swapfile: swapon randomize if nonrot
[deliverable/linux.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
1da177e4
LT
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
36
7c363b8c
AB
37static DEFINE_SPINLOCK(swap_lock);
38static unsigned int nr_swapfiles;
b962716b 39long nr_swap_pages;
1da177e4
LT
40long total_swap_pages;
41static int swap_overflow;
78ecba08 42static int least_priority;
1da177e4 43
1da177e4
LT
44static const char Bad_file[] = "Bad swap file entry ";
45static const char Unused_file[] = "Unused swap file entry ";
46static const char Bad_offset[] = "Bad swap offset entry ";
47static const char Unused_offset[] = "Unused swap offset entry ";
48
7c363b8c 49static struct swap_list_t swap_list = {-1, -1};
1da177e4 50
f577eb30 51static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 52
fc0abb14 53static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
54
55/*
56 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 57 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 58 * cannot be turned into a mutex.
1da177e4
LT
59 */
60static DECLARE_RWSEM(swap_unplug_sem);
61
1da177e4
LT
62void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
63{
64 swp_entry_t entry;
65
66 down_read(&swap_unplug_sem);
4c21e2f2 67 entry.val = page_private(page);
1da177e4
LT
68 if (PageSwapCache(page)) {
69 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
70 struct backing_dev_info *bdi;
71
72 /*
73 * If the page is removed from swapcache from under us (with a
74 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
75 * count to avoid reading garbage from page_private(page) above.
76 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
77 * condition and it's harmless. However if it triggers without
78 * swapoff it signals a problem.
79 */
80 WARN_ON(page_count(page) <= 1);
81
82 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 83 blk_run_backing_dev(bdi, page);
1da177e4
LT
84 }
85 up_read(&swap_unplug_sem);
86}
87
6a6ba831
HD
88/*
89 * swapon tell device that all the old swap contents can be discarded,
90 * to allow the swap device to optimize its wear-levelling.
91 */
92static int discard_swap(struct swap_info_struct *si)
93{
94 struct swap_extent *se;
95 int err = 0;
96
97 list_for_each_entry(se, &si->extent_list, list) {
98 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
99 pgoff_t nr_blocks = se->nr_pages << (PAGE_SHIFT - 9);
100
101 if (se->start_page == 0) {
102 /* Do not discard the swap header page! */
103 start_block += 1 << (PAGE_SHIFT - 9);
104 nr_blocks -= 1 << (PAGE_SHIFT - 9);
105 if (!nr_blocks)
106 continue;
107 }
108
109 err = blkdev_issue_discard(si->bdev, start_block,
110 nr_blocks, GFP_KERNEL);
111 if (err)
112 break;
113
114 cond_resched();
115 }
116 return err; /* That will often be -EOPNOTSUPP */
117}
118
7992fde7
HD
119/*
120 * swap allocation tell device that a cluster of swap can now be discarded,
121 * to allow the swap device to optimize its wear-levelling.
122 */
123static void discard_swap_cluster(struct swap_info_struct *si,
124 pgoff_t start_page, pgoff_t nr_pages)
125{
126 struct swap_extent *se = si->curr_swap_extent;
127 int found_extent = 0;
128
129 while (nr_pages) {
130 struct list_head *lh;
131
132 if (se->start_page <= start_page &&
133 start_page < se->start_page + se->nr_pages) {
134 pgoff_t offset = start_page - se->start_page;
135 sector_t start_block = se->start_block + offset;
136 pgoff_t nr_blocks = se->nr_pages - offset;
137
138 if (nr_blocks > nr_pages)
139 nr_blocks = nr_pages;
140 start_page += nr_blocks;
141 nr_pages -= nr_blocks;
142
143 if (!found_extent++)
144 si->curr_swap_extent = se;
145
146 start_block <<= PAGE_SHIFT - 9;
147 nr_blocks <<= PAGE_SHIFT - 9;
148 if (blkdev_issue_discard(si->bdev, start_block,
149 nr_blocks, GFP_NOIO))
150 break;
151 }
152
153 lh = se->list.next;
154 if (lh == &si->extent_list)
155 lh = lh->next;
156 se = list_entry(lh, struct swap_extent, list);
157 }
158}
159
160static int wait_for_discard(void *word)
161{
162 schedule();
163 return 0;
164}
165
048c27fd
HD
166#define SWAPFILE_CLUSTER 256
167#define LATENCY_LIMIT 256
168
6eb396dc 169static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 170{
ebebbbe9 171 unsigned long offset;
7992fde7 172 unsigned long last_in_cluster = 0;
048c27fd 173 int latency_ration = LATENCY_LIMIT;
7992fde7 174 int found_free_cluster = 0;
7dfad418 175
886bb7e9 176 /*
7dfad418
HD
177 * We try to cluster swap pages by allocating them sequentially
178 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
179 * way, however, we resort to first-free allocation, starting
180 * a new cluster. This prevents us from scattering swap pages
181 * all over the entire swap partition, so that we reduce
182 * overall disk seek times between swap pages. -- sct
183 * But we do now try to find an empty cluster. -Andrea
184 */
185
52b7efdb 186 si->flags += SWP_SCANNING;
ebebbbe9
HD
187 offset = si->cluster_next;
188
189 if (unlikely(!si->cluster_nr--)) {
190 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
191 si->cluster_nr = SWAPFILE_CLUSTER - 1;
192 goto checks;
193 }
7992fde7
HD
194 if (si->flags & SWP_DISCARDABLE) {
195 /*
196 * Start range check on racing allocations, in case
197 * they overlap the cluster we eventually decide on
198 * (we scan without swap_lock to allow preemption).
199 * It's hardly conceivable that cluster_nr could be
200 * wrapped during our scan, but don't depend on it.
201 */
202 if (si->lowest_alloc)
203 goto checks;
204 si->lowest_alloc = si->max;
205 si->highest_alloc = 0;
206 }
5d337b91 207 spin_unlock(&swap_lock);
7dfad418
HD
208
209 offset = si->lowest_bit;
210 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
211
212 /* Locate the first empty (unaligned) cluster */
213 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 214 if (si->swap_map[offset])
7dfad418
HD
215 last_in_cluster = offset + SWAPFILE_CLUSTER;
216 else if (offset == last_in_cluster) {
5d337b91 217 spin_lock(&swap_lock);
ebebbbe9
HD
218 offset -= SWAPFILE_CLUSTER - 1;
219 si->cluster_next = offset;
220 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 221 found_free_cluster = 1;
ebebbbe9 222 goto checks;
1da177e4 223 }
048c27fd
HD
224 if (unlikely(--latency_ration < 0)) {
225 cond_resched();
226 latency_ration = LATENCY_LIMIT;
227 }
7dfad418 228 }
ebebbbe9
HD
229
230 offset = si->lowest_bit;
5d337b91 231 spin_lock(&swap_lock);
ebebbbe9 232 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 233 si->lowest_alloc = 0;
1da177e4 234 }
7dfad418 235
ebebbbe9
HD
236checks:
237 if (!(si->flags & SWP_WRITEOK))
52b7efdb 238 goto no_page;
7dfad418
HD
239 if (!si->highest_bit)
240 goto no_page;
ebebbbe9
HD
241 if (offset > si->highest_bit)
242 offset = si->lowest_bit;
243 if (si->swap_map[offset])
244 goto scan;
245
246 if (offset == si->lowest_bit)
247 si->lowest_bit++;
248 if (offset == si->highest_bit)
249 si->highest_bit--;
250 si->inuse_pages++;
251 if (si->inuse_pages == si->pages) {
252 si->lowest_bit = si->max;
253 si->highest_bit = 0;
1da177e4 254 }
ebebbbe9
HD
255 si->swap_map[offset] = 1;
256 si->cluster_next = offset + 1;
257 si->flags -= SWP_SCANNING;
7992fde7
HD
258
259 if (si->lowest_alloc) {
260 /*
261 * Only set when SWP_DISCARDABLE, and there's a scan
262 * for a free cluster in progress or just completed.
263 */
264 if (found_free_cluster) {
265 /*
266 * To optimize wear-levelling, discard the
267 * old data of the cluster, taking care not to
268 * discard any of its pages that have already
269 * been allocated by racing tasks (offset has
270 * already stepped over any at the beginning).
