kdump, vmcoreinfo: report memory sections virtual addresses
[deliverable/linux.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20 50atomic_long_t nr_swap_pages;
fb0fec50
CW
51/*
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
55 */
56EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 57/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 58long total_swap_pages;
78ecba08 59static int least_priority;
1da177e4 60
1da177e4
LT
61static const char Bad_file[] = "Bad swap file entry ";
62static const char Unused_file[] = "Unused swap file entry ";
63static const char Bad_offset[] = "Bad swap offset entry ";
64static const char Unused_offset[] = "Unused swap offset entry ";
65
adfab836
DS
66/*
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
69 */
18ab4d4c
DS
70PLIST_HEAD(swap_active_head);
71
72/*
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
83 */
84static PLIST_HEAD(swap_avail_head);
85static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 86
38b5faf4 87struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 88
fc0abb14 89static DEFINE_MUTEX(swapon_mutex);
1da177e4 90
66d7dd51
KS
91static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92/* Activity counter to indicate that a swapon or swapoff has occurred */
93static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
8d69aaee 95static inline unsigned char swap_count(unsigned char ent)
355cfa73 96{
570a335b 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
98}
99
efa90a98 100/* returns 1 if swap entry is freed */
c9e44410
KH
101static int
102__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103{
efa90a98 104 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
105 struct page *page;
106 int ret = 0;
107
db7004e9 108 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
109 if (!page)
110 return 0;
111 /*
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
117 */
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
121 }
09cbfeaf 122 put_page(page);
c9e44410
KH
123 return ret;
124}
355cfa73 125
6a6ba831
HD
126/*
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
129 */
130static int discard_swap(struct swap_info_struct *si)
131{
132 struct swap_extent *se;
9625a5f2
HD
133 sector_t start_block;
134 sector_t nr_blocks;
6a6ba831
HD
135 int err = 0;
136
9625a5f2
HD
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 143 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
144 if (err)
145 return err;
146 cond_resched();
147 }
6a6ba831 148
9625a5f2
HD
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
152
153 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 154 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
155 if (err)
156 break;
157
158 cond_resched();
159 }
160 return err; /* That will often be -EOPNOTSUPP */
161}
162
7992fde7
HD
163/*
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
166 */
167static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
169{
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
172
173 while (nr_pages) {
7992fde7
HD
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
858a2990 178 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
179
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
184
185 if (!found_extent++)
186 si->curr_swap_extent = se;
187
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 191 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
192 break;
193 }
194
a8ae4991 195 se = list_next_entry(se, list);
7992fde7
HD
196 }
197}
198
048c27fd
HD
199#define SWAPFILE_CLUSTER 256
200#define LATENCY_LIMIT 256
201
2a8f9449
SL
202static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
204{
205 info->flags = flag;
206}
207
208static inline unsigned int cluster_count(struct swap_cluster_info *info)
209{
210 return info->data;
211}
212
213static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
215{
216 info->data = c;
217}
218
219static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
221{
222 info->flags = f;
223 info->data = c;
224}
225
226static inline unsigned int cluster_next(struct swap_cluster_info *info)
227{
228 return info->data;
229}
230
231static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
233{
234 info->data = n;
235}
236
237static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
239{
240 info->flags = f;
241 info->data = n;
242}
243
244static inline bool cluster_is_free(struct swap_cluster_info *info)
245{
246 return info->flags & CLUSTER_FLAG_FREE;
247}
248
249static inline bool cluster_is_null(struct swap_cluster_info *info)
250{
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
252}
253
254static inline void cluster_set_null(struct swap_cluster_info *info)
255{
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
258}
259
ebfa6505
HY
260static inline bool cluster_list_empty(struct swap_cluster_list *list)
261{
262 return cluster_is_null(&list->head);
263}
264
265static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
266{
267 return cluster_next(&list->head);
268}
269
270static void cluster_list_init(struct swap_cluster_list *list)
271{
272 cluster_set_null(&list->head);
273 cluster_set_null(&list->tail);
274}
275
276static void cluster_list_add_tail(struct swap_cluster_list *list,
277 struct swap_cluster_info *ci,
278 unsigned int idx)
279{
280 if (cluster_list_empty(list)) {
281 cluster_set_next_flag(&list->head, idx, 0);
282 cluster_set_next_flag(&list->tail, idx, 0);
283 } else {
284 unsigned int tail = cluster_next(&list->tail);
4314f30b 285
ebfa6505
HY
286 cluster_set_next(&ci[tail], idx);
287 cluster_set_next_flag(&list->tail, idx, 0);
288 }
289}
290
291static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
292 struct swap_cluster_info *ci)
293{
294 unsigned int idx;
295
296 idx = cluster_next(&list->head);
297 if (cluster_next(&list->tail) == idx) {
298 cluster_set_null(&list->head);
299 cluster_set_null(&list->tail);
300 } else
301 cluster_set_next_flag(&list->head,
302 cluster_next(&ci[idx]), 0);
303
304 return idx;
305}
306
815c2c54
SL
307/* Add a cluster to discard list and schedule it to do discard */
308static void swap_cluster_schedule_discard(struct swap_info_struct *si,
309 unsigned int idx)
310{
311 /*
312 * If scan_swap_map() can't find a free cluster, it will check
313 * si->swap_map directly. To make sure the discarding cluster isn't
314 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315 * will be cleared after discard
316 */
317 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
318 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
319
ebfa6505 320 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
321
322 schedule_work(&si->discard_work);
323}
324
325/*
326 * Doing discard actually. After a cluster discard is finished, the cluster
327 * will be added to free cluster list. caller should hold si->lock.
328*/
329static void swap_do_scheduled_discard(struct swap_info_struct *si)
330{
331 struct swap_cluster_info *info;
332 unsigned int idx;
333
334 info = si->cluster_info;
335
ebfa6505
HY
336 while (!cluster_list_empty(&si->discard_clusters)) {
337 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
338 spin_unlock(&si->lock);
339
340 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
341 SWAPFILE_CLUSTER);
342
343 spin_lock(&si->lock);
344 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
ebfa6505 345 cluster_list_add_tail(&si->free_clusters, info, idx);
815c2c54
SL
346 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
347 0, SWAPFILE_CLUSTER);
348 }
349}
350
351static void swap_discard_work(struct work_struct *work)
352{
353 struct swap_info_struct *si;
354
355 si = container_of(work, struct swap_info_struct, discard_work);
356
357 spin_lock(&si->lock);
358 swap_do_scheduled_discard(si);
359 spin_unlock(&si->lock);
360}
361
2a8f9449
SL
362/*
363 * The cluster corresponding to page_nr will be used. The cluster will be
364 * removed from free cluster list and its usage counter will be increased.
365 */
366static void inc_cluster_info_page(struct swap_info_struct *p,
367 struct swap_cluster_info *cluster_info, unsigned long page_nr)
368{
369 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
370
371 if (!cluster_info)
372 return;
373 if (cluster_is_free(&cluster_info[idx])) {
ebfa6505
HY
374 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
375 cluster_list_del_first(&p->free_clusters, cluster_info);
2a8f9449
SL
376 cluster_set_count_flag(&cluster_info[idx], 0, 0);
377 }
378
379 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
380 cluster_set_count(&cluster_info[idx],
381 cluster_count(&cluster_info[idx]) + 1);
382}
383
384/*
385 * The cluster corresponding to page_nr decreases one usage. If the usage
386 * counter becomes 0, which means no page in the cluster is in using, we can
387 * optionally discard the cluster and add it to free cluster list.
388 */
389static void dec_cluster_info_page(struct swap_info_struct *p,
390 struct swap_cluster_info *cluster_info, unsigned long page_nr)
391{
392 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
393
394 if (!cluster_info)
395 return;
396
397 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
398 cluster_set_count(&cluster_info[idx],
399 cluster_count(&cluster_info[idx]) - 1);
400
401 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
402 /*
403 * If the swap is discardable, prepare discard the cluster
404 * instead of free it immediately. The cluster will be freed
405 * after discard.
406 */
edfe23da
SL
407 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
408 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
409 swap_cluster_schedule_discard(p, idx);
410 return;
411 }
412
2a8f9449 413 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
ebfa6505 414 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
2a8f9449
SL
415 }
416}
417
418/*
419 * It's possible scan_swap_map() uses a free cluster in the middle of free
420 * cluster list. Avoiding such abuse to avoid list corruption.
421 */
ebc2a1a6
SL
422static bool
423scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
424 unsigned long offset)
425{
ebc2a1a6
SL
426 struct percpu_cluster *percpu_cluster;
427 bool conflict;
428
2a8f9449 429 offset /= SWAPFILE_CLUSTER;
ebfa6505
HY
430 conflict = !cluster_list_empty(&si->free_clusters) &&
431 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 432 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
433
434 if (!conflict)
435 return false;
436
437 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
438 cluster_set_null(&percpu_cluster->index);
439 return true;
440}
441
442/*
443 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444 * might involve allocating a new cluster for current CPU too.
445 */
446static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
447 unsigned long *offset, unsigned long *scan_base)
448{
449 struct percpu_cluster *cluster;
450 bool found_free;
451 unsigned long tmp;
452
453new_cluster:
454 cluster = this_cpu_ptr(si->percpu_cluster);
455 if (cluster_is_null(&cluster->index)) {
ebfa6505
HY
456 if (!cluster_list_empty(&si->free_clusters)) {
457 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
458 cluster->next = cluster_next(&cluster->index) *
459 SWAPFILE_CLUSTER;
ebfa6505 460 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
461 /*
462 * we don't have free cluster but have some clusters in
463 * discarding, do discard now and reclaim them
464 */
465 swap_do_scheduled_discard(si);
466 *scan_base = *offset = si->cluster_next;
467 goto new_cluster;
468 } else
469 return;
470 }
471
472 found_free = false;
473
474 /*
475 * Other CPUs can use our cluster if they can't find a free cluster,
476 * check if there is still free entry in the cluster
477 */
478 tmp = cluster->next;
479 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
480 SWAPFILE_CLUSTER) {
481 if (!si->swap_map[tmp]) {
482 found_free = true;
483 break;
484 }
485 tmp++;
486 }
487 if (!found_free) {
488 cluster_set_null(&cluster->index);
489 goto new_cluster;
490 }
491 cluster->next = tmp + 1;
492 *offset = tmp;
493 *scan_base = tmp;
2a8f9449
SL
494}
495
24b8ff7c
CEB
496static unsigned long scan_swap_map(struct swap_info_struct *si,
497 unsigned char usage)
1da177e4 498{
ebebbbe9 499 unsigned long offset;
c60aa176 500 unsigned long scan_base;
7992fde7 501 unsigned long last_in_cluster = 0;
048c27fd 502 int latency_ration = LATENCY_LIMIT;
7dfad418 503
886bb7e9 504 /*
7dfad418
HD
505 * We try to cluster swap pages by allocating them sequentially
506 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
507 * way, however, we resort to first-free allocation, starting
508 * a new cluster. This prevents us from scattering swap pages
509 * all over the entire swap partition, so that we reduce
510 * overall disk seek times between swap pages. -- sct
511 * But we do now try to find an empty cluster. -Andrea
c60aa176 512 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
513 */
514
52b7efdb 515 si->flags += SWP_SCANNING;
c60aa176 516 scan_base = offset = si->cluster_next;
ebebbbe9 517
ebc2a1a6
SL
518 /* SSD algorithm */
519 if (si->cluster_info) {
520 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
521 goto checks;
522 }
523
ebebbbe9
HD
524 if (unlikely(!si->cluster_nr--)) {
525 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
526 si->cluster_nr = SWAPFILE_CLUSTER - 1;
527 goto checks;
528 }
2a8f9449 529
ec8acf20 530 spin_unlock(&si->lock);
7dfad418 531
c60aa176
HD
532 /*
533 * If seek is expensive, start searching for new cluster from
534 * start of partition, to minimize the span of allocated swap.
