s, gfpflags, node);
b811c202 2107
01ad8a7b 2108 if (page) {
9dfc6e68 2109 c = __this_cpu_ptr(s->cpu_slab);
05aa3450 2110 if (c->page)
dfb4f096 2111 flush_slab(s, c);
01ad8a7b 2112
2cfb7455
CL
2113 /*
2114 * No other reference to the page yet so we can
2115 * muck around with it freely without cmpxchg
2116 */
2117 object = page->freelist;
2118 page->freelist = NULL;
2119 page->inuse = page->objects;
2120
2121 stat(s, ALLOC_SLAB);
bd07d87f
DR
2122 c->node = page_to_nid(page);
2123 c->page = page;
9e577e8b
CL
2124
2125 if (kmem_cache_debug(s))
2126 goto debug;
4b6f0750 2127 goto load_freelist;
81819f0f 2128 }
95f85989
PE
2129 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2130 slab_out_of_memory(s, gfpflags, node);
2fd66c51 2131 local_irq_restore(flags);
71c7a06f 2132 return NULL;
2cfb7455 2133
81819f0f 2134debug:
2cfb7455
CL
2135 if (!object || !alloc_debug_processing(s, page, object, addr))
2136 goto new_slab;
894b8788 2137
2cfb7455 2138 c->freelist = get_freepointer(s, object);
442b06bc
CL
2139 deactivate_slab(s, c);
2140 c->page = NULL;
15b7c514 2141 c->node = NUMA_NO_NODE;
a71ae47a
CL
2142 local_irq_restore(flags);
2143 return object;
894b8788
CL
2144}
2145
2146/*
2147 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2148 * have the fastpath folded into their functions. So no function call
2149 * overhead for requests that can be satisfied on the fastpath.
2150 *
2151 * The fastpath works by first checking if the lockless freelist can be used.
2152 * If not then __slab_alloc is called for slow processing.
2153 *
2154 * Otherwise we can simply pick the next object from the lockless free list.
2155 */
06428780 2156static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2157 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2158{
894b8788 2159 void **object;
dfb4f096 2160 struct kmem_cache_cpu *c;
8a5ec0ba 2161 unsigned long tid;
1f84260c 2162
c016b0bd 2163 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2164 return NULL;
1f84260c 2165
8a5ec0ba 2166redo:
8a5ec0ba
CL
2167
2168 /*
2169 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2170 * enabled. We may switch back and forth between cpus while
2171 * reading from one cpu area. That does not matter as long
2172 * as we end up on the original cpu again when doing the cmpxchg.
2173 */
9dfc6e68 2174 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2175
8a5ec0ba
CL
2176 /*
2177 * The transaction ids are globally unique per cpu and per operation on
2178 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2179 * occurs on the right processor and that there was no operation on the
2180 * linked list in between.
2181 */
2182 tid = c->tid;
2183 barrier();
8a5ec0ba 2184
9dfc6e68 2185 object = c->freelist;
9dfc6e68 2186 if (unlikely(!object || !node_match(c, node)))
894b8788 2187
dfb4f096 2188 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2189
2190 else {
8a5ec0ba 2191 /*
25985edc 2192 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2193 * operation and if we are on the right processor.
2194 *
2195 * The cmpxchg does the following atomically (without lock semantics!)
2196 * 1. Relocate first pointer to the current per cpu area.
2197 * 2. Verify that tid and freelist have not been changed
2198 * 3. If they were not changed replace tid and freelist
2199 *
2200 * Since this is without lock semantics the protection is only against
2201 * code executing on this cpu *not* from access by other cpus.
2202 */
30106b8c 2203 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2204 s->cpu_slab->freelist, s->cpu_slab->tid,
2205 object, tid,
1393d9a1 2206 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2207
2208 note_cmpxchg_failure("slab_alloc", s, tid);
2209 goto redo;
2210 }
84e554e6 2211 stat(s, ALLOC_FASTPATH);
894b8788 2212 }
8a5ec0ba 2213
74e2134f 2214 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2215 memset(object, 0, s->objsize);
d07dbea4 2216
c016b0bd 2217 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2218
894b8788 2219 return object;
81819f0f
CL
2220}
2221
2222void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2223{
2154a336 2224 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2225
ca2b84cb 2226 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2227
2228 return ret;
81819f0f
CL
2229}
2230EXPORT_SYMBOL(kmem_cache_alloc);
2231
0f24f128 2232#ifdef CONFIG_TRACING
4a92379b
RK
2233void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2234{
2235 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2236 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2237 return ret;
2238}
2239EXPORT_SYMBOL(kmem_cache_alloc_trace);
2240
2241void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2242{
4a92379b
RK
2243 void *ret = kmalloc_order(size, flags, order);
2244 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2245 return ret;
5b882be4 2246}
4a92379b 2247EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2248#endif
2249
81819f0f
CL
2250#ifdef CONFIG_NUMA
2251void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2252{
5b882be4
EGM
2253 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2254
ca2b84cb
EGM
2255 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2256 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2257
2258 return ret;
81819f0f
CL
2259}
2260EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2261
0f24f128 2262#ifdef CONFIG_TRACING
4a92379b 2263void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2264 gfp_t gfpflags,
4a92379b 2265 int node, size_t size)
5b882be4 2266{
4a92379b
RK
2267 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2268
2269 trace_kmalloc_node(_RET_IP_, ret,
2270 size, s->size, gfpflags, node);
2271 return ret;
5b882be4 2272}
4a92379b 2273EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2274#endif
5d1f57e4 2275#endif
5b882be4 2276
81819f0f 2277/*
894b8788
CL
2278 * Slow patch handling. This may still be called frequently since objects
2279 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2280 *
894b8788
CL
2281 * So we still attempt to reduce cache line usage. Just take the slab
2282 * lock and free the item. If there is no additional partial page
2283 * handling required then we can return immediately.
81819f0f 2284 */
894b8788 2285static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2286 void *x, unsigned long addr)
81819f0f
CL
2287{
2288 void *prior;
2289 void **object = (void *)x;
2cfb7455
CL
2290 int was_frozen;
2291 int inuse;
2292 struct page new;
2293 unsigned long counters;
2294 struct kmem_cache_node *n = NULL;
61728d1e 2295 unsigned long uninitialized_var(flags);
81819f0f 2296
8a5ec0ba 2297 stat(s, FREE_SLOWPATH);
81819f0f 2298
8dc16c6c 2299 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2300 return;
6446faa2 2301
2cfb7455
CL
2302 do {
2303 prior = page->freelist;
2304 counters = page->counters;
2305 set_freepointer(s, object, prior);
2306 new.counters = counters;
2307 was_frozen = new.frozen;
2308 new.inuse--;
2309 if ((!new.inuse || !prior) && !was_frozen && !n) {
2310 n = get_node(s, page_to_nid(page));
2311 /*
2312 * Speculatively acquire the list_lock.
2313 * If the cmpxchg does not succeed then we may
2314 * drop the list_lock without any processing.
2315 *
2316 * Otherwise the list_lock will synchronize with
2317 * other processors updating the list of slabs.
2318 */
80f08c19 2319 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2320 }
2321 inuse = new.inuse;
81819f0f 2322
2cfb7455
CL
2323 } while (!cmpxchg_double_slab(s, page,
2324 prior, counters,
2325 object, new.counters,
2326 "__slab_free"));
81819f0f 2327
2cfb7455
CL
2328 if (likely(!n)) {
2329 /*
2330 * The list lock was not taken therefore no list
2331 * activity can be necessary.
2332 */
2333 if (was_frozen)
2334 stat(s, FREE_FROZEN);
80f08c19 2335 return;
2cfb7455 2336 }
81819f0f
CL
2337
2338 /*
2cfb7455
CL
2339 * was_frozen may have been set after we acquired the list_lock in
2340 * an earlier loop. So we need to check it here again.
81819f0f 2341 */
2cfb7455
CL
2342 if (was_frozen)
2343 stat(s, FREE_FROZEN);
2344 else {
2345 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2346 goto slab_empty;
81819f0f 2347
2cfb7455
CL
2348 /*
2349 * Objects left in the slab. If it was not on the partial list before
2350 * then add it.
2351 */
2352 if (unlikely(!prior)) {
2353 remove_full(s, page);
136333d1 2354 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2355 stat(s, FREE_ADD_PARTIAL);
2356 }
8ff12cfc 2357 }
80f08c19 2358 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2359 return;
2360
2361slab_empty:
a973e9dd 2362 if (prior) {
81819f0f 2363 /*
6fbabb20 2364 * Slab on the partial list.
81819f0f 2365 */
5cc6eee8 2366 remove_partial(n, page);
84e554e6 2367 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2368 } else
2369 /* Slab must be on the full list */
2370 remove_full(s, page);
2cfb7455 2371
80f08c19 2372 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2373 stat(s, FREE_SLAB);
81819f0f 2374 discard_slab(s, page);
81819f0f
CL
2375}
2376
894b8788
CL
2377/*
2378 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2379 * can perform fastpath freeing without additional function calls.
2380 *
2381 * The fastpath is only possible if we are freeing to the current cpu slab
2382 * of this processor. This typically the case if we have just allocated
2383 * the item before.
2384 *
2385 * If fastpath is not possible then fall back to __slab_free where we deal
2386 * with all sorts of special processing.
2387 */
06428780 2388static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2389 struct page *page, void *x, unsigned long addr)
894b8788
CL
2390{
2391 void **object = (void *)x;
dfb4f096 2392 struct kmem_cache_cpu *c;
8a5ec0ba 2393 unsigned long tid;
1f84260c 2394
c016b0bd
CL
2395 slab_free_hook(s, x);
2396
8a5ec0ba 2397redo:
a24c5a0e 2398
8a5ec0ba
CL
2399 /*
2400 * Determine the currently cpus per cpu slab.
2401 * The cpu may change afterward. However that does not matter since
2402 * data is retrieved via this pointer. If we are on the same cpu
2403 * during the cmpxchg then the free will succedd.
2404 */
9dfc6e68 2405 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2406
8a5ec0ba
CL
2407 tid = c->tid;
2408 barrier();
c016b0bd 2409
442b06bc 2410 if (likely(page == c->page)) {
ff12059e 2411 set_freepointer(s, object, c->freelist);
8a5ec0ba 2412
30106b8c 2413 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2414 s->cpu_slab->freelist, s->cpu_slab->tid,
2415 c->freelist, tid,
2416 object, next_tid(tid)))) {
2417
2418 note_cmpxchg_failure("slab_free", s, tid);
2419 goto redo;
2420 }
84e554e6 2421 stat(s, FREE_FASTPATH);
894b8788 2422 } else
ff12059e 2423 __slab_free(s, page, x, addr);
894b8788 2424
894b8788
CL
2425}
2426
81819f0f
CL
2427void kmem_cache_free(struct kmem_cache *s, void *x)
2428{
77c5e2d0 2429 struct page *page;
81819f0f 2430
b49af68f 2431 page = virt_to_head_page(x);
81819f0f 2432
ce71e27c 2433 slab_free(s, page, x, _RET_IP_);
5b882be4 2434
ca2b84cb 2435 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2436}
2437EXPORT_SYMBOL(kmem_cache_free);
2438
81819f0f 2439/*
672bba3a
CL
2440 * Object placement in a slab is made very easy because we always start at
2441 * offset 0. If we tune the size of the object to the alignment then we can
2442 * get the required alignment by putting one properly sized object after
2443 * another.
81819f0f
CL
2444 *
2445 * Notice that the allocation order determines the sizes of the per cpu
2446 * caches. Each processor has always one slab available for allocations.
2447 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2448 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2449 * locking overhead.
81819f0f
CL
2450 */
2451
2452/*
2453 * Mininum / Maximum order of slab pages. This influences locking overhead
2454 * and slab fragmentation. A higher order reduces the number of partial slabs
2455 * and increases the number of allocations possible without having to
2456 * take the list_lock.
2457 */
2458static int slub_min_order;
114e9e89 2459static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2460static int slub_min_objects;
81819f0f
CL
2461
2462/*
2463 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2464 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2465 */
2466static int slub_nomerge;
2467
81819f0f
CL
2468/*
2469 * Calculate the order of allocation given an slab object size.