271 */
272 if (offset < si->highest_alloc &&
273 si->lowest_alloc <= last_in_cluster)
274 last_in_cluster = si->lowest_alloc - 1;
275 si->flags |= SWP_DISCARDING;
276 spin_unlock(&swap_lock);
277
278 if (offset < last_in_cluster)
279 discard_swap_cluster(si, offset,
280 last_in_cluster - offset + 1);
281
282 spin_lock(&swap_lock);
283 si->lowest_alloc = 0;
284 si->flags &= ~SWP_DISCARDING;
285
286 smp_mb(); /* wake_up_bit advises this */
287 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
288
289 } else if (si->flags & SWP_DISCARDING) {
290 /*
291 * Delay using pages allocated by racing tasks
292 * until the whole discard has been issued. We
293 * could defer that delay until swap_writepage,
294 * but it's easier to keep this self-contained.
295 */
296 spin_unlock(&swap_lock);
297 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
298 wait_for_discard, TASK_UNINTERRUPTIBLE);
299 spin_lock(&swap_lock);
300 } else {
301 /*
302 * Note pages allocated by racing tasks while
303 * scan for a free cluster is in progress, so
304 * that its final discard can exclude them.
305 */
306 if (offset < si->lowest_alloc)
307 si->lowest_alloc = offset;
308 if (offset > si->highest_alloc)
309 si->highest_alloc = offset;
310 }
311 }
ebebbbe9 312 return offset;
7dfad418 313
ebebbbe9 314scan:
5d337b91 315 spin_unlock(&swap_lock);
7dfad418 316 while (++offset <= si->highest_bit) {
52b7efdb 317 if (!si->swap_map[offset]) {
5d337b91 318 spin_lock(&swap_lock);
52b7efdb
HD
319 goto checks;
320 }
048c27fd
HD
321 if (unlikely(--latency_ration < 0)) {
322 cond_resched();
323 latency_ration = LATENCY_LIMIT;
324 }
7dfad418 325 }
5d337b91 326 spin_lock(&swap_lock);
ebebbbe9 327 goto checks;
7dfad418
HD
328
329no_page:
52b7efdb 330 si->flags -= SWP_SCANNING;
1da177e4
LT
331 return 0;
332}
333
334swp_entry_t get_swap_page(void)
335{
fb4f88dc
HD
336 struct swap_info_struct *si;
337 pgoff_t offset;
338 int type, next;
339 int wrapped = 0;
1da177e4 340
5d337b91 341 spin_lock(&swap_lock);
1da177e4 342 if (nr_swap_pages <= 0)
fb4f88dc
HD
343 goto noswap;
344 nr_swap_pages--;
345
346 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
347 si = swap_info + type;
348 next = si->next;
349 if (next < 0 ||
350 (!wrapped && si->prio != swap_info[next].prio)) {
351 next = swap_list.head;
352 wrapped++;
1da177e4 353 }
fb4f88dc
HD
354
355 if (!si->highest_bit)
356 continue;
357 if (!(si->flags & SWP_WRITEOK))
358 continue;
359
360 swap_list.next = next;
fb4f88dc 361 offset = scan_swap_map(si);
5d337b91
HD
362 if (offset) {
363 spin_unlock(&swap_lock);
fb4f88dc 364 return swp_entry(type, offset);
5d337b91 365 }
fb4f88dc 366 next = swap_list.next;
1da177e4 367 }
fb4f88dc
HD
368
369 nr_swap_pages++;
370noswap:
5d337b91 371 spin_unlock(&swap_lock);
fb4f88dc 372 return (swp_entry_t) {0};
1da177e4
LT
373}
374
3a291a20
RW
375swp_entry_t get_swap_page_of_type(int type)
376{
377 struct swap_info_struct *si;
378 pgoff_t offset;
379
380 spin_lock(&swap_lock);
381 si = swap_info + type;
382 if (si->flags & SWP_WRITEOK) {
383 nr_swap_pages--;
384 offset = scan_swap_map(si);
385 if (offset) {
386 spin_unlock(&swap_lock);
387 return swp_entry(type, offset);
388 }
389 nr_swap_pages++;
390 }
391 spin_unlock(&swap_lock);
392 return (swp_entry_t) {0};
393}
394
1da177e4
LT
395static struct swap_info_struct * swap_info_get(swp_entry_t entry)
396{
397 struct swap_info_struct * p;
398 unsigned long offset, type;
399
400 if (!entry.val)
401 goto out;
402 type = swp_type(entry);
403 if (type >= nr_swapfiles)
404 goto bad_nofile;
405 p = & swap_info[type];
406 if (!(p->flags & SWP_USED))
407 goto bad_device;
408 offset = swp_offset(entry);
409 if (offset >= p->max)
410 goto bad_offset;
411 if (!p->swap_map[offset])
412 goto bad_free;
5d337b91 413 spin_lock(&swap_lock);
1da177e4
LT
414 return p;
415
416bad_free:
417 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
418 goto out;
419bad_offset:
420 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
421 goto out;
422bad_device:
423 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
424 goto out;
425bad_nofile:
426 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
427out:
428 return NULL;
886bb7e9 429}
1da177e4 430
1da177e4
LT
431static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
432{
433 int count = p->swap_map[offset];
434
435 if (count < SWAP_MAP_MAX) {
436 count--;
437 p->swap_map[offset] = count;
438 if (!count) {
439 if (offset < p->lowest_bit)
440 p->lowest_bit = offset;
441 if (offset > p->highest_bit)
442 p->highest_bit = offset;
89d09a2c
HD
443 if (p->prio > swap_info[swap_list.next].prio)
444 swap_list.next = p - swap_info;
1da177e4
LT
445 nr_swap_pages++;
446 p->inuse_pages--;
447 }
448 }
449 return count;
450}
451
452/*
453 * Caller has made sure that the swapdevice corresponding to entry
454 * is still around or has not been recycled.
455 */
456void swap_free(swp_entry_t entry)
457{
458 struct swap_info_struct * p;
459
460 p = swap_info_get(entry);
461 if (p) {
462 swap_entry_free(p, swp_offset(entry));
5d337b91 463 spin_unlock(&swap_lock);
1da177e4
LT
464 }
465}
466
467/*
c475a8ab 468 * How many references to page are currently swapped out?
1da177e4 469 */
c475a8ab 470static inline int page_swapcount(struct page *page)
1da177e4 471{
c475a8ab
HD
472 int count = 0;
473 struct swap_info_struct *p;
1da177e4
LT
474 swp_entry_t entry;
475
4c21e2f2 476 entry.val = page_private(page);
1da177e4
LT
477 p = swap_info_get(entry);
478 if (p) {
c475a8ab
HD
479 /* Subtract the 1 for the swap cache itself */
480 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 481 spin_unlock(&swap_lock);
1da177e4 482 }
c475a8ab 483 return count;
1da177e4
LT
484}
485
486/*
7b1fe597
HD
487 * We can write to an anon page without COW if there are no other references
488 * to it. And as a side-effect, free up its swap: because the old content
489 * on disk will never be read, and seeking back there to write new content
490 * later would only waste time away from clustering.
1da177e4 491 */
7b1fe597 492int reuse_swap_page(struct page *page)
1da177e4 493{
c475a8ab
HD
494 int count;
495
51726b12 496 VM_BUG_ON(!PageLocked(page));
c475a8ab 497 count = page_mapcount(page);
7b1fe597 498 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 499 count += page_swapcount(page);
7b1fe597
HD
500 if (count == 1 && !PageWriteback(page)) {
501 delete_from_swap_cache(page);
502 SetPageDirty(page);
503 }
504 }
c475a8ab 505 return count == 1;
1da177e4
LT
506}
507
508/*
a2c43eed
HD
509 * If swap is getting full, or if there are no more mappings of this page,
510 * then try_to_free_swap is called to free its swap space.
1da177e4 511 */
a2c43eed 512int try_to_free_swap(struct page *page)
1da177e4 513{
51726b12 514 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
515
516 if (!PageSwapCache(page))
517 return 0;
518 if (PageWriteback(page))
519 return 0;
a2c43eed 520 if (page_swapcount(page))
1da177e4
LT
521 return 0;
522
a2c43eed
HD
523 delete_from_swap_cache(page);
524 SetPageDirty(page);
525 return 1;
68a22394
RR
526}
527
1da177e4
LT
528/*
529 * Free the swap entry like above, but also try to
530 * free the page cache entry if it is the last user.
