mm: page_counter: pull "-1" handling out of page_counter_memparse()
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 unsigned int hibernation_mode:1;
95
96 /* One of the zones is ready for compaction */
97 unsigned int compaction_ready:1;
98
99 /* Incremented by the number of inactive pages that were scanned */
100 unsigned long nr_scanned;
101
102 /* Number of pages freed so far during a call to shrink_zones() */
103 unsigned long nr_reclaimed;
1da177e4
LT
104};
105
1da177e4
LT
106#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
107
108#ifdef ARCH_HAS_PREFETCH
109#define prefetch_prev_lru_page(_page, _base, _field) \
110 do { \
111 if ((_page)->lru.prev != _base) { \
112 struct page *prev; \
113 \
114 prev = lru_to_page(&(_page->lru)); \
115 prefetch(&prev->_field); \
116 } \
117 } while (0)
118#else
119#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
120#endif
121
122#ifdef ARCH_HAS_PREFETCHW
123#define prefetchw_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetchw(&prev->_field); \
130 } \
131 } while (0)
132#else
133#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
134#endif
135
136/*
137 * From 0 .. 100. Higher means more swappy.
138 */
139int vm_swappiness = 60;
d0480be4
WSH
140/*
141 * The total number of pages which are beyond the high watermark within all
142 * zones.
143 */
144unsigned long vm_total_pages;
1da177e4
LT
145
146static LIST_HEAD(shrinker_list);
147static DECLARE_RWSEM(shrinker_rwsem);
148
c255a458 149#ifdef CONFIG_MEMCG
89b5fae5
JW
150static bool global_reclaim(struct scan_control *sc)
151{
f16015fb 152 return !sc->target_mem_cgroup;
89b5fae5 153}
91a45470 154#else
89b5fae5
JW
155static bool global_reclaim(struct scan_control *sc)
156{
157 return true;
158}
91a45470
KH
159#endif
160
a1c3bfb2 161static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
162{
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173}
174
175bool zone_reclaimable(struct zone *zone)
176{
0d5d823a
MG
177 return zone_page_state(zone, NR_PAGES_SCANNED) <
178 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
179}
180
4d7dcca2 181static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 182{
c3c787e8 183 if (!mem_cgroup_disabled())
4d7dcca2 184 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 185
074291fe 186 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
187}
188
1da177e4 189/*
1d3d4437 190 * Add a shrinker callback to be called from the vm.
1da177e4 191 */
1d3d4437 192int register_shrinker(struct shrinker *shrinker)
1da177e4 193{
1d3d4437
GC
194 size_t size = sizeof(*shrinker->nr_deferred);
195
196 /*
197 * If we only have one possible node in the system anyway, save
198 * ourselves the trouble and disable NUMA aware behavior. This way we
199 * will save memory and some small loop time later.
200 */
201 if (nr_node_ids == 1)
202 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
203
204 if (shrinker->flags & SHRINKER_NUMA_AWARE)
205 size *= nr_node_ids;
206
207 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
208 if (!shrinker->nr_deferred)
209 return -ENOMEM;
210
8e1f936b
RR
211 down_write(&shrinker_rwsem);
212 list_add_tail(&shrinker->list, &shrinker_list);
213 up_write(&shrinker_rwsem);
1d3d4437 214 return 0;
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
217
218/*
219 * Remove one
220 */
8e1f936b 221void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
222{
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
ae393321 226 kfree(shrinker->nr_deferred);
1da177e4 227}
8e1f936b 228EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
229
230#define SHRINK_BATCH 128
1d3d4437 231
6b4f7799
JW
232static unsigned long shrink_slabs(struct shrink_control *shrinkctl,
233 struct shrinker *shrinker,
234 unsigned long nr_scanned,
235 unsigned long nr_eligible)
1d3d4437
GC
236{
237 unsigned long freed = 0;
238 unsigned long long delta;
239 long total_scan;
d5bc5fd3 240 long freeable;
1d3d4437
GC
241 long nr;
242 long new_nr;
243 int nid = shrinkctl->nid;
244 long batch_size = shrinker->batch ? shrinker->batch
245 : SHRINK_BATCH;
246
d5bc5fd3
VD
247 freeable = shrinker->count_objects(shrinker, shrinkctl);
248 if (freeable == 0)
1d3d4437
GC
249 return 0;
250
251 /*
252 * copy the current shrinker scan count into a local variable
253 * and zero it so that other concurrent shrinker invocations
254 * don't also do this scanning work.