2470 *
672bba3a
CL
2471 * The order of allocation has significant impact on performance and other
2472 * system components. Generally order 0 allocations should be preferred since
2473 * order 0 does not cause fragmentation in the page allocator. Larger objects
2474 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2475 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2476 * would be wasted.
2477 *
2478 * In order to reach satisfactory performance we must ensure that a minimum
2479 * number of objects is in one slab. Otherwise we may generate too much
2480 * activity on the partial lists which requires taking the list_lock. This is
2481 * less a concern for large slabs though which are rarely used.
81819f0f 2482 *
672bba3a
CL
2483 * slub_max_order specifies the order where we begin to stop considering the
2484 * number of objects in a slab as critical. If we reach slub_max_order then
2485 * we try to keep the page order as low as possible. So we accept more waste
2486 * of space in favor of a small page order.
81819f0f 2487 *
672bba3a
CL
2488 * Higher order allocations also allow the placement of more objects in a
2489 * slab and thereby reduce object handling overhead. If the user has
2490 * requested a higher mininum order then we start with that one instead of
2491 * the smallest order which will fit the object.
81819f0f 2492 */
5e6d444e 2493static inline int slab_order(int size, int min_objects,
ab9a0f19 2494 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2495{
2496 int order;
2497 int rem;
6300ea75 2498 int min_order = slub_min_order;
81819f0f 2499
ab9a0f19 2500 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2501 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2502
6300ea75 2503 for (order = max(min_order,
5e6d444e
CL
2504 fls(min_objects * size - 1) - PAGE_SHIFT);
2505 order <= max_order; order++) {
81819f0f 2506
5e6d444e 2507 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2508
ab9a0f19 2509 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2510 continue;
2511
ab9a0f19 2512 rem = (slab_size - reserved) % size;
81819f0f 2513
5e6d444e 2514 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2515 break;
2516
2517 }
672bba3a 2518
81819f0f
CL
2519 return order;
2520}
2521
ab9a0f19 2522static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2523{
2524 int order;
2525 int min_objects;
2526 int fraction;
e8120ff1 2527 int max_objects;
5e6d444e
CL
2528
2529 /*
2530 * Attempt to find best configuration for a slab. This
2531 * works by first attempting to generate a layout with
2532 * the best configuration and backing off gradually.
2533 *
2534 * First we reduce the acceptable waste in a slab. Then
2535 * we reduce the minimum objects required in a slab.
2536 */
2537 min_objects = slub_min_objects;
9b2cd506
CL
2538 if (!min_objects)
2539 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2540 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2541 min_objects = min(min_objects, max_objects);
2542
5e6d444e 2543 while (min_objects > 1) {
c124f5b5 2544 fraction = 16;
5e6d444e
CL
2545 while (fraction >= 4) {
2546 order = slab_order(size, min_objects,
ab9a0f19 2547 slub_max_order, fraction, reserved);
5e6d444e
CL
2548 if (order <= slub_max_order)
2549 return order;
2550 fraction /= 2;
2551 }
5086c389 2552 min_objects--;
5e6d444e
CL
2553 }
2554
2555 /*
2556 * We were unable to place multiple objects in a slab. Now
2557 * lets see if we can place a single object there.
2558 */
ab9a0f19 2559 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2560 if (order <= slub_max_order)
2561 return order;
2562
2563 /*
2564 * Doh this slab cannot be placed using slub_max_order.
2565 */
ab9a0f19 2566 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2567 if (order < MAX_ORDER)
5e6d444e
CL
2568 return order;
2569 return -ENOSYS;
2570}
2571
81819f0f 2572/*
672bba3a 2573 * Figure out what the alignment of the objects will be.
81819f0f
CL
2574 */
2575static unsigned long calculate_alignment(unsigned long flags,
2576 unsigned long align, unsigned long size)
2577{
2578 /*
6446faa2
CL
2579 * If the user wants hardware cache aligned objects then follow that
2580 * suggestion if the object is sufficiently large.
81819f0f 2581 *
6446faa2
CL
2582 * The hardware cache alignment cannot override the specified
2583 * alignment though. If that is greater then use it.
81819f0f 2584 */
b6210386
NP
2585 if (flags & SLAB_HWCACHE_ALIGN) {
2586 unsigned long ralign = cache_line_size();
2587 while (size <= ralign / 2)
2588 ralign /= 2;
2589 align = max(align, ralign);
2590 }
81819f0f
CL
2591
2592 if (align < ARCH_SLAB_MINALIGN)
b6210386 2593 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2594
2595 return ALIGN(align, sizeof(void *));
2596}
2597
5595cffc
PE
2598static void
2599init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2600{
2601 n->nr_partial = 0;
81819f0f
CL
2602 spin_lock_init(&n->list_lock);
2603 INIT_LIST_HEAD(&n->partial);
8ab1372f 2604#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2605 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2606 atomic_long_set(&n->total_objects, 0);
643b1138 2607 INIT_LIST_HEAD(&n->full);
8ab1372f 2608#endif
81819f0f
CL
2609}
2610
55136592 2611static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2612{
6c182dc0
CL
2613 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2614 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2615
8a5ec0ba 2616 /*
d4d84fef
CM
2617 * Must align to double word boundary for the double cmpxchg
2618 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2619 */
d4d84fef
CM
2620 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2621 2 * sizeof(void *));
8a5ec0ba
CL
2622
2623 if (!s->cpu_slab)
2624 return 0;
2625
2626 init_kmem_cache_cpus(s);
4c93c355 2627
8a5ec0ba 2628 return 1;
4c93c355 2629}
4c93c355 2630
51df1142
CL
2631static struct kmem_cache *kmem_cache_node;
2632
81819f0f
CL
2633/*
2634 * No kmalloc_node yet so do it by hand. We know that this is the first
2635 * slab on the node for this slabcache. There are no concurrent accesses
2636 * possible.
2637 *
2638 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2639 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2640 * memory on a fresh node that has no slab structures yet.
81819f0f 2641 */
55136592 2642static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2643{
2644 struct page *page;
2645 struct kmem_cache_node *n;
2646
51df1142 2647 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2648
51df1142 2649 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2650
2651 BUG_ON(!page);
a2f92ee7
CL
2652 if (page_to_nid(page) != node) {
2653 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2654 "node %d\n", node);
2655 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2656 "in order to be able to continue\n");
2657 }
2658
81819f0f
CL
2659 n = page->freelist;
2660 BUG_ON(!n);
51df1142 2661 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2662 page->inuse++;
8cb0a506 2663 page->frozen = 0;
51df1142 2664 kmem_cache_node->node[node] = n;
8ab1372f 2665#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2666 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2667 init_tracking(kmem_cache_node, n);
8ab1372f 2668#endif
51df1142
CL
2669 init_kmem_cache_node(n, kmem_cache_node);
2670 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2671
136333d1 2672 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2673}
2674
2675static void free_kmem_cache_nodes(struct kmem_cache *s)
2676{
2677 int node;
2678
f64dc58c 2679 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2680 struct kmem_cache_node *n = s->node[node];
51df1142 2681
73367bd8 2682 if (n)
51df1142
CL
2683 kmem_cache_free(kmem_cache_node, n);
2684
81819f0f
CL
2685 s->node[node] = NULL;
2686 }
2687}
2688
55136592 2689static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2690{
2691 int node;
81819f0f 2692
f64dc58c 2693 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2694 struct kmem_cache_node *n;
2695
73367bd8 2696 if (slab_state == DOWN) {
55136592 2697 early_kmem_cache_node_alloc(node);
73367bd8
AD
2698 continue;
2699 }
51df1142 2700 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2701 GFP_KERNEL, node);
81819f0f 2702
73367bd8
AD
2703 if (!n) {
2704 free_kmem_cache_nodes(s);
2705 return 0;
81819f0f 2706 }
73367bd8 2707
81819f0f 2708 s->node[node] = n;
5595cffc 2709 init_kmem_cache_node(n, s);
81819f0f
CL
2710 }
2711 return 1;
2712}
81819f0f 2713
c0bdb232 2714static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2715{
2716 if (min < MIN_PARTIAL)
2717 min = MIN_PARTIAL;
2718 else if (min > MAX_PARTIAL)
2719 min = MAX_PARTIAL;
2720 s->min_partial = min;
2721}
2722
81819f0f
CL
2723/*
2724 * calculate_sizes() determines the order and the distribution of data within
2725 * a slab object.
2726 */
06b285dc 2727static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2728{
2729 unsigned long flags = s->flags;
2730 unsigned long size = s->objsize;
2731 unsigned long align = s->align;
834f3d11 2732 int order;
81819f0f 2733
d8b42bf5
CL
2734 /*
2735 * Round up object size to the next word boundary. We can only
2736 * place the free pointer at word boundaries and this determines
2737 * the possible location of the free pointer.
2738 */
2739 size = ALIGN(size, sizeof(void *));
2740
2741#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2742 /*
2743 * Determine if we can poison the object itself. If the user of
2744 * the slab may touch the object after free or before allocation
2745 * then we should never poison the object itself.
2746 */
2747 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2748 !s->ctor)
81819f0f
CL
2749 s->flags |= __OBJECT_POISON;
2750 else
2751 s->flags &= ~__OBJECT_POISON;
2752
81819f0f
CL
2753
2754 /*
672bba3a 2755 * If we are Redzoning then check if there is some space between the
81819f0f 2756 * end of the object and the free pointer. If not then add an
672bba3a 2757 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2758 */
2759 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2760 size += sizeof(void *);
41ecc55b 2761#endif
81819f0f
CL
2762
2763 /*
672bba3a
CL
2764 * With that we have determined the number of bytes in actual use
2765 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2766 */
2767 s->inuse = size;
2768
2769 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2770 s->ctor)) {
81819f0f
CL
2771 /*
2772 * Relocate free pointer after the object if it is not
2773 * permitted to overwrite the first word of the object on
2774 * kmem_cache_free.
2775 *
2776 * This is the case if we do RCU, have a constructor or
2777 * destructor or are poisoning the objects.
2778 */
2779 s->offset = size;
2780 size += sizeof(void *);
2781 }
2782
c12b3c62 2783#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2784 if (flags & SLAB_STORE_USER)
2785 /*
2786 * Need to store information about allocs and frees after
2787 * the object.
2788 */
2789 size += 2 * sizeof(struct track);
2790
be7b3fbc 2791 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2792 /*
2793 * Add some empty padding so that we can catch
2794 * overwrites from earlier objects rather than let
2795 * tracking information or the free pointer be
0211a9c8 2796 * corrupted if a user writes before the start
81819f0f
CL
2797 * of the object.
2798 */
2799 size += sizeof(void *);
41ecc55b 2800#endif
672bba3a 2801
81819f0f
CL
2802 /*
2803 * Determine the alignment based on various parameters that the
65c02d4c
CL
2804 * user specified and the dynamic determination of cache line size
2805 * on bootup.
81819f0f
CL
2806 */
2807 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2808 s->align = align;
81819f0f
CL
2809
2810 /*
2811 * SLUB stores one object immediately after another beginning from
2812 * offset 0. In order to align the objects we have to simply size
2813 * each object to conform to the alignment.
2814 */
2815 size = ALIGN(size, align);
2816 s->size = size;
06b285dc
CL
2817 if (forced_order >= 0)
2818 order = forced_order;
2819 else
ab9a0f19 2820 order = calculate_order(size, s->reserved);
81819f0f 2821
834f3d11 2822 if (order < 0)
81819f0f
CL
2823 return 0;
2824
b7a49f0d 2825 s->allocflags = 0;
834f3d11 2826 if (order)
b7a49f0d
CL
2827 s->allocflags |= __GFP_COMP;
2828
2829 if (s->flags & SLAB_CACHE_DMA)
2830 s->allocflags |= SLUB_DMA;
2831
2832 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2833 s->allocflags |= __GFP_RECLAIMABLE;
2834
81819f0f
CL
2835 /*
2836 * Determine the number of objects per slab
2837 */
ab9a0f19
LJ
2838 s->oo = oo_make(order, size, s->reserved);
2839 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2840 if (oo_objects(s->oo) > oo_objects(s->max))
2841 s->max = s->oo;
81819f0f 2842
834f3d11 2843 return !!oo_objects(s->oo);
81819f0f
CL
2844
2845}
2846
55136592 2847static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2848 const char *name, size_t size,
2849 size_t align, unsigned long flags,
51cc5068 2850 void (*ctor)(void *))
81819f0f
CL
2851{
2852 memset(s, 0, kmem_size);
2853 s->name = name;
2854 s->ctor = ctor;
81819f0f 2855 s->objsize = size;
81819f0f 2856 s->align = align;
ba0268a8 2857 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2858 s->reserved = 0;
81819f0f 2859
da9a638c
LJ
2860 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2861 s->reserved = sizeof(struct rcu_head);
81819f0f 2862
06b285dc 2863 if (!calculate_sizes(s, -1))
81819f0f 2864 goto error;
3de47213
DR
2865 if (disable_higher_order_debug) {
2866 /*
2867 * Disable debugging flags that store metadata if the min slab
2868 * order increased.