531 */
532void free_swap_and_cache(swp_entry_t entry)
533{
534 struct swap_info_struct * p;
535 struct page *page = NULL;
536
0697212a
CL
537 if (is_migration_entry(entry))
538 return;
539
1da177e4
LT
540 p = swap_info_get(entry);
541 if (p) {
93fac704
NP
542 if (swap_entry_free(p, swp_offset(entry)) == 1) {
543 page = find_get_page(&swapper_space, entry.val);
8413ac9d 544 if (page && !trylock_page(page)) {
93fac704
NP
545 page_cache_release(page);
546 page = NULL;
547 }
548 }
5d337b91 549 spin_unlock(&swap_lock);
1da177e4
LT
550 }
551 if (page) {
a2c43eed
HD
552 /*
553 * Not mapped elsewhere, or swap space full? Free it!
554 * Also recheck PageSwapCache now page is locked (above).
555 */
93fac704 556 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 557 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
558 delete_from_swap_cache(page);
559 SetPageDirty(page);
560 }
561 unlock_page(page);
562 page_cache_release(page);
563 }
564}
565
b0cb1a19 566#ifdef CONFIG_HIBERNATION
f577eb30 567/*
915bae9e 568 * Find the swap type that corresponds to given device (if any).
f577eb30 569 *
915bae9e
RW
570 * @offset - number of the PAGE_SIZE-sized block of the device, starting
571 * from 0, in which the swap header is expected to be located.
572 *
573 * This is needed for the suspend to disk (aka swsusp).
f577eb30 574 */
7bf23687 575int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 576{
915bae9e 577 struct block_device *bdev = NULL;
f577eb30
RW
578 int i;
579
915bae9e
RW
580 if (device)
581 bdev = bdget(device);
582
f577eb30
RW
583 spin_lock(&swap_lock);
584 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 585 struct swap_info_struct *sis = swap_info + i;
f577eb30 586
915bae9e 587 if (!(sis->flags & SWP_WRITEOK))
f577eb30 588 continue;
b6b5bce3 589
915bae9e 590 if (!bdev) {
7bf23687
RW
591 if (bdev_p)
592 *bdev_p = sis->bdev;
593
6e1819d6
RW
594 spin_unlock(&swap_lock);
595 return i;
596 }
915bae9e
RW
597 if (bdev == sis->bdev) {
598 struct swap_extent *se;
599
600 se = list_entry(sis->extent_list.next,
601 struct swap_extent, list);
602 if (se->start_block == offset) {
7bf23687
RW
603 if (bdev_p)
604 *bdev_p = sis->bdev;
605
915bae9e
RW
606 spin_unlock(&swap_lock);
607 bdput(bdev);
608 return i;
609 }
f577eb30
RW
610 }
611 }
612 spin_unlock(&swap_lock);
915bae9e
RW
613 if (bdev)
614 bdput(bdev);
615
f577eb30
RW
616 return -ENODEV;
617}
618
619/*
620 * Return either the total number of swap pages of given type, or the number
621 * of free pages of that type (depending on @free)
622 *
623 * This is needed for software suspend
624 */
625unsigned int count_swap_pages(int type, int free)
626{
627 unsigned int n = 0;
628
629 if (type < nr_swapfiles) {
630 spin_lock(&swap_lock);
631 if (swap_info[type].flags & SWP_WRITEOK) {
632 n = swap_info[type].pages;
633 if (free)
634 n -= swap_info[type].inuse_pages;
635 }
636 spin_unlock(&swap_lock);
637 }
638 return n;
639}
640#endif
641
1da177e4 642/*
72866f6f
HD
643 * No need to decide whether this PTE shares the swap entry with others,
644 * just let do_wp_page work it out if a write is requested later - to
645 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 646 */
044d66c1 647static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
648 unsigned long addr, swp_entry_t entry, struct page *page)
649{
044d66c1
HD
650 spinlock_t *ptl;
651 pte_t *pte;
652 int ret = 1;
653
e1a1cd59 654 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
044d66c1
HD
655 ret = -ENOMEM;
656
657 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
658 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
659 if (ret > 0)
660 mem_cgroup_uncharge_page(page);
661 ret = 0;
662 goto out;
663 }
8a9f3ccd 664
4294621f 665 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
666 get_page(page);
667 set_pte_at(vma->vm_mm, addr, pte,
668 pte_mkold(mk_pte(page, vma->vm_page_prot)));
669 page_add_anon_rmap(page, vma, addr);
670 swap_free(entry);
671 /*
672 * Move the page to the active list so it is not
673 * immediately swapped out again after swapon.
674 */
675 activate_page(page);
044d66c1
HD
676out:
677 pte_unmap_unlock(pte, ptl);
678 return ret;
1da177e4
LT
679}
680
681static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
682 unsigned long addr, unsigned long end,
683 swp_entry_t entry, struct page *page)
684{
1da177e4 685 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 686 pte_t *pte;
8a9f3ccd 687 int ret = 0;
1da177e4 688
044d66c1
HD
689 /*
690 * We don't actually need pte lock while scanning for swp_pte: since
691 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
692 * page table while we're scanning; though it could get zapped, and on
693 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
694 * of unmatched parts which look like swp_pte, so unuse_pte must
695 * recheck under pte lock. Scanning without pte lock lets it be
696 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
697 */
698 pte = pte_offset_map(pmd, addr);
1da177e4
LT
699 do {
700 /*
701 * swapoff spends a _lot_ of time in this loop!
702 * Test inline before going to call unuse_pte.
703 */
704 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
705 pte_unmap(pte);
706 ret = unuse_pte(vma, pmd, addr, entry, page);
707 if (ret)
708 goto out;
709 pte = pte_offset_map(pmd, addr);
1da177e4
LT
710 }
711 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
712 pte_unmap(pte - 1);
713out:
8a9f3ccd 714 return ret;
1da177e4
LT
715}
716
717static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
718 unsigned long addr, unsigned long end,
719 swp_entry_t entry, struct page *page)
720{
721 pmd_t *pmd;
722 unsigned long next;
8a9f3ccd 723 int ret;
1da177e4
LT
724
725 pmd = pmd_offset(pud, addr);
726 do {
727 next = pmd_addr_end(addr, end);
728 if (pmd_none_or_clear_bad(pmd))
729 continue;
8a9f3ccd
BS
730 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
731 if (ret)
732 return ret;
1da177e4
LT
733 } while (pmd++, addr = next, addr != end);
734 return 0;
735}
736
737static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
738 unsigned long addr, unsigned long end,
739 swp_entry_t entry, struct page *page)
740{
741 pud_t *pud;
742 unsigned long next;
8a9f3ccd 743 int ret;
1da177e4
LT
744
745 pud = pud_offset(pgd, addr);
746 do {
747 next = pud_addr_end(addr, end);
748 if (pud_none_or_clear_bad(pud))
749 continue;
8a9f3ccd
BS
750 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
751 if (ret)
752 return ret;
1da177e4
LT
753 } while (pud++, addr = next, addr != end);
754 return 0;
755}
756
757static int unuse_vma(struct vm_area_struct *vma,
758 swp_entry_t entry, struct page *page)
759{
760 pgd_t *pgd;
761 unsigned long addr, end, next;
8a9f3ccd 762 int ret;
1da177e4
LT
763
764 if (page->mapping) {
765 addr = page_address_in_vma(page, vma);
766 if (addr == -EFAULT)
767 return 0;
768 else
769 end = addr + PAGE_SIZE;
770 } else {
771 addr = vma->vm_start;
772 end = vma->vm_end;
773 }
774
775 pgd = pgd_offset(vma->vm_mm, addr);
776 do {
777 next = pgd_addr_end(addr, end);
778 if (pgd_none_or_clear_bad(pgd))
779 continue;
8a9f3ccd
BS
780 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
781 if (ret)
782 return ret;
1da177e4
LT
783 } while (pgd++, addr = next, addr != end);
784 return 0;
785}
786
787static int unuse_mm(struct mm_struct *mm,
788 swp_entry_t entry, struct page *page)
789{
790 struct vm_area_struct *vma;
8a9f3ccd 791 int ret = 0;
1da177e4
LT
792
793 if (!down_read_trylock(&mm->mmap_sem)) {
794 /*
7d03431c
FLVC
795 * Activate page so shrink_inactive_list is unlikely to unmap
796 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 797 */
c475a8ab 798 activate_page(page);
1da177e4
LT
799 unlock_page(page);
800 down_read(&mm->mmap_sem);
801 lock_page(page);
802 }
1da177e4 803 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 804 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
805 break;
806 }
1da177e4 807 up_read(&mm->mmap_sem);
8a9f3ccd 808 return (ret < 0)? ret: 0;
1da177e4
LT
809}
810
811/*
812 * Scan swap_map from current position to next entry still in use.