255 */
256 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
257
258 total_scan = nr;
6b4f7799 259 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 260 delta *= freeable;
6b4f7799 261 do_div(delta, nr_eligible + 1);
1d3d4437
GC
262 total_scan += delta;
263 if (total_scan < 0) {
8612c663 264 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 265 shrinker->scan_objects, total_scan);
d5bc5fd3 266 total_scan = freeable;
1d3d4437
GC
267 }
268
269 /*
270 * We need to avoid excessive windup on filesystem shrinkers
271 * due to large numbers of GFP_NOFS allocations causing the
272 * shrinkers to return -1 all the time. This results in a large
273 * nr being built up so when a shrink that can do some work
274 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 275 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
276 * memory.
277 *
278 * Hence only allow the shrinker to scan the entire cache when
279 * a large delta change is calculated directly.
280 */
d5bc5fd3
VD
281 if (delta < freeable / 4)
282 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
283
284 /*
285 * Avoid risking looping forever due to too large nr value:
286 * never try to free more than twice the estimate number of
287 * freeable entries.
288 */
d5bc5fd3
VD
289 if (total_scan > freeable * 2)
290 total_scan = freeable * 2;
1d3d4437
GC
291
292 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
293 nr_scanned, nr_eligible,
294 freeable, delta, total_scan);
1d3d4437 295
0b1fb40a
VD
296 /*
297 * Normally, we should not scan less than batch_size objects in one
298 * pass to avoid too frequent shrinker calls, but if the slab has less
299 * than batch_size objects in total and we are really tight on memory,
300 * we will try to reclaim all available objects, otherwise we can end
301 * up failing allocations although there are plenty of reclaimable
302 * objects spread over several slabs with usage less than the
303 * batch_size.
304 *
305 * We detect the "tight on memory" situations by looking at the total
306 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 307 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
308 * scanning at high prio and therefore should try to reclaim as much as
309 * possible.
310 */
311 while (total_scan >= batch_size ||
d5bc5fd3 312 total_scan >= freeable) {
a0b02131 313 unsigned long ret;
0b1fb40a 314 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 315
0b1fb40a 316 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
317 ret = shrinker->scan_objects(shrinker, shrinkctl);
318 if (ret == SHRINK_STOP)
319 break;
320 freed += ret;
1d3d4437 321
0b1fb40a
VD
322 count_vm_events(SLABS_SCANNED, nr_to_scan);
323 total_scan -= nr_to_scan;
1d3d4437
GC
324
325 cond_resched();
326 }
327
328 /*
329 * move the unused scan count back into the shrinker in a
330 * manner that handles concurrent updates. If we exhausted the
331 * scan, there is no need to do an update.
332 */
333 if (total_scan > 0)
334 new_nr = atomic_long_add_return(total_scan,
335 &shrinker->nr_deferred[nid]);
336 else
337 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
338
df9024a8 339 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 340 return freed;
1495f230
YH
341}
342
6b4f7799
JW
343/**
344 * shrink_node_slabs - shrink slab caches of a given node
345 * @gfp_mask: allocation context
346 * @nid: node whose slab caches to target
347 * @nr_scanned: pressure numerator
348 * @nr_eligible: pressure denominator
1da177e4 349 *
6b4f7799 350 * Call the shrink functions to age shrinkable caches.
1da177e4 351 *
6b4f7799
JW
352 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
353 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 354 *
6b4f7799
JW
355 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
356 * the available objects should be scanned. Page reclaim for example
357 * passes the number of pages scanned and the number of pages on the
358 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
359 * when it encountered mapped pages. The ratio is further biased by
360 * the ->seeks setting of the shrink function, which indicates the
361 * cost to recreate an object relative to that of an LRU page.
b15e0905 362 *
6b4f7799 363 * Returns the number of reclaimed slab objects.
