mm: vmscan: remove all_unreclaimable()
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
1da177e4
LT
62 /* Incremented by the number of inactive pages that were scanned */
63 unsigned long nr_scanned;
64
a79311c1
RR
65 /* Number of pages freed so far during a call to shrink_zones() */
66 unsigned long nr_reclaimed;
67
0b06496a
JW
68 /* One of the zones is ready for compaction */
69 int compaction_ready;
70
22fba335
KM
71 /* How many pages shrink_list() should reclaim */
72 unsigned long nr_to_reclaim;
73
7b51755c
KM
74 unsigned long hibernation_mode;
75
1da177e4 76 /* This context's GFP mask */
6daa0e28 77 gfp_t gfp_mask;
1da177e4
LT
78
79 int may_writepage;
80
a6dc60f8
JW
81 /* Can mapped pages be reclaimed? */
82 int may_unmap;
f1fd1067 83
2e2e4259
KM
84 /* Can pages be swapped as part of reclaim? */
85 int may_swap;
86
5ad333eb 87 int order;
66e1707b 88
9e3b2f8c
KK
89 /* Scan (total_size >> priority) pages at once */
90 int priority;
91
688eb988
MH
92 /* anon vs. file LRUs scanning "ratio" */
93 int swappiness;
94
f16015fb
JW
95 /*
96 * The memory cgroup that hit its limit and as a result is the
97 * primary target of this reclaim invocation.
98 */
99 struct mem_cgroup *target_mem_cgroup;
66e1707b 100
327c0e96
KH
101 /*
102 * Nodemask of nodes allowed by the caller. If NULL, all nodes
103 * are scanned.
104 */
105 nodemask_t *nodemask;
1da177e4
LT
106};
107
1da177e4
LT
108#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
109
110#ifdef ARCH_HAS_PREFETCH
111#define prefetch_prev_lru_page(_page, _base, _field) \
112 do { \
113 if ((_page)->lru.prev != _base) { \
114 struct page *prev; \
115 \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetch(&prev->_field); \
118 } \
119 } while (0)
120#else
121#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122#endif
123
124#ifdef ARCH_HAS_PREFETCHW
125#define prefetchw_prev_lru_page(_page, _base, _field) \
126 do { \
127 if ((_page)->lru.prev != _base) { \
128 struct page *prev; \
129 \
130 prev = lru_to_page(&(_page->lru)); \
131 prefetchw(&prev->_field); \
132 } \
133 } while (0)
134#else
135#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136#endif
137
138/*
139 * From 0 .. 100. Higher means more swappy.
140 */
141int vm_swappiness = 60;
b21e0b90 142unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
143
144static LIST_HEAD(shrinker_list);
145static DECLARE_RWSEM(shrinker_rwsem);
146
c255a458 147#ifdef CONFIG_MEMCG
89b5fae5
JW
148static bool global_reclaim(struct scan_control *sc)
149{
f16015fb 150 return !sc->target_mem_cgroup;
89b5fae5 151}
91a45470 152#else
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
155 return true;
156}
91a45470
KH
157#endif
158
a1c3bfb2 159static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
160{
161 int nr;
162
163 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
164 zone_page_state(zone, NR_INACTIVE_FILE);
165
166 if (get_nr_swap_pages() > 0)
167 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
168 zone_page_state(zone, NR_INACTIVE_ANON);
169
170 return nr;
171}
172
173bool zone_reclaimable(struct zone *zone)
174{
175 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
176}
177
4d7dcca2 178static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 179{
c3c787e8 180 if (!mem_cgroup_disabled())
4d7dcca2 181 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 182
074291fe 183 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
184}
185
1da177e4 186/*
1d3d4437 187 * Add a shrinker callback to be called from the vm.
1da177e4 188 */
1d3d4437 189int register_shrinker(struct shrinker *shrinker)
1da177e4 190{
1d3d4437
GC
191 size_t size = sizeof(*shrinker->nr_deferred);
192
193 /*
194 * If we only have one possible node in the system anyway, save
195 * ourselves the trouble and disable NUMA aware behavior. This way we
196 * will save memory and some small loop time later.
197 */
198 if (nr_node_ids == 1)
199 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
200
201 if (shrinker->flags & SHRINKER_NUMA_AWARE)
202 size *= nr_node_ids;
203
204 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
205 if (!shrinker->nr_deferred)
206 return -ENOMEM;
207
8e1f936b
RR
208 down_write(&shrinker_rwsem);
209 list_add_tail(&shrinker->list, &shrinker_list);
210 up_write(&shrinker_rwsem);
1d3d4437 211 return 0;
1da177e4 212}
8e1f936b 213EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
214
215/*
216 * Remove one
217 */
8e1f936b 218void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
219{
220 down_write(&shrinker_rwsem);
221 list_del(&shrinker->list);
222 up_write(&shrinker_rwsem);
ae393321 223 kfree(shrinker->nr_deferred);
1da177e4 224}
8e1f936b 225EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
226
227#define SHRINK_BATCH 128
1d3d4437
GC
228
229static unsigned long
230shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
231 unsigned long nr_pages_scanned, unsigned long lru_pages)
232{
233 unsigned long freed = 0;
234 unsigned long long delta;
235 long total_scan;
d5bc5fd3 236 long freeable;
1d3d4437
GC
237 long nr;
238 long new_nr;
239 int nid = shrinkctl->nid;
240 long batch_size = shrinker->batch ? shrinker->batch
241 : SHRINK_BATCH;
242
d5bc5fd3
VD
243 freeable = shrinker->count_objects(shrinker, shrinkctl);
244 if (freeable == 0)
1d3d4437
GC
245 return 0;
246
247 /*
248 * copy the current shrinker scan count into a local variable
249 * and zero it so that other concurrent shrinker invocations
250 * don't also do this scanning work.
251 */
252 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
253
254 total_scan = nr;
255 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 256 delta *= freeable;
1d3d4437
GC
257 do_div(delta, lru_pages + 1);
258 total_scan += delta;
259 if (total_scan < 0) {
260 printk(KERN_ERR
261 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 262 shrinker->scan_objects, total_scan);
d5bc5fd3 263 total_scan = freeable;
1d3d4437
GC
264 }
265
266 /*
267 * We need to avoid excessive windup on filesystem shrinkers
268 * due to large numbers of GFP_NOFS allocations causing the
269 * shrinkers to return -1 all the time. This results in a large
270 * nr being built up so when a shrink that can do some work
271 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 272 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
273 * memory.
274 *
275 * Hence only allow the shrinker to scan the entire cache when
276 * a large delta change is calculated directly.
277 */
d5bc5fd3
VD
278 if (delta < freeable / 4)
279 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
280
281 /*
282 * Avoid risking looping forever due to too large nr value:
283 * never try to free more than twice the estimate number of
284 * freeable entries.
285 */
d5bc5fd3
VD
286 if (total_scan > freeable * 2)
287 total_scan = freeable * 2;
1d3d4437
GC
288
289 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
290 nr_pages_scanned, lru_pages,
d5bc5fd3 291 freeable, delta, total_scan);
1d3d4437 292
0b1fb40a
VD
293 /*
294 * Normally, we should not scan less than batch_size objects in one
295 * pass to avoid too frequent shrinker calls, but if the slab has less
296 * than batch_size objects in total and we are really tight on memory,
297 * we will try to reclaim all available objects, otherwise we can end
298 * up failing allocations although there are plenty of reclaimable
299 * objects spread over several slabs with usage less than the
300 * batch_size.
301 *
302 * We detect the "tight on memory" situations by looking at the total
303 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 304 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
305 * scanning at high prio and therefore should try to reclaim as much as
306 * possible.
307 */
308 while (total_scan >= batch_size ||
d5bc5fd3 309 total_scan >= freeable) {
a0b02131 310 unsigned long ret;
0b1fb40a 311 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 312
0b1fb40a 313 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
314 ret = shrinker->scan_objects(shrinker, shrinkctl);
315 if (ret == SHRINK_STOP)
316 break;
317 freed += ret;
1d3d4437 318
0b1fb40a
VD
319 count_vm_events(SLABS_SCANNED, nr_to_scan);
320 total_scan -= nr_to_scan;
1d3d4437
GC
321
322 cond_resched();
323 }
324
325 /*
326 * move the unused scan count back into the shrinker in a
327 * manner that handles concurrent updates. If we exhausted the
328 * scan, there is no need to do an update.
329 */
330 if (total_scan > 0)
331 new_nr = atomic_long_add_return(total_scan,
332 &shrinker->nr_deferred[nid]);
333 else
334 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
335
df9024a8 336 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 337 return freed;
1495f230
YH
338}
339
1da177e4
LT
340/*
341 * Call the shrink functions to age shrinkable caches
342 *
343 * Here we assume it costs one seek to replace a lru page and that it also
344 * takes a seek to recreate a cache object. With this in mind we age equal
345 * percentages of the lru and ageable caches. This should balance the seeks
346 * generated by these structures.
347 *
183ff22b 348 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
349 * slab to avoid swapping.
350 *
351 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
352 *
353 * `lru_pages' represents the number of on-LRU pages in all the zones which
354 * are eligible for the caller's allocation attempt. It is used for balancing
355 * slab reclaim versus page reclaim.
b15e0905 356 *
357 * Returns the number of slab objects which we shrunk.
1da177e4 358 */
24f7c6b9 359unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 360 unsigned long nr_pages_scanned,
a09ed5e0 361 unsigned long lru_pages)
1da177e4
LT
362{
363 struct shrinker *shrinker;
24f7c6b9 364 unsigned long freed = 0;
1da177e4 365
1495f230
YH
366 if (nr_pages_scanned == 0)
367 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 368
f06590bd 369 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
370 /*
371 * If we would return 0, our callers would understand that we
372 * have nothing else to shrink and give up trying. By returning
373 * 1 we keep it going and assume we'll be able to shrink next
374 * time.
375 */
376 freed = 1;
f06590bd
MK
377 goto out;
378 }
1da177e4
LT
379
380 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
381 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
382 shrinkctl->nid = 0;
1d3d4437 383 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
384 nr_pages_scanned, lru_pages);
385 continue;
386 }
387
388 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
389 if (node_online(shrinkctl->nid))
390 freed += shrink_slab_node(shrinkctl, shrinker,
391 nr_pages_scanned, lru_pages);
1da177e4 392
1da177e4 393 }
1da177e4
LT
394 }
395 up_read(&shrinker_rwsem);
f06590bd
MK
396out:
397 cond_resched();
24f7c6b9 398 return freed;
1da177e4
LT
399}
400
1da177e4
LT
401static inline int is_page_cache_freeable(struct page *page)
402{
ceddc3a5
JW
403 /*
404 * A freeable page cache page is referenced only by the caller
405 * that isolated the page, the page cache radix tree and
406 * optional buffer heads at page->private.
407 */
edcf4748 408 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
409}
410
7d3579e8
KM
411static int may_write_to_queue(struct backing_dev_info *bdi,
412 struct scan_control *sc)
1da177e4 413{
930d9152 414 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
415 return 1;
416 if (!bdi_write_congested(bdi))
417 return 1;
418 if (bdi == current->backing_dev_info)
419 return 1;
420 return 0;
421}
422
423/*
424 * We detected a synchronous write error writing a page out. Probably
425 * -ENOSPC. We need to propagate that into the address_space for a subsequent
426 * fsync(), msync() or close().
427 *
428 * The tricky part is that after writepage we cannot touch the mapping: nothing
429 * prevents it from being freed up. But we have a ref on the page and once
430 * that page is locked, the mapping is pinned.
431 *
432 * We're allowed to run sleeping lock_page() here because we know the caller has
433 * __GFP_FS.
434 */
435static void handle_write_error(struct address_space *mapping,
436 struct page *page, int error)
437{
7eaceacc 438 lock_page(page);
3e9f45bd
GC
439 if (page_mapping(page) == mapping)
440 mapping_set_error(mapping, error);
1da177e4
LT
441 unlock_page(page);
442}
443
04e62a29
CL
444/* possible outcome of pageout() */
445typedef enum {
446 /* failed to write page out, page is locked */
447 PAGE_KEEP,
448 /* move page to the active list, page is locked */
449 PAGE_ACTIVATE,
450 /* page has been sent to the disk successfully, page is unlocked */
451 PAGE_SUCCESS,
452 /* page is clean and locked */
453 PAGE_CLEAN,
454} pageout_t;
455
1da177e4 456/*
1742f19f
AM
457 * pageout is called by shrink_page_list() for each dirty page.
458 * Calls ->writepage().
1da177e4 459 */
c661b078 460static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 461 struct scan_control *sc)
1da177e4
LT
462{
463 /*
464 * If the page is dirty, only perform writeback if that write
465 * will be non-blocking. To prevent this allocation from being
466 * stalled by pagecache activity. But note that there may be
467 * stalls if we need to run get_block(). We could test
468 * PagePrivate for that.
469 *
8174202b 470 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
471 * this page's queue, we can perform writeback even if that
472 * will block.
473 *
474 * If the page is swapcache, write it back even if that would
475 * block, for some throttling. This happens by accident, because
476 * swap_backing_dev_info is bust: it doesn't reflect the
477 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
478 */
479 if (!is_page_cache_freeable(page))
480 return PAGE_KEEP;
481 if (!mapping) {
482 /*
483 * Some data journaling orphaned pages can have
484 * page->mapping == NULL while being dirty with clean buffers.
485 */
266cf658 486 if (page_has_private(page)) {
1da177e4
LT
487 if (try_to_free_buffers(page)) {
488 ClearPageDirty(page);
b1de0d13 489 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
490 return PAGE_CLEAN;
491 }
492 }
493 return PAGE_KEEP;
494 }
495 if (mapping->a_ops->writepage == NULL)
496 return PAGE_ACTIVATE;
0e093d99 497 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
498 return PAGE_KEEP;
499
500 if (clear_page_dirty_for_io(page)) {
501 int res;
502 struct writeback_control wbc = {
503 .sync_mode = WB_SYNC_NONE,
504 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
505 .range_start = 0,
506 .range_end = LLONG_MAX,
1da177e4
LT
507 .for_reclaim = 1,
508 };
509
510 SetPageReclaim(page);
511 res = mapping->a_ops->writepage(page, &wbc);
512 if (res < 0)
513 handle_write_error(mapping, page, res);
994fc28c 514 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
515 ClearPageReclaim(page);
516 return PAGE_ACTIVATE;
517 }
c661b078 518
1da177e4
LT
519 if (!PageWriteback(page)) {
520 /* synchronous write or broken a_ops? */
521 ClearPageReclaim(page);
522 }
23b9da55 523 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 524 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
525 return PAGE_SUCCESS;
526 }
527
528 return PAGE_CLEAN;
529}
530
a649fd92 531/*
e286781d
NP
532 * Same as remove_mapping, but if the page is removed from the mapping, it
533 * gets returned with a refcount of 0.
a649fd92 534 */
a528910e
JW
535static int __remove_mapping(struct address_space *mapping, struct page *page,
536 bool reclaimed)
49d2e9cc 537{
28e4d965
NP
538 BUG_ON(!PageLocked(page));
539 BUG_ON(mapping != page_mapping(page));
49d2e9cc 540
19fd6231 541 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 542 /*
0fd0e6b0
NP
543 * The non racy check for a busy page.
544 *
545 * Must be careful with the order of the tests. When someone has
546 * a ref to the page, it may be possible that they dirty it then
547 * drop the reference. So if PageDirty is tested before page_count
548 * here, then the following race may occur:
549 *
550 * get_user_pages(&page);
551 * [user mapping goes away]
552 * write_to(page);
553 * !PageDirty(page) [good]
554 * SetPageDirty(page);
555 * put_page(page);
556 * !page_count(page) [good, discard it]
557 *
558 * [oops, our write_to data is lost]
559 *
560 * Reversing the order of the tests ensures such a situation cannot
561 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
562 * load is not satisfied before that of page->_count.