813 * Recycle to start on reaching the end, returning 0 when empty.
814 */
6eb396dc
HD
815static unsigned int find_next_to_unuse(struct swap_info_struct *si,
816 unsigned int prev)
1da177e4 817{
6eb396dc
HD
818 unsigned int max = si->max;
819 unsigned int i = prev;
1da177e4
LT
820 int count;
821
822 /*
5d337b91 823 * No need for swap_lock here: we're just looking
1da177e4
LT
824 * for whether an entry is in use, not modifying it; false
825 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 826 * allocations from this area (while holding swap_lock).
1da177e4
LT
827 */
828 for (;;) {
829 if (++i >= max) {
830 if (!prev) {
831 i = 0;
832 break;
833 }
834 /*
835 * No entries in use at top of swap_map,
836 * loop back to start and recheck there.
837 */
838 max = prev + 1;
839 prev = 0;
840 i = 1;
841 }
842 count = si->swap_map[i];
843 if (count && count != SWAP_MAP_BAD)
844 break;
845 }
846 return i;
847}
848
849/*
850 * We completely avoid races by reading each swap page in advance,
851 * and then search for the process using it. All the necessary
852 * page table adjustments can then be made atomically.
853 */
854static int try_to_unuse(unsigned int type)
855{
856 struct swap_info_struct * si = &swap_info[type];
857 struct mm_struct *start_mm;
858 unsigned short *swap_map;
859 unsigned short swcount;
860 struct page *page;
861 swp_entry_t entry;
6eb396dc 862 unsigned int i = 0;
1da177e4
LT
863 int retval = 0;
864 int reset_overflow = 0;
865 int shmem;
866
867 /*
868 * When searching mms for an entry, a good strategy is to
869 * start at the first mm we freed the previous entry from
870 * (though actually we don't notice whether we or coincidence
871 * freed the entry). Initialize this start_mm with a hold.
872 *
873 * A simpler strategy would be to start at the last mm we
874 * freed the previous entry from; but that would take less
875 * advantage of mmlist ordering, which clusters forked mms
876 * together, child after parent. If we race with dup_mmap(), we
877 * prefer to resolve parent before child, lest we miss entries
878 * duplicated after we scanned child: using last mm would invert
879 * that. Though it's only a serious concern when an overflowed
880 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
881 */
882 start_mm = &init_mm;
883 atomic_inc(&init_mm.mm_users);
884
885 /*
886 * Keep on scanning until all entries have gone. Usually,
887 * one pass through swap_map is enough, but not necessarily:
888 * there are races when an instance of an entry might be missed.
889 */
890 while ((i = find_next_to_unuse(si, i)) != 0) {
891 if (signal_pending(current)) {
892 retval = -EINTR;
893 break;
894 }
895
886bb7e9 896 /*
1da177e4
LT
897 * Get a page for the entry, using the existing swap
898 * cache page if there is one. Otherwise, get a clean
886bb7e9 899 * page and read the swap into it.
1da177e4
LT
900 */
901 swap_map = &si->swap_map[i];
902 entry = swp_entry(type, i);
02098fea
HD
903 page = read_swap_cache_async(entry,
904 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
905 if (!page) {
906 /*
907 * Either swap_duplicate() failed because entry
908 * has been freed independently, and will not be
909 * reused since sys_swapoff() already disabled
910 * allocation from here, or alloc_page() failed.
911 */
912 if (!*swap_map)
913 continue;
914 retval = -ENOMEM;
915 break;
916 }
917
918 /*
919 * Don't hold on to start_mm if it looks like exiting.
920 */
921 if (atomic_read(&start_mm->mm_users) == 1) {
922 mmput(start_mm);
923 start_mm = &init_mm;
924 atomic_inc(&init_mm.mm_users);
925 }
926
927 /*
928 * Wait for and lock page. When do_swap_page races with
929 * try_to_unuse, do_swap_page can handle the fault much
930 * faster than try_to_unuse can locate the entry. This
931 * apparently redundant "wait_on_page_locked" lets try_to_unuse
932 * defer to do_swap_page in such a case - in some tests,
933 * do_swap_page and try_to_unuse repeatedly compete.
934 */
935 wait_on_page_locked(page);
936 wait_on_page_writeback(page);
937 lock_page(page);
938 wait_on_page_writeback(page);
939
940 /*
941 * Remove all references to entry.
942 * Whenever we reach init_mm, there's no address space
943 * to search, but use it as a reminder to search shmem.
944 */
945 shmem = 0;
946 swcount = *swap_map;
947 if (swcount > 1) {
948 if (start_mm == &init_mm)
949 shmem = shmem_unuse(entry, page);
950 else
951 retval = unuse_mm(start_mm, entry, page);
952 }
953 if (*swap_map > 1) {
954 int set_start_mm = (*swap_map >= swcount);
955 struct list_head *p = &start_mm->mmlist;
956 struct mm_struct *new_start_mm = start_mm;
957 struct mm_struct *prev_mm = start_mm;
958 struct mm_struct *mm;
959
960 atomic_inc(&new_start_mm->mm_users);
961 atomic_inc(&prev_mm->mm_users);
962 spin_lock(&mmlist_lock);
2e0e26c7 963 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
964 (p = p->next) != &start_mm->mmlist) {
965 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 966 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 967 continue;
1da177e4
LT
968 spin_unlock(&mmlist_lock);
969 mmput(prev_mm);
970 prev_mm = mm;
971
972 cond_resched();
973
974 swcount = *swap_map;
975 if (swcount <= 1)
976 ;
977 else if (mm == &init_mm) {
978 set_start_mm = 1;
979 shmem = shmem_unuse(entry, page);
980 } else
981 retval = unuse_mm(mm, entry, page);
982 if (set_start_mm && *swap_map < swcount) {
983 mmput(new_start_mm);
984 atomic_inc(&mm->mm_users);
985 new_start_mm = mm;
986 set_start_mm = 0;
987 }
988 spin_lock(&mmlist_lock);
989 }
990 spin_unlock(&mmlist_lock);
991 mmput(prev_mm);
992 mmput(start_mm);
993 start_mm = new_start_mm;
994 }
2e0e26c7
HD
995 if (shmem) {
996 /* page has already been unlocked and released */
997 if (shmem > 0)
998 continue;
999 retval = shmem;
1000 break;
1001 }
1da177e4
LT
1002 if (retval) {
1003 unlock_page(page);
1004 page_cache_release(page);
1005 break;
1006 }
1007
1008 /*
1009 * How could swap count reach 0x7fff when the maximum
1010 * pid is 0x7fff, and there's no way to repeat a swap
1011 * page within an mm (except in shmem, where it's the
1012 * shared object which takes the reference count)?
1013 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1014 *
1015 * If that's wrong, then we should worry more about
1016 * exit_mmap() and do_munmap() cases described above:
1017 * we might be resetting SWAP_MAP_MAX too early here.
1018 * We know "Undead"s can happen, they're okay, so don't
1019 * report them; but do report if we reset SWAP_MAP_MAX.