1da177e4 364 */
6b4f7799
JW
365unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
366 unsigned long nr_scanned,
367 unsigned long nr_eligible)
1da177e4
LT
368{
369 struct shrinker *shrinker;
24f7c6b9 370 unsigned long freed = 0;
1da177e4 371
6b4f7799
JW
372 if (nr_scanned == 0)
373 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 374
f06590bd 375 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
376 /*
377 * If we would return 0, our callers would understand that we
378 * have nothing else to shrink and give up trying. By returning
379 * 1 we keep it going and assume we'll be able to shrink next
380 * time.
381 */
382 freed = 1;
f06590bd
MK
383 goto out;
384 }
1da177e4
LT
385
386 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
387 struct shrink_control sc = {
388 .gfp_mask = gfp_mask,
389 .nid = nid,
390 };
ec97097b 391
6b4f7799
JW
392 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
393 sc.nid = 0;
1da177e4 394
6b4f7799 395 freed += shrink_slabs(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 396 }
6b4f7799 397
1da177e4 398 up_read(&shrinker_rwsem);
f06590bd
MK
399out:
400 cond_resched();
24f7c6b9 401 return freed;
1da177e4
LT
402}
403
1da177e4
LT
404static inline int is_page_cache_freeable(struct page *page)
405{
ceddc3a5
JW
406 /*
407 * A freeable page cache page is referenced only by the caller
408 * that isolated the page, the page cache radix tree and
409 * optional buffer heads at page->private.
410 */
edcf4748 411 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
412}
413
7d3579e8
KM
414static int may_write_to_queue(struct backing_dev_info *bdi,
415 struct scan_control *sc)
1da177e4 416{
930d9152 417 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
418 return 1;
419 if (!bdi_write_congested(bdi))
420 return 1;
421 if (bdi == current->backing_dev_info)
422 return 1;
423 return 0;
424}
425
426/*
427 * We detected a synchronous write error writing a page out. Probably
428 * -ENOSPC. We need to propagate that into the address_space for a subsequent
429 * fsync(), msync() or close().
430 *
431 * The tricky part is that after writepage we cannot touch the mapping: nothing
432 * prevents it from being freed up. But we have a ref on the page and once
433 * that page is locked, the mapping is pinned.
434 *
435 * We're allowed to run sleeping lock_page() here because we know the caller has
436 * __GFP_FS.
437 */
438static void handle_write_error(struct address_space *mapping,
439 struct page *page, int error)
440{
7eaceacc 441 lock_page(page);
3e9f45bd
GC
442 if (page_mapping(page) == mapping)
443 mapping_set_error(mapping, error);
1da177e4
LT
444 unlock_page(page);
445}
446
04e62a29
CL
447/* possible outcome of pageout() */
448typedef enum {
449 /* failed to write page out, page is locked */
450 PAGE_KEEP,
451 /* move page to the active list, page is locked */
452 PAGE_ACTIVATE,
453 /* page has been sent to the disk successfully, page is unlocked */
454 PAGE_SUCCESS,
455 /* page is clean and locked */
456 PAGE_CLEAN,
457} pageout_t;
458
1da177e4 459/*
1742f19f
AM
460 * pageout is called by shrink_page_list() for each dirty page.
461 * Calls ->writepage().
1da177e4 462 */
c661b078 463static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 464 struct scan_control *sc)
1da177e4
LT
465{
466 /*
467 * If the page is dirty, only perform writeback if that write
468 * will be non-blocking. To prevent this allocation from being
469 * stalled by pagecache activity. But note that there may be
470 * stalls if we need to run get_block(). We could test
471 * PagePrivate for that.
472 *
8174202b 473 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
474 * this page's queue, we can perform writeback even if that
475 * will block.