50088c44
CY
535 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 537 */
50088c44 538 scan_base = offset = si->lowest_bit;
7dfad418
HD
539 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
540
541 /* Locate the first empty (unaligned) cluster */
542 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 543 if (si->swap_map[offset])
7dfad418
HD
544 last_in_cluster = offset + SWAPFILE_CLUSTER;
545 else if (offset == last_in_cluster) {
ec8acf20 546 spin_lock(&si->lock);
ebebbbe9
HD
547 offset -= SWAPFILE_CLUSTER - 1;
548 si->cluster_next = offset;
549 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
550 goto checks;
551 }
552 if (unlikely(--latency_ration < 0)) {
553 cond_resched();
554 latency_ration = LATENCY_LIMIT;
555 }
556 }
557
558 offset = scan_base;
ec8acf20 559 spin_lock(&si->lock);
ebebbbe9 560 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 561 }
7dfad418 562
ebebbbe9 563checks:
ebc2a1a6
SL
564 if (si->cluster_info) {
565 while (scan_swap_map_ssd_cluster_conflict(si, offset))
566 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
567 }
ebebbbe9 568 if (!(si->flags & SWP_WRITEOK))
52b7efdb 569 goto no_page;
7dfad418
HD
570 if (!si->highest_bit)
571 goto no_page;
ebebbbe9 572 if (offset > si->highest_bit)
c60aa176 573 scan_base = offset = si->lowest_bit;
c9e44410 574
b73d7fce
HD
575 /* reuse swap entry of cache-only swap if not busy. */
576 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 577 int swap_was_freed;
ec8acf20 578 spin_unlock(&si->lock);
c9e44410 579 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 580 spin_lock(&si->lock);
c9e44410
KH
581 /* entry was freed successfully, try to use this again */
582 if (swap_was_freed)
583 goto checks;
584 goto scan; /* check next one */
585 }
586
ebebbbe9
HD
587 if (si->swap_map[offset])
588 goto scan;
589
590 if (offset == si->lowest_bit)
591 si->lowest_bit++;
592 if (offset == si->highest_bit)
593 si->highest_bit--;
594 si->inuse_pages++;
595 if (si->inuse_pages == si->pages) {
596 si->lowest_bit = si->max;
597 si->highest_bit = 0;
18ab4d4c
DS
598 spin_lock(&swap_avail_lock);
599 plist_del(&si->avail_list, &swap_avail_head);
600 spin_unlock(&swap_avail_lock);
1da177e4 601 }
253d553b 602 si->swap_map[offset] = usage;
2a8f9449 603 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
604 si->cluster_next = offset + 1;
605 si->flags -= SWP_SCANNING;
7992fde7 606
ebebbbe9 607 return offset;
7dfad418 608
ebebbbe9 609scan:
ec8acf20 610 spin_unlock(&si->lock);
7dfad418 611 while (++offset <= si->highest_bit) {
52b7efdb 612 if (!si->swap_map[offset]) {
ec8acf20 613 spin_lock(&si->lock);
52b7efdb
HD
614 goto checks;
615 }
c9e44410 616 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 617 spin_lock(&si->lock);
c9e44410
KH
618 goto checks;
619 }
048c27fd
HD
620 if (unlikely(--latency_ration < 0)) {
621 cond_resched();
622 latency_ration = LATENCY_LIMIT;
623 }
7dfad418 624 }
c60aa176 625 offset = si->lowest_bit;
a5998061 626 while (offset < scan_base) {
c60aa176 627 if (!si->swap_map[offset]) {
ec8acf20 628 spin_lock(&si->lock);
c60aa176
HD
629 goto checks;
630 }
c9e44410 631 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 632 spin_lock(&si->lock);
c9e44410
KH
633 goto checks;
634 }
c60aa176
HD
635 if (unlikely(--latency_ration < 0)) {
636 cond_resched();
637 latency_ration = LATENCY_LIMIT;
638 }
a5998061 639 offset++;
c60aa176 640 }
ec8acf20 641 spin_lock(&si->lock);
7dfad418
HD
642
643no_page:
52b7efdb 644 si->flags -= SWP_SCANNING;
1da177e4
LT
645 return 0;
646}
647
648swp_entry_t get_swap_page(void)
649{
adfab836 650 struct swap_info_struct *si, *next;
fb4f88dc 651 pgoff_t offset;
1da177e4 652
ec8acf20 653 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 654 goto noswap;
ec8acf20 655 atomic_long_dec(&nr_swap_pages);
fb4f88dc 656
18ab4d4c
DS
657 spin_lock(&swap_avail_lock);
658
659start_over:
660 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
661 /* requeue si to after same-priority siblings */
662 plist_requeue(&si->avail_list, &swap_avail_head);
663 spin_unlock(&swap_avail_lock);
ec8acf20 664 spin_lock(&si->lock);
adfab836 665 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
666 spin_lock(&swap_avail_lock);
667 if (plist_node_empty(&si->avail_list)) {
668 spin_unlock(&si->lock);
669 goto nextsi;
670 }
671 WARN(!si->highest_bit,
672 "swap_info %d in list but !highest_bit\n",
673 si->type);
674 WARN(!(si->flags & SWP_WRITEOK),
675 "swap_info %d in list but !SWP_WRITEOK\n",
676 si->type);
677 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 678 spin_unlock(&si->lock);
18ab4d4c 679 goto nextsi;
ec8acf20 680 }
fb4f88dc 681
355cfa73 682 /* This is called for allocating swap entry for cache */
253d553b 683 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
684 spin_unlock(&si->lock);
685 if (offset)
adfab836 686 return swp_entry(si->type, offset);
18ab4d4c
DS
687 pr_debug("scan_swap_map of si %d failed to find offset\n",
688 si->type);
689 spin_lock(&swap_avail_lock);
690nextsi:
adfab836
DS
691 /*
692 * if we got here, it's likely that si was almost full before,
693 * and since scan_swap_map() can drop the si->lock, multiple
694 * callers probably all tried to get a page from the same si
18ab4d4c
DS
695 * and it filled up before we could get one; or, the si filled
696 * up between us dropping swap_avail_lock and taking si->lock.
697 * Since we dropped the swap_avail_lock, the swap_avail_head
698 * list may have been modified; so if next is still in the
699 * swap_avail_head list then try it, otherwise start over.
adfab836 700 */
18ab4d4c
DS
701 if (plist_node_empty(&next->avail_list))
702 goto start_over;
1da177e4 703 }
fb4f88dc 704
18ab4d4c
DS
705 spin_unlock(&swap_avail_lock);
706
ec8acf20 707 atomic_long_inc(&nr_swap_pages);
fb4f88dc 708noswap:
fb4f88dc 709 return (swp_entry_t) {0};
1da177e4
LT
710}
711
2de1a7e4 712/* The only caller of this function is now suspend routine */
910321ea
HD
713swp_entry_t get_swap_page_of_type(int type)
714{
715 struct swap_info_struct *si;
716 pgoff_t offset;
717
910321ea 718 si = swap_info[type];
ec8acf20 719 spin_lock(&si->lock);
910321ea 720 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 721 atomic_long_dec(&nr_swap_pages);
910321ea
HD
722 /* This is called for allocating swap entry, not cache */
723 offset = scan_swap_map(si, 1);
724 if (offset) {
ec8acf20 725 spin_unlock(&si->lock);
910321ea
HD
726 return swp_entry(type, offset);
727 }
ec8acf20 728 atomic_long_inc(&nr_swap_pages);
910321ea 729 }
ec8acf20 730 spin_unlock(&si->lock);
910321ea
HD
731 return (swp_entry_t) {0};
732}
733
73c34b6a 734static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 735{
73c34b6a 736 struct swap_info_struct *p;
1da177e4
LT
737 unsigned long offset, type;
738
739 if (!entry.val)
740 goto out;
741 type = swp_type(entry);
742 if (type >= nr_swapfiles)
743 goto bad_nofile;
efa90a98 744 p = swap_info[type];
1da177e4
LT
745 if (!(p->flags & SWP_USED))
746 goto bad_device;
747 offset = swp_offset(entry);
748 if (offset >= p->max)
749 goto bad_offset;
750 if (!p->swap_map[offset])
751 goto bad_free;
ec8acf20 752 spin_lock(&p->lock);
1da177e4
LT
753 return p;
754
755bad_free:
465c47fd 756 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
757 goto out;
758bad_offset:
465c47fd 759 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
760 goto out;
761bad_device:
465c47fd 762 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
763 goto out;
764bad_nofile:
465c47fd 765 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
766out:
767 return NULL;
886bb7e9 768}
1da177e4 769
8d69aaee
HD
770static unsigned char swap_entry_free(struct swap_info_struct *p,
771 swp_entry_t entry, unsigned char usage)
1da177e4 772{
253d553b 773 unsigned long offset = swp_offset(entry);
8d69aaee
HD
774 unsigned char count;
775 unsigned char has_cache;
355cfa73 776
253d553b
HD
777 count = p->swap_map[offset];
778 has_cache = count & SWAP_HAS_CACHE;
779 count &= ~SWAP_HAS_CACHE;
355cfa73 780
253d553b 781 if (usage == SWAP_HAS_CACHE) {
355cfa73 782 VM_BUG_ON(!has_cache);
253d553b 783 has_cache = 0;
aaa46865
HD
784 } else if (count == SWAP_MAP_SHMEM) {
785 /*
786 * Or we could insist on shmem.c using a special
787 * swap_shmem_free() and free_shmem_swap_and_cache()...
788 */
789 count = 0;
570a335b
HD
790 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
791 if (count == COUNT_CONTINUED) {
792 if (swap_count_continued(p, offset, count))
793 count = SWAP_MAP_MAX | COUNT_CONTINUED;
794 else
795 count = SWAP_MAP_MAX;
796 } else
797 count--;
798 }
253d553b 799
253d553b
HD
800 usage = count | has_cache;
801 p->swap_map[offset] = usage;
355cfa73 802
355cfa73 803 /* free if no reference */
253d553b 804 if (!usage) {
37e84351 805 mem_cgroup_uncharge_swap(entry);
2a8f9449 806 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
807 if (offset < p->lowest_bit)
808 p->lowest_bit = offset;
18ab4d4c
DS
809 if (offset > p->highest_bit) {
810 bool was_full = !p->highest_bit;
355cfa73 811 p->highest_bit = offset;
18ab4d4c
DS
812 if (was_full && (p->flags & SWP_WRITEOK)) {
813 spin_lock(&swap_avail_lock);
814 WARN_ON(!plist_node_empty(&p->avail_list));
815 if (plist_node_empty(&p->avail_list))
816 plist_add(&p->avail_list,
817 &swap_avail_head);
818 spin_unlock(&swap_avail_lock);
819 }
820 }
ec8acf20 821 atomic_long_inc(&nr_swap_pages);
355cfa73 822 p->inuse_pages--;
38b5faf4 823 frontswap_invalidate_page(p->type, offset);
73744923
MG
824 if (p->flags & SWP_BLKDEV) {
825 struct gendisk *disk = p->bdev->bd_disk;
826 if (disk->fops->swap_slot_free_notify)
827 disk->fops->swap_slot_free_notify(p->bdev,
828 offset);
829 }
1da177e4 830 }
253d553b
HD
831
832 return usage;
1da177e4
LT
833}
834
835/*
2de1a7e4 836 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
837 * is still around or has not been recycled.
838 */
839void swap_free(swp_entry_t entry)
840{
73c34b6a 841 struct swap_info_struct *p;
1da177e4
LT
842
843 p = swap_info_get(entry);
844 if (p) {
253d553b 845 swap_entry_free(p, entry, 1);
ec8acf20 846 spin_unlock(&p->lock);
1da177e4
LT
847 }
848}
849
cb4b86ba
KH
850/*
851 * Called after dropping swapcache to decrease refcnt to swap entries.
852 */
0a31bc97 853void swapcache_free(swp_entry_t entry)
cb4b86ba 854{
355cfa73
KH
855 struct swap_info_struct *p;
856
355cfa73
KH
857 p = swap_info_get(entry);
858 if (p) {
0a31bc97 859 swap_entry_free(p, entry, SWAP_HAS_CACHE);
ec8acf20 860 spin_unlock(&p->lock);
355cfa73 861 }
cb4b86ba
KH
862}
863
1da177e4 864/*
c475a8ab 865 * How many references to page are currently swapped out?