1020 */
1021 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 1022 spin_lock(&swap_lock);
1da177e4 1023 *swap_map = 1;
5d337b91 1024 spin_unlock(&swap_lock);
1da177e4
LT
1025 reset_overflow = 1;
1026 }
1027
1028 /*
1029 * If a reference remains (rare), we would like to leave
1030 * the page in the swap cache; but try_to_unmap could
1031 * then re-duplicate the entry once we drop page lock,
1032 * so we might loop indefinitely; also, that page could
1033 * not be swapped out to other storage meanwhile. So:
1034 * delete from cache even if there's another reference,
1035 * after ensuring that the data has been saved to disk -
1036 * since if the reference remains (rarer), it will be
1037 * read from disk into another page. Splitting into two
1038 * pages would be incorrect if swap supported "shared
1039 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
1040 */
1041 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
1042 struct writeback_control wbc = {
1043 .sync_mode = WB_SYNC_NONE,
1044 };
1045
1046 swap_writepage(page, &wbc);
1047 lock_page(page);
1048 wait_on_page_writeback(page);
1049 }
68bdc8d6
HD
1050
1051 /*
1052 * It is conceivable that a racing task removed this page from
1053 * swap cache just before we acquired the page lock at the top,
1054 * or while we dropped it in unuse_mm(). The page might even
1055 * be back in swap cache on another swap area: that we must not
1056 * delete, since it may not have been written out to swap yet.
1057 */
1058 if (PageSwapCache(page) &&
1059 likely(page_private(page) == entry.val))
2e0e26c7 1060 delete_from_swap_cache(page);
1da177e4
LT
1061
1062 /*
1063 * So we could skip searching mms once swap count went
1064 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1065 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1066 */
1067 SetPageDirty(page);
1068 unlock_page(page);
1069 page_cache_release(page);
1070
1071 /*
1072 * Make sure that we aren't completely killing
1073 * interactive performance.
1074 */
1075 cond_resched();
1076 }
1077
1078 mmput(start_mm);
1079 if (reset_overflow) {
1080 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1081 swap_overflow = 0;
1082 }
1083 return retval;
1084}
1085
1086/*
5d337b91
HD
1087 * After a successful try_to_unuse, if no swap is now in use, we know
1088 * we can empty the mmlist. swap_lock must be held on entry and exit.
1089 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1090 * added to the mmlist just after page_duplicate - before would be racy.
1091 */
1092static void drain_mmlist(void)
1093{
1094 struct list_head *p, *next;
1095 unsigned int i;
1096
1097 for (i = 0; i < nr_swapfiles; i++)
1098 if (swap_info[i].inuse_pages)
1099 return;
1100 spin_lock(&mmlist_lock);
1101 list_for_each_safe(p, next, &init_mm.mmlist)
1102 list_del_init(p);
1103 spin_unlock(&mmlist_lock);
1104}
1105
1106/*
1107 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1108 * corresponds to page offset `offset'.
1109 */
1110sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1111{
1112 struct swap_extent *se = sis->curr_swap_extent;
1113 struct swap_extent *start_se = se;
1114
1115 for ( ; ; ) {
1116 struct list_head *lh;
1117
1118 if (se->start_page <= offset &&
1119 offset < (se->start_page + se->nr_pages)) {
1120 return se->start_block + (offset - se->start_page);
1121 }
11d31886 1122 lh = se->list.next;
1da177e4 1123 if (lh == &sis->extent_list)
11d31886 1124 lh = lh->next;
1da177e4
LT
1125 se = list_entry(lh, struct swap_extent, list);
1126 sis->curr_swap_extent = se;
1127 BUG_ON(se == start_se); /* It *must* be present */
1128 }
1129}
1130
b0cb1a19 1131#ifdef CONFIG_HIBERNATION
3aef83e0
RW
1132/*
1133 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1134 * corresponding to given index in swap_info (swap type).
1135 */
1136sector_t swapdev_block(int swap_type, pgoff_t offset)
1137{
1138 struct swap_info_struct *sis;
1139
1140 if (swap_type >= nr_swapfiles)
1141 return 0;
1142
1143 sis = swap_info + swap_type;
1144 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1145}
b0cb1a19 1146#endif /* CONFIG_HIBERNATION */
3aef83e0 1147
1da177e4
LT
1148/*
1149 * Free all of a swapdev's extent information
1150 */
1151static void destroy_swap_extents(struct swap_info_struct *sis)
1152{
1153 while (!list_empty(&sis->extent_list)) {
1154 struct swap_extent *se;
1155
1156 se = list_entry(sis->extent_list.next,
1157 struct swap_extent, list);
1158 list_del(&se->list);
1159 kfree(se);
1160 }
1da177e4
LT
1161}
1162
1163/*
1164 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1165 * extent list. The extent list is kept sorted in page order.
1da177e4 1166 *
11d31886 1167 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1168 */
1169static int
1170add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1171 unsigned long nr_pages, sector_t start_block)
1172{
1173 struct swap_extent *se;
1174 struct swap_extent *new_se;
1175 struct list_head *lh;
1176
11d31886
HD
1177 lh = sis->extent_list.prev; /* The highest page extent */
1178 if (lh != &sis->extent_list) {
1da177e4 1179 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1180 BUG_ON(se->start_page + se->nr_pages != start_page);
1181 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1182 /* Merge it */
1183 se->nr_pages += nr_pages;
1184 return 0;
1185 }
1da177e4
LT
1186 }
1187
1188 /*
1189 * No merge. Insert a new extent, preserving ordering.
1190 */
1191 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1192 if (new_se == NULL)
1193 return -ENOMEM;
1194 new_se->start_page = start_page;
1195 new_se->nr_pages = nr_pages;
1196 new_se->start_block = start_block;
1197
11d31886 1198 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1199 return 1;
1da177e4
LT
1200}
1201
1202/*
1203 * A `swap extent' is a simple thing which maps a contiguous range of pages
1204 * onto a contiguous range of disk blocks. An ordered list of swap extents
1205 * is built at swapon time and is then used at swap_writepage/swap_readpage
1206 * time for locating where on disk a page belongs.
1207 *
1208 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1209 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1210 * swap files identically.
1211 *
1212 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1213 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1214 * swapfiles are handled *identically* after swapon time.
1215 *
1216 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1217 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1218 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1219 * requirements, they are simply tossed out - we will never use those blocks
1220 * for swapping.
1221 *
b0d9bcd4 1222 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1223 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1224 * which will scribble on the fs.
1225 *
1226 * The amount of disk space which a single swap extent represents varies.
1227 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1228 * extents in the list. To avoid much list walking, we cache the previous
1229 * search location in `curr_swap_extent', and start new searches from there.
1230 * This is extremely effective. The average number of iterations in
1231 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1232 */
53092a74 1233static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1234{
1235 struct inode *inode;
1236 unsigned blocks_per_page;
1237 unsigned long page_no;
1238 unsigned blkbits;
1239 sector_t probe_block;
1240 sector_t last_block;
53092a74
HD
1241 sector_t lowest_block = -1;
1242 sector_t highest_block = 0;
1243 int nr_extents = 0;
1da177e4
LT
1244 int ret;
1245
1246 inode = sis->swap_file->f_mapping->host;
1247 if (S_ISBLK(inode->i_mode)) {
1248 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1249 *span = sis->pages;
1da177e4
LT
1250 goto done;
1251 }
1252
1253 blkbits = inode->i_blkbits;
1254 blocks_per_page = PAGE_SIZE >> blkbits;
1255
1256 /*
1257 * Map all the blocks into the extent list. This code doesn't try
1258 * to be very smart.