563 *
564 * Note that if SetPageDirty is always performed via set_page_dirty,
565 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 566 */
e286781d 567 if (!page_freeze_refs(page, 2))
49d2e9cc 568 goto cannot_free;
e286781d
NP
569 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
570 if (unlikely(PageDirty(page))) {
571 page_unfreeze_refs(page, 2);
49d2e9cc 572 goto cannot_free;
e286781d 573 }
49d2e9cc
CL
574
575 if (PageSwapCache(page)) {
576 swp_entry_t swap = { .val = page_private(page) };
577 __delete_from_swap_cache(page);
19fd6231 578 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 579 swapcache_free(swap, page);
e286781d 580 } else {
6072d13c 581 void (*freepage)(struct page *);
a528910e 582 void *shadow = NULL;
6072d13c
LT
583
584 freepage = mapping->a_ops->freepage;
a528910e
JW
585 /*
586 * Remember a shadow entry for reclaimed file cache in
587 * order to detect refaults, thus thrashing, later on.
588 *
589 * But don't store shadows in an address space that is
590 * already exiting. This is not just an optizimation,
591 * inode reclaim needs to empty out the radix tree or
592 * the nodes are lost. Don't plant shadows behind its
593 * back.
594 */
595 if (reclaimed && page_is_file_cache(page) &&
596 !mapping_exiting(mapping))
597 shadow = workingset_eviction(mapping, page);
598 __delete_from_page_cache(page, shadow);
19fd6231 599 spin_unlock_irq(&mapping->tree_lock);
e767e056 600 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
601
602 if (freepage != NULL)
603 freepage(page);
49d2e9cc
CL
604 }
605
49d2e9cc
CL
606 return 1;
607
608cannot_free:
19fd6231 609 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
610 return 0;
611}
612
e286781d
NP
613/*
614 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
615 * someone else has a ref on the page, abort and return 0. If it was
616 * successfully detached, return 1. Assumes the caller has a single ref on
617 * this page.
618 */
619int remove_mapping(struct address_space *mapping, struct page *page)
620{
a528910e 621 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
622 /*
623 * Unfreezing the refcount with 1 rather than 2 effectively
624 * drops the pagecache ref for us without requiring another
625 * atomic operation.
626 */
627 page_unfreeze_refs(page, 1);
628 return 1;
629 }
630 return 0;
631}
632
894bc310
LS
633/**
634 * putback_lru_page - put previously isolated page onto appropriate LRU list
635 * @page: page to be put back to appropriate lru list
636 *
637 * Add previously isolated @page to appropriate LRU list.
638 * Page may still be unevictable for other reasons.
639 *
640 * lru_lock must not be held, interrupts must be enabled.
641 */
894bc310
LS
642void putback_lru_page(struct page *page)
643{
0ec3b74c 644 bool is_unevictable;
bbfd28ee 645 int was_unevictable = PageUnevictable(page);
894bc310 646
309381fe 647 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
648
649redo:
650 ClearPageUnevictable(page);
651
39b5f29a 652 if (page_evictable(page)) {
894bc310
LS
653 /*
654 * For evictable pages, we can use the cache.
655 * In event of a race, worst case is we end up with an
656 * unevictable page on [in]active list.
657 * We know how to handle that.
658 */
0ec3b74c 659 is_unevictable = false;
c53954a0 660 lru_cache_add(page);
894bc310
LS
661 } else {
662 /*
663 * Put unevictable pages directly on zone's unevictable
664 * list.
665 */
0ec3b74c 666 is_unevictable = true;
894bc310 667 add_page_to_unevictable_list(page);
6a7b9548 668 /*
21ee9f39
MK
669 * When racing with an mlock or AS_UNEVICTABLE clearing
670 * (page is unlocked) make sure that if the other thread
671 * does not observe our setting of PG_lru and fails
24513264 672 * isolation/check_move_unevictable_pages,
21ee9f39 673 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
674 * the page back to the evictable list.
675 *
21ee9f39 676 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
677 */
678 smp_mb();
894bc310 679 }
894bc310
LS
680
681 /*
682 * page's status can change while we move it among lru. If an evictable
683 * page is on unevictable list, it never be freed. To avoid that,
684 * check after we added it to the list, again.
685 */
0ec3b74c 686 if (is_unevictable && page_evictable(page)) {
894bc310
LS
687 if (!isolate_lru_page(page)) {
688 put_page(page);
689 goto redo;
690 }
691 /* This means someone else dropped this page from LRU
692 * So, it will be freed or putback to LRU again. There is
693 * nothing to do here.
694 */
695 }
696
0ec3b74c 697 if (was_unevictable && !is_unevictable)
bbfd28ee 698 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 699 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
700 count_vm_event(UNEVICTABLE_PGCULLED);
701
894bc310
LS
702 put_page(page); /* drop ref from isolate */
703}
704
dfc8d636
JW
705enum page_references {
706 PAGEREF_RECLAIM,
707 PAGEREF_RECLAIM_CLEAN,
64574746 708 PAGEREF_KEEP,
dfc8d636
JW
709 PAGEREF_ACTIVATE,
710};
711
712static enum page_references page_check_references(struct page *page,
713 struct scan_control *sc)
714{
64574746 715 int referenced_ptes, referenced_page;
dfc8d636 716 unsigned long vm_flags;
dfc8d636 717
c3ac9a8a
JW
718 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
719 &vm_flags);
64574746 720 referenced_page = TestClearPageReferenced(page);
dfc8d636 721
dfc8d636
JW
722 /*
723 * Mlock lost the isolation race with us. Let try_to_unmap()
724 * move the page to the unevictable list.
725 */
726 if (vm_flags & VM_LOCKED)
727 return PAGEREF_RECLAIM;
728
64574746 729 if (referenced_ptes) {
e4898273 730 if (PageSwapBacked(page))
64574746
JW
731 return PAGEREF_ACTIVATE;
732 /*
733 * All mapped pages start out with page table
734 * references from the instantiating fault, so we need
735 * to look twice if a mapped file page is used more
736 * than once.
737 *
738 * Mark it and spare it for another trip around the
739 * inactive list. Another page table reference will
740 * lead to its activation.
741 *
742 * Note: the mark is set for activated pages as well
743 * so that recently deactivated but used pages are
744 * quickly recovered.
745 */
746 SetPageReferenced(page);
747
34dbc67a 748 if (referenced_page || referenced_ptes > 1)
64574746
JW
749 return PAGEREF_ACTIVATE;
750
c909e993
KK
751 /*
752 * Activate file-backed executable pages after first usage.
753 */
754 if (vm_flags & VM_EXEC)
755 return PAGEREF_ACTIVATE;
756
64574746
JW
757 return PAGEREF_KEEP;
758 }
dfc8d636
JW
759
760 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 761 if (referenced_page && !PageSwapBacked(page))
64574746
JW
762 return PAGEREF_RECLAIM_CLEAN;
763
764 return PAGEREF_RECLAIM;
dfc8d636
JW
765}
766
e2be15f6
MG
767/* Check if a page is dirty or under writeback */
768static void page_check_dirty_writeback(struct page *page,
769 bool *dirty, bool *writeback)
770{
b4597226
MG
771 struct address_space *mapping;
772
e2be15f6
MG
773 /*
774 * Anonymous pages are not handled by flushers and must be written
775 * from reclaim context. Do not stall reclaim based on them
776 */
777 if (!page_is_file_cache(page)) {
778 *dirty = false;
779 *writeback = false;
780 return;
781 }
782
783 /* By default assume that the page flags are accurate */
784 *dirty = PageDirty(page);
785 *writeback = PageWriteback(page);
b4597226
MG
786
787 /* Verify dirty/writeback state if the filesystem supports it */
788 if (!page_has_private(page))
789 return;
790
791 mapping = page_mapping(page);
792 if (mapping && mapping->a_ops->is_dirty_writeback)
793 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
794}
795
1da177e4 796/*
1742f19f 797 * shrink_page_list() returns the number of reclaimed pages
1da177e4 798 */
1742f19f 799static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 800 struct zone *zone,
f84f6e2b 801 struct scan_control *sc,
02c6de8d 802 enum ttu_flags ttu_flags,
8e950282 803 unsigned long *ret_nr_dirty,
d43006d5 804 unsigned long *ret_nr_unqueued_dirty,
8e950282 805 unsigned long *ret_nr_congested,
02c6de8d 806 unsigned long *ret_nr_writeback,
b1a6f21e 807 unsigned long *ret_nr_immediate,
02c6de8d 808 bool force_reclaim)
1da177e4
LT
809{
810 LIST_HEAD(ret_pages);
abe4c3b5 811 LIST_HEAD(free_pages);
1da177e4 812 int pgactivate = 0;
d43006d5 813 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
814 unsigned long nr_dirty = 0;
815 unsigned long nr_congested = 0;
05ff5137 816 unsigned long nr_reclaimed = 0;
92df3a72 817 unsigned long nr_writeback = 0;
b1a6f21e 818 unsigned long nr_immediate = 0;
1da177e4
LT
819
820 cond_resched();
821
69980e31 822 mem_cgroup_uncharge_start();
1da177e4
LT
823 while (!list_empty(page_list)) {
824 struct address_space *mapping;
825 struct page *page;
826 int may_enter_fs;
02c6de8d 827 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 828 bool dirty, writeback;
1da177e4
LT
829
830 cond_resched();
831
832 page = lru_to_page(page_list);
833 list_del(&page->lru);
834
529ae9aa 835 if (!trylock_page(page))
1da177e4
LT
836 goto keep;
837
309381fe
SL
838 VM_BUG_ON_PAGE(PageActive(page), page);
839 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
840
841 sc->nr_scanned++;
80e43426 842
39b5f29a 843 if (unlikely(!page_evictable(page)))
b291f000 844 goto cull_mlocked;
894bc310 845
a6dc60f8 846 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
847 goto keep_locked;
848
1da177e4
LT
849 /* Double the slab pressure for mapped and swapcache pages */
850 if (page_mapped(page) || PageSwapCache(page))
851 sc->nr_scanned++;
852
c661b078
AW
853 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
854 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
855
e2be15f6
MG
856 /*
857 * The number of dirty pages determines if a zone is marked
858 * reclaim_congested which affects wait_iff_congested. kswapd
859 * will stall and start writing pages if the tail of the LRU
860 * is all dirty unqueued pages.
861 */
862 page_check_dirty_writeback(page, &dirty, &writeback);
863 if (dirty || writeback)
864 nr_dirty++;
865
866 if (dirty && !writeback)
867 nr_unqueued_dirty++;
868
d04e8acd
MG
869 /*
870 * Treat this page as congested if the underlying BDI is or if
871 * pages are cycling through the LRU so quickly that the
872 * pages marked for immediate reclaim are making it to the
873 * end of the LRU a second time.
874 */
e2be15f6 875 mapping = page_mapping(page);
d04e8acd
MG
876 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
877 (writeback && PageReclaim(page)))
e2be15f6
MG
878 nr_congested++;
879
283aba9f
MG
880 /*
881 * If a page at the tail of the LRU is under writeback, there
882 * are three cases to consider.
883 *
884 * 1) If reclaim is encountering an excessive number of pages
885 * under writeback and this page is both under writeback and
886 * PageReclaim then it indicates that pages are being queued
887 * for IO but are being recycled through the LRU before the
888 * IO can complete. Waiting on the page itself risks an
889 * indefinite stall if it is impossible to writeback the
890 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
891 * note that the LRU is being scanned too quickly and the
892 * caller can stall after page list has been processed.
283aba9f
MG
893 *
894 * 2) Global reclaim encounters a page, memcg encounters a
895 * page that is not marked for immediate reclaim or
896 * the caller does not have __GFP_IO. In this case mark
897 * the page for immediate reclaim and continue scanning.
898 *
899 * __GFP_IO is checked because a loop driver thread might
900 * enter reclaim, and deadlock if it waits on a page for
901 * which it is needed to do the write (loop masks off
902 * __GFP_IO|__GFP_FS for this reason); but more thought
903 * would probably show more reasons.
904 *
905 * Don't require __GFP_FS, since we're not going into the
906 * FS, just waiting on its writeback completion. Worryingly,
907 * ext4 gfs2 and xfs allocate pages with
908 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
909 * may_enter_fs here is liable to OOM on them.
910 *
911 * 3) memcg encounters a page that is not already marked
912 * PageReclaim. memcg does not have any dirty pages
913 * throttling so we could easily OOM just because too many
914 * pages are in writeback and there is nothing else to
915 * reclaim. Wait for the writeback to complete.
916 */
c661b078 917 if (PageWriteback(page)) {
283aba9f
MG
918 /* Case 1 above */
919 if (current_is_kswapd() &&
920 PageReclaim(page) &&
921 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
922 nr_immediate++;
923 goto keep_locked;
283aba9f
MG
924
925 /* Case 2 above */
926 } else if (global_reclaim(sc) ||
c3b94f44
HD
927 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
928 /*
929 * This is slightly racy - end_page_writeback()
930 * might have just cleared PageReclaim, then
931 * setting PageReclaim here end up interpreted
932 * as PageReadahead - but that does not matter
933 * enough to care. What we do want is for this
934 * page to have PageReclaim set next time memcg
935 * reclaim reaches the tests above, so it will
936 * then wait_on_page_writeback() to avoid OOM;
937 * and it's also appropriate in global reclaim.
938 */
939 SetPageReclaim(page);
e62e384e 940 nr_writeback++;
283aba9f 941
c3b94f44 942 goto keep_locked;
283aba9f
MG
943
944 /* Case 3 above */
945 } else {
946 wait_on_page_writeback(page);
e62e384e 947 }
c661b078 948 }
1da177e4 949
02c6de8d
MK
950 if (!force_reclaim)
951 references = page_check_references(page, sc);
952
dfc8d636
JW
953 switch (references) {
954 case PAGEREF_ACTIVATE:
1da177e4 955 goto activate_locked;
64574746
JW
956 case PAGEREF_KEEP:
957 goto keep_locked;
dfc8d636
JW
958 case PAGEREF_RECLAIM:
959 case PAGEREF_RECLAIM_CLEAN:
960 ; /* try to reclaim the page below */
961 }
1da177e4 962
1da177e4
LT
963 /*
964 * Anonymous process memory has backing store?
965 * Try to allocate it some swap space here.
966 */
b291f000 967 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
968 if (!(sc->gfp_mask & __GFP_IO))
969 goto keep_locked;
5bc7b8ac 970 if (!add_to_swap(page, page_list))
1da177e4 971 goto activate_locked;
63eb6b93 972 may_enter_fs = 1;
1da177e4 973
e2be15f6
MG
974 /* Adding to swap updated mapping */
975 mapping = page_mapping(page);
976 }
1da177e4
LT
977
978 /*
979 * The page is mapped into the page tables of one or more
980 * processes. Try to unmap it here.
981 */
982 if (page_mapped(page) && mapping) {
02c6de8d 983 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
984 case SWAP_FAIL:
985 goto activate_locked;
986 case SWAP_AGAIN:
987 goto keep_locked;
b291f000
NP
988 case SWAP_MLOCK:
989 goto cull_mlocked;
1da177e4
LT
990 case SWAP_SUCCESS:
991 ; /* try to free the page below */
992 }
993 }
994
995 if (PageDirty(page)) {
ee72886d
MG
996 /*
997 * Only kswapd can writeback filesystem pages to
d43006d5
MG
998 * avoid risk of stack overflow but only writeback
999 * if many dirty pages have been encountered.
ee72886d 1000 */
f84f6e2b 1001 if (page_is_file_cache(page) &&
9e3b2f8c 1002 (!current_is_kswapd() ||
d43006d5 1003 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
1004 /*
1005 * Immediately reclaim when written back.
1006 * Similar in principal to deactivate_page()
1007 * except we already have the page isolated
1008 * and know it's dirty
1009 */
1010 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1011 SetPageReclaim(page);
1012
ee72886d
MG
1013 goto keep_locked;
1014 }
1015
dfc8d636 1016 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1017 goto keep_locked;
4dd4b920 1018 if (!may_enter_fs)
1da177e4 1019 goto keep_locked;
52a8363e 1020 if (!sc->may_writepage)
1da177e4
LT
1021 goto keep_locked;
1022
1023 /* Page is dirty, try to write it out here */
7d3579e8 1024 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1025 case PAGE_KEEP:
1026 goto keep_locked;
1027 case PAGE_ACTIVATE:
1028 goto activate_locked;
1029 case PAGE_SUCCESS:
7d3579e8 1030 if (PageWriteback(page))
41ac1999 1031 goto keep;
7d3579e8 1032 if (PageDirty(page))
1da177e4 1033 goto keep;
7d3579e8 1034
1da177e4
LT
1035 /*
1036 * A synchronous write - probably a ramdisk. Go
1037 * ahead and try to reclaim the page.