570a335b
HD
866 * This does not give an exact answer when swap count is continued,
867 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 868 */
bde05d1c 869int page_swapcount(struct page *page)
1da177e4 870{
c475a8ab
HD
871 int count = 0;
872 struct swap_info_struct *p;
1da177e4
LT
873 swp_entry_t entry;
874
4c21e2f2 875 entry.val = page_private(page);
1da177e4
LT
876 p = swap_info_get(entry);
877 if (p) {
355cfa73 878 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 879 spin_unlock(&p->lock);
1da177e4 880 }
c475a8ab 881 return count;
1da177e4
LT
882}
883
8334b962
MK
884/*
885 * How many references to @entry are currently swapped out?
886 * This considers COUNT_CONTINUED so it returns exact answer.
887 */
888int swp_swapcount(swp_entry_t entry)
889{
890 int count, tmp_count, n;
891 struct swap_info_struct *p;
892 struct page *page;
893 pgoff_t offset;
894 unsigned char *map;
895
896 p = swap_info_get(entry);
897 if (!p)
898 return 0;
899
900 count = swap_count(p->swap_map[swp_offset(entry)]);
901 if (!(count & COUNT_CONTINUED))
902 goto out;
903
904 count &= ~COUNT_CONTINUED;
905 n = SWAP_MAP_MAX + 1;
906
907 offset = swp_offset(entry);
908 page = vmalloc_to_page(p->swap_map + offset);
909 offset &= ~PAGE_MASK;
910 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
911
912 do {
a8ae4991 913 page = list_next_entry(page, lru);
8334b962
MK
914 map = kmap_atomic(page);
915 tmp_count = map[offset];
916 kunmap_atomic(map);
917
918 count += (tmp_count & ~COUNT_CONTINUED) * n;
919 n *= (SWAP_CONT_MAX + 1);
920 } while (tmp_count & COUNT_CONTINUED);
921out:
922 spin_unlock(&p->lock);
923 return count;
924}
925
1da177e4 926/*
7b1fe597
HD
927 * We can write to an anon page without COW if there are no other references
928 * to it. And as a side-effect, free up its swap: because the old content
929 * on disk will never be read, and seeking back there to write new content
930 * later would only waste time away from clustering.
6d0a07ed
AA
931 *
932 * NOTE: total_mapcount should not be relied upon by the caller if
933 * reuse_swap_page() returns false, but it may be always overwritten
934 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 935 */
6d0a07ed 936bool reuse_swap_page(struct page *page, int *total_mapcount)
1da177e4 937{
c475a8ab
HD
938 int count;
939
309381fe 940 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 941 if (unlikely(PageKsm(page)))
6d0a07ed
AA
942 return false;
943 count = page_trans_huge_mapcount(page, total_mapcount);
7b1fe597 944 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 945 count += page_swapcount(page);
7b1fe597
HD
946 if (count == 1 && !PageWriteback(page)) {
947 delete_from_swap_cache(page);
948 SetPageDirty(page);
949 }
950 }
5ad64688 951 return count <= 1;
1da177e4
LT
952}
953
954/*
a2c43eed
HD
955 * If swap is getting full, or if there are no more mappings of this page,
956 * then try_to_free_swap is called to free its swap space.
1da177e4 957 */
a2c43eed 958int try_to_free_swap(struct page *page)
1da177e4 959{
309381fe 960 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
961
962 if (!PageSwapCache(page))
963 return 0;
964 if (PageWriteback(page))
965 return 0;
a2c43eed 966 if (page_swapcount(page))
1da177e4
LT
967 return 0;
968
b73d7fce
HD
969 /*
970 * Once hibernation has begun to create its image of memory,
971 * there's a danger that one of the calls to try_to_free_swap()
972 * - most probably a call from __try_to_reclaim_swap() while
973 * hibernation is allocating its own swap pages for the image,
974 * but conceivably even a call from memory reclaim - will free
975 * the swap from a page which has already been recorded in the
976 * image as a clean swapcache page, and then reuse its swap for
977 * another page of the image. On waking from hibernation, the
978 * original page might be freed under memory pressure, then
979 * later read back in from swap, now with the wrong data.
980 *
2de1a7e4 981 * Hibernation suspends storage while it is writing the image
f90ac398 982 * to disk so check that here.
b73d7fce 983 */
f90ac398 984 if (pm_suspended_storage())
b73d7fce
HD
985 return 0;
986
a2c43eed
HD
987 delete_from_swap_cache(page);
988 SetPageDirty(page);
989 return 1;
68a22394
RR
990}
991
1da177e4
LT
992/*
993 * Free the swap entry like above, but also try to
994 * free the page cache entry if it is the last user.
995 */
2509ef26 996int free_swap_and_cache(swp_entry_t entry)
1da177e4 997{
2509ef26 998 struct swap_info_struct *p;
1da177e4
LT
999 struct page *page = NULL;
1000
a7420aa5 1001 if (non_swap_entry(entry))
2509ef26 1002 return 1;
0697212a 1003
1da177e4
LT
1004 p = swap_info_get(entry);
1005 if (p) {
253d553b 1006 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06 1007 page = find_get_page(swap_address_space(entry),
db7004e9 1008 swp_offset(entry));
8413ac9d 1009 if (page && !trylock_page(page)) {
09cbfeaf 1010 put_page(page);
93fac704
NP
1011 page = NULL;
1012 }
1013 }
ec8acf20 1014 spin_unlock(&p->lock);
1da177e4
LT
1015 }
1016 if (page) {
a2c43eed
HD
1017 /*
1018 * Not mapped elsewhere, or swap space full? Free it!
1019 * Also recheck PageSwapCache now page is locked (above).
1020 */
93fac704 1021 if (PageSwapCache(page) && !PageWriteback(page) &&
5ccc5aba 1022 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1da177e4
LT
1023 delete_from_swap_cache(page);
1024 SetPageDirty(page);
1025 }
1026 unlock_page(page);
09cbfeaf 1027 put_page(page);
1da177e4 1028 }
2509ef26 1029 return p != NULL;
1da177e4
LT
1030}
1031
b0cb1a19 1032#ifdef CONFIG_HIBERNATION
f577eb30 1033/*
915bae9e 1034 * Find the swap type that corresponds to given device (if any).
f577eb30 1035 *
915bae9e
RW
1036 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1037 * from 0, in which the swap header is expected to be located.
1038 *
1039 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1040 */
7bf23687 1041int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1042{
915bae9e 1043 struct block_device *bdev = NULL;
efa90a98 1044 int type;
f577eb30 1045
915bae9e
RW
1046 if (device)
1047 bdev = bdget(device);
1048
f577eb30 1049 spin_lock(&swap_lock);
efa90a98
HD
1050 for (type = 0; type < nr_swapfiles; type++) {
1051 struct swap_info_struct *sis = swap_info[type];
f577eb30 1052
915bae9e 1053 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1054 continue;
b6b5bce3 1055
915bae9e 1056 if (!bdev) {
7bf23687 1057 if (bdev_p)
dddac6a7 1058 *bdev_p = bdgrab(sis->bdev);
7bf23687 1059
6e1819d6 1060 spin_unlock(&swap_lock);
efa90a98 1061 return type;
6e1819d6 1062 }
915bae9e 1063 if (bdev == sis->bdev) {
9625a5f2 1064 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1065
915bae9e 1066 if (se->start_block == offset) {
7bf23687 1067 if (bdev_p)
dddac6a7 1068 *bdev_p = bdgrab(sis->bdev);
7bf23687 1069
915bae9e
RW
1070 spin_unlock(&swap_lock);
1071 bdput(bdev);
efa90a98 1072 return type;
915bae9e 1073 }
f577eb30
RW
1074 }
1075 }
1076 spin_unlock(&swap_lock);
915bae9e
RW
1077 if (bdev)
1078 bdput(bdev);
1079
f577eb30
RW
1080 return -ENODEV;
1081}
1082
73c34b6a
HD
1083/*
1084 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1085 * corresponding to given index in swap_info (swap type).
1086 */
1087sector_t swapdev_block(int type, pgoff_t offset)
1088{
1089 struct block_device *bdev;
1090
1091 if ((unsigned int)type >= nr_swapfiles)
1092 return 0;
1093 if (!(swap_info[type]->flags & SWP_WRITEOK))
1094 return 0;
d4906e1a 1095 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1096}
1097
f577eb30
RW
1098/*
1099 * Return either the total number of swap pages of given type, or the number
1100 * of free pages of that type (depending on @free)
1101 *
1102 * This is needed for software suspend
1103 */
1104unsigned int count_swap_pages(int type, int free)
1105{
1106 unsigned int n = 0;
1107
efa90a98
HD
1108 spin_lock(&swap_lock);
1109 if ((unsigned int)type < nr_swapfiles) {
1110 struct swap_info_struct *sis = swap_info[type];
1111
ec8acf20 1112 spin_lock(&sis->lock);
efa90a98
HD
1113 if (sis->flags & SWP_WRITEOK) {
1114 n = sis->pages;
f577eb30 1115 if (free)
efa90a98 1116 n -= sis->inuse_pages;
f577eb30 1117 }
ec8acf20 1118 spin_unlock(&sis->lock);
f577eb30 1119 }
efa90a98 1120 spin_unlock(&swap_lock);
f577eb30
RW
1121 return n;
1122}
73c34b6a 1123#endif /* CONFIG_HIBERNATION */
f577eb30 1124
9f8bdb3f 1125static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1126{
9f8bdb3f 1127 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1128}
1129
1da177e4 1130/*
72866f6f
HD
1131 * No need to decide whether this PTE shares the swap entry with others,
1132 * just let do_wp_page work it out if a write is requested later - to
1133 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1134 */
044d66c1 1135static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1136 unsigned long addr, swp_entry_t entry, struct page *page)
1137{
9e16b7fb 1138 struct page *swapcache;
72835c86 1139 struct mem_cgroup *memcg;
044d66c1
HD
1140 spinlock_t *ptl;
1141 pte_t *pte;
1142 int ret = 1;
1143
9e16b7fb
HD
1144 swapcache = page;
1145 page = ksm_might_need_to_copy(page, vma, addr);
1146 if (unlikely(!page))
1147 return -ENOMEM;
1148
f627c2f5
KS
1149 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1150 &memcg, false)) {
044d66c1 1151 ret = -ENOMEM;
85d9fc89
KH
1152 goto out_nolock;
1153 }
044d66c1
HD
1154
1155 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1156 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1157 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1158 ret = 0;
1159 goto out;
1160 }
8a9f3ccd 1161
b084d435 1162 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1163 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1164 get_page(page);
1165 set_pte_at(vma->vm_mm, addr, pte,
1166 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1167 if (page == swapcache) {
d281ee61 1168 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1169 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1170 } else { /* ksm created a completely new copy */
d281ee61 1171 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1172 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1173 lru_cache_add_active_or_unevictable(page, vma);
1174 }
1da177e4
LT
1175 swap_free(entry);
1176 /*
1177 * Move the page to the active list so it is not
1178 * immediately swapped out again after swapon.
1179 */
1180 activate_page(page);
044d66c1
HD
1181out:
1182 pte_unmap_unlock(pte, ptl);
85d9fc89 1183out_nolock:
9e16b7fb
HD
1184 if (page != swapcache) {
1185 unlock_page(page);
1186 put_page(page);
1187 }
044d66c1 1188 return ret;
1da177e4
LT
1189}
1190
1191static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1192 unsigned long addr, unsigned long end,
1193 swp_entry_t entry, struct page *page)
1194{
1da177e4 1195 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1196 pte_t *pte;
8a9f3ccd 1197 int ret = 0;
1da177e4 1198
044d66c1
HD
1199 /*
1200 * We don't actually need pte lock while scanning for swp_pte: since
1201 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1202 * page table while we're scanning; though it could get zapped, and on
1203 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1204 * of unmatched parts which look like swp_pte, so unuse_pte must
1205 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1206 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1207 */
1208 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1209 do {
1210 /*
1211 * swapoff spends a _lot_ of time in this loop!
1212 * Test inline before going to call unuse_pte.
