mm, mmzone: clarify the usage of zone padding
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
f9fe48be 49#include <linux/dax.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
52#include <asm/div64.h>
53
54#include <linux/swapops.h>
117aad1e 55#include <linux/balloon_compaction.h>
1da177e4 56
0f8053a5
NP
57#include "internal.h"
58
33906bc5
MG
59#define CREATE_TRACE_POINTS
60#include <trace/events/vmscan.h>
61
1da177e4 62struct scan_control {
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4 68
ee814fe2 69 /* Allocation order */
5ad333eb 70 int order;
66e1707b 71
ee814fe2
JW
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
9e3b2f8c 77
f16015fb
JW
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
66e1707b 83
ee814fe2
JW
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 unsigned int may_writepage:1;
88
89 /* Can mapped pages be reclaimed? */
90 unsigned int may_unmap:1;
91
92 /* Can pages be swapped as part of reclaim? */
93 unsigned int may_swap:1;
94
241994ed
JW
95 /* Can cgroups be reclaimed below their normal consumption range? */
96 unsigned int may_thrash:1;
97
ee814fe2
JW
98 unsigned int hibernation_mode:1;
99
100 /* One of the zones is ready for compaction */
101 unsigned int compaction_ready:1;
102
103 /* Incremented by the number of inactive pages that were scanned */
104 unsigned long nr_scanned;
105
106 /* Number of pages freed so far during a call to shrink_zones() */
107 unsigned long nr_reclaimed;
1da177e4
LT
108};
109
1da177e4
LT
110#ifdef ARCH_HAS_PREFETCH
111#define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120#else
121#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122#endif
123
124#ifdef ARCH_HAS_PREFETCHW
125#define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134#else
135#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136#endif
137
138/*
139 * From 0 .. 100. Higher means more swappy.
140 */
141int vm_swappiness = 60;
d0480be4
WSH
142/*
143 * The total number of pages which are beyond the high watermark within all
144 * zones.
145 */
146unsigned long vm_total_pages;
1da177e4
LT
147
148static LIST_HEAD(shrinker_list);
149static DECLARE_RWSEM(shrinker_rwsem);
150
c255a458 151#ifdef CONFIG_MEMCG
89b5fae5
JW
152static bool global_reclaim(struct scan_control *sc)
153{
f16015fb 154 return !sc->target_mem_cgroup;
89b5fae5 155}
97c9341f
TH
156
157/**
158 * sane_reclaim - is the usual dirty throttling mechanism operational?
159 * @sc: scan_control in question
160 *
161 * The normal page dirty throttling mechanism in balance_dirty_pages() is
162 * completely broken with the legacy memcg and direct stalling in
163 * shrink_page_list() is used for throttling instead, which lacks all the
164 * niceties such as fairness, adaptive pausing, bandwidth proportional
165 * allocation and configurability.
166 *
167 * This function tests whether the vmscan currently in progress can assume
168 * that the normal dirty throttling mechanism is operational.
169 */
170static bool sane_reclaim(struct scan_control *sc)
171{
172 struct mem_cgroup *memcg = sc->target_mem_cgroup;
173
174 if (!memcg)
175 return true;
176#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
178 return true;
179#endif
180 return false;
181}
91a45470 182#else
89b5fae5
JW
183static bool global_reclaim(struct scan_control *sc)
184{
185 return true;
186}
97c9341f
TH
187
188static bool sane_reclaim(struct scan_control *sc)
189{
190 return true;
191}
91a45470
KH
192#endif
193
599d0c95
MG
194/*
195 * This misses isolated pages which are not accounted for to save counters.
196 * As the data only determines if reclaim or compaction continues, it is
197 * not expected that isolated pages will be a dominating factor.
198 */
0a0337e0 199unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57 200{
d031a157 201 unsigned long nr;
6e543d57 202
599d0c95
MG
203 nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE);
204 if (get_nr_swap_pages() > 0)
205 nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON);
206
207 return nr;
208}
209
210unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
211{
212 unsigned long nr;
213
214 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
215 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
216 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
217
218 if (get_nr_swap_pages() > 0)
599d0c95
MG
219 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
222
223 return nr;
224}
225
599d0c95 226bool pgdat_reclaimable(struct pglist_data *pgdat)
6e543d57 227{
599d0c95
MG
228 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
229 pgdat_reclaimable_pages(pgdat) * 6;
6e543d57
LD
230}
231
23047a96 232unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 233{
c3c787e8 234 if (!mem_cgroup_disabled())
4d7dcca2 235 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 236
599d0c95 237 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
238}
239
1da177e4 240/*
1d3d4437 241 * Add a shrinker callback to be called from the vm.
1da177e4 242 */
1d3d4437 243int register_shrinker(struct shrinker *shrinker)
1da177e4 244{
1d3d4437
GC
245 size_t size = sizeof(*shrinker->nr_deferred);
246
1d3d4437
GC
247 if (shrinker->flags & SHRINKER_NUMA_AWARE)
248 size *= nr_node_ids;
249
250 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
251 if (!shrinker->nr_deferred)
252 return -ENOMEM;
253
8e1f936b
RR
254 down_write(&shrinker_rwsem);
255 list_add_tail(&shrinker->list, &shrinker_list);
256 up_write(&shrinker_rwsem);
1d3d4437 257 return 0;
1da177e4 258}
8e1f936b 259EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
260
261/*
262 * Remove one
263 */
8e1f936b 264void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
265{
266 down_write(&shrinker_rwsem);
267 list_del(&shrinker->list);
268 up_write(&shrinker_rwsem);
ae393321 269 kfree(shrinker->nr_deferred);
1da177e4 270}
8e1f936b 271EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
272
273#define SHRINK_BATCH 128
1d3d4437 274
cb731d6c
VD
275static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
276 struct shrinker *shrinker,
277 unsigned long nr_scanned,
278 unsigned long nr_eligible)
1d3d4437
GC
279{
280 unsigned long freed = 0;
281 unsigned long long delta;
282 long total_scan;
d5bc5fd3 283 long freeable;
1d3d4437
GC
284 long nr;
285 long new_nr;
286 int nid = shrinkctl->nid;
287 long batch_size = shrinker->batch ? shrinker->batch
288 : SHRINK_BATCH;
289
d5bc5fd3
VD
290 freeable = shrinker->count_objects(shrinker, shrinkctl);
291 if (freeable == 0)
1d3d4437
GC
292 return 0;
293
294 /*
295 * copy the current shrinker scan count into a local variable
296 * and zero it so that other concurrent shrinker invocations
297 * don't also do this scanning work.
298 */
299 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
300
301 total_scan = nr;
6b4f7799 302 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 303 delta *= freeable;
6b4f7799 304 do_div(delta, nr_eligible + 1);
1d3d4437
GC
305 total_scan += delta;
306 if (total_scan < 0) {
8612c663 307 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 308 shrinker->scan_objects, total_scan);
d5bc5fd3 309 total_scan = freeable;
1d3d4437
GC
310 }
311
312 /*
313 * We need to avoid excessive windup on filesystem shrinkers
314 * due to large numbers of GFP_NOFS allocations causing the
315 * shrinkers to return -1 all the time. This results in a large
316 * nr being built up so when a shrink that can do some work
317 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 318 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
319 * memory.
320 *
321 * Hence only allow the shrinker to scan the entire cache when
322 * a large delta change is calculated directly.
323 */
d5bc5fd3
VD
324 if (delta < freeable / 4)
325 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
326
327 /*
328 * Avoid risking looping forever due to too large nr value:
329 * never try to free more than twice the estimate number of
330 * freeable entries.
331 */
d5bc5fd3
VD
332 if (total_scan > freeable * 2)
333 total_scan = freeable * 2;
1d3d4437
GC
334
335 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
336 nr_scanned, nr_eligible,
337 freeable, delta, total_scan);
1d3d4437 338
0b1fb40a
VD
339 /*
340 * Normally, we should not scan less than batch_size objects in one
341 * pass to avoid too frequent shrinker calls, but if the slab has less
342 * than batch_size objects in total and we are really tight on memory,
343 * we will try to reclaim all available objects, otherwise we can end
344 * up failing allocations although there are plenty of reclaimable
345 * objects spread over several slabs with usage less than the
346 * batch_size.
347 *
348 * We detect the "tight on memory" situations by looking at the total
349 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 350 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
351 * scanning at high prio and therefore should try to reclaim as much as
352 * possible.
353 */
354 while (total_scan >= batch_size ||
d5bc5fd3 355 total_scan >= freeable) {
a0b02131 356 unsigned long ret;
0b1fb40a 357 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 358
0b1fb40a 359 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
360 ret = shrinker->scan_objects(shrinker, shrinkctl);
361 if (ret == SHRINK_STOP)
362 break;
363 freed += ret;
1d3d4437 364
0b1fb40a
VD
365 count_vm_events(SLABS_SCANNED, nr_to_scan);
366 total_scan -= nr_to_scan;
1d3d4437
GC
367
368 cond_resched();
369 }
370
371 /*
372 * move the unused scan count back into the shrinker in a
373 * manner that handles concurrent updates. If we exhausted the
374 * scan, there is no need to do an update.
375 */
376 if (total_scan > 0)
377 new_nr = atomic_long_add_return(total_scan,
378 &shrinker->nr_deferred[nid]);
379 else
380 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
381
df9024a8 382 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 383 return freed;
1495f230
YH
384}
385
6b4f7799 386/**
cb731d6c 387 * shrink_slab - shrink slab caches
6b4f7799
JW
388 * @gfp_mask: allocation context
389 * @nid: node whose slab caches to target
cb731d6c 390 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
391 * @nr_scanned: pressure numerator
392 * @nr_eligible: pressure denominator
1da177e4 393 *
6b4f7799 394 * Call the shrink functions to age shrinkable caches.
1da177e4 395 *
6b4f7799
JW
396 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
397 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 398 *
cb731d6c
VD
399 * @memcg specifies the memory cgroup to target. If it is not NULL,
400 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
401 * objects from the memory cgroup specified. Otherwise, only unaware
402 * shrinkers are called.
cb731d6c 403 *
6b4f7799
JW
404 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
405 * the available objects should be scanned. Page reclaim for example
406 * passes the number of pages scanned and the number of pages on the
407 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
408 * when it encountered mapped pages. The ratio is further biased by
409 * the ->seeks setting of the shrink function, which indicates the
410 * cost to recreate an object relative to that of an LRU page.
b15e0905 411 *
6b4f7799 412 * Returns the number of reclaimed slab objects.
1da177e4 413 */
cb731d6c
VD
414static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
415 struct mem_cgroup *memcg,
416 unsigned long nr_scanned,
417 unsigned long nr_eligible)
1da177e4
LT
418{
419 struct shrinker *shrinker;
24f7c6b9 420 unsigned long freed = 0;
1da177e4 421
0fc9f58a 422 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
423 return 0;
424
6b4f7799
JW
425 if (nr_scanned == 0)
426 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 427
f06590bd 428 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
429 /*
430 * If we would return 0, our callers would understand that we
431 * have nothing else to shrink and give up trying. By returning
432 * 1 we keep it going and assume we'll be able to shrink next
433 * time.
434 */
435 freed = 1;
f06590bd
MK
436 goto out;
437 }
1da177e4
LT
438
439 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
440 struct shrink_control sc = {
441 .gfp_mask = gfp_mask,
442 .nid = nid,
cb731d6c 443 .memcg = memcg,
6b4f7799 444 };
ec97097b 445
0fc9f58a
VD
446 /*
447 * If kernel memory accounting is disabled, we ignore
448 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
449 * passing NULL for memcg.
450 */
451 if (memcg_kmem_enabled() &&
452 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
453 continue;
454
6b4f7799
JW
455 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
456 sc.nid = 0;
1da177e4 457
cb731d6c 458 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 459 }
6b4f7799 460
1da177e4 461 up_read(&shrinker_rwsem);
f06590bd
MK
462out:
463 cond_resched();
24f7c6b9 464 return freed;
1da177e4
LT
465}
466
cb731d6c
VD
467void drop_slab_node(int nid)
468{
469 unsigned long freed;
470
471 do {
472 struct mem_cgroup *memcg = NULL;
473
474 freed = 0;
475 do {
476 freed += shrink_slab(GFP_KERNEL, nid, memcg,
477 1000, 1000);
478 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
479 } while (freed > 10);
480}
481
482void drop_slab(void)
483{
484 int nid;
485
486 for_each_online_node(nid)
487 drop_slab_node(nid);
488}
489
1da177e4
LT
490static inline int is_page_cache_freeable(struct page *page)
491{
ceddc3a5
JW
492 /*
493 * A freeable page cache page is referenced only by the caller
494 * that isolated the page, the page cache radix tree and
495 * optional buffer heads at page->private.
496 */
edcf4748 497 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
498}
499
703c2708 500static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 501{
930d9152 502 if (current->flags & PF_SWAPWRITE)
1da177e4 503 return 1;
703c2708 504 if (!inode_write_congested(inode))
1da177e4 505 return 1;
703c2708 506 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
507 return 1;
508 return 0;
509}
510
511/*
512 * We detected a synchronous write error writing a page out. Probably
513 * -ENOSPC. We need to propagate that into the address_space for a subsequent
514 * fsync(), msync() or close().
515 *
516 * The tricky part is that after writepage we cannot touch the mapping: nothing
517 * prevents it from being freed up. But we have a ref on the page and once
518 * that page is locked, the mapping is pinned.
519 *
520 * We're allowed to run sleeping lock_page() here because we know the caller has
521 * __GFP_FS.
522 */
523static void handle_write_error(struct address_space *mapping,
524 struct page *page, int error)
525{
7eaceacc 526 lock_page(page);
3e9f45bd
GC
527 if (page_mapping(page) == mapping)
528 mapping_set_error(mapping, error);
1da177e4
LT
529 unlock_page(page);
530}
531
04e62a29
CL
532/* possible outcome of pageout() */
533typedef enum {
534 /* failed to write page out, page is locked */
535 PAGE_KEEP,
536 /* move page to the active list, page is locked */
537 PAGE_ACTIVATE,
538 /* page has been sent to the disk successfully, page is unlocked */
539 PAGE_SUCCESS,
540 /* page is clean and locked */
541 PAGE_CLEAN,
542} pageout_t;
543
1da177e4 544/*
1742f19f
AM
545 * pageout is called by shrink_page_list() for each dirty page.
546 * Calls ->writepage().
1da177e4 547 */
c661b078 548static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 549 struct scan_control *sc)
1da177e4
LT
550{
551 /*
552 * If the page is dirty, only perform writeback if that write
553 * will be non-blocking. To prevent this allocation from being
554 * stalled by pagecache activity. But note that there may be
555 * stalls if we need to run get_block(). We could test
556 * PagePrivate for that.
557 *
8174202b 558 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
559 * this page's queue, we can perform writeback even if that
560 * will block.
561 *
562 * If the page is swapcache, write it back even if that would
563 * block, for some throttling. This happens by accident, because
564 * swap_backing_dev_info is bust: it doesn't reflect the
565 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
566 */
567 if (!is_page_cache_freeable(page))
568 return PAGE_KEEP;
569 if (!mapping) {
570 /*
571 * Some data journaling orphaned pages can have
572 * page->mapping == NULL while being dirty with clean buffers.
573 */
266cf658 574 if (page_has_private(page)) {
1da177e4
LT
575 if (try_to_free_buffers(page)) {
576 ClearPageDirty(page);
b1de0d13 577 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
578 return PAGE_CLEAN;
579 }
580 }
581 return PAGE_KEEP;
582 }
583 if (mapping->a_ops->writepage == NULL)
584 return PAGE_ACTIVATE;
703c2708 585 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
586 return PAGE_KEEP;
587
588 if (clear_page_dirty_for_io(page)) {
589 int res;
590 struct writeback_control wbc = {
591 .sync_mode = WB_SYNC_NONE,
592 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
593 .range_start = 0,
594 .range_end = LLONG_MAX,
1da177e4
LT
595 .for_reclaim = 1,
596 };
597
598 SetPageReclaim(page);
599 res = mapping->a_ops->writepage(page, &wbc);
600 if (res < 0)
601 handle_write_error(mapping, page, res);
994fc28c 602 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
603 ClearPageReclaim(page);
604 return PAGE_ACTIVATE;
605 }
c661b078 606
1da177e4
LT
607 if (!PageWriteback(page)) {
608 /* synchronous write or broken a_ops? */
609 ClearPageReclaim(page);
610 }
3aa23851 611 trace_mm_vmscan_writepage(page);
e129b5c2 612 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
613 return PAGE_SUCCESS;
614 }
615
616 return PAGE_CLEAN;
617}
618
a649fd92 619/*
e286781d
NP
620 * Same as remove_mapping, but if the page is removed from the mapping, it
621 * gets returned with a refcount of 0.
a649fd92 622 */
a528910e
JW
623static int __remove_mapping(struct address_space *mapping, struct page *page,
624 bool reclaimed)
49d2e9cc 625{
c4843a75 626 unsigned long flags;
c4843a75 627
28e4d965
NP
628 BUG_ON(!PageLocked(page));
629 BUG_ON(mapping != page_mapping(page));
49d2e9cc 630
c4843a75 631 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 632 /*
0fd0e6b0
NP
633 * The non racy check for a busy page.