2869 */
2870 if (get_order(s->size) > get_order(s->objsize)) {
2871 s->flags &= ~DEBUG_METADATA_FLAGS;
2872 s->offset = 0;
2873 if (!calculate_sizes(s, -1))
2874 goto error;
2875 }
2876 }
81819f0f 2877
b789ef51
CL
2878#ifdef CONFIG_CMPXCHG_DOUBLE
2879 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2880 /* Enable fast mode */
2881 s->flags |= __CMPXCHG_DOUBLE;
2882#endif
2883
3b89d7d8
DR
2884 /*
2885 * The larger the object size is, the more pages we want on the partial
2886 * list to avoid pounding the page allocator excessively.
2887 */
c0bdb232 2888 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2889 s->refcount = 1;
2890#ifdef CONFIG_NUMA
e2cb96b7 2891 s->remote_node_defrag_ratio = 1000;
81819f0f 2892#endif
55136592 2893 if (!init_kmem_cache_nodes(s))
dfb4f096 2894 goto error;
81819f0f 2895
55136592 2896 if (alloc_kmem_cache_cpus(s))
81819f0f 2897 return 1;
ff12059e 2898
4c93c355 2899 free_kmem_cache_nodes(s);
81819f0f
CL
2900error:
2901 if (flags & SLAB_PANIC)
2902 panic("Cannot create slab %s size=%lu realsize=%u "
2903 "order=%u offset=%u flags=%lx\n",
834f3d11 2904 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2905 s->offset, flags);
2906 return 0;
2907}
81819f0f 2908
81819f0f
CL
2909/*
2910 * Determine the size of a slab object
2911 */
2912unsigned int kmem_cache_size(struct kmem_cache *s)
2913{
2914 return s->objsize;
2915}
2916EXPORT_SYMBOL(kmem_cache_size);
2917
33b12c38
CL
2918static void list_slab_objects(struct kmem_cache *s, struct page *page,
2919 const char *text)
2920{
2921#ifdef CONFIG_SLUB_DEBUG
2922 void *addr = page_address(page);
2923 void *p;
a5dd5c11
NK
2924 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2925 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2926 if (!map)
2927 return;
33b12c38
CL
2928 slab_err(s, page, "%s", text);
2929 slab_lock(page);
33b12c38 2930
5f80b13a 2931 get_map(s, page, map);
33b12c38
CL
2932 for_each_object(p, s, addr, page->objects) {
2933
2934 if (!test_bit(slab_index(p, s, addr), map)) {
2935 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2936 p, p - addr);
2937 print_tracking(s, p);
2938 }
2939 }
2940 slab_unlock(page);
bbd7d57b 2941 kfree(map);
33b12c38
CL
2942#endif
2943}
2944
81819f0f 2945/*
599870b1 2946 * Attempt to free all partial slabs on a node.
81819f0f 2947 */
599870b1 2948static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2949{
81819f0f
CL
2950 unsigned long flags;
2951 struct page *page, *h;
2952
2953 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2954 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2955 if (!page->inuse) {
5cc6eee8 2956 remove_partial(n, page);
81819f0f 2957 discard_slab(s, page);
33b12c38
CL
2958 } else {
2959 list_slab_objects(s, page,
2960 "Objects remaining on kmem_cache_close()");
599870b1 2961 }
33b12c38 2962 }
81819f0f 2963 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2964}
2965
2966/*
672bba3a 2967 * Release all resources used by a slab cache.
81819f0f 2968 */
0c710013 2969static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2970{
2971 int node;
2972
2973 flush_all(s);
9dfc6e68 2974 free_percpu(s->cpu_slab);
81819f0f 2975 /* Attempt to free all objects */
f64dc58c 2976 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2977 struct kmem_cache_node *n = get_node(s, node);
2978
599870b1
CL
2979 free_partial(s, n);
2980 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2981 return 1;
2982 }
2983 free_kmem_cache_nodes(s);
2984 return 0;
2985}
2986
2987/*
2988 * Close a cache and release the kmem_cache structure
2989 * (must be used for caches created using kmem_cache_create)
2990 */
2991void kmem_cache_destroy(struct kmem_cache *s)
2992{
2993 down_write(&slub_lock);
2994 s->refcount--;
2995 if (!s->refcount) {
2996 list_del(&s->list);
d629d819
PE
2997 if (kmem_cache_close(s)) {
2998 printk(KERN_ERR "SLUB %s: %s called for cache that "
2999 "still has objects.\n", s->name, __func__);
3000 dump_stack();
3001 }
d76b1590
ED
3002 if (s->flags & SLAB_DESTROY_BY_RCU)
3003 rcu_barrier();
81819f0f 3004 sysfs_slab_remove(s);
2bce6485
CL
3005 }
3006 up_write(&slub_lock);
81819f0f
CL
3007}
3008EXPORT_SYMBOL(kmem_cache_destroy);
3009
3010/********************************************************************
3011 * Kmalloc subsystem
3012 *******************************************************************/
3013
51df1142 3014struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3015EXPORT_SYMBOL(kmalloc_caches);
3016
51df1142
CL
3017static struct kmem_cache *kmem_cache;
3018
55136592 3019#ifdef CONFIG_ZONE_DMA
51df1142 3020static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3021#endif
3022
81819f0f
CL
3023static int __init setup_slub_min_order(char *str)
3024{
06428780 3025 get_option(&str, &slub_min_order);
81819f0f
CL
3026
3027 return 1;
3028}
3029
3030__setup("slub_min_order=", setup_slub_min_order);
3031
3032static int __init setup_slub_max_order(char *str)
3033{
06428780 3034 get_option(&str, &slub_max_order);
818cf590 3035 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3036
3037 return 1;
3038}
3039
3040__setup("slub_max_order=", setup_slub_max_order);
3041
3042static int __init setup_slub_min_objects(char *str)
3043{
06428780 3044 get_option(&str, &slub_min_objects);
81819f0f
CL
3045
3046 return 1;
3047}
3048
3049__setup("slub_min_objects=", setup_slub_min_objects);
3050
3051static int __init setup_slub_nomerge(char *str)
3052{
3053 slub_nomerge = 1;
3054 return 1;
3055}
3056
3057__setup("slub_nomerge", setup_slub_nomerge);
3058
51df1142
CL
3059static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3060 int size, unsigned int flags)
81819f0f 3061{
51df1142
CL
3062 struct kmem_cache *s;
3063
3064 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3065
83b519e8
PE
3066 /*
3067 * This function is called with IRQs disabled during early-boot on
3068 * single CPU so there's no need to take slub_lock here.
3069 */
55136592 3070 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3071 flags, NULL))
81819f0f
CL
3072 goto panic;
3073
3074 list_add(&s->list, &slab_caches);
51df1142 3075 return s;
81819f0f
CL
3076
3077panic:
3078 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3079 return NULL;
81819f0f
CL
3080}
3081
f1b26339
CL
3082/*
3083 * Conversion table for small slabs sizes / 8 to the index in the
3084 * kmalloc array. This is necessary for slabs < 192 since we have non power
3085 * of two cache sizes there. The size of larger slabs can be determined using
3086 * fls.
3087 */
3088static s8 size_index[24] = {
3089 3, /* 8 */
3090 4, /* 16 */
3091 5, /* 24 */
3092 5, /* 32 */
3093 6, /* 40 */
3094 6, /* 48 */
3095 6, /* 56 */
3096 6, /* 64 */
3097 1, /* 72 */
3098 1, /* 80 */
3099 1, /* 88 */
3100 1, /* 96 */
3101 7, /* 104 */
3102 7, /* 112 */
3103 7, /* 120 */
3104 7, /* 128 */
3105 2, /* 136 */
3106 2, /* 144 */
3107 2, /* 152 */
3108 2, /* 160 */
3109 2, /* 168 */
3110 2, /* 176 */
3111 2, /* 184 */
3112 2 /* 192 */
3113};
3114
acdfcd04
AK
3115static inline int size_index_elem(size_t bytes)
3116{
3117 return (bytes - 1) / 8;
3118}
3119
81819f0f
CL
3120static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3121{
f1b26339 3122 int index;
81819f0f 3123
f1b26339
CL
3124 if (size <= 192) {
3125 if (!size)
3126 return ZERO_SIZE_PTR;
81819f0f 3127
acdfcd04 3128 index = size_index[size_index_elem(size)];
aadb4bc4 3129 } else
f1b26339 3130 index = fls(size - 1);
81819f0f
CL
3131
3132#ifdef CONFIG_ZONE_DMA
f1b26339 3133 if (unlikely((flags & SLUB_DMA)))
51df1142 3134 return kmalloc_dma_caches[index];
f1b26339 3135
81819f0f 3136#endif
51df1142 3137 return kmalloc_caches[index];
81819f0f
CL
3138}
3139
3140void *__kmalloc(size_t size, gfp_t flags)
3141{
aadb4bc4 3142 struct kmem_cache *s;
5b882be4 3143 void *ret;
81819f0f 3144
ffadd4d0 3145 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3146 return kmalloc_large(size, flags);
aadb4bc4
CL
3147
3148 s = get_slab(size, flags);
3149
3150 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3151 return s;
3152
2154a336 3153 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3154
ca2b84cb 3155 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3156
3157 return ret;
81819f0f
CL
3158}
3159EXPORT_SYMBOL(__kmalloc);
3160
5d1f57e4 3161#ifdef CONFIG_NUMA
f619cfe1
CL
3162static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3163{
b1eeab67 3164 struct page *page;
e4f7c0b4 3165 void *ptr = NULL;
f619cfe1 3166
b1eeab67
VN
3167 flags |= __GFP_COMP | __GFP_NOTRACK;
3168 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3169 if (page)
e4f7c0b4
CM
3170 ptr = page_address(page);
3171
3172 kmemleak_alloc(ptr, size, 1, flags);
3173 return ptr;
f619cfe1
CL
3174}
3175
81819f0f
CL
3176void *__kmalloc_node(size_t size, gfp_t flags, int node)
3177{
aadb4bc4 3178 struct kmem_cache *s;
5b882be4 3179 void *ret;
81819f0f 3180
057685cf 3181 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3182 ret = kmalloc_large_node(size, flags, node);
3183
ca2b84cb
EGM
3184 trace_kmalloc_node(_RET_IP_, ret,
3185 size, PAGE_SIZE << get_order(size),
3186 flags, node);
5b882be4
EGM
3187
3188 return ret;
3189 }
aadb4bc4
CL
3190
3191 s = get_slab(size, flags);
3192
3193 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3194 return s;
3195
5b882be4
EGM
3196 ret = slab_alloc(s, flags, node, _RET_IP_);
3197
ca2b84cb 3198 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3199
3200 return ret;
81819f0f
CL
3201}
3202EXPORT_SYMBOL(__kmalloc_node);
3203#endif
3204
3205size_t ksize(const void *object)
3206{
272c1d21 3207 struct page *page;
81819f0f 3208
ef8b4520 3209 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3210 return 0;
3211
294a80a8 3212 page = virt_to_head_page(object);
294a80a8 3213
76994412
PE
3214 if (unlikely(!PageSlab(page))) {
3215 WARN_ON(!PageCompound(page));
294a80a8 3216 return PAGE_SIZE << compound_order(page);
76994412 3217 }
81819f0f 3218
b3d41885 3219 return slab_ksize(page->slab);
81819f0f 3220}
b1aabecd 3221EXPORT_SYMBOL(ksize);
81819f0f 3222
d18a90dd
BG
3223#ifdef CONFIG_SLUB_DEBUG
3224bool verify_mem_not_deleted(const void *x)
3225{
3226 struct page *page;
3227 void *object = (void *)x;
3228 unsigned long flags;
3229 bool rv;
3230
3231 if (unlikely(ZERO_OR_NULL_PTR(x)))
3232 return false;
3233
3234 local_irq_save(flags);
3235
3236 page = virt_to_head_page(x);
3237 if (unlikely(!PageSlab(page))) {
3238 /* maybe it was from stack? */
3239 rv = true;
3240 goto out_unlock;
3241 }
3242
3243 slab_lock(page);
3244 if (on_freelist(page->slab, page, object)) {
3245 object_err(page->slab, page, object, "Object is on free-list");
3246 rv = false;
3247 } else {
3248 rv = true;
3249 }
3250 slab_unlock(page);
3251
3252out_unlock:
3253 local_irq_restore(flags);
3254 return rv;
3255}
3256EXPORT_SYMBOL(verify_mem_not_deleted);
3257#endif
3258
81819f0f
CL
3259void kfree(const void *x)
3260{
81819f0f 3261 struct page *page;
5bb983b0 3262 void *object = (void *)x;
81819f0f 3263
2121db74
PE
3264 trace_kfree(_RET_IP_, x);
3265
2408c550 3266 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3267 return;
3268
b49af68f 3269 page = virt_to_head_page(x);
aadb4bc4 3270 if (unlikely(!PageSlab(page))) {
0937502a 3271 BUG_ON(!PageCompound(page));
e4f7c0b4 3272 kmemleak_free(x);
aadb4bc4
CL
3273 put_page(page);
3274 return;
3275 }
ce71e27c 3276 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3277}
3278EXPORT_SYMBOL(kfree);
3279
2086d26a 3280/*
672bba3a
CL
3281 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3282 * the remaining slabs by the number of items in use. The slabs with the
3283 * most items in use come first. New allocations will then fill those up
3284 * and thus they can be removed from the partial lists.