1213 */
9f8bdb3f 1214 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1215 pte_unmap(pte);
1216 ret = unuse_pte(vma, pmd, addr, entry, page);
1217 if (ret)
1218 goto out;
1219 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1220 }
1221 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1222 pte_unmap(pte - 1);
1223out:
8a9f3ccd 1224 return ret;
1da177e4
LT
1225}
1226
1227static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1228 unsigned long addr, unsigned long end,
1229 swp_entry_t entry, struct page *page)
1230{
1231 pmd_t *pmd;
1232 unsigned long next;
8a9f3ccd 1233 int ret;
1da177e4
LT
1234
1235 pmd = pmd_offset(pud, addr);
1236 do {
1237 next = pmd_addr_end(addr, end);
1a5a9906 1238 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1239 continue;
8a9f3ccd
BS
1240 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1241 if (ret)
1242 return ret;
1da177e4
LT
1243 } while (pmd++, addr = next, addr != end);
1244 return 0;
1245}
1246
1247static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1248 unsigned long addr, unsigned long end,
1249 swp_entry_t entry, struct page *page)
1250{
1251 pud_t *pud;
1252 unsigned long next;
8a9f3ccd 1253 int ret;
1da177e4
LT
1254
1255 pud = pud_offset(pgd, addr);
1256 do {
1257 next = pud_addr_end(addr, end);
1258 if (pud_none_or_clear_bad(pud))
1259 continue;
8a9f3ccd
BS
1260 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1261 if (ret)
1262 return ret;
1da177e4
LT
1263 } while (pud++, addr = next, addr != end);
1264 return 0;
1265}
1266
1267static int unuse_vma(struct vm_area_struct *vma,
1268 swp_entry_t entry, struct page *page)
1269{
1270 pgd_t *pgd;
1271 unsigned long addr, end, next;
8a9f3ccd 1272 int ret;
1da177e4 1273
3ca7b3c5 1274 if (page_anon_vma(page)) {
1da177e4
LT
1275 addr = page_address_in_vma(page, vma);
1276 if (addr == -EFAULT)
1277 return 0;
1278 else
1279 end = addr + PAGE_SIZE;
1280 } else {
1281 addr = vma->vm_start;
1282 end = vma->vm_end;
1283 }
1284
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(pgd))
1289 continue;
8a9f3ccd
BS
1290 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1291 if (ret)
1292 return ret;
1da177e4
LT
1293 } while (pgd++, addr = next, addr != end);
1294 return 0;
1295}
1296
1297static int unuse_mm(struct mm_struct *mm,
1298 swp_entry_t entry, struct page *page)
1299{
1300 struct vm_area_struct *vma;
8a9f3ccd 1301 int ret = 0;
1da177e4
LT
1302
1303 if (!down_read_trylock(&mm->mmap_sem)) {
1304 /*
7d03431c
FLVC
1305 * Activate page so shrink_inactive_list is unlikely to unmap
1306 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1307 */
c475a8ab 1308 activate_page(page);
1da177e4
LT
1309 unlock_page(page);
1310 down_read(&mm->mmap_sem);
1311 lock_page(page);
1312 }
1da177e4 1313 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1314 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1315 break;
1316 }
1da177e4 1317 up_read(&mm->mmap_sem);
8a9f3ccd 1318 return (ret < 0)? ret: 0;
1da177e4
LT
1319}
1320
1321/*
38b5faf4
DM
1322 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1323 * from current position to next entry still in use.
1da177e4
LT
1324 * Recycle to start on reaching the end, returning 0 when empty.
1325 */
6eb396dc 1326static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1327 unsigned int prev, bool frontswap)
1da177e4 1328{
6eb396dc
HD
1329 unsigned int max = si->max;
1330 unsigned int i = prev;
8d69aaee 1331 unsigned char count;
1da177e4
LT
1332
1333 /*
5d337b91 1334 * No need for swap_lock here: we're just looking
1da177e4
LT
1335 * for whether an entry is in use, not modifying it; false
1336 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1337 * allocations from this area (while holding swap_lock).
1da177e4
LT
1338 */
1339 for (;;) {
1340 if (++i >= max) {
1341 if (!prev) {
1342 i = 0;
1343 break;
1344 }
1345 /*
1346 * No entries in use at top of swap_map,
1347 * loop back to start and recheck there.
1348 */
1349 max = prev + 1;
1350 prev = 0;
1351 i = 1;
1352 }
38b5faf4
DM
1353 if (frontswap) {
1354 if (frontswap_test(si, i))
1355 break;
1356 else
1357 continue;
1358 }
4db0c3c2 1359 count = READ_ONCE(si->swap_map[i]);
355cfa73 1360 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1361 break;
1362 }
1363 return i;
1364}
1365
1366/*
1367 * We completely avoid races by reading each swap page in advance,
1368 * and then search for the process using it. All the necessary
1369 * page table adjustments can then be made atomically.
38b5faf4
DM
1370 *
1371 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1372 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1373 */
38b5faf4
DM
1374int try_to_unuse(unsigned int type, bool frontswap,
1375 unsigned long pages_to_unuse)
1da177e4 1376{
efa90a98 1377 struct swap_info_struct *si = swap_info[type];
1da177e4 1378 struct mm_struct *start_mm;
edfe23da
SL
1379 volatile unsigned char *swap_map; /* swap_map is accessed without
1380 * locking. Mark it as volatile
1381 * to prevent compiler doing
1382 * something odd.
1383 */
8d69aaee 1384 unsigned char swcount;
1da177e4
LT
1385 struct page *page;
1386 swp_entry_t entry;
6eb396dc 1387 unsigned int i = 0;
1da177e4 1388 int retval = 0;
1da177e4
LT
1389
1390 /*
1391 * When searching mms for an entry, a good strategy is to
1392 * start at the first mm we freed the previous entry from
1393 * (though actually we don't notice whether we or coincidence
1394 * freed the entry). Initialize this start_mm with a hold.
1395 *
1396 * A simpler strategy would be to start at the last mm we
1397 * freed the previous entry from; but that would take less
1398 * advantage of mmlist ordering, which clusters forked mms
1399 * together, child after parent. If we race with dup_mmap(), we
1400 * prefer to resolve parent before child, lest we miss entries
1401 * duplicated after we scanned child: using last mm would invert
570a335b 1402 * that.
1da177e4
LT
1403 */
1404 start_mm = &init_mm;
1405 atomic_inc(&init_mm.mm_users);
1406
1407 /*
1408 * Keep on scanning until all entries have gone. Usually,
1409 * one pass through swap_map is enough, but not necessarily:
1410 * there are races when an instance of an entry might be missed.
1411 */
38b5faf4 1412 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1413 if (signal_pending(current)) {
1414 retval = -EINTR;
1415 break;
1416 }
1417
886bb7e9 1418 /*
1da177e4
LT
1419 * Get a page for the entry, using the existing swap
1420 * cache page if there is one. Otherwise, get a clean
886bb7e9 1421 * page and read the swap into it.
1da177e4
LT
1422 */
1423 swap_map = &si->swap_map[i];
1424 entry = swp_entry(type, i);
02098fea
HD
1425 page = read_swap_cache_async(entry,
1426 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1427 if (!page) {
1428 /*
1429 * Either swap_duplicate() failed because entry
1430 * has been freed independently, and will not be
1431 * reused since sys_swapoff() already disabled
1432 * allocation from here, or alloc_page() failed.
1433 */
edfe23da
SL
1434 swcount = *swap_map;
1435 /*
1436 * We don't hold lock here, so the swap entry could be
1437 * SWAP_MAP_BAD (when the cluster is discarding).
1438 * Instead of fail out, We can just skip the swap
1439 * entry because swapoff will wait for discarding
1440 * finish anyway.
1441 */
1442 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1443 continue;
1444 retval = -ENOMEM;
1445 break;
1446 }
1447
1448 /*
1449 * Don't hold on to start_mm if it looks like exiting.
1450 */
1451 if (atomic_read(&start_mm->mm_users) == 1) {
1452 mmput(start_mm);
1453 start_mm = &init_mm;
1454 atomic_inc(&init_mm.mm_users);
1455 }
1456
1457 /*
1458 * Wait for and lock page. When do_swap_page races with
1459 * try_to_unuse, do_swap_page can handle the fault much
1460 * faster than try_to_unuse can locate the entry. This
1461 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1462 * defer to do_swap_page in such a case - in some tests,
1463 * do_swap_page and try_to_unuse repeatedly compete.
1464 */
1465 wait_on_page_locked(page);
1466 wait_on_page_writeback(page);
1467 lock_page(page);
1468 wait_on_page_writeback(page);
1469
1470 /*
1471 * Remove all references to entry.
1da177e4 1472 */
1da177e4 1473 swcount = *swap_map;
aaa46865
HD
1474 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1475 retval = shmem_unuse(entry, page);
1476 /* page has already been unlocked and released */
1477 if (retval < 0)
1478 break;
1479 continue;
1da177e4 1480 }
aaa46865
HD
1481 if (swap_count(swcount) && start_mm != &init_mm)
1482 retval = unuse_mm(start_mm, entry, page);
1483
355cfa73 1484 if (swap_count(*swap_map)) {
1da177e4
LT
1485 int set_start_mm = (*swap_map >= swcount);
1486 struct list_head *p = &start_mm->mmlist;
1487 struct mm_struct *new_start_mm = start_mm;
1488 struct mm_struct *prev_mm = start_mm;
1489 struct mm_struct *mm;
1490
1491 atomic_inc(&new_start_mm->mm_users);
1492 atomic_inc(&prev_mm->mm_users);
1493 spin_lock(&mmlist_lock);
aaa46865 1494 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1495 (p = p->next) != &start_mm->mmlist) {
1496 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1497 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1498 continue;
1da177e4
LT
1499 spin_unlock(&mmlist_lock);
1500 mmput(prev_mm);
1501 prev_mm = mm;
1502
1503 cond_resched();
1504
1505 swcount = *swap_map;
355cfa73 1506 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1507 ;
aaa46865 1508 else if (mm == &init_mm)
1da177e4 1509 set_start_mm = 1;
aaa46865 1510 else
1da177e4 1511 retval = unuse_mm(mm, entry, page);
355cfa73 1512
32c5fc10 1513 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1514 mmput(new_start_mm);
1515 atomic_inc(&mm->mm_users);
1516 new_start_mm = mm;
1517 set_start_mm = 0;
1518 }
1519 spin_lock(&mmlist_lock);
1520 }
1521 spin_unlock(&mmlist_lock);
1522 mmput(prev_mm);
1523 mmput(start_mm);
1524 start_mm = new_start_mm;
1525 }
1526 if (retval) {
1527 unlock_page(page);
09cbfeaf 1528 put_page(page);
1da177e4
LT
1529 break;
1530 }
1531
1da177e4
LT
1532 /*
1533 * If a reference remains (rare), we would like to leave
1534 * the page in the swap cache; but try_to_unmap could
1535 * then re-duplicate the entry once we drop page lock,
1536 * so we might loop indefinitely; also, that page could
1537 * not be swapped out to other storage meanwhile. So:
1538 * delete from cache even if there's another reference,
1539 * after ensuring that the data has been saved to disk -
1540 * since if the reference remains (rarer), it will be
1541 * read from disk into another page. Splitting into two
1542 * pages would be incorrect if swap supported "shared
1543 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1544 *
1545 * Given how unuse_vma() targets one particular offset
1546 * in an anon_vma, once the anon_vma has been determined,
1547 * this splitting happens to be just what is needed to
1548 * handle where KSM pages have been swapped out: re-reading
1549 * is unnecessarily slow, but we can fix that later on.
1da177e4 1550 */
355cfa73
KH
1551 if (swap_count(*swap_map) &&
1552 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1553 struct writeback_control wbc = {
1554 .sync_mode = WB_SYNC_NONE,
1555 };
1556
1557 swap_writepage(page, &wbc);
1558 lock_page(page);
1559 wait_on_page_writeback(page);
1560 }
68bdc8d6
HD
1561
1562 /*
1563 * It is conceivable that a racing task removed this page from
1564 * swap cache just before we acquired the page lock at the top,
1565 * or while we dropped it in unuse_mm(). The page might even
1566 * be back in swap cache on another swap area: that we must not
1567 * delete, since it may not have been written out to swap yet.
