mm: fix locking order in mm_take_all_locks()
[deliverable/linux.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
5d1ea48b 41#include <linux/swap_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
1da177e4 54
1da177e4
LT
55static const char Bad_file[] = "Bad swap file entry ";
56static const char Unused_file[] = "Unused swap file entry ";
57static const char Bad_offset[] = "Bad swap offset entry ";
58static const char Unused_offset[] = "Unused swap offset entry ";
59
adfab836
DS
60/*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
18ab4d4c
DS
64PLIST_HEAD(swap_active_head);
65
66/*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78static PLIST_HEAD(swap_avail_head);
79static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 80
38b5faf4 81struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 82
fc0abb14 83static DEFINE_MUTEX(swapon_mutex);
1da177e4 84
66d7dd51
KS
85static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86/* Activity counter to indicate that a swapon or swapoff has occurred */
87static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
8d69aaee 89static inline unsigned char swap_count(unsigned char ent)
355cfa73 90{
570a335b 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
92}
93
efa90a98 94/* returns 1 if swap entry is freed */
c9e44410
KH
95static int
96__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97{
efa90a98 98 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
99 struct page *page;
100 int ret = 0;
101
33806f06 102 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118}
355cfa73 119
6a6ba831
HD
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126 struct swap_extent *se;
9625a5f2
HD
127 sector_t start_block;
128 sector_t nr_blocks;
6a6ba831
HD
129 int err = 0;
130
9625a5f2
HD
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 137 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
138 if (err)
139 return err;
140 cond_resched();
141 }
6a6ba831 142
9625a5f2
HD
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
146
147 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 148 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155}
156
7992fde7
HD
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163{
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
7992fde7
HD
168 if (se->start_page <= start_page &&
169 start_page < se->start_page + se->nr_pages) {
170 pgoff_t offset = start_page - se->start_page;
171 sector_t start_block = se->start_block + offset;
858a2990 172 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
173
174 if (nr_blocks > nr_pages)
175 nr_blocks = nr_pages;
176 start_page += nr_blocks;
177 nr_pages -= nr_blocks;
178
179 if (!found_extent++)
180 si->curr_swap_extent = se;
181
182 start_block <<= PAGE_SHIFT - 9;
183 nr_blocks <<= PAGE_SHIFT - 9;
184 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 185 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
186 break;
187 }
188
a8ae4991 189 se = list_next_entry(se, list);
7992fde7
HD
190 }
191}
192
048c27fd
HD
193#define SWAPFILE_CLUSTER 256
194#define LATENCY_LIMIT 256
195
2a8f9449
SL
196static inline void cluster_set_flag(struct swap_cluster_info *info,
197 unsigned int flag)
198{
199 info->flags = flag;
200}
201
202static inline unsigned int cluster_count(struct swap_cluster_info *info)
203{
204 return info->data;
205}
206
207static inline void cluster_set_count(struct swap_cluster_info *info,
208 unsigned int c)
209{
210 info->data = c;
211}
212
213static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214 unsigned int c, unsigned int f)
215{
216 info->flags = f;
217 info->data = c;
218}
219
220static inline unsigned int cluster_next(struct swap_cluster_info *info)
221{
222 return info->data;
223}
224
225static inline void cluster_set_next(struct swap_cluster_info *info,
226 unsigned int n)
227{
228 info->data = n;
229}
230
231static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232 unsigned int n, unsigned int f)
233{
234 info->flags = f;
235 info->data = n;
236}
237
238static inline bool cluster_is_free(struct swap_cluster_info *info)
239{
240 return info->flags & CLUSTER_FLAG_FREE;
241}
242
243static inline bool cluster_is_null(struct swap_cluster_info *info)
244{
245 return info->flags & CLUSTER_FLAG_NEXT_NULL;
246}
247
248static inline void cluster_set_null(struct swap_cluster_info *info)
249{
250 info->flags = CLUSTER_FLAG_NEXT_NULL;
251 info->data = 0;
252}
253
815c2c54
SL
254/* Add a cluster to discard list and schedule it to do discard */
255static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256 unsigned int idx)
257{
258 /*
259 * If scan_swap_map() can't find a free cluster, it will check
260 * si->swap_map directly. To make sure the discarding cluster isn't
261 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262 * will be cleared after discard
263 */
264 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266
267 if (cluster_is_null(&si->discard_cluster_head)) {
268 cluster_set_next_flag(&si->discard_cluster_head,
269 idx, 0);
270 cluster_set_next_flag(&si->discard_cluster_tail,
271 idx, 0);
272 } else {
273 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274 cluster_set_next(&si->cluster_info[tail], idx);
275 cluster_set_next_flag(&si->discard_cluster_tail,
276 idx, 0);
277 }
278
279 schedule_work(&si->discard_work);
280}
281
282/*
283 * Doing discard actually. After a cluster discard is finished, the cluster
284 * will be added to free cluster list. caller should hold si->lock.
285*/
286static void swap_do_scheduled_discard(struct swap_info_struct *si)
287{
288 struct swap_cluster_info *info;
289 unsigned int idx;
290
291 info = si->cluster_info;
292
293 while (!cluster_is_null(&si->discard_cluster_head)) {
294 idx = cluster_next(&si->discard_cluster_head);
295
296 cluster_set_next_flag(&si->discard_cluster_head,
297 cluster_next(&info[idx]), 0);
298 if (cluster_next(&si->discard_cluster_tail) == idx) {
299 cluster_set_null(&si->discard_cluster_head);
300 cluster_set_null(&si->discard_cluster_tail);
301 }
302 spin_unlock(&si->lock);
303
304 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305 SWAPFILE_CLUSTER);
306
307 spin_lock(&si->lock);
308 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309 if (cluster_is_null(&si->free_cluster_head)) {
310 cluster_set_next_flag(&si->free_cluster_head,
311 idx, 0);
312 cluster_set_next_flag(&si->free_cluster_tail,
313 idx, 0);
314 } else {
315 unsigned int tail;
316
317 tail = cluster_next(&si->free_cluster_tail);
318 cluster_set_next(&info[tail], idx);
319 cluster_set_next_flag(&si->free_cluster_tail,
320 idx, 0);
321 }
322 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323 0, SWAPFILE_CLUSTER);
324 }
325}
326
327static void swap_discard_work(struct work_struct *work)
328{
329 struct swap_info_struct *si;
330
331 si = container_of(work, struct swap_info_struct, discard_work);
332
333 spin_lock(&si->lock);
334 swap_do_scheduled_discard(si);
335 spin_unlock(&si->lock);
336}
337
2a8f9449
SL
338/*
339 * The cluster corresponding to page_nr will be used. The cluster will be
340 * removed from free cluster list and its usage counter will be increased.
341 */
342static void inc_cluster_info_page(struct swap_info_struct *p,
343 struct swap_cluster_info *cluster_info, unsigned long page_nr)
344{
345 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346
347 if (!cluster_info)
348 return;
349 if (cluster_is_free(&cluster_info[idx])) {
350 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351 cluster_set_next_flag(&p->free_cluster_head,
352 cluster_next(&cluster_info[idx]), 0);
353 if (cluster_next(&p->free_cluster_tail) == idx) {
354 cluster_set_null(&p->free_cluster_tail);
355 cluster_set_null(&p->free_cluster_head);
356 }
357 cluster_set_count_flag(&cluster_info[idx], 0, 0);
358 }
359
360 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361 cluster_set_count(&cluster_info[idx],
362 cluster_count(&cluster_info[idx]) + 1);
363}
364
365/*
366 * The cluster corresponding to page_nr decreases one usage. If the usage
367 * counter becomes 0, which means no page in the cluster is in using, we can
368 * optionally discard the cluster and add it to free cluster list.
369 */
370static void dec_cluster_info_page(struct swap_info_struct *p,
371 struct swap_cluster_info *cluster_info, unsigned long page_nr)
372{
373 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374
375 if (!cluster_info)
376 return;
377
378 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379 cluster_set_count(&cluster_info[idx],
380 cluster_count(&cluster_info[idx]) - 1);
381
382 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
383 /*
384 * If the swap is discardable, prepare discard the cluster
385 * instead of free it immediately. The cluster will be freed
386 * after discard.
387 */
edfe23da
SL
388 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
390 swap_cluster_schedule_discard(p, idx);
391 return;
392 }
393
2a8f9449
SL
394 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395 if (cluster_is_null(&p->free_cluster_head)) {
396 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398 } else {
399 unsigned int tail = cluster_next(&p->free_cluster_tail);
400 cluster_set_next(&cluster_info[tail], idx);
401 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402 }
403 }
404}
405
406/*
407 * It's possible scan_swap_map() uses a free cluster in the middle of free
408 * cluster list. Avoiding such abuse to avoid list corruption.
409 */
ebc2a1a6
SL
410static bool
411scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
412 unsigned long offset)
413{
ebc2a1a6
SL
414 struct percpu_cluster *percpu_cluster;
415 bool conflict;
416
2a8f9449 417 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 418 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
419 offset != cluster_next(&si->free_cluster_head) &&
420 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
421
422 if (!conflict)
423 return false;
424
425 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426 cluster_set_null(&percpu_cluster->index);
427 return true;
428}
429
430/*
431 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432 * might involve allocating a new cluster for current CPU too.
433 */
434static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435 unsigned long *offset, unsigned long *scan_base)
436{
437 struct percpu_cluster *cluster;
438 bool found_free;
439 unsigned long tmp;
440
441new_cluster:
442 cluster = this_cpu_ptr(si->percpu_cluster);
443 if (cluster_is_null(&cluster->index)) {
444 if (!cluster_is_null(&si->free_cluster_head)) {
445 cluster->index = si->free_cluster_head;
446 cluster->next = cluster_next(&cluster->index) *
447 SWAPFILE_CLUSTER;
448 } else if (!cluster_is_null(&si->discard_cluster_head)) {
449 /*
450 * we don't have free cluster but have some clusters in
451 * discarding, do discard now and reclaim them
452 */
453 swap_do_scheduled_discard(si);
454 *scan_base = *offset = si->cluster_next;
455 goto new_cluster;
456 } else
457 return;
458 }
459
460 found_free = false;
461
462 /*
463 * Other CPUs can use our cluster if they can't find a free cluster,
464 * check if there is still free entry in the cluster
465 */
466 tmp = cluster->next;
467 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468 SWAPFILE_CLUSTER) {
469 if (!si->swap_map[tmp]) {
470 found_free = true;
471 break;
472 }
473 tmp++;
474 }
475 if (!found_free) {
476 cluster_set_null(&cluster->index);
477 goto new_cluster;
478 }
479 cluster->next = tmp + 1;
480 *offset = tmp;
481 *scan_base = tmp;
2a8f9449
SL
482}
483
24b8ff7c
CEB
484static unsigned long scan_swap_map(struct swap_info_struct *si,
485 unsigned char usage)
1da177e4 486{
ebebbbe9 487 unsigned long offset;
c60aa176 488 unsigned long scan_base;
7992fde7 489 unsigned long last_in_cluster = 0;
048c27fd 490 int latency_ration = LATENCY_LIMIT;
7dfad418 491
886bb7e9 492 /*
7dfad418
HD
493 * We try to cluster swap pages by allocating them sequentially
494 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
495 * way, however, we resort to first-free allocation, starting
496 * a new cluster. This prevents us from scattering swap pages
497 * all over the entire swap partition, so that we reduce
498 * overall disk seek times between swap pages. -- sct
499 * But we do now try to find an empty cluster. -Andrea
c60aa176 500 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
501 */
502
52b7efdb 503 si->flags += SWP_SCANNING;
c60aa176 504 scan_base = offset = si->cluster_next;
ebebbbe9 505
ebc2a1a6
SL
506 /* SSD algorithm */
507 if (si->cluster_info) {
508 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509 goto checks;
510 }
511
ebebbbe9
HD
512 if (unlikely(!si->cluster_nr--)) {
513 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514 si->cluster_nr = SWAPFILE_CLUSTER - 1;
515 goto checks;
516 }
2a8f9449 517
ec8acf20 518 spin_unlock(&si->lock);
7dfad418 519
c60aa176
HD
520 /*
521 * If seek is expensive, start searching for new cluster from
522 * start of partition, to minimize the span of allocated swap.