1259 */
1260 probe_block = 0;
1261 page_no = 0;
1262 last_block = i_size_read(inode) >> blkbits;
1263 while ((probe_block + blocks_per_page) <= last_block &&
1264 page_no < sis->max) {
1265 unsigned block_in_page;
1266 sector_t first_block;
1267
1268 first_block = bmap(inode, probe_block);
1269 if (first_block == 0)
1270 goto bad_bmap;
1271
1272 /*
1273 * It must be PAGE_SIZE aligned on-disk
1274 */
1275 if (first_block & (blocks_per_page - 1)) {
1276 probe_block++;
1277 goto reprobe;
1278 }
1279
1280 for (block_in_page = 1; block_in_page < blocks_per_page;
1281 block_in_page++) {
1282 sector_t block;
1283
1284 block = bmap(inode, probe_block + block_in_page);
1285 if (block == 0)
1286 goto bad_bmap;
1287 if (block != first_block + block_in_page) {
1288 /* Discontiguity */
1289 probe_block++;
1290 goto reprobe;
1291 }
1292 }
1293
53092a74
HD
1294 first_block >>= (PAGE_SHIFT - blkbits);
1295 if (page_no) { /* exclude the header page */
1296 if (first_block < lowest_block)
1297 lowest_block = first_block;
1298 if (first_block > highest_block)
1299 highest_block = first_block;
1300 }
1301
1da177e4
LT
1302 /*
1303 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1304 */
53092a74
HD
1305 ret = add_swap_extent(sis, page_no, 1, first_block);
1306 if (ret < 0)
1da177e4 1307 goto out;
53092a74 1308 nr_extents += ret;
1da177e4
LT
1309 page_no++;
1310 probe_block += blocks_per_page;
1311reprobe:
1312 continue;
1313 }
53092a74
HD
1314 ret = nr_extents;
1315 *span = 1 + highest_block - lowest_block;
1da177e4 1316 if (page_no == 0)
e2244ec2 1317 page_no = 1; /* force Empty message */
1da177e4 1318 sis->max = page_no;
e2244ec2 1319 sis->pages = page_no - 1;
1da177e4
LT
1320 sis->highest_bit = page_no - 1;
1321done:
1322 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1323 struct swap_extent, list);
1324 goto out;
1325bad_bmap:
1326 printk(KERN_ERR "swapon: swapfile has holes\n");
1327 ret = -EINVAL;
1328out:
1329 return ret;
1330}
1331
1332#if 0 /* We don't need this yet */
1333#include <linux/backing-dev.h>
1334int page_queue_congested(struct page *page)
1335{
1336 struct backing_dev_info *bdi;
1337
51726b12 1338 VM_BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1da177e4
LT
1339
1340 if (PageSwapCache(page)) {
4c21e2f2 1341 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1342 struct swap_info_struct *sis;
1343
1344 sis = get_swap_info_struct(swp_type(entry));
1345 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1346 } else
1347 bdi = page->mapping->backing_dev_info;
1348 return bdi_write_congested(bdi);
1349}
1350#endif
1351
1352asmlinkage long sys_swapoff(const char __user * specialfile)
1353{
1354 struct swap_info_struct * p = NULL;
1355 unsigned short *swap_map;
1356 struct file *swap_file, *victim;
1357 struct address_space *mapping;
1358 struct inode *inode;
1359 char * pathname;
1360 int i, type, prev;
1361 int err;
886bb7e9 1362
1da177e4
LT
1363 if (!capable(CAP_SYS_ADMIN))
1364 return -EPERM;
1365
1366 pathname = getname(specialfile);
1367 err = PTR_ERR(pathname);
1368 if (IS_ERR(pathname))
1369 goto out;
1370
1371 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1372 putname(pathname);
1373 err = PTR_ERR(victim);
1374 if (IS_ERR(victim))
1375 goto out;
1376
1377 mapping = victim->f_mapping;
1378 prev = -1;
5d337b91 1379 spin_lock(&swap_lock);
1da177e4
LT
1380 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1381 p = swap_info + type;
22c6f8fd 1382 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1383 if (p->swap_file->f_mapping == mapping)
1384 break;
1385 }
1386 prev = type;
1387 }
1388 if (type < 0) {
1389 err = -EINVAL;
5d337b91 1390 spin_unlock(&swap_lock);
1da177e4
LT
1391 goto out_dput;
1392 }
1393 if (!security_vm_enough_memory(p->pages))
1394 vm_unacct_memory(p->pages);
1395 else {
1396 err = -ENOMEM;
5d337b91 1397 spin_unlock(&swap_lock);
1da177e4
LT
1398 goto out_dput;
1399 }
1400 if (prev < 0) {
1401 swap_list.head = p->next;
1402 } else {
1403 swap_info[prev].next = p->next;
1404 }
1405 if (type == swap_list.next) {
1406 /* just pick something that's safe... */
1407 swap_list.next = swap_list.head;
1408 }
78ecba08
HD
1409 if (p->prio < 0) {
1410 for (i = p->next; i >= 0; i = swap_info[i].next)
1411 swap_info[i].prio = p->prio--;
1412 least_priority++;
1413 }
1da177e4
LT
1414 nr_swap_pages -= p->pages;
1415 total_swap_pages -= p->pages;
1416 p->flags &= ~SWP_WRITEOK;
5d337b91 1417 spin_unlock(&swap_lock);
fb4f88dc 1418
1da177e4
LT
1419 current->flags |= PF_SWAPOFF;
1420 err = try_to_unuse(type);
1421 current->flags &= ~PF_SWAPOFF;
1422
1da177e4
LT
1423 if (err) {
1424 /* re-insert swap space back into swap_list */
5d337b91 1425 spin_lock(&swap_lock);
78ecba08
HD
1426 if (p->prio < 0)
1427 p->prio = --least_priority;
1428 prev = -1;
1429 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1da177e4
LT
1430 if (p->prio >= swap_info[i].prio)
1431 break;
78ecba08
HD
1432 prev = i;
1433 }
1da177e4
LT
1434 p->next = i;
1435 if (prev < 0)
1436 swap_list.head = swap_list.next = p - swap_info;
1437 else
1438 swap_info[prev].next = p - swap_info;
1439 nr_swap_pages += p->pages;
1440 total_swap_pages += p->pages;
1441 p->flags |= SWP_WRITEOK;
5d337b91 1442 spin_unlock(&swap_lock);
1da177e4
LT
1443 goto out_dput;
1444 }
52b7efdb
HD
1445
1446 /* wait for any unplug function to finish */
1447 down_write(&swap_unplug_sem);
1448 up_write(&swap_unplug_sem);
1449
5d337b91 1450 destroy_swap_extents(p);
fc0abb14 1451 mutex_lock(&swapon_mutex);
5d337b91
HD
1452 spin_lock(&swap_lock);
1453 drain_mmlist();
1454
52b7efdb 1455 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1456 p->highest_bit = 0; /* cuts scans short */
1457 while (p->flags >= SWP_SCANNING) {
5d337b91 1458 spin_unlock(&swap_lock);
13e4b57f 1459 schedule_timeout_uninterruptible(1);
5d337b91 1460 spin_lock(&swap_lock);
52b7efdb 1461 }
52b7efdb 1462
1da177e4
LT
1463 swap_file = p->swap_file;
1464 p->swap_file = NULL;
1465 p->max = 0;
1466 swap_map = p->swap_map;
1467 p->swap_map = NULL;
1468 p->flags = 0;
5d337b91 1469 spin_unlock(&swap_lock);
fc0abb14 1470 mutex_unlock(&swapon_mutex);
1da177e4
LT
1471 vfree(swap_map);
1472 inode = mapping->host;
1473 if (S_ISBLK(inode->i_mode)) {
1474 struct block_device *bdev = I_BDEV(inode);
1475 set_blocksize(bdev, p->old_block_size);
1476 bd_release(bdev);
1477 } else {
1b1dcc1b 1478 mutex_lock(&inode->i_mutex);
1da177e4 1479 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1480 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1481 }
1482 filp_close(swap_file, NULL);
1483 err = 0;
1484
1485out_dput:
1486 filp_close(victim, NULL);
1487out:
1488 return err;
1489}
1490
1491#ifdef CONFIG_PROC_FS
1492/* iterator */
1493static void *swap_start(struct seq_file *swap, loff_t *pos)
1494{
1495 struct swap_info_struct *ptr = swap_info;
1496 int i;
1497 loff_t l = *pos;
1498
fc0abb14 1499 mutex_lock(&swapon_mutex);
1da177e4 1500
881e4aab
SS
1501 if (!l)
1502 return SEQ_START_TOKEN;
1503
1da177e4
LT
1504 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1505 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1506 continue;