3285 *
3286 * The slabs with the least items are placed last. This results in them
3287 * being allocated from last increasing the chance that the last objects
3288 * are freed in them.
2086d26a
CL
3289 */
3290int kmem_cache_shrink(struct kmem_cache *s)
3291{
3292 int node;
3293 int i;
3294 struct kmem_cache_node *n;
3295 struct page *page;
3296 struct page *t;
205ab99d 3297 int objects = oo_objects(s->max);
2086d26a 3298 struct list_head *slabs_by_inuse =
834f3d11 3299 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3300 unsigned long flags;
3301
3302 if (!slabs_by_inuse)
3303 return -ENOMEM;
3304
3305 flush_all(s);
f64dc58c 3306 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3307 n = get_node(s, node);
3308
3309 if (!n->nr_partial)
3310 continue;
3311
834f3d11 3312 for (i = 0; i < objects; i++)
2086d26a
CL
3313 INIT_LIST_HEAD(slabs_by_inuse + i);
3314
3315 spin_lock_irqsave(&n->list_lock, flags);
3316
3317 /*
672bba3a 3318 * Build lists indexed by the items in use in each slab.
2086d26a 3319 *
672bba3a
CL
3320 * Note that concurrent frees may occur while we hold the
3321 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3322 */
3323 list_for_each_entry_safe(page, t, &n->partial, lru) {
881db7fb 3324 if (!page->inuse) {
5cc6eee8 3325 remove_partial(n, page);
2086d26a
CL
3326 discard_slab(s, page);
3327 } else {
fcda3d89
CL
3328 list_move(&page->lru,
3329 slabs_by_inuse + page->inuse);
2086d26a
CL
3330 }
3331 }
3332
2086d26a 3333 /*
672bba3a
CL
3334 * Rebuild the partial list with the slabs filled up most
3335 * first and the least used slabs at the end.
2086d26a 3336 */
834f3d11 3337 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3338 list_splice(slabs_by_inuse + i, n->partial.prev);
3339
2086d26a
CL
3340 spin_unlock_irqrestore(&n->list_lock, flags);
3341 }
3342
3343 kfree(slabs_by_inuse);
3344 return 0;
3345}
3346EXPORT_SYMBOL(kmem_cache_shrink);
3347
92a5bbc1 3348#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3349static int slab_mem_going_offline_callback(void *arg)
3350{
3351 struct kmem_cache *s;
3352
3353 down_read(&slub_lock);
3354 list_for_each_entry(s, &slab_caches, list)
3355 kmem_cache_shrink(s);
3356 up_read(&slub_lock);
3357
3358 return 0;
3359}
3360
3361static void slab_mem_offline_callback(void *arg)
3362{
3363 struct kmem_cache_node *n;
3364 struct kmem_cache *s;
3365 struct memory_notify *marg = arg;
3366 int offline_node;
3367
3368 offline_node = marg->status_change_nid;
3369
3370 /*
3371 * If the node still has available memory. we need kmem_cache_node
3372 * for it yet.
3373 */
3374 if (offline_node < 0)
3375 return;
3376
3377 down_read(&slub_lock);
3378 list_for_each_entry(s, &slab_caches, list) {
3379 n = get_node(s, offline_node);
3380 if (n) {
3381 /*
3382 * if n->nr_slabs > 0, slabs still exist on the node
3383 * that is going down. We were unable to free them,
c9404c9c 3384 * and offline_pages() function shouldn't call this
b9049e23
YG
3385 * callback. So, we must fail.
3386 */
0f389ec6 3387 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3388
3389 s->node[offline_node] = NULL;
8de66a0c 3390 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3391 }
3392 }
3393 up_read(&slub_lock);
3394}
3395
3396static int slab_mem_going_online_callback(void *arg)
3397{
3398 struct kmem_cache_node *n;
3399 struct kmem_cache *s;
3400 struct memory_notify *marg = arg;
3401 int nid = marg->status_change_nid;
3402 int ret = 0;
3403
3404 /*
3405 * If the node's memory is already available, then kmem_cache_node is
3406 * already created. Nothing to do.
3407 */
3408 if (nid < 0)
3409 return 0;
3410
3411 /*
0121c619 3412 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3413 * allocate a kmem_cache_node structure in order to bring the node
3414 * online.
3415 */
3416 down_read(&slub_lock);
3417 list_for_each_entry(s, &slab_caches, list) {
3418 /*
3419 * XXX: kmem_cache_alloc_node will fallback to other nodes
3420 * since memory is not yet available from the node that
3421 * is brought up.
3422 */
8de66a0c 3423 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3424 if (!n) {
3425 ret = -ENOMEM;
3426 goto out;
3427 }
5595cffc 3428 init_kmem_cache_node(n, s);
b9049e23
YG
3429 s->node[nid] = n;
3430 }
3431out:
3432 up_read(&slub_lock);
3433 return ret;
3434}
3435
3436static int slab_memory_callback(struct notifier_block *self,
3437 unsigned long action, void *arg)
3438{
3439 int ret = 0;
3440
3441 switch (action) {
3442 case MEM_GOING_ONLINE:
3443 ret = slab_mem_going_online_callback(arg);
3444 break;
3445 case MEM_GOING_OFFLINE:
3446 ret = slab_mem_going_offline_callback(arg);
3447 break;
3448 case MEM_OFFLINE:
3449 case MEM_CANCEL_ONLINE:
3450 slab_mem_offline_callback(arg);
3451 break;
3452 case MEM_ONLINE:
3453 case MEM_CANCEL_OFFLINE:
3454 break;
3455 }
dc19f9db
KH
3456 if (ret)
3457 ret = notifier_from_errno(ret);
3458 else
3459 ret = NOTIFY_OK;
b9049e23
YG
3460 return ret;
3461}
3462
3463#endif /* CONFIG_MEMORY_HOTPLUG */
3464
81819f0f
CL
3465/********************************************************************
3466 * Basic setup of slabs
3467 *******************************************************************/
3468
51df1142
CL
3469/*
3470 * Used for early kmem_cache structures that were allocated using
3471 * the page allocator
3472 */
3473
3474static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3475{
3476 int node;
3477
3478 list_add(&s->list, &slab_caches);
3479 s->refcount = -1;
3480
3481 for_each_node_state(node, N_NORMAL_MEMORY) {
3482 struct kmem_cache_node *n = get_node(s, node);
3483 struct page *p;
3484
3485 if (n) {
3486 list_for_each_entry(p, &n->partial, lru)
3487 p->slab = s;
3488
607bf324 3489#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3490 list_for_each_entry(p, &n->full, lru)
3491 p->slab = s;
3492#endif
3493 }
3494 }
3495}
3496
81819f0f
CL
3497void __init kmem_cache_init(void)
3498{
3499 int i;
4b356be0 3500 int caches = 0;
51df1142
CL
3501 struct kmem_cache *temp_kmem_cache;
3502 int order;
51df1142
CL
3503 struct kmem_cache *temp_kmem_cache_node;
3504 unsigned long kmalloc_size;
3505
3506 kmem_size = offsetof(struct kmem_cache, node) +
3507 nr_node_ids * sizeof(struct kmem_cache_node *);
3508
3509 /* Allocate two kmem_caches from the page allocator */
3510 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3511 order = get_order(2 * kmalloc_size);
3512 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3513
81819f0f
CL
3514 /*
3515 * Must first have the slab cache available for the allocations of the
672bba3a 3516 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3517 * kmem_cache_open for slab_state == DOWN.
3518 */
51df1142
CL
3519 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3520
3521 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3522 sizeof(struct kmem_cache_node),
3523 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3524
0c40ba4f 3525 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3526
3527 /* Able to allocate the per node structures */
3528 slab_state = PARTIAL;
3529
51df1142
CL
3530 temp_kmem_cache = kmem_cache;
3531 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3532 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3533 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3534 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3535
51df1142
CL
3536 /*
3537 * Allocate kmem_cache_node properly from the kmem_cache slab.
3538 * kmem_cache_node is separately allocated so no need to
3539 * update any list pointers.
3540 */
3541 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3542
51df1142
CL
3543 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3544 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3545
3546 kmem_cache_bootstrap_fixup(kmem_cache_node);
3547
3548 caches++;
51df1142
CL
3549 kmem_cache_bootstrap_fixup(kmem_cache);
3550 caches++;
3551 /* Free temporary boot structure */
3552 free_pages((unsigned long)temp_kmem_cache, order);
3553
3554 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3555
3556 /*
3557 * Patch up the size_index table if we have strange large alignment
3558 * requirements for the kmalloc array. This is only the case for
6446faa2 3559 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3560 *
3561 * Largest permitted alignment is 256 bytes due to the way we
3562 * handle the index determination for the smaller caches.
3563 *
3564 * Make sure that nothing crazy happens if someone starts tinkering
3565 * around with ARCH_KMALLOC_MINALIGN
3566 */
3567 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3568 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3569
acdfcd04
AK
3570 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3571 int elem = size_index_elem(i);
3572 if (elem >= ARRAY_SIZE(size_index))
3573 break;
3574 size_index[elem] = KMALLOC_SHIFT_LOW;
3575 }
f1b26339 3576
acdfcd04
AK
3577 if (KMALLOC_MIN_SIZE == 64) {
3578 /*
3579 * The 96 byte size cache is not used if the alignment
3580 * is 64 byte.
3581 */
3582 for (i = 64 + 8; i <= 96; i += 8)
3583 size_index[size_index_elem(i)] = 7;
3584 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3585 /*
3586 * The 192 byte sized cache is not used if the alignment
3587 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3588 * instead.