1568 */
1569 if (PageSwapCache(page) &&
1570 likely(page_private(page) == entry.val))
2e0e26c7 1571 delete_from_swap_cache(page);
1da177e4
LT
1572
1573 /*
1574 * So we could skip searching mms once swap count went
1575 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1576 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1577 */
1578 SetPageDirty(page);
1579 unlock_page(page);
09cbfeaf 1580 put_page(page);
1da177e4
LT
1581
1582 /*
1583 * Make sure that we aren't completely killing
1584 * interactive performance.
1585 */
1586 cond_resched();
38b5faf4
DM
1587 if (frontswap && pages_to_unuse > 0) {
1588 if (!--pages_to_unuse)
1589 break;
1590 }
1da177e4
LT
1591 }
1592
1593 mmput(start_mm);
1da177e4
LT
1594 return retval;
1595}
1596
1597/*
5d337b91
HD
1598 * After a successful try_to_unuse, if no swap is now in use, we know
1599 * we can empty the mmlist. swap_lock must be held on entry and exit.
1600 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1601 * added to the mmlist just after page_duplicate - before would be racy.
1602 */
1603static void drain_mmlist(void)
1604{
1605 struct list_head *p, *next;
efa90a98 1606 unsigned int type;
1da177e4 1607
efa90a98
HD
1608 for (type = 0; type < nr_swapfiles; type++)
1609 if (swap_info[type]->inuse_pages)
1da177e4
LT
1610 return;
1611 spin_lock(&mmlist_lock);
1612 list_for_each_safe(p, next, &init_mm.mmlist)
1613 list_del_init(p);
1614 spin_unlock(&mmlist_lock);
1615}
1616
1617/*
1618 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1619 * corresponds to page offset for the specified swap entry.
1620 * Note that the type of this function is sector_t, but it returns page offset
1621 * into the bdev, not sector offset.
1da177e4 1622 */
d4906e1a 1623static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1624{
f29ad6a9
HD
1625 struct swap_info_struct *sis;
1626 struct swap_extent *start_se;
1627 struct swap_extent *se;
1628 pgoff_t offset;
1629
efa90a98 1630 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1631 *bdev = sis->bdev;
1632
1633 offset = swp_offset(entry);
1634 start_se = sis->curr_swap_extent;
1635 se = start_se;
1da177e4
LT
1636
1637 for ( ; ; ) {
1da177e4
LT
1638 if (se->start_page <= offset &&
1639 offset < (se->start_page + se->nr_pages)) {
1640 return se->start_block + (offset - se->start_page);
1641 }
a8ae4991 1642 se = list_next_entry(se, list);
1da177e4
LT
1643 sis->curr_swap_extent = se;
1644 BUG_ON(se == start_se); /* It *must* be present */
1645 }
1646}
1647
d4906e1a
LS
1648/*
1649 * Returns the page offset into bdev for the specified page's swap entry.
1650 */
1651sector_t map_swap_page(struct page *page, struct block_device **bdev)
1652{
1653 swp_entry_t entry;
1654 entry.val = page_private(page);
1655 return map_swap_entry(entry, bdev);
1656}
1657
1da177e4
LT
1658/*
1659 * Free all of a swapdev's extent information
1660 */
1661static void destroy_swap_extents(struct swap_info_struct *sis)
1662{
9625a5f2 1663 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1664 struct swap_extent *se;
1665
a8ae4991 1666 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1667 struct swap_extent, list);
1668 list_del(&se->list);
1669 kfree(se);
1670 }
62c230bc
MG
1671
1672 if (sis->flags & SWP_FILE) {
1673 struct file *swap_file = sis->swap_file;
1674 struct address_space *mapping = swap_file->f_mapping;
1675
1676 sis->flags &= ~SWP_FILE;
1677 mapping->a_ops->swap_deactivate(swap_file);
1678 }
1da177e4
LT
1679}
1680
1681/*
1682 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1683 * extent list. The extent list is kept sorted in page order.
1da177e4 1684 *
11d31886 1685 * This function rather assumes that it is called in ascending page order.
1da177e4 1686 */
a509bc1a 1687int
1da177e4
LT
1688add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1689 unsigned long nr_pages, sector_t start_block)
1690{
1691 struct swap_extent *se;
1692 struct swap_extent *new_se;
1693 struct list_head *lh;
1694
9625a5f2
HD
1695 if (start_page == 0) {
1696 se = &sis->first_swap_extent;
1697 sis->curr_swap_extent = se;
1698 se->start_page = 0;
1699 se->nr_pages = nr_pages;
1700 se->start_block = start_block;
1701 return 1;
1702 } else {
1703 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1704 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1705 BUG_ON(se->start_page + se->nr_pages != start_page);
1706 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1707 /* Merge it */
1708 se->nr_pages += nr_pages;
1709 return 0;
1710 }
1da177e4
LT
1711 }
1712
1713 /*
1714 * No merge. Insert a new extent, preserving ordering.
1715 */
1716 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1717 if (new_se == NULL)
1718 return -ENOMEM;
1719 new_se->start_page = start_page;
1720 new_se->nr_pages = nr_pages;
1721 new_se->start_block = start_block;
1722
9625a5f2 1723 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1724 return 1;
1da177e4
LT
1725}
1726
1727/*
1728 * A `swap extent' is a simple thing which maps a contiguous range of pages
1729 * onto a contiguous range of disk blocks. An ordered list of swap extents
1730 * is built at swapon time and is then used at swap_writepage/swap_readpage
1731 * time for locating where on disk a page belongs.
1732 *
1733 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1734 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1735 * swap files identically.
1736 *
1737 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1738 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1739 * swapfiles are handled *identically* after swapon time.
1740 *
1741 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1742 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1743 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1744 * requirements, they are simply tossed out - we will never use those blocks
1745 * for swapping.
1746 *
b0d9bcd4 1747 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1748 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1749 * which will scribble on the fs.
1750 *
1751 * The amount of disk space which a single swap extent represents varies.
1752 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1753 * extents in the list. To avoid much list walking, we cache the previous
1754 * search location in `curr_swap_extent', and start new searches from there.
1755 * This is extremely effective. The average number of iterations in
1756 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1757 */
53092a74 1758static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1759{
62c230bc
MG
1760 struct file *swap_file = sis->swap_file;
1761 struct address_space *mapping = swap_file->f_mapping;
1762 struct inode *inode = mapping->host;
1da177e4
LT
1763 int ret;
1764
1da177e4
LT
1765 if (S_ISBLK(inode->i_mode)) {
1766 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1767 *span = sis->pages;
a509bc1a 1768 return ret;
1da177e4
LT
1769 }
1770
62c230bc 1771 if (mapping->a_ops->swap_activate) {
a509bc1a 1772 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1773 if (!ret) {
1774 sis->flags |= SWP_FILE;
1775 ret = add_swap_extent(sis, 0, sis->max, 0);
1776 *span = sis->pages;
1777 }
a509bc1a 1778 return ret;
62c230bc
MG
1779 }
1780
a509bc1a 1781 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1782}
1783
cf0cac0a 1784static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1785 unsigned char *swap_map,
1786 struct swap_cluster_info *cluster_info)
40531542 1787{
40531542
CEB
1788 if (prio >= 0)
1789 p->prio = prio;
1790 else
1791 p->prio = --least_priority;
18ab4d4c
DS
1792 /*
1793 * the plist prio is negated because plist ordering is
1794 * low-to-high, while swap ordering is high-to-low
1795 */
1796 p->list.prio = -p->prio;
1797 p->avail_list.prio = -p->prio;
40531542 1798 p->swap_map = swap_map;
2a8f9449 1799 p->cluster_info = cluster_info;
40531542 1800 p->flags |= SWP_WRITEOK;
ec8acf20 1801 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1802 total_swap_pages += p->pages;
1803
adfab836 1804 assert_spin_locked(&swap_lock);
adfab836 1805 /*
18ab4d4c
DS
1806 * both lists are plists, and thus priority ordered.
1807 * swap_active_head needs to be priority ordered for swapoff(),
1808 * which on removal of any swap_info_struct with an auto-assigned
1809 * (i.e. negative) priority increments the auto-assigned priority
1810 * of any lower-priority swap_info_structs.
1811 * swap_avail_head needs to be priority ordered for get_swap_page(),
1812 * which allocates swap pages from the highest available priority
1813 * swap_info_struct.
adfab836 1814 */
18ab4d4c
DS
1815 plist_add(&p->list, &swap_active_head);
1816 spin_lock(&swap_avail_lock);
1817 plist_add(&p->avail_list, &swap_avail_head);
1818 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1819}
1820
1821static void enable_swap_info(struct swap_info_struct *p, int prio,
1822 unsigned char *swap_map,
2a8f9449 1823 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1824 unsigned long *frontswap_map)
1825{
4f89849d 1826 frontswap_init(p->type, frontswap_map);
cf0cac0a 1827 spin_lock(&swap_lock);
ec8acf20 1828 spin_lock(&p->lock);
2a8f9449 1829 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1830 spin_unlock(&p->lock);
cf0cac0a
CEB
1831 spin_unlock(&swap_lock);
1832}
1833
1834static void reinsert_swap_info(struct swap_info_struct *p)
1835{
1836 spin_lock(&swap_lock);
ec8acf20 1837 spin_lock(&p->lock);
2a8f9449 1838 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1839 spin_unlock(&p->lock);
40531542
CEB
1840 spin_unlock(&swap_lock);
1841}
1842
c4ea37c2 1843SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1844{
73c34b6a 1845 struct swap_info_struct *p = NULL;
8d69aaee 1846 unsigned char *swap_map;
2a8f9449 1847 struct swap_cluster_info *cluster_info;
4f89849d 1848 unsigned long *frontswap_map;
1da177e4
LT
1849 struct file *swap_file, *victim;
1850 struct address_space *mapping;
1851 struct inode *inode;
91a27b2a 1852 struct filename *pathname;
adfab836 1853 int err, found = 0;
5b808a23 1854 unsigned int old_block_size;
886bb7e9 1855
1da177e4
LT
1856 if (!capable(CAP_SYS_ADMIN))
1857 return -EPERM;
1858
191c5424
AV
1859 BUG_ON(!current->mm);
1860
1da177e4 1861 pathname = getname(specialfile);
1da177e4 1862 if (IS_ERR(pathname))
f58b59c1 1863 return PTR_ERR(pathname);
1da177e4 1864
669abf4e 1865 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1866 err = PTR_ERR(victim);
1867 if (IS_ERR(victim))
1868 goto out;
1869
1870 mapping = victim->f_mapping;
5d337b91 1871 spin_lock(&swap_lock);
18ab4d4c 1872 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1873 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1874 if (p->swap_file->f_mapping == mapping) {
1875 found = 1;
1da177e4 1876 break;
adfab836 1877 }
1da177e4 1878 }
1da177e4 1879 }
adfab836 1880 if (!found) {
1da177e4 1881 err = -EINVAL;
5d337b91 1882 spin_unlock(&swap_lock);
1da177e4
LT
1883 goto out_dput;
1884 }
191c5424 1885 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1886 vm_unacct_memory(p->pages);
1887 else {
1888 err = -ENOMEM;
5d337b91 1889 spin_unlock(&swap_lock);
1da177e4
LT
1890 goto out_dput;
1891 }
18ab4d4c
DS
1892 spin_lock(&swap_avail_lock);
1893 plist_del(&p->avail_list, &swap_avail_head);
1894 spin_unlock(&swap_avail_lock);
ec8acf20 1895 spin_lock(&p->lock);
78ecba08 1896 if (p->prio < 0) {
adfab836
DS
1897 struct swap_info_struct *si = p;
1898
18ab4d4c 1899 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1900 si->prio++;
18ab4d4c
DS
1901 si->list.prio--;
1902 si->avail_list.prio--;
adfab836 1903 }
78ecba08
HD
1904 least_priority++;
1905 }
18ab4d4c 1906 plist_del(&p->list, &swap_active_head);
ec8acf20 1907 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1908 total_swap_pages -= p->pages;
1909 p->flags &= ~SWP_WRITEOK;
ec8acf20 1910 spin_unlock(&p->lock);
5d337b91 1911 spin_unlock(&swap_lock);
fb4f88dc 1912
e1e12d2f 1913 set_current_oom_origin();
adfab836 1914 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1915 clear_current_oom_origin();
1da177e4 1916
1da177e4
LT
1917 if (err) {
1918 /* re-insert swap space back into swap_list */
cf0cac0a 1919 reinsert_swap_info(p);
1da177e4
LT
1920 goto out_dput;
1921 }
52b7efdb 1922
815c2c54
SL
1923 flush_work(&p->discard_work);
1924
5d337b91 1925 destroy_swap_extents(p);
570a335b
HD
1926 if (p->flags & SWP_CONTINUED)
1927 free_swap_count_continuations(p);
1928
fc0abb14 1929 mutex_lock(&swapon_mutex);
5d337b91 1930 spin_lock(&swap_lock);
ec8acf20 1931 spin_lock(&p->lock);
5d337b91
HD
1932 drain_mmlist();
1933
52b7efdb 1934 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1935 p->highest_bit = 0; /* cuts scans short */
1936 while (p->flags >= SWP_SCANNING) {
ec8acf20 1937 spin_unlock(&p->lock);
5d337b91 1938 spin_unlock(&swap_lock);
13e4b57f 1939 schedule_timeout_uninterruptible(1);
5d337b91 1940 spin_lock(&swap_lock);
ec8acf20 1941 spin_lock(&p->lock);
52b7efdb 1942 }
52b7efdb 1943
1da177e4 1944 swap_file = p->swap_file;
5b808a23 1945 old_block_size = p->old_block_size;
1da177e4
LT
1946 p->swap_file = NULL;
1947 p->max = 0;
1948 swap_map = p->swap_map;
1949 p->swap_map = NULL;
2a8f9449
SL
1950 cluster_info = p->cluster_info;
1951 p->cluster_info = NULL;
4f89849d 1952 frontswap_map = frontswap_map_get(p);
ec8acf20 1953 spin_unlock(&p->lock);
5d337b91 1954 spin_unlock(&swap_lock);
adfab836 1955 frontswap_invalidate_area(p->type);
58e97ba6 1956 frontswap_map_set(p, NULL);
fc0abb14 1957 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1958 free_percpu(p->percpu_cluster);
1959 p->percpu_cluster = NULL;
1da177e4 1960 vfree(swap_map);
2a8f9449 1961 vfree(cluster_info);
4f89849d 1962 vfree(frontswap_map);
2de1a7e4 1963 /* Destroy swap account information */
adfab836 1964 swap_cgroup_swapoff(p->type);
27a7faa0 1965
1da177e4
LT
1966 inode = mapping->host;
1967 if (S_ISBLK(inode->i_mode)) {
1968 struct block_device *bdev = I_BDEV(inode);
5b808a23 1969 set_blocksize(bdev, old_block_size);
e525fd89 1970 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1971 } else {
5955102c 1972 inode_lock(inode);
1da177e4 1973 inode->i_flags &= ~S_SWAPFILE;
5955102c 1974 inode_unlock(inode);
1da177e4
LT
1975 }
1976 filp_close(swap_file, NULL);
f893ab41
WY
1977
1978 /*
1979 * Clear the SWP_USED flag after all resources are freed so that swapon
1980 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1981 * not hold p->lock after we cleared its SWP_WRITEOK.