1038 */
529ae9aa 1039 if (!trylock_page(page))
1da177e4
LT
1040 goto keep;
1041 if (PageDirty(page) || PageWriteback(page))
1042 goto keep_locked;
1043 mapping = page_mapping(page);
1044 case PAGE_CLEAN:
1045 ; /* try to free the page below */
1046 }
1047 }
1048
1049 /*
1050 * If the page has buffers, try to free the buffer mappings
1051 * associated with this page. If we succeed we try to free
1052 * the page as well.
1053 *
1054 * We do this even if the page is PageDirty().
1055 * try_to_release_page() does not perform I/O, but it is
1056 * possible for a page to have PageDirty set, but it is actually
1057 * clean (all its buffers are clean). This happens if the
1058 * buffers were written out directly, with submit_bh(). ext3
894bc310 1059 * will do this, as well as the blockdev mapping.
1da177e4
LT
1060 * try_to_release_page() will discover that cleanness and will
1061 * drop the buffers and mark the page clean - it can be freed.
1062 *
1063 * Rarely, pages can have buffers and no ->mapping. These are
1064 * the pages which were not successfully invalidated in
1065 * truncate_complete_page(). We try to drop those buffers here
1066 * and if that worked, and the page is no longer mapped into
1067 * process address space (page_count == 1) it can be freed.
1068 * Otherwise, leave the page on the LRU so it is swappable.
1069 */
266cf658 1070 if (page_has_private(page)) {
1da177e4
LT
1071 if (!try_to_release_page(page, sc->gfp_mask))
1072 goto activate_locked;
e286781d
NP
1073 if (!mapping && page_count(page) == 1) {
1074 unlock_page(page);
1075 if (put_page_testzero(page))
1076 goto free_it;
1077 else {
1078 /*
1079 * rare race with speculative reference.
1080 * the speculative reference will free
1081 * this page shortly, so we may
1082 * increment nr_reclaimed here (and
1083 * leave it off the LRU).
1084 */
1085 nr_reclaimed++;
1086 continue;
1087 }
1088 }
1da177e4
LT
1089 }
1090
a528910e 1091 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1092 goto keep_locked;
1da177e4 1093
a978d6f5
NP
1094 /*
1095 * At this point, we have no other references and there is
1096 * no way to pick any more up (removed from LRU, removed
1097 * from pagecache). Can use non-atomic bitops now (and
1098 * we obviously don't have to worry about waking up a process
1099 * waiting on the page lock, because there are no references.
1100 */
1101 __clear_page_locked(page);
e286781d 1102free_it:
05ff5137 1103 nr_reclaimed++;
abe4c3b5
MG
1104
1105 /*
1106 * Is there need to periodically free_page_list? It would
1107 * appear not as the counts should be low
1108 */
1109 list_add(&page->lru, &free_pages);
1da177e4
LT
1110 continue;
1111
b291f000 1112cull_mlocked:
63d6c5ad
HD
1113 if (PageSwapCache(page))
1114 try_to_free_swap(page);
b291f000
NP
1115 unlock_page(page);
1116 putback_lru_page(page);
1117 continue;
1118
1da177e4 1119activate_locked:
68a22394
RR
1120 /* Not a candidate for swapping, so reclaim swap space. */
1121 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1122 try_to_free_swap(page);
309381fe 1123 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1124 SetPageActive(page);
1125 pgactivate++;
1126keep_locked:
1127 unlock_page(page);
1128keep:
1129 list_add(&page->lru, &ret_pages);
309381fe 1130 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1131 }
abe4c3b5 1132
b745bc85 1133 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1134
1da177e4 1135 list_splice(&ret_pages, page_list);
f8891e5e 1136 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1137 mem_cgroup_uncharge_end();
8e950282
MG
1138 *ret_nr_dirty += nr_dirty;
1139 *ret_nr_congested += nr_congested;
d43006d5 1140 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1141 *ret_nr_writeback += nr_writeback;
b1a6f21e 1142 *ret_nr_immediate += nr_immediate;
05ff5137 1143 return nr_reclaimed;
1da177e4
LT
1144}
1145
02c6de8d
MK
1146unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1147 struct list_head *page_list)
1148{
1149 struct scan_control sc = {
1150 .gfp_mask = GFP_KERNEL,
1151 .priority = DEF_PRIORITY,
1152 .may_unmap = 1,
1153 };
8e950282 1154 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1155 struct page *page, *next;
1156 LIST_HEAD(clean_pages);
1157
1158 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1159 if (page_is_file_cache(page) && !PageDirty(page) &&
1160 !isolated_balloon_page(page)) {
02c6de8d
MK
1161 ClearPageActive(page);
1162 list_move(&page->lru, &clean_pages);
1163 }
1164 }
1165
1166 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1167 TTU_UNMAP|TTU_IGNORE_ACCESS,
1168 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1169 list_splice(&clean_pages, page_list);
83da7510 1170 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1171 return ret;
1172}
1173
5ad333eb
AW
1174/*
1175 * Attempt to remove the specified page from its LRU. Only take this page
1176 * if it is of the appropriate PageActive status. Pages which are being
1177 * freed elsewhere are also ignored.
1178 *
1179 * page: page to consider
1180 * mode: one of the LRU isolation modes defined above
1181 *
1182 * returns 0 on success, -ve errno on failure.
1183 */
f3fd4a61 1184int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1185{
1186 int ret = -EINVAL;
1187
1188 /* Only take pages on the LRU. */
1189 if (!PageLRU(page))
1190 return ret;
1191
e46a2879
MK
1192 /* Compaction should not handle unevictable pages but CMA can do so */
1193 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1194 return ret;
1195
5ad333eb 1196 ret = -EBUSY;
08e552c6 1197
c8244935
MG
1198 /*
1199 * To minimise LRU disruption, the caller can indicate that it only
1200 * wants to isolate pages it will be able to operate on without
1201 * blocking - clean pages for the most part.
1202 *
1203 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1204 * is used by reclaim when it is cannot write to backing storage
1205 *
1206 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1207 * that it is possible to migrate without blocking
1208 */
1209 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1210 /* All the caller can do on PageWriteback is block */
1211 if (PageWriteback(page))
1212 return ret;
1213
1214 if (PageDirty(page)) {
1215 struct address_space *mapping;
1216
1217 /* ISOLATE_CLEAN means only clean pages */
1218 if (mode & ISOLATE_CLEAN)
1219 return ret;
1220
1221 /*
1222 * Only pages without mappings or that have a
1223 * ->migratepage callback are possible to migrate
1224 * without blocking
1225 */
1226 mapping = page_mapping(page);
1227 if (mapping && !mapping->a_ops->migratepage)
1228 return ret;
1229 }
1230 }
39deaf85 1231
f80c0673
MK
1232 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1233 return ret;
1234
5ad333eb
AW
1235 if (likely(get_page_unless_zero(page))) {
1236 /*
1237 * Be careful not to clear PageLRU until after we're
1238 * sure the page is not being freed elsewhere -- the
1239 * page release code relies on it.
1240 */
1241 ClearPageLRU(page);
1242 ret = 0;
1243 }
1244
1245 return ret;
1246}
1247
1da177e4
LT
1248/*
1249 * zone->lru_lock is heavily contended. Some of the functions that
1250 * shrink the lists perform better by taking out a batch of pages
1251 * and working on them outside the LRU lock.
1252 *
1253 * For pagecache intensive workloads, this function is the hottest
1254 * spot in the kernel (apart from copy_*_user functions).
1255 *
1256 * Appropriate locks must be held before calling this function.
1257 *
1258 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1259 * @lruvec: The LRU vector to pull pages from.
1da177e4 1260 * @dst: The temp list to put pages on to.
f626012d 1261 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1262 * @sc: The scan_control struct for this reclaim session
5ad333eb 1263 * @mode: One of the LRU isolation modes
3cb99451 1264 * @lru: LRU list id for isolating
1da177e4
LT
1265 *
1266 * returns how many pages were moved onto *@dst.
1267 */
69e05944 1268static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1269 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1270 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1271 isolate_mode_t mode, enum lru_list lru)
1da177e4 1272{
75b00af7 1273 struct list_head *src = &lruvec->lists[lru];
69e05944 1274 unsigned long nr_taken = 0;
c9b02d97 1275 unsigned long scan;
1da177e4 1276
c9b02d97 1277 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1278 struct page *page;
fa9add64 1279 int nr_pages;
5ad333eb 1280
1da177e4
LT
1281 page = lru_to_page(src);
1282 prefetchw_prev_lru_page(page, src, flags);
1283
309381fe 1284 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1285
f3fd4a61 1286 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1287 case 0:
fa9add64
HD
1288 nr_pages = hpage_nr_pages(page);
1289 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1290 list_move(&page->lru, dst);
fa9add64 1291 nr_taken += nr_pages;
5ad333eb
AW
1292 break;
1293
1294 case -EBUSY:
1295 /* else it is being freed elsewhere */
1296 list_move(&page->lru, src);
1297 continue;
46453a6e 1298
5ad333eb
AW
1299 default:
1300 BUG();
1301 }
1da177e4
LT
1302 }
1303
f626012d 1304 *nr_scanned = scan;
75b00af7
HD
1305 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1306 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1307 return nr_taken;
1308}
1309
62695a84
NP
1310/**
1311 * isolate_lru_page - tries to isolate a page from its LRU list
1312 * @page: page to isolate from its LRU list
1313 *
1314 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1315 * vmstat statistic corresponding to whatever LRU list the page was on.
1316 *
1317 * Returns 0 if the page was removed from an LRU list.
1318 * Returns -EBUSY if the page was not on an LRU list.
1319 *
1320 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1321 * the active list, it will have PageActive set. If it was found on
1322 * the unevictable list, it will have the PageUnevictable bit set. That flag
1323 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1324 *
1325 * The vmstat statistic corresponding to the list on which the page was
1326 * found will be decremented.
1327 *
1328 * Restrictions:
1329 * (1) Must be called with an elevated refcount on the page. This is a
1330 * fundamentnal difference from isolate_lru_pages (which is called
1331 * without a stable reference).
1332 * (2) the lru_lock must not be held.
1333 * (3) interrupts must be enabled.
1334 */
1335int isolate_lru_page(struct page *page)
1336{
1337 int ret = -EBUSY;
1338
309381fe 1339 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1340
62695a84
NP
1341 if (PageLRU(page)) {
1342 struct zone *zone = page_zone(page);
fa9add64 1343 struct lruvec *lruvec;
62695a84
NP
1344
1345 spin_lock_irq(&zone->lru_lock);
fa9add64 1346 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1347 if (PageLRU(page)) {
894bc310 1348 int lru = page_lru(page);
0c917313 1349 get_page(page);
62695a84 1350 ClearPageLRU(page);
fa9add64
HD
1351 del_page_from_lru_list(page, lruvec, lru);
1352 ret = 0;
62695a84
NP
1353 }
1354 spin_unlock_irq(&zone->lru_lock);
1355 }
1356 return ret;
1357}
1358
35cd7815 1359/*
d37dd5dc
FW
1360 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1361 * then get resheduled. When there are massive number of tasks doing page
1362 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1363 * the LRU list will go small and be scanned faster than necessary, leading to
1364 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1365 */
1366static int too_many_isolated(struct zone *zone, int file,
1367 struct scan_control *sc)
1368{
1369 unsigned long inactive, isolated;
1370
1371 if (current_is_kswapd())
1372 return 0;
1373
89b5fae5 1374 if (!global_reclaim(sc))
35cd7815
RR
1375 return 0;
1376
1377 if (file) {
1378 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1379 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1380 } else {
1381 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1382 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1383 }
1384
3cf23841
FW
1385 /*
1386 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1387 * won't get blocked by normal direct-reclaimers, forming a circular
1388 * deadlock.
1389 */
1390 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1391 inactive >>= 3;
1392
35cd7815
RR
1393 return isolated > inactive;
1394}
1395
66635629 1396static noinline_for_stack void
75b00af7 1397putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1398{
27ac81d8
KK
1399 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1400 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1401 LIST_HEAD(pages_to_free);
66635629 1402
66635629
MG
1403 /*
1404 * Put back any unfreeable pages.
1405 */
66635629 1406 while (!list_empty(page_list)) {
3f79768f 1407 struct page *page = lru_to_page(page_list);
66635629 1408 int lru;
3f79768f 1409
309381fe 1410 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1411 list_del(&page->lru);
39b5f29a 1412 if (unlikely(!page_evictable(page))) {
66635629
MG
1413 spin_unlock_irq(&zone->lru_lock);
1414 putback_lru_page(page);
1415 spin_lock_irq(&zone->lru_lock);
1416 continue;
1417 }
fa9add64
HD
1418
1419 lruvec = mem_cgroup_page_lruvec(page, zone);
1420
7a608572 1421 SetPageLRU(page);
66635629 1422 lru = page_lru(page);
fa9add64
HD
1423 add_page_to_lru_list(page, lruvec, lru);
1424
66635629
MG
1425 if (is_active_lru(lru)) {
1426 int file = is_file_lru(lru);
9992af10
RR
1427 int numpages = hpage_nr_pages(page);
1428 reclaim_stat->recent_rotated[file] += numpages;
66635629 1429 }
2bcf8879
HD
1430 if (put_page_testzero(page)) {
1431 __ClearPageLRU(page);
1432 __ClearPageActive(page);
fa9add64 1433 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1434
1435 if (unlikely(PageCompound(page))) {
1436 spin_unlock_irq(&zone->lru_lock);
1437 (*get_compound_page_dtor(page))(page);
1438 spin_lock_irq(&zone->lru_lock);
1439 } else
1440 list_add(&page->lru, &pages_to_free);
66635629
MG
1441 }
1442 }
66635629 1443
3f79768f
HD
1444 /*
1445 * To save our caller's stack, now use input list for pages to free.
1446 */
1447 list_splice(&pages_to_free, page_list);
66635629
MG
1448}
1449
399ba0b9
N
1450/*
1451 * If a kernel thread (such as nfsd for loop-back mounts) services
1452 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1453 * In that case we should only throttle if the backing device it is
1454 * writing to is congested. In other cases it is safe to throttle.