476 *
477 * If the page is swapcache, write it back even if that would
478 * block, for some throttling. This happens by accident, because
479 * swap_backing_dev_info is bust: it doesn't reflect the
480 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
481 */
482 if (!is_page_cache_freeable(page))
483 return PAGE_KEEP;
484 if (!mapping) {
485 /*
486 * Some data journaling orphaned pages can have
487 * page->mapping == NULL while being dirty with clean buffers.
488 */
266cf658 489 if (page_has_private(page)) {
1da177e4
LT
490 if (try_to_free_buffers(page)) {
491 ClearPageDirty(page);
b1de0d13 492 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
493 return PAGE_CLEAN;
494 }
495 }
496 return PAGE_KEEP;
497 }
498 if (mapping->a_ops->writepage == NULL)
499 return PAGE_ACTIVATE;
0e093d99 500 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
501 return PAGE_KEEP;
502
503 if (clear_page_dirty_for_io(page)) {
504 int res;
505 struct writeback_control wbc = {
506 .sync_mode = WB_SYNC_NONE,
507 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
508 .range_start = 0,
509 .range_end = LLONG_MAX,
1da177e4
LT
510 .for_reclaim = 1,
511 };
512
513 SetPageReclaim(page);
514 res = mapping->a_ops->writepage(page, &wbc);
515 if (res < 0)
516 handle_write_error(mapping, page, res);
994fc28c 517 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
518 ClearPageReclaim(page);
519 return PAGE_ACTIVATE;
520 }
c661b078 521
1da177e4
LT
522 if (!PageWriteback(page)) {
523 /* synchronous write or broken a_ops? */
524 ClearPageReclaim(page);
525 }
23b9da55 526 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 527 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
528 return PAGE_SUCCESS;
529 }
530
531 return PAGE_CLEAN;
532}
533
a649fd92 534/*
e286781d
NP
535 * Same as remove_mapping, but if the page is removed from the mapping, it
536 * gets returned with a refcount of 0.
a649fd92 537 */
a528910e
JW
538static int __remove_mapping(struct address_space *mapping, struct page *page,
539 bool reclaimed)
49d2e9cc 540{
28e4d965
NP
541 BUG_ON(!PageLocked(page));
542 BUG_ON(mapping != page_mapping(page));
49d2e9cc 543
19fd6231 544 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 545 /*
0fd0e6b0
NP
546 * The non racy check for a busy page.
547 *
548 * Must be careful with the order of the tests. When someone has
549 * a ref to the page, it may be possible that they dirty it then
550 * drop the reference. So if PageDirty is tested before page_count
551 * here, then the following race may occur:
552 *
553 * get_user_pages(&page);
554 * [user mapping goes away]
555 * write_to(page);
556 * !PageDirty(page) [good]
557 * SetPageDirty(page);
558 * put_page(page);
559 * !page_count(page) [good, discard it]
560 *
561 * [oops, our write_to data is lost]
562 *
563 * Reversing the order of the tests ensures such a situation cannot
564 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 * load is not satisfied before that of page->_count.
566 *
567 * Note that if SetPageDirty is always performed via set_page_dirty,
568 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 569 */
e286781d 570 if (!page_freeze_refs(page, 2))
49d2e9cc 571 goto cannot_free;
e286781d
NP
572 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 if (unlikely(PageDirty(page))) {
574 page_unfreeze_refs(page, 2);
49d2e9cc 575 goto cannot_free;
e286781d 576 }
49d2e9cc
CL
577
578 if (PageSwapCache(page)) {
579 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 580 mem_cgroup_swapout(page, swap);
49d2e9cc 581 __delete_from_swap_cache(page);
19fd6231 582 spin_unlock_irq(&mapping->tree_lock);
0a31bc97 583 swapcache_free(swap);
e286781d 584 } else {
6072d13c 585 void (*freepage)(struct page *);
a528910e 586 void *shadow = NULL;
6072d13c
LT
587
588 freepage = mapping->a_ops->freepage;
a528910e
JW
589 /*
590 * Remember a shadow entry for reclaimed file cache in
591 * order to detect refaults, thus thrashing, later on.