1982 */
1983 spin_lock(&swap_lock);
1984 p->flags = 0;
1985 spin_unlock(&swap_lock);
1986
1da177e4 1987 err = 0;
66d7dd51
KS
1988 atomic_inc(&proc_poll_event);
1989 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1990
1991out_dput:
1992 filp_close(victim, NULL);
1993out:
f58b59c1 1994 putname(pathname);
1da177e4
LT
1995 return err;
1996}
1997
1998#ifdef CONFIG_PROC_FS
66d7dd51
KS
1999static unsigned swaps_poll(struct file *file, poll_table *wait)
2000{
f1514638 2001 struct seq_file *seq = file->private_data;
66d7dd51
KS
2002
2003 poll_wait(file, &proc_poll_wait, wait);
2004
f1514638
KS
2005 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2006 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2007 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2008 }
2009
2010 return POLLIN | POLLRDNORM;
2011}
2012
1da177e4
LT
2013/* iterator */
2014static void *swap_start(struct seq_file *swap, loff_t *pos)
2015{
efa90a98
HD
2016 struct swap_info_struct *si;
2017 int type;
1da177e4
LT
2018 loff_t l = *pos;
2019
fc0abb14 2020 mutex_lock(&swapon_mutex);
1da177e4 2021
881e4aab
SS
2022 if (!l)
2023 return SEQ_START_TOKEN;
2024
efa90a98
HD
2025 for (type = 0; type < nr_swapfiles; type++) {
2026 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2027 si = swap_info[type];
2028 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2029 continue;
881e4aab 2030 if (!--l)
efa90a98 2031 return si;
1da177e4
LT
2032 }
2033
2034 return NULL;
2035}
2036
2037static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2038{
efa90a98
HD
2039 struct swap_info_struct *si = v;
2040 int type;
1da177e4 2041
881e4aab 2042 if (v == SEQ_START_TOKEN)
efa90a98
HD
2043 type = 0;
2044 else
2045 type = si->type + 1;
881e4aab 2046
efa90a98
HD
2047 for (; type < nr_swapfiles; type++) {
2048 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2049 si = swap_info[type];
2050 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2051 continue;
2052 ++*pos;
efa90a98 2053 return si;
1da177e4
LT
2054 }
2055
2056 return NULL;
2057}
2058
2059static void swap_stop(struct seq_file *swap, void *v)
2060{
fc0abb14 2061 mutex_unlock(&swapon_mutex);
1da177e4
LT
2062}
2063
2064static int swap_show(struct seq_file *swap, void *v)
2065{
efa90a98 2066 struct swap_info_struct *si = v;
1da177e4
LT
2067 struct file *file;
2068 int len;
2069
efa90a98 2070 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2071 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2072 return 0;
2073 }
1da177e4 2074
efa90a98 2075 file = si->swap_file;
2726d566 2076 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2077 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2078 len < 40 ? 40 - len : 1, " ",
496ad9aa 2079 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2080 "partition" : "file\t",
efa90a98
HD
2081 si->pages << (PAGE_SHIFT - 10),
2082 si->inuse_pages << (PAGE_SHIFT - 10),
2083 si->prio);
1da177e4
LT
2084 return 0;
2085}
2086
15ad7cdc 2087static const struct seq_operations swaps_op = {
1da177e4
LT
2088 .start = swap_start,
2089 .next = swap_next,
2090 .stop = swap_stop,
2091 .show = swap_show
2092};
2093
2094static int swaps_open(struct inode *inode, struct file *file)
2095{
f1514638 2096 struct seq_file *seq;
66d7dd51
KS
2097 int ret;
2098
66d7dd51 2099 ret = seq_open(file, &swaps_op);
f1514638 2100 if (ret)
66d7dd51 2101 return ret;
66d7dd51 2102
f1514638
KS
2103 seq = file->private_data;
2104 seq->poll_event = atomic_read(&proc_poll_event);
2105 return 0;
1da177e4
LT
2106}
2107
15ad7cdc 2108static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2109 .open = swaps_open,
2110 .read = seq_read,
2111 .llseek = seq_lseek,
2112 .release = seq_release,
66d7dd51 2113 .poll = swaps_poll,
1da177e4
LT
2114};
2115
2116static int __init procswaps_init(void)
2117{
3d71f86f 2118 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2119 return 0;
2120}
2121__initcall(procswaps_init);
2122#endif /* CONFIG_PROC_FS */
2123
1796316a
JB
2124#ifdef MAX_SWAPFILES_CHECK
2125static int __init max_swapfiles_check(void)
2126{
2127 MAX_SWAPFILES_CHECK();
2128 return 0;
2129}
2130late_initcall(max_swapfiles_check);
2131#endif
2132
53cbb243 2133static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2134{
73c34b6a 2135 struct swap_info_struct *p;
1da177e4 2136 unsigned int type;
efa90a98
HD
2137
2138 p = kzalloc(sizeof(*p), GFP_KERNEL);
2139 if (!p)
53cbb243 2140 return ERR_PTR(-ENOMEM);
efa90a98 2141
5d337b91 2142 spin_lock(&swap_lock);
efa90a98
HD
2143 for (type = 0; type < nr_swapfiles; type++) {
2144 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2145 break;
efa90a98 2146 }
0697212a 2147 if (type >= MAX_SWAPFILES) {
5d337b91 2148 spin_unlock(&swap_lock);
efa90a98 2149 kfree(p);
730c0581 2150 return ERR_PTR(-EPERM);
1da177e4 2151 }
efa90a98
HD
2152 if (type >= nr_swapfiles) {
2153 p->type = type;
2154 swap_info[type] = p;
2155 /*
2156 * Write swap_info[type] before nr_swapfiles, in case a
2157 * racing procfs swap_start() or swap_next() is reading them.
2158 * (We never shrink nr_swapfiles, we never free this entry.)
2159 */
2160 smp_wmb();
2161 nr_swapfiles++;
2162 } else {
2163 kfree(p);
2164 p = swap_info[type];
2165 /*
2166 * Do not memset this entry: a racing procfs swap_next()
2167 * would be relying on p->type to remain valid.
2168 */
2169 }
9625a5f2 2170 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2171 plist_node_init(&p->list, 0);
2172 plist_node_init(&p->avail_list, 0);
1da177e4 2173 p->flags = SWP_USED;
5d337b91 2174 spin_unlock(&swap_lock);
ec8acf20 2175 spin_lock_init(&p->lock);
efa90a98 2176
53cbb243 2177 return p;
53cbb243
CEB
2178}
2179
4d0e1e10
CEB
2180static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2181{
2182 int error;
2183
2184 if (S_ISBLK(inode->i_mode)) {
2185 p->bdev = bdgrab(I_BDEV(inode));
2186 error = blkdev_get(p->bdev,
6f179af8 2187 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2188 if (error < 0) {
2189 p->bdev = NULL;
6f179af8 2190 return error;
4d0e1e10
CEB
2191 }
2192 p->old_block_size = block_size(p->bdev);
2193 error = set_blocksize(p->bdev, PAGE_SIZE);
2194 if (error < 0)
87ade72a 2195 return error;
4d0e1e10
CEB
2196 p->flags |= SWP_BLKDEV;
2197 } else if (S_ISREG(inode->i_mode)) {
2198 p->bdev = inode->i_sb->s_bdev;
5955102c 2199 inode_lock(inode);
87ade72a
CEB
2200 if (IS_SWAPFILE(inode))
2201 return -EBUSY;
2202 } else
2203 return -EINVAL;
4d0e1e10
CEB
2204
2205 return 0;
4d0e1e10
CEB
2206}
2207
ca8bd38b
CEB
2208static unsigned long read_swap_header(struct swap_info_struct *p,
2209 union swap_header *swap_header,
2210 struct inode *inode)
2211{
2212 int i;
2213 unsigned long maxpages;
2214 unsigned long swapfilepages;
d6bbbd29 2215 unsigned long last_page;
ca8bd38b
CEB
2216
2217 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2218 pr_err("Unable to find swap-space signature\n");
38719025 2219 return 0;
ca8bd38b
CEB
2220 }
2221
2222 /* swap partition endianess hack... */
2223 if (swab32(swap_header->info.version) == 1) {
2224 swab32s(&swap_header->info.version);
2225 swab32s(&swap_header->info.last_page);
2226 swab32s(&swap_header->info.nr_badpages);
2227 for (i = 0; i < swap_header->info.nr_badpages; i++)
2228 swab32s(&swap_header->info.badpages[i]);
2229 }
2230 /* Check the swap header's sub-version */
2231 if (swap_header->info.version != 1) {
465c47fd
AM
2232 pr_warn("Unable to handle swap header version %d\n",
2233 swap_header->info.version);
38719025 2234 return 0;
ca8bd38b
CEB
2235 }
2236
2237 p->lowest_bit = 1;
2238 p->cluster_next = 1;
2239 p->cluster_nr = 0;
2240
2241 /*
2242 * Find out how many pages are allowed for a single swap
9b15b817 2243 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2244 * of bits for the swap offset in the swp_entry_t type, and
2245 * 2) the number of bits in the swap pte as defined by the
9b15b817 2246 * different architectures. In order to find the
a2c16d6c 2247 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2248 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2249 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2250 * offset is extracted. This will mask all the bits from
2251 * the initial ~0UL mask that can't be encoded in either
2252 * the swp_entry_t or the architecture definition of a
9b15b817 2253 * swap pte.