3589 */
3590 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3591 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3592 }
3593
51df1142
CL
3594 /* Caches that are not of the two-to-the-power-of size */
3595 if (KMALLOC_MIN_SIZE <= 32) {
3596 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3597 caches++;
3598 }
3599
3600 if (KMALLOC_MIN_SIZE <= 64) {
3601 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3602 caches++;
3603 }
3604
3605 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3606 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3607 caches++;
3608 }
3609
81819f0f
CL
3610 slab_state = UP;
3611
3612 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3613 if (KMALLOC_MIN_SIZE <= 32) {
3614 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3615 BUG_ON(!kmalloc_caches[1]->name);
3616 }
3617
3618 if (KMALLOC_MIN_SIZE <= 64) {
3619 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3620 BUG_ON(!kmalloc_caches[2]->name);
3621 }
3622
d7278bd7
CL
3623 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3624 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3625
3626 BUG_ON(!s);
51df1142 3627 kmalloc_caches[i]->name = s;
d7278bd7 3628 }
81819f0f
CL
3629
3630#ifdef CONFIG_SMP
3631 register_cpu_notifier(&slab_notifier);
9dfc6e68 3632#endif
81819f0f 3633
55136592 3634#ifdef CONFIG_ZONE_DMA
51df1142
CL
3635 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3636 struct kmem_cache *s = kmalloc_caches[i];
55136592 3637
51df1142 3638 if (s && s->size) {
55136592
CL
3639 char *name = kasprintf(GFP_NOWAIT,
3640 "dma-kmalloc-%d", s->objsize);
3641
3642 BUG_ON(!name);
51df1142
CL
3643 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3644 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3645 }
3646 }
3647#endif
3adbefee
IM
3648 printk(KERN_INFO
3649 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3650 " CPUs=%d, Nodes=%d\n",
3651 caches, cache_line_size(),
81819f0f
CL
3652 slub_min_order, slub_max_order, slub_min_objects,
3653 nr_cpu_ids, nr_node_ids);
3654}
3655
7e85ee0c
PE
3656void __init kmem_cache_init_late(void)
3657{
7e85ee0c
PE
3658}
3659
81819f0f
CL
3660/*
3661 * Find a mergeable slab cache
3662 */
3663static int slab_unmergeable(struct kmem_cache *s)
3664{
3665 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3666 return 1;
3667
c59def9f 3668 if (s->ctor)
81819f0f
CL
3669 return 1;
3670
8ffa6875
CL
3671 /*
3672 * We may have set a slab to be unmergeable during bootstrap.
3673 */
3674 if (s->refcount < 0)
3675 return 1;
3676
81819f0f
CL
3677 return 0;
3678}
3679
3680static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3681 size_t align, unsigned long flags, const char *name,
51cc5068 3682 void (*ctor)(void *))
81819f0f 3683{
5b95a4ac 3684 struct kmem_cache *s;
81819f0f
CL
3685
3686 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3687 return NULL;
3688
c59def9f 3689 if (ctor)
81819f0f
CL
3690 return NULL;
3691
3692 size = ALIGN(size, sizeof(void *));
3693 align = calculate_alignment(flags, align, size);
3694 size = ALIGN(size, align);
ba0268a8 3695 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3696
5b95a4ac 3697 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3698 if (slab_unmergeable(s))
3699 continue;
3700
3701 if (size > s->size)
3702 continue;
3703
ba0268a8 3704 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3705 continue;
3706 /*
3707 * Check if alignment is compatible.
3708 * Courtesy of Adrian Drzewiecki
3709 */
06428780 3710 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3711 continue;
3712
3713 if (s->size - size >= sizeof(void *))
3714 continue;
3715
3716 return s;
3717 }
3718 return NULL;
3719}
3720
3721struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3722 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3723{
3724 struct kmem_cache *s;
84c1cf62 3725 char *n;
81819f0f 3726
fe1ff49d
BH
3727 if (WARN_ON(!name))
3728 return NULL;
3729
81819f0f 3730 down_write(&slub_lock);
ba0268a8 3731 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3732 if (s) {
3733 s->refcount++;
3734 /*
3735 * Adjust the object sizes so that we clear
3736 * the complete object on kzalloc.
3737 */
3738 s->objsize = max(s->objsize, (int)size);
3739 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3740
7b8f3b66 3741 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3742 s->refcount--;
81819f0f 3743 goto err;
7b8f3b66 3744 }
2bce6485 3745 up_write(&slub_lock);
a0e1d1be
CL
3746 return s;
3747 }
6446faa2 3748
84c1cf62
PE
3749 n = kstrdup(name, GFP_KERNEL);
3750 if (!n)
3751 goto err;
3752
a0e1d1be
CL
3753 s = kmalloc(kmem_size, GFP_KERNEL);
3754 if (s) {
84c1cf62 3755 if (kmem_cache_open(s, n,
c59def9f 3756 size, align, flags, ctor)) {
81819f0f 3757 list_add(&s->list, &slab_caches);
7b8f3b66 3758 if (sysfs_slab_add(s)) {
7b8f3b66 3759 list_del(&s->list);
84c1cf62 3760 kfree(n);
7b8f3b66 3761 kfree(s);
a0e1d1be 3762 goto err;
7b8f3b66 3763 }
2bce6485 3764 up_write(&slub_lock);
a0e1d1be
CL
3765 return s;
3766 }
84c1cf62 3767 kfree(n);
a0e1d1be 3768 kfree(s);
81819f0f 3769 }
68cee4f1 3770err:
81819f0f 3771 up_write(&slub_lock);
81819f0f 3772
81819f0f
CL
3773 if (flags & SLAB_PANIC)
3774 panic("Cannot create slabcache %s\n", name);
3775 else
3776 s = NULL;
3777 return s;
3778}
3779EXPORT_SYMBOL(kmem_cache_create);
3780
81819f0f 3781#ifdef CONFIG_SMP
81819f0f 3782/*
672bba3a
CL
3783 * Use the cpu notifier to insure that the cpu slabs are flushed when
3784 * necessary.
81819f0f
CL
3785 */
3786static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3787 unsigned long action, void *hcpu)
3788{
3789 long cpu = (long)hcpu;
5b95a4ac
CL
3790 struct kmem_cache *s;
3791 unsigned long flags;
81819f0f
CL
3792
3793 switch (action) {
3794 case CPU_UP_CANCELED:
8bb78442 3795 case CPU_UP_CANCELED_FROZEN:
81819f0f 3796 case CPU_DEAD:
8bb78442 3797 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3798 down_read(&slub_lock);
3799 list_for_each_entry(s, &slab_caches, list) {
3800 local_irq_save(flags);
3801 __flush_cpu_slab(s, cpu);
3802 local_irq_restore(flags);
3803 }
3804 up_read(&slub_lock);
81819f0f
CL
3805 break;
3806 default:
3807 break;
3808 }
3809 return NOTIFY_OK;
3810}
3811
06428780 3812static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3813 .notifier_call = slab_cpuup_callback
06428780 3814};
81819f0f
CL
3815
3816#endif
3817
ce71e27c 3818void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3819{
aadb4bc4 3820 struct kmem_cache *s;
94b528d0 3821 void *ret;
aadb4bc4 3822
ffadd4d0 3823 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3824 return kmalloc_large(size, gfpflags);
3825
aadb4bc4 3826 s = get_slab(size, gfpflags);
81819f0f 3827
2408c550 3828 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3829 return s;
81819f0f 3830
2154a336 3831 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3832
25985edc 3833 /* Honor the call site pointer we received. */
ca2b84cb 3834 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3835
3836 return ret;
81819f0f
CL
3837}
3838
5d1f57e4 3839#ifdef CONFIG_NUMA
81819f0f 3840void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3841 int node, unsigned long caller)
81819f0f 3842{
aadb4bc4 3843 struct kmem_cache *s;
94b528d0 3844 void *ret;
aadb4bc4 3845
d3e14aa3
XF
3846 if (unlikely(size > SLUB_MAX_SIZE)) {
3847 ret = kmalloc_large_node(size, gfpflags, node);
3848
3849 trace_kmalloc_node(caller, ret,
3850 size, PAGE_SIZE << get_order(size),
3851 gfpflags, node);
3852
3853 return ret;
3854 }
eada35ef 3855
aadb4bc4 3856 s = get_slab(size, gfpflags);
81819f0f 3857
2408c550 3858 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3859 return s;
81819f0f 3860
94b528d0
EGM
3861 ret = slab_alloc(s, gfpflags, node, caller);
3862
25985edc 3863 /* Honor the call site pointer we received. */
ca2b84cb 3864 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3865
3866 return ret;
81819f0f 3867}
5d1f57e4 3868#endif
81819f0f 3869
ab4d5ed5 3870#ifdef CONFIG_SYSFS
205ab99d
CL
3871static int count_inuse(struct page *page)
3872{
3873 return page->inuse;
3874}
3875
3876static int count_total(struct page *page)
3877{
3878 return page->objects;
3879}
ab4d5ed5 3880#endif
205ab99d 3881
ab4d5ed5 3882#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3883static int validate_slab(struct kmem_cache *s, struct page *page,
3884 unsigned long *map)
53e15af0
CL
3885{
3886 void *p;
a973e9dd 3887 void *addr = page_address(page);
53e15af0
CL
3888
3889 if (!check_slab(s, page) ||
3890 !on_freelist(s, page, NULL))
3891 return 0;
3892
3893 /* Now we know that a valid freelist exists */
39b26464 3894 bitmap_zero(map, page->objects);
53e15af0 3895
5f80b13a
CL
3896 get_map(s, page, map);
3897 for_each_object(p, s, addr, page->objects) {
3898 if (test_bit(slab_index(p, s, addr), map))
3899 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3900 return 0;
53e15af0
CL
3901 }
3902
224a88be 3903 for_each_object(p, s, addr, page->objects)
7656c72b 3904 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3905 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3906 return 0;
3907 return 1;
3908}
3909
434e245d
CL
3910static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3911 unsigned long *map)
53e15af0 3912{
881db7fb
CL
3913 slab_lock(page);
3914 validate_slab(s, page, map);
3915 slab_unlock(page);
53e15af0
CL
3916}
3917
434e245d
CL
3918static int validate_slab_node(struct kmem_cache *s,
3919 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3920{
3921 unsigned long count = 0;
3922 struct page *page;
3923 unsigned long flags;
3924
3925 spin_lock_irqsave(&n->list_lock, flags);
3926
3927 list_for_each_entry(page, &n->partial, lru) {
434e245d 3928 validate_slab_slab(s, page, map);
53e15af0
CL
3929 count++;
3930 }
3931 if (count != n->nr_partial)
3932 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3933 "counter=%ld\n", s->name, count, n->nr_partial);
3934
3935 if (!(s->flags & SLAB_STORE_USER))
3936 goto out;
3937
3938 list_for_each_entry(page, &n->full, lru) {
434e245d 3939 validate_slab_slab(s, page, map);
53e15af0
CL
3940 count++;
3941 }
3942 if (count != atomic_long_read(&n->nr_slabs))
3943 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3944 "counter=%ld\n", s->name, count,
3945 atomic_long_read(&n->nr_slabs));
3946
3947out:
3948 spin_unlock_irqrestore(&n->list_lock, flags);
3949 return count;
3950}
3951
434e245d 3952static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3953{
3954 int node;
3955 unsigned long count = 0;
205ab99d 3956 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3957 sizeof(unsigned long), GFP_KERNEL);
3958
3959 if (!map)
3960 return -ENOMEM;
53e15af0
CL
3961
3962 flush_all(s);
f64dc58c 3963 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3964 struct kmem_cache_node *n = get_node(s, node);
3965
434e245d 3966 count += validate_slab_node(s, n, map);
53e15af0 3967 }
434e245d 3968 kfree(map);
53e15af0
CL
3969 return count;
3970}
88a420e4 3971/*
672bba3a 3972 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3973 * and freed.
3974 */
3975
3976struct location {
3977 unsigned long count;
ce71e27c 3978 unsigned long addr;
45edfa58
CL
3979 long long sum_time;
3980 long min_time;
3981 long max_time;
3982 long min_pid;
3983 long max_pid;
174596a0 3984 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3985 nodemask_t nodes;
88a420e4
CL
3986};
3987
3988struct loc_track {
3989 unsigned long max;
3990 unsigned long count;
3991 struct location *loc;
3992};
3993
3994static void free_loc_track(struct loc_track *t)
3995{
3996 if (t->max)
3997 free_pages((unsigned long)t->loc,
3998 get_order(sizeof(struct location) * t->max));
3999}
4000
68dff6a9 4001static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4002{
4003 struct location *l;
4004 int order;
4005
88a420e4
CL
4006 order = get_order(sizeof(struct location) * max);
4007
68dff6a9 4008 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4009 if (!l)
4010 return 0;
4011
4012 if (t->count) {
4013 memcpy(l, t->loc, sizeof(struct location) * t->count);
4014 free_loc_track(t);
4015 }
4016 t->max = max;
4017 t->loc = l;
4018 return 1;
4019}
4020
4021static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4022 const struct track *track)
88a420e4
CL
4023{
4024 long start, end, pos;
4025 struct location *l;
ce71e27c 4026 unsigned long caddr;
45edfa58 4027 unsigned long age = jiffies - track->when;
88a420e4
CL
4028
4029 start = -1;
4030 end = t->count;
4031
4032 for ( ; ; ) {
4033 pos = start + (end - start + 1) / 2;
4034
4035 /*
4036 * There is nothing at "end". If we end up there
4037 * we need to add something to before end.