592 *
593 * But don't store shadows in an address space that is
594 * already exiting. This is not just an optizimation,
595 * inode reclaim needs to empty out the radix tree or
596 * the nodes are lost. Don't plant shadows behind its
597 * back.
598 */
599 if (reclaimed && page_is_file_cache(page) &&
600 !mapping_exiting(mapping))
601 shadow = workingset_eviction(mapping, page);
602 __delete_from_page_cache(page, shadow);
19fd6231 603 spin_unlock_irq(&mapping->tree_lock);
6072d13c
LT
604
605 if (freepage != NULL)
606 freepage(page);
49d2e9cc
CL
607 }
608
49d2e9cc
CL
609 return 1;
610
611cannot_free:
19fd6231 612 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
613 return 0;
614}
615
e286781d
NP
616/*
617 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
618 * someone else has a ref on the page, abort and return 0. If it was
619 * successfully detached, return 1. Assumes the caller has a single ref on
620 * this page.
621 */
622int remove_mapping(struct address_space *mapping, struct page *page)
623{
a528910e 624 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
625 /*
626 * Unfreezing the refcount with 1 rather than 2 effectively
627 * drops the pagecache ref for us without requiring another
628 * atomic operation.
629 */
630 page_unfreeze_refs(page, 1);
631 return 1;
632 }
633 return 0;
634}
635
894bc310
LS
636/**
637 * putback_lru_page - put previously isolated page onto appropriate LRU list
638 * @page: page to be put back to appropriate lru list
639 *
640 * Add previously isolated @page to appropriate LRU list.
641 * Page may still be unevictable for other reasons.
642 *
643 * lru_lock must not be held, interrupts must be enabled.
644 */
894bc310
LS
645void putback_lru_page(struct page *page)
646{
0ec3b74c 647 bool is_unevictable;
bbfd28ee 648 int was_unevictable = PageUnevictable(page);
894bc310 649
309381fe 650 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
651
652redo:
653 ClearPageUnevictable(page);
654
39b5f29a 655 if (page_evictable(page)) {
894bc310
LS
656 /*
657 * For evictable pages, we can use the cache.
658 * In event of a race, worst case is we end up with an
659 * unevictable page on [in]active list.
660 * We know how to handle that.
661 */
0ec3b74c 662 is_unevictable = false;
c53954a0 663 lru_cache_add(page);
894bc310
LS
664 } else {
665 /*
666 * Put unevictable pages directly on zone's unevictable
667 * list.
668 */
0ec3b74c 669 is_unevictable = true;
894bc310 670 add_page_to_unevictable_list(page);
6a7b9548 671 /*
21ee9f39
MK
672 * When racing with an mlock or AS_UNEVICTABLE clearing
673 * (page is unlocked) make sure that if the other thread
674 * does not observe our setting of PG_lru and fails
24513264 675 * isolation/check_move_unevictable_pages,
21ee9f39 676 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
677 * the page back to the evictable list.
678 *
21ee9f39 679 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
680 */
681 smp_mb();
894bc310 682 }
894bc310
LS
683
684 /*
685 * page's status can change while we move it among lru. If an evictable
686 * page is on unevictable list, it never be freed. To avoid that,
687 * check after we added it to the list, again.
688 */
0ec3b74c 689 if (is_unevictable && page_evictable(page)) {
894bc310
LS
690 if (!isolate_lru_page(page)) {
691 put_page(page);
692 goto redo;
693 }
694 /* This means someone else dropped this page from LRU
695 * So, it will be freed or putback to LRU again. There is
696 * nothing to do here.