ca8bd38b
CEB
2254 */
2255 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2256 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2257 last_page = swap_header->info.last_page;
2258 if (last_page > maxpages) {
465c47fd 2259 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2260 maxpages << (PAGE_SHIFT - 10),
2261 last_page << (PAGE_SHIFT - 10));
2262 }
2263 if (maxpages > last_page) {
2264 maxpages = last_page + 1;
ca8bd38b
CEB
2265 /* p->max is an unsigned int: don't overflow it */
2266 if ((unsigned int)maxpages == 0)
2267 maxpages = UINT_MAX;
2268 }
2269 p->highest_bit = maxpages - 1;
2270
2271 if (!maxpages)
38719025 2272 return 0;
ca8bd38b
CEB
2273 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2274 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2275 pr_warn("Swap area shorter than signature indicates\n");
38719025 2276 return 0;
ca8bd38b
CEB
2277 }
2278 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2279 return 0;
ca8bd38b 2280 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2281 return 0;
ca8bd38b
CEB
2282
2283 return maxpages;
ca8bd38b
CEB
2284}
2285
915d4d7b
CEB
2286static int setup_swap_map_and_extents(struct swap_info_struct *p,
2287 union swap_header *swap_header,
2288 unsigned char *swap_map,
2a8f9449 2289 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2290 unsigned long maxpages,
2291 sector_t *span)
2292{
2293 int i;
915d4d7b
CEB
2294 unsigned int nr_good_pages;
2295 int nr_extents;
2a8f9449
SL
2296 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2297 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2298
2299 nr_good_pages = maxpages - 1; /* omit header page */
2300
ebfa6505
HY
2301 cluster_list_init(&p->free_clusters);
2302 cluster_list_init(&p->discard_clusters);
2a8f9449 2303
915d4d7b
CEB
2304 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2305 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2306 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2307 return -EINVAL;
915d4d7b
CEB
2308 if (page_nr < maxpages) {
2309 swap_map[page_nr] = SWAP_MAP_BAD;
2310 nr_good_pages--;
2a8f9449
SL
2311 /*
2312 * Haven't marked the cluster free yet, no list
2313 * operation involved
2314 */
2315 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2316 }
2317 }
2318
2a8f9449
SL
2319 /* Haven't marked the cluster free yet, no list operation involved */
2320 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2321 inc_cluster_info_page(p, cluster_info, i);
2322
915d4d7b
CEB
2323 if (nr_good_pages) {
2324 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2325 /*
2326 * Not mark the cluster free yet, no list
2327 * operation involved
2328 */
2329 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2330 p->max = maxpages;
2331 p->pages = nr_good_pages;
2332 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2333 if (nr_extents < 0)
2334 return nr_extents;
915d4d7b
CEB
2335 nr_good_pages = p->pages;
2336 }
2337 if (!nr_good_pages) {
465c47fd 2338 pr_warn("Empty swap-file\n");
bdb8e3f6 2339 return -EINVAL;
915d4d7b
CEB
2340 }
2341
2a8f9449
SL
2342 if (!cluster_info)
2343 return nr_extents;
2344
2345 for (i = 0; i < nr_clusters; i++) {
2346 if (!cluster_count(&cluster_info[idx])) {
2347 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
4314f30b
AM
2348 cluster_list_add_tail(&p->free_clusters, cluster_info,
2349 idx);
2a8f9449
SL
2350 }
2351 idx++;
2352 if (idx == nr_clusters)
2353 idx = 0;
2354 }
915d4d7b 2355 return nr_extents;
915d4d7b
CEB
2356}
2357
dcf6b7dd
RA
2358/*
2359 * Helper to sys_swapon determining if a given swap
2360 * backing device queue supports DISCARD operations.
2361 */
2362static bool swap_discardable(struct swap_info_struct *si)
2363{
2364 struct request_queue *q = bdev_get_queue(si->bdev);
2365
2366 if (!q || !blk_queue_discard(q))
2367 return false;
2368
2369 return true;
2370}
2371
53cbb243
CEB
2372SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2373{
2374 struct swap_info_struct *p;
91a27b2a 2375 struct filename *name;
53cbb243
CEB
2376 struct file *swap_file = NULL;
2377 struct address_space *mapping;
40531542 2378 int prio;
53cbb243
CEB
2379 int error;
2380 union swap_header *swap_header;
915d4d7b 2381 int nr_extents;
53cbb243
CEB
2382 sector_t span;
2383 unsigned long maxpages;
53cbb243 2384 unsigned char *swap_map = NULL;
2a8f9449 2385 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2386 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2387 struct page *page = NULL;
2388 struct inode *inode = NULL;
53cbb243 2389
d15cab97
HD
2390 if (swap_flags & ~SWAP_FLAGS_VALID)
2391 return -EINVAL;
2392
53cbb243
CEB
2393 if (!capable(CAP_SYS_ADMIN))
2394 return -EPERM;
2395
2396 p = alloc_swap_info();
2542e513
CEB
2397 if (IS_ERR(p))
2398 return PTR_ERR(p);
53cbb243 2399
815c2c54
SL
2400 INIT_WORK(&p->discard_work, swap_discard_work);
2401
1da177e4 2402 name = getname(specialfile);
1da177e4 2403 if (IS_ERR(name)) {
7de7fb6b 2404 error = PTR_ERR(name);
1da177e4 2405 name = NULL;
bd69010b 2406 goto bad_swap;
1da177e4 2407 }
669abf4e 2408 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2409 if (IS_ERR(swap_file)) {
7de7fb6b 2410 error = PTR_ERR(swap_file);
1da177e4 2411 swap_file = NULL;
bd69010b 2412 goto bad_swap;
1da177e4
LT
2413 }
2414
2415 p->swap_file = swap_file;
2416 mapping = swap_file->f_mapping;
2130781e 2417 inode = mapping->host;
6f179af8 2418
5955102c 2419 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2420 error = claim_swapfile(p, inode);
2421 if (unlikely(error))
1da177e4 2422 goto bad_swap;
1da177e4 2423
1da177e4
LT
2424 /*
2425 * Read the swap header.
2426 */
2427 if (!mapping->a_ops->readpage) {
2428 error = -EINVAL;
2429 goto bad_swap;
2430 }
090d2b18 2431 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2432 if (IS_ERR(page)) {
2433 error = PTR_ERR(page);
2434 goto bad_swap;
2435 }
81e33971 2436 swap_header = kmap(page);
1da177e4 2437
ca8bd38b
CEB
2438 maxpages = read_swap_header(p, swap_header, inode);
2439 if (unlikely(!maxpages)) {
1da177e4
LT
2440 error = -EINVAL;
2441 goto bad_swap;
2442 }
886bb7e9 2443
81e33971 2444 /* OK, set up the swap map and apply the bad block list */
803d0c83 2445 swap_map = vzalloc(maxpages);
81e33971
HD
2446 if (!swap_map) {
2447 error = -ENOMEM;
2448 goto bad_swap;
2449 }
2a8f9449 2450 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8
HD
2451 int cpu;
2452
2a8f9449
SL
2453 p->flags |= SWP_SOLIDSTATE;
2454 /*
2455 * select a random position to start with to help wear leveling
2456 * SSD
2457 */
2458 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2459
2460 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2461 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2462 if (!cluster_info) {
2463 error = -ENOMEM;
2464 goto bad_swap;
2465 }
ebc2a1a6
SL
2466 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2467 if (!p->percpu_cluster) {
2468 error = -ENOMEM;
2469 goto bad_swap;
2470 }
6f179af8 2471 for_each_possible_cpu(cpu) {
ebc2a1a6 2472 struct percpu_cluster *cluster;
6f179af8 2473 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2474 cluster_set_null(&cluster->index);
2475 }
2a8f9449 2476 }
1da177e4 2477
1421ef3c
CEB
2478 error = swap_cgroup_swapon(p->type, maxpages);
2479 if (error)
2480 goto bad_swap;
2481
915d4d7b 2482 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2483 cluster_info, maxpages, &span);
915d4d7b
CEB
2484 if (unlikely(nr_extents < 0)) {
2485 error = nr_extents;
1da177e4
LT
2486 goto bad_swap;
2487 }
38b5faf4 2488 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 2489 if (IS_ENABLED(CONFIG_FRONTSWAP))
7b57976d 2490 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2491
2a8f9449
SL
2492 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2493 /*
2494 * When discard is enabled for swap with no particular
2495 * policy flagged, we set all swap discard flags here in
2496 * order to sustain backward compatibility with older
2497 * swapon(8) releases.
2498 */
2499 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2500 SWP_PAGE_DISCARD);
dcf6b7dd 2501
2a8f9449
SL
2502 /*
2503 * By flagging sys_swapon, a sysadmin can tell us to
2504 * either do single-time area discards only, or to just
2505 * perform discards for released swap page-clusters.
2506 * Now it's time to adjust the p->flags accordingly.
2507 */
2508 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2509 p->flags &= ~SWP_PAGE_DISCARD;
2510 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2511 p->flags &= ~SWP_AREA_DISCARD;
2512
2513 /* issue a swapon-time discard if it's still required */
2514 if (p->flags & SWP_AREA_DISCARD) {
2515 int err = discard_swap(p);
2516 if (unlikely(err))
2517 pr_err("swapon: discard_swap(%p): %d\n",
2518 p, err);
dcf6b7dd 2519 }
20137a49 2520 }
6a6ba831 2521
fc0abb14 2522 mutex_lock(&swapon_mutex);
40531542 2523 prio = -1;
78ecba08 2524 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2525 prio =
78ecba08 2526 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2527 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2528
756a025f 2529 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2530 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2531 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2532 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2533 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2534 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2535 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2536 (frontswap_map) ? "FS" : "");
c69dbfb8 2537
fc0abb14 2538 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2539 atomic_inc(&proc_poll_event);
2540 wake_up_interruptible(&proc_poll_wait);
2541
9b01c350
CEB
2542 if (S_ISREG(inode->i_mode))
2543 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2544 error = 0;
2545 goto out;
2546bad_swap:
ebc2a1a6
SL
2547 free_percpu(p->percpu_cluster);
2548 p->percpu_cluster = NULL;
bd69010b 2549 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2550 set_blocksize(p->bdev, p->old_block_size);
2551 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2552 }
4cd3bb10 2553 destroy_swap_extents(p);
e8e6c2ec 2554 swap_cgroup_swapoff(p->type);
5d337b91 2555 spin_lock(&swap_lock);
1da177e4 2556 p->swap_file = NULL;
1da177e4 2557 p->flags = 0;
5d337b91 2558 spin_unlock(&swap_lock);
1da177e4 2559 vfree(swap_map);
2a8f9449 2560 vfree(cluster_info);
52c50567 2561 if (swap_file) {
2130781e 2562 if (inode && S_ISREG(inode->i_mode)) {
5955102c 2563 inode_unlock(inode);
2130781e
CEB
2564 inode = NULL;
2565 }
1da177e4 2566 filp_close(swap_file, NULL);
52c50567 2567 }
1da177e4
LT
2568out:
2569 if (page && !IS_ERR(page)) {
2570 kunmap(page);
09cbfeaf 2571 put_page(page);
1da177e4
LT
2572 }
2573 if (name)
2574 putname(name);
9b01c350 2575 if (inode && S_ISREG(inode->i_mode))
5955102c 2576 inode_unlock(inode);
1da177e4
LT
2577 return error;
2578}
2579
2580void si_swapinfo(struct sysinfo *val)
2581{
efa90a98 2582 unsigned int type;
1da177e4
LT
2583 unsigned long nr_to_be_unused = 0;
2584
5d337b91 2585 spin_lock(&swap_lock);
efa90a98
HD
2586 for (type = 0; type < nr_swapfiles; type++) {
2587 struct swap_info_struct *si = swap_info[type];
2588
2589 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2590 nr_to_be_unused += si->inuse_pages;
1da177e4 2591 }
ec8acf20 2592 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2593 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2594 spin_unlock(&swap_lock);
1da177e4
LT
2595}
2596
2597/*
2598 * Verify that a swap entry is valid and increment its swap map count.