634 *
635 * Must be careful with the order of the tests. When someone has
636 * a ref to the page, it may be possible that they dirty it then
637 * drop the reference. So if PageDirty is tested before page_count
638 * here, then the following race may occur:
639 *
640 * get_user_pages(&page);
641 * [user mapping goes away]
642 * write_to(page);
643 * !PageDirty(page) [good]
644 * SetPageDirty(page);
645 * put_page(page);
646 * !page_count(page) [good, discard it]
647 *
648 * [oops, our write_to data is lost]
649 *
650 * Reversing the order of the tests ensures such a situation cannot
651 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 652 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
653 *
654 * Note that if SetPageDirty is always performed via set_page_dirty,
655 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 656 */
fe896d18 657 if (!page_ref_freeze(page, 2))
49d2e9cc 658 goto cannot_free;
e286781d
NP
659 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
660 if (unlikely(PageDirty(page))) {
fe896d18 661 page_ref_unfreeze(page, 2);
49d2e9cc 662 goto cannot_free;
e286781d 663 }
49d2e9cc
CL
664
665 if (PageSwapCache(page)) {
666 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 667 mem_cgroup_swapout(page, swap);
49d2e9cc 668 __delete_from_swap_cache(page);
c4843a75 669 spin_unlock_irqrestore(&mapping->tree_lock, flags);
0a31bc97 670 swapcache_free(swap);
e286781d 671 } else {
6072d13c 672 void (*freepage)(struct page *);
a528910e 673 void *shadow = NULL;
6072d13c
LT
674
675 freepage = mapping->a_ops->freepage;
a528910e
JW
676 /*
677 * Remember a shadow entry for reclaimed file cache in
678 * order to detect refaults, thus thrashing, later on.
679 *
680 * But don't store shadows in an address space that is
681 * already exiting. This is not just an optizimation,
682 * inode reclaim needs to empty out the radix tree or
683 * the nodes are lost. Don't plant shadows behind its
684 * back.
f9fe48be
RZ
685 *
686 * We also don't store shadows for DAX mappings because the
687 * only page cache pages found in these are zero pages
688 * covering holes, and because we don't want to mix DAX
689 * exceptional entries and shadow exceptional entries in the
690 * same page_tree.
a528910e
JW
691 */
692 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 693 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 694 shadow = workingset_eviction(mapping, page);
62cccb8c 695 __delete_from_page_cache(page, shadow);
c4843a75 696 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
697
698 if (freepage != NULL)
699 freepage(page);
49d2e9cc
CL
700 }
701
49d2e9cc
CL
702 return 1;
703
704cannot_free:
c4843a75 705 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
706 return 0;
707}
708
e286781d
NP
709/*
710 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
711 * someone else has a ref on the page, abort and return 0. If it was
712 * successfully detached, return 1. Assumes the caller has a single ref on
713 * this page.
714 */
715int remove_mapping(struct address_space *mapping, struct page *page)
716{
a528910e 717 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
718 /*
719 * Unfreezing the refcount with 1 rather than 2 effectively
720 * drops the pagecache ref for us without requiring another
721 * atomic operation.
722 */
fe896d18 723 page_ref_unfreeze(page, 1);
e286781d
NP
724 return 1;
725 }
726 return 0;
727}
728
894bc310
LS
729/**
730 * putback_lru_page - put previously isolated page onto appropriate LRU list
731 * @page: page to be put back to appropriate lru list
732 *
733 * Add previously isolated @page to appropriate LRU list.
734 * Page may still be unevictable for other reasons.
735 *
736 * lru_lock must not be held, interrupts must be enabled.
737 */
894bc310
LS
738void putback_lru_page(struct page *page)
739{
0ec3b74c 740 bool is_unevictable;
bbfd28ee 741 int was_unevictable = PageUnevictable(page);
894bc310 742
309381fe 743 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
744
745redo:
746 ClearPageUnevictable(page);
747
39b5f29a 748 if (page_evictable(page)) {
894bc310
LS
749 /*
750 * For evictable pages, we can use the cache.
751 * In event of a race, worst case is we end up with an
752 * unevictable page on [in]active list.
753 * We know how to handle that.
754 */
0ec3b74c 755 is_unevictable = false;
c53954a0 756 lru_cache_add(page);
894bc310
LS
757 } else {
758 /*
759 * Put unevictable pages directly on zone's unevictable
760 * list.
761 */
0ec3b74c 762 is_unevictable = true;
894bc310 763 add_page_to_unevictable_list(page);
6a7b9548 764 /*
21ee9f39
MK
765 * When racing with an mlock or AS_UNEVICTABLE clearing
766 * (page is unlocked) make sure that if the other thread
767 * does not observe our setting of PG_lru and fails
24513264 768 * isolation/check_move_unevictable_pages,
21ee9f39 769 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
770 * the page back to the evictable list.
771 *
21ee9f39 772 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
773 */
774 smp_mb();
894bc310 775 }
894bc310
LS
776
777 /*
778 * page's status can change while we move it among lru. If an evictable
779 * page is on unevictable list, it never be freed. To avoid that,
780 * check after we added it to the list, again.
781 */
0ec3b74c 782 if (is_unevictable && page_evictable(page)) {
894bc310
LS
783 if (!isolate_lru_page(page)) {
784 put_page(page);
785 goto redo;
786 }
787 /* This means someone else dropped this page from LRU
788 * So, it will be freed or putback to LRU again. There is
789 * nothing to do here.
790 */
791 }
792
0ec3b74c 793 if (was_unevictable && !is_unevictable)
bbfd28ee 794 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 795 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
796 count_vm_event(UNEVICTABLE_PGCULLED);
797
894bc310
LS
798 put_page(page); /* drop ref from isolate */
799}
800
dfc8d636
JW
801enum page_references {
802 PAGEREF_RECLAIM,
803 PAGEREF_RECLAIM_CLEAN,
64574746 804 PAGEREF_KEEP,
dfc8d636
JW
805 PAGEREF_ACTIVATE,
806};
807
808static enum page_references page_check_references(struct page *page,
809 struct scan_control *sc)
810{
64574746 811 int referenced_ptes, referenced_page;
dfc8d636 812 unsigned long vm_flags;
dfc8d636 813
c3ac9a8a
JW
814 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
815 &vm_flags);
64574746 816 referenced_page = TestClearPageReferenced(page);
dfc8d636 817
dfc8d636
JW
818 /*
819 * Mlock lost the isolation race with us. Let try_to_unmap()
820 * move the page to the unevictable list.
821 */
822 if (vm_flags & VM_LOCKED)
823 return PAGEREF_RECLAIM;
824
64574746 825 if (referenced_ptes) {
e4898273 826 if (PageSwapBacked(page))
64574746
JW
827 return PAGEREF_ACTIVATE;
828 /*
829 * All mapped pages start out with page table
830 * references from the instantiating fault, so we need
831 * to look twice if a mapped file page is used more
832 * than once.
833 *
834 * Mark it and spare it for another trip around the
835 * inactive list. Another page table reference will
836 * lead to its activation.
837 *
838 * Note: the mark is set for activated pages as well
839 * so that recently deactivated but used pages are
840 * quickly recovered.
841 */
842 SetPageReferenced(page);
843
34dbc67a 844 if (referenced_page || referenced_ptes > 1)
64574746
JW
845 return PAGEREF_ACTIVATE;
846
c909e993
KK
847 /*
848 * Activate file-backed executable pages after first usage.
849 */
850 if (vm_flags & VM_EXEC)
851 return PAGEREF_ACTIVATE;
852
64574746
JW
853 return PAGEREF_KEEP;
854 }
dfc8d636
JW
855
856 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 857 if (referenced_page && !PageSwapBacked(page))
64574746
JW
858 return PAGEREF_RECLAIM_CLEAN;
859
860 return PAGEREF_RECLAIM;
dfc8d636
JW
861}
862
e2be15f6
MG
863/* Check if a page is dirty or under writeback */
864static void page_check_dirty_writeback(struct page *page,
865 bool *dirty, bool *writeback)
866{
b4597226
MG
867 struct address_space *mapping;
868
e2be15f6
MG
869 /*
870 * Anonymous pages are not handled by flushers and must be written
871 * from reclaim context. Do not stall reclaim based on them
872 */
873 if (!page_is_file_cache(page)) {
874 *dirty = false;
875 *writeback = false;
876 return;
877 }
878
879 /* By default assume that the page flags are accurate */
880 *dirty = PageDirty(page);
881 *writeback = PageWriteback(page);
b4597226
MG
882
883 /* Verify dirty/writeback state if the filesystem supports it */
884 if (!page_has_private(page))
885 return;
886
887 mapping = page_mapping(page);
888 if (mapping && mapping->a_ops->is_dirty_writeback)
889 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
890}
891
1da177e4 892/*
1742f19f 893 * shrink_page_list() returns the number of reclaimed pages
1da177e4 894 */
1742f19f 895static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 896 struct pglist_data *pgdat,
f84f6e2b 897 struct scan_control *sc,
02c6de8d 898 enum ttu_flags ttu_flags,
8e950282 899 unsigned long *ret_nr_dirty,
d43006d5 900 unsigned long *ret_nr_unqueued_dirty,
8e950282 901 unsigned long *ret_nr_congested,
02c6de8d 902 unsigned long *ret_nr_writeback,
b1a6f21e 903 unsigned long *ret_nr_immediate,
02c6de8d 904 bool force_reclaim)
1da177e4
LT
905{
906 LIST_HEAD(ret_pages);
abe4c3b5 907 LIST_HEAD(free_pages);
1da177e4 908 int pgactivate = 0;
d43006d5 909 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
910 unsigned long nr_dirty = 0;
911 unsigned long nr_congested = 0;
05ff5137 912 unsigned long nr_reclaimed = 0;
92df3a72 913 unsigned long nr_writeback = 0;
b1a6f21e 914 unsigned long nr_immediate = 0;
1da177e4
LT
915
916 cond_resched();
917
1da177e4
LT
918 while (!list_empty(page_list)) {
919 struct address_space *mapping;
920 struct page *page;
921 int may_enter_fs;
02c6de8d 922 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 923 bool dirty, writeback;
854e9ed0
MK
924 bool lazyfree = false;
925 int ret = SWAP_SUCCESS;
1da177e4
LT
926
927 cond_resched();
928
929 page = lru_to_page(page_list);
930 list_del(&page->lru);
931
529ae9aa 932 if (!trylock_page(page))
1da177e4
LT
933 goto keep;
934
309381fe 935 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
936
937 sc->nr_scanned++;
80e43426 938
39b5f29a 939 if (unlikely(!page_evictable(page)))
b291f000 940 goto cull_mlocked;
894bc310 941
a6dc60f8 942 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
943 goto keep_locked;
944
1da177e4
LT
945 /* Double the slab pressure for mapped and swapcache pages */
946 if (page_mapped(page) || PageSwapCache(page))
947 sc->nr_scanned++;
948
c661b078
AW
949 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
950 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
951
e2be15f6
MG
952 /*
953 * The number of dirty pages determines if a zone is marked
954 * reclaim_congested which affects wait_iff_congested. kswapd
955 * will stall and start writing pages if the tail of the LRU
956 * is all dirty unqueued pages.
957 */
958 page_check_dirty_writeback(page, &dirty, &writeback);
959 if (dirty || writeback)
960 nr_dirty++;
961
962 if (dirty && !writeback)
963 nr_unqueued_dirty++;
964
d04e8acd
MG
965 /*
966 * Treat this page as congested if the underlying BDI is or if
967 * pages are cycling through the LRU so quickly that the
968 * pages marked for immediate reclaim are making it to the
969 * end of the LRU a second time.
970 */
e2be15f6 971 mapping = page_mapping(page);
1da58ee2 972 if (((dirty || writeback) && mapping &&
703c2708 973 inode_write_congested(mapping->host)) ||
d04e8acd 974 (writeback && PageReclaim(page)))
e2be15f6
MG
975 nr_congested++;
976
283aba9f
MG
977 /*
978 * If a page at the tail of the LRU is under writeback, there
979 * are three cases to consider.
980 *
981 * 1) If reclaim is encountering an excessive number of pages
982 * under writeback and this page is both under writeback and
983 * PageReclaim then it indicates that pages are being queued
984 * for IO but are being recycled through the LRU before the
985 * IO can complete. Waiting on the page itself risks an
986 * indefinite stall if it is impossible to writeback the
987 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
988 * note that the LRU is being scanned too quickly and the
989 * caller can stall after page list has been processed.
283aba9f 990 *
97c9341f 991 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
992 * not marked for immediate reclaim, or the caller does not
993 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
994 * not to fs). In this case mark the page for immediate
97c9341f 995 * reclaim and continue scanning.
283aba9f 996 *
ecf5fc6e
MH
997 * Require may_enter_fs because we would wait on fs, which
998 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
999 * enter reclaim, and deadlock if it waits on a page for
1000 * which it is needed to do the write (loop masks off
1001 * __GFP_IO|__GFP_FS for this reason); but more thought
1002 * would probably show more reasons.
1003 *
7fadc820 1004 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1005 * PageReclaim. memcg does not have any dirty pages
1006 * throttling so we could easily OOM just because too many
1007 * pages are in writeback and there is nothing else to
1008 * reclaim. Wait for the writeback to complete.
1009 */
c661b078 1010 if (PageWriteback(page)) {
283aba9f
MG
1011 /* Case 1 above */
1012 if (current_is_kswapd() &&
1013 PageReclaim(page) &&
599d0c95 1014 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e
MG
1015 nr_immediate++;
1016 goto keep_locked;
283aba9f
MG
1017
1018 /* Case 2 above */
97c9341f 1019 } else if (sane_reclaim(sc) ||
ecf5fc6e 1020 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1021 /*
1022 * This is slightly racy - end_page_writeback()
1023 * might have just cleared PageReclaim, then
1024 * setting PageReclaim here end up interpreted
1025 * as PageReadahead - but that does not matter
1026 * enough to care. What we do want is for this
1027 * page to have PageReclaim set next time memcg
1028 * reclaim reaches the tests above, so it will
1029 * then wait_on_page_writeback() to avoid OOM;
1030 * and it's also appropriate in global reclaim.
1031 */
1032 SetPageReclaim(page);
e62e384e 1033 nr_writeback++;
c3b94f44 1034 goto keep_locked;
283aba9f
MG
1035
1036 /* Case 3 above */
1037 } else {
7fadc820 1038 unlock_page(page);
283aba9f 1039 wait_on_page_writeback(page);
7fadc820
HD
1040 /* then go back and try same page again */
1041 list_add_tail(&page->lru, page_list);
1042 continue;
e62e384e 1043 }
c661b078 1044 }
1da177e4 1045
02c6de8d
MK
1046 if (!force_reclaim)
1047 references = page_check_references(page, sc);
1048
dfc8d636
JW
1049 switch (references) {
1050 case PAGEREF_ACTIVATE:
1da177e4 1051 goto activate_locked;
64574746
JW
1052 case PAGEREF_KEEP:
1053 goto keep_locked;
dfc8d636
JW
1054 case PAGEREF_RECLAIM:
1055 case PAGEREF_RECLAIM_CLEAN:
1056 ; /* try to reclaim the page below */
1057 }
1da177e4 1058
1da177e4
LT
1059 /*
1060 * Anonymous process memory has backing store?
1061 * Try to allocate it some swap space here.