50088c44
CY
523 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 525 */
50088c44 526 scan_base = offset = si->lowest_bit;
7dfad418
HD
527 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528
529 /* Locate the first empty (unaligned) cluster */
530 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 531 if (si->swap_map[offset])
7dfad418
HD
532 last_in_cluster = offset + SWAPFILE_CLUSTER;
533 else if (offset == last_in_cluster) {
ec8acf20 534 spin_lock(&si->lock);
ebebbbe9
HD
535 offset -= SWAPFILE_CLUSTER - 1;
536 si->cluster_next = offset;
537 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
538 goto checks;
539 }
540 if (unlikely(--latency_ration < 0)) {
541 cond_resched();
542 latency_ration = LATENCY_LIMIT;
543 }
544 }
545
546 offset = scan_base;
ec8acf20 547 spin_lock(&si->lock);
ebebbbe9 548 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 549 }
7dfad418 550
ebebbbe9 551checks:
ebc2a1a6
SL
552 if (si->cluster_info) {
553 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555 }
ebebbbe9 556 if (!(si->flags & SWP_WRITEOK))
52b7efdb 557 goto no_page;
7dfad418
HD
558 if (!si->highest_bit)
559 goto no_page;
ebebbbe9 560 if (offset > si->highest_bit)
c60aa176 561 scan_base = offset = si->lowest_bit;
c9e44410 562
b73d7fce
HD
563 /* reuse swap entry of cache-only swap if not busy. */
564 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 565 int swap_was_freed;
ec8acf20 566 spin_unlock(&si->lock);
c9e44410 567 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 568 spin_lock(&si->lock);
c9e44410
KH
569 /* entry was freed successfully, try to use this again */
570 if (swap_was_freed)
571 goto checks;
572 goto scan; /* check next one */
573 }
574
ebebbbe9
HD
575 if (si->swap_map[offset])
576 goto scan;
577
578 if (offset == si->lowest_bit)
579 si->lowest_bit++;
580 if (offset == si->highest_bit)
581 si->highest_bit--;
582 si->inuse_pages++;
583 if (si->inuse_pages == si->pages) {
584 si->lowest_bit = si->max;
585 si->highest_bit = 0;
18ab4d4c
DS
586 spin_lock(&swap_avail_lock);
587 plist_del(&si->avail_list, &swap_avail_head);
588 spin_unlock(&swap_avail_lock);
1da177e4 589 }
253d553b 590 si->swap_map[offset] = usage;
2a8f9449 591 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
592 si->cluster_next = offset + 1;
593 si->flags -= SWP_SCANNING;
7992fde7 594
ebebbbe9 595 return offset;
7dfad418 596
ebebbbe9 597scan:
ec8acf20 598 spin_unlock(&si->lock);
7dfad418 599 while (++offset <= si->highest_bit) {
52b7efdb 600 if (!si->swap_map[offset]) {
ec8acf20 601 spin_lock(&si->lock);
52b7efdb
HD
602 goto checks;
603 }
c9e44410 604 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 605 spin_lock(&si->lock);
c9e44410
KH
606 goto checks;
607 }
048c27fd
HD
608 if (unlikely(--latency_ration < 0)) {
609 cond_resched();
610 latency_ration = LATENCY_LIMIT;
611 }
7dfad418 612 }
c60aa176 613 offset = si->lowest_bit;
a5998061 614 while (offset < scan_base) {
c60aa176 615 if (!si->swap_map[offset]) {
ec8acf20 616 spin_lock(&si->lock);
c60aa176
HD
617 goto checks;
618 }
c9e44410 619 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 620 spin_lock(&si->lock);
c9e44410
KH
621 goto checks;
622 }
c60aa176
HD
623 if (unlikely(--latency_ration < 0)) {
624 cond_resched();
625 latency_ration = LATENCY_LIMIT;
626 }
a5998061 627 offset++;
c60aa176 628 }
ec8acf20 629 spin_lock(&si->lock);
7dfad418
HD
630
631no_page:
52b7efdb 632 si->flags -= SWP_SCANNING;
1da177e4
LT
633 return 0;
634}
635
636swp_entry_t get_swap_page(void)
637{
adfab836 638 struct swap_info_struct *si, *next;
fb4f88dc 639 pgoff_t offset;
1da177e4 640
ec8acf20 641 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 642 goto noswap;
ec8acf20 643 atomic_long_dec(&nr_swap_pages);
fb4f88dc 644
18ab4d4c
DS
645 spin_lock(&swap_avail_lock);
646
647start_over:
648 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649 /* requeue si to after same-priority siblings */
650 plist_requeue(&si->avail_list, &swap_avail_head);
651 spin_unlock(&swap_avail_lock);
ec8acf20 652 spin_lock(&si->lock);
adfab836 653 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
654 spin_lock(&swap_avail_lock);
655 if (plist_node_empty(&si->avail_list)) {
656 spin_unlock(&si->lock);
657 goto nextsi;
658 }
659 WARN(!si->highest_bit,
660 "swap_info %d in list but !highest_bit\n",
661 si->type);
662 WARN(!(si->flags & SWP_WRITEOK),
663 "swap_info %d in list but !SWP_WRITEOK\n",
664 si->type);
665 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 666 spin_unlock(&si->lock);
18ab4d4c 667 goto nextsi;
ec8acf20 668 }
fb4f88dc 669
355cfa73 670 /* This is called for allocating swap entry for cache */
253d553b 671 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
672 spin_unlock(&si->lock);
673 if (offset)
adfab836 674 return swp_entry(si->type, offset);
18ab4d4c
DS
675 pr_debug("scan_swap_map of si %d failed to find offset\n",
676 si->type);
677 spin_lock(&swap_avail_lock);
678nextsi:
adfab836
DS
679 /*
680 * if we got here, it's likely that si was almost full before,
681 * and since scan_swap_map() can drop the si->lock, multiple
682 * callers probably all tried to get a page from the same si
18ab4d4c
DS
683 * and it filled up before we could get one; or, the si filled
684 * up between us dropping swap_avail_lock and taking si->lock.
685 * Since we dropped the swap_avail_lock, the swap_avail_head
686 * list may have been modified; so if next is still in the
687 * swap_avail_head list then try it, otherwise start over.
adfab836 688 */
18ab4d4c
DS
689 if (plist_node_empty(&next->avail_list))
690 goto start_over;
1da177e4 691 }
fb4f88dc 692
18ab4d4c
DS
693 spin_unlock(&swap_avail_lock);
694
ec8acf20 695 atomic_long_inc(&nr_swap_pages);
fb4f88dc 696noswap:
fb4f88dc 697 return (swp_entry_t) {0};
1da177e4
LT
698}
699
2de1a7e4 700/* The only caller of this function is now suspend routine */
910321ea
HD
701swp_entry_t get_swap_page_of_type(int type)
702{
703 struct swap_info_struct *si;
704 pgoff_t offset;
705
910321ea 706 si = swap_info[type];
ec8acf20 707 spin_lock(&si->lock);
910321ea 708 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 709 atomic_long_dec(&nr_swap_pages);
910321ea
HD
710 /* This is called for allocating swap entry, not cache */
711 offset = scan_swap_map(si, 1);
712 if (offset) {
ec8acf20 713 spin_unlock(&si->lock);
910321ea
HD
714 return swp_entry(type, offset);
715 }
ec8acf20 716 atomic_long_inc(&nr_swap_pages);
910321ea 717 }
ec8acf20 718 spin_unlock(&si->lock);
910321ea
HD
719 return (swp_entry_t) {0};
720}
721
73c34b6a 722static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 723{
73c34b6a 724 struct swap_info_struct *p;
1da177e4
LT
725 unsigned long offset, type;
726
727 if (!entry.val)
728 goto out;
729 type = swp_type(entry);
730 if (type >= nr_swapfiles)
731 goto bad_nofile;
efa90a98 732 p = swap_info[type];
1da177e4
LT
733 if (!(p->flags & SWP_USED))
734 goto bad_device;
735 offset = swp_offset(entry);
736 if (offset >= p->max)
737 goto bad_offset;
738 if (!p->swap_map[offset])
739 goto bad_free;
ec8acf20 740 spin_lock(&p->lock);
1da177e4
LT
741 return p;
742
743bad_free:
465c47fd 744 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
745 goto out;
746bad_offset:
465c47fd 747 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
748 goto out;
749bad_device:
465c47fd 750 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
751 goto out;
752bad_nofile:
465c47fd 753 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
754out:
755 return NULL;
886bb7e9 756}
1da177e4 757
8d69aaee
HD
758static unsigned char swap_entry_free(struct swap_info_struct *p,
759 swp_entry_t entry, unsigned char usage)
1da177e4 760{
253d553b 761 unsigned long offset = swp_offset(entry);
8d69aaee
HD
762 unsigned char count;
763 unsigned char has_cache;
355cfa73 764
253d553b
HD
765 count = p->swap_map[offset];
766 has_cache = count & SWAP_HAS_CACHE;
767 count &= ~SWAP_HAS_CACHE;
355cfa73 768
253d553b 769 if (usage == SWAP_HAS_CACHE) {
355cfa73 770 VM_BUG_ON(!has_cache);
253d553b 771 has_cache = 0;
aaa46865
HD
772 } else if (count == SWAP_MAP_SHMEM) {
773 /*
774 * Or we could insist on shmem.c using a special
775 * swap_shmem_free() and free_shmem_swap_and_cache()...
776 */
777 count = 0;
570a335b
HD
778 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779 if (count == COUNT_CONTINUED) {
780 if (swap_count_continued(p, offset, count))
781 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782 else
783 count = SWAP_MAP_MAX;
784 } else
785 count--;
786 }
253d553b
HD
787
788 if (!count)
789 mem_cgroup_uncharge_swap(entry);
790
791 usage = count | has_cache;
792 p->swap_map[offset] = usage;
355cfa73 793
355cfa73 794 /* free if no reference */
253d553b 795 if (!usage) {
2a8f9449 796 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
797 if (offset < p->lowest_bit)
798 p->lowest_bit = offset;
18ab4d4c
DS
799 if (offset > p->highest_bit) {
800 bool was_full = !p->highest_bit;
355cfa73 801 p->highest_bit = offset;
18ab4d4c
DS
802 if (was_full && (p->flags & SWP_WRITEOK)) {
803 spin_lock(&swap_avail_lock);
804 WARN_ON(!plist_node_empty(&p->avail_list));
805 if (plist_node_empty(&p->avail_list))
806 plist_add(&p->avail_list,
807 &swap_avail_head);
808 spin_unlock(&swap_avail_lock);
809 }
810 }
ec8acf20 811 atomic_long_inc(&nr_swap_pages);
355cfa73 812 p->inuse_pages--;
38b5faf4 813 frontswap_invalidate_page(p->type, offset);
73744923
MG
814 if (p->flags & SWP_BLKDEV) {
815 struct gendisk *disk = p->bdev->bd_disk;
816 if (disk->fops->swap_slot_free_notify)
817 disk->fops->swap_slot_free_notify(p->bdev,
818 offset);
819 }
1da177e4 820 }
253d553b
HD
821
822 return usage;
1da177e4
LT
823}
824
825/*
2de1a7e4 826 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
827 * is still around or has not been recycled.
828 */
829void swap_free(swp_entry_t entry)
830{
73c34b6a 831 struct swap_info_struct *p;
1da177e4
LT
832
833 p = swap_info_get(entry);
834 if (p) {
253d553b 835 swap_entry_free(p, entry, 1);
ec8acf20 836 spin_unlock(&p->lock);
1da177e4
LT
837 }
838}
839
cb4b86ba
KH
840/*
841 * Called after dropping swapcache to decrease refcnt to swap entries.
842 */
0a31bc97 843void swapcache_free(swp_entry_t entry)
cb4b86ba 844{
355cfa73
KH
845 struct swap_info_struct *p;
846
355cfa73
KH
847 p = swap_info_get(entry);
848 if (p) {
0a31bc97 849 swap_entry_free(p, entry, SWAP_HAS_CACHE);
ec8acf20 850 spin_unlock(&p->lock);
355cfa73 851 }
cb4b86ba
KH
852}
853
1da177e4 854/*
c475a8ab 855 * How many references to page are currently swapped out?