1455 */
1456static int current_may_throttle(void)
1457{
1458 return !(current->flags & PF_LESS_THROTTLE) ||
1459 current->backing_dev_info == NULL ||
1460 bdi_write_congested(current->backing_dev_info);
1461}
1462
1da177e4 1463/*
1742f19f
AM
1464 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1465 * of reclaimed pages
1da177e4 1466 */
66635629 1467static noinline_for_stack unsigned long
1a93be0e 1468shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1469 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1470{
1471 LIST_HEAD(page_list);
e247dbce 1472 unsigned long nr_scanned;
05ff5137 1473 unsigned long nr_reclaimed = 0;
e247dbce 1474 unsigned long nr_taken;
8e950282
MG
1475 unsigned long nr_dirty = 0;
1476 unsigned long nr_congested = 0;
e2be15f6 1477 unsigned long nr_unqueued_dirty = 0;
92df3a72 1478 unsigned long nr_writeback = 0;
b1a6f21e 1479 unsigned long nr_immediate = 0;
f3fd4a61 1480 isolate_mode_t isolate_mode = 0;
3cb99451 1481 int file = is_file_lru(lru);
1a93be0e
KK
1482 struct zone *zone = lruvec_zone(lruvec);
1483 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1484
35cd7815 1485 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1486 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1487
1488 /* We are about to die and free our memory. Return now. */
1489 if (fatal_signal_pending(current))
1490 return SWAP_CLUSTER_MAX;
1491 }
1492
1da177e4 1493 lru_add_drain();
f80c0673
MK
1494
1495 if (!sc->may_unmap)
61317289 1496 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1497 if (!sc->may_writepage)
61317289 1498 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1499
1da177e4 1500 spin_lock_irq(&zone->lru_lock);
b35ea17b 1501
5dc35979
KK
1502 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1503 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1504
1505 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1506 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1507
89b5fae5 1508 if (global_reclaim(sc)) {
e247dbce
KM
1509 zone->pages_scanned += nr_scanned;
1510 if (current_is_kswapd())
75b00af7 1511 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1512 else
75b00af7 1513 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1514 }
d563c050 1515 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1516
d563c050 1517 if (nr_taken == 0)
66635629 1518 return 0;
5ad333eb 1519
02c6de8d 1520 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1521 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1522 &nr_writeback, &nr_immediate,
1523 false);
c661b078 1524
3f79768f
HD
1525 spin_lock_irq(&zone->lru_lock);
1526
95d918fc 1527 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1528
904249aa
YH
1529 if (global_reclaim(sc)) {
1530 if (current_is_kswapd())
1531 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1532 nr_reclaimed);
1533 else
1534 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1535 nr_reclaimed);
1536 }
a74609fa 1537
27ac81d8 1538 putback_inactive_pages(lruvec, &page_list);
3f79768f 1539
95d918fc 1540 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1541
1542 spin_unlock_irq(&zone->lru_lock);
1543
b745bc85 1544 free_hot_cold_page_list(&page_list, true);
e11da5b4 1545
92df3a72
MG
1546 /*
1547 * If reclaim is isolating dirty pages under writeback, it implies
1548 * that the long-lived page allocation rate is exceeding the page
1549 * laundering rate. Either the global limits are not being effective
1550 * at throttling processes due to the page distribution throughout
1551 * zones or there is heavy usage of a slow backing device. The
1552 * only option is to throttle from reclaim context which is not ideal
1553 * as there is no guarantee the dirtying process is throttled in the
1554 * same way balance_dirty_pages() manages.
1555 *
8e950282
MG
1556 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1557 * of pages under pages flagged for immediate reclaim and stall if any
1558 * are encountered in the nr_immediate check below.
92df3a72 1559 */
918fc718 1560 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1561 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1562
d43006d5 1563 /*
b1a6f21e
MG
1564 * memcg will stall in page writeback so only consider forcibly
1565 * stalling for global reclaim
d43006d5 1566 */
b1a6f21e 1567 if (global_reclaim(sc)) {
8e950282
MG
1568 /*
1569 * Tag a zone as congested if all the dirty pages scanned were
1570 * backed by a congested BDI and wait_iff_congested will stall.
1571 */
1572 if (nr_dirty && nr_dirty == nr_congested)
1573 zone_set_flag(zone, ZONE_CONGESTED);
1574
b1a6f21e
MG
1575 /*
1576 * If dirty pages are scanned that are not queued for IO, it
1577 * implies that flushers are not keeping up. In this case, flag
1578 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
b738d764 1579 * pages from reclaim context.
b1a6f21e
MG
1580 */
1581 if (nr_unqueued_dirty == nr_taken)
1582 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1583
1584 /*
b738d764
LT
1585 * If kswapd scans pages marked marked for immediate
1586 * reclaim and under writeback (nr_immediate), it implies
1587 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1588 * they are written so also forcibly stall.
1589 */
b738d764 1590 if (nr_immediate && current_may_throttle())
b1a6f21e 1591 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1592 }
d43006d5 1593
8e950282
MG
1594 /*
1595 * Stall direct reclaim for IO completions if underlying BDIs or zone
1596 * is congested. Allow kswapd to continue until it starts encountering
1597 * unqueued dirty pages or cycling through the LRU too quickly.
1598 */
399ba0b9
N
1599 if (!sc->hibernation_mode && !current_is_kswapd() &&
1600 current_may_throttle())
8e950282
MG
1601 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1602
e11da5b4
MG
1603 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1604 zone_idx(zone),
1605 nr_scanned, nr_reclaimed,
9e3b2f8c 1606 sc->priority,
23b9da55 1607 trace_shrink_flags(file));
05ff5137 1608 return nr_reclaimed;
1da177e4
LT
1609}
1610
1611/*
1612 * This moves pages from the active list to the inactive list.
1613 *
1614 * We move them the other way if the page is referenced by one or more
1615 * processes, from rmap.
1616 *
1617 * If the pages are mostly unmapped, the processing is fast and it is
1618 * appropriate to hold zone->lru_lock across the whole operation. But if
1619 * the pages are mapped, the processing is slow (page_referenced()) so we
1620 * should drop zone->lru_lock around each page. It's impossible to balance
1621 * this, so instead we remove the pages from the LRU while processing them.
1622 * It is safe to rely on PG_active against the non-LRU pages in here because
1623 * nobody will play with that bit on a non-LRU page.
1624 *
1625 * The downside is that we have to touch page->_count against each page.
1626 * But we had to alter page->flags anyway.
1627 */
1cfb419b 1628
fa9add64 1629static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1630 struct list_head *list,
2bcf8879 1631 struct list_head *pages_to_free,
3eb4140f
WF
1632 enum lru_list lru)
1633{
fa9add64 1634 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1635 unsigned long pgmoved = 0;
3eb4140f 1636 struct page *page;
fa9add64 1637 int nr_pages;
3eb4140f 1638
3eb4140f
WF
1639 while (!list_empty(list)) {
1640 page = lru_to_page(list);
fa9add64 1641 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1642
309381fe 1643 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1644 SetPageLRU(page);
1645
fa9add64
HD
1646 nr_pages = hpage_nr_pages(page);
1647 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1648 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1649 pgmoved += nr_pages;
3eb4140f 1650
2bcf8879
HD
1651 if (put_page_testzero(page)) {
1652 __ClearPageLRU(page);
1653 __ClearPageActive(page);
fa9add64 1654 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1655
1656 if (unlikely(PageCompound(page))) {
1657 spin_unlock_irq(&zone->lru_lock);
1658 (*get_compound_page_dtor(page))(page);
1659 spin_lock_irq(&zone->lru_lock);
1660 } else
1661 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1662 }
1663 }
1664 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1665 if (!is_active_lru(lru))
1666 __count_vm_events(PGDEACTIVATE, pgmoved);
1667}
1cfb419b 1668
f626012d 1669static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1670 struct lruvec *lruvec,
f16015fb 1671 struct scan_control *sc,
9e3b2f8c 1672 enum lru_list lru)
1da177e4 1673{
44c241f1 1674 unsigned long nr_taken;
f626012d 1675 unsigned long nr_scanned;
6fe6b7e3 1676 unsigned long vm_flags;
1da177e4 1677 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1678 LIST_HEAD(l_active);
b69408e8 1679 LIST_HEAD(l_inactive);
1da177e4 1680 struct page *page;
1a93be0e 1681 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1682 unsigned long nr_rotated = 0;
f3fd4a61 1683 isolate_mode_t isolate_mode = 0;
3cb99451 1684 int file = is_file_lru(lru);
1a93be0e 1685 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1686
1687 lru_add_drain();
f80c0673
MK
1688
1689 if (!sc->may_unmap)
61317289 1690 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1691 if (!sc->may_writepage)
61317289 1692 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1693
1da177e4 1694 spin_lock_irq(&zone->lru_lock);
925b7673 1695
5dc35979
KK
1696 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1697 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1698 if (global_reclaim(sc))
f626012d 1699 zone->pages_scanned += nr_scanned;
89b5fae5 1700
b7c46d15 1701 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1702
f626012d 1703 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1704 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1705 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1706 spin_unlock_irq(&zone->lru_lock);
1707
1da177e4
LT
1708 while (!list_empty(&l_hold)) {
1709 cond_resched();
1710 page = lru_to_page(&l_hold);
1711 list_del(&page->lru);
7e9cd484 1712
39b5f29a 1713 if (unlikely(!page_evictable(page))) {
894bc310
LS
1714 putback_lru_page(page);
1715 continue;
1716 }
1717
cc715d99
MG
1718 if (unlikely(buffer_heads_over_limit)) {
1719 if (page_has_private(page) && trylock_page(page)) {
1720 if (page_has_private(page))
1721 try_to_release_page(page, 0);
1722 unlock_page(page);
1723 }
1724 }
1725
c3ac9a8a
JW
1726 if (page_referenced(page, 0, sc->target_mem_cgroup,
1727 &vm_flags)) {
9992af10 1728 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1729 /*
1730 * Identify referenced, file-backed active pages and
1731 * give them one more trip around the active list. So
1732 * that executable code get better chances to stay in
1733 * memory under moderate memory pressure. Anon pages
1734 * are not likely to be evicted by use-once streaming
1735 * IO, plus JVM can create lots of anon VM_EXEC pages,
1736 * so we ignore them here.
1737 */
41e20983 1738 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1739 list_add(&page->lru, &l_active);
1740 continue;
1741 }
1742 }
7e9cd484 1743
5205e56e 1744 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1745 list_add(&page->lru, &l_inactive);
1746 }
1747
b555749a 1748 /*
8cab4754 1749 * Move pages back to the lru list.
b555749a 1750 */
2a1dc509 1751 spin_lock_irq(&zone->lru_lock);
556adecb 1752 /*
8cab4754
WF
1753 * Count referenced pages from currently used mappings as rotated,
1754 * even though only some of them are actually re-activated. This
1755 * helps balance scan pressure between file and anonymous pages in
1756 * get_scan_ratio.
7e9cd484 1757 */
b7c46d15 1758 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1759
fa9add64
HD
1760 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1761 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1762 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1763 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1764
b745bc85 1765 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1766}
1767
74e3f3c3 1768#ifdef CONFIG_SWAP
14797e23 1769static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1770{
1771 unsigned long active, inactive;
1772
1773 active = zone_page_state(zone, NR_ACTIVE_ANON);
1774 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1775
1776 if (inactive * zone->inactive_ratio < active)
1777 return 1;
1778
1779 return 0;
1780}
1781
14797e23
KM
1782/**
1783 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1784 * @lruvec: LRU vector to check
14797e23
KM
1785 *
1786 * Returns true if the zone does not have enough inactive anon pages,
1787 * meaning some active anon pages need to be deactivated.
1788 */
c56d5c7d 1789static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1790{
74e3f3c3
MK
1791 /*
1792 * If we don't have swap space, anonymous page deactivation
1793 * is pointless.
1794 */
1795 if (!total_swap_pages)
1796 return 0;
1797
c3c787e8 1798 if (!mem_cgroup_disabled())
c56d5c7d 1799 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1800
c56d5c7d 1801 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1802}
74e3f3c3 1803#else
c56d5c7d 1804static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1805{
1806 return 0;
1807}
1808#endif
14797e23 1809
56e49d21
RR
1810/**
1811 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1812 * @lruvec: LRU vector to check
56e49d21
RR
1813 *
1814 * When the system is doing streaming IO, memory pressure here
1815 * ensures that active file pages get deactivated, until more
1816 * than half of the file pages are on the inactive list.
1817 *
1818 * Once we get to that situation, protect the system's working
1819 * set from being evicted by disabling active file page aging.
1820 *
1821 * This uses a different ratio than the anonymous pages, because
1822 * the page cache uses a use-once replacement algorithm.
1823 */
c56d5c7d 1824static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1825{
e3790144
JW
1826 unsigned long inactive;
1827 unsigned long active;
1828
1829 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1830 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1831
e3790144 1832 return active > inactive;
56e49d21
RR
1833}
1834
75b00af7 1835static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1836{
75b00af7 1837 if (is_file_lru(lru))
c56d5c7d 1838 return inactive_file_is_low(lruvec);
b39415b2 1839 else
c56d5c7d 1840 return inactive_anon_is_low(lruvec);
b39415b2
RR
1841}
1842
4f98a2fe 1843static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1844 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1845{
b39415b2 1846 if (is_active_lru(lru)) {
75b00af7 1847 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1848 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1849 return 0;
1850 }
1851
1a93be0e 1852 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1853}
1854
9a265114
JW
1855enum scan_balance {
1856 SCAN_EQUAL,
1857 SCAN_FRACT,
1858 SCAN_ANON,
1859 SCAN_FILE,
1860};
1861
4f98a2fe
RR
1862/*
1863 * Determine how aggressively the anon and file LRU lists should be
1864 * scanned. The relative value of each set of LRU lists is determined
1865 * by looking at the fraction of the pages scanned we did rotate back
1866 * onto the active list instead of evict.
1867 *
be7bd59d
WL
1868 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1869 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1870 */
90126375 1871static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1872 unsigned long *nr)
4f98a2fe 1873{
9a265114
JW
1874 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1875 u64 fraction[2];
1876 u64 denominator = 0; /* gcc */
1877 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1878 unsigned long anon_prio, file_prio;
9a265114 1879 enum scan_balance scan_balance;
0bf1457f 1880 unsigned long anon, file;
9a265114 1881 bool force_scan = false;
4f98a2fe 1882 unsigned long ap, fp;
4111304d 1883 enum lru_list lru;
6f04f48d
SS
1884 bool some_scanned;
1885 int pass;
246e87a9 1886
f11c0ca5
JW
1887 /*
1888 * If the zone or memcg is small, nr[l] can be 0. This
1889 * results in no scanning on this priority and a potential
1890 * priority drop. Global direct reclaim can go to the next
1891 * zone and tends to have no problems. Global kswapd is for
1892 * zone balancing and it needs to scan a minimum amount. When
1893 * reclaiming for a memcg, a priority drop can cause high
1894 * latencies, so it's better to scan a minimum amount there as
1895 * well.
1896 */
6e543d57 1897 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1898 force_scan = true;
89b5fae5 1899 if (!global_reclaim(sc))
a4d3e9e7 1900 force_scan = true;
76a33fc3
SL
1901
1902 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1903 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1904 scan_balance = SCAN_FILE;
76a33fc3
SL
1905 goto out;
1906 }
4f98a2fe 1907
10316b31
JW
1908 /*
1909 * Global reclaim will swap to prevent OOM even with no
1910 * swappiness, but memcg users want to use this knob to
1911 * disable swapping for individual groups completely when
1912 * using the memory controller's swap limit feature would be
1913 * too expensive.
1914 */
688eb988 1915 if (!global_reclaim(sc) && !sc->swappiness) {
9a265114 1916 scan_balance = SCAN_FILE;
10316b31
JW
1917 goto out;
1918 }
1919
1920 /*
1921 * Do not apply any pressure balancing cleverness when the
1922 * system is close to OOM, scan both anon and file equally
1923 * (unless the swappiness setting disagrees with swapping).
1924 */
688eb988 1925 if (!sc->priority && sc->swappiness) {
9a265114 1926 scan_balance = SCAN_EQUAL;
10316b31
JW
1927 goto out;
1928 }
1929
4d7dcca2
HD
1930 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1931 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1932 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1933 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1934
62376251
JW
1935 /*
1936 * Prevent the reclaimer from falling into the cache trap: as
1937 * cache pages start out inactive, every cache fault will tip
1938 * the scan balance towards the file LRU. And as the file LRU
1939 * shrinks, so does the window for rotation from references.
1940 * This means we have a runaway feedback loop where a tiny
1941 * thrashing file LRU becomes infinitely more attractive than
1942 * anon pages. Try to detect this based on file LRU size.
1943 */
1944 if (global_reclaim(sc)) {
1945 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1946
1947 if (unlikely(file + free <= high_wmark_pages(zone))) {
1948 scan_balance = SCAN_ANON;
1949 goto out;
1950 }
1951 }
1952
7c5bd705
JW
1953 /*
1954 * There is enough inactive page cache, do not reclaim
1955 * anything from the anonymous working set right now.
1956 */
1957 if (!inactive_file_is_low(lruvec)) {
9a265114 1958 scan_balance = SCAN_FILE;
7c5bd705
JW
1959 goto out;
1960 }
1961
9a265114
JW
1962 scan_balance = SCAN_FRACT;
1963
58c37f6e
KM
1964 /*
1965 * With swappiness at 100, anonymous and file have the same priority.