1062 */
b291f000 1063 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
1064 if (!(sc->gfp_mask & __GFP_IO))
1065 goto keep_locked;
5bc7b8ac 1066 if (!add_to_swap(page, page_list))
1da177e4 1067 goto activate_locked;
854e9ed0 1068 lazyfree = true;
63eb6b93 1069 may_enter_fs = 1;
1da177e4 1070
e2be15f6
MG
1071 /* Adding to swap updated mapping */
1072 mapping = page_mapping(page);
7751b2da
KS
1073 } else if (unlikely(PageTransHuge(page))) {
1074 /* Split file THP */
1075 if (split_huge_page_to_list(page, page_list))
1076 goto keep_locked;
e2be15f6 1077 }
1da177e4 1078
7751b2da
KS
1079 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1080
1da177e4
LT
1081 /*
1082 * The page is mapped into the page tables of one or more
1083 * processes. Try to unmap it here.
1084 */
1085 if (page_mapped(page) && mapping) {
854e9ed0
MK
1086 switch (ret = try_to_unmap(page, lazyfree ?
1087 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1088 (ttu_flags | TTU_BATCH_FLUSH))) {
1da177e4
LT
1089 case SWAP_FAIL:
1090 goto activate_locked;
1091 case SWAP_AGAIN:
1092 goto keep_locked;
b291f000
NP
1093 case SWAP_MLOCK:
1094 goto cull_mlocked;
854e9ed0
MK
1095 case SWAP_LZFREE:
1096 goto lazyfree;
1da177e4
LT
1097 case SWAP_SUCCESS:
1098 ; /* try to free the page below */
1099 }
1100 }
1101
1102 if (PageDirty(page)) {
ee72886d
MG
1103 /*
1104 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1105 * avoid risk of stack overflow but only writeback
1106 * if many dirty pages have been encountered.
ee72886d 1107 */
f84f6e2b 1108 if (page_is_file_cache(page) &&
9e3b2f8c 1109 (!current_is_kswapd() ||
599d0c95 1110 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1111 /*
1112 * Immediately reclaim when written back.
1113 * Similar in principal to deactivate_page()
1114 * except we already have the page isolated
1115 * and know it's dirty
1116 */
1117 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1118 SetPageReclaim(page);
1119
ee72886d
MG
1120 goto keep_locked;
1121 }
1122
dfc8d636 1123 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1124 goto keep_locked;
4dd4b920 1125 if (!may_enter_fs)
1da177e4 1126 goto keep_locked;
52a8363e 1127 if (!sc->may_writepage)
1da177e4
LT
1128 goto keep_locked;
1129
d950c947
MG
1130 /*
1131 * Page is dirty. Flush the TLB if a writable entry
1132 * potentially exists to avoid CPU writes after IO
1133 * starts and then write it out here.
1134 */
1135 try_to_unmap_flush_dirty();
7d3579e8 1136 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1137 case PAGE_KEEP:
1138 goto keep_locked;
1139 case PAGE_ACTIVATE:
1140 goto activate_locked;
1141 case PAGE_SUCCESS:
7d3579e8 1142 if (PageWriteback(page))
41ac1999 1143 goto keep;
7d3579e8 1144 if (PageDirty(page))
1da177e4 1145 goto keep;
7d3579e8 1146
1da177e4
LT
1147 /*
1148 * A synchronous write - probably a ramdisk. Go
1149 * ahead and try to reclaim the page.
1150 */
529ae9aa 1151 if (!trylock_page(page))
1da177e4
LT
1152 goto keep;
1153 if (PageDirty(page) || PageWriteback(page))
1154 goto keep_locked;
1155 mapping = page_mapping(page);
1156 case PAGE_CLEAN:
1157 ; /* try to free the page below */
1158 }
1159 }
1160
1161 /*
1162 * If the page has buffers, try to free the buffer mappings
1163 * associated with this page. If we succeed we try to free
1164 * the page as well.
1165 *
1166 * We do this even if the page is PageDirty().
1167 * try_to_release_page() does not perform I/O, but it is
1168 * possible for a page to have PageDirty set, but it is actually
1169 * clean (all its buffers are clean). This happens if the
1170 * buffers were written out directly, with submit_bh(). ext3
894bc310 1171 * will do this, as well as the blockdev mapping.
1da177e4
LT
1172 * try_to_release_page() will discover that cleanness and will
1173 * drop the buffers and mark the page clean - it can be freed.
1174 *
1175 * Rarely, pages can have buffers and no ->mapping. These are
1176 * the pages which were not successfully invalidated in
1177 * truncate_complete_page(). We try to drop those buffers here
1178 * and if that worked, and the page is no longer mapped into
1179 * process address space (page_count == 1) it can be freed.
1180 * Otherwise, leave the page on the LRU so it is swappable.
1181 */
266cf658 1182 if (page_has_private(page)) {
1da177e4
LT
1183 if (!try_to_release_page(page, sc->gfp_mask))
1184 goto activate_locked;
e286781d
NP
1185 if (!mapping && page_count(page) == 1) {
1186 unlock_page(page);
1187 if (put_page_testzero(page))
1188 goto free_it;
1189 else {
1190 /*
1191 * rare race with speculative reference.
1192 * the speculative reference will free
1193 * this page shortly, so we may
1194 * increment nr_reclaimed here (and
1195 * leave it off the LRU).
1196 */
1197 nr_reclaimed++;
1198 continue;
1199 }
1200 }
1da177e4
LT
1201 }
1202
854e9ed0 1203lazyfree:
a528910e 1204 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1205 goto keep_locked;
1da177e4 1206
a978d6f5
NP
1207 /*
1208 * At this point, we have no other references and there is
1209 * no way to pick any more up (removed from LRU, removed
1210 * from pagecache). Can use non-atomic bitops now (and
1211 * we obviously don't have to worry about waking up a process
1212 * waiting on the page lock, because there are no references.
1213 */
48c935ad 1214 __ClearPageLocked(page);
e286781d 1215free_it:
854e9ed0
MK
1216 if (ret == SWAP_LZFREE)
1217 count_vm_event(PGLAZYFREED);
1218
05ff5137 1219 nr_reclaimed++;
abe4c3b5
MG
1220
1221 /*
1222 * Is there need to periodically free_page_list? It would
1223 * appear not as the counts should be low
1224 */
1225 list_add(&page->lru, &free_pages);
1da177e4
LT
1226 continue;
1227
b291f000 1228cull_mlocked:
63d6c5ad
HD
1229 if (PageSwapCache(page))
1230 try_to_free_swap(page);
b291f000 1231 unlock_page(page);
c54839a7 1232 list_add(&page->lru, &ret_pages);
b291f000
NP
1233 continue;
1234
1da177e4 1235activate_locked:
68a22394 1236 /* Not a candidate for swapping, so reclaim swap space. */
5ccc5aba 1237 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
a2c43eed 1238 try_to_free_swap(page);
309381fe 1239 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1240 SetPageActive(page);
1241 pgactivate++;
1242keep_locked:
1243 unlock_page(page);
1244keep:
1245 list_add(&page->lru, &ret_pages);
309381fe 1246 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1247 }
abe4c3b5 1248
747db954 1249 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1250 try_to_unmap_flush();
b745bc85 1251 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1252
1da177e4 1253 list_splice(&ret_pages, page_list);
f8891e5e 1254 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1255
8e950282
MG
1256 *ret_nr_dirty += nr_dirty;
1257 *ret_nr_congested += nr_congested;
d43006d5 1258 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1259 *ret_nr_writeback += nr_writeback;
b1a6f21e 1260 *ret_nr_immediate += nr_immediate;
05ff5137 1261 return nr_reclaimed;
1da177e4
LT
1262}
1263
02c6de8d
MK
1264unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1265 struct list_head *page_list)
1266{
1267 struct scan_control sc = {
1268 .gfp_mask = GFP_KERNEL,
1269 .priority = DEF_PRIORITY,
1270 .may_unmap = 1,
1271 };
8e950282 1272 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1273 struct page *page, *next;
1274 LIST_HEAD(clean_pages);
1275
1276 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1277 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1278 !__PageMovable(page)) {
02c6de8d
MK
1279 ClearPageActive(page);
1280 list_move(&page->lru, &clean_pages);
1281 }
1282 }
1283
599d0c95 1284 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
8e950282
MG
1285 TTU_UNMAP|TTU_IGNORE_ACCESS,
1286 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1287 list_splice(&clean_pages, page_list);
599d0c95 1288 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1289 return ret;
1290}
1291
5ad333eb
AW
1292/*
1293 * Attempt to remove the specified page from its LRU. Only take this page
1294 * if it is of the appropriate PageActive status. Pages which are being
1295 * freed elsewhere are also ignored.
1296 *
1297 * page: page to consider
1298 * mode: one of the LRU isolation modes defined above
1299 *
1300 * returns 0 on success, -ve errno on failure.
1301 */
f3fd4a61 1302int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1303{
1304 int ret = -EINVAL;
1305
1306 /* Only take pages on the LRU. */
1307 if (!PageLRU(page))
1308 return ret;
1309
e46a2879
MK
1310 /* Compaction should not handle unevictable pages but CMA can do so */
1311 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1312 return ret;
1313
5ad333eb 1314 ret = -EBUSY;
08e552c6 1315
c8244935
MG
1316 /*
1317 * To minimise LRU disruption, the caller can indicate that it only
1318 * wants to isolate pages it will be able to operate on without
1319 * blocking - clean pages for the most part.
1320 *
1321 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1322 * is used by reclaim when it is cannot write to backing storage
1323 *
1324 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1325 * that it is possible to migrate without blocking
1326 */
1327 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1328 /* All the caller can do on PageWriteback is block */
1329 if (PageWriteback(page))
1330 return ret;
1331
1332 if (PageDirty(page)) {
1333 struct address_space *mapping;
1334
1335 /* ISOLATE_CLEAN means only clean pages */
1336 if (mode & ISOLATE_CLEAN)
1337 return ret;
1338
1339 /*
1340 * Only pages without mappings or that have a
1341 * ->migratepage callback are possible to migrate
1342 * without blocking
1343 */
1344 mapping = page_mapping(page);
1345 if (mapping && !mapping->a_ops->migratepage)
1346 return ret;
1347 }
1348 }
39deaf85 1349
f80c0673
MK
1350 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1351 return ret;
1352
5ad333eb
AW
1353 if (likely(get_page_unless_zero(page))) {
1354 /*
1355 * Be careful not to clear PageLRU until after we're
1356 * sure the page is not being freed elsewhere -- the
1357 * page release code relies on it.
1358 */
1359 ClearPageLRU(page);
1360 ret = 0;
1361 }
1362
1363 return ret;
1364}
1365
1da177e4 1366/*
a52633d8 1367 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1368 * shrink the lists perform better by taking out a batch of pages
1369 * and working on them outside the LRU lock.
1370 *
1371 * For pagecache intensive workloads, this function is the hottest
1372 * spot in the kernel (apart from copy_*_user functions).
1373 *
1374 * Appropriate locks must be held before calling this function.
1375 *
1376 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1377 * @lruvec: The LRU vector to pull pages from.
1da177e4 1378 * @dst: The temp list to put pages on to.
f626012d 1379 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1380 * @sc: The scan_control struct for this reclaim session
5ad333eb 1381 * @mode: One of the LRU isolation modes
3cb99451 1382 * @lru: LRU list id for isolating
1da177e4
LT
1383 *
1384 * returns how many pages were moved onto *@dst.
1385 */
69e05944 1386static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1387 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1388 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1389 isolate_mode_t mode, enum lru_list lru)
1da177e4 1390{
75b00af7 1391 struct list_head *src = &lruvec->lists[lru];
69e05944 1392 unsigned long nr_taken = 0;
599d0c95
MG
1393 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1394 unsigned long scan, nr_pages;
1da177e4 1395
0b802f10
VD
1396 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1397 !list_empty(src); scan++) {
5ad333eb 1398 struct page *page;
5ad333eb 1399
1da177e4
LT
1400 page = lru_to_page(src);
1401 prefetchw_prev_lru_page(page, src, flags);
1402
309381fe 1403 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1404
f3fd4a61 1405 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1406 case 0:
599d0c95
MG
1407 nr_pages = hpage_nr_pages(page);
1408 nr_taken += nr_pages;
1409 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1410 list_move(&page->lru, dst);
5ad333eb
AW
1411 break;
1412
1413 case -EBUSY:
1414 /* else it is being freed elsewhere */
1415 list_move(&page->lru, src);
1416 continue;
46453a6e 1417
5ad333eb
AW
1418 default:
1419 BUG();
1420 }
1da177e4
LT
1421 }
1422
f626012d 1423 *nr_scanned = scan;
75b00af7
HD
1424 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1425 nr_taken, mode, is_file_lru(lru));
599d0c95
MG
1426 for (scan = 0; scan < MAX_NR_ZONES; scan++) {
1427 nr_pages = nr_zone_taken[scan];
1428 if (!nr_pages)
1429 continue;
1430
1431 update_lru_size(lruvec, lru, scan, -nr_pages);
1432 }
1da177e4
LT
1433 return nr_taken;
1434}
1435
62695a84
NP
1436/**
1437 * isolate_lru_page - tries to isolate a page from its LRU list
1438 * @page: page to isolate from its LRU list
1439 *
1440 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1441 * vmstat statistic corresponding to whatever LRU list the page was on.
1442 *
1443 * Returns 0 if the page was removed from an LRU list.
1444 * Returns -EBUSY if the page was not on an LRU list.
1445 *
1446 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1447 * the active list, it will have PageActive set. If it was found on
1448 * the unevictable list, it will have the PageUnevictable bit set. That flag
1449 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1450 *
1451 * The vmstat statistic corresponding to the list on which the page was
1452 * found will be decremented.
1453 *
1454 * Restrictions:
1455 * (1) Must be called with an elevated refcount on the page. This is a
1456 * fundamentnal difference from isolate_lru_pages (which is called
1457 * without a stable reference).
1458 * (2) the lru_lock must not be held.
1459 * (3) interrupts must be enabled.
1460 */
1461int isolate_lru_page(struct page *page)
1462{
1463 int ret = -EBUSY;
1464
309381fe 1465 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1466 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1467
62695a84
NP
1468 if (PageLRU(page)) {
1469 struct zone *zone = page_zone(page);
fa9add64 1470 struct lruvec *lruvec;
62695a84 1471
a52633d8 1472 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1473 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1474 if (PageLRU(page)) {
894bc310 1475 int lru = page_lru(page);
0c917313 1476 get_page(page);
62695a84 1477 ClearPageLRU(page);
fa9add64
HD
1478 del_page_from_lru_list(page, lruvec, lru);
1479 ret = 0;
62695a84 1480 }
a52633d8 1481 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1482 }
1483 return ret;
1484}
1485
35cd7815 1486/*
d37dd5dc
FW
1487 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1488 * then get resheduled. When there are massive number of tasks doing page
1489 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1490 * the LRU list will go small and be scanned faster than necessary, leading to
1491 * unnecessary swapping, thrashing and OOM.
35cd7815 1492 */
599d0c95 1493static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1494 struct scan_control *sc)
1495{
1496 unsigned long inactive, isolated;
1497
1498 if (current_is_kswapd())
1499 return 0;
1500
97c9341f 1501 if (!sane_reclaim(sc))
35cd7815
RR
1502 return 0;
1503
1504 if (file) {
599d0c95
MG
1505 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1506 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1507 } else {
599d0c95
MG
1508 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1509 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1510 }
1511
3cf23841
FW
1512 /*
1513 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1514 * won't get blocked by normal direct-reclaimers, forming a circular
1515 * deadlock.
1516 */
d0164adc 1517 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1518 inactive >>= 3;
1519
35cd7815
RR
1520 return isolated > inactive;
1521}
1522
66635629 1523static noinline_for_stack void
75b00af7 1524putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1525{
27ac81d8 1526 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1527 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1528 LIST_HEAD(pages_to_free);
66635629 1529
66635629
MG
1530 /*
1531 * Put back any unfreeable pages.