570a335b
HD
856 * This does not give an exact answer when swap count is continued,
857 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 858 */
bde05d1c 859int page_swapcount(struct page *page)
1da177e4 860{
c475a8ab
HD
861 int count = 0;
862 struct swap_info_struct *p;
1da177e4
LT
863 swp_entry_t entry;
864
4c21e2f2 865 entry.val = page_private(page);
1da177e4
LT
866 p = swap_info_get(entry);
867 if (p) {
355cfa73 868 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 869 spin_unlock(&p->lock);
1da177e4 870 }
c475a8ab 871 return count;
1da177e4
LT
872}
873
8334b962
MK
874/*
875 * How many references to @entry are currently swapped out?
876 * This considers COUNT_CONTINUED so it returns exact answer.
877 */
878int swp_swapcount(swp_entry_t entry)
879{
880 int count, tmp_count, n;
881 struct swap_info_struct *p;
882 struct page *page;
883 pgoff_t offset;
884 unsigned char *map;
885
886 p = swap_info_get(entry);
887 if (!p)
888 return 0;
889
890 count = swap_count(p->swap_map[swp_offset(entry)]);
891 if (!(count & COUNT_CONTINUED))
892 goto out;
893
894 count &= ~COUNT_CONTINUED;
895 n = SWAP_MAP_MAX + 1;
896
897 offset = swp_offset(entry);
898 page = vmalloc_to_page(p->swap_map + offset);
899 offset &= ~PAGE_MASK;
900 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
901
902 do {
a8ae4991 903 page = list_next_entry(page, lru);
8334b962
MK
904 map = kmap_atomic(page);
905 tmp_count = map[offset];
906 kunmap_atomic(map);
907
908 count += (tmp_count & ~COUNT_CONTINUED) * n;
909 n *= (SWAP_CONT_MAX + 1);
910 } while (tmp_count & COUNT_CONTINUED);
911out:
912 spin_unlock(&p->lock);
913 return count;
914}
915
1da177e4 916/*
7b1fe597
HD
917 * We can write to an anon page without COW if there are no other references
918 * to it. And as a side-effect, free up its swap: because the old content
919 * on disk will never be read, and seeking back there to write new content
920 * later would only waste time away from clustering.
1da177e4 921 */
7b1fe597 922int reuse_swap_page(struct page *page)
1da177e4 923{
c475a8ab
HD
924 int count;
925
309381fe 926 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
927 if (unlikely(PageKsm(page)))
928 return 0;
1f25fe20
KS
929 /* The page is part of THP and cannot be reused */
930 if (PageTransCompound(page))
931 return 0;
c475a8ab 932 count = page_mapcount(page);
7b1fe597 933 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 934 count += page_swapcount(page);
7b1fe597
HD
935 if (count == 1 && !PageWriteback(page)) {
936 delete_from_swap_cache(page);
937 SetPageDirty(page);
938 }
939 }
5ad64688 940 return count <= 1;
1da177e4
LT
941}
942
943/*
a2c43eed
HD
944 * If swap is getting full, or if there are no more mappings of this page,
945 * then try_to_free_swap is called to free its swap space.
1da177e4 946 */
a2c43eed 947int try_to_free_swap(struct page *page)
1da177e4 948{
309381fe 949 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
950
951 if (!PageSwapCache(page))
952 return 0;
953 if (PageWriteback(page))
954 return 0;
a2c43eed 955 if (page_swapcount(page))
1da177e4
LT
956 return 0;
957
b73d7fce
HD
958 /*
959 * Once hibernation has begun to create its image of memory,
960 * there's a danger that one of the calls to try_to_free_swap()
961 * - most probably a call from __try_to_reclaim_swap() while
962 * hibernation is allocating its own swap pages for the image,
963 * but conceivably even a call from memory reclaim - will free
964 * the swap from a page which has already been recorded in the
965 * image as a clean swapcache page, and then reuse its swap for
966 * another page of the image. On waking from hibernation, the
967 * original page might be freed under memory pressure, then
968 * later read back in from swap, now with the wrong data.
969 *
2de1a7e4 970 * Hibernation suspends storage while it is writing the image
f90ac398 971 * to disk so check that here.
b73d7fce 972 */
f90ac398 973 if (pm_suspended_storage())
b73d7fce
HD
974 return 0;
975
a2c43eed
HD
976 delete_from_swap_cache(page);
977 SetPageDirty(page);
978 return 1;
68a22394
RR
979}
980
1da177e4
LT
981/*
982 * Free the swap entry like above, but also try to
983 * free the page cache entry if it is the last user.
984 */
2509ef26 985int free_swap_and_cache(swp_entry_t entry)
1da177e4 986{
2509ef26 987 struct swap_info_struct *p;
1da177e4
LT
988 struct page *page = NULL;
989
a7420aa5 990 if (non_swap_entry(entry))
2509ef26 991 return 1;
0697212a 992
1da177e4
LT
993 p = swap_info_get(entry);
994 if (p) {
253d553b 995 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
996 page = find_get_page(swap_address_space(entry),
997 entry.val);
8413ac9d 998 if (page && !trylock_page(page)) {
93fac704
NP
999 page_cache_release(page);
1000 page = NULL;
1001 }
1002 }
ec8acf20 1003 spin_unlock(&p->lock);
1da177e4
LT
1004 }
1005 if (page) {
a2c43eed
HD
1006 /*
1007 * Not mapped elsewhere, or swap space full? Free it!
1008 * Also recheck PageSwapCache now page is locked (above).
1009 */
93fac704 1010 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 1011 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
1012 delete_from_swap_cache(page);
1013 SetPageDirty(page);
1014 }
1015 unlock_page(page);
1016 page_cache_release(page);
1017 }
2509ef26 1018 return p != NULL;
1da177e4
LT
1019}
1020
b0cb1a19 1021#ifdef CONFIG_HIBERNATION
f577eb30 1022/*
915bae9e 1023 * Find the swap type that corresponds to given device (if any).
f577eb30 1024 *
915bae9e
RW
1025 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1026 * from 0, in which the swap header is expected to be located.
1027 *
1028 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1029 */
7bf23687 1030int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1031{
915bae9e 1032 struct block_device *bdev = NULL;
efa90a98 1033 int type;
f577eb30 1034
915bae9e
RW
1035 if (device)
1036 bdev = bdget(device);
1037
f577eb30 1038 spin_lock(&swap_lock);
efa90a98
HD
1039 for (type = 0; type < nr_swapfiles; type++) {
1040 struct swap_info_struct *sis = swap_info[type];
f577eb30 1041
915bae9e 1042 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1043 continue;
b6b5bce3 1044
915bae9e 1045 if (!bdev) {
7bf23687 1046 if (bdev_p)
dddac6a7 1047 *bdev_p = bdgrab(sis->bdev);
7bf23687 1048
6e1819d6 1049 spin_unlock(&swap_lock);
efa90a98 1050 return type;
6e1819d6 1051 }
915bae9e 1052 if (bdev == sis->bdev) {
9625a5f2 1053 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1054
915bae9e 1055 if (se->start_block == offset) {
7bf23687 1056 if (bdev_p)
dddac6a7 1057 *bdev_p = bdgrab(sis->bdev);
7bf23687 1058
915bae9e
RW
1059 spin_unlock(&swap_lock);
1060 bdput(bdev);
efa90a98 1061 return type;
915bae9e 1062 }
f577eb30
RW
1063 }
1064 }
1065 spin_unlock(&swap_lock);
915bae9e
RW
1066 if (bdev)
1067 bdput(bdev);
1068
f577eb30
RW
1069 return -ENODEV;
1070}
1071
73c34b6a
HD
1072/*
1073 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1074 * corresponding to given index in swap_info (swap type).
1075 */
1076sector_t swapdev_block(int type, pgoff_t offset)
1077{
1078 struct block_device *bdev;
1079
1080 if ((unsigned int)type >= nr_swapfiles)
1081 return 0;
1082 if (!(swap_info[type]->flags & SWP_WRITEOK))
1083 return 0;
d4906e1a 1084 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1085}
1086
f577eb30
RW
1087/*
1088 * Return either the total number of swap pages of given type, or the number
1089 * of free pages of that type (depending on @free)
1090 *
1091 * This is needed for software suspend
1092 */
1093unsigned int count_swap_pages(int type, int free)
1094{
1095 unsigned int n = 0;
1096
efa90a98
HD
1097 spin_lock(&swap_lock);
1098 if ((unsigned int)type < nr_swapfiles) {
1099 struct swap_info_struct *sis = swap_info[type];
1100
ec8acf20 1101 spin_lock(&sis->lock);
efa90a98
HD
1102 if (sis->flags & SWP_WRITEOK) {
1103 n = sis->pages;
f577eb30 1104 if (free)
efa90a98 1105 n -= sis->inuse_pages;
f577eb30 1106 }
ec8acf20 1107 spin_unlock(&sis->lock);
f577eb30 1108 }
efa90a98 1109 spin_unlock(&swap_lock);
f577eb30
RW
1110 return n;
1111}
73c34b6a 1112#endif /* CONFIG_HIBERNATION */
f577eb30 1113
179ef71c
CG
1114static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1115{
1116#ifdef CONFIG_MEM_SOFT_DIRTY
1117 /*
1118 * When pte keeps soft dirty bit the pte generated
1119 * from swap entry does not has it, still it's same
1120 * pte from logical point of view.
1121 */
1122 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1123 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1124#else
1125 return pte_same(pte, swp_pte);
1126#endif
1127}
1128
1da177e4 1129/*
72866f6f
HD
1130 * No need to decide whether this PTE shares the swap entry with others,
1131 * just let do_wp_page work it out if a write is requested later - to
1132 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1133 */
044d66c1 1134static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1135 unsigned long addr, swp_entry_t entry, struct page *page)
1136{
9e16b7fb 1137 struct page *swapcache;
72835c86 1138 struct mem_cgroup *memcg;
044d66c1
HD
1139 spinlock_t *ptl;
1140 pte_t *pte;
1141 int ret = 1;
1142
9e16b7fb
HD
1143 swapcache = page;
1144 page = ksm_might_need_to_copy(page, vma, addr);
1145 if (unlikely(!page))
1146 return -ENOMEM;
1147
f627c2f5
KS
1148 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1149 &memcg, false)) {
044d66c1 1150 ret = -ENOMEM;
85d9fc89
KH
1151 goto out_nolock;
1152 }
044d66c1
HD
1153
1154 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1155 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1156 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1157 ret = 0;
1158 goto out;
1159 }
8a9f3ccd 1160
b084d435 1161 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1162 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1163 get_page(page);
1164 set_pte_at(vma->vm_mm, addr, pte,
1165 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1166 if (page == swapcache) {
d281ee61 1167 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1168 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1169 } else { /* ksm created a completely new copy */
d281ee61 1170 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1171 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1172 lru_cache_add_active_or_unevictable(page, vma);
1173 }
1da177e4
LT
1174 swap_free(entry);
1175 /*
1176 * Move the page to the active list so it is not
1177 * immediately swapped out again after swapon.
1178 */
1179 activate_page(page);
044d66c1
HD
1180out:
1181 pte_unmap_unlock(pte, ptl);
85d9fc89 1182out_nolock:
9e16b7fb
HD
1183 if (page != swapcache) {
1184 unlock_page(page);
1185 put_page(page);
1186 }
044d66c1 1187 return ret;
1da177e4
LT
1188}
1189
1190static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1191 unsigned long addr, unsigned long end,
1192 swp_entry_t entry, struct page *page)
1193{
1da177e4 1194 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1195 pte_t *pte;
8a9f3ccd 1196 int ret = 0;
1da177e4 1197
044d66c1
HD
1198 /*
1199 * We don't actually need pte lock while scanning for swp_pte: since
1200 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1201 * page table while we're scanning; though it could get zapped, and on
1202 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1203 * of unmatched parts which look like swp_pte, so unuse_pte must
1204 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1205 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1206 */
1207 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1208 do {
1209 /*
1210 * swapoff spends a _lot_ of time in this loop!
1211 * Test inline before going to call unuse_pte.