881e4aab 1507 if (!--l)
1da177e4
LT
1508 return ptr;
1509 }
1510
1511 return NULL;
1512}
1513
1514static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1515{
881e4aab 1516 struct swap_info_struct *ptr;
1da177e4
LT
1517 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1518
881e4aab
SS
1519 if (v == SEQ_START_TOKEN)
1520 ptr = swap_info;
1521 else {
1522 ptr = v;
1523 ptr++;
1524 }
1525
1526 for (; ptr < endptr; ptr++) {
1da177e4
LT
1527 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1528 continue;
1529 ++*pos;
1530 return ptr;
1531 }
1532
1533 return NULL;
1534}
1535
1536static void swap_stop(struct seq_file *swap, void *v)
1537{
fc0abb14 1538 mutex_unlock(&swapon_mutex);
1da177e4
LT
1539}
1540
1541static int swap_show(struct seq_file *swap, void *v)
1542{
1543 struct swap_info_struct *ptr = v;
1544 struct file *file;
1545 int len;
1546
881e4aab
SS
1547 if (ptr == SEQ_START_TOKEN) {
1548 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1549 return 0;
1550 }
1da177e4
LT
1551
1552 file = ptr->swap_file;
c32c2f63 1553 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1554 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1555 len < 40 ? 40 - len : 1, " ",
1556 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1557 "partition" : "file\t",
886bb7e9
HD
1558 ptr->pages << (PAGE_SHIFT - 10),
1559 ptr->inuse_pages << (PAGE_SHIFT - 10),
1560 ptr->prio);
1da177e4
LT
1561 return 0;
1562}
1563
15ad7cdc 1564static const struct seq_operations swaps_op = {
1da177e4
LT
1565 .start = swap_start,
1566 .next = swap_next,
1567 .stop = swap_stop,
1568 .show = swap_show
1569};
1570
1571static int swaps_open(struct inode *inode, struct file *file)
1572{
1573 return seq_open(file, &swaps_op);
1574}
1575
15ad7cdc 1576static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1577 .open = swaps_open,
1578 .read = seq_read,
1579 .llseek = seq_lseek,
1580 .release = seq_release,
1581};
1582
1583static int __init procswaps_init(void)
1584{
3d71f86f 1585 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1586 return 0;
1587}
1588__initcall(procswaps_init);
1589#endif /* CONFIG_PROC_FS */
1590
1796316a
JB
1591#ifdef MAX_SWAPFILES_CHECK
1592static int __init max_swapfiles_check(void)
1593{
1594 MAX_SWAPFILES_CHECK();
1595 return 0;
1596}
1597late_initcall(max_swapfiles_check);
1598#endif
1599
1da177e4
LT
1600/*
1601 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1602 *
1603 * The swapon system call
1604 */
1605asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1606{
1607 struct swap_info_struct * p;
1608 char *name = NULL;
1609 struct block_device *bdev = NULL;
1610 struct file *swap_file = NULL;
1611 struct address_space *mapping;
1612 unsigned int type;
1613 int i, prev;
1614 int error;
1da177e4 1615 union swap_header *swap_header = NULL;
6eb396dc
HD
1616 unsigned int nr_good_pages = 0;
1617 int nr_extents = 0;
53092a74 1618 sector_t span;
1da177e4 1619 unsigned long maxpages = 1;
73fd8748 1620 unsigned long swapfilepages;
78ecba08 1621 unsigned short *swap_map = NULL;
1da177e4
LT
1622 struct page *page = NULL;
1623 struct inode *inode = NULL;
1624 int did_down = 0;
1625
1626 if (!capable(CAP_SYS_ADMIN))
1627 return -EPERM;
5d337b91 1628 spin_lock(&swap_lock);
1da177e4
LT
1629 p = swap_info;
1630 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1631 if (!(p->flags & SWP_USED))
1632 break;
1633 error = -EPERM;
0697212a 1634 if (type >= MAX_SWAPFILES) {
5d337b91 1635 spin_unlock(&swap_lock);
1da177e4
LT
1636 goto out;
1637 }
1638 if (type >= nr_swapfiles)
1639 nr_swapfiles = type+1;
78ecba08 1640 memset(p, 0, sizeof(*p));
1da177e4
LT
1641 INIT_LIST_HEAD(&p->extent_list);
1642 p->flags = SWP_USED;
1da177e4 1643 p->next = -1;
5d337b91 1644 spin_unlock(&swap_lock);
1da177e4
LT
1645 name = getname(specialfile);
1646 error = PTR_ERR(name);
1647 if (IS_ERR(name)) {
1648 name = NULL;
1649 goto bad_swap_2;
1650 }
1651 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1652 error = PTR_ERR(swap_file);
1653 if (IS_ERR(swap_file)) {
1654 swap_file = NULL;
1655 goto bad_swap_2;
1656 }
1657
1658 p->swap_file = swap_file;
1659 mapping = swap_file->f_mapping;
1660 inode = mapping->host;
1661
1662 error = -EBUSY;
1663 for (i = 0; i < nr_swapfiles; i++) {
1664 struct swap_info_struct *q = &swap_info[i];
1665
1666 if (i == type || !q->swap_file)
1667 continue;
1668 if (mapping == q->swap_file->f_mapping)
1669 goto bad_swap;
1670 }
1671
1672 error = -EINVAL;
1673 if (S_ISBLK(inode->i_mode)) {
1674 bdev = I_BDEV(inode);
1675 error = bd_claim(bdev, sys_swapon);
1676 if (error < 0) {
1677 bdev = NULL;
f7b3a435 1678 error = -EINVAL;
1da177e4
LT
1679 goto bad_swap;
1680 }
1681 p->old_block_size = block_size(bdev);
1682 error = set_blocksize(bdev, PAGE_SIZE);
1683 if (error < 0)
1684 goto bad_swap;
1685 p->bdev = bdev;
1686 } else if (S_ISREG(inode->i_mode)) {
1687 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1688 mutex_lock(&inode->i_mutex);
1da177e4
LT
1689 did_down = 1;
1690 if (IS_SWAPFILE(inode)) {
1691 error = -EBUSY;
1692 goto bad_swap;
1693 }
1694 } else {
1695 goto bad_swap;
1696 }
1697
73fd8748 1698 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1699
1700 /*
1701 * Read the swap header.
1702 */
1703 if (!mapping->a_ops->readpage) {
1704 error = -EINVAL;
1705 goto bad_swap;
1706 }
090d2b18 1707 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1708 if (IS_ERR(page)) {
1709 error = PTR_ERR(page);
1710 goto bad_swap;
1711 }
81e33971 1712 swap_header = kmap(page);
1da177e4 1713
81e33971 1714 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1715 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1716 error = -EINVAL;
1717 goto bad_swap;
1718 }
886bb7e9 1719
81e33971
HD
1720 /* swap partition endianess hack... */
1721 if (swab32(swap_header->info.version) == 1) {
1722 swab32s(&swap_header->info.version);
1723 swab32s(&swap_header->info.last_page);
1724 swab32s(&swap_header->info.nr_badpages);
1725 for (i = 0; i < swap_header->info.nr_badpages; i++)
1726 swab32s(&swap_header->info.badpages[i]);
1727 }
1728 /* Check the swap header's sub-version */
1729 if (swap_header->info.version != 1) {
1730 printk(KERN_WARNING
1731 "Unable to handle swap header version %d\n",
1732 swap_header->info.version);
1da177e4
LT
1733 error = -EINVAL;
1734 goto bad_swap;
81e33971 1735 }
1da177e4 1736
81e33971
HD
1737 p->lowest_bit = 1;
1738 p->cluster_next = 1;
52b7efdb 1739
81e33971
HD
1740 /*
1741 * Find out how many pages are allowed for a single swap
1742 * device. There are two limiting factors: 1) the number of
1743 * bits for the swap offset in the swp_entry_t type and
1744 * 2) the number of bits in the a swap pte as defined by
1745 * the different architectures. In order to find the
1746 * largest possible bit mask a swap entry with swap type 0
1747 * and swap offset ~0UL is created, encoded to a swap pte,
1748 * decoded to a swp_entry_t again and finally the swap
1749 * offset is extracted. This will mask all the bits from
1750 * the initial ~0UL mask that can't be encoded in either
1751 * the swp_entry_t or the architecture definition of a
1752 * swap pte.