1532 */
66635629 1533 while (!list_empty(page_list)) {
3f79768f 1534 struct page *page = lru_to_page(page_list);
66635629 1535 int lru;
3f79768f 1536
309381fe 1537 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1538 list_del(&page->lru);
39b5f29a 1539 if (unlikely(!page_evictable(page))) {
599d0c95 1540 spin_unlock_irq(&pgdat->lru_lock);
66635629 1541 putback_lru_page(page);
599d0c95 1542 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1543 continue;
1544 }
fa9add64 1545
599d0c95 1546 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1547
7a608572 1548 SetPageLRU(page);
66635629 1549 lru = page_lru(page);
fa9add64
HD
1550 add_page_to_lru_list(page, lruvec, lru);
1551
66635629
MG
1552 if (is_active_lru(lru)) {
1553 int file = is_file_lru(lru);
9992af10
RR
1554 int numpages = hpage_nr_pages(page);
1555 reclaim_stat->recent_rotated[file] += numpages;
66635629 1556 }
2bcf8879
HD
1557 if (put_page_testzero(page)) {
1558 __ClearPageLRU(page);
1559 __ClearPageActive(page);
fa9add64 1560 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1561
1562 if (unlikely(PageCompound(page))) {
599d0c95 1563 spin_unlock_irq(&pgdat->lru_lock);
747db954 1564 mem_cgroup_uncharge(page);
2bcf8879 1565 (*get_compound_page_dtor(page))(page);
599d0c95 1566 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1567 } else
1568 list_add(&page->lru, &pages_to_free);
66635629
MG
1569 }
1570 }
66635629 1571
3f79768f
HD
1572 /*
1573 * To save our caller's stack, now use input list for pages to free.
1574 */
1575 list_splice(&pages_to_free, page_list);
66635629
MG
1576}
1577
399ba0b9
N
1578/*
1579 * If a kernel thread (such as nfsd for loop-back mounts) services
1580 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1581 * In that case we should only throttle if the backing device it is
1582 * writing to is congested. In other cases it is safe to throttle.
1583 */
1584static int current_may_throttle(void)
1585{
1586 return !(current->flags & PF_LESS_THROTTLE) ||
1587 current->backing_dev_info == NULL ||
1588 bdi_write_congested(current->backing_dev_info);
1589}
1590
1da177e4 1591/*
1742f19f
AM
1592 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1593 * of reclaimed pages
1da177e4 1594 */
66635629 1595static noinline_for_stack unsigned long
1a93be0e 1596shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1597 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1598{
1599 LIST_HEAD(page_list);
e247dbce 1600 unsigned long nr_scanned;
05ff5137 1601 unsigned long nr_reclaimed = 0;
e247dbce 1602 unsigned long nr_taken;
8e950282
MG
1603 unsigned long nr_dirty = 0;
1604 unsigned long nr_congested = 0;
e2be15f6 1605 unsigned long nr_unqueued_dirty = 0;
92df3a72 1606 unsigned long nr_writeback = 0;
b1a6f21e 1607 unsigned long nr_immediate = 0;
f3fd4a61 1608 isolate_mode_t isolate_mode = 0;
3cb99451 1609 int file = is_file_lru(lru);
599d0c95 1610 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1611 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1612
599d0c95 1613 while (unlikely(too_many_isolated(pgdat, file, sc))) {
58355c78 1614 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1615
1616 /* We are about to die and free our memory. Return now. */
1617 if (fatal_signal_pending(current))
1618 return SWAP_CLUSTER_MAX;
1619 }
1620
1da177e4 1621 lru_add_drain();
f80c0673
MK
1622
1623 if (!sc->may_unmap)
61317289 1624 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1625 if (!sc->may_writepage)
61317289 1626 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1627
599d0c95 1628 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1629
5dc35979
KK
1630 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1631 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1632
599d0c95 1633 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1634 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1635
89b5fae5 1636 if (global_reclaim(sc)) {
599d0c95 1637 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1638 if (current_is_kswapd())
599d0c95 1639 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
e247dbce 1640 else
599d0c95 1641 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
e247dbce 1642 }
599d0c95 1643 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1644
d563c050 1645 if (nr_taken == 0)
66635629 1646 return 0;
5ad333eb 1647
599d0c95 1648 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
8e950282
MG
1649 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1650 &nr_writeback, &nr_immediate,
1651 false);
c661b078 1652
599d0c95 1653 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1654
904249aa
YH
1655 if (global_reclaim(sc)) {
1656 if (current_is_kswapd())
599d0c95 1657 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
904249aa 1658 else
599d0c95 1659 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
904249aa 1660 }
a74609fa 1661
27ac81d8 1662 putback_inactive_pages(lruvec, &page_list);
3f79768f 1663
599d0c95 1664 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1665
599d0c95 1666 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1667
747db954 1668 mem_cgroup_uncharge_list(&page_list);
b745bc85 1669 free_hot_cold_page_list(&page_list, true);
e11da5b4 1670
92df3a72
MG
1671 /*
1672 * If reclaim is isolating dirty pages under writeback, it implies
1673 * that the long-lived page allocation rate is exceeding the page
1674 * laundering rate. Either the global limits are not being effective
1675 * at throttling processes due to the page distribution throughout
1676 * zones or there is heavy usage of a slow backing device. The
1677 * only option is to throttle from reclaim context which is not ideal
1678 * as there is no guarantee the dirtying process is throttled in the
1679 * same way balance_dirty_pages() manages.
1680 *
8e950282
MG
1681 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1682 * of pages under pages flagged for immediate reclaim and stall if any
1683 * are encountered in the nr_immediate check below.
92df3a72 1684 */
918fc718 1685 if (nr_writeback && nr_writeback == nr_taken)
599d0c95 1686 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1687
d43006d5 1688 /*
97c9341f
TH
1689 * Legacy memcg will stall in page writeback so avoid forcibly
1690 * stalling here.
d43006d5 1691 */
97c9341f 1692 if (sane_reclaim(sc)) {
8e950282
MG
1693 /*
1694 * Tag a zone as congested if all the dirty pages scanned were
1695 * backed by a congested BDI and wait_iff_congested will stall.
1696 */
1697 if (nr_dirty && nr_dirty == nr_congested)
599d0c95 1698 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1699
b1a6f21e
MG
1700 /*
1701 * If dirty pages are scanned that are not queued for IO, it
1702 * implies that flushers are not keeping up. In this case, flag
599d0c95 1703 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
57054651 1704 * reclaim context.
b1a6f21e
MG
1705 */
1706 if (nr_unqueued_dirty == nr_taken)
599d0c95 1707 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1708
1709 /*
b738d764
LT
1710 * If kswapd scans pages marked marked for immediate
1711 * reclaim and under writeback (nr_immediate), it implies
1712 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1713 * they are written so also forcibly stall.
1714 */
b738d764 1715 if (nr_immediate && current_may_throttle())
b1a6f21e 1716 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1717 }
d43006d5 1718
8e950282
MG
1719 /*
1720 * Stall direct reclaim for IO completions if underlying BDIs or zone
1721 * is congested. Allow kswapd to continue until it starts encountering
1722 * unqueued dirty pages or cycling through the LRU too quickly.
1723 */
399ba0b9
N
1724 if (!sc->hibernation_mode && !current_is_kswapd() &&
1725 current_may_throttle())
599d0c95 1726 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1727
599d0c95
MG
1728 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1729 nr_scanned, nr_reclaimed,
ba5e9579 1730 sc->priority, file);
05ff5137 1731 return nr_reclaimed;
1da177e4
LT
1732}
1733
1734/*
1735 * This moves pages from the active list to the inactive list.
1736 *
1737 * We move them the other way if the page is referenced by one or more
1738 * processes, from rmap.
1739 *
1740 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1741 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1742 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1743 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1744 * this, so instead we remove the pages from the LRU while processing them.
1745 * It is safe to rely on PG_active against the non-LRU pages in here because
1746 * nobody will play with that bit on a non-LRU page.
1747 *
0139aa7b 1748 * The downside is that we have to touch page->_refcount against each page.
1da177e4
LT
1749 * But we had to alter page->flags anyway.
1750 */
1cfb419b 1751
fa9add64 1752static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1753 struct list_head *list,
2bcf8879 1754 struct list_head *pages_to_free,
3eb4140f
WF
1755 enum lru_list lru)
1756{
599d0c95 1757 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1758 unsigned long pgmoved = 0;
3eb4140f 1759 struct page *page;
fa9add64 1760 int nr_pages;
3eb4140f 1761
3eb4140f
WF
1762 while (!list_empty(list)) {
1763 page = lru_to_page(list);
599d0c95 1764 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1765
309381fe 1766 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1767 SetPageLRU(page);
1768
fa9add64 1769 nr_pages = hpage_nr_pages(page);
599d0c95 1770 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1771 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1772 pgmoved += nr_pages;
3eb4140f 1773
2bcf8879
HD
1774 if (put_page_testzero(page)) {
1775 __ClearPageLRU(page);
1776 __ClearPageActive(page);
fa9add64 1777 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1778
1779 if (unlikely(PageCompound(page))) {
599d0c95 1780 spin_unlock_irq(&pgdat->lru_lock);
747db954 1781 mem_cgroup_uncharge(page);
2bcf8879 1782 (*get_compound_page_dtor(page))(page);
599d0c95 1783 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1784 } else
1785 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1786 }
1787 }
9d5e6a9f 1788
3eb4140f
WF
1789 if (!is_active_lru(lru))
1790 __count_vm_events(PGDEACTIVATE, pgmoved);
1791}
1cfb419b 1792
f626012d 1793static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1794 struct lruvec *lruvec,
f16015fb 1795 struct scan_control *sc,
9e3b2f8c 1796 enum lru_list lru)
1da177e4 1797{
44c241f1 1798 unsigned long nr_taken;
f626012d 1799 unsigned long nr_scanned;
6fe6b7e3 1800 unsigned long vm_flags;
1da177e4 1801 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1802 LIST_HEAD(l_active);
b69408e8 1803 LIST_HEAD(l_inactive);
1da177e4 1804 struct page *page;
1a93be0e 1805 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1806 unsigned long nr_rotated = 0;
f3fd4a61 1807 isolate_mode_t isolate_mode = 0;
3cb99451 1808 int file = is_file_lru(lru);
599d0c95 1809 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1810
1811 lru_add_drain();
f80c0673
MK
1812
1813 if (!sc->may_unmap)
61317289 1814 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1815 if (!sc->may_writepage)
61317289 1816 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1817
599d0c95 1818 spin_lock_irq(&pgdat->lru_lock);
925b7673 1819
5dc35979
KK
1820 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1821 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1822
599d0c95 1823 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1824 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1825
9d5e6a9f 1826 if (global_reclaim(sc))
599d0c95
MG
1827 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1828 __count_vm_events(PGREFILL, nr_scanned);
9d5e6a9f 1829
599d0c95 1830 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1831
1da177e4
LT
1832 while (!list_empty(&l_hold)) {
1833 cond_resched();
1834 page = lru_to_page(&l_hold);
1835 list_del(&page->lru);
7e9cd484 1836
39b5f29a 1837 if (unlikely(!page_evictable(page))) {
894bc310
LS
1838 putback_lru_page(page);
1839 continue;
1840 }
1841
cc715d99
MG
1842 if (unlikely(buffer_heads_over_limit)) {
1843 if (page_has_private(page) && trylock_page(page)) {
1844 if (page_has_private(page))
1845 try_to_release_page(page, 0);
1846 unlock_page(page);
1847 }
1848 }
1849
c3ac9a8a
JW
1850 if (page_referenced(page, 0, sc->target_mem_cgroup,
1851 &vm_flags)) {
9992af10 1852 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1853 /*
1854 * Identify referenced, file-backed active pages and
1855 * give them one more trip around the active list. So
1856 * that executable code get better chances to stay in
1857 * memory under moderate memory pressure. Anon pages
1858 * are not likely to be evicted by use-once streaming
1859 * IO, plus JVM can create lots of anon VM_EXEC pages,
1860 * so we ignore them here.
1861 */
41e20983 1862 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1863 list_add(&page->lru, &l_active);
1864 continue;
1865 }
1866 }
7e9cd484 1867
5205e56e 1868 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1869 list_add(&page->lru, &l_inactive);
1870 }
1871
b555749a 1872 /*
8cab4754 1873 * Move pages back to the lru list.
b555749a 1874 */
599d0c95 1875 spin_lock_irq(&pgdat->lru_lock);
556adecb 1876 /*
8cab4754
WF
1877 * Count referenced pages from currently used mappings as rotated,
1878 * even though only some of them are actually re-activated. This
1879 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1880 * get_scan_count.
7e9cd484 1881 */
b7c46d15 1882 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1883
fa9add64
HD
1884 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1885 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1886 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1887 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1888
747db954 1889 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1890 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1891}
1892
59dc76b0
RR
1893/*
1894 * The inactive anon list should be small enough that the VM never has
1895 * to do too much work.
14797e23 1896 *
59dc76b0
RR
1897 * The inactive file list should be small enough to leave most memory
1898 * to the established workingset on the scan-resistant active list,
1899 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 1900 *
59dc76b0
RR
1901 * Both inactive lists should also be large enough that each inactive
1902 * page has a chance to be referenced again before it is reclaimed.
56e49d21 1903 *
59dc76b0
RR
1904 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1905 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1906 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 1907 *
59dc76b0
RR
1908 * total target max
1909 * memory ratio inactive
1910 * -------------------------------------
1911 * 10MB 1 5MB
1912 * 100MB 1 50MB
1913 * 1GB 3 250MB
1914 * 10GB 10 0.9GB
1915 * 100GB 31 3GB
1916 * 1TB 101 10GB
1917 * 10TB 320 32GB
56e49d21 1918 */
59dc76b0 1919static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
56e49d21 1920{
59dc76b0 1921 unsigned long inactive_ratio;
e3790144
JW
1922 unsigned long inactive;
1923 unsigned long active;
59dc76b0 1924 unsigned long gb;
e3790144 1925
59dc76b0
RR
1926 /*
1927 * If we don't have swap space, anonymous page deactivation
1928 * is pointless.
1929 */
1930 if (!file && !total_swap_pages)
1931 return false;
56e49d21 1932
59dc76b0
RR
1933 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1934 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
56e49d21 1935
59dc76b0
RR
1936 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1937 if (gb)
1938 inactive_ratio = int_sqrt(10 * gb);
b39415b2 1939 else
59dc76b0
RR
1940 inactive_ratio = 1;
1941
1942 return inactive * inactive_ratio < active;
b39415b2
RR
1943}
1944
4f98a2fe 1945static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1946 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1947{
b39415b2 1948 if (is_active_lru(lru)) {
59dc76b0 1949 if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1a93be0e 1950 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1951 return 0;
1952 }
1953
1a93be0e 1954 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1955}
1956
9a265114
JW
1957enum scan_balance {
1958 SCAN_EQUAL,
1959 SCAN_FRACT,
1960 SCAN_ANON,
1961 SCAN_FILE,
1962};
1963
4f98a2fe
RR
1964/*
1965 * Determine how aggressively the anon and file LRU lists should be
1966 * scanned. The relative value of each set of LRU lists is determined
1967 * by looking at the fraction of the pages scanned we did rotate back
1968 * onto the active list instead of evict.
1969 *
be7bd59d
WL
1970 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1971 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1972 */
33377678 1973static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
1974 struct scan_control *sc, unsigned long *nr,
1975 unsigned long *lru_pages)
4f98a2fe 1976{
33377678 1977 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
1978 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1979 u64 fraction[2];
1980 u64 denominator = 0; /* gcc */
599d0c95 1981 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 1982 unsigned long anon_prio, file_prio;
9a265114 1983 enum scan_balance scan_balance;
0bf1457f 1984 unsigned long anon, file;
9a265114 1985 bool force_scan = false;
4f98a2fe 1986 unsigned long ap, fp;
4111304d 1987 enum lru_list lru;
6f04f48d
SS
1988 bool some_scanned;
1989 int pass;
246e87a9 1990
f11c0ca5
JW
1991 /*
1992 * If the zone or memcg is small, nr[l] can be 0. This
1993 * results in no scanning on this priority and a potential
1994 * priority drop. Global direct reclaim can go to the next
1995 * zone and tends to have no problems. Global kswapd is for
1996 * zone balancing and it needs to scan a minimum amount. When
1997 * reclaiming for a memcg, a priority drop can cause high
1998 * latencies, so it's better to scan a minimum amount there as
1999 * well.