1212 */
179ef71c 1213 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1214 pte_unmap(pte);
1215 ret = unuse_pte(vma, pmd, addr, entry, page);
1216 if (ret)
1217 goto out;
1218 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1219 }
1220 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1221 pte_unmap(pte - 1);
1222out:
8a9f3ccd 1223 return ret;
1da177e4
LT
1224}
1225
1226static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1227 unsigned long addr, unsigned long end,
1228 swp_entry_t entry, struct page *page)
1229{
1230 pmd_t *pmd;
1231 unsigned long next;
8a9f3ccd 1232 int ret;
1da177e4
LT
1233
1234 pmd = pmd_offset(pud, addr);
1235 do {
1236 next = pmd_addr_end(addr, end);
1a5a9906 1237 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1238 continue;
8a9f3ccd
BS
1239 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1240 if (ret)
1241 return ret;
1da177e4
LT
1242 } while (pmd++, addr = next, addr != end);
1243 return 0;
1244}
1245
1246static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1247 unsigned long addr, unsigned long end,
1248 swp_entry_t entry, struct page *page)
1249{
1250 pud_t *pud;
1251 unsigned long next;
8a9f3ccd 1252 int ret;
1da177e4
LT
1253
1254 pud = pud_offset(pgd, addr);
1255 do {
1256 next = pud_addr_end(addr, end);
1257 if (pud_none_or_clear_bad(pud))
1258 continue;
8a9f3ccd
BS
1259 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1260 if (ret)
1261 return ret;
1da177e4
LT
1262 } while (pud++, addr = next, addr != end);
1263 return 0;
1264}
1265
1266static int unuse_vma(struct vm_area_struct *vma,
1267 swp_entry_t entry, struct page *page)
1268{
1269 pgd_t *pgd;
1270 unsigned long addr, end, next;
8a9f3ccd 1271 int ret;
1da177e4 1272
3ca7b3c5 1273 if (page_anon_vma(page)) {
1da177e4
LT
1274 addr = page_address_in_vma(page, vma);
1275 if (addr == -EFAULT)
1276 return 0;
1277 else
1278 end = addr + PAGE_SIZE;
1279 } else {
1280 addr = vma->vm_start;
1281 end = vma->vm_end;
1282 }
1283
1284 pgd = pgd_offset(vma->vm_mm, addr);
1285 do {
1286 next = pgd_addr_end(addr, end);
1287 if (pgd_none_or_clear_bad(pgd))
1288 continue;
8a9f3ccd
BS
1289 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1290 if (ret)
1291 return ret;
1da177e4
LT
1292 } while (pgd++, addr = next, addr != end);
1293 return 0;
1294}
1295
1296static int unuse_mm(struct mm_struct *mm,
1297 swp_entry_t entry, struct page *page)
1298{
1299 struct vm_area_struct *vma;
8a9f3ccd 1300 int ret = 0;
1da177e4
LT
1301
1302 if (!down_read_trylock(&mm->mmap_sem)) {
1303 /*
7d03431c
FLVC
1304 * Activate page so shrink_inactive_list is unlikely to unmap
1305 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1306 */
c475a8ab 1307 activate_page(page);
1da177e4
LT
1308 unlock_page(page);
1309 down_read(&mm->mmap_sem);
1310 lock_page(page);
1311 }
1da177e4 1312 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1313 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1314 break;
1315 }
1da177e4 1316 up_read(&mm->mmap_sem);
8a9f3ccd 1317 return (ret < 0)? ret: 0;
1da177e4
LT
1318}
1319
1320/*
38b5faf4
DM
1321 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1322 * from current position to next entry still in use.
1da177e4
LT
1323 * Recycle to start on reaching the end, returning 0 when empty.
1324 */
6eb396dc 1325static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1326 unsigned int prev, bool frontswap)
1da177e4 1327{
6eb396dc
HD
1328 unsigned int max = si->max;
1329 unsigned int i = prev;
8d69aaee 1330 unsigned char count;
1da177e4
LT
1331
1332 /*
5d337b91 1333 * No need for swap_lock here: we're just looking
1da177e4
LT
1334 * for whether an entry is in use, not modifying it; false
1335 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1336 * allocations from this area (while holding swap_lock).
1da177e4
LT
1337 */
1338 for (;;) {
1339 if (++i >= max) {
1340 if (!prev) {
1341 i = 0;
1342 break;
1343 }
1344 /*
1345 * No entries in use at top of swap_map,
1346 * loop back to start and recheck there.
1347 */
1348 max = prev + 1;
1349 prev = 0;
1350 i = 1;
1351 }
38b5faf4
DM
1352 if (frontswap) {
1353 if (frontswap_test(si, i))
1354 break;
1355 else
1356 continue;
1357 }
4db0c3c2 1358 count = READ_ONCE(si->swap_map[i]);
355cfa73 1359 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1360 break;
1361 }
1362 return i;
1363}
1364
1365/*
1366 * We completely avoid races by reading each swap page in advance,
1367 * and then search for the process using it. All the necessary
1368 * page table adjustments can then be made atomically.
38b5faf4
DM
1369 *
1370 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1371 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1372 */
38b5faf4
DM
1373int try_to_unuse(unsigned int type, bool frontswap,
1374 unsigned long pages_to_unuse)
1da177e4 1375{
efa90a98 1376 struct swap_info_struct *si = swap_info[type];
1da177e4 1377 struct mm_struct *start_mm;
edfe23da
SL
1378 volatile unsigned char *swap_map; /* swap_map is accessed without
1379 * locking. Mark it as volatile
1380 * to prevent compiler doing
1381 * something odd.
1382 */
8d69aaee 1383 unsigned char swcount;
1da177e4
LT
1384 struct page *page;
1385 swp_entry_t entry;
6eb396dc 1386 unsigned int i = 0;
1da177e4 1387 int retval = 0;
1da177e4
LT
1388
1389 /*
1390 * When searching mms for an entry, a good strategy is to
1391 * start at the first mm we freed the previous entry from
1392 * (though actually we don't notice whether we or coincidence
1393 * freed the entry). Initialize this start_mm with a hold.
1394 *
1395 * A simpler strategy would be to start at the last mm we
1396 * freed the previous entry from; but that would take less
1397 * advantage of mmlist ordering, which clusters forked mms
1398 * together, child after parent. If we race with dup_mmap(), we
1399 * prefer to resolve parent before child, lest we miss entries
1400 * duplicated after we scanned child: using last mm would invert
570a335b 1401 * that.
1da177e4
LT
1402 */
1403 start_mm = &init_mm;
1404 atomic_inc(&init_mm.mm_users);
1405
1406 /*
1407 * Keep on scanning until all entries have gone. Usually,
1408 * one pass through swap_map is enough, but not necessarily:
1409 * there are races when an instance of an entry might be missed.
1410 */
38b5faf4 1411 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1412 if (signal_pending(current)) {
1413 retval = -EINTR;
1414 break;
1415 }
1416
886bb7e9 1417 /*
1da177e4
LT
1418 * Get a page for the entry, using the existing swap
1419 * cache page if there is one. Otherwise, get a clean
886bb7e9 1420 * page and read the swap into it.
1da177e4
LT
1421 */
1422 swap_map = &si->swap_map[i];
1423 entry = swp_entry(type, i);
02098fea
HD
1424 page = read_swap_cache_async(entry,
1425 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1426 if (!page) {
1427 /*
1428 * Either swap_duplicate() failed because entry
1429 * has been freed independently, and will not be
1430 * reused since sys_swapoff() already disabled
1431 * allocation from here, or alloc_page() failed.
1432 */
edfe23da
SL
1433 swcount = *swap_map;
1434 /*
1435 * We don't hold lock here, so the swap entry could be
1436 * SWAP_MAP_BAD (when the cluster is discarding).
1437 * Instead of fail out, We can just skip the swap
1438 * entry because swapoff will wait for discarding
1439 * finish anyway.
1440 */
1441 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1442 continue;
1443 retval = -ENOMEM;
1444 break;
1445 }
1446
1447 /*
1448 * Don't hold on to start_mm if it looks like exiting.
1449 */
1450 if (atomic_read(&start_mm->mm_users) == 1) {
1451 mmput(start_mm);
1452 start_mm = &init_mm;
1453 atomic_inc(&init_mm.mm_users);
1454 }
1455
1456 /*
1457 * Wait for and lock page. When do_swap_page races with
1458 * try_to_unuse, do_swap_page can handle the fault much
1459 * faster than try_to_unuse can locate the entry. This
1460 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1461 * defer to do_swap_page in such a case - in some tests,
1462 * do_swap_page and try_to_unuse repeatedly compete.
1463 */
1464 wait_on_page_locked(page);
1465 wait_on_page_writeback(page);
1466 lock_page(page);
1467 wait_on_page_writeback(page);
1468
1469 /*
1470 * Remove all references to entry.
1da177e4 1471 */
1da177e4 1472 swcount = *swap_map;
aaa46865
HD
1473 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1474 retval = shmem_unuse(entry, page);
1475 /* page has already been unlocked and released */
1476 if (retval < 0)
1477 break;
1478 continue;
1da177e4 1479 }
aaa46865
HD
1480 if (swap_count(swcount) && start_mm != &init_mm)
1481 retval = unuse_mm(start_mm, entry, page);
1482
355cfa73 1483 if (swap_count(*swap_map)) {
1da177e4
LT
1484 int set_start_mm = (*swap_map >= swcount);
1485 struct list_head *p = &start_mm->mmlist;
1486 struct mm_struct *new_start_mm = start_mm;
1487 struct mm_struct *prev_mm = start_mm;
1488 struct mm_struct *mm;
1489
1490 atomic_inc(&new_start_mm->mm_users);
1491 atomic_inc(&prev_mm->mm_users);
1492 spin_lock(&mmlist_lock);
aaa46865 1493 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1494 (p = p->next) != &start_mm->mmlist) {
1495 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1496 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1497 continue;
1da177e4
LT
1498 spin_unlock(&mmlist_lock);
1499 mmput(prev_mm);
1500 prev_mm = mm;
1501
1502 cond_resched();
1503
1504 swcount = *swap_map;
355cfa73 1505 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1506 ;
aaa46865 1507 else if (mm == &init_mm)
1da177e4 1508 set_start_mm = 1;
aaa46865 1509 else
1da177e4 1510 retval = unuse_mm(mm, entry, page);
355cfa73 1511
32c5fc10 1512 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1513 mmput(new_start_mm);
1514 atomic_inc(&mm->mm_users);
1515 new_start_mm = mm;
1516 set_start_mm = 0;
1517 }
1518 spin_lock(&mmlist_lock);
1519 }
1520 spin_unlock(&mmlist_lock);
1521 mmput(prev_mm);
1522 mmput(start_mm);
1523 start_mm = new_start_mm;
1524 }
1525 if (retval) {
1526 unlock_page(page);
1527 page_cache_release(page);
1528 break;
1529 }
1530
1da177e4
LT
1531 /*
1532 * If a reference remains (rare), we would like to leave
1533 * the page in the swap cache; but try_to_unmap could
1534 * then re-duplicate the entry once we drop page lock,
1535 * so we might loop indefinitely; also, that page could
1536 * not be swapped out to other storage meanwhile. So:
1537 * delete from cache even if there's another reference,
1538 * after ensuring that the data has been saved to disk -
1539 * since if the reference remains (rarer), it will be
1540 * read from disk into another page. Splitting into two
1541 * pages would be incorrect if swap supported "shared
1542 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1543 *
1544 * Given how unuse_vma() targets one particular offset
1545 * in an anon_vma, once the anon_vma has been determined,
1546 * this splitting happens to be just what is needed to
1547 * handle where KSM pages have been swapped out: re-reading
1548 * is unnecessarily slow, but we can fix that later on.
1da177e4 1549 */
355cfa73
KH
1550 if (swap_count(*swap_map) &&
1551 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1552 struct writeback_control wbc = {
1553 .sync_mode = WB_SYNC_NONE,
1554 };
1555
1556 swap_writepage(page, &wbc);
1557 lock_page(page);
1558 wait_on_page_writeback(page);
1559 }
68bdc8d6
HD
1560
1561 /*
1562 * It is conceivable that a racing task removed this page from
1563 * swap cache just before we acquired the page lock at the top,
1564 * or while we dropped it in unuse_mm(). The page might even
1565 * be back in swap cache on another swap area: that we must not
1566 * delete, since it may not have been written out to swap yet.