1966 * This scanning priority is essentially the inverse of IO cost.
1967 */
688eb988 1968 anon_prio = sc->swappiness;
75b00af7 1969 file_prio = 200 - anon_prio;
58c37f6e 1970
4f98a2fe
RR
1971 /*
1972 * OK, so we have swap space and a fair amount of page cache
1973 * pages. We use the recently rotated / recently scanned
1974 * ratios to determine how valuable each cache is.
1975 *
1976 * Because workloads change over time (and to avoid overflow)
1977 * we keep these statistics as a floating average, which ends
1978 * up weighing recent references more than old ones.
1979 *
1980 * anon in [0], file in [1]
1981 */
90126375 1982 spin_lock_irq(&zone->lru_lock);
6e901571 1983 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1984 reclaim_stat->recent_scanned[0] /= 2;
1985 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1986 }
1987
6e901571 1988 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1989 reclaim_stat->recent_scanned[1] /= 2;
1990 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1991 }
1992
4f98a2fe 1993 /*
00d8089c
RR
1994 * The amount of pressure on anon vs file pages is inversely
1995 * proportional to the fraction of recently scanned pages on
1996 * each list that were recently referenced and in active use.
4f98a2fe 1997 */
fe35004f 1998 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1999 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2000
fe35004f 2001 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2002 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2003 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2004
76a33fc3
SL
2005 fraction[0] = ap;
2006 fraction[1] = fp;
2007 denominator = ap + fp + 1;
2008out:
6f04f48d
SS
2009 some_scanned = false;
2010 /* Only use force_scan on second pass. */
2011 for (pass = 0; !some_scanned && pass < 2; pass++) {
2012 for_each_evictable_lru(lru) {
2013 int file = is_file_lru(lru);
2014 unsigned long size;
2015 unsigned long scan;
6e08a369 2016
6f04f48d
SS
2017 size = get_lru_size(lruvec, lru);
2018 scan = size >> sc->priority;
9a265114 2019
6f04f48d
SS
2020 if (!scan && pass && force_scan)
2021 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2022
6f04f48d
SS
2023 switch (scan_balance) {
2024 case SCAN_EQUAL:
2025 /* Scan lists relative to size */
2026 break;
2027 case SCAN_FRACT:
2028 /*
2029 * Scan types proportional to swappiness and
2030 * their relative recent reclaim efficiency.
2031 */
2032 scan = div64_u64(scan * fraction[file],
2033 denominator);
2034 break;
2035 case SCAN_FILE:
2036 case SCAN_ANON:
2037 /* Scan one type exclusively */
2038 if ((scan_balance == SCAN_FILE) != file)
2039 scan = 0;
2040 break;
2041 default:
2042 /* Look ma, no brain */
2043 BUG();
2044 }
2045 nr[lru] = scan;
9a265114 2046 /*
6f04f48d
SS
2047 * Skip the second pass and don't force_scan,
2048 * if we found something to scan.
9a265114 2049 */
6f04f48d 2050 some_scanned |= !!scan;
9a265114 2051 }
76a33fc3 2052 }
6e08a369 2053}
4f98a2fe 2054
9b4f98cd
JW
2055/*
2056 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2057 */
2058static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2059{
2060 unsigned long nr[NR_LRU_LISTS];
e82e0561 2061 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2062 unsigned long nr_to_scan;
2063 enum lru_list lru;
2064 unsigned long nr_reclaimed = 0;
2065 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2066 struct blk_plug plug;
1a501907 2067 bool scan_adjusted;
9b4f98cd
JW
2068
2069 get_scan_count(lruvec, sc, nr);
2070
e82e0561
MG
2071 /* Record the original scan target for proportional adjustments later */
2072 memcpy(targets, nr, sizeof(nr));
2073
1a501907
MG
2074 /*
2075 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2076 * event that can occur when there is little memory pressure e.g.
2077 * multiple streaming readers/writers. Hence, we do not abort scanning
2078 * when the requested number of pages are reclaimed when scanning at
2079 * DEF_PRIORITY on the assumption that the fact we are direct
2080 * reclaiming implies that kswapd is not keeping up and it is best to
2081 * do a batch of work at once. For memcg reclaim one check is made to
2082 * abort proportional reclaim if either the file or anon lru has already
2083 * dropped to zero at the first pass.
2084 */
2085 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2086 sc->priority == DEF_PRIORITY);
2087
9b4f98cd
JW
2088 blk_start_plug(&plug);
2089 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2090 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2091 unsigned long nr_anon, nr_file, percentage;
2092 unsigned long nr_scanned;
2093
9b4f98cd
JW
2094 for_each_evictable_lru(lru) {
2095 if (nr[lru]) {
2096 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2097 nr[lru] -= nr_to_scan;
2098
2099 nr_reclaimed += shrink_list(lru, nr_to_scan,
2100 lruvec, sc);
2101 }
2102 }
e82e0561
MG
2103
2104 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2105 continue;
2106
e82e0561
MG
2107 /*
2108 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2109 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2110 * proportionally what was requested by get_scan_count(). We
2111 * stop reclaiming one LRU and reduce the amount scanning
2112 * proportional to the original scan target.
2113 */
2114 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2115 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2116
1a501907
MG
2117 /*
2118 * It's just vindictive to attack the larger once the smaller
2119 * has gone to zero. And given the way we stop scanning the
2120 * smaller below, this makes sure that we only make one nudge
2121 * towards proportionality once we've got nr_to_reclaim.
2122 */
2123 if (!nr_file || !nr_anon)
2124 break;
2125
e82e0561
MG
2126 if (nr_file > nr_anon) {
2127 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2128 targets[LRU_ACTIVE_ANON] + 1;
2129 lru = LRU_BASE;
2130 percentage = nr_anon * 100 / scan_target;
2131 } else {
2132 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2133 targets[LRU_ACTIVE_FILE] + 1;
2134 lru = LRU_FILE;
2135 percentage = nr_file * 100 / scan_target;
2136 }
2137
2138 /* Stop scanning the smaller of the LRU */
2139 nr[lru] = 0;
2140 nr[lru + LRU_ACTIVE] = 0;
2141
2142 /*
2143 * Recalculate the other LRU scan count based on its original
2144 * scan target and the percentage scanning already complete
2145 */
2146 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2147 nr_scanned = targets[lru] - nr[lru];
2148 nr[lru] = targets[lru] * (100 - percentage) / 100;
2149 nr[lru] -= min(nr[lru], nr_scanned);
2150
2151 lru += LRU_ACTIVE;
2152 nr_scanned = targets[lru] - nr[lru];
2153 nr[lru] = targets[lru] * (100 - percentage) / 100;
2154 nr[lru] -= min(nr[lru], nr_scanned);
2155
2156 scan_adjusted = true;
9b4f98cd
JW
2157 }
2158 blk_finish_plug(&plug);
2159 sc->nr_reclaimed += nr_reclaimed;
2160
2161 /*
2162 * Even if we did not try to evict anon pages at all, we want to
2163 * rebalance the anon lru active/inactive ratio.
2164 */
2165 if (inactive_anon_is_low(lruvec))
2166 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2167 sc, LRU_ACTIVE_ANON);
2168
2169 throttle_vm_writeout(sc->gfp_mask);
2170}
2171
23b9da55 2172/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2173static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2174{
d84da3f9 2175 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2176 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2177 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2178 return true;
2179
2180 return false;
2181}
2182
3e7d3449 2183/*
23b9da55
MG
2184 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2185 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2186 * true if more pages should be reclaimed such that when the page allocator
2187 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2188 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2189 */
9b4f98cd 2190static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2191 unsigned long nr_reclaimed,
2192 unsigned long nr_scanned,
2193 struct scan_control *sc)
2194{
2195 unsigned long pages_for_compaction;
2196 unsigned long inactive_lru_pages;
2197
2198 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2199 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2200 return false;
2201
2876592f
MG
2202 /* Consider stopping depending on scan and reclaim activity */
2203 if (sc->gfp_mask & __GFP_REPEAT) {
2204 /*
2205 * For __GFP_REPEAT allocations, stop reclaiming if the
2206 * full LRU list has been scanned and we are still failing
2207 * to reclaim pages. This full LRU scan is potentially
2208 * expensive but a __GFP_REPEAT caller really wants to succeed
2209 */
2210 if (!nr_reclaimed && !nr_scanned)
2211 return false;
2212 } else {
2213 /*
2214 * For non-__GFP_REPEAT allocations which can presumably
2215 * fail without consequence, stop if we failed to reclaim
2216 * any pages from the last SWAP_CLUSTER_MAX number of
2217 * pages that were scanned. This will return to the
2218 * caller faster at the risk reclaim/compaction and
2219 * the resulting allocation attempt fails
2220 */
2221 if (!nr_reclaimed)
2222 return false;
2223 }
3e7d3449
MG
2224
2225 /*
2226 * If we have not reclaimed enough pages for compaction and the
2227 * inactive lists are large enough, continue reclaiming
2228 */
2229 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2230 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2231 if (get_nr_swap_pages() > 0)
9b4f98cd 2232 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2233 if (sc->nr_reclaimed < pages_for_compaction &&
2234 inactive_lru_pages > pages_for_compaction)
2235 return true;
2236
2237 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2238 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2239 case COMPACT_PARTIAL:
2240 case COMPACT_CONTINUE:
2241 return false;
2242 default:
2243 return true;
2244 }
2245}
2246
2344d7e4 2247static bool shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2248{
f0fdc5e8 2249 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2250 bool reclaimable = false;
1da177e4 2251
9b4f98cd
JW
2252 do {
2253 struct mem_cgroup *root = sc->target_mem_cgroup;
2254 struct mem_cgroup_reclaim_cookie reclaim = {
2255 .zone = zone,
2256 .priority = sc->priority,
2257 };
694fbc0f 2258 struct mem_cgroup *memcg;
3e7d3449 2259
9b4f98cd
JW
2260 nr_reclaimed = sc->nr_reclaimed;
2261 nr_scanned = sc->nr_scanned;
1da177e4 2262
694fbc0f
AM
2263 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2264 do {
9b4f98cd 2265 struct lruvec *lruvec;
5660048c 2266
9b4f98cd 2267 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2268
688eb988 2269 sc->swappiness = mem_cgroup_swappiness(memcg);
9b4f98cd 2270 shrink_lruvec(lruvec, sc);
f16015fb 2271
9b4f98cd 2272 /*
a394cb8e
MH
2273 * Direct reclaim and kswapd have to scan all memory
2274 * cgroups to fulfill the overall scan target for the
9b4f98cd 2275 * zone.
a394cb8e
MH
2276 *
2277 * Limit reclaim, on the other hand, only cares about
2278 * nr_to_reclaim pages to be reclaimed and it will
2279 * retry with decreasing priority if one round over the
2280 * whole hierarchy is not sufficient.
9b4f98cd 2281 */
a394cb8e
MH
2282 if (!global_reclaim(sc) &&
2283 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2284 mem_cgroup_iter_break(root, memcg);
2285 break;
2286 }
694fbc0f
AM
2287 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2288 } while (memcg);
70ddf637
AV
2289
2290 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2291 sc->nr_scanned - nr_scanned,
2292 sc->nr_reclaimed - nr_reclaimed);
2293
2344d7e4
JW
2294 if (sc->nr_reclaimed - nr_reclaimed)
2295 reclaimable = true;
2296
9b4f98cd
JW
2297 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2298 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2299
2300 return reclaimable;
f16015fb
JW
2301}
2302
fe4b1b24 2303/* Returns true if compaction should go ahead for a high-order request */
0b06496a 2304static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2305{
2306 unsigned long balance_gap, watermark;
2307 bool watermark_ok;
2308
fe4b1b24
MG
2309 /*
2310 * Compaction takes time to run and there are potentially other
2311 * callers using the pages just freed. Continue reclaiming until
2312 * there is a buffer of free pages available to give compaction
2313 * a reasonable chance of completing and allocating the page
2314 */
4be89a34
JZ
2315 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2316 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2317 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2318 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2319
2320 /*
2321 * If compaction is deferred, reclaim up to a point where
2322 * compaction will have a chance of success when re-enabled
2323 */
0b06496a 2324 if (compaction_deferred(zone, order))
fe4b1b24
MG
2325 return watermark_ok;
2326
2327 /* If compaction is not ready to start, keep reclaiming */
0b06496a 2328 if (!compaction_suitable(zone, order))
fe4b1b24
MG
2329 return false;
2330
2331 return watermark_ok;
2332}
2333
1da177e4
LT
2334/*
2335 * This is the direct reclaim path, for page-allocating processes. We only
2336 * try to reclaim pages from zones which will satisfy the caller's allocation
2337 * request.
2338 *
41858966
MG
2339 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2340 * Because:
1da177e4
LT
2341 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2342 * allocation or
41858966
MG
2343 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2344 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2345 * zone defense algorithm.
1da177e4 2346 *
1da177e4
LT
2347 * If a zone is deemed to be full of pinned pages then just give it a light
2348 * scan then give up on it.
2344d7e4
JW
2349 *
2350 * Returns true if a zone was reclaimable.
1da177e4 2351 */
2344d7e4 2352static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2353{
dd1a239f 2354 struct zoneref *z;
54a6eb5c 2355 struct zone *zone;
0608f43d
AM
2356 unsigned long nr_soft_reclaimed;
2357 unsigned long nr_soft_scanned;
65ec02cb 2358 unsigned long lru_pages = 0;
65ec02cb 2359 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2360 gfp_t orig_mask;
3115cd91
VD
2361 struct shrink_control shrink = {
2362 .gfp_mask = sc->gfp_mask,
2363 };
9bbc04ee 2364 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2365 bool reclaimable = false;
1cfb419b 2366
cc715d99
MG
2367 /*
2368 * If the number of buffer_heads in the machine exceeds the maximum
2369 * allowed level, force direct reclaim to scan the highmem zone as
2370 * highmem pages could be pinning lowmem pages storing buffer_heads
2371 */
619d0d76 2372 orig_mask = sc->gfp_mask;
cc715d99
MG
2373 if (buffer_heads_over_limit)
2374 sc->gfp_mask |= __GFP_HIGHMEM;
2375
3115cd91 2376 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2377
d4debc66
MG
2378 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2379 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2380 if (!populated_zone(zone))
1da177e4 2381 continue;
1cfb419b
KH
2382 /*
2383 * Take care memory controller reclaiming has small influence
2384 * to global LRU.
2385 */
89b5fae5 2386 if (global_reclaim(sc)) {
1cfb419b
KH
2387 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2388 continue;
65ec02cb
VD
2389
2390 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2391 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2392
6e543d57
LD
2393 if (sc->priority != DEF_PRIORITY &&
2394 !zone_reclaimable(zone))
1cfb419b 2395 continue; /* Let kswapd poll it */
0b06496a
JW
2396
2397 /*
2398 * If we already have plenty of memory free for
2399 * compaction in this zone, don't free any more.
2400 * Even though compaction is invoked for any
2401 * non-zero order, only frequent costly order
2402 * reclamation is disruptive enough to become a
2403 * noticeable problem, like transparent huge
2404 * page allocations.
2405 */
2406 if (IS_ENABLED(CONFIG_COMPACTION) &&
2407 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2408 zonelist_zone_idx(z) <= requested_highidx &&
2409 compaction_ready(zone, sc->order)) {
2410 sc->compaction_ready = true;
2411 continue;
e0887c19 2412 }
0b06496a 2413
0608f43d
AM
2414 /*
2415 * This steals pages from memory cgroups over softlimit
2416 * and returns the number of reclaimed pages and
2417 * scanned pages. This works for global memory pressure
2418 * and balancing, not for a memcg's limit.