697 */
698 }
699
0ec3b74c 700 if (was_unevictable && !is_unevictable)
bbfd28ee 701 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 702 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
703 count_vm_event(UNEVICTABLE_PGCULLED);
704
894bc310
LS
705 put_page(page); /* drop ref from isolate */
706}
707
dfc8d636
JW
708enum page_references {
709 PAGEREF_RECLAIM,
710 PAGEREF_RECLAIM_CLEAN,
64574746 711 PAGEREF_KEEP,
dfc8d636
JW
712 PAGEREF_ACTIVATE,
713};
714
715static enum page_references page_check_references(struct page *page,
716 struct scan_control *sc)
717{
64574746 718 int referenced_ptes, referenced_page;
dfc8d636 719 unsigned long vm_flags;
dfc8d636 720
c3ac9a8a
JW
721 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
722 &vm_flags);
64574746 723 referenced_page = TestClearPageReferenced(page);
dfc8d636 724
dfc8d636
JW
725 /*
726 * Mlock lost the isolation race with us. Let try_to_unmap()
727 * move the page to the unevictable list.
728 */
729 if (vm_flags & VM_LOCKED)
730 return PAGEREF_RECLAIM;
731
64574746 732 if (referenced_ptes) {
e4898273 733 if (PageSwapBacked(page))
64574746
JW
734 return PAGEREF_ACTIVATE;
735 /*
736 * All mapped pages start out with page table
737 * references from the instantiating fault, so we need
738 * to look twice if a mapped file page is used more
739 * than once.
740 *
741 * Mark it and spare it for another trip around the
742 * inactive list. Another page table reference will
743 * lead to its activation.
744 *
745 * Note: the mark is set for activated pages as well
746 * so that recently deactivated but used pages are
747 * quickly recovered.
748 */
749 SetPageReferenced(page);
750
34dbc67a 751 if (referenced_page || referenced_ptes > 1)
64574746
JW
752 return PAGEREF_ACTIVATE;
753
c909e993
KK
754 /*
755 * Activate file-backed executable pages after first usage.
756 */
757 if (vm_flags & VM_EXEC)
758 return PAGEREF_ACTIVATE;
759
64574746
JW
760 return PAGEREF_KEEP;
761 }
dfc8d636
JW
762
763 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 764 if (referenced_page && !PageSwapBacked(page))
64574746
JW
765 return PAGEREF_RECLAIM_CLEAN;
766
767 return PAGEREF_RECLAIM;
dfc8d636
JW
768}
769
e2be15f6
MG
770/* Check if a page is dirty or under writeback */
771static void page_check_dirty_writeback(struct page *page,
772 bool *dirty, bool *writeback)
773{
b4597226
MG
774 struct address_space *mapping;
775
e2be15f6
MG
776 /*
777 * Anonymous pages are not handled by flushers and must be written
778 * from reclaim context. Do not stall reclaim based on them
779 */
780 if (!page_is_file_cache(page)) {
781 *dirty = false;
782 *writeback = false;
783 return;
784 }
785
786 /* By default assume that the page flags are accurate */
787 *dirty = PageDirty(page);
788 *writeback = PageWriteback(page);
b4597226
MG
789
790 /* Verify dirty/writeback state if the filesystem supports it */
791 if (!page_has_private(page))
792 return;
793
794 mapping = page_mapping(page);
795 if (mapping && mapping->a_ops->is_dirty_writeback)
796 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
797}
798
1da177e4 799/*
1742f19f 800 * shrink_page_list() returns the number of reclaimed pages
1da177e4 801 */
1742f19f 802static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 803 struct zone *zone,
f84f6e2b 804 struct scan_control *sc,
02c6de8d 805 enum ttu_flags ttu_flags,
8e950282 806 unsigned long *ret_nr_dirty,
d43006d5 807 unsigned long *ret_nr_unqueued_dirty,
8e950282 808 unsigned long *ret_nr_congested,
02c6de8d 809 unsigned long *ret_nr_writeback,
b1a6f21e 810 unsigned long *ret_nr_immediate,
02c6de8d 811 bool force_reclaim)
1da177e4
LT
812{
813 LIST_HEAD(ret_pages);
abe4c3b5 814 LIST_HEAD(free_pages);
1da177e4 815 int pgactivate = 0;
d43006d5 816 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
817 unsigned long nr_dirty = 0;
818 unsigned long nr_congested = 0;
05ff5137 819 unsigned long nr_reclaimed = 0;
92df3a72 820 unsigned long nr_writeback = 0;
b1a6f21e 821 unsigned long nr_immediate = 0;