4038 */
4039 if (pos == end)
4040 break;
4041
4042 caddr = t->loc[pos].addr;
45edfa58
CL
4043 if (track->addr == caddr) {
4044
4045 l = &t->loc[pos];
4046 l->count++;
4047 if (track->when) {
4048 l->sum_time += age;
4049 if (age < l->min_time)
4050 l->min_time = age;
4051 if (age > l->max_time)
4052 l->max_time = age;
4053
4054 if (track->pid < l->min_pid)
4055 l->min_pid = track->pid;
4056 if (track->pid > l->max_pid)
4057 l->max_pid = track->pid;
4058
174596a0
RR
4059 cpumask_set_cpu(track->cpu,
4060 to_cpumask(l->cpus));
45edfa58
CL
4061 }
4062 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4063 return 1;
4064 }
4065
45edfa58 4066 if (track->addr < caddr)
88a420e4
CL
4067 end = pos;
4068 else
4069 start = pos;
4070 }
4071
4072 /*
672bba3a 4073 * Not found. Insert new tracking element.
88a420e4 4074 */
68dff6a9 4075 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4076 return 0;
4077
4078 l = t->loc + pos;
4079 if (pos < t->count)
4080 memmove(l + 1, l,
4081 (t->count - pos) * sizeof(struct location));
4082 t->count++;
4083 l->count = 1;
45edfa58
CL
4084 l->addr = track->addr;
4085 l->sum_time = age;
4086 l->min_time = age;
4087 l->max_time = age;
4088 l->min_pid = track->pid;
4089 l->max_pid = track->pid;
174596a0
RR
4090 cpumask_clear(to_cpumask(l->cpus));
4091 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4092 nodes_clear(l->nodes);
4093 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4094 return 1;
4095}
4096
4097static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4098 struct page *page, enum track_item alloc,
a5dd5c11 4099 unsigned long *map)
88a420e4 4100{
a973e9dd 4101 void *addr = page_address(page);
88a420e4
CL
4102 void *p;
4103
39b26464 4104 bitmap_zero(map, page->objects);
5f80b13a 4105 get_map(s, page, map);
88a420e4 4106
224a88be 4107 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4108 if (!test_bit(slab_index(p, s, addr), map))
4109 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4110}
4111
4112static int list_locations(struct kmem_cache *s, char *buf,
4113 enum track_item alloc)
4114{
e374d483 4115 int len = 0;
88a420e4 4116 unsigned long i;
68dff6a9 4117 struct loc_track t = { 0, 0, NULL };
88a420e4 4118 int node;
bbd7d57b
ED
4119 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4120 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4121
bbd7d57b
ED
4122 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4123 GFP_TEMPORARY)) {
4124 kfree(map);
68dff6a9 4125 return sprintf(buf, "Out of memory\n");
bbd7d57b 4126 }
88a420e4
CL
4127 /* Push back cpu slabs */
4128 flush_all(s);
4129
f64dc58c 4130 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4131 struct kmem_cache_node *n = get_node(s, node);
4132 unsigned long flags;
4133 struct page *page;
4134
9e86943b 4135 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4136 continue;
4137
4138 spin_lock_irqsave(&n->list_lock, flags);
4139 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4140 process_slab(&t, s, page, alloc, map);
88a420e4 4141 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4142 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4143 spin_unlock_irqrestore(&n->list_lock, flags);
4144 }
4145
4146 for (i = 0; i < t.count; i++) {
45edfa58 4147 struct location *l = &t.loc[i];
88a420e4 4148
9c246247 4149 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4150 break;
e374d483 4151 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4152
4153 if (l->addr)
62c70bce 4154 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4155 else
e374d483 4156 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4157
4158 if (l->sum_time != l->min_time) {
e374d483 4159 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4160 l->min_time,
4161 (long)div_u64(l->sum_time, l->count),
4162 l->max_time);
45edfa58 4163 } else
e374d483 4164 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4165 l->min_time);
4166
4167 if (l->min_pid != l->max_pid)
e374d483 4168 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4169 l->min_pid, l->max_pid);
4170 else
e374d483 4171 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4172 l->min_pid);
4173
174596a0
RR
4174 if (num_online_cpus() > 1 &&
4175 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4176 len < PAGE_SIZE - 60) {
4177 len += sprintf(buf + len, " cpus=");
4178 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4179 to_cpumask(l->cpus));
45edfa58
CL
4180 }
4181
62bc62a8 4182 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4183 len < PAGE_SIZE - 60) {
4184 len += sprintf(buf + len, " nodes=");
4185 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4186 l->nodes);
4187 }
4188
e374d483 4189 len += sprintf(buf + len, "\n");
88a420e4
CL
4190 }
4191
4192 free_loc_track(&t);
bbd7d57b 4193 kfree(map);
88a420e4 4194 if (!t.count)
e374d483
HH
4195 len += sprintf(buf, "No data\n");
4196 return len;
88a420e4 4197}
ab4d5ed5 4198#endif
88a420e4 4199
a5a84755
CL
4200#ifdef SLUB_RESILIENCY_TEST
4201static void resiliency_test(void)
4202{
4203 u8 *p;
4204
4205 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4206
4207 printk(KERN_ERR "SLUB resiliency testing\n");
4208 printk(KERN_ERR "-----------------------\n");
4209 printk(KERN_ERR "A. Corruption after allocation\n");
4210
4211 p = kzalloc(16, GFP_KERNEL);
4212 p[16] = 0x12;
4213 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4214 " 0x12->0x%p\n\n", p + 16);
4215
4216 validate_slab_cache(kmalloc_caches[4]);
4217
4218 /* Hmmm... The next two are dangerous */
4219 p = kzalloc(32, GFP_KERNEL);
4220 p[32 + sizeof(void *)] = 0x34;
4221 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4222 " 0x34 -> -0x%p\n", p);
4223 printk(KERN_ERR
4224 "If allocated object is overwritten then not detectable\n\n");
4225
4226 validate_slab_cache(kmalloc_caches[5]);
4227 p = kzalloc(64, GFP_KERNEL);
4228 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4229 *p = 0x56;
4230 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4231 p);
4232 printk(KERN_ERR
4233 "If allocated object is overwritten then not detectable\n\n");
4234 validate_slab_cache(kmalloc_caches[6]);
4235
4236 printk(KERN_ERR "\nB. Corruption after free\n");
4237 p = kzalloc(128, GFP_KERNEL);
4238 kfree(p);
4239 *p = 0x78;
4240 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4241 validate_slab_cache(kmalloc_caches[7]);
4242
4243 p = kzalloc(256, GFP_KERNEL);
4244 kfree(p);
4245 p[50] = 0x9a;
4246 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4247 p);
4248 validate_slab_cache(kmalloc_caches[8]);
4249
4250 p = kzalloc(512, GFP_KERNEL);
4251 kfree(p);
4252 p[512] = 0xab;
4253 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4254 validate_slab_cache(kmalloc_caches[9]);
4255}
4256#else
4257#ifdef CONFIG_SYSFS
4258static void resiliency_test(void) {};
4259#endif
4260#endif
4261
ab4d5ed5 4262#ifdef CONFIG_SYSFS
81819f0f 4263enum slab_stat_type {
205ab99d
CL
4264 SL_ALL, /* All slabs */
4265 SL_PARTIAL, /* Only partially allocated slabs */
4266 SL_CPU, /* Only slabs used for cpu caches */
4267 SL_OBJECTS, /* Determine allocated objects not slabs */
4268 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4269};
4270
205ab99d 4271#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4272#define SO_PARTIAL (1 << SL_PARTIAL)
4273#define SO_CPU (1 << SL_CPU)
4274#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4275#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4276
62e5c4b4
CG
4277static ssize_t show_slab_objects(struct kmem_cache *s,
4278 char *buf, unsigned long flags)
81819f0f
CL
4279{
4280 unsigned long total = 0;
81819f0f
CL
4281 int node;
4282 int x;
4283 unsigned long *nodes;
4284 unsigned long *per_cpu;
4285
4286 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4287 if (!nodes)
4288 return -ENOMEM;
81819f0f
CL
4289 per_cpu = nodes + nr_node_ids;
4290
205ab99d
CL
4291 if (flags & SO_CPU) {
4292 int cpu;
81819f0f 4293
205ab99d 4294 for_each_possible_cpu(cpu) {
9dfc6e68 4295 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4296
205ab99d
CL
4297 if (!c || c->node < 0)
4298 continue;
4299
4300 if (c->page) {
4301 if (flags & SO_TOTAL)
4302 x = c->page->objects;
4303 else if (flags & SO_OBJECTS)
4304 x = c->page->inuse;
81819f0f
CL
4305 else
4306 x = 1;
205ab99d 4307
81819f0f 4308 total += x;
205ab99d 4309 nodes[c->node] += x;
81819f0f 4310 }
205ab99d 4311 per_cpu[c->node]++;
81819f0f
CL
4312 }
4313 }
4314
04d94879 4315 lock_memory_hotplug();
ab4d5ed5 4316#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4317 if (flags & SO_ALL) {
4318 for_each_node_state(node, N_NORMAL_MEMORY) {
4319 struct kmem_cache_node *n = get_node(s, node);
4320
4321 if (flags & SO_TOTAL)
4322 x = atomic_long_read(&n->total_objects);
4323 else if (flags & SO_OBJECTS)
4324 x = atomic_long_read(&n->total_objects) -
4325 count_partial(n, count_free);
81819f0f 4326
81819f0f 4327 else
205ab99d 4328 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4329 total += x;
4330 nodes[node] += x;
4331 }
4332
ab4d5ed5
CL
4333 } else
4334#endif
4335 if (flags & SO_PARTIAL) {
205ab99d
CL
4336 for_each_node_state(node, N_NORMAL_MEMORY) {
4337 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4338
205ab99d
CL
4339 if (flags & SO_TOTAL)
4340 x = count_partial(n, count_total);
4341 else if (flags & SO_OBJECTS)
4342 x = count_partial(n, count_inuse);
81819f0f 4343 else
205ab99d 4344 x = n->nr_partial;
81819f0f
CL
4345 total += x;
4346 nodes[node] += x;
4347 }
4348 }
81819f0f
CL
4349 x = sprintf(buf, "%lu", total);
4350#ifdef CONFIG_NUMA
f64dc58c 4351 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4352 if (nodes[node])
4353 x += sprintf(buf + x, " N%d=%lu",
4354 node, nodes[node]);
4355#endif
04d94879 4356 unlock_memory_hotplug();
81819f0f
CL
4357 kfree(nodes);
4358 return x + sprintf(buf + x, "\n");
4359}
4360
ab4d5ed5 4361#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4362static int any_slab_objects(struct kmem_cache *s)
4363{
4364 int node;
81819f0f 4365
dfb4f096 4366 for_each_online_node(node) {
81819f0f
CL
4367 struct kmem_cache_node *n = get_node(s, node);
4368
dfb4f096
CL
4369 if (!n)
4370 continue;
4371
4ea33e2d 4372 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4373 return 1;
4374 }
4375 return 0;
4376}
ab4d5ed5 4377#endif
81819f0f
CL
4378
4379#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4380#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4381
4382struct slab_attribute {
4383 struct attribute attr;
4384 ssize_t (*show)(struct kmem_cache *s, char *buf);
4385 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4386};
4387
4388#define SLAB_ATTR_RO(_name) \
4389 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4390
4391#define SLAB_ATTR(_name) \
4392 static struct slab_attribute _name##_attr = \
4393 __ATTR(_name, 0644, _name##_show, _name##_store)
4394
81819f0f
CL
4395static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4396{
4397 return sprintf(buf, "%d\n", s->size);
4398}
4399SLAB_ATTR_RO(slab_size);
4400
4401static ssize_t align_show(struct kmem_cache *s, char *buf)
4402{
4403 return sprintf(buf, "%d\n", s->align);
4404}
4405SLAB_ATTR_RO(align);
4406
4407static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4408{
4409 return sprintf(buf, "%d\n", s->objsize);
4410}
4411SLAB_ATTR_RO(object_size);
4412
4413static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4414{
834f3d11 4415 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4416}
4417SLAB_ATTR_RO(objs_per_slab);
4418
06b285dc
CL