1753 */
1754 maxpages = swp_offset(pte_to_swp_entry(
1755 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1756 if (maxpages > swap_header->info.last_page)
1757 maxpages = swap_header->info.last_page;
1758 p->highest_bit = maxpages - 1;
1da177e4 1759
81e33971
HD
1760 error = -EINVAL;
1761 if (!maxpages)
1762 goto bad_swap;
1763 if (swapfilepages && maxpages > swapfilepages) {
1764 printk(KERN_WARNING
1765 "Swap area shorter than signature indicates\n");
1766 goto bad_swap;
1767 }
1768 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1769 goto bad_swap;
1770 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1771 goto bad_swap;
cd105df4 1772
81e33971
HD
1773 /* OK, set up the swap map and apply the bad block list */
1774 swap_map = vmalloc(maxpages * sizeof(short));
1775 if (!swap_map) {
1776 error = -ENOMEM;
1777 goto bad_swap;
1778 }
1da177e4 1779
81e33971
HD
1780 memset(swap_map, 0, maxpages * sizeof(short));
1781 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1782 int page_nr = swap_header->info.badpages[i];
1783 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1784 error = -EINVAL;
1da177e4 1785 goto bad_swap;
81e33971
HD
1786 }
1787 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4 1788 }
81e33971
HD
1789 nr_good_pages = swap_header->info.last_page -
1790 swap_header->info.nr_badpages -
1791 1 /* header page */;
e2244ec2 1792
e2244ec2 1793 if (nr_good_pages) {
78ecba08 1794 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1795 p->max = maxpages;
1796 p->pages = nr_good_pages;
53092a74
HD
1797 nr_extents = setup_swap_extents(p, &span);
1798 if (nr_extents < 0) {
1799 error = nr_extents;
e2244ec2 1800 goto bad_swap;
53092a74 1801 }
e2244ec2
HD
1802 nr_good_pages = p->pages;
1803 }
1da177e4
LT
1804 if (!nr_good_pages) {
1805 printk(KERN_WARNING "Empty swap-file\n");
1806 error = -EINVAL;
1807 goto bad_swap;
1808 }
1da177e4 1809
20137a49
HD
1810 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1811 p->flags |= SWP_SOLIDSTATE;
1812 srandom32((u32)get_seconds());
1813 p->cluster_next = 1 + (random32() % p->highest_bit);
1814 }
6a6ba831
HD
1815 if (discard_swap(p) == 0)
1816 p->flags |= SWP_DISCARDABLE;
1817
fc0abb14 1818 mutex_lock(&swapon_mutex);
5d337b91 1819 spin_lock(&swap_lock);
78ecba08
HD
1820 if (swap_flags & SWAP_FLAG_PREFER)
1821 p->prio =
1822 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1823 else
1824 p->prio = --least_priority;
1825 p->swap_map = swap_map;
22c6f8fd 1826 p->flags |= SWP_WRITEOK;
1da177e4
LT
1827 nr_swap_pages += nr_good_pages;
1828 total_swap_pages += nr_good_pages;
53092a74 1829
6eb396dc 1830 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 1831 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 1832 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 1833 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
1834 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1835 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
1836
1837 /* insert swap space into swap_list: */
1838 prev = -1;
1839 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1840 if (p->prio >= swap_info[i].prio) {
1841 break;
1842 }
1843 prev = i;
1844 }
1845 p->next = i;
1846 if (prev < 0) {
1847 swap_list.head = swap_list.next = p - swap_info;
1848 } else {
1849 swap_info[prev].next = p - swap_info;
1850 }
5d337b91 1851 spin_unlock(&swap_lock);
fc0abb14 1852 mutex_unlock(&swapon_mutex);
1da177e4
LT
1853 error = 0;
1854 goto out;
1855bad_swap:
1856 if (bdev) {
1857 set_blocksize(bdev, p->old_block_size);
1858 bd_release(bdev);
1859 }
4cd3bb10 1860 destroy_swap_extents(p);
1da177e4 1861bad_swap_2:
5d337b91 1862 spin_lock(&swap_lock);
1da177e4 1863 p->swap_file = NULL;
1da177e4 1864 p->flags = 0;
5d337b91 1865 spin_unlock(&swap_lock);
1da177e4
LT
1866 vfree(swap_map);
1867 if (swap_file)
1868 filp_close(swap_file, NULL);
1869out:
1870 if (page && !IS_ERR(page)) {
1871 kunmap(page);
1872 page_cache_release(page);
1873 }
1874 if (name)
1875 putname(name);
1876 if (did_down) {
1877 if (!error)
1878 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1879 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1880 }
1881 return error;
1882}
1883
1884void si_swapinfo(struct sysinfo *val)
1885{
1886 unsigned int i;
1887 unsigned long nr_to_be_unused = 0;
1888
5d337b91 1889 spin_lock(&swap_lock);
1da177e4
LT
1890 for (i = 0; i < nr_swapfiles; i++) {
1891 if (!(swap_info[i].flags & SWP_USED) ||
1892 (swap_info[i].flags & SWP_WRITEOK))
1893 continue;
1894 nr_to_be_unused += swap_info[i].inuse_pages;
1895 }
1896 val->freeswap = nr_swap_pages + nr_to_be_unused;
1897 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1898 spin_unlock(&swap_lock);
1da177e4
LT
1899}
1900
1901/*
1902 * Verify that a swap entry is valid and increment its swap map count.
1903 *
1904 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1905 * "permanent", but will be reclaimed by the next swapoff.
1906 */
1907int swap_duplicate(swp_entry_t entry)
1908{
1909 struct swap_info_struct * p;
1910 unsigned long offset, type;
1911 int result = 0;
1912
0697212a
CL
1913 if (is_migration_entry(entry))
1914 return 1;
1915
1da177e4
LT
1916 type = swp_type(entry);
1917 if (type >= nr_swapfiles)
1918 goto bad_file;
1919 p = type + swap_info;
1920 offset = swp_offset(entry);
1921
5d337b91 1922 spin_lock(&swap_lock);
1da177e4
LT
1923 if (offset < p->max && p->swap_map[offset]) {
1924 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1925 p->swap_map[offset]++;
1926 result = 1;
1927 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1928 if (swap_overflow++ < 5)
1929 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1930 p->swap_map[offset] = SWAP_MAP_MAX;
1931 result = 1;
1932 }
1933 }
5d337b91 1934 spin_unlock(&swap_lock);
1da177e4
LT
1935out:
1936 return result;
1937
1938bad_file:
1939 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1940 goto out;
1941}
1942
1943struct swap_info_struct *
1944get_swap_info_struct(unsigned type)
1945{
1946 return &swap_info[type];
1947}
1948
1949/*
5d337b91 1950 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1951 * reference on the swaphandle, it doesn't matter if it becomes unused.
1952 */
1953int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1954{
8952898b 1955 struct swap_info_struct *si;
3f9e7949 1956 int our_page_cluster = page_cluster;
8952898b
HD
1957 pgoff_t target, toff;
1958 pgoff_t base, end;
1959 int nr_pages = 0;
1da177e4 1960
3f9e7949 1961 if (!our_page_cluster) /* no readahead */
1da177e4 1962 return 0;
8952898b
HD
1963
1964 si = &swap_info[swp_type(entry)];
1965 target = swp_offset(entry);
1966 base = (target >> our_page_cluster) << our_page_cluster;
1967 end = base + (1 << our_page_cluster);
1968 if (!base) /* first page is swap header */
1969 base++;
1da177e4 1970
5d337b91 1971 spin_lock(&swap_lock);
8952898b
HD
1972 if (end > si->max) /* don't go beyond end of map */
1973 end = si->max;
1974
1975 /* Count contiguous allocated slots above our target */
1976 for (toff = target; ++toff < end; nr_pages++) {
1977 /* Don't read in free or bad pages */
1978 if (!si->swap_map[toff])
1979 break;
1980 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1981 break;
8952898b
HD
1982 }
1983 /* Count contiguous allocated slots below our target */
1984 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1985 /* Don't read in free or bad pages */
8952898b 1986 if (!si->swap_map[toff])
1da177e4 1987 break;
8952898b 1988 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1989 break;
8952898b 1990 }
5d337b91 1991 spin_unlock(&swap_lock);
8952898b
HD
1992
1993 /*
1994 * Indicate starting offset, and return number of pages to get:
1995 * if only 1, say 0, since there's then no readahead to be done.
1996 */
1997 *offset = ++toff;
1998 return nr_pages? ++nr_pages: 0;
1da177e4 1999}
This page took 0.478056 seconds and 5 git commands to generate.