2419 */
2420 nr_soft_scanned = 0;
2421 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2422 sc->order, sc->gfp_mask,
2423 &nr_soft_scanned);
2424 sc->nr_reclaimed += nr_soft_reclaimed;
2425 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2426 if (nr_soft_reclaimed)
2427 reclaimable = true;
ac34a1a3 2428 /* need some check for avoid more shrink_zone() */
1cfb419b 2429 }
408d8544 2430
2344d7e4
JW
2431 if (shrink_zone(zone, sc))
2432 reclaimable = true;
2433
2434 if (global_reclaim(sc) &&
2435 !reclaimable && zone_reclaimable(zone))
2436 reclaimable = true;
1da177e4 2437 }
e0c23279 2438
65ec02cb
VD
2439 /*
2440 * Don't shrink slabs when reclaiming memory from over limit cgroups
2441 * but do shrink slab at least once when aborting reclaim for
2442 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2443 * pages.
2444 */
2445 if (global_reclaim(sc)) {
3115cd91 2446 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2447 if (reclaim_state) {
2448 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2449 reclaim_state->reclaimed_slab = 0;
2450 }
2451 }
2452
619d0d76
WY
2453 /*
2454 * Restore to original mask to avoid the impact on the caller if we
2455 * promoted it to __GFP_HIGHMEM.
2456 */
2457 sc->gfp_mask = orig_mask;
d1908362 2458
2344d7e4 2459 return reclaimable;
1da177e4 2460}
4f98a2fe 2461
1da177e4
LT
2462/*
2463 * This is the main entry point to direct page reclaim.
2464 *
2465 * If a full scan of the inactive list fails to free enough memory then we
2466 * are "out of memory" and something needs to be killed.
2467 *
2468 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2469 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2470 * caller can't do much about. We kick the writeback threads and take explicit
2471 * naps in the hope that some of these pages can be written. But if the
2472 * allocating task holds filesystem locks which prevent writeout this might not
2473 * work, and the allocation attempt will fail.
a41f24ea
NA
2474 *
2475 * returns: 0, if no pages reclaimed
2476 * else, the number of pages reclaimed
1da177e4 2477 */
dac1d27b 2478static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2479 struct scan_control *sc)
1da177e4 2480{
69e05944 2481 unsigned long total_scanned = 0;
22fba335 2482 unsigned long writeback_threshold;
2344d7e4 2483 bool zones_reclaimable;
1da177e4 2484
873b4771
KK
2485 delayacct_freepages_start();
2486
89b5fae5 2487 if (global_reclaim(sc))
1cfb419b 2488 count_vm_event(ALLOCSTALL);
1da177e4 2489
9e3b2f8c 2490 do {
70ddf637
AV
2491 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2492 sc->priority);
66e1707b 2493 sc->nr_scanned = 0;
2344d7e4 2494 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2495
66e1707b 2496 total_scanned += sc->nr_scanned;
bb21c7ce 2497 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2498 break;
2499
2500 if (sc->compaction_ready)
2501 break;
1da177e4 2502
0e50ce3b
MK
2503 /*
2504 * If we're getting trouble reclaiming, start doing
2505 * writepage even in laptop mode.
2506 */
2507 if (sc->priority < DEF_PRIORITY - 2)
2508 sc->may_writepage = 1;
2509
1da177e4
LT
2510 /*
2511 * Try to write back as many pages as we just scanned. This
2512 * tends to cause slow streaming writers to write data to the
2513 * disk smoothly, at the dirtying rate, which is nice. But
2514 * that's undesirable in laptop mode, where we *want* lumpy
2515 * writeout. So in laptop mode, write out the whole world.
2516 */
22fba335
KM
2517 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2518 if (total_scanned > writeback_threshold) {
0e175a18
CW
2519 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2520 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2521 sc->may_writepage = 1;
1da177e4 2522 }
0b06496a 2523 } while (--sc->priority >= 0);
bb21c7ce 2524
873b4771
KK
2525 delayacct_freepages_end();
2526
bb21c7ce
KM
2527 if (sc->nr_reclaimed)
2528 return sc->nr_reclaimed;
2529
0cee34fd 2530 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2531 if (sc->compaction_ready)
7335084d
MG
2532 return 1;
2533
2344d7e4
JW
2534 /* Any of the zones still reclaimable? Don't OOM. */
2535 if (zones_reclaimable)
bb21c7ce
KM
2536 return 1;
2537
2538 return 0;
1da177e4
LT
2539}
2540
5515061d
MG
2541static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2542{
2543 struct zone *zone;
2544 unsigned long pfmemalloc_reserve = 0;
2545 unsigned long free_pages = 0;
2546 int i;
2547 bool wmark_ok;
2548
2549 for (i = 0; i <= ZONE_NORMAL; i++) {
2550 zone = &pgdat->node_zones[i];
675becce
MG
2551 if (!populated_zone(zone))
2552 continue;
2553
5515061d
MG
2554 pfmemalloc_reserve += min_wmark_pages(zone);
2555 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2556 }
2557
675becce
MG
2558 /* If there are no reserves (unexpected config) then do not throttle */
2559 if (!pfmemalloc_reserve)
2560 return true;
2561
5515061d
MG
2562 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2563
2564 /* kswapd must be awake if processes are being throttled */
2565 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2566 pgdat->classzone_idx = min(pgdat->classzone_idx,
2567 (enum zone_type)ZONE_NORMAL);
2568 wake_up_interruptible(&pgdat->kswapd_wait);
2569 }
2570
2571 return wmark_ok;
2572}
2573
2574/*
2575 * Throttle direct reclaimers if backing storage is backed by the network
2576 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2577 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2578 * when the low watermark is reached.
2579 *
2580 * Returns true if a fatal signal was delivered during throttling. If this
2581 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2582 */
50694c28 2583static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2584 nodemask_t *nodemask)
2585{
675becce 2586 struct zoneref *z;
5515061d 2587 struct zone *zone;
675becce 2588 pg_data_t *pgdat = NULL;
5515061d
MG
2589
2590 /*
2591 * Kernel threads should not be throttled as they may be indirectly
2592 * responsible for cleaning pages necessary for reclaim to make forward
2593 * progress. kjournald for example may enter direct reclaim while
2594 * committing a transaction where throttling it could forcing other
2595 * processes to block on log_wait_commit().
2596 */
2597 if (current->flags & PF_KTHREAD)
50694c28
MG
2598 goto out;
2599
2600 /*
2601 * If a fatal signal is pending, this process should not throttle.
2602 * It should return quickly so it can exit and free its memory
2603 */
2604 if (fatal_signal_pending(current))
2605 goto out;
5515061d 2606
675becce
MG
2607 /*
2608 * Check if the pfmemalloc reserves are ok by finding the first node
2609 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2610 * GFP_KERNEL will be required for allocating network buffers when
2611 * swapping over the network so ZONE_HIGHMEM is unusable.
2612 *
2613 * Throttling is based on the first usable node and throttled processes
2614 * wait on a queue until kswapd makes progress and wakes them. There
2615 * is an affinity then between processes waking up and where reclaim
2616 * progress has been made assuming the process wakes on the same node.
2617 * More importantly, processes running on remote nodes will not compete
2618 * for remote pfmemalloc reserves and processes on different nodes
2619 * should make reasonable progress.
2620 */
2621 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2622 gfp_mask, nodemask) {
2623 if (zone_idx(zone) > ZONE_NORMAL)
2624 continue;
2625
2626 /* Throttle based on the first usable node */
2627 pgdat = zone->zone_pgdat;
2628 if (pfmemalloc_watermark_ok(pgdat))
2629 goto out;
2630 break;
2631 }
2632
2633 /* If no zone was usable by the allocation flags then do not throttle */
2634 if (!pgdat)
50694c28 2635 goto out;
5515061d 2636
68243e76
MG
2637 /* Account for the throttling */
2638 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2639
5515061d
MG
2640 /*
2641 * If the caller cannot enter the filesystem, it's possible that it
2642 * is due to the caller holding an FS lock or performing a journal
2643 * transaction in the case of a filesystem like ext[3|4]. In this case,
2644 * it is not safe to block on pfmemalloc_wait as kswapd could be
2645 * blocked waiting on the same lock. Instead, throttle for up to a
2646 * second before continuing.
2647 */
2648 if (!(gfp_mask & __GFP_FS)) {
2649 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2650 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2651
2652 goto check_pending;
5515061d
MG
2653 }
2654
2655 /* Throttle until kswapd wakes the process */
2656 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2657 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2658
2659check_pending:
2660 if (fatal_signal_pending(current))
2661 return true;
2662
2663out:
2664 return false;
5515061d
MG
2665}
2666
dac1d27b 2667unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2668 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2669{
33906bc5 2670 unsigned long nr_reclaimed;
66e1707b 2671 struct scan_control sc = {
21caf2fc 2672 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2673 .may_writepage = !laptop_mode,
22fba335 2674 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2675 .may_unmap = 1,
2e2e4259 2676 .may_swap = 1,
66e1707b 2677 .order = order,
9e3b2f8c 2678 .priority = DEF_PRIORITY,
f16015fb 2679 .target_mem_cgroup = NULL,
327c0e96 2680 .nodemask = nodemask,
66e1707b
BS
2681 };
2682
5515061d 2683 /*
50694c28
MG
2684 * Do not enter reclaim if fatal signal was delivered while throttled.
2685 * 1 is returned so that the page allocator does not OOM kill at this
2686 * point.
5515061d 2687 */
50694c28 2688 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2689 return 1;
2690
33906bc5
MG
2691 trace_mm_vmscan_direct_reclaim_begin(order,
2692 sc.may_writepage,
2693 gfp_mask);
2694
3115cd91 2695 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2696
2697 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2698
2699 return nr_reclaimed;
66e1707b
BS
2700}
2701
c255a458 2702#ifdef CONFIG_MEMCG
66e1707b 2703
72835c86 2704unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2705 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2706 struct zone *zone,
2707 unsigned long *nr_scanned)
4e416953
BS
2708{
2709 struct scan_control sc = {
0ae5e89c 2710 .nr_scanned = 0,
b8f5c566 2711 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2712 .may_writepage = !laptop_mode,
2713 .may_unmap = 1,
2714 .may_swap = !noswap,
4e416953 2715 .order = 0,
9e3b2f8c 2716 .priority = 0,
688eb988 2717 .swappiness = mem_cgroup_swappiness(memcg),
72835c86 2718 .target_mem_cgroup = memcg,
4e416953 2719 };
f9be23d6 2720 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2721
4e416953
BS
2722 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2723 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2724
9e3b2f8c 2725 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2726 sc.may_writepage,
2727 sc.gfp_mask);
2728
4e416953
BS
2729 /*
2730 * NOTE: Although we can get the priority field, using it
2731 * here is not a good idea, since it limits the pages we can scan.
2732 * if we don't reclaim here, the shrink_zone from balance_pgdat
2733 * will pick up pages from other mem cgroup's as well. We hack
2734 * the priority and make it zero.
2735 */
f9be23d6 2736 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2737
2738 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2739
0ae5e89c 2740 *nr_scanned = sc.nr_scanned;
4e416953
BS
2741 return sc.nr_reclaimed;
2742}
2743
72835c86 2744unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2745 gfp_t gfp_mask,
185efc0f 2746 bool noswap)
66e1707b 2747{
4e416953 2748 struct zonelist *zonelist;
bdce6d9e 2749 unsigned long nr_reclaimed;
889976db 2750 int nid;
66e1707b 2751 struct scan_control sc = {
66e1707b 2752 .may_writepage = !laptop_mode,
a6dc60f8 2753 .may_unmap = 1,
2e2e4259 2754 .may_swap = !noswap,
22fba335 2755 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2756 .order = 0,
9e3b2f8c 2757 .priority = DEF_PRIORITY,
72835c86 2758 .target_mem_cgroup = memcg,
327c0e96 2759 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2760 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2761 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2762 };
66e1707b 2763
889976db
YH
2764 /*
2765 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2766 * take care of from where we get pages. So the node where we start the
2767 * scan does not need to be the current node.
2768 */
72835c86 2769 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2770
2771 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2772
2773 trace_mm_vmscan_memcg_reclaim_begin(0,
2774 sc.may_writepage,
2775 sc.gfp_mask);
2776
3115cd91 2777 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2778
2779 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2780
2781 return nr_reclaimed;
66e1707b
BS
2782}
2783#endif
2784
9e3b2f8c 2785static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2786{
b95a2f2d 2787 struct mem_cgroup *memcg;
f16015fb 2788
b95a2f2d
JW
2789 if (!total_swap_pages)
2790 return;
2791
2792 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2793 do {
c56d5c7d 2794 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2795
c56d5c7d 2796 if (inactive_anon_is_low(lruvec))
1a93be0e 2797 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2798 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2799
2800 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2801 } while (memcg);
f16015fb
JW
2802}
2803
60cefed4
JW
2804static bool zone_balanced(struct zone *zone, int order,
2805 unsigned long balance_gap, int classzone_idx)
2806{
2807 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2808 balance_gap, classzone_idx, 0))
2809 return false;
2810
d84da3f9
KS
2811 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2812 !compaction_suitable(zone, order))
60cefed4
JW
2813 return false;
2814
2815 return true;
2816}
2817
1741c877 2818/*
4ae0a48b
ZC
2819 * pgdat_balanced() is used when checking if a node is balanced.
2820 *
2821 * For order-0, all zones must be balanced!
2822 *
2823 * For high-order allocations only zones that meet watermarks and are in a
2824 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2825 * total of balanced pages must be at least 25% of the zones allowed by
2826 * classzone_idx for the node to be considered balanced. Forcing all zones to
2827 * be balanced for high orders can cause excessive reclaim when there are
2828 * imbalanced zones.
1741c877
MG
2829 * The choice of 25% is due to
2830 * o a 16M DMA zone that is balanced will not balance a zone on any
2831 * reasonable sized machine
2832 * o On all other machines, the top zone must be at least a reasonable
25985edc 2833 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2834 * would need to be at least 256M for it to be balance a whole node.
2835 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2836 * to balance a node on its own. These seemed like reasonable ratios.
2837 */
4ae0a48b 2838static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2839{
b40da049 2840 unsigned long managed_pages = 0;
4ae0a48b 2841 unsigned long balanced_pages = 0;
1741c877
MG
2842 int i;
2843
4ae0a48b
ZC
2844 /* Check the watermark levels */
2845 for (i = 0; i <= classzone_idx; i++) {
2846 struct zone *zone = pgdat->node_zones + i;
1741c877 2847
4ae0a48b
ZC
2848 if (!populated_zone(zone))
2849 continue;
2850
b40da049 2851 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2852
2853 /*
2854 * A special case here:
2855 *
2856 * balance_pgdat() skips over all_unreclaimable after
2857 * DEF_PRIORITY. Effectively, it considers them balanced so
2858 * they must be considered balanced here as well!
2859 */
6e543d57 2860 if (!zone_reclaimable(zone)) {
b40da049 2861 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2862 continue;
2863 }
2864
2865 if (zone_balanced(zone, order, 0, i))
b40da049 2866 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2867 else if (!order)
2868 return false;
2869 }
2870
2871 if (order)
b40da049 2872 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2873 else
2874 return true;
1741c877
MG
2875}
2876
5515061d
MG
2877/*
2878 * Prepare kswapd for sleeping. This verifies that there are no processes
2879 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2880 *
2881 * Returns true if kswapd is ready to sleep
2882 */
2883static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2884 int classzone_idx)
f50de2d3 2885{
f50de2d3
MG
2886 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2887 if (remaining)
5515061d
MG
2888 return false;
2889
2890 /*
2891 * There is a potential race between when kswapd checks its watermarks
2892 * and a process gets throttled. There is also a potential race if
2893 * processes get throttled, kswapd wakes, a large process exits therby
2894 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2895 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2896 * so wake them now if necessary. If necessary, processes will wake
2897 * kswapd and get throttled again
2898 */
2899 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2900 wake_up(&pgdat->pfmemalloc_wait);
2901 return false;
2902 }
f50de2d3 2903
4ae0a48b 2904 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2905}
2906
75485363
MG
2907/*
2908 * kswapd shrinks the zone by the number of pages required to reach
2909 * the high watermark.
b8e83b94
MG
2910 *
2911 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2912 * reclaim or if the lack of progress was due to pages under writeback.
2913 * This is used to determine if the scanning priority needs to be raised.