4419static ssize_t order_store(struct kmem_cache *s,
4420 const char *buf, size_t length)
4421{
0121c619
CL
4422 unsigned long order;
4423 int err;
4424
4425 err = strict_strtoul(buf, 10, &order);
4426 if (err)
4427 return err;
06b285dc
CL
4428
4429 if (order > slub_max_order || order < slub_min_order)
4430 return -EINVAL;
4431
4432 calculate_sizes(s, order);
4433 return length;
4434}
4435
81819f0f
CL
4436static ssize_t order_show(struct kmem_cache *s, char *buf)
4437{
834f3d11 4438 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4439}
06b285dc 4440SLAB_ATTR(order);
81819f0f 4441
73d342b1
DR
4442static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4443{
4444 return sprintf(buf, "%lu\n", s->min_partial);
4445}
4446
4447static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4448 size_t length)
4449{
4450 unsigned long min;
4451 int err;
4452
4453 err = strict_strtoul(buf, 10, &min);
4454 if (err)
4455 return err;
4456
c0bdb232 4457 set_min_partial(s, min);
73d342b1
DR
4458 return length;
4459}
4460SLAB_ATTR(min_partial);
4461
81819f0f
CL
4462static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4463{
62c70bce
JP
4464 if (!s->ctor)
4465 return 0;
4466 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4467}
4468SLAB_ATTR_RO(ctor);
4469
81819f0f
CL
4470static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4471{
4472 return sprintf(buf, "%d\n", s->refcount - 1);
4473}
4474SLAB_ATTR_RO(aliases);
4475
81819f0f
CL
4476static ssize_t partial_show(struct kmem_cache *s, char *buf)
4477{
d9acf4b7 4478 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4479}
4480SLAB_ATTR_RO(partial);
4481
4482static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4483{
d9acf4b7 4484 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4485}
4486SLAB_ATTR_RO(cpu_slabs);
4487
4488static ssize_t objects_show(struct kmem_cache *s, char *buf)
4489{
205ab99d 4490 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4491}
4492SLAB_ATTR_RO(objects);
4493
205ab99d
CL
4494static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4495{
4496 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4497}
4498SLAB_ATTR_RO(objects_partial);
4499
a5a84755
CL
4500static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4501{
4502 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4503}
4504
4505static ssize_t reclaim_account_store(struct kmem_cache *s,
4506 const char *buf, size_t length)
4507{
4508 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4509 if (buf[0] == '1')
4510 s->flags |= SLAB_RECLAIM_ACCOUNT;
4511 return length;
4512}
4513SLAB_ATTR(reclaim_account);
4514
4515static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4516{
4517 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4518}
4519SLAB_ATTR_RO(hwcache_align);
4520
4521#ifdef CONFIG_ZONE_DMA
4522static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4523{
4524 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4525}
4526SLAB_ATTR_RO(cache_dma);
4527#endif
4528
4529static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4530{
4531 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4532}
4533SLAB_ATTR_RO(destroy_by_rcu);
4534
ab9a0f19
LJ
4535static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4536{
4537 return sprintf(buf, "%d\n", s->reserved);
4538}
4539SLAB_ATTR_RO(reserved);
4540
ab4d5ed5 4541#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4542static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4543{
4544 return show_slab_objects(s, buf, SO_ALL);
4545}
4546SLAB_ATTR_RO(slabs);
4547
205ab99d
CL
4548static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4549{
4550 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4551}
4552SLAB_ATTR_RO(total_objects);
4553
81819f0f
CL
4554static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4555{
4556 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4557}
4558
4559static ssize_t sanity_checks_store(struct kmem_cache *s,
4560 const char *buf, size_t length)
4561{
4562 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4563 if (buf[0] == '1') {
4564 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4565 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4566 }
81819f0f
CL
4567 return length;
4568}
4569SLAB_ATTR(sanity_checks);
4570
4571static ssize_t trace_show(struct kmem_cache *s, char *buf)
4572{
4573 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4574}
4575
4576static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4577 size_t length)
4578{
4579 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4580 if (buf[0] == '1') {
4581 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4582 s->flags |= SLAB_TRACE;
b789ef51 4583 }
81819f0f
CL
4584 return length;
4585}
4586SLAB_ATTR(trace);
4587
81819f0f
CL
4588static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4589{
4590 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4591}
4592
4593static ssize_t red_zone_store(struct kmem_cache *s,
4594 const char *buf, size_t length)
4595{
4596 if (any_slab_objects(s))
4597 return -EBUSY;
4598
4599 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4600 if (buf[0] == '1') {
4601 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4602 s->flags |= SLAB_RED_ZONE;
b789ef51 4603 }
06b285dc 4604 calculate_sizes(s, -1);
81819f0f
CL
4605 return length;
4606}
4607SLAB_ATTR(red_zone);
4608
4609static ssize_t poison_show(struct kmem_cache *s, char *buf)
4610{
4611 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4612}
4613
4614static ssize_t poison_store(struct kmem_cache *s,
4615 const char *buf, size_t length)
4616{
4617 if (any_slab_objects(s))
4618 return -EBUSY;
4619
4620 s->flags &= ~SLAB_POISON;
b789ef51
CL
4621 if (buf[0] == '1') {
4622 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4623 s->flags |= SLAB_POISON;
b789ef51 4624 }
06b285dc 4625 calculate_sizes(s, -1);
81819f0f
CL
4626 return length;
4627}
4628SLAB_ATTR(poison);
4629
4630static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4633}
4634
4635static ssize_t store_user_store(struct kmem_cache *s,
4636 const char *buf, size_t length)
4637{
4638 if (any_slab_objects(s))
4639 return -EBUSY;
4640
4641 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4642 if (buf[0] == '1') {
4643 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4644 s->flags |= SLAB_STORE_USER;
b789ef51 4645 }
06b285dc 4646 calculate_sizes(s, -1);
81819f0f
CL
4647 return length;
4648}
4649SLAB_ATTR(store_user);
4650
53e15af0
CL
4651static ssize_t validate_show(struct kmem_cache *s, char *buf)
4652{
4653 return 0;
4654}
4655
4656static ssize_t validate_store(struct kmem_cache *s,
4657 const char *buf, size_t length)
4658{
434e245d
CL
4659 int ret = -EINVAL;
4660
4661 if (buf[0] == '1') {
4662 ret = validate_slab_cache(s);
4663 if (ret >= 0)
4664 ret = length;
4665 }
4666 return ret;
53e15af0
CL
4667}
4668SLAB_ATTR(validate);
a5a84755
CL
4669
4670static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4671{
4672 if (!(s->flags & SLAB_STORE_USER))
4673 return -ENOSYS;
4674 return list_locations(s, buf, TRACK_ALLOC);
4675}
4676SLAB_ATTR_RO(alloc_calls);
4677
4678static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4679{
4680 if (!(s->flags & SLAB_STORE_USER))
4681 return -ENOSYS;
4682 return list_locations(s, buf, TRACK_FREE);
4683}
4684SLAB_ATTR_RO(free_calls);
4685#endif /* CONFIG_SLUB_DEBUG */
4686
4687#ifdef CONFIG_FAILSLAB
4688static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4689{
4690 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4691}
4692
4693static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4694 size_t length)
4695{
4696 s->flags &= ~SLAB_FAILSLAB;
4697 if (buf[0] == '1')
4698 s->flags |= SLAB_FAILSLAB;
4699 return length;
4700}
4701SLAB_ATTR(failslab);
ab4d5ed5 4702#endif
53e15af0 4703
2086d26a
CL
4704static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4705{
4706 return 0;
4707}
4708
4709static ssize_t shrink_store(struct kmem_cache *s,
4710 const char *buf, size_t length)
4711{
4712 if (buf[0] == '1') {
4713 int rc = kmem_cache_shrink(s);
4714
4715 if (rc)
4716 return rc;
4717 } else
4718 return -EINVAL;
4719 return length;
4720}
4721SLAB_ATTR(shrink);
4722
81819f0f 4723#ifdef CONFIG_NUMA
9824601e 4724static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4725{
9824601e 4726 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4727}
4728
9824601e 4729static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4730 const char *buf, size_t length)
4731{
0121c619
CL
4732 unsigned long ratio;
4733 int err;
4734
4735 err = strict_strtoul(buf, 10, &ratio);
4736 if (err)
4737 return err;
4738
e2cb96b7 4739 if (ratio <= 100)
0121c619 4740 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4741
81819f0f
CL
4742 return length;
4743}
9824601e 4744SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4745#endif
4746
8ff12cfc 4747#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4748static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4749{
4750 unsigned long sum = 0;
4751 int cpu;
4752 int len;
4753 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4754
4755 if (!data)
4756 return -ENOMEM;
4757
4758 for_each_online_cpu(cpu) {
9dfc6e68 4759 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4760
4761 data[cpu] = x;
4762 sum += x;
4763 }
4764
4765 len = sprintf(buf, "%lu", sum);
4766
50ef37b9 4767#ifdef CONFIG_SMP
8ff12cfc
CL
4768 for_each_online_cpu(cpu) {
4769 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4770 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4771 }
50ef37b9 4772#endif
8ff12cfc
CL
4773 kfree(data);
4774 return len + sprintf(buf + len, "\n");
4775}
4776
78eb00cc
DR
4777static void clear_stat(struct kmem_cache *s, enum stat_item si)
4778{
4779 int cpu;
4780
4781 for_each_online_cpu(cpu)
9dfc6e68 4782 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4783}
4784
8ff12cfc
CL
4785#define STAT_ATTR(si, text) \
4786static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4787{ \
4788 return show_stat(s, buf, si); \
4789} \
78eb00cc
DR
4790static ssize_t text##_store(struct kmem_cache *s, \
4791 const char *buf, size_t length) \
4792{ \
4793 if (buf[0] != '0') \
4794 return -EINVAL; \
4795 clear_stat(s, si); \
4796 return length; \
4797} \
4798SLAB_ATTR(text); \
8ff12cfc
CL
4799
4800STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4801STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4802STAT_ATTR(FREE_FASTPATH, free_fastpath);
4803STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4804STAT_ATTR(FREE_FROZEN, free_frozen);
4805STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4806STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4807STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4808STAT_ATTR(ALLOC_SLAB, alloc_slab);
4809STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4810STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4811STAT_ATTR(FREE_SLAB, free_slab);
4812STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4813STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4814STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4815STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4816STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4817STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4818STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4819STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4820STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4821STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