2000 */
90cbc250 2001 if (current_is_kswapd()) {
599d0c95 2002 if (!pgdat_reclaimable(pgdat))
90cbc250 2003 force_scan = true;
eb01aaab 2004 if (!mem_cgroup_online(memcg))
90cbc250
VD
2005 force_scan = true;
2006 }
89b5fae5 2007 if (!global_reclaim(sc))
a4d3e9e7 2008 force_scan = true;
76a33fc3
SL
2009
2010 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2011 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2012 scan_balance = SCAN_FILE;
76a33fc3
SL
2013 goto out;
2014 }
4f98a2fe 2015
10316b31
JW
2016 /*
2017 * Global reclaim will swap to prevent OOM even with no
2018 * swappiness, but memcg users want to use this knob to
2019 * disable swapping for individual groups completely when
2020 * using the memory controller's swap limit feature would be
2021 * too expensive.
2022 */
02695175 2023 if (!global_reclaim(sc) && !swappiness) {
9a265114 2024 scan_balance = SCAN_FILE;
10316b31
JW
2025 goto out;
2026 }
2027
2028 /*
2029 * Do not apply any pressure balancing cleverness when the
2030 * system is close to OOM, scan both anon and file equally
2031 * (unless the swappiness setting disagrees with swapping).
2032 */
02695175 2033 if (!sc->priority && swappiness) {
9a265114 2034 scan_balance = SCAN_EQUAL;
10316b31
JW
2035 goto out;
2036 }
2037
62376251
JW
2038 /*
2039 * Prevent the reclaimer from falling into the cache trap: as
2040 * cache pages start out inactive, every cache fault will tip
2041 * the scan balance towards the file LRU. And as the file LRU
2042 * shrinks, so does the window for rotation from references.
2043 * This means we have a runaway feedback loop where a tiny
2044 * thrashing file LRU becomes infinitely more attractive than
2045 * anon pages. Try to detect this based on file LRU size.
2046 */
2047 if (global_reclaim(sc)) {
599d0c95
MG
2048 unsigned long pgdatfile;
2049 unsigned long pgdatfree;
2050 int z;
2051 unsigned long total_high_wmark = 0;
2ab051e1 2052
599d0c95
MG
2053 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2054 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2055 node_page_state(pgdat, NR_INACTIVE_FILE);
2056
2057 for (z = 0; z < MAX_NR_ZONES; z++) {
2058 struct zone *zone = &pgdat->node_zones[z];
2059 if (!populated_zone(zone))
2060 continue;
2061
2062 total_high_wmark += high_wmark_pages(zone);
2063 }
62376251 2064
599d0c95 2065 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
62376251
JW
2066 scan_balance = SCAN_ANON;
2067 goto out;
2068 }
2069 }
2070
7c5bd705 2071 /*
316bda0e
VD
2072 * If there is enough inactive page cache, i.e. if the size of the
2073 * inactive list is greater than that of the active list *and* the
2074 * inactive list actually has some pages to scan on this priority, we
2075 * do not reclaim anything from the anonymous working set right now.
2076 * Without the second condition we could end up never scanning an
2077 * lruvec even if it has plenty of old anonymous pages unless the
2078 * system is under heavy pressure.
7c5bd705 2079 */
59dc76b0 2080 if (!inactive_list_is_low(lruvec, true) &&
23047a96 2081 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
9a265114 2082 scan_balance = SCAN_FILE;
7c5bd705
JW
2083 goto out;
2084 }
2085
9a265114
JW
2086 scan_balance = SCAN_FRACT;
2087
58c37f6e
KM
2088 /*
2089 * With swappiness at 100, anonymous and file have the same priority.
2090 * This scanning priority is essentially the inverse of IO cost.
2091 */
02695175 2092 anon_prio = swappiness;
75b00af7 2093 file_prio = 200 - anon_prio;
58c37f6e 2094
4f98a2fe
RR
2095 /*
2096 * OK, so we have swap space and a fair amount of page cache
2097 * pages. We use the recently rotated / recently scanned
2098 * ratios to determine how valuable each cache is.
2099 *
2100 * Because workloads change over time (and to avoid overflow)
2101 * we keep these statistics as a floating average, which ends
2102 * up weighing recent references more than old ones.
2103 *
2104 * anon in [0], file in [1]
2105 */
2ab051e1 2106
23047a96
JW
2107 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2108 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2109 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2110 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2ab051e1 2111
599d0c95 2112 spin_lock_irq(&pgdat->lru_lock);
6e901571 2113 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2114 reclaim_stat->recent_scanned[0] /= 2;
2115 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2116 }
2117
6e901571 2118 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2119 reclaim_stat->recent_scanned[1] /= 2;
2120 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2121 }
2122
4f98a2fe 2123 /*
00d8089c
RR
2124 * The amount of pressure on anon vs file pages is inversely
2125 * proportional to the fraction of recently scanned pages on
2126 * each list that were recently referenced and in active use.
4f98a2fe 2127 */
fe35004f 2128 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2129 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2130
fe35004f 2131 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2132 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2133 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2134
76a33fc3
SL
2135 fraction[0] = ap;
2136 fraction[1] = fp;
2137 denominator = ap + fp + 1;
2138out:
6f04f48d
SS
2139 some_scanned = false;
2140 /* Only use force_scan on second pass. */
2141 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2142 *lru_pages = 0;
6f04f48d
SS
2143 for_each_evictable_lru(lru) {
2144 int file = is_file_lru(lru);
2145 unsigned long size;
2146 unsigned long scan;
6e08a369 2147
23047a96 2148 size = lruvec_lru_size(lruvec, lru);
6f04f48d 2149 scan = size >> sc->priority;
9a265114 2150
6f04f48d
SS
2151 if (!scan && pass && force_scan)
2152 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2153
6f04f48d
SS
2154 switch (scan_balance) {
2155 case SCAN_EQUAL:
2156 /* Scan lists relative to size */
2157 break;
2158 case SCAN_FRACT:
2159 /*
2160 * Scan types proportional to swappiness and
2161 * their relative recent reclaim efficiency.
2162 */
2163 scan = div64_u64(scan * fraction[file],
2164 denominator);
2165 break;
2166 case SCAN_FILE:
2167 case SCAN_ANON:
2168 /* Scan one type exclusively */
6b4f7799
JW
2169 if ((scan_balance == SCAN_FILE) != file) {
2170 size = 0;
6f04f48d 2171 scan = 0;
6b4f7799 2172 }
6f04f48d
SS
2173 break;
2174 default:
2175 /* Look ma, no brain */
2176 BUG();
2177 }
6b4f7799
JW
2178
2179 *lru_pages += size;
6f04f48d 2180 nr[lru] = scan;
6b4f7799 2181
9a265114 2182 /*
6f04f48d
SS
2183 * Skip the second pass and don't force_scan,
2184 * if we found something to scan.
9a265114 2185 */
6f04f48d 2186 some_scanned |= !!scan;
9a265114 2187 }
76a33fc3 2188 }
6e08a369 2189}
4f98a2fe 2190
72b252ae
MG
2191#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2192static void init_tlb_ubc(void)
2193{
2194 /*
2195 * This deliberately does not clear the cpumask as it's expensive
2196 * and unnecessary. If there happens to be data in there then the
2197 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2198 * then will be cleared.
2199 */
2200 current->tlb_ubc.flush_required = false;
2201}
2202#else
2203static inline void init_tlb_ubc(void)
2204{
2205}
2206#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2207
9b4f98cd
JW
2208/*
2209 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2210 */
33377678
VD
2211static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2212 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2213{
33377678 2214 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
9b4f98cd 2215 unsigned long nr[NR_LRU_LISTS];
e82e0561 2216 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2217 unsigned long nr_to_scan;
2218 enum lru_list lru;
2219 unsigned long nr_reclaimed = 0;
2220 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2221 struct blk_plug plug;
1a501907 2222 bool scan_adjusted;
9b4f98cd 2223
33377678 2224 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2225
e82e0561
MG
2226 /* Record the original scan target for proportional adjustments later */
2227 memcpy(targets, nr, sizeof(nr));
2228
1a501907
MG
2229 /*
2230 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2231 * event that can occur when there is little memory pressure e.g.
2232 * multiple streaming readers/writers. Hence, we do not abort scanning
2233 * when the requested number of pages are reclaimed when scanning at
2234 * DEF_PRIORITY on the assumption that the fact we are direct
2235 * reclaiming implies that kswapd is not keeping up and it is best to
2236 * do a batch of work at once. For memcg reclaim one check is made to
2237 * abort proportional reclaim if either the file or anon lru has already
2238 * dropped to zero at the first pass.
2239 */
2240 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2241 sc->priority == DEF_PRIORITY);
2242
72b252ae
MG
2243 init_tlb_ubc();
2244
9b4f98cd
JW
2245 blk_start_plug(&plug);
2246 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2247 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2248 unsigned long nr_anon, nr_file, percentage;
2249 unsigned long nr_scanned;
2250
9b4f98cd
JW
2251 for_each_evictable_lru(lru) {
2252 if (nr[lru]) {
2253 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2254 nr[lru] -= nr_to_scan;
2255
2256 nr_reclaimed += shrink_list(lru, nr_to_scan,
2257 lruvec, sc);
2258 }
2259 }
e82e0561
MG
2260
2261 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2262 continue;
2263
e82e0561
MG
2264 /*
2265 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2266 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2267 * proportionally what was requested by get_scan_count(). We
2268 * stop reclaiming one LRU and reduce the amount scanning
2269 * proportional to the original scan target.
2270 */
2271 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2272 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2273
1a501907
MG
2274 /*
2275 * It's just vindictive to attack the larger once the smaller
2276 * has gone to zero. And given the way we stop scanning the
2277 * smaller below, this makes sure that we only make one nudge
2278 * towards proportionality once we've got nr_to_reclaim.
2279 */
2280 if (!nr_file || !nr_anon)
2281 break;
2282
e82e0561
MG
2283 if (nr_file > nr_anon) {
2284 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2285 targets[LRU_ACTIVE_ANON] + 1;
2286 lru = LRU_BASE;
2287 percentage = nr_anon * 100 / scan_target;
2288 } else {
2289 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2290 targets[LRU_ACTIVE_FILE] + 1;
2291 lru = LRU_FILE;
2292 percentage = nr_file * 100 / scan_target;
2293 }
2294
2295 /* Stop scanning the smaller of the LRU */
2296 nr[lru] = 0;
2297 nr[lru + LRU_ACTIVE] = 0;
2298
2299 /*
2300 * Recalculate the other LRU scan count based on its original
2301 * scan target and the percentage scanning already complete
2302 */
2303 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2304 nr_scanned = targets[lru] - nr[lru];
2305 nr[lru] = targets[lru] * (100 - percentage) / 100;
2306 nr[lru] -= min(nr[lru], nr_scanned);
2307
2308 lru += LRU_ACTIVE;
2309 nr_scanned = targets[lru] - nr[lru];
2310 nr[lru] = targets[lru] * (100 - percentage) / 100;
2311 nr[lru] -= min(nr[lru], nr_scanned);
2312
2313 scan_adjusted = true;
9b4f98cd
JW
2314 }
2315 blk_finish_plug(&plug);
2316 sc->nr_reclaimed += nr_reclaimed;
2317
2318 /*
2319 * Even if we did not try to evict anon pages at all, we want to
2320 * rebalance the anon lru active/inactive ratio.
2321 */
59dc76b0 2322 if (inactive_list_is_low(lruvec, false))
9b4f98cd
JW
2323 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2324 sc, LRU_ACTIVE_ANON);
2325
2326 throttle_vm_writeout(sc->gfp_mask);
2327}
2328
23b9da55 2329/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2330static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2331{
d84da3f9 2332 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2333 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2334 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2335 return true;
2336
2337 return false;
2338}
2339
3e7d3449 2340/*
23b9da55
MG
2341 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2342 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2343 * true if more pages should be reclaimed such that when the page allocator
2344 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2345 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2346 */
9b4f98cd 2347static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2348 unsigned long nr_reclaimed,
2349 unsigned long nr_scanned,
2350 struct scan_control *sc)
2351{
2352 unsigned long pages_for_compaction;
2353 unsigned long inactive_lru_pages;
2354
2355 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2356 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2357 return false;
2358
2876592f
MG
2359 /* Consider stopping depending on scan and reclaim activity */
2360 if (sc->gfp_mask & __GFP_REPEAT) {
2361 /*
2362 * For __GFP_REPEAT allocations, stop reclaiming if the
2363 * full LRU list has been scanned and we are still failing
2364 * to reclaim pages. This full LRU scan is potentially
2365 * expensive but a __GFP_REPEAT caller really wants to succeed
2366 */
2367 if (!nr_reclaimed && !nr_scanned)
2368 return false;
2369 } else {
2370 /*
2371 * For non-__GFP_REPEAT allocations which can presumably
2372 * fail without consequence, stop if we failed to reclaim
2373 * any pages from the last SWAP_CLUSTER_MAX number of
2374 * pages that were scanned. This will return to the
2375 * caller faster at the risk reclaim/compaction and
2376 * the resulting allocation attempt fails
2377 */
2378 if (!nr_reclaimed)
2379 return false;
2380 }
3e7d3449
MG
2381
2382 /*
2383 * If we have not reclaimed enough pages for compaction and the
2384 * inactive lists are large enough, continue reclaiming
2385 */
2386 pages_for_compaction = (2UL << sc->order);
599d0c95 2387 inactive_lru_pages = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE);
ec8acf20 2388 if (get_nr_swap_pages() > 0)
599d0c95 2389 inactive_lru_pages += node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2390 if (sc->nr_reclaimed < pages_for_compaction &&
2391 inactive_lru_pages > pages_for_compaction)
2392 return true;
2393
2394 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2395 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2396 case COMPACT_PARTIAL:
2397 case COMPACT_CONTINUE:
2398 return false;
2399 default:
2400 return true;
2401 }
2402}
2403
6b4f7799
JW
2404static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2405 bool is_classzone)
1da177e4 2406{
cb731d6c 2407 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2408 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2409 bool reclaimable = false;
1da177e4 2410
9b4f98cd
JW
2411 do {
2412 struct mem_cgroup *root = sc->target_mem_cgroup;
2413 struct mem_cgroup_reclaim_cookie reclaim = {
2414 .zone = zone,
2415 .priority = sc->priority,
2416 };
6b4f7799 2417 unsigned long zone_lru_pages = 0;
694fbc0f 2418 struct mem_cgroup *memcg;
3e7d3449 2419
9b4f98cd
JW
2420 nr_reclaimed = sc->nr_reclaimed;
2421 nr_scanned = sc->nr_scanned;
1da177e4 2422
694fbc0f
AM
2423 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2424 do {
6b4f7799 2425 unsigned long lru_pages;
8e8ae645 2426 unsigned long reclaimed;
cb731d6c 2427 unsigned long scanned;
5660048c 2428
241994ed
JW
2429 if (mem_cgroup_low(root, memcg)) {
2430 if (!sc->may_thrash)
2431 continue;
2432 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2433 }
2434
8e8ae645 2435 reclaimed = sc->nr_reclaimed;
cb731d6c 2436 scanned = sc->nr_scanned;
f9be23d6 2437
33377678 2438 shrink_zone_memcg(zone, memcg, sc, &lru_pages);
6b4f7799 2439 zone_lru_pages += lru_pages;
f16015fb 2440
cb731d6c
VD
2441 if (memcg && is_classzone)
2442 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2443 memcg, sc->nr_scanned - scanned,
2444 lru_pages);
2445
8e8ae645
JW
2446 /* Record the group's reclaim efficiency */
2447 vmpressure(sc->gfp_mask, memcg, false,
2448 sc->nr_scanned - scanned,
2449 sc->nr_reclaimed - reclaimed);
2450
9b4f98cd 2451 /*
a394cb8e
MH
2452 * Direct reclaim and kswapd have to scan all memory
2453 * cgroups to fulfill the overall scan target for the
9b4f98cd 2454 * zone.
a394cb8e
MH
2455 *
2456 * Limit reclaim, on the other hand, only cares about
2457 * nr_to_reclaim pages to be reclaimed and it will
2458 * retry with decreasing priority if one round over the
2459 * whole hierarchy is not sufficient.
9b4f98cd 2460 */
a394cb8e
MH
2461 if (!global_reclaim(sc) &&
2462 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2463 mem_cgroup_iter_break(root, memcg);
2464 break;
2465 }
241994ed 2466 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2467
6b4f7799
JW
2468 /*
2469 * Shrink the slab caches in the same proportion that
2470 * the eligible LRU pages were scanned.