75485363 2914 */
b8e83b94 2915static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2916 int classzone_idx,
75485363 2917 struct scan_control *sc,
2ab44f43
MG
2918 unsigned long lru_pages,
2919 unsigned long *nr_attempted)
75485363 2920{
7c954f6d
MG
2921 int testorder = sc->order;
2922 unsigned long balance_gap;
75485363
MG
2923 struct reclaim_state *reclaim_state = current->reclaim_state;
2924 struct shrink_control shrink = {
2925 .gfp_mask = sc->gfp_mask,
2926 };
7c954f6d 2927 bool lowmem_pressure;
75485363
MG
2928
2929 /* Reclaim above the high watermark. */
2930 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2931
2932 /*
2933 * Kswapd reclaims only single pages with compaction enabled. Trying
2934 * too hard to reclaim until contiguous free pages have become
2935 * available can hurt performance by evicting too much useful data
2936 * from memory. Do not reclaim more than needed for compaction.
2937 */
2938 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2939 compaction_suitable(zone, sc->order) !=
2940 COMPACT_SKIPPED)
2941 testorder = 0;
2942
2943 /*
2944 * We put equal pressure on every zone, unless one zone has way too
2945 * many pages free already. The "too many pages" is defined as the
2946 * high wmark plus a "gap" where the gap is either the low
2947 * watermark or 1% of the zone, whichever is smaller.
2948 */
4be89a34
JZ
2949 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2950 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2951
2952 /*
2953 * If there is no low memory pressure or the zone is balanced then no
2954 * reclaim is necessary
2955 */
2956 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2957 if (!lowmem_pressure && zone_balanced(zone, testorder,
2958 balance_gap, classzone_idx))
2959 return true;
2960
75485363 2961 shrink_zone(zone, sc);
0ce3d744
DC
2962 nodes_clear(shrink.nodes_to_scan);
2963 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2964
2965 reclaim_state->reclaimed_slab = 0;
6e543d57 2966 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2967 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2968
2ab44f43
MG
2969 /* Account for the number of pages attempted to reclaim */
2970 *nr_attempted += sc->nr_to_reclaim;
2971
283aba9f
MG
2972 zone_clear_flag(zone, ZONE_WRITEBACK);
2973
7c954f6d
MG
2974 /*
2975 * If a zone reaches its high watermark, consider it to be no longer
2976 * congested. It's possible there are dirty pages backed by congested
2977 * BDIs but as pressure is relieved, speculatively avoid congestion
2978 * waits.
2979 */
6e543d57 2980 if (zone_reclaimable(zone) &&
7c954f6d
MG
2981 zone_balanced(zone, testorder, 0, classzone_idx)) {
2982 zone_clear_flag(zone, ZONE_CONGESTED);
2983 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2984 }
2985
b8e83b94 2986 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2987}
2988
1da177e4
LT
2989/*
2990 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2991 * they are all at high_wmark_pages(zone).
1da177e4 2992 *
0abdee2b 2993 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2994 *
2995 * There is special handling here for zones which are full of pinned pages.
2996 * This can happen if the pages are all mlocked, or if they are all used by
2997 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2998 * What we do is to detect the case where all pages in the zone have been
2999 * scanned twice and there has been zero successful reclaim. Mark the zone as
3000 * dead and from now on, only perform a short scan. Basically we're polling
3001 * the zone for when the problem goes away.
3002 *
3003 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3004 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3005 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3006 * lower zones regardless of the number of free pages in the lower zones. This
3007 * interoperates with the page allocator fallback scheme to ensure that aging
3008 * of pages is balanced across the zones.
1da177e4 3009 */
99504748 3010static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3011 int *classzone_idx)
1da177e4 3012{
1da177e4 3013 int i;
99504748 3014 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3015 unsigned long nr_soft_reclaimed;
3016 unsigned long nr_soft_scanned;
179e9639
AM
3017 struct scan_control sc = {
3018 .gfp_mask = GFP_KERNEL,
b8e83b94 3019 .priority = DEF_PRIORITY,
a6dc60f8 3020 .may_unmap = 1,
2e2e4259 3021 .may_swap = 1,
b8e83b94 3022 .may_writepage = !laptop_mode,
5ad333eb 3023 .order = order,
f16015fb 3024 .target_mem_cgroup = NULL,
179e9639 3025 };
f8891e5e 3026 count_vm_event(PAGEOUTRUN);
1da177e4 3027
9e3b2f8c 3028 do {
1da177e4 3029 unsigned long lru_pages = 0;
2ab44f43 3030 unsigned long nr_attempted = 0;
b8e83b94 3031 bool raise_priority = true;
2ab44f43 3032 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3033
3034 sc.nr_reclaimed = 0;
1da177e4 3035
d6277db4
RW
3036 /*
3037 * Scan in the highmem->dma direction for the highest
3038 * zone which needs scanning
3039 */
3040 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3041 struct zone *zone = pgdat->node_zones + i;
1da177e4 3042
d6277db4
RW
3043 if (!populated_zone(zone))
3044 continue;
1da177e4 3045
6e543d57
LD
3046 if (sc.priority != DEF_PRIORITY &&
3047 !zone_reclaimable(zone))
d6277db4 3048 continue;
1da177e4 3049
556adecb
RR
3050 /*
3051 * Do some background aging of the anon list, to give
3052 * pages a chance to be referenced before reclaiming.
3053 */
9e3b2f8c 3054 age_active_anon(zone, &sc);
556adecb 3055
cc715d99
MG
3056 /*
3057 * If the number of buffer_heads in the machine
3058 * exceeds the maximum allowed level and this node
3059 * has a highmem zone, force kswapd to reclaim from
3060 * it to relieve lowmem pressure.
3061 */
3062 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3063 end_zone = i;
3064 break;
3065 }
3066
60cefed4 3067 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3068 end_zone = i;
e1dbeda6 3069 break;
439423f6 3070 } else {
d43006d5
MG
3071 /*
3072 * If balanced, clear the dirty and congested
3073 * flags
3074 */
439423f6 3075 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3076 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3077 }
1da177e4 3078 }
dafcb73e 3079
b8e83b94 3080 if (i < 0)
e1dbeda6
AM
3081 goto out;
3082
1da177e4
LT
3083 for (i = 0; i <= end_zone; i++) {
3084 struct zone *zone = pgdat->node_zones + i;
3085
2ab44f43
MG
3086 if (!populated_zone(zone))
3087 continue;
3088
adea02a1 3089 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3090
3091 /*
3092 * If any zone is currently balanced then kswapd will
3093 * not call compaction as it is expected that the
3094 * necessary pages are already available.
3095 */
3096 if (pgdat_needs_compaction &&
3097 zone_watermark_ok(zone, order,
3098 low_wmark_pages(zone),
3099 *classzone_idx, 0))
3100 pgdat_needs_compaction = false;
1da177e4
LT
3101 }
3102
b7ea3c41
MG
3103 /*
3104 * If we're getting trouble reclaiming, start doing writepage
3105 * even in laptop mode.
3106 */
3107 if (sc.priority < DEF_PRIORITY - 2)
3108 sc.may_writepage = 1;
3109
1da177e4
LT
3110 /*
3111 * Now scan the zone in the dma->highmem direction, stopping
3112 * at the last zone which needs scanning.
3113 *
3114 * We do this because the page allocator works in the opposite
3115 * direction. This prevents the page allocator from allocating
3116 * pages behind kswapd's direction of progress, which would
3117 * cause too much scanning of the lower zones.
3118 */
3119 for (i = 0; i <= end_zone; i++) {
3120 struct zone *zone = pgdat->node_zones + i;
3121
f3fe6512 3122 if (!populated_zone(zone))
1da177e4
LT
3123 continue;
3124
6e543d57
LD
3125 if (sc.priority != DEF_PRIORITY &&
3126 !zone_reclaimable(zone))
1da177e4
LT
3127 continue;
3128
1da177e4 3129 sc.nr_scanned = 0;
4e416953 3130
0608f43d
AM
3131 nr_soft_scanned = 0;
3132 /*
3133 * Call soft limit reclaim before calling shrink_zone.
3134 */
3135 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3136 order, sc.gfp_mask,
3137 &nr_soft_scanned);
3138 sc.nr_reclaimed += nr_soft_reclaimed;
3139
32a4330d 3140 /*
7c954f6d
MG
3141 * There should be no need to raise the scanning
3142 * priority if enough pages are already being scanned
3143 * that that high watermark would be met at 100%
3144 * efficiency.
fe2c2a10 3145 */
7c954f6d
MG
3146 if (kswapd_shrink_zone(zone, end_zone, &sc,
3147 lru_pages, &nr_attempted))
3148 raise_priority = false;
1da177e4 3149 }
5515061d
MG
3150
3151 /*
3152 * If the low watermark is met there is no need for processes
3153 * to be throttled on pfmemalloc_wait as they should not be
3154 * able to safely make forward progress. Wake them
3155 */
3156 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3157 pfmemalloc_watermark_ok(pgdat))
3158 wake_up(&pgdat->pfmemalloc_wait);
3159
1da177e4 3160 /*
b8e83b94
MG
3161 * Fragmentation may mean that the system cannot be rebalanced
3162 * for high-order allocations in all zones. If twice the
3163 * allocation size has been reclaimed and the zones are still
3164 * not balanced then recheck the watermarks at order-0 to
3165 * prevent kswapd reclaiming excessively. Assume that a
3166 * process requested a high-order can direct reclaim/compact.
1da177e4 3167 */
b8e83b94
MG
3168 if (order && sc.nr_reclaimed >= 2UL << order)
3169 order = sc.order = 0;
8357376d 3170
b8e83b94
MG
3171 /* Check if kswapd should be suspending */
3172 if (try_to_freeze() || kthread_should_stop())
3173 break;
8357376d 3174
2ab44f43
MG
3175 /*
3176 * Compact if necessary and kswapd is reclaiming at least the
3177 * high watermark number of pages as requsted
3178 */
3179 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3180 compact_pgdat(pgdat, order);
3181
73ce02e9 3182 /*
b8e83b94
MG
3183 * Raise priority if scanning rate is too low or there was no
3184 * progress in reclaiming pages
73ce02e9 3185 */
b8e83b94
MG
3186 if (raise_priority || !sc.nr_reclaimed)
3187 sc.priority--;
9aa41348 3188 } while (sc.priority >= 1 &&
b8e83b94 3189 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3190
b8e83b94 3191out:
0abdee2b 3192 /*
5515061d 3193 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3194 * makes a decision on the order we were last reclaiming at. However,
3195 * if another caller entered the allocator slow path while kswapd
3196 * was awake, order will remain at the higher level
3197 */
dc83edd9 3198 *classzone_idx = end_zone;
0abdee2b 3199 return order;
1da177e4
LT
3200}
3201
dc83edd9 3202static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3203{
3204 long remaining = 0;
3205 DEFINE_WAIT(wait);
3206
3207 if (freezing(current) || kthread_should_stop())
3208 return;
3209
3210 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3211
3212 /* Try to sleep for a short interval */
5515061d 3213 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3214 remaining = schedule_timeout(HZ/10);
3215 finish_wait(&pgdat->kswapd_wait, &wait);
3216 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3217 }
3218
3219 /*
3220 * After a short sleep, check if it was a premature sleep. If not, then
3221 * go fully to sleep until explicitly woken up.
3222 */
5515061d 3223 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3224 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3225
3226 /*
3227 * vmstat counters are not perfectly accurate and the estimated
3228 * value for counters such as NR_FREE_PAGES can deviate from the
3229 * true value by nr_online_cpus * threshold. To avoid the zone
3230 * watermarks being breached while under pressure, we reduce the
3231 * per-cpu vmstat threshold while kswapd is awake and restore
3232 * them before going back to sleep.
3233 */
3234 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3235
62997027
MG
3236 /*
3237 * Compaction records what page blocks it recently failed to
3238 * isolate pages from and skips them in the future scanning.
3239 * When kswapd is going to sleep, it is reasonable to assume
3240 * that pages and compaction may succeed so reset the cache.
3241 */
3242 reset_isolation_suitable(pgdat);
3243
1c7e7f6c
AK
3244 if (!kthread_should_stop())
3245 schedule();
3246
f0bc0a60
KM
3247 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3248 } else {
3249 if (remaining)
3250 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3251 else
3252 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3253 }
3254 finish_wait(&pgdat->kswapd_wait, &wait);
3255}
3256
1da177e4
LT
3257/*
3258 * The background pageout daemon, started as a kernel thread
4f98a2fe 3259 * from the init process.
1da177e4
LT
3260 *
3261 * This basically trickles out pages so that we have _some_
3262 * free memory available even if there is no other activity
3263 * that frees anything up. This is needed for things like routing
3264 * etc, where we otherwise might have all activity going on in
3265 * asynchronous contexts that cannot page things out.
3266 *
3267 * If there are applications that are active memory-allocators
3268 * (most normal use), this basically shouldn't matter.
3269 */
3270static int kswapd(void *p)
3271{
215ddd66 3272 unsigned long order, new_order;
d2ebd0f6 3273 unsigned balanced_order;
215ddd66 3274 int classzone_idx, new_classzone_idx;
d2ebd0f6 3275 int balanced_classzone_idx;
1da177e4
LT
3276 pg_data_t *pgdat = (pg_data_t*)p;
3277 struct task_struct *tsk = current;
f0bc0a60 3278
1da177e4
LT
3279 struct reclaim_state reclaim_state = {
3280 .reclaimed_slab = 0,
3281 };
a70f7302 3282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3283
cf40bd16
NP
3284 lockdep_set_current_reclaim_state(GFP_KERNEL);
3285
174596a0 3286 if (!cpumask_empty(cpumask))
c5f59f08 3287 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3288 current->reclaim_state = &reclaim_state;
3289
3290 /*
3291 * Tell the memory management that we're a "memory allocator",
3292 * and that if we need more memory we should get access to it
3293 * regardless (see "__alloc_pages()"). "kswapd" should
3294 * never get caught in the normal page freeing logic.
3295 *
3296 * (Kswapd normally doesn't need memory anyway, but sometimes
3297 * you need a small amount of memory in order to be able to
3298 * page out something else, and this flag essentially protects
3299 * us from recursively trying to free more memory as we're
3300 * trying to free the first piece of memory in the first place).
3301 */
930d9152 3302 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3303 set_freezable();
1da177e4 3304
215ddd66 3305 order = new_order = 0;
d2ebd0f6 3306 balanced_order = 0;
215ddd66 3307 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3308 balanced_classzone_idx = classzone_idx;
1da177e4 3309 for ( ; ; ) {
6f6313d4 3310 bool ret;
3e1d1d28 3311
215ddd66
MG
3312 /*
3313 * If the last balance_pgdat was unsuccessful it's unlikely a
3314 * new request of a similar or harder type will succeed soon
3315 * so consider going to sleep on the basis we reclaimed at
3316 */
d2ebd0f6
AS
3317 if (balanced_classzone_idx >= new_classzone_idx &&
3318 balanced_order == new_order) {
215ddd66
MG
3319 new_order = pgdat->kswapd_max_order;
3320 new_classzone_idx = pgdat->classzone_idx;
3321 pgdat->kswapd_max_order = 0;
3322 pgdat->classzone_idx = pgdat->nr_zones - 1;
3323 }
3324
99504748 3325 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3326 /*
3327 * Don't sleep if someone wants a larger 'order'
99504748 3328 * allocation or has tigher zone constraints
1da177e4
LT
3329 */
3330 order = new_order;
99504748 3331 classzone_idx = new_classzone_idx;
1da177e4 3332 } else {
d2ebd0f6
AS
3333 kswapd_try_to_sleep(pgdat, balanced_order,
3334 balanced_classzone_idx);
1da177e4 3335 order = pgdat->kswapd_max_order;
99504748 3336 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3337 new_order = order;
3338 new_classzone_idx = classzone_idx;
4d40502e 3339 pgdat->kswapd_max_order = 0;
215ddd66 3340 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3341 }
1da177e4 3342
8fe23e05
DR
3343 ret = try_to_freeze();
3344 if (kthread_should_stop())
3345 break;
3346
3347 /*
3348 * We can speed up thawing tasks if we don't call balance_pgdat
3349 * after returning from the refrigerator
3350 */
33906bc5
MG
3351 if (!ret) {
3352 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3353 balanced_classzone_idx = classzone_idx;
3354 balanced_order = balance_pgdat(pgdat, order,
3355 &balanced_classzone_idx);
33906bc5 3356 }
1da177e4 3357 }
b0a8cc58 3358
71abdc15 3359 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3360 current->reclaim_state = NULL;
71abdc15
JW
3361 lockdep_clear_current_reclaim_state();
3362
1da177e4
LT
3363 return 0;
3364}
3365
3366/*
3367 * A zone is low on free memory, so wake its kswapd task to service it.