8ff12cfc
CL
4822#endif
4823
06428780 4824static struct attribute *slab_attrs[] = {
81819f0f
CL
4825 &slab_size_attr.attr,
4826 &object_size_attr.attr,
4827 &objs_per_slab_attr.attr,
4828 &order_attr.attr,
73d342b1 4829 &min_partial_attr.attr,
81819f0f 4830 &objects_attr.attr,
205ab99d 4831 &objects_partial_attr.attr,
81819f0f
CL
4832 &partial_attr.attr,
4833 &cpu_slabs_attr.attr,
4834 &ctor_attr.attr,
81819f0f
CL
4835 &aliases_attr.attr,
4836 &align_attr.attr,
81819f0f
CL
4837 &hwcache_align_attr.attr,
4838 &reclaim_account_attr.attr,
4839 &destroy_by_rcu_attr.attr,
a5a84755 4840 &shrink_attr.attr,
ab9a0f19 4841 &reserved_attr.attr,
ab4d5ed5 4842#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4843 &total_objects_attr.attr,
4844 &slabs_attr.attr,
4845 &sanity_checks_attr.attr,
4846 &trace_attr.attr,
81819f0f
CL
4847 &red_zone_attr.attr,
4848 &poison_attr.attr,
4849 &store_user_attr.attr,
53e15af0 4850 &validate_attr.attr,
88a420e4
CL
4851 &alloc_calls_attr.attr,
4852 &free_calls_attr.attr,
ab4d5ed5 4853#endif
81819f0f
CL
4854#ifdef CONFIG_ZONE_DMA
4855 &cache_dma_attr.attr,
4856#endif
4857#ifdef CONFIG_NUMA
9824601e 4858 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4859#endif
4860#ifdef CONFIG_SLUB_STATS
4861 &alloc_fastpath_attr.attr,
4862 &alloc_slowpath_attr.attr,
4863 &free_fastpath_attr.attr,
4864 &free_slowpath_attr.attr,
4865 &free_frozen_attr.attr,
4866 &free_add_partial_attr.attr,
4867 &free_remove_partial_attr.attr,
4868 &alloc_from_partial_attr.attr,
4869 &alloc_slab_attr.attr,
4870 &alloc_refill_attr.attr,
e36a2652 4871 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4872 &free_slab_attr.attr,
4873 &cpuslab_flush_attr.attr,
4874 &deactivate_full_attr.attr,
4875 &deactivate_empty_attr.attr,
4876 &deactivate_to_head_attr.attr,
4877 &deactivate_to_tail_attr.attr,
4878 &deactivate_remote_frees_attr.attr,
03e404af 4879 &deactivate_bypass_attr.attr,
65c3376a 4880 &order_fallback_attr.attr,
b789ef51
CL
4881 &cmpxchg_double_fail_attr.attr,
4882 &cmpxchg_double_cpu_fail_attr.attr,
81819f0f 4883#endif
4c13dd3b
DM
4884#ifdef CONFIG_FAILSLAB
4885 &failslab_attr.attr,
4886#endif
4887
81819f0f
CL
4888 NULL
4889};
4890
4891static struct attribute_group slab_attr_group = {
4892 .attrs = slab_attrs,
4893};
4894
4895static ssize_t slab_attr_show(struct kobject *kobj,
4896 struct attribute *attr,
4897 char *buf)
4898{
4899 struct slab_attribute *attribute;
4900 struct kmem_cache *s;
4901 int err;
4902
4903 attribute = to_slab_attr(attr);
4904 s = to_slab(kobj);
4905
4906 if (!attribute->show)
4907 return -EIO;
4908
4909 err = attribute->show(s, buf);
4910
4911 return err;
4912}
4913
4914static ssize_t slab_attr_store(struct kobject *kobj,
4915 struct attribute *attr,
4916 const char *buf, size_t len)
4917{
4918 struct slab_attribute *attribute;
4919 struct kmem_cache *s;
4920 int err;
4921
4922 attribute = to_slab_attr(attr);
4923 s = to_slab(kobj);
4924
4925 if (!attribute->store)
4926 return -EIO;
4927
4928 err = attribute->store(s, buf, len);
4929
4930 return err;
4931}
4932
151c602f
CL
4933static void kmem_cache_release(struct kobject *kobj)
4934{
4935 struct kmem_cache *s = to_slab(kobj);
4936
84c1cf62 4937 kfree(s->name);
151c602f
CL
4938 kfree(s);
4939}
4940
52cf25d0 4941static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4942 .show = slab_attr_show,
4943 .store = slab_attr_store,
4944};
4945
4946static struct kobj_type slab_ktype = {
4947 .sysfs_ops = &slab_sysfs_ops,
151c602f 4948 .release = kmem_cache_release
81819f0f
CL
4949};
4950
4951static int uevent_filter(struct kset *kset, struct kobject *kobj)
4952{
4953 struct kobj_type *ktype = get_ktype(kobj);
4954
4955 if (ktype == &slab_ktype)
4956 return 1;
4957 return 0;
4958}
4959
9cd43611 4960static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4961 .filter = uevent_filter,
4962};
4963
27c3a314 4964static struct kset *slab_kset;
81819f0f
CL
4965
4966#define ID_STR_LENGTH 64
4967
4968/* Create a unique string id for a slab cache:
6446faa2
CL
4969 *
4970 * Format :[flags-]size
81819f0f
CL
4971 */
4972static char *create_unique_id(struct kmem_cache *s)
4973{
4974 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4975 char *p = name;
4976
4977 BUG_ON(!name);
4978
4979 *p++ = ':';
4980 /*
4981 * First flags affecting slabcache operations. We will only
4982 * get here for aliasable slabs so we do not need to support
4983 * too many flags. The flags here must cover all flags that
4984 * are matched during merging to guarantee that the id is
4985 * unique.
4986 */
4987 if (s->flags & SLAB_CACHE_DMA)
4988 *p++ = 'd';
4989 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4990 *p++ = 'a';
4991 if (s->flags & SLAB_DEBUG_FREE)
4992 *p++ = 'F';
5a896d9e
VN
4993 if (!(s->flags & SLAB_NOTRACK))
4994 *p++ = 't';
81819f0f
CL
4995 if (p != name + 1)
4996 *p++ = '-';
4997 p += sprintf(p, "%07d", s->size);
4998 BUG_ON(p > name + ID_STR_LENGTH - 1);
4999 return name;
5000}
5001
5002static int sysfs_slab_add(struct kmem_cache *s)
5003{
5004 int err;
5005 const char *name;
5006 int unmergeable;
5007
5008 if (slab_state < SYSFS)
5009 /* Defer until later */
5010 return 0;
5011
5012 unmergeable = slab_unmergeable(s);
5013 if (unmergeable) {
5014 /*
5015 * Slabcache can never be merged so we can use the name proper.
5016 * This is typically the case for debug situations. In that
5017 * case we can catch duplicate names easily.
5018 */
27c3a314 5019 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5020 name = s->name;
5021 } else {
5022 /*
5023 * Create a unique name for the slab as a target
5024 * for the symlinks.
5025 */
5026 name = create_unique_id(s);
5027 }
5028
27c3a314 5029 s->kobj.kset = slab_kset;
1eada11c
GKH
5030 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5031 if (err) {
5032 kobject_put(&s->kobj);
81819f0f 5033 return err;
1eada11c 5034 }
81819f0f
CL
5035
5036 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5037 if (err) {
5038 kobject_del(&s->kobj);
5039 kobject_put(&s->kobj);
81819f0f 5040 return err;
5788d8ad 5041 }
81819f0f
CL
5042 kobject_uevent(&s->kobj, KOBJ_ADD);
5043 if (!unmergeable) {
5044 /* Setup first alias */
5045 sysfs_slab_alias(s, s->name);
5046 kfree(name);
5047 }
5048 return 0;
5049}
5050
5051static void sysfs_slab_remove(struct kmem_cache *s)
5052{
2bce6485
CL
5053 if (slab_state < SYSFS)
5054 /*
5055 * Sysfs has not been setup yet so no need to remove the
5056 * cache from sysfs.
5057 */
5058 return;
5059
81819f0f
CL
5060 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5061 kobject_del(&s->kobj);
151c602f 5062 kobject_put(&s->kobj);
81819f0f
CL
5063}
5064
5065/*
5066 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5067 * available lest we lose that information.
81819f0f
CL
5068 */
5069struct saved_alias {
5070 struct kmem_cache *s;
5071 const char *name;
5072 struct saved_alias *next;
5073};
5074
5af328a5 5075static struct saved_alias *alias_list;
81819f0f
CL
5076
5077static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5078{
5079 struct saved_alias *al;
5080
5081 if (slab_state == SYSFS) {
5082 /*
5083 * If we have a leftover link then remove it.
5084 */
27c3a314
GKH
5085 sysfs_remove_link(&slab_kset->kobj, name);
5086 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5087 }
5088
5089 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5090 if (!al)
5091 return -ENOMEM;
5092
5093 al->s = s;
5094 al->name = name;
5095 al->next = alias_list;
5096 alias_list = al;
5097 return 0;
5098}
5099
5100static int __init slab_sysfs_init(void)
5101{
5b95a4ac 5102 struct kmem_cache *s;
81819f0f
CL
5103 int err;
5104
2bce6485
CL
5105 down_write(&slub_lock);
5106
0ff21e46 5107 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5108 if (!slab_kset) {
2bce6485 5109 up_write(&slub_lock);
81819f0f
CL
5110 printk(KERN_ERR "Cannot register slab subsystem.\n");
5111 return -ENOSYS;
5112 }
5113
26a7bd03
CL
5114 slab_state = SYSFS;
5115
5b95a4ac 5116 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5117 err = sysfs_slab_add(s);
5d540fb7
CL
5118 if (err)
5119 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5120 " to sysfs\n", s->name);
26a7bd03 5121 }
81819f0f
CL
5122
5123 while (alias_list) {
5124 struct saved_alias *al = alias_list;
5125
5126 alias_list = alias_list->next;
5127 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5128 if (err)
5129 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5130 " %s to sysfs\n", s->name);
81819f0f
CL
5131 kfree(al);
5132 }
5133
2bce6485 5134 up_write(&slub_lock);
81819f0f
CL
5135 resiliency_test();
5136 return 0;
5137}
5138
5139__initcall(slab_sysfs_init);
ab4d5ed5 5140#endif /* CONFIG_SYSFS */
57ed3eda
PE
5141
5142/*
5143 * The /proc/slabinfo ABI
5144 */
158a9624 5145#ifdef CONFIG_SLABINFO
57ed3eda
PE
5146static void print_slabinfo_header(struct seq_file *m)
5147{
5148 seq_puts(m, "slabinfo - version: 2.1\n");
5149 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5150 "<objperslab> <pagesperslab>");
5151 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5152 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5153 seq_putc(m, '\n');
5154}
5155
5156static void *s_start(struct seq_file *m, loff_t *pos)
5157{
5158 loff_t n = *pos;
5159
5160 down_read(&slub_lock);
5161 if (!n)
5162 print_slabinfo_header(m);
5163
5164 return seq_list_start(&slab_caches, *pos);
5165}
5166
5167static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5168{
5169 return seq_list_next(p, &slab_caches, pos);
5170}
5171
5172static void s_stop(struct seq_file *m, void *p)
5173{
5174 up_read(&slub_lock);
5175}
5176
5177static int s_show(struct seq_file *m, void *p)
5178{
5179 unsigned long nr_partials = 0;
5180 unsigned long nr_slabs = 0;
5181 unsigned long nr_inuse = 0;
205ab99d
CL
5182 unsigned long nr_objs = 0;
5183 unsigned long nr_free = 0;
57ed3eda
PE
5184 struct kmem_cache *s;
5185 int node;
5186
5187 s = list_entry(p, struct kmem_cache, list);
5188
5189 for_each_online_node(node) {
5190 struct kmem_cache_node *n = get_node(s, node);
5191
5192 if (!n)
5193 continue;
5194
5195 nr_partials += n->nr_partial;
5196 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5197 nr_objs += atomic_long_read(&n->total_objects);
5198 nr_free += count_partial(n, count_free);
57ed3eda
PE
5199 }
5200
205ab99d 5201 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5202
5203 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5204 nr_objs, s->size, oo_objects(s->oo),
5205 (1 << oo_order(s->oo)));
57ed3eda
PE
5206 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5207 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5208 0UL);
5209 seq_putc(m, '\n');
5210 return 0;
5211}
5212
7b3c3a50 5213static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5214 .start = s_start,
5215 .next = s_next,
5216 .stop = s_stop,
5217 .show = s_show,
5218};
5219
7b3c3a50
AD
5220static int slabinfo_open(struct inode *inode, struct file *file)
5221{
5222 return seq_open(file, &slabinfo_op);
5223}
5224
5225static const struct file_operations proc_slabinfo_operations = {
5226 .open = slabinfo_open,
5227 .read = seq_read,
5228 .llseek = seq_lseek,
5229 .release = seq_release,
5230};
5231
5232static int __init slab_proc_init(void)
5233{
cf5d1131 5234 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5235 return 0;
5236}
5237module_init(slab_proc_init);
158a9624 5238#endif /* CONFIG_SLABINFO */
This page took 0.954533 seconds and 5 git commands to generate.