2471 */
cb731d6c
VD
2472 if (global_reclaim(sc) && is_classzone)
2473 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2474 sc->nr_scanned - nr_scanned,
2475 zone_lru_pages);
2476
2477 if (reclaim_state) {
2478 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2479 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2480 }
2481
8e8ae645
JW
2482 /* Record the subtree's reclaim efficiency */
2483 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2484 sc->nr_scanned - nr_scanned,
2485 sc->nr_reclaimed - nr_reclaimed);
2486
2344d7e4
JW
2487 if (sc->nr_reclaimed - nr_reclaimed)
2488 reclaimable = true;
2489
9b4f98cd
JW
2490 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2491 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2492
2493 return reclaimable;
f16015fb
JW
2494}
2495
53853e2d
VB
2496/*
2497 * Returns true if compaction should go ahead for a high-order request, or
2498 * the high-order allocation would succeed without compaction.
2499 */
b6459cc1 2500static inline bool compaction_ready(struct zone *zone, int order, int classzone_idx)
fe4b1b24
MG
2501{
2502 unsigned long balance_gap, watermark;
2503 bool watermark_ok;
2504
fe4b1b24
MG
2505 /*
2506 * Compaction takes time to run and there are potentially other
2507 * callers using the pages just freed. Continue reclaiming until
2508 * there is a buffer of free pages available to give compaction
2509 * a reasonable chance of completing and allocating the page
2510 */
4be89a34
JZ
2511 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2512 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2513 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
b6459cc1 2514 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, classzone_idx);
fe4b1b24
MG
2515
2516 /*
2517 * If compaction is deferred, reclaim up to a point where
2518 * compaction will have a chance of success when re-enabled
2519 */
0b06496a 2520 if (compaction_deferred(zone, order))
fe4b1b24
MG
2521 return watermark_ok;
2522
53853e2d
VB
2523 /*
2524 * If compaction is not ready to start and allocation is not likely
2525 * to succeed without it, then keep reclaiming.
2526 */
b6459cc1 2527 if (compaction_suitable(zone, order, 0, classzone_idx) == COMPACT_SKIPPED)
fe4b1b24
MG
2528 return false;
2529
2530 return watermark_ok;
2531}
2532
1da177e4
LT
2533/*
2534 * This is the direct reclaim path, for page-allocating processes. We only
2535 * try to reclaim pages from zones which will satisfy the caller's allocation
2536 * request.
2537 *
41858966
MG
2538 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2539 * Because:
1da177e4
LT
2540 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2541 * allocation or
41858966
MG
2542 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2543 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2544 * zone defense algorithm.
1da177e4 2545 *
1da177e4
LT
2546 * If a zone is deemed to be full of pinned pages then just give it a light
2547 * scan then give up on it.
2548 */
0a0337e0 2549static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2550{
dd1a239f 2551 struct zoneref *z;
54a6eb5c 2552 struct zone *zone;
0608f43d
AM
2553 unsigned long nr_soft_reclaimed;
2554 unsigned long nr_soft_scanned;
619d0d76 2555 gfp_t orig_mask;
9bbc04ee 2556 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
1cfb419b 2557
cc715d99
MG
2558 /*
2559 * If the number of buffer_heads in the machine exceeds the maximum
2560 * allowed level, force direct reclaim to scan the highmem zone as
2561 * highmem pages could be pinning lowmem pages storing buffer_heads
2562 */
619d0d76 2563 orig_mask = sc->gfp_mask;
cc715d99
MG
2564 if (buffer_heads_over_limit)
2565 sc->gfp_mask |= __GFP_HIGHMEM;
2566
d4debc66 2567 for_each_zone_zonelist_nodemask(zone, z, zonelist,
7bf52fb8 2568 gfp_zone(sc->gfp_mask), sc->nodemask) {
6b4f7799
JW
2569 enum zone_type classzone_idx;
2570
f3fe6512 2571 if (!populated_zone(zone))
1da177e4 2572 continue;
6b4f7799
JW
2573
2574 classzone_idx = requested_highidx;
2575 while (!populated_zone(zone->zone_pgdat->node_zones +
2576 classzone_idx))
2577 classzone_idx--;
2578
1cfb419b
KH
2579 /*
2580 * Take care memory controller reclaiming has small influence
2581 * to global LRU.
2582 */
89b5fae5 2583 if (global_reclaim(sc)) {
344736f2
VD
2584 if (!cpuset_zone_allowed(zone,
2585 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2586 continue;
65ec02cb 2587
6e543d57 2588 if (sc->priority != DEF_PRIORITY &&
599d0c95 2589 !pgdat_reclaimable(zone->zone_pgdat))
1cfb419b 2590 continue; /* Let kswapd poll it */
0b06496a
JW
2591
2592 /*
2593 * If we already have plenty of memory free for
2594 * compaction in this zone, don't free any more.
2595 * Even though compaction is invoked for any
2596 * non-zero order, only frequent costly order
2597 * reclamation is disruptive enough to become a
2598 * noticeable problem, like transparent huge
2599 * page allocations.
2600 */
2601 if (IS_ENABLED(CONFIG_COMPACTION) &&
2602 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2603 zonelist_zone_idx(z) <= requested_highidx &&
b6459cc1 2604 compaction_ready(zone, sc->order, requested_highidx)) {
0b06496a
JW
2605 sc->compaction_ready = true;
2606 continue;
e0887c19 2607 }
0b06496a 2608
0608f43d
AM
2609 /*
2610 * This steals pages from memory cgroups over softlimit
2611 * and returns the number of reclaimed pages and
2612 * scanned pages. This works for global memory pressure
2613 * and balancing, not for a memcg's limit.
2614 */
2615 nr_soft_scanned = 0;
2616 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2617 sc->order, sc->gfp_mask,
2618 &nr_soft_scanned);
2619 sc->nr_reclaimed += nr_soft_reclaimed;
2620 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2621 /* need some check for avoid more shrink_zone() */
1cfb419b 2622 }
408d8544 2623
0a0337e0 2624 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
1da177e4 2625 }
e0c23279 2626
619d0d76
WY
2627 /*
2628 * Restore to original mask to avoid the impact on the caller if we
2629 * promoted it to __GFP_HIGHMEM.
2630 */
2631 sc->gfp_mask = orig_mask;
1da177e4 2632}
4f98a2fe 2633
1da177e4
LT
2634/*
2635 * This is the main entry point to direct page reclaim.
2636 *
2637 * If a full scan of the inactive list fails to free enough memory then we
2638 * are "out of memory" and something needs to be killed.
2639 *
2640 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2641 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2642 * caller can't do much about. We kick the writeback threads and take explicit
2643 * naps in the hope that some of these pages can be written. But if the
2644 * allocating task holds filesystem locks which prevent writeout this might not
2645 * work, and the allocation attempt will fail.
a41f24ea
NA
2646 *
2647 * returns: 0, if no pages reclaimed
2648 * else, the number of pages reclaimed
1da177e4 2649 */
dac1d27b 2650static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2651 struct scan_control *sc)
1da177e4 2652{
241994ed 2653 int initial_priority = sc->priority;
69e05944 2654 unsigned long total_scanned = 0;
22fba335 2655 unsigned long writeback_threshold;
241994ed 2656retry:
873b4771
KK
2657 delayacct_freepages_start();
2658
89b5fae5 2659 if (global_reclaim(sc))
1cfb419b 2660 count_vm_event(ALLOCSTALL);
1da177e4 2661
9e3b2f8c 2662 do {
70ddf637
AV
2663 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2664 sc->priority);
66e1707b 2665 sc->nr_scanned = 0;
0a0337e0 2666 shrink_zones(zonelist, sc);
c6a8a8c5 2667
66e1707b 2668 total_scanned += sc->nr_scanned;
bb21c7ce 2669 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2670 break;
2671
2672 if (sc->compaction_ready)
2673 break;
1da177e4 2674
0e50ce3b
MK
2675 /*
2676 * If we're getting trouble reclaiming, start doing
2677 * writepage even in laptop mode.
2678 */
2679 if (sc->priority < DEF_PRIORITY - 2)
2680 sc->may_writepage = 1;
2681
1da177e4
LT
2682 /*
2683 * Try to write back as many pages as we just scanned. This
2684 * tends to cause slow streaming writers to write data to the
2685 * disk smoothly, at the dirtying rate, which is nice. But
2686 * that's undesirable in laptop mode, where we *want* lumpy
2687 * writeout. So in laptop mode, write out the whole world.
2688 */
22fba335
KM
2689 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2690 if (total_scanned > writeback_threshold) {
0e175a18
CW
2691 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2692 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2693 sc->may_writepage = 1;
1da177e4 2694 }
0b06496a 2695 } while (--sc->priority >= 0);
bb21c7ce 2696
873b4771
KK
2697 delayacct_freepages_end();
2698
bb21c7ce
KM
2699 if (sc->nr_reclaimed)
2700 return sc->nr_reclaimed;
2701
0cee34fd 2702 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2703 if (sc->compaction_ready)
7335084d
MG
2704 return 1;
2705
241994ed
JW
2706 /* Untapped cgroup reserves? Don't OOM, retry. */
2707 if (!sc->may_thrash) {
2708 sc->priority = initial_priority;
2709 sc->may_thrash = 1;
2710 goto retry;
2711 }
2712
bb21c7ce 2713 return 0;
1da177e4
LT
2714}
2715
5515061d
MG
2716static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2717{
2718 struct zone *zone;
2719 unsigned long pfmemalloc_reserve = 0;
2720 unsigned long free_pages = 0;
2721 int i;
2722 bool wmark_ok;
2723
2724 for (i = 0; i <= ZONE_NORMAL; i++) {
2725 zone = &pgdat->node_zones[i];
f012a84a 2726 if (!populated_zone(zone) ||
599d0c95 2727 pgdat_reclaimable_pages(pgdat) == 0)
675becce
MG
2728 continue;
2729
5515061d
MG
2730 pfmemalloc_reserve += min_wmark_pages(zone);
2731 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2732 }
2733
675becce
MG
2734 /* If there are no reserves (unexpected config) then do not throttle */
2735 if (!pfmemalloc_reserve)
2736 return true;
2737
5515061d
MG
2738 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2739
2740 /* kswapd must be awake if processes are being throttled */
2741 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2742 pgdat->classzone_idx = min(pgdat->classzone_idx,
2743 (enum zone_type)ZONE_NORMAL);
2744 wake_up_interruptible(&pgdat->kswapd_wait);
2745 }
2746
2747 return wmark_ok;
2748}
2749
2750/*
2751 * Throttle direct reclaimers if backing storage is backed by the network
2752 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2753 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2754 * when the low watermark is reached.
2755 *
2756 * Returns true if a fatal signal was delivered during throttling. If this
2757 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2758 */
50694c28 2759static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2760 nodemask_t *nodemask)
2761{
675becce 2762 struct zoneref *z;
5515061d 2763 struct zone *zone;
675becce 2764 pg_data_t *pgdat = NULL;
5515061d
MG
2765
2766 /*
2767 * Kernel threads should not be throttled as they may be indirectly
2768 * responsible for cleaning pages necessary for reclaim to make forward
2769 * progress. kjournald for example may enter direct reclaim while
2770 * committing a transaction where throttling it could forcing other
2771 * processes to block on log_wait_commit().
2772 */
2773 if (current->flags & PF_KTHREAD)
50694c28
MG
2774 goto out;
2775
2776 /*
2777 * If a fatal signal is pending, this process should not throttle.
2778 * It should return quickly so it can exit and free its memory
2779 */
2780 if (fatal_signal_pending(current))
2781 goto out;
5515061d 2782
675becce
MG
2783 /*
2784 * Check if the pfmemalloc reserves are ok by finding the first node
2785 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2786 * GFP_KERNEL will be required for allocating network buffers when
2787 * swapping over the network so ZONE_HIGHMEM is unusable.
2788 *
2789 * Throttling is based on the first usable node and throttled processes
2790 * wait on a queue until kswapd makes progress and wakes them. There
2791 * is an affinity then between processes waking up and where reclaim
2792 * progress has been made assuming the process wakes on the same node.
2793 * More importantly, processes running on remote nodes will not compete
2794 * for remote pfmemalloc reserves and processes on different nodes
2795 * should make reasonable progress.
2796 */
2797 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2798 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2799 if (zone_idx(zone) > ZONE_NORMAL)
2800 continue;
2801
2802 /* Throttle based on the first usable node */
2803 pgdat = zone->zone_pgdat;
2804 if (pfmemalloc_watermark_ok(pgdat))
2805 goto out;
2806 break;
2807 }
2808
2809 /* If no zone was usable by the allocation flags then do not throttle */
2810 if (!pgdat)
50694c28 2811 goto out;
5515061d 2812
68243e76
MG
2813 /* Account for the throttling */
2814 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2815
5515061d
MG
2816 /*
2817 * If the caller cannot enter the filesystem, it's possible that it
2818 * is due to the caller holding an FS lock or performing a journal
2819 * transaction in the case of a filesystem like ext[3|4]. In this case,
2820 * it is not safe to block on pfmemalloc_wait as kswapd could be
2821 * blocked waiting on the same lock. Instead, throttle for up to a
2822 * second before continuing.
2823 */
2824 if (!(gfp_mask & __GFP_FS)) {
2825 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2826 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2827
2828 goto check_pending;
5515061d
MG
2829 }
2830
2831 /* Throttle until kswapd wakes the process */
2832 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2833 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2834
2835check_pending:
2836 if (fatal_signal_pending(current))
2837 return true;
2838
2839out:
2840 return false;
5515061d
MG
2841}
2842
dac1d27b 2843unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2844 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2845{
33906bc5 2846 unsigned long nr_reclaimed;
66e1707b 2847 struct scan_control sc = {
ee814fe2 2848 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2849 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2850 .order = order,
2851 .nodemask = nodemask,
2852 .priority = DEF_PRIORITY,
66e1707b 2853 .may_writepage = !laptop_mode,
a6dc60f8 2854 .may_unmap = 1,
2e2e4259 2855 .may_swap = 1,
66e1707b
BS
2856 };
2857
5515061d 2858 /*
50694c28
MG
2859 * Do not enter reclaim if fatal signal was delivered while throttled.
2860 * 1 is returned so that the page allocator does not OOM kill at this
2861 * point.
5515061d 2862 */
50694c28 2863 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2864 return 1;
2865
33906bc5
MG
2866 trace_mm_vmscan_direct_reclaim_begin(order,
2867 sc.may_writepage,
2868 gfp_mask);
2869
3115cd91 2870 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2871
2872 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2873
2874 return nr_reclaimed;
66e1707b
BS
2875}
2876
c255a458 2877#ifdef CONFIG_MEMCG
66e1707b 2878
72835c86 2879unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2880 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2881 struct zone *zone,
2882 unsigned long *nr_scanned)
4e416953
BS
2883{
2884 struct scan_control sc = {
b8f5c566 2885 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2886 .target_mem_cgroup = memcg,
4e416953
BS
2887 .may_writepage = !laptop_mode,
2888 .may_unmap = 1,
2889 .may_swap = !noswap,
4e416953 2890 };
6b4f7799 2891 unsigned long lru_pages;
0ae5e89c 2892
4e416953
BS
2893 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2894 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2895
9e3b2f8c 2896 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2897 sc.may_writepage,
2898 sc.gfp_mask);
2899
4e416953
BS
2900 /*
2901 * NOTE: Although we can get the priority field, using it
2902 * here is not a good idea, since it limits the pages we can scan.
2903 * if we don't reclaim here, the shrink_zone from balance_pgdat
2904 * will pick up pages from other mem cgroup's as well. We hack
2905 * the priority and make it zero.
2906 */
33377678 2907 shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
bdce6d9e
KM
2908
2909 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2910
0ae5e89c 2911 *nr_scanned = sc.nr_scanned;
4e416953
BS
2912 return sc.nr_reclaimed;
2913}
2914
72835c86 2915unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2916 unsigned long nr_pages,
a7885eb8 2917 gfp_t gfp_mask,
b70a2a21 2918 bool may_swap)
66e1707b 2919{
4e416953 2920 struct zonelist *zonelist;
bdce6d9e 2921 unsigned long nr_reclaimed;
889976db 2922 int nid;
66e1707b 2923 struct scan_control sc = {
b70a2a21 2924 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2925 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2926 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2927 .target_mem_cgroup = memcg,
2928 .priority = DEF_PRIORITY,
2929 .may_writepage = !laptop_mode,
2930 .may_unmap = 1,
b70a2a21 2931 .may_swap = may_swap,
a09ed5e0 2932 };
66e1707b 2933
889976db
YH
2934 /*
2935 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2936 * take care of from where we get pages. So the node where we start the
2937 * scan does not need to be the current node.