1567 */
1568 if (PageSwapCache(page) &&
1569 likely(page_private(page) == entry.val))
2e0e26c7 1570 delete_from_swap_cache(page);
1da177e4
LT
1571
1572 /*
1573 * So we could skip searching mms once swap count went
1574 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1575 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1576 */
1577 SetPageDirty(page);
1578 unlock_page(page);
1579 page_cache_release(page);
1580
1581 /*
1582 * Make sure that we aren't completely killing
1583 * interactive performance.
1584 */
1585 cond_resched();
38b5faf4
DM
1586 if (frontswap && pages_to_unuse > 0) {
1587 if (!--pages_to_unuse)
1588 break;
1589 }
1da177e4
LT
1590 }
1591
1592 mmput(start_mm);
1da177e4
LT
1593 return retval;
1594}
1595
1596/*
5d337b91
HD
1597 * After a successful try_to_unuse, if no swap is now in use, we know
1598 * we can empty the mmlist. swap_lock must be held on entry and exit.
1599 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1600 * added to the mmlist just after page_duplicate - before would be racy.
1601 */
1602static void drain_mmlist(void)
1603{
1604 struct list_head *p, *next;
efa90a98 1605 unsigned int type;
1da177e4 1606
efa90a98
HD
1607 for (type = 0; type < nr_swapfiles; type++)
1608 if (swap_info[type]->inuse_pages)
1da177e4
LT
1609 return;
1610 spin_lock(&mmlist_lock);
1611 list_for_each_safe(p, next, &init_mm.mmlist)
1612 list_del_init(p);
1613 spin_unlock(&mmlist_lock);
1614}
1615
1616/*
1617 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1618 * corresponds to page offset for the specified swap entry.
1619 * Note that the type of this function is sector_t, but it returns page offset
1620 * into the bdev, not sector offset.
1da177e4 1621 */
d4906e1a 1622static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1623{
f29ad6a9
HD
1624 struct swap_info_struct *sis;
1625 struct swap_extent *start_se;
1626 struct swap_extent *se;
1627 pgoff_t offset;
1628
efa90a98 1629 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1630 *bdev = sis->bdev;
1631
1632 offset = swp_offset(entry);
1633 start_se = sis->curr_swap_extent;
1634 se = start_se;
1da177e4
LT
1635
1636 for ( ; ; ) {
1da177e4
LT
1637 if (se->start_page <= offset &&
1638 offset < (se->start_page + se->nr_pages)) {
1639 return se->start_block + (offset - se->start_page);
1640 }
a8ae4991 1641 se = list_next_entry(se, list);
1da177e4
LT
1642 sis->curr_swap_extent = se;
1643 BUG_ON(se == start_se); /* It *must* be present */
1644 }
1645}
1646
d4906e1a
LS
1647/*
1648 * Returns the page offset into bdev for the specified page's swap entry.
1649 */
1650sector_t map_swap_page(struct page *page, struct block_device **bdev)
1651{
1652 swp_entry_t entry;
1653 entry.val = page_private(page);
1654 return map_swap_entry(entry, bdev);
1655}
1656
1da177e4
LT
1657/*
1658 * Free all of a swapdev's extent information
1659 */
1660static void destroy_swap_extents(struct swap_info_struct *sis)
1661{
9625a5f2 1662 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1663 struct swap_extent *se;
1664
a8ae4991 1665 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1666 struct swap_extent, list);
1667 list_del(&se->list);
1668 kfree(se);
1669 }
62c230bc
MG
1670
1671 if (sis->flags & SWP_FILE) {
1672 struct file *swap_file = sis->swap_file;
1673 struct address_space *mapping = swap_file->f_mapping;
1674
1675 sis->flags &= ~SWP_FILE;
1676 mapping->a_ops->swap_deactivate(swap_file);
1677 }
1da177e4
LT
1678}
1679
1680/*
1681 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1682 * extent list. The extent list is kept sorted in page order.
1da177e4 1683 *
11d31886 1684 * This function rather assumes that it is called in ascending page order.
1da177e4 1685 */
a509bc1a 1686int
1da177e4
LT
1687add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1688 unsigned long nr_pages, sector_t start_block)
1689{
1690 struct swap_extent *se;
1691 struct swap_extent *new_se;
1692 struct list_head *lh;
1693
9625a5f2
HD
1694 if (start_page == 0) {
1695 se = &sis->first_swap_extent;
1696 sis->curr_swap_extent = se;
1697 se->start_page = 0;
1698 se->nr_pages = nr_pages;
1699 se->start_block = start_block;
1700 return 1;
1701 } else {
1702 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1703 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1704 BUG_ON(se->start_page + se->nr_pages != start_page);
1705 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1706 /* Merge it */
1707 se->nr_pages += nr_pages;
1708 return 0;
1709 }
1da177e4
LT
1710 }
1711
1712 /*
1713 * No merge. Insert a new extent, preserving ordering.
1714 */
1715 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1716 if (new_se == NULL)
1717 return -ENOMEM;
1718 new_se->start_page = start_page;
1719 new_se->nr_pages = nr_pages;
1720 new_se->start_block = start_block;
1721
9625a5f2 1722 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1723 return 1;
1da177e4
LT
1724}
1725
1726/*
1727 * A `swap extent' is a simple thing which maps a contiguous range of pages
1728 * onto a contiguous range of disk blocks. An ordered list of swap extents
1729 * is built at swapon time and is then used at swap_writepage/swap_readpage
1730 * time for locating where on disk a page belongs.
1731 *
1732 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1733 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1734 * swap files identically.
1735 *
1736 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1737 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1738 * swapfiles are handled *identically* after swapon time.
1739 *
1740 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1741 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1742 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1743 * requirements, they are simply tossed out - we will never use those blocks
1744 * for swapping.
1745 *
b0d9bcd4 1746 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1747 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1748 * which will scribble on the fs.
1749 *
1750 * The amount of disk space which a single swap extent represents varies.
1751 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1752 * extents in the list. To avoid much list walking, we cache the previous
1753 * search location in `curr_swap_extent', and start new searches from there.
1754 * This is extremely effective. The average number of iterations in
1755 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1756 */
53092a74 1757static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1758{
62c230bc
MG
1759 struct file *swap_file = sis->swap_file;
1760 struct address_space *mapping = swap_file->f_mapping;
1761 struct inode *inode = mapping->host;
1da177e4
LT
1762 int ret;
1763
1da177e4
LT
1764 if (S_ISBLK(inode->i_mode)) {
1765 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1766 *span = sis->pages;
a509bc1a 1767 return ret;
1da177e4
LT
1768 }
1769
62c230bc 1770 if (mapping->a_ops->swap_activate) {
a509bc1a 1771 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1772 if (!ret) {
1773 sis->flags |= SWP_FILE;
1774 ret = add_swap_extent(sis, 0, sis->max, 0);
1775 *span = sis->pages;
1776 }
a509bc1a 1777 return ret;
62c230bc
MG
1778 }
1779
a509bc1a 1780 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1781}
1782
cf0cac0a 1783static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1784 unsigned char *swap_map,
1785 struct swap_cluster_info *cluster_info)
40531542 1786{
40531542
CEB
1787 if (prio >= 0)
1788 p->prio = prio;
1789 else
1790 p->prio = --least_priority;
18ab4d4c
DS
1791 /*
1792 * the plist prio is negated because plist ordering is
1793 * low-to-high, while swap ordering is high-to-low
1794 */
1795 p->list.prio = -p->prio;
1796 p->avail_list.prio = -p->prio;
40531542 1797 p->swap_map = swap_map;
2a8f9449 1798 p->cluster_info = cluster_info;
40531542 1799 p->flags |= SWP_WRITEOK;
ec8acf20 1800 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1801 total_swap_pages += p->pages;
1802
adfab836 1803 assert_spin_locked(&swap_lock);
adfab836 1804 /*
18ab4d4c
DS
1805 * both lists are plists, and thus priority ordered.
1806 * swap_active_head needs to be priority ordered for swapoff(),
1807 * which on removal of any swap_info_struct with an auto-assigned
1808 * (i.e. negative) priority increments the auto-assigned priority
1809 * of any lower-priority swap_info_structs.
1810 * swap_avail_head needs to be priority ordered for get_swap_page(),
1811 * which allocates swap pages from the highest available priority
1812 * swap_info_struct.
adfab836 1813 */
18ab4d4c
DS
1814 plist_add(&p->list, &swap_active_head);
1815 spin_lock(&swap_avail_lock);
1816 plist_add(&p->avail_list, &swap_avail_head);
1817 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
1818}
1819
1820static void enable_swap_info(struct swap_info_struct *p, int prio,
1821 unsigned char *swap_map,
2a8f9449 1822 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1823 unsigned long *frontswap_map)
1824{
4f89849d 1825 frontswap_init(p->type, frontswap_map);
cf0cac0a 1826 spin_lock(&swap_lock);
ec8acf20 1827 spin_lock(&p->lock);
2a8f9449 1828 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1829 spin_unlock(&p->lock);
cf0cac0a
CEB
1830 spin_unlock(&swap_lock);
1831}
1832
1833static void reinsert_swap_info(struct swap_info_struct *p)
1834{
1835 spin_lock(&swap_lock);
ec8acf20 1836 spin_lock(&p->lock);
2a8f9449 1837 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1838 spin_unlock(&p->lock);
40531542
CEB
1839 spin_unlock(&swap_lock);
1840}
1841
c4ea37c2 1842SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1843{
73c34b6a 1844 struct swap_info_struct *p = NULL;
8d69aaee 1845 unsigned char *swap_map;
2a8f9449 1846 struct swap_cluster_info *cluster_info;
4f89849d 1847 unsigned long *frontswap_map;
1da177e4
LT
1848 struct file *swap_file, *victim;
1849 struct address_space *mapping;
1850 struct inode *inode;
91a27b2a 1851 struct filename *pathname;
adfab836 1852 int err, found = 0;
5b808a23 1853 unsigned int old_block_size;
886bb7e9 1854
1da177e4
LT
1855 if (!capable(CAP_SYS_ADMIN))
1856 return -EPERM;
1857
191c5424
AV
1858 BUG_ON(!current->mm);
1859
1da177e4 1860 pathname = getname(specialfile);
1da177e4 1861 if (IS_ERR(pathname))
f58b59c1 1862 return PTR_ERR(pathname);
1da177e4 1863
669abf4e 1864 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1865 err = PTR_ERR(victim);
1866 if (IS_ERR(victim))
1867 goto out;
1868
1869 mapping = victim->f_mapping;
5d337b91 1870 spin_lock(&swap_lock);
18ab4d4c 1871 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 1872 if (p->flags & SWP_WRITEOK) {
adfab836
DS
1873 if (p->swap_file->f_mapping == mapping) {
1874 found = 1;
1da177e4 1875 break;
adfab836 1876 }
1da177e4 1877 }
1da177e4 1878 }
adfab836 1879 if (!found) {
1da177e4 1880 err = -EINVAL;
5d337b91 1881 spin_unlock(&swap_lock);
1da177e4
LT
1882 goto out_dput;
1883 }
191c5424 1884 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1885 vm_unacct_memory(p->pages);
1886 else {
1887 err = -ENOMEM;
5d337b91 1888 spin_unlock(&swap_lock);
1da177e4
LT
1889 goto out_dput;
1890 }
18ab4d4c
DS
1891 spin_lock(&swap_avail_lock);
1892 plist_del(&p->avail_list, &swap_avail_head);
1893 spin_unlock(&swap_avail_lock);
ec8acf20 1894 spin_lock(&p->lock);
78ecba08 1895 if (p->prio < 0) {
adfab836
DS
1896 struct swap_info_struct *si = p;
1897
18ab4d4c 1898 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 1899 si->prio++;
18ab4d4c
DS
1900 si->list.prio--;
1901 si->avail_list.prio--;
adfab836 1902 }
78ecba08
HD
1903 least_priority++;
1904 }
18ab4d4c 1905 plist_del(&p->list, &swap_active_head);
ec8acf20 1906 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1907 total_swap_pages -= p->pages;
1908 p->flags &= ~SWP_WRITEOK;
ec8acf20 1909 spin_unlock(&p->lock);
5d337b91 1910 spin_unlock(&swap_lock);
fb4f88dc 1911
e1e12d2f 1912 set_current_oom_origin();
adfab836 1913 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 1914 clear_current_oom_origin();
1da177e4 1915
1da177e4
LT
1916 if (err) {
1917 /* re-insert swap space back into swap_list */
cf0cac0a 1918 reinsert_swap_info(p);
1da177e4
LT
1919 goto out_dput;
1920 }
52b7efdb 1921
815c2c54
SL
1922 flush_work(&p->discard_work);
1923
5d337b91 1924 destroy_swap_extents(p);
570a335b
HD
1925 if (p->flags & SWP_CONTINUED)
1926 free_swap_count_continuations(p);
1927
fc0abb14 1928 mutex_lock(&swapon_mutex);
5d337b91 1929 spin_lock(&swap_lock);
ec8acf20 1930 spin_lock(&p->lock);
5d337b91
HD
1931 drain_mmlist();
1932
52b7efdb 1933 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1934 p->highest_bit = 0; /* cuts scans short */
1935 while (p->flags >= SWP_SCANNING) {
ec8acf20 1936 spin_unlock(&p->lock);
5d337b91 1937 spin_unlock(&swap_lock);
13e4b57f 1938 schedule_timeout_uninterruptible(1);
5d337b91 1939 spin_lock(&swap_lock);
ec8acf20 1940 spin_lock(&p->lock);
52b7efdb 1941 }
52b7efdb 1942
1da177e4 1943 swap_file = p->swap_file;
5b808a23 1944 old_block_size = p->old_block_size;
1da177e4
LT
1945 p->swap_file = NULL;
1946 p->max = 0;
1947 swap_map = p->swap_map;
1948 p->swap_map = NULL;
2a8f9449
SL
1949 cluster_info = p->cluster_info;
1950 p->cluster_info = NULL;
4f89849d 1951 frontswap_map = frontswap_map_get(p);
ec8acf20 1952 spin_unlock(&p->lock);
5d337b91 1953 spin_unlock(&swap_lock);
adfab836 1954 frontswap_invalidate_area(p->type);
58e97ba6 1955 frontswap_map_set(p, NULL);
fc0abb14 1956 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1957 free_percpu(p->percpu_cluster);
1958 p->percpu_cluster = NULL;
1da177e4 1959 vfree(swap_map);
2a8f9449 1960 vfree(cluster_info);
4f89849d 1961 vfree(frontswap_map);
2de1a7e4 1962 /* Destroy swap account information */
adfab836 1963 swap_cgroup_swapoff(p->type);
27a7faa0 1964
1da177e4
LT
1965 inode = mapping->host;
1966 if (S_ISBLK(inode->i_mode)) {
1967 struct block_device *bdev = I_BDEV(inode);
5b808a23 1968 set_blocksize(bdev, old_block_size);
e525fd89 1969 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1970 } else {
1b1dcc1b 1971 mutex_lock(&inode->i_mutex);
1da177e4 1972 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1973 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1974 }
1975 filp_close(swap_file, NULL);
f893ab41
WY
1976
1977 /*
1978 * Clear the SWP_USED flag after all resources are freed so that swapon
1979 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1980 * not hold p->lock after we cleared its SWP_WRITEOK.