2599 *
355cfa73
KH
2600 * Returns error code in following case.
2601 * - success -> 0
2602 * - swp_entry is invalid -> EINVAL
2603 * - swp_entry is migration entry -> EINVAL
2604 * - swap-cache reference is requested but there is already one. -> EEXIST
2605 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2606 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2607 */
8d69aaee 2608static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2609{
73c34b6a 2610 struct swap_info_struct *p;
1da177e4 2611 unsigned long offset, type;
8d69aaee
HD
2612 unsigned char count;
2613 unsigned char has_cache;
253d553b 2614 int err = -EINVAL;
1da177e4 2615
a7420aa5 2616 if (non_swap_entry(entry))
253d553b 2617 goto out;
0697212a 2618
1da177e4
LT
2619 type = swp_type(entry);
2620 if (type >= nr_swapfiles)
2621 goto bad_file;
efa90a98 2622 p = swap_info[type];
1da177e4
LT
2623 offset = swp_offset(entry);
2624
ec8acf20 2625 spin_lock(&p->lock);
355cfa73
KH
2626 if (unlikely(offset >= p->max))
2627 goto unlock_out;
2628
253d553b 2629 count = p->swap_map[offset];
edfe23da
SL
2630
2631 /*
2632 * swapin_readahead() doesn't check if a swap entry is valid, so the
2633 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2634 */
2635 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2636 err = -ENOENT;
2637 goto unlock_out;
2638 }
2639
253d553b
HD
2640 has_cache = count & SWAP_HAS_CACHE;
2641 count &= ~SWAP_HAS_CACHE;
2642 err = 0;
355cfa73 2643
253d553b 2644 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2645
2646 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2647 if (!has_cache && count)
2648 has_cache = SWAP_HAS_CACHE;
2649 else if (has_cache) /* someone else added cache */
2650 err = -EEXIST;
2651 else /* no users remaining */
2652 err = -ENOENT;
355cfa73
KH
2653
2654 } else if (count || has_cache) {
253d553b 2655
570a335b
HD
2656 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2657 count += usage;
2658 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2659 err = -EINVAL;
570a335b
HD
2660 else if (swap_count_continued(p, offset, count))
2661 count = COUNT_CONTINUED;
2662 else
2663 err = -ENOMEM;
355cfa73 2664 } else
253d553b
HD
2665 err = -ENOENT; /* unused swap entry */
2666
2667 p->swap_map[offset] = count | has_cache;
2668
355cfa73 2669unlock_out:
ec8acf20 2670 spin_unlock(&p->lock);
1da177e4 2671out:
253d553b 2672 return err;
1da177e4
LT
2673
2674bad_file:
465c47fd 2675 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2676 goto out;
2677}
253d553b 2678
aaa46865
HD
2679/*
2680 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2681 * (in which case its reference count is never incremented).
2682 */
2683void swap_shmem_alloc(swp_entry_t entry)
2684{
2685 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2686}
2687
355cfa73 2688/*
08259d58
HD
2689 * Increase reference count of swap entry by 1.
2690 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2691 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2692 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2693 * might occur if a page table entry has got corrupted.
355cfa73 2694 */
570a335b 2695int swap_duplicate(swp_entry_t entry)
355cfa73 2696{
570a335b
HD
2697 int err = 0;
2698
2699 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2700 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2701 return err;
355cfa73 2702}
1da177e4 2703
cb4b86ba 2704/*
355cfa73
KH
2705 * @entry: swap entry for which we allocate swap cache.
2706 *
73c34b6a 2707 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2708 * This can return error codes. Returns 0 at success.
2709 * -EBUSY means there is a swap cache.
2710 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2711 */
2712int swapcache_prepare(swp_entry_t entry)
2713{
253d553b 2714 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2715}
2716
f981c595
MG
2717struct swap_info_struct *page_swap_info(struct page *page)
2718{
2719 swp_entry_t swap = { .val = page_private(page) };
2720 BUG_ON(!PageSwapCache(page));
2721 return swap_info[swp_type(swap)];
2722}
2723
2724/*
2725 * out-of-line __page_file_ methods to avoid include hell.
2726 */
2727struct address_space *__page_file_mapping(struct page *page)
2728{
309381fe 2729 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2730 return page_swap_info(page)->swap_file->f_mapping;
2731}
2732EXPORT_SYMBOL_GPL(__page_file_mapping);
2733
2734pgoff_t __page_file_index(struct page *page)
2735{
2736 swp_entry_t swap = { .val = page_private(page) };
309381fe 2737 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2738 return swp_offset(swap);
2739}
2740EXPORT_SYMBOL_GPL(__page_file_index);
2741
570a335b
HD
2742/*
2743 * add_swap_count_continuation - called when a swap count is duplicated
2744 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2745 * page of the original vmalloc'ed swap_map, to hold the continuation count
2746 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2747 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2748 *
2749 * These continuation pages are seldom referenced: the common paths all work
2750 * on the original swap_map, only referring to a continuation page when the
2751 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2752 *
2753 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2754 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2755 * can be called after dropping locks.
2756 */
2757int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2758{
2759 struct swap_info_struct *si;
2760 struct page *head;
2761 struct page *page;
2762 struct page *list_page;
2763 pgoff_t offset;
2764 unsigned char count;
2765
2766 /*
2767 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2768 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2769 */
2770 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2771
2772 si = swap_info_get(entry);
2773 if (!si) {
2774 /*
2775 * An acceptable race has occurred since the failing
2776 * __swap_duplicate(): the swap entry has been freed,
2777 * perhaps even the whole swap_map cleared for swapoff.
2778 */
2779 goto outer;
2780 }
2781
2782 offset = swp_offset(entry);
2783 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2784
2785 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2786 /*
2787 * The higher the swap count, the more likely it is that tasks
2788 * will race to add swap count continuation: we need to avoid
2789 * over-provisioning.
2790 */
2791 goto out;
2792 }
2793
2794 if (!page) {
ec8acf20 2795 spin_unlock(&si->lock);
570a335b
HD
2796 return -ENOMEM;
2797 }
2798
2799 /*
2800 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2801 * no architecture is using highmem pages for kernel page tables: so it
2802 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2803 */
2804 head = vmalloc_to_page(si->swap_map + offset);
2805 offset &= ~PAGE_MASK;
2806
2807 /*
2808 * Page allocation does not initialize the page's lru field,
2809 * but it does always reset its private field.
2810 */
2811 if (!page_private(head)) {
2812 BUG_ON(count & COUNT_CONTINUED);
2813 INIT_LIST_HEAD(&head->lru);
2814 set_page_private(head, SWP_CONTINUED);
2815 si->flags |= SWP_CONTINUED;
2816 }
2817
2818 list_for_each_entry(list_page, &head->lru, lru) {
2819 unsigned char *map;
2820
2821 /*
2822 * If the previous map said no continuation, but we've found
2823 * a continuation page, free our allocation and use this one.
2824 */
2825 if (!(count & COUNT_CONTINUED))
2826 goto out;
2827
9b04c5fe 2828 map = kmap_atomic(list_page) + offset;
570a335b 2829 count = *map;
9b04c5fe 2830 kunmap_atomic(map);
570a335b
HD
2831
2832 /*
2833 * If this continuation count now has some space in it,
2834 * free our allocation and use this one.
2835 */
2836 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2837 goto out;
2838 }
2839
2840 list_add_tail(&page->lru, &head->lru);
2841 page = NULL; /* now it's attached, don't free it */
2842out:
ec8acf20 2843 spin_unlock(&si->lock);
570a335b
HD
2844outer:
2845 if (page)
2846 __free_page(page);
2847 return 0;
2848}
2849
2850/*
2851 * swap_count_continued - when the original swap_map count is incremented
2852 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2853 * into, carry if so, or else fail until a new continuation page is allocated;
2854 * when the original swap_map count is decremented from 0 with continuation,
2855 * borrow from the continuation and report whether it still holds more.
2856 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2857 */
2858static bool swap_count_continued(struct swap_info_struct *si,
2859 pgoff_t offset, unsigned char count)
2860{
2861 struct page *head;
2862 struct page *page;
2863 unsigned char *map;
2864
2865 head = vmalloc_to_page(si->swap_map + offset);
2866 if (page_private(head) != SWP_CONTINUED) {
2867 BUG_ON(count & COUNT_CONTINUED);
2868 return false; /* need to add count continuation */
2869 }
2870
2871 offset &= ~PAGE_MASK;
2872 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2873 map = kmap_atomic(page) + offset;
570a335b
HD
2874
2875 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2876 goto init_map; /* jump over SWAP_CONT_MAX checks */
2877
2878 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2879 /*
2880 * Think of how you add 1 to 999
2881 */
2882 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2883 kunmap_atomic(map);
570a335b
HD
2884 page = list_entry(page->lru.next, struct page, lru);
2885 BUG_ON(page == head);
9b04c5fe 2886 map = kmap_atomic(page) + offset;
570a335b
HD
2887 }
2888 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2889 kunmap_atomic(map);
570a335b
HD
2890 page = list_entry(page->lru.next, struct page, lru);
2891 if (page == head)
2892 return false; /* add count continuation */
9b04c5fe 2893 map = kmap_atomic(page) + offset;
570a335b
HD
2894init_map: *map = 0; /* we didn't zero the page */
2895 }
2896 *map += 1;
9b04c5fe 2897 kunmap_atomic(map);
570a335b
HD
2898 page = list_entry(page->lru.prev, struct page, lru);
2899 while (page != head) {
9b04c5fe 2900 map = kmap_atomic(page) + offset;
570a335b 2901 *map = COUNT_CONTINUED;
9b04c5fe 2902 kunmap_atomic(map);
570a335b
HD
2903 page = list_entry(page->lru.prev, struct page, lru);
2904 }
2905 return true; /* incremented */
2906
2907 } else { /* decrementing */
2908 /*
2909 * Think of how you subtract 1 from 1000
2910 */
2911 BUG_ON(count != COUNT_CONTINUED);
2912 while (*map == COUNT_CONTINUED) {
9b04c5fe 2913 kunmap_atomic(map);
570a335b
HD
2914 page = list_entry(page->lru.next, struct page, lru);
2915 BUG_ON(page == head);
9b04c5fe 2916 map = kmap_atomic(page) + offset;
570a335b
HD
2917 }
2918 BUG_ON(*map == 0);
2919 *map -= 1;
2920 if (*map == 0)
2921 count = 0;
9b04c5fe 2922 kunmap_atomic(map);
570a335b
HD
2923 page = list_entry(page->lru.prev, struct page, lru);
2924 while (page != head) {
9b04c5fe 2925 map = kmap_atomic(page) + offset;
570a335b
HD
2926 *map = SWAP_CONT_MAX | count;
2927 count = COUNT_CONTINUED;
9b04c5fe 2928 kunmap_atomic(map);
570a335b
HD
2929 page = list_entry(page->lru.prev, struct page, lru);
2930 }
2931 return count == COUNT_CONTINUED;
2932 }
2933}
2934
2935/*
2936 * free_swap_count_continuations - swapoff free all the continuation pages
2937 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2938 */
2939static void free_swap_count_continuations(struct swap_info_struct *si)
2940{
2941 pgoff_t offset;
2942
2943 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2944 struct page *head;
2945 head = vmalloc_to_page(si->swap_map + offset);
2946 if (page_private(head)) {
0d576d20
GT
2947 struct page *page, *next;
2948
2949 list_for_each_entry_safe(page, next, &head->lru, lru) {
2950 list_del(&page->lru);
570a335b
HD
2951 __free_page(page);
2952 }
2953 }
2954 }
2955}
This page took 1.107782 seconds and 5 git commands to generate.