2938 */
72835c86 2939 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2940
2941 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2942
2943 trace_mm_vmscan_memcg_reclaim_begin(0,
2944 sc.may_writepage,
2945 sc.gfp_mask);
2946
3115cd91 2947 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2948
2949 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2950
2951 return nr_reclaimed;
66e1707b
BS
2952}
2953#endif
2954
9e3b2f8c 2955static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2956{
b95a2f2d 2957 struct mem_cgroup *memcg;
f16015fb 2958
b95a2f2d
JW
2959 if (!total_swap_pages)
2960 return;
2961
2962 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2963 do {
c56d5c7d 2964 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2965
59dc76b0 2966 if (inactive_list_is_low(lruvec, false))
1a93be0e 2967 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2968 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2969
2970 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2971 } while (memcg);
f16015fb
JW
2972}
2973
accf6242
VB
2974static bool zone_balanced(struct zone *zone, int order, bool highorder,
2975 unsigned long balance_gap, int classzone_idx)
60cefed4 2976{
accf6242 2977 unsigned long mark = high_wmark_pages(zone) + balance_gap;
60cefed4 2978
accf6242
VB
2979 /*
2980 * When checking from pgdat_balanced(), kswapd should stop and sleep
2981 * when it reaches the high order-0 watermark and let kcompactd take
2982 * over. Other callers such as wakeup_kswapd() want to determine the
2983 * true high-order watermark.
2984 */
2985 if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
2986 mark += (1UL << order);
2987 order = 0;
2988 }
60cefed4 2989
accf6242 2990 return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
60cefed4
JW
2991}
2992
1741c877 2993/*
4ae0a48b
ZC
2994 * pgdat_balanced() is used when checking if a node is balanced.
2995 *
2996 * For order-0, all zones must be balanced!
2997 *
2998 * For high-order allocations only zones that meet watermarks and are in a
2999 * zone allowed by the callers classzone_idx are added to balanced_pages. The
3000 * total of balanced pages must be at least 25% of the zones allowed by
3001 * classzone_idx for the node to be considered balanced. Forcing all zones to
3002 * be balanced for high orders can cause excessive reclaim when there are
3003 * imbalanced zones.
1741c877
MG
3004 * The choice of 25% is due to
3005 * o a 16M DMA zone that is balanced will not balance a zone on any
3006 * reasonable sized machine
3007 * o On all other machines, the top zone must be at least a reasonable
25985edc 3008 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
3009 * would need to be at least 256M for it to be balance a whole node.
3010 * Similarly, on x86-64 the Normal zone would need to be at least 1G
3011 * to balance a node on its own. These seemed like reasonable ratios.
3012 */
4ae0a48b 3013static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 3014{
b40da049 3015 unsigned long managed_pages = 0;
4ae0a48b 3016 unsigned long balanced_pages = 0;
1741c877
MG
3017 int i;
3018
4ae0a48b
ZC
3019 /* Check the watermark levels */
3020 for (i = 0; i <= classzone_idx; i++) {
3021 struct zone *zone = pgdat->node_zones + i;
1741c877 3022
4ae0a48b
ZC
3023 if (!populated_zone(zone))
3024 continue;
3025
b40da049 3026 managed_pages += zone->managed_pages;
4ae0a48b
ZC
3027
3028 /*
3029 * A special case here:
3030 *
3031 * balance_pgdat() skips over all_unreclaimable after
3032 * DEF_PRIORITY. Effectively, it considers them balanced so
3033 * they must be considered balanced here as well!
3034 */
599d0c95 3035 if (!pgdat_reclaimable(zone->zone_pgdat)) {
b40da049 3036 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3037 continue;
3038 }
3039
accf6242 3040 if (zone_balanced(zone, order, false, 0, i))
b40da049 3041 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
3042 else if (!order)
3043 return false;
3044 }
3045
3046 if (order)
b40da049 3047 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
3048 else
3049 return true;
1741c877
MG
3050}
3051
5515061d
MG
3052/*
3053 * Prepare kswapd for sleeping. This verifies that there are no processes
3054 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3055 *
3056 * Returns true if kswapd is ready to sleep
3057 */
3058static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 3059 int classzone_idx)
f50de2d3 3060{
f50de2d3
MG
3061 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3062 if (remaining)
5515061d
MG
3063 return false;
3064
3065 /*
9e5e3661
VB
3066 * The throttled processes are normally woken up in balance_pgdat() as
3067 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3068 * race between when kswapd checks the watermarks and a process gets
3069 * throttled. There is also a potential race if processes get
3070 * throttled, kswapd wakes, a large process exits thereby balancing the
3071 * zones, which causes kswapd to exit balance_pgdat() before reaching
3072 * the wake up checks. If kswapd is going to sleep, no process should
3073 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3074 * the wake up is premature, processes will wake kswapd and get
3075 * throttled again. The difference from wake ups in balance_pgdat() is
3076 * that here we are under prepare_to_wait().
5515061d 3077 */
9e5e3661
VB
3078 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3079 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3080
4ae0a48b 3081 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
3082}
3083
75485363
MG
3084/*
3085 * kswapd shrinks the zone by the number of pages required to reach
3086 * the high watermark.
b8e83b94
MG
3087 *
3088 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3089 * reclaim or if the lack of progress was due to pages under writeback.
3090 * This is used to determine if the scanning priority needs to be raised.
75485363 3091 */
b8e83b94 3092static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 3093 int classzone_idx,
accf6242 3094 struct scan_control *sc)
75485363 3095{
7c954f6d 3096 unsigned long balance_gap;
7c954f6d 3097 bool lowmem_pressure;
599d0c95 3098 struct pglist_data *pgdat = zone->zone_pgdat;
75485363
MG
3099
3100 /* Reclaim above the high watermark. */
3101 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d 3102
7c954f6d
MG
3103 /*
3104 * We put equal pressure on every zone, unless one zone has way too
3105 * many pages free already. The "too many pages" is defined as the
3106 * high wmark plus a "gap" where the gap is either the low
3107 * watermark or 1% of the zone, whichever is smaller.
3108 */
4be89a34
JZ
3109 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3110 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3111
3112 /*
3113 * If there is no low memory pressure or the zone is balanced then no
3114 * reclaim is necessary
3115 */
3116 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
accf6242 3117 if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
7c954f6d
MG
3118 balance_gap, classzone_idx))
3119 return true;
3120
6b4f7799 3121 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3122
599d0c95
MG
3123 /* TODO: ANOMALY */
3124 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
283aba9f 3125
7c954f6d
MG
3126 /*
3127 * If a zone reaches its high watermark, consider it to be no longer
3128 * congested. It's possible there are dirty pages backed by congested
3129 * BDIs but as pressure is relieved, speculatively avoid congestion
3130 * waits.
3131 */
599d0c95 3132 if (pgdat_reclaimable(zone->zone_pgdat) &&
accf6242 3133 zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
599d0c95
MG
3134 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3135 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7c954f6d
MG
3136 }
3137
b8e83b94 3138 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3139}
3140
1da177e4
LT
3141/*
3142 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3143 * they are all at high_wmark_pages(zone).
1da177e4 3144 *
accf6242 3145 * Returns the highest zone idx kswapd was reclaiming at
1da177e4
LT
3146 *
3147 * There is special handling here for zones which are full of pinned pages.
3148 * This can happen if the pages are all mlocked, or if they are all used by
3149 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3150 * What we do is to detect the case where all pages in the zone have been
3151 * scanned twice and there has been zero successful reclaim. Mark the zone as
3152 * dead and from now on, only perform a short scan. Basically we're polling
3153 * the zone for when the problem goes away.
3154 *
3155 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3156 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3157 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3158 * lower zones regardless of the number of free pages in the lower zones. This
3159 * interoperates with the page allocator fallback scheme to ensure that aging
3160 * of pages is balanced across the zones.
1da177e4 3161 */
accf6242 3162static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3163{
1da177e4 3164 int i;
99504748 3165 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3166 unsigned long nr_soft_reclaimed;
3167 unsigned long nr_soft_scanned;
179e9639
AM
3168 struct scan_control sc = {
3169 .gfp_mask = GFP_KERNEL,
ee814fe2 3170 .order = order,
b8e83b94 3171 .priority = DEF_PRIORITY,
ee814fe2 3172 .may_writepage = !laptop_mode,
a6dc60f8 3173 .may_unmap = 1,
2e2e4259 3174 .may_swap = 1,
179e9639 3175 };
f8891e5e 3176 count_vm_event(PAGEOUTRUN);
1da177e4 3177
9e3b2f8c 3178 do {
b8e83b94
MG
3179 bool raise_priority = true;
3180
3181 sc.nr_reclaimed = 0;
1da177e4 3182
d6277db4
RW
3183 /*
3184 * Scan in the highmem->dma direction for the highest
3185 * zone which needs scanning
3186 */
3187 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3188 struct zone *zone = pgdat->node_zones + i;
1da177e4 3189
d6277db4
RW
3190 if (!populated_zone(zone))
3191 continue;
1da177e4 3192
6e543d57 3193 if (sc.priority != DEF_PRIORITY &&
599d0c95 3194 !pgdat_reclaimable(zone->zone_pgdat))
d6277db4 3195 continue;
1da177e4 3196
556adecb
RR
3197 /*
3198 * Do some background aging of the anon list, to give
3199 * pages a chance to be referenced before reclaiming.
3200 */
9e3b2f8c 3201 age_active_anon(zone, &sc);
556adecb 3202
cc715d99
MG
3203 /*
3204 * If the number of buffer_heads in the machine
3205 * exceeds the maximum allowed level and this node
3206 * has a highmem zone, force kswapd to reclaim from
3207 * it to relieve lowmem pressure.
3208 */
3209 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3210 end_zone = i;
3211 break;
3212 }
3213
accf6242 3214 if (!zone_balanced(zone, order, false, 0, 0)) {
d6277db4 3215 end_zone = i;
e1dbeda6 3216 break;
439423f6 3217 } else {
d43006d5
MG
3218 /*
3219 * If balanced, clear the dirty and congested
3220 * flags
599d0c95
MG
3221 *
3222 * TODO: ANOMALY
d43006d5 3223 */
599d0c95
MG
3224 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3225 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
1da177e4 3226 }
1da177e4 3227 }
dafcb73e 3228
b8e83b94 3229 if (i < 0)
e1dbeda6
AM
3230 goto out;
3231
b7ea3c41
MG
3232 /*
3233 * If we're getting trouble reclaiming, start doing writepage
3234 * even in laptop mode.
3235 */
3236 if (sc.priority < DEF_PRIORITY - 2)
3237 sc.may_writepage = 1;
3238
1da177e4
LT
3239 /*
3240 * Now scan the zone in the dma->highmem direction, stopping
3241 * at the last zone which needs scanning.
3242 *
3243 * We do this because the page allocator works in the opposite
3244 * direction. This prevents the page allocator from allocating
3245 * pages behind kswapd's direction of progress, which would
3246 * cause too much scanning of the lower zones.
3247 */
3248 for (i = 0; i <= end_zone; i++) {
3249 struct zone *zone = pgdat->node_zones + i;
3250
f3fe6512 3251 if (!populated_zone(zone))
1da177e4
LT
3252 continue;
3253
6e543d57 3254 if (sc.priority != DEF_PRIORITY &&
599d0c95 3255 !pgdat_reclaimable(zone->zone_pgdat))
1da177e4
LT
3256 continue;
3257
1da177e4 3258 sc.nr_scanned = 0;
4e416953 3259
0608f43d
AM
3260 nr_soft_scanned = 0;
3261 /*
3262 * Call soft limit reclaim before calling shrink_zone.
3263 */
3264 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3265 order, sc.gfp_mask,
3266 &nr_soft_scanned);
3267 sc.nr_reclaimed += nr_soft_reclaimed;
3268
32a4330d 3269 /*
7c954f6d
MG
3270 * There should be no need to raise the scanning
3271 * priority if enough pages are already being scanned
3272 * that that high watermark would be met at 100%
3273 * efficiency.
fe2c2a10 3274 */
accf6242 3275 if (kswapd_shrink_zone(zone, end_zone, &sc))
7c954f6d 3276 raise_priority = false;
1da177e4 3277 }
5515061d
MG
3278
3279 /*
3280 * If the low watermark is met there is no need for processes
3281 * to be throttled on pfmemalloc_wait as they should not be
3282 * able to safely make forward progress. Wake them
3283 */
3284 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3285 pfmemalloc_watermark_ok(pgdat))
cfc51155 3286 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3287
b8e83b94
MG
3288 /* Check if kswapd should be suspending */
3289 if (try_to_freeze() || kthread_should_stop())
3290 break;
8357376d 3291
73ce02e9 3292 /*
b8e83b94
MG
3293 * Raise priority if scanning rate is too low or there was no
3294 * progress in reclaiming pages
73ce02e9 3295 */
b8e83b94
MG
3296 if (raise_priority || !sc.nr_reclaimed)
3297 sc.priority--;
9aa41348 3298 } while (sc.priority >= 1 &&
accf6242 3299 !pgdat_balanced(pgdat, order, classzone_idx));
1da177e4 3300
b8e83b94 3301out:
0abdee2b 3302 /*
accf6242
VB
3303 * Return the highest zone idx we were reclaiming at so
3304 * prepare_kswapd_sleep() makes the same decisions as here.
0abdee2b 3305 */
accf6242 3306 return end_zone;
1da177e4
LT
3307}
3308
accf6242
VB
3309static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
3310 int classzone_idx, int balanced_classzone_idx)
f0bc0a60
KM
3311{
3312 long remaining = 0;
3313 DEFINE_WAIT(wait);
3314
3315 if (freezing(current) || kthread_should_stop())
3316 return;
3317
3318 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3319
3320 /* Try to sleep for a short interval */
accf6242
VB
3321 if (prepare_kswapd_sleep(pgdat, order, remaining,
3322 balanced_classzone_idx)) {
fd901c95
VB
3323 /*
3324 * Compaction records what page blocks it recently failed to
3325 * isolate pages from and skips them in the future scanning.
3326 * When kswapd is going to sleep, it is reasonable to assume
3327 * that pages and compaction may succeed so reset the cache.
3328 */
3329 reset_isolation_suitable(pgdat);
3330
3331 /*
3332 * We have freed the memory, now we should compact it to make
3333 * allocation of the requested order possible.
3334 */
3335 wakeup_kcompactd(pgdat, order, classzone_idx);
3336
f0bc0a60
KM
3337 remaining = schedule_timeout(HZ/10);
3338 finish_wait(&pgdat->kswapd_wait, &wait);
3339 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3340 }
3341
3342 /*
3343 * After a short sleep, check if it was a premature sleep. If not, then
3344 * go fully to sleep until explicitly woken up.
3345 */
accf6242
VB
3346 if (prepare_kswapd_sleep(pgdat, order, remaining,
3347 balanced_classzone_idx)) {
f0bc0a60
KM
3348 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3349
3350 /*
3351 * vmstat counters are not perfectly accurate and the estimated
3352 * value for counters such as NR_FREE_PAGES can deviate from the
3353 * true value by nr_online_cpus * threshold. To avoid the zone
3354 * watermarks being breached while under pressure, we reduce the
3355 * per-cpu vmstat threshold while kswapd is awake and restore
3356 * them before going back to sleep.
3357 */
3358 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3359
3360 if (!kthread_should_stop())
3361 schedule();
3362
f0bc0a60
KM
3363 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3364 } else {
3365 if (remaining)
3366 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3367 else
3368 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3369 }
3370 finish_wait(&pgdat->kswapd_wait, &wait);
3371}
3372
1da177e4
LT
3373/*
3374 * The background pageout daemon, started as a kernel thread
4f98a2fe 3375 * from the init process.