1981 */
1982 spin_lock(&swap_lock);
1983 p->flags = 0;
1984 spin_unlock(&swap_lock);
1985
1da177e4 1986 err = 0;
66d7dd51
KS
1987 atomic_inc(&proc_poll_event);
1988 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1989
1990out_dput:
1991 filp_close(victim, NULL);
1992out:
f58b59c1 1993 putname(pathname);
1da177e4
LT
1994 return err;
1995}
1996
1997#ifdef CONFIG_PROC_FS
66d7dd51
KS
1998static unsigned swaps_poll(struct file *file, poll_table *wait)
1999{
f1514638 2000 struct seq_file *seq = file->private_data;
66d7dd51
KS
2001
2002 poll_wait(file, &proc_poll_wait, wait);
2003
f1514638
KS
2004 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2005 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2006 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2007 }
2008
2009 return POLLIN | POLLRDNORM;
2010}
2011
1da177e4
LT
2012/* iterator */
2013static void *swap_start(struct seq_file *swap, loff_t *pos)
2014{
efa90a98
HD
2015 struct swap_info_struct *si;
2016 int type;
1da177e4
LT
2017 loff_t l = *pos;
2018
fc0abb14 2019 mutex_lock(&swapon_mutex);
1da177e4 2020
881e4aab
SS
2021 if (!l)
2022 return SEQ_START_TOKEN;
2023
efa90a98
HD
2024 for (type = 0; type < nr_swapfiles; type++) {
2025 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2026 si = swap_info[type];
2027 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2028 continue;
881e4aab 2029 if (!--l)
efa90a98 2030 return si;
1da177e4
LT
2031 }
2032
2033 return NULL;
2034}
2035
2036static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2037{
efa90a98
HD
2038 struct swap_info_struct *si = v;
2039 int type;
1da177e4 2040
881e4aab 2041 if (v == SEQ_START_TOKEN)
efa90a98
HD
2042 type = 0;
2043 else
2044 type = si->type + 1;
881e4aab 2045
efa90a98
HD
2046 for (; type < nr_swapfiles; type++) {
2047 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2048 si = swap_info[type];
2049 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2050 continue;
2051 ++*pos;
efa90a98 2052 return si;
1da177e4
LT
2053 }
2054
2055 return NULL;
2056}
2057
2058static void swap_stop(struct seq_file *swap, void *v)
2059{
fc0abb14 2060 mutex_unlock(&swapon_mutex);
1da177e4
LT
2061}
2062
2063static int swap_show(struct seq_file *swap, void *v)
2064{
efa90a98 2065 struct swap_info_struct *si = v;
1da177e4
LT
2066 struct file *file;
2067 int len;
2068
efa90a98 2069 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2070 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2071 return 0;
2072 }
1da177e4 2073
efa90a98 2074 file = si->swap_file;
2726d566 2075 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2076 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2077 len < 40 ? 40 - len : 1, " ",
496ad9aa 2078 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2079 "partition" : "file\t",
efa90a98
HD
2080 si->pages << (PAGE_SHIFT - 10),
2081 si->inuse_pages << (PAGE_SHIFT - 10),
2082 si->prio);
1da177e4
LT
2083 return 0;
2084}
2085
15ad7cdc 2086static const struct seq_operations swaps_op = {
1da177e4
LT
2087 .start = swap_start,
2088 .next = swap_next,
2089 .stop = swap_stop,
2090 .show = swap_show
2091};
2092
2093static int swaps_open(struct inode *inode, struct file *file)
2094{
f1514638 2095 struct seq_file *seq;
66d7dd51
KS
2096 int ret;
2097
66d7dd51 2098 ret = seq_open(file, &swaps_op);
f1514638 2099 if (ret)
66d7dd51 2100 return ret;
66d7dd51 2101
f1514638
KS
2102 seq = file->private_data;
2103 seq->poll_event = atomic_read(&proc_poll_event);
2104 return 0;
1da177e4
LT
2105}
2106
15ad7cdc 2107static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2108 .open = swaps_open,
2109 .read = seq_read,
2110 .llseek = seq_lseek,
2111 .release = seq_release,
66d7dd51 2112 .poll = swaps_poll,
1da177e4
LT
2113};
2114
2115static int __init procswaps_init(void)
2116{
3d71f86f 2117 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2118 return 0;
2119}
2120__initcall(procswaps_init);
2121#endif /* CONFIG_PROC_FS */
2122
1796316a
JB
2123#ifdef MAX_SWAPFILES_CHECK
2124static int __init max_swapfiles_check(void)
2125{
2126 MAX_SWAPFILES_CHECK();
2127 return 0;
2128}
2129late_initcall(max_swapfiles_check);
2130#endif
2131
53cbb243 2132static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2133{
73c34b6a 2134 struct swap_info_struct *p;
1da177e4 2135 unsigned int type;
efa90a98
HD
2136
2137 p = kzalloc(sizeof(*p), GFP_KERNEL);
2138 if (!p)
53cbb243 2139 return ERR_PTR(-ENOMEM);
efa90a98 2140
5d337b91 2141 spin_lock(&swap_lock);
efa90a98
HD
2142 for (type = 0; type < nr_swapfiles; type++) {
2143 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2144 break;
efa90a98 2145 }
0697212a 2146 if (type >= MAX_SWAPFILES) {
5d337b91 2147 spin_unlock(&swap_lock);
efa90a98 2148 kfree(p);
730c0581 2149 return ERR_PTR(-EPERM);
1da177e4 2150 }
efa90a98
HD
2151 if (type >= nr_swapfiles) {
2152 p->type = type;
2153 swap_info[type] = p;
2154 /*
2155 * Write swap_info[type] before nr_swapfiles, in case a
2156 * racing procfs swap_start() or swap_next() is reading them.
2157 * (We never shrink nr_swapfiles, we never free this entry.)
2158 */
2159 smp_wmb();
2160 nr_swapfiles++;
2161 } else {
2162 kfree(p);
2163 p = swap_info[type];
2164 /*
2165 * Do not memset this entry: a racing procfs swap_next()
2166 * would be relying on p->type to remain valid.
2167 */
2168 }
9625a5f2 2169 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2170 plist_node_init(&p->list, 0);
2171 plist_node_init(&p->avail_list, 0);
1da177e4 2172 p->flags = SWP_USED;
5d337b91 2173 spin_unlock(&swap_lock);
ec8acf20 2174 spin_lock_init(&p->lock);
efa90a98 2175
53cbb243 2176 return p;
53cbb243
CEB
2177}
2178
4d0e1e10
CEB
2179static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2180{
2181 int error;
2182
2183 if (S_ISBLK(inode->i_mode)) {
2184 p->bdev = bdgrab(I_BDEV(inode));
2185 error = blkdev_get(p->bdev,
6f179af8 2186 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2187 if (error < 0) {
2188 p->bdev = NULL;
6f179af8 2189 return error;
4d0e1e10
CEB
2190 }
2191 p->old_block_size = block_size(p->bdev);
2192 error = set_blocksize(p->bdev, PAGE_SIZE);
2193 if (error < 0)
87ade72a 2194 return error;
4d0e1e10
CEB
2195 p->flags |= SWP_BLKDEV;
2196 } else if (S_ISREG(inode->i_mode)) {
2197 p->bdev = inode->i_sb->s_bdev;
2198 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2199 if (IS_SWAPFILE(inode))
2200 return -EBUSY;
2201 } else
2202 return -EINVAL;
4d0e1e10
CEB
2203
2204 return 0;
4d0e1e10
CEB
2205}
2206
ca8bd38b
CEB
2207static unsigned long read_swap_header(struct swap_info_struct *p,
2208 union swap_header *swap_header,
2209 struct inode *inode)
2210{
2211 int i;
2212 unsigned long maxpages;
2213 unsigned long swapfilepages;
d6bbbd29 2214 unsigned long last_page;
ca8bd38b
CEB
2215
2216 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2217 pr_err("Unable to find swap-space signature\n");
38719025 2218 return 0;
ca8bd38b
CEB
2219 }
2220
2221 /* swap partition endianess hack... */
2222 if (swab32(swap_header->info.version) == 1) {
2223 swab32s(&swap_header->info.version);
2224 swab32s(&swap_header->info.last_page);
2225 swab32s(&swap_header->info.nr_badpages);
2226 for (i = 0; i < swap_header->info.nr_badpages; i++)
2227 swab32s(&swap_header->info.badpages[i]);
2228 }
2229 /* Check the swap header's sub-version */
2230 if (swap_header->info.version != 1) {
465c47fd
AM
2231 pr_warn("Unable to handle swap header version %d\n",
2232 swap_header->info.version);
38719025 2233 return 0;
ca8bd38b
CEB
2234 }
2235
2236 p->lowest_bit = 1;
2237 p->cluster_next = 1;
2238 p->cluster_nr = 0;
2239
2240 /*
2241 * Find out how many pages are allowed for a single swap
9b15b817 2242 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2243 * of bits for the swap offset in the swp_entry_t type, and
2244 * 2) the number of bits in the swap pte as defined by the
9b15b817 2245 * different architectures. In order to find the
a2c16d6c 2246 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2247 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2248 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2249 * offset is extracted. This will mask all the bits from
2250 * the initial ~0UL mask that can't be encoded in either
2251 * the swp_entry_t or the architecture definition of a
9b15b817 2252 * swap pte.