3368 */
99504748 3369void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3370{
3371 pg_data_t *pgdat;
3372
f3fe6512 3373 if (!populated_zone(zone))
1da177e4
LT
3374 return;
3375
88f5acf8 3376 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3377 return;
88f5acf8 3378 pgdat = zone->zone_pgdat;
99504748 3379 if (pgdat->kswapd_max_order < order) {
1da177e4 3380 pgdat->kswapd_max_order = order;
99504748
MG
3381 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3382 }
8d0986e2 3383 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3384 return;
892f795d 3385 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3386 return;
3387
3388 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3389 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3390}
3391
c6f37f12 3392#ifdef CONFIG_HIBERNATION
1da177e4 3393/*
7b51755c 3394 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3395 * freed pages.
3396 *
3397 * Rather than trying to age LRUs the aim is to preserve the overall
3398 * LRU order by reclaiming preferentially
3399 * inactive > active > active referenced > active mapped
1da177e4 3400 */
7b51755c 3401unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3402{
d6277db4 3403 struct reclaim_state reclaim_state;
d6277db4 3404 struct scan_control sc = {
7b51755c
KM
3405 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3406 .may_swap = 1,
3407 .may_unmap = 1,
d6277db4 3408 .may_writepage = 1,
7b51755c
KM
3409 .nr_to_reclaim = nr_to_reclaim,
3410 .hibernation_mode = 1,
7b51755c 3411 .order = 0,
9e3b2f8c 3412 .priority = DEF_PRIORITY,
1da177e4 3413 };
a09ed5e0 3414 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3415 struct task_struct *p = current;
3416 unsigned long nr_reclaimed;
1da177e4 3417
7b51755c
KM
3418 p->flags |= PF_MEMALLOC;
3419 lockdep_set_current_reclaim_state(sc.gfp_mask);
3420 reclaim_state.reclaimed_slab = 0;
3421 p->reclaim_state = &reclaim_state;
d6277db4 3422
3115cd91 3423 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3424
7b51755c
KM
3425 p->reclaim_state = NULL;
3426 lockdep_clear_current_reclaim_state();
3427 p->flags &= ~PF_MEMALLOC;
d6277db4 3428
7b51755c 3429 return nr_reclaimed;
1da177e4 3430}
c6f37f12 3431#endif /* CONFIG_HIBERNATION */
1da177e4 3432
1da177e4
LT
3433/* It's optimal to keep kswapds on the same CPUs as their memory, but
3434 not required for correctness. So if the last cpu in a node goes
3435 away, we get changed to run anywhere: as the first one comes back,
3436 restore their cpu bindings. */
fcb35a9b
GKH
3437static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3438 void *hcpu)
1da177e4 3439{
58c0a4a7 3440 int nid;
1da177e4 3441
8bb78442 3442 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3443 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3444 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3445 const struct cpumask *mask;
3446
3447 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3448
3e597945 3449 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3450 /* One of our CPUs online: restore mask */
c5f59f08 3451 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3452 }
3453 }
3454 return NOTIFY_OK;
3455}
1da177e4 3456
3218ae14
YG
3457/*
3458 * This kswapd start function will be called by init and node-hot-add.
3459 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3460 */
3461int kswapd_run(int nid)
3462{
3463 pg_data_t *pgdat = NODE_DATA(nid);
3464 int ret = 0;
3465
3466 if (pgdat->kswapd)
3467 return 0;
3468
3469 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3470 if (IS_ERR(pgdat->kswapd)) {
3471 /* failure at boot is fatal */
3472 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3473 pr_err("Failed to start kswapd on node %d\n", nid);
3474 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3475 pgdat->kswapd = NULL;
3218ae14
YG
3476 }
3477 return ret;
3478}
3479
8fe23e05 3480/*
d8adde17 3481 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3482 * hold mem_hotplug_begin/end().
8fe23e05
DR
3483 */
3484void kswapd_stop(int nid)
3485{
3486 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3487
d8adde17 3488 if (kswapd) {
8fe23e05 3489 kthread_stop(kswapd);
d8adde17
JL
3490 NODE_DATA(nid)->kswapd = NULL;
3491 }
8fe23e05
DR
3492}
3493
1da177e4
LT
3494static int __init kswapd_init(void)
3495{
3218ae14 3496 int nid;
69e05944 3497
1da177e4 3498 swap_setup();
48fb2e24 3499 for_each_node_state(nid, N_MEMORY)
3218ae14 3500 kswapd_run(nid);
1da177e4
LT
3501 hotcpu_notifier(cpu_callback, 0);
3502 return 0;
3503}
3504
3505module_init(kswapd_init)
9eeff239
CL
3506
3507#ifdef CONFIG_NUMA
3508/*
3509 * Zone reclaim mode
3510 *
3511 * If non-zero call zone_reclaim when the number of free pages falls below
3512 * the watermarks.
9eeff239
CL
3513 */
3514int zone_reclaim_mode __read_mostly;
3515
1b2ffb78 3516#define RECLAIM_OFF 0
7d03431c 3517#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3518#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3519#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3520
a92f7126
CL
3521/*
3522 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3523 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3524 * a zone.
3525 */
3526#define ZONE_RECLAIM_PRIORITY 4
3527
9614634f
CL
3528/*
3529 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3530 * occur.
3531 */
3532int sysctl_min_unmapped_ratio = 1;
3533
0ff38490
CL
3534/*
3535 * If the number of slab pages in a zone grows beyond this percentage then
3536 * slab reclaim needs to occur.
3537 */
3538int sysctl_min_slab_ratio = 5;
3539
90afa5de
MG
3540static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3541{
3542 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3543 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3544 zone_page_state(zone, NR_ACTIVE_FILE);
3545
3546 /*
3547 * It's possible for there to be more file mapped pages than
3548 * accounted for by the pages on the file LRU lists because
3549 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3550 */
3551 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3552}
3553
3554/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3555static long zone_pagecache_reclaimable(struct zone *zone)
3556{
3557 long nr_pagecache_reclaimable;
3558 long delta = 0;
3559
3560 /*
3561 * If RECLAIM_SWAP is set, then all file pages are considered
3562 * potentially reclaimable. Otherwise, we have to worry about
3563 * pages like swapcache and zone_unmapped_file_pages() provides
3564 * a better estimate
3565 */
3566 if (zone_reclaim_mode & RECLAIM_SWAP)
3567 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3568 else
3569 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3570
3571 /* If we can't clean pages, remove dirty pages from consideration */
3572 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3573 delta += zone_page_state(zone, NR_FILE_DIRTY);
3574
3575 /* Watch for any possible underflows due to delta */
3576 if (unlikely(delta > nr_pagecache_reclaimable))
3577 delta = nr_pagecache_reclaimable;
3578
3579 return nr_pagecache_reclaimable - delta;
3580}
3581
9eeff239
CL
3582/*
3583 * Try to free up some pages from this zone through reclaim.
3584 */
179e9639 3585static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3586{
7fb2d46d 3587 /* Minimum pages needed in order to stay on node */
69e05944 3588 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3589 struct task_struct *p = current;
3590 struct reclaim_state reclaim_state;
179e9639
AM
3591 struct scan_control sc = {
3592 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3593 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3594 .may_swap = 1,
62b726c1 3595 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3596 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3597 .order = order,
9e3b2f8c 3598 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3599 };
a09ed5e0
YH
3600 struct shrink_control shrink = {
3601 .gfp_mask = sc.gfp_mask,
3602 };
15748048 3603 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3604
9eeff239 3605 cond_resched();
d4f7796e
CL
3606 /*
3607 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3608 * and we also need to be able to write out pages for RECLAIM_WRITE
3609 * and RECLAIM_SWAP.
3610 */
3611 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3612 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3613 reclaim_state.reclaimed_slab = 0;
3614 p->reclaim_state = &reclaim_state;
c84db23c 3615
90afa5de 3616 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3617 /*
3618 * Free memory by calling shrink zone with increasing
3619 * priorities until we have enough memory freed.
3620 */
0ff38490 3621 do {
9e3b2f8c
KK
3622 shrink_zone(zone, &sc);
3623 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3624 }
c84db23c 3625
15748048
KM
3626 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3627 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3628 /*
7fb2d46d 3629 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3630 * many pages were freed in this zone. So we take the current
3631 * number of slab pages and shake the slab until it is reduced
3632 * by the same nr_pages that we used for reclaiming unmapped
3633 * pages.
2a16e3f4 3634 */
0ce3d744
DC
3635 nodes_clear(shrink.nodes_to_scan);
3636 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3637 for (;;) {
3638 unsigned long lru_pages = zone_reclaimable_pages(zone);
3639
3640 /* No reclaimable slab or very low memory pressure */
1495f230 3641 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3642 break;
3643
3644 /* Freed enough memory */
3645 nr_slab_pages1 = zone_page_state(zone,
3646 NR_SLAB_RECLAIMABLE);
3647 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3648 break;
3649 }
83e33a47
CL
3650
3651 /*
3652 * Update nr_reclaimed by the number of slab pages we
3653 * reclaimed from this zone.
3654 */
15748048
KM
3655 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3656 if (nr_slab_pages1 < nr_slab_pages0)
3657 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3658 }
3659
9eeff239 3660 p->reclaim_state = NULL;
d4f7796e 3661 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3662 lockdep_clear_current_reclaim_state();
a79311c1 3663 return sc.nr_reclaimed >= nr_pages;
9eeff239 3664}
179e9639
AM
3665
3666int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3667{
179e9639 3668 int node_id;
d773ed6b 3669 int ret;
179e9639
AM
3670
3671 /*
0ff38490
CL
3672 * Zone reclaim reclaims unmapped file backed pages and
3673 * slab pages if we are over the defined limits.
34aa1330 3674 *
9614634f
CL
3675 * A small portion of unmapped file backed pages is needed for
3676 * file I/O otherwise pages read by file I/O will be immediately
3677 * thrown out if the zone is overallocated. So we do not reclaim
3678 * if less than a specified percentage of the zone is used by
3679 * unmapped file backed pages.
179e9639 3680 */
90afa5de
MG
3681 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3682 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3683 return ZONE_RECLAIM_FULL;
179e9639 3684
6e543d57 3685 if (!zone_reclaimable(zone))
fa5e084e 3686 return ZONE_RECLAIM_FULL;
d773ed6b 3687
179e9639 3688 /*
d773ed6b 3689 * Do not scan if the allocation should not be delayed.
179e9639 3690 */
d773ed6b 3691 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3692 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3693
3694 /*
3695 * Only run zone reclaim on the local zone or on zones that do not
3696 * have associated processors. This will favor the local processor
3697 * over remote processors and spread off node memory allocations
3698 * as wide as possible.
3699 */
89fa3024 3700 node_id = zone_to_nid(zone);
37c0708d 3701 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3702 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3703
3704 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3705 return ZONE_RECLAIM_NOSCAN;
3706
d773ed6b
DR
3707 ret = __zone_reclaim(zone, gfp_mask, order);
3708 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3709
24cf7251
MG
3710 if (!ret)
3711 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3712
d773ed6b 3713 return ret;
179e9639 3714}
9eeff239 3715#endif
894bc310 3716
894bc310
LS
3717/*
3718 * page_evictable - test whether a page is evictable
3719 * @page: the page to test
894bc310
LS
3720 *
3721 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3722 * lists vs unevictable list.
894bc310
LS
3723 *
3724 * Reasons page might not be evictable:
ba9ddf49 3725 * (1) page's mapping marked unevictable
b291f000 3726 * (2) page is part of an mlocked VMA
ba9ddf49 3727 *
894bc310 3728 */
39b5f29a 3729int page_evictable(struct page *page)
894bc310 3730{
39b5f29a 3731 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3732}
89e004ea 3733
85046579 3734#ifdef CONFIG_SHMEM
89e004ea 3735/**
24513264
HD
3736 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3737 * @pages: array of pages to check
3738 * @nr_pages: number of pages to check
89e004ea 3739 *
24513264 3740 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3741 *
3742 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3743 */
24513264 3744void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3745{
925b7673 3746 struct lruvec *lruvec;
24513264
HD
3747 struct zone *zone = NULL;
3748 int pgscanned = 0;
3749 int pgrescued = 0;
3750 int i;
89e004ea 3751
24513264
HD
3752 for (i = 0; i < nr_pages; i++) {
3753 struct page *page = pages[i];
3754 struct zone *pagezone;
89e004ea 3755
24513264
HD
3756 pgscanned++;
3757 pagezone = page_zone(page);
3758 if (pagezone != zone) {
3759 if (zone)
3760 spin_unlock_irq(&zone->lru_lock);
3761 zone = pagezone;
3762 spin_lock_irq(&zone->lru_lock);
3763 }
fa9add64 3764 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3765
24513264
HD
3766 if (!PageLRU(page) || !PageUnevictable(page))
3767 continue;
89e004ea 3768
39b5f29a 3769 if (page_evictable(page)) {
24513264
HD
3770 enum lru_list lru = page_lru_base_type(page);
3771
309381fe 3772 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3773 ClearPageUnevictable(page);
fa9add64
HD
3774 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3775 add_page_to_lru_list(page, lruvec, lru);
24513264 3776 pgrescued++;
89e004ea 3777 }
24513264 3778 }
89e004ea 3779
24513264
HD
3780 if (zone) {
3781 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3782 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3783 spin_unlock_irq(&zone->lru_lock);
89e004ea 3784 }
89e004ea 3785}
85046579 3786#endif /* CONFIG_SHMEM */
af936a16 3787
264e56d8 3788static void warn_scan_unevictable_pages(void)
af936a16 3789{
264e56d8 3790 printk_once(KERN_WARNING
25bd91bd 3791 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3792 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3793 "one, please send an email to linux-mm@kvack.org.\n",
3794 current->comm);
af936a16
LS
3795}
3796
3797/*
3798 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3799 * all nodes' unevictable lists for evictable pages
3800 */
3801unsigned long scan_unevictable_pages;
3802
3803int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3804 void __user *buffer,
af936a16
LS
3805 size_t *length, loff_t *ppos)
3806{
264e56d8 3807 warn_scan_unevictable_pages();
8d65af78 3808 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3809 scan_unevictable_pages = 0;
3810 return 0;
3811}
3812
e4455abb 3813#ifdef CONFIG_NUMA
af936a16
LS
3814/*
3815 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3816 * a specified node's per zone unevictable lists for evictable pages.
3817 */
3818
10fbcf4c
KS
3819static ssize_t read_scan_unevictable_node(struct device *dev,
3820 struct device_attribute *attr,
af936a16
LS
3821 char *buf)
3822{
264e56d8 3823 warn_scan_unevictable_pages();
af936a16
LS
3824 return sprintf(buf, "0\n"); /* always zero; should fit... */
3825}
3826
10fbcf4c
KS
3827static ssize_t write_scan_unevictable_node(struct device *dev,
3828 struct device_attribute *attr,
af936a16
LS
3829 const char *buf, size_t count)
3830{
264e56d8 3831 warn_scan_unevictable_pages();
af936a16
LS
3832 return 1;
3833}
3834
3835
10fbcf4c 3836static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3837 read_scan_unevictable_node,
3838 write_scan_unevictable_node);
3839
3840int scan_unevictable_register_node(struct node *node)
3841{
10fbcf4c 3842 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3843}
3844
3845void scan_unevictable_unregister_node(struct node *node)
3846{
10fbcf4c 3847 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3848}
e4455abb 3849#endif
This page took 1.141651 seconds and 5 git commands to generate.