1da177e4
LT
3376 *
3377 * This basically trickles out pages so that we have _some_
3378 * free memory available even if there is no other activity
3379 * that frees anything up. This is needed for things like routing
3380 * etc, where we otherwise might have all activity going on in
3381 * asynchronous contexts that cannot page things out.
3382 *
3383 * If there are applications that are active memory-allocators
3384 * (most normal use), this basically shouldn't matter.
3385 */
3386static int kswapd(void *p)
3387{
215ddd66
MG
3388 unsigned long order, new_order;
3389 int classzone_idx, new_classzone_idx;
d2ebd0f6 3390 int balanced_classzone_idx;
1da177e4
LT
3391 pg_data_t *pgdat = (pg_data_t*)p;
3392 struct task_struct *tsk = current;
f0bc0a60 3393
1da177e4
LT
3394 struct reclaim_state reclaim_state = {
3395 .reclaimed_slab = 0,
3396 };
a70f7302 3397 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3398
cf40bd16
NP
3399 lockdep_set_current_reclaim_state(GFP_KERNEL);
3400
174596a0 3401 if (!cpumask_empty(cpumask))
c5f59f08 3402 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3403 current->reclaim_state = &reclaim_state;
3404
3405 /*
3406 * Tell the memory management that we're a "memory allocator",
3407 * and that if we need more memory we should get access to it
3408 * regardless (see "__alloc_pages()"). "kswapd" should
3409 * never get caught in the normal page freeing logic.
3410 *
3411 * (Kswapd normally doesn't need memory anyway, but sometimes
3412 * you need a small amount of memory in order to be able to
3413 * page out something else, and this flag essentially protects
3414 * us from recursively trying to free more memory as we're
3415 * trying to free the first piece of memory in the first place).
3416 */
930d9152 3417 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3418 set_freezable();
1da177e4 3419
215ddd66
MG
3420 order = new_order = 0;
3421 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3422 balanced_classzone_idx = classzone_idx;
1da177e4 3423 for ( ; ; ) {
6f6313d4 3424 bool ret;
3e1d1d28 3425
215ddd66 3426 /*
accf6242
VB
3427 * While we were reclaiming, there might have been another
3428 * wakeup, so check the values.
215ddd66 3429 */
accf6242
VB
3430 new_order = pgdat->kswapd_max_order;
3431 new_classzone_idx = pgdat->classzone_idx;
3432 pgdat->kswapd_max_order = 0;
3433 pgdat->classzone_idx = pgdat->nr_zones - 1;
215ddd66 3434
99504748 3435 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3436 /*
3437 * Don't sleep if someone wants a larger 'order'
99504748 3438 * allocation or has tigher zone constraints
1da177e4
LT
3439 */
3440 order = new_order;
99504748 3441 classzone_idx = new_classzone_idx;
1da177e4 3442 } else {
accf6242 3443 kswapd_try_to_sleep(pgdat, order, classzone_idx,
d2ebd0f6 3444 balanced_classzone_idx);
1da177e4 3445 order = pgdat->kswapd_max_order;
99504748 3446 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3447 new_order = order;
3448 new_classzone_idx = classzone_idx;
4d40502e 3449 pgdat->kswapd_max_order = 0;
215ddd66 3450 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3451 }
1da177e4 3452
8fe23e05
DR
3453 ret = try_to_freeze();
3454 if (kthread_should_stop())
3455 break;
3456
3457 /*
3458 * We can speed up thawing tasks if we don't call balance_pgdat
3459 * after returning from the refrigerator
3460 */
33906bc5
MG
3461 if (!ret) {
3462 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
accf6242
VB
3463 balanced_classzone_idx = balance_pgdat(pgdat, order,
3464 classzone_idx);
33906bc5 3465 }
1da177e4 3466 }
b0a8cc58 3467
71abdc15 3468 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3469 current->reclaim_state = NULL;
71abdc15
JW
3470 lockdep_clear_current_reclaim_state();
3471
1da177e4
LT
3472 return 0;
3473}
3474
3475/*
3476 * A zone is low on free memory, so wake its kswapd task to service it.
3477 */
99504748 3478void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3479{
3480 pg_data_t *pgdat;
3481
f3fe6512 3482 if (!populated_zone(zone))
1da177e4
LT
3483 return;
3484
344736f2 3485 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3486 return;
88f5acf8 3487 pgdat = zone->zone_pgdat;
99504748 3488 if (pgdat->kswapd_max_order < order) {
1da177e4 3489 pgdat->kswapd_max_order = order;
99504748
MG
3490 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3491 }
8d0986e2 3492 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3493 return;
accf6242 3494 if (zone_balanced(zone, order, true, 0, 0))
88f5acf8
MG
3495 return;
3496
3497 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3498 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3499}
3500
c6f37f12 3501#ifdef CONFIG_HIBERNATION
1da177e4 3502/*
7b51755c 3503 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3504 * freed pages.
3505 *
3506 * Rather than trying to age LRUs the aim is to preserve the overall
3507 * LRU order by reclaiming preferentially
3508 * inactive > active > active referenced > active mapped
1da177e4 3509 */
7b51755c 3510unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3511{
d6277db4 3512 struct reclaim_state reclaim_state;
d6277db4 3513 struct scan_control sc = {
ee814fe2 3514 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3515 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3516 .priority = DEF_PRIORITY,
d6277db4 3517 .may_writepage = 1,
ee814fe2
JW
3518 .may_unmap = 1,
3519 .may_swap = 1,
7b51755c 3520 .hibernation_mode = 1,
1da177e4 3521 };
a09ed5e0 3522 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3523 struct task_struct *p = current;
3524 unsigned long nr_reclaimed;
1da177e4 3525
7b51755c
KM
3526 p->flags |= PF_MEMALLOC;
3527 lockdep_set_current_reclaim_state(sc.gfp_mask);
3528 reclaim_state.reclaimed_slab = 0;
3529 p->reclaim_state = &reclaim_state;
d6277db4 3530
3115cd91 3531 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3532
7b51755c
KM
3533 p->reclaim_state = NULL;
3534 lockdep_clear_current_reclaim_state();
3535 p->flags &= ~PF_MEMALLOC;
d6277db4 3536
7b51755c 3537 return nr_reclaimed;
1da177e4 3538}
c6f37f12 3539#endif /* CONFIG_HIBERNATION */
1da177e4 3540
1da177e4
LT
3541/* It's optimal to keep kswapds on the same CPUs as their memory, but
3542 not required for correctness. So if the last cpu in a node goes
3543 away, we get changed to run anywhere: as the first one comes back,
3544 restore their cpu bindings. */
fcb35a9b
GKH
3545static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3546 void *hcpu)
1da177e4 3547{
58c0a4a7 3548 int nid;
1da177e4 3549
8bb78442 3550 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3551 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3552 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3553 const struct cpumask *mask;
3554
3555 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3556
3e597945 3557 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3558 /* One of our CPUs online: restore mask */
c5f59f08 3559 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3560 }
3561 }
3562 return NOTIFY_OK;
3563}
1da177e4 3564
3218ae14
YG
3565/*
3566 * This kswapd start function will be called by init and node-hot-add.
3567 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3568 */
3569int kswapd_run(int nid)
3570{
3571 pg_data_t *pgdat = NODE_DATA(nid);
3572 int ret = 0;
3573
3574 if (pgdat->kswapd)
3575 return 0;
3576
3577 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3578 if (IS_ERR(pgdat->kswapd)) {
3579 /* failure at boot is fatal */
3580 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3581 pr_err("Failed to start kswapd on node %d\n", nid);
3582 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3583 pgdat->kswapd = NULL;
3218ae14
YG
3584 }
3585 return ret;
3586}
3587
8fe23e05 3588/*
d8adde17 3589 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3590 * hold mem_hotplug_begin/end().
8fe23e05
DR
3591 */
3592void kswapd_stop(int nid)
3593{
3594 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3595
d8adde17 3596 if (kswapd) {
8fe23e05 3597 kthread_stop(kswapd);
d8adde17
JL
3598 NODE_DATA(nid)->kswapd = NULL;
3599 }
8fe23e05
DR
3600}
3601
1da177e4
LT
3602static int __init kswapd_init(void)
3603{
3218ae14 3604 int nid;
69e05944 3605
1da177e4 3606 swap_setup();
48fb2e24 3607 for_each_node_state(nid, N_MEMORY)
3218ae14 3608 kswapd_run(nid);
1da177e4
LT
3609 hotcpu_notifier(cpu_callback, 0);
3610 return 0;
3611}
3612
3613module_init(kswapd_init)
9eeff239
CL
3614
3615#ifdef CONFIG_NUMA
3616/*
3617 * Zone reclaim mode
3618 *
3619 * If non-zero call zone_reclaim when the number of free pages falls below
3620 * the watermarks.
9eeff239
CL
3621 */
3622int zone_reclaim_mode __read_mostly;
3623
1b2ffb78 3624#define RECLAIM_OFF 0
7d03431c 3625#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3626#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3627#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3628
a92f7126
CL
3629/*
3630 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3631 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3632 * a zone.
3633 */
3634#define ZONE_RECLAIM_PRIORITY 4
3635
9614634f
CL
3636/*
3637 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3638 * occur.
3639 */
3640int sysctl_min_unmapped_ratio = 1;
3641
0ff38490
CL
3642/*
3643 * If the number of slab pages in a zone grows beyond this percentage then
3644 * slab reclaim needs to occur.
3645 */
3646int sysctl_min_slab_ratio = 5;
3647
90afa5de
MG
3648static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3649{
3650 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
599d0c95
MG
3651 unsigned long file_lru = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
3652 node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3653
3654 /*
3655 * It's possible for there to be more file mapped pages than
3656 * accounted for by the pages on the file LRU lists because
3657 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3658 */
3659 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3660}
3661
3662/* Work out how many page cache pages we can reclaim in this reclaim_mode */
d031a157 3663static unsigned long zone_pagecache_reclaimable(struct zone *zone)
90afa5de 3664{
d031a157
AM
3665 unsigned long nr_pagecache_reclaimable;
3666 unsigned long delta = 0;
90afa5de
MG
3667
3668 /*
95bbc0c7 3669 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de
MG
3670 * potentially reclaimable. Otherwise, we have to worry about
3671 * pages like swapcache and zone_unmapped_file_pages() provides
3672 * a better estimate
3673 */
95bbc0c7 3674 if (zone_reclaim_mode & RECLAIM_UNMAP)
90afa5de
MG
3675 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3676 else
3677 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3678
3679 /* If we can't clean pages, remove dirty pages from consideration */
3680 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3681 delta += zone_page_state(zone, NR_FILE_DIRTY);
3682
3683 /* Watch for any possible underflows due to delta */
3684 if (unlikely(delta > nr_pagecache_reclaimable))
3685 delta = nr_pagecache_reclaimable;
3686
3687 return nr_pagecache_reclaimable - delta;
3688}
3689
9eeff239
CL
3690/*
3691 * Try to free up some pages from this zone through reclaim.
3692 */
179e9639 3693static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3694{
7fb2d46d 3695 /* Minimum pages needed in order to stay on node */
69e05944 3696 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3697 struct task_struct *p = current;
3698 struct reclaim_state reclaim_state;
179e9639 3699 struct scan_control sc = {
62b726c1 3700 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3701 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3702 .order = order,
9e3b2f8c 3703 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2 3704 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
95bbc0c7 3705 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3706 .may_swap = 1,
179e9639 3707 };
9eeff239 3708
9eeff239 3709 cond_resched();
d4f7796e 3710 /*
95bbc0c7 3711 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3712 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3713 * and RECLAIM_UNMAP.
d4f7796e
CL
3714 */
3715 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3716 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3717 reclaim_state.reclaimed_slab = 0;
3718 p->reclaim_state = &reclaim_state;
c84db23c 3719
90afa5de 3720 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3721 /*
3722 * Free memory by calling shrink zone with increasing
3723 * priorities until we have enough memory freed.
3724 */
0ff38490 3725 do {
6b4f7799 3726 shrink_zone(zone, &sc, true);
9e3b2f8c 3727 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3728 }
c84db23c 3729
9eeff239 3730 p->reclaim_state = NULL;
d4f7796e 3731 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3732 lockdep_clear_current_reclaim_state();
a79311c1 3733 return sc.nr_reclaimed >= nr_pages;
9eeff239 3734}
179e9639
AM
3735
3736int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3737{
179e9639 3738 int node_id;
d773ed6b 3739 int ret;
179e9639
AM
3740
3741 /*
0ff38490
CL
3742 * Zone reclaim reclaims unmapped file backed pages and
3743 * slab pages if we are over the defined limits.
34aa1330 3744 *
9614634f
CL
3745 * A small portion of unmapped file backed pages is needed for
3746 * file I/O otherwise pages read by file I/O will be immediately
3747 * thrown out if the zone is overallocated. So we do not reclaim
3748 * if less than a specified percentage of the zone is used by
3749 * unmapped file backed pages.
179e9639 3750 */
90afa5de
MG
3751 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3752 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3753 return ZONE_RECLAIM_FULL;
179e9639 3754
599d0c95 3755 if (!pgdat_reclaimable(zone->zone_pgdat))
fa5e084e 3756 return ZONE_RECLAIM_FULL;
d773ed6b 3757
179e9639 3758 /*
d773ed6b 3759 * Do not scan if the allocation should not be delayed.
179e9639 3760 */
d0164adc 3761 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
fa5e084e 3762 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3763
3764 /*
3765 * Only run zone reclaim on the local zone or on zones that do not
3766 * have associated processors. This will favor the local processor
3767 * over remote processors and spread off node memory allocations
3768 * as wide as possible.
3769 */
89fa3024 3770 node_id = zone_to_nid(zone);
37c0708d 3771 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3772 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3773
57054651 3774 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3775 return ZONE_RECLAIM_NOSCAN;
3776
d773ed6b 3777 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3778 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3779
24cf7251
MG
3780 if (!ret)
3781 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3782
d773ed6b 3783 return ret;
179e9639 3784}
9eeff239 3785#endif
894bc310 3786
894bc310
LS
3787/*
3788 * page_evictable - test whether a page is evictable
3789 * @page: the page to test
894bc310
LS
3790 *
3791 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3792 * lists vs unevictable list.
894bc310
LS
3793 *
3794 * Reasons page might not be evictable:
ba9ddf49 3795 * (1) page's mapping marked unevictable
b291f000 3796 * (2) page is part of an mlocked VMA
ba9ddf49 3797 *
894bc310 3798 */
39b5f29a 3799int page_evictable(struct page *page)
894bc310 3800{
39b5f29a 3801 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3802}
89e004ea 3803
85046579 3804#ifdef CONFIG_SHMEM
89e004ea 3805/**
24513264
HD
3806 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3807 * @pages: array of pages to check
3808 * @nr_pages: number of pages to check
89e004ea 3809 *
24513264 3810 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3811 *
3812 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3813 */
24513264 3814void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3815{
925b7673 3816 struct lruvec *lruvec;
24513264
HD
3817 struct zone *zone = NULL;
3818 int pgscanned = 0;
3819 int pgrescued = 0;
3820 int i;
89e004ea 3821
24513264
HD
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pages[i];
3824 struct zone *pagezone;
89e004ea 3825
24513264
HD
3826 pgscanned++;
3827 pagezone = page_zone(page);
3828 if (pagezone != zone) {
3829 if (zone)
a52633d8 3830 spin_unlock_irq(zone_lru_lock(zone));
24513264 3831 zone = pagezone;
a52633d8 3832 spin_lock_irq(zone_lru_lock(zone));
24513264 3833 }
599d0c95 3834 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
89e004ea 3835
24513264
HD
3836 if (!PageLRU(page) || !PageUnevictable(page))
3837 continue;
89e004ea 3838
39b5f29a 3839 if (page_evictable(page)) {
24513264
HD
3840 enum lru_list lru = page_lru_base_type(page);
3841
309381fe 3842 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3843 ClearPageUnevictable(page);
fa9add64
HD
3844 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3845 add_page_to_lru_list(page, lruvec, lru);
24513264 3846 pgrescued++;
89e004ea 3847 }
24513264 3848 }
89e004ea 3849
24513264
HD
3850 if (zone) {
3851 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3852 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
a52633d8 3853 spin_unlock_irq(zone_lru_lock(zone));
89e004ea 3854 }
89e004ea 3855}
85046579 3856#endif /* CONFIG_SHMEM */
This page took 1.646114 seconds and 5 git commands to generate.