ca8bd38b
CEB
2253 */
2254 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2255 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2256 last_page = swap_header->info.last_page;
2257 if (last_page > maxpages) {
465c47fd 2258 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2259 maxpages << (PAGE_SHIFT - 10),
2260 last_page << (PAGE_SHIFT - 10));
2261 }
2262 if (maxpages > last_page) {
2263 maxpages = last_page + 1;
ca8bd38b
CEB
2264 /* p->max is an unsigned int: don't overflow it */
2265 if ((unsigned int)maxpages == 0)
2266 maxpages = UINT_MAX;
2267 }
2268 p->highest_bit = maxpages - 1;
2269
2270 if (!maxpages)
38719025 2271 return 0;
ca8bd38b
CEB
2272 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2273 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2274 pr_warn("Swap area shorter than signature indicates\n");
38719025 2275 return 0;
ca8bd38b
CEB
2276 }
2277 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2278 return 0;
ca8bd38b 2279 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2280 return 0;
ca8bd38b
CEB
2281
2282 return maxpages;
ca8bd38b
CEB
2283}
2284
915d4d7b
CEB
2285static int setup_swap_map_and_extents(struct swap_info_struct *p,
2286 union swap_header *swap_header,
2287 unsigned char *swap_map,
2a8f9449 2288 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2289 unsigned long maxpages,
2290 sector_t *span)
2291{
2292 int i;
915d4d7b
CEB
2293 unsigned int nr_good_pages;
2294 int nr_extents;
2a8f9449
SL
2295 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2296 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2297
2298 nr_good_pages = maxpages - 1; /* omit header page */
2299
2a8f9449
SL
2300 cluster_set_null(&p->free_cluster_head);
2301 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2302 cluster_set_null(&p->discard_cluster_head);
2303 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2304
915d4d7b
CEB
2305 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2306 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2307 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2308 return -EINVAL;
915d4d7b
CEB
2309 if (page_nr < maxpages) {
2310 swap_map[page_nr] = SWAP_MAP_BAD;
2311 nr_good_pages--;
2a8f9449
SL
2312 /*
2313 * Haven't marked the cluster free yet, no list
2314 * operation involved
2315 */
2316 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2317 }
2318 }
2319
2a8f9449
SL
2320 /* Haven't marked the cluster free yet, no list operation involved */
2321 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2322 inc_cluster_info_page(p, cluster_info, i);
2323
915d4d7b
CEB
2324 if (nr_good_pages) {
2325 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2326 /*
2327 * Not mark the cluster free yet, no list
2328 * operation involved
2329 */
2330 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2331 p->max = maxpages;
2332 p->pages = nr_good_pages;
2333 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2334 if (nr_extents < 0)
2335 return nr_extents;
915d4d7b
CEB
2336 nr_good_pages = p->pages;
2337 }
2338 if (!nr_good_pages) {
465c47fd 2339 pr_warn("Empty swap-file\n");
bdb8e3f6 2340 return -EINVAL;
915d4d7b
CEB
2341 }
2342
2a8f9449
SL
2343 if (!cluster_info)
2344 return nr_extents;
2345
2346 for (i = 0; i < nr_clusters; i++) {
2347 if (!cluster_count(&cluster_info[idx])) {
2348 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2349 if (cluster_is_null(&p->free_cluster_head)) {
2350 cluster_set_next_flag(&p->free_cluster_head,
2351 idx, 0);
2352 cluster_set_next_flag(&p->free_cluster_tail,
2353 idx, 0);
2354 } else {
2355 unsigned int tail;
2356
2357 tail = cluster_next(&p->free_cluster_tail);
2358 cluster_set_next(&cluster_info[tail], idx);
2359 cluster_set_next_flag(&p->free_cluster_tail,
2360 idx, 0);
2361 }
2362 }
2363 idx++;
2364 if (idx == nr_clusters)
2365 idx = 0;
2366 }
915d4d7b 2367 return nr_extents;
915d4d7b
CEB
2368}
2369
dcf6b7dd
RA
2370/*
2371 * Helper to sys_swapon determining if a given swap
2372 * backing device queue supports DISCARD operations.
2373 */
2374static bool swap_discardable(struct swap_info_struct *si)
2375{
2376 struct request_queue *q = bdev_get_queue(si->bdev);
2377
2378 if (!q || !blk_queue_discard(q))
2379 return false;
2380
2381 return true;
2382}
2383
53cbb243
CEB
2384SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2385{
2386 struct swap_info_struct *p;
91a27b2a 2387 struct filename *name;
53cbb243
CEB
2388 struct file *swap_file = NULL;
2389 struct address_space *mapping;
40531542 2390 int prio;
53cbb243
CEB
2391 int error;
2392 union swap_header *swap_header;
915d4d7b 2393 int nr_extents;
53cbb243
CEB
2394 sector_t span;
2395 unsigned long maxpages;
53cbb243 2396 unsigned char *swap_map = NULL;
2a8f9449 2397 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2398 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2399 struct page *page = NULL;
2400 struct inode *inode = NULL;
53cbb243 2401
d15cab97
HD
2402 if (swap_flags & ~SWAP_FLAGS_VALID)
2403 return -EINVAL;
2404
53cbb243
CEB
2405 if (!capable(CAP_SYS_ADMIN))
2406 return -EPERM;
2407
2408 p = alloc_swap_info();
2542e513
CEB
2409 if (IS_ERR(p))
2410 return PTR_ERR(p);
53cbb243 2411
815c2c54
SL
2412 INIT_WORK(&p->discard_work, swap_discard_work);
2413
1da177e4 2414 name = getname(specialfile);
1da177e4 2415 if (IS_ERR(name)) {
7de7fb6b 2416 error = PTR_ERR(name);
1da177e4 2417 name = NULL;
bd69010b 2418 goto bad_swap;
1da177e4 2419 }
669abf4e 2420 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2421 if (IS_ERR(swap_file)) {
7de7fb6b 2422 error = PTR_ERR(swap_file);
1da177e4 2423 swap_file = NULL;
bd69010b 2424 goto bad_swap;
1da177e4
LT
2425 }
2426
2427 p->swap_file = swap_file;
2428 mapping = swap_file->f_mapping;
2130781e 2429 inode = mapping->host;
6f179af8 2430
2130781e 2431 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2432 error = claim_swapfile(p, inode);
2433 if (unlikely(error))
1da177e4 2434 goto bad_swap;
1da177e4 2435
1da177e4
LT
2436 /*
2437 * Read the swap header.
2438 */
2439 if (!mapping->a_ops->readpage) {
2440 error = -EINVAL;
2441 goto bad_swap;
2442 }
090d2b18 2443 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2444 if (IS_ERR(page)) {
2445 error = PTR_ERR(page);
2446 goto bad_swap;
2447 }
81e33971 2448 swap_header = kmap(page);
1da177e4 2449
ca8bd38b
CEB
2450 maxpages = read_swap_header(p, swap_header, inode);
2451 if (unlikely(!maxpages)) {
1da177e4
LT
2452 error = -EINVAL;
2453 goto bad_swap;
2454 }
886bb7e9 2455
81e33971 2456 /* OK, set up the swap map and apply the bad block list */
803d0c83 2457 swap_map = vzalloc(maxpages);
81e33971
HD
2458 if (!swap_map) {
2459 error = -ENOMEM;
2460 goto bad_swap;
2461 }
2a8f9449 2462 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8
HD
2463 int cpu;
2464
2a8f9449
SL
2465 p->flags |= SWP_SOLIDSTATE;
2466 /*
2467 * select a random position to start with to help wear leveling
2468 * SSD
2469 */
2470 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2471
2472 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2473 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2474 if (!cluster_info) {
2475 error = -ENOMEM;
2476 goto bad_swap;
2477 }
ebc2a1a6
SL
2478 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2479 if (!p->percpu_cluster) {
2480 error = -ENOMEM;
2481 goto bad_swap;
2482 }
6f179af8 2483 for_each_possible_cpu(cpu) {
ebc2a1a6 2484 struct percpu_cluster *cluster;
6f179af8 2485 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2486 cluster_set_null(&cluster->index);
2487 }
2a8f9449 2488 }
1da177e4 2489
1421ef3c
CEB
2490 error = swap_cgroup_swapon(p->type, maxpages);
2491 if (error)
2492 goto bad_swap;
2493
915d4d7b 2494 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2495 cluster_info, maxpages, &span);
915d4d7b
CEB
2496 if (unlikely(nr_extents < 0)) {
2497 error = nr_extents;
1da177e4
LT
2498 goto bad_swap;
2499 }
38b5faf4
DM
2500 /* frontswap enabled? set up bit-per-page map for frontswap */
2501 if (frontswap_enabled)
7b57976d 2502 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2503
2a8f9449
SL
2504 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2505 /*
2506 * When discard is enabled for swap with no particular
2507 * policy flagged, we set all swap discard flags here in
2508 * order to sustain backward compatibility with older
2509 * swapon(8) releases.
2510 */
2511 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2512 SWP_PAGE_DISCARD);
dcf6b7dd 2513
2a8f9449
SL
2514 /*
2515 * By flagging sys_swapon, a sysadmin can tell us to
2516 * either do single-time area discards only, or to just
2517 * perform discards for released swap page-clusters.
2518 * Now it's time to adjust the p->flags accordingly.
2519 */
2520 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2521 p->flags &= ~SWP_PAGE_DISCARD;
2522 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2523 p->flags &= ~SWP_AREA_DISCARD;
2524
2525 /* issue a swapon-time discard if it's still required */
2526 if (p->flags & SWP_AREA_DISCARD) {
2527 int err = discard_swap(p);
2528 if (unlikely(err))
2529 pr_err("swapon: discard_swap(%p): %d\n",
2530 p, err);
dcf6b7dd 2531 }
20137a49 2532 }
6a6ba831 2533
fc0abb14 2534 mutex_lock(&swapon_mutex);
40531542 2535 prio = -1;
78ecba08 2536 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2537 prio =
78ecba08 2538 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2539 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2540
465c47fd 2541 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2542 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2543 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2544 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2545 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2546 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2547 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2548 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2549 (frontswap_map) ? "FS" : "");
c69dbfb8 2550
fc0abb14 2551 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2552 atomic_inc(&proc_poll_event);
2553 wake_up_interruptible(&proc_poll_wait);
2554
9b01c350
CEB
2555 if (S_ISREG(inode->i_mode))
2556 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2557 error = 0;
2558 goto out;
2559bad_swap:
ebc2a1a6
SL
2560 free_percpu(p->percpu_cluster);
2561 p->percpu_cluster = NULL;
bd69010b 2562 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2563 set_blocksize(p->bdev, p->old_block_size);
2564 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2565 }
4cd3bb10 2566 destroy_swap_extents(p);
e8e6c2ec 2567 swap_cgroup_swapoff(p->type);
5d337b91 2568 spin_lock(&swap_lock);
1da177e4 2569 p->swap_file = NULL;
1da177e4 2570 p->flags = 0;
5d337b91 2571 spin_unlock(&swap_lock);
1da177e4 2572 vfree(swap_map);
2a8f9449 2573 vfree(cluster_info);
52c50567 2574 if (swap_file) {
2130781e 2575 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2576 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2577 inode = NULL;
2578 }
1da177e4 2579 filp_close(swap_file, NULL);
52c50567 2580 }
1da177e4
LT
2581out:
2582 if (page && !IS_ERR(page)) {
2583 kunmap(page);
2584 page_cache_release(page);
2585 }
2586 if (name)
2587 putname(name);
9b01c350 2588 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2589 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2590 return error;
2591}
2592
2593void si_swapinfo(struct sysinfo *val)
2594{
efa90a98 2595 unsigned int type;
1da177e4
LT
2596 unsigned long nr_to_be_unused = 0;
2597
5d337b91 2598 spin_lock(&swap_lock);
efa90a98
HD
2599 for (type = 0; type < nr_swapfiles; type++) {
2600 struct swap_info_struct *si = swap_info[type];
2601
2602 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2603 nr_to_be_unused += si->inuse_pages;
1da177e4 2604 }
ec8acf20 2605 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2606 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2607 spin_unlock(&swap_lock);
1da177e4
LT
2608}
2609
2610/*
2611 * Verify that a swap entry is valid and increment its swap map count.
2612 *
355cfa73
KH
2613 * Returns error code in following case.
2614 * - success -> 0
2615 * - swp_entry is invalid -> EINVAL
2616 * - swp_entry is migration entry -> EINVAL
2617 * - swap-cache reference is requested but there is already one. -> EEXIST
2618 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2619 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2620 */
8d69aaee 2621static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2622{
73c34b6a 2623 struct swap_info_struct *p;
1da177e4 2624 unsigned long offset, type;
8d69aaee
HD
2625 unsigned char count;
2626 unsigned char has_cache;
253d553b 2627 int err = -EINVAL;
1da177e4 2628
a7420aa5 2629 if (non_swap_entry(entry))
253d553b 2630 goto out;
0697212a 2631
1da177e4
LT
2632 type = swp_type(entry);
2633 if (type >= nr_swapfiles)
2634 goto bad_file;
efa90a98 2635 p = swap_info[type];
1da177e4
LT
2636 offset = swp_offset(entry);
2637
ec8acf20 2638 spin_lock(&p->lock);
355cfa73
KH
2639 if (unlikely(offset >= p->max))
2640 goto unlock_out;
2641
253d553b 2642 count = p->swap_map[offset];
edfe23da
SL
2643
2644 /*
2645 * swapin_readahead() doesn't check if a swap entry is valid, so the
2646 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2647 */
2648 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2649 err = -ENOENT;
2650 goto unlock_out;
2651 }
2652
253d553b
HD
2653 has_cache = count & SWAP_HAS_CACHE;
2654 count &= ~SWAP_HAS_CACHE;
2655 err = 0;
355cfa73 2656
253d553b 2657 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2658
2659 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2660 if (!has_cache && count)
2661 has_cache = SWAP_HAS_CACHE;
2662 else if (has_cache) /* someone else added cache */
2663 err = -EEXIST;
2664 else /* no users remaining */
2665 err = -ENOENT;
355cfa73
KH
2666
2667 } else if (count || has_cache) {
253d553b 2668
570a335b
HD
2669 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2670 count += usage;
2671 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2672 err = -EINVAL;
570a335b
HD
2673 else if (swap_count_continued(p, offset, count))
2674 count = COUNT_CONTINUED;
2675 else
2676 err = -ENOMEM;
355cfa73 2677 } else
253d553b
HD
2678 err = -ENOENT; /* unused swap entry */
2679
2680 p->swap_map[offset] = count | has_cache;
2681
355cfa73 2682unlock_out:
ec8acf20 2683 spin_unlock(&p->lock);
1da177e4 2684out:
253d553b 2685 return err;
1da177e4
LT
2686
2687bad_file:
465c47fd 2688 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2689 goto out;
2690}
253d553b 2691
aaa46865
HD
2692/*
2693 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2694 * (in which case its reference count is never incremented).
2695 */
2696void swap_shmem_alloc(swp_entry_t entry)
2697{
2698 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2699}
2700
355cfa73 2701/*
08259d58
HD
2702 * Increase reference count of swap entry by 1.
2703 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2704 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2705 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2706 * might occur if a page table entry has got corrupted.
355cfa73 2707 */
570a335b 2708int swap_duplicate(swp_entry_t entry)
355cfa73 2709{
570a335b
HD
2710 int err = 0;
2711
2712 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2713 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2714 return err;
355cfa73 2715}
1da177e4 2716
cb4b86ba 2717/*
355cfa73
KH
2718 * @entry: swap entry for which we allocate swap cache.
2719 *
73c34b6a 2720 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2721 * This can return error codes. Returns 0 at success.
2722 * -EBUSY means there is a swap cache.
2723 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2724 */
2725int swapcache_prepare(swp_entry_t entry)
2726{
253d553b 2727 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2728}
2729
f981c595
MG
2730struct swap_info_struct *page_swap_info(struct page *page)
2731{
2732 swp_entry_t swap = { .val = page_private(page) };
2733 BUG_ON(!PageSwapCache(page));
2734 return swap_info[swp_type(swap)];
2735}
2736
2737/*
2738 * out-of-line __page_file_ methods to avoid include hell.
2739 */
2740struct address_space *__page_file_mapping(struct page *page)
2741{
309381fe 2742 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2743 return page_swap_info(page)->swap_file->f_mapping;
2744}
2745EXPORT_SYMBOL_GPL(__page_file_mapping);
2746
2747pgoff_t __page_file_index(struct page *page)
2748{
2749 swp_entry_t swap = { .val = page_private(page) };
309381fe 2750 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2751 return swp_offset(swap);
2752}
2753EXPORT_SYMBOL_GPL(__page_file_index);
2754
570a335b
HD
2755/*
2756 * add_swap_count_continuation - called when a swap count is duplicated
2757 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2758 * page of the original vmalloc'ed swap_map, to hold the continuation count
2759 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2760 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2761 *
2762 * These continuation pages are seldom referenced: the common paths all work
2763 * on the original swap_map, only referring to a continuation page when the
2764 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2765 *
2766 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2767 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2768 * can be called after dropping locks.
2769 */
2770int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2771{
2772 struct swap_info_struct *si;
2773 struct page *head;
2774 struct page *page;
2775 struct page *list_page;
2776 pgoff_t offset;
2777 unsigned char count;
2778
2779 /*
2780 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2781 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2782 */
2783 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2784
2785 si = swap_info_get(entry);
2786 if (!si) {
2787 /*
2788 * An acceptable race has occurred since the failing
2789 * __swap_duplicate(): the swap entry has been freed,
2790 * perhaps even the whole swap_map cleared for swapoff.
2791 */
2792 goto outer;
2793 }
2794
2795 offset = swp_offset(entry);
2796 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2797
2798 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2799 /*
2800 * The higher the swap count, the more likely it is that tasks
2801 * will race to add swap count continuation: we need to avoid
2802 * over-provisioning.
2803 */
2804 goto out;
2805 }
2806
2807 if (!page) {
ec8acf20 2808 spin_unlock(&si->lock);
570a335b
HD
2809 return -ENOMEM;
2810 }
2811
2812 /*
2813 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2814 * no architecture is using highmem pages for kernel page tables: so it
2815 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2816 */
2817 head = vmalloc_to_page(si->swap_map + offset);
2818 offset &= ~PAGE_MASK;
2819
2820 /*
2821 * Page allocation does not initialize the page's lru field,
2822 * but it does always reset its private field.
2823 */
2824 if (!page_private(head)) {
2825 BUG_ON(count & COUNT_CONTINUED);
2826 INIT_LIST_HEAD(&head->lru);
2827 set_page_private(head, SWP_CONTINUED);
2828 si->flags |= SWP_CONTINUED;
2829 }
2830
2831 list_for_each_entry(list_page, &head->lru, lru) {
2832 unsigned char *map;
2833
2834 /*
2835 * If the previous map said no continuation, but we've found
2836 * a continuation page, free our allocation and use this one.
2837 */
2838 if (!(count & COUNT_CONTINUED))
2839 goto out;
2840
9b04c5fe 2841 map = kmap_atomic(list_page) + offset;
570a335b 2842 count = *map;
9b04c5fe 2843 kunmap_atomic(map);
570a335b
HD
2844
2845 /*
2846 * If this continuation count now has some space in it,
2847 * free our allocation and use this one.
2848 */
2849 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2850 goto out;
2851 }
2852
2853 list_add_tail(&page->lru, &head->lru);
2854 page = NULL; /* now it's attached, don't free it */
2855out:
ec8acf20 2856 spin_unlock(&si->lock);
570a335b
HD
2857outer:
2858 if (page)
2859 __free_page(page);
2860 return 0;
2861}
2862
2863/*
2864 * swap_count_continued - when the original swap_map count is incremented
2865 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2866 * into, carry if so, or else fail until a new continuation page is allocated;
2867 * when the original swap_map count is decremented from 0 with continuation,
2868 * borrow from the continuation and report whether it still holds more.
2869 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2870 */
2871static bool swap_count_continued(struct swap_info_struct *si,
2872 pgoff_t offset, unsigned char count)
2873{
2874 struct page *head;
2875 struct page *page;
2876 unsigned char *map;
2877
2878 head = vmalloc_to_page(si->swap_map + offset);
2879 if (page_private(head) != SWP_CONTINUED) {
2880 BUG_ON(count & COUNT_CONTINUED);
2881 return false; /* need to add count continuation */
2882 }
2883
2884 offset &= ~PAGE_MASK;
2885 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2886 map = kmap_atomic(page) + offset;
570a335b
HD
2887
2888 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2889 goto init_map; /* jump over SWAP_CONT_MAX checks */
2890
2891 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2892 /*
2893 * Think of how you add 1 to 999
2894 */
2895 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2896 kunmap_atomic(map);
570a335b
HD
2897 page = list_entry(page->lru.next, struct page, lru);
2898 BUG_ON(page == head);
9b04c5fe 2899 map = kmap_atomic(page) + offset;
570a335b
HD
2900 }
2901 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2902 kunmap_atomic(map);
570a335b
HD
2903 page = list_entry(page->lru.next, struct page, lru);
2904 if (page == head)
2905 return false; /* add count continuation */
9b04c5fe 2906 map = kmap_atomic(page) + offset;
570a335b
HD
2907init_map: *map = 0; /* we didn't zero the page */
2908 }
2909 *map += 1;
9b04c5fe 2910 kunmap_atomic(map);
570a335b
HD
2911 page = list_entry(page->lru.prev, struct page, lru);
2912 while (page != head) {
9b04c5fe 2913 map = kmap_atomic(page) + offset;
570a335b 2914 *map = COUNT_CONTINUED;
9b04c5fe 2915 kunmap_atomic(map);
570a335b
HD
2916 page = list_entry(page->lru.prev, struct page, lru);
2917 }
2918 return true; /* incremented */
2919
2920 } else { /* decrementing */
2921 /*
2922 * Think of how you subtract 1 from 1000
2923 */
2924 BUG_ON(count != COUNT_CONTINUED);
2925 while (*map == COUNT_CONTINUED) {
9b04c5fe 2926 kunmap_atomic(map);
570a335b
HD
2927 page = list_entry(page->lru.next, struct page, lru);
2928 BUG_ON(page == head);
9b04c5fe 2929 map = kmap_atomic(page) + offset;
570a335b
HD
2930 }
2931 BUG_ON(*map == 0);
2932 *map -= 1;
2933 if (*map == 0)
2934 count = 0;
9b04c5fe 2935 kunmap_atomic(map);
570a335b
HD
2936 page = list_entry(page->lru.prev, struct page, lru);
2937 while (page != head) {
9b04c5fe 2938 map = kmap_atomic(page) + offset;
570a335b
HD
2939 *map = SWAP_CONT_MAX | count;
2940 count = COUNT_CONTINUED;
9b04c5fe 2941 kunmap_atomic(map);
570a335b
HD
2942 page = list_entry(page->lru.prev, struct page, lru);
2943 }
2944 return count == COUNT_CONTINUED;
2945 }
2946}
2947
2948/*
2949 * free_swap_count_continuations - swapoff free all the continuation pages
2950 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2951 */
2952static void free_swap_count_continuations(struct swap_info_struct *si)
2953{
2954 pgoff_t offset;
2955
2956 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2957 struct page *head;
2958 head = vmalloc_to_page(si->swap_map + offset);
2959 if (page_private(head)) {
0d576d20
GT
2960 struct page *page, *next;
2961
2962 list_for_each_entry_safe(page, next, &head->lru, lru) {
2963 list_del(&page->lru);
570a335b
HD
2964 __free_page(page);
2965 }
2966 }
2967 }
2968}
This page took 1.01438 seconds and 5 git commands to generate.