1da177e4
LT
822
823 cond_resched();
824
1da177e4
LT
825 while (!list_empty(page_list)) {
826 struct address_space *mapping;
827 struct page *page;
828 int may_enter_fs;
02c6de8d 829 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 830 bool dirty, writeback;
1da177e4
LT
831
832 cond_resched();
833
834 page = lru_to_page(page_list);
835 list_del(&page->lru);
836
529ae9aa 837 if (!trylock_page(page))
1da177e4
LT
838 goto keep;
839
309381fe
SL
840 VM_BUG_ON_PAGE(PageActive(page), page);
841 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
842
843 sc->nr_scanned++;
80e43426 844
39b5f29a 845 if (unlikely(!page_evictable(page)))
b291f000 846 goto cull_mlocked;
894bc310 847
a6dc60f8 848 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
849 goto keep_locked;
850
1da177e4
LT
851 /* Double the slab pressure for mapped and swapcache pages */
852 if (page_mapped(page) || PageSwapCache(page))
853 sc->nr_scanned++;
854
c661b078
AW
855 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
856 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
857
e2be15f6
MG
858 /*
859 * The number of dirty pages determines if a zone is marked
860 * reclaim_congested which affects wait_iff_congested. kswapd
861 * will stall and start writing pages if the tail of the LRU
862 * is all dirty unqueued pages.
863 */
864 page_check_dirty_writeback(page, &dirty, &writeback);
865 if (dirty || writeback)
866 nr_dirty++;
867
868 if (dirty && !writeback)
869 nr_unqueued_dirty++;
870
d04e8acd
MG
871 /*
872 * Treat this page as congested if the underlying BDI is or if
873 * pages are cycling through the LRU so quickly that the
874 * pages marked for immediate reclaim are making it to the
875 * end of the LRU a second time.
876 */
e2be15f6 877 mapping = page_mapping(page);
1da58ee2
JL
878 if (((dirty || writeback) && mapping &&
879 bdi_write_congested(mapping->backing_dev_info)) ||
d04e8acd 880 (writeback && PageReclaim(page)))
e2be15f6
MG
881 nr_congested++;
882
283aba9f
MG
883 /*
884 * If a page at the tail of the LRU is under writeback, there
885 * are three cases to consider.
886 *
887 * 1) If reclaim is encountering an excessive number of pages
888 * under writeback and this page is both under writeback and
889 * PageReclaim then it indicates that pages are being queued
890 * for IO but are being recycled through the LRU before the
891 * IO can complete. Waiting on the page itself risks an
892 * indefinite stall if it is impossible to writeback the
893 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
894 * note that the LRU is being scanned too quickly and the
895 * caller can stall after page list has been processed.
283aba9f
MG
896 *
897 * 2) Global reclaim encounters a page, memcg encounters a
898 * page that is not marked for immediate reclaim or
899 * the caller does not have __GFP_IO. In this case mark
900 * the page for immediate reclaim and continue scanning.
901 *
902 * __GFP_IO is checked because a loop driver thread might
903 * enter reclaim, and deadlock if it waits on a page for
904 * which it is needed to do the write (loop masks off
905 * __GFP_IO|__GFP_FS for this reason); but more thought
906 * would probably show more reasons.
907 *
908 * Don't require __GFP_FS, since we're not going into the
909 * FS, just waiting on its writeback completion. Worryingly,
910 * ext4 gfs2 and xfs allocate pages with
911 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
912 * may_enter_fs here is liable to OOM on them.
913 *
914 * 3) memcg encounters a page that is not already marked
915 * PageReclaim. memcg does not have any dirty pages
916 * throttling so we could easily OOM just because too many
917 * pages are in writeback and there is nothing else to
918 * reclaim. Wait for the writeback to complete.
919 */
c661b078 920 if (PageWriteback(page)) {
283aba9f
MG
921 /* Case 1 above */
922 if (current_is_kswapd() &&
923 PageReclaim(page) &&
57054651 924 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
925 nr_immediate++;
926 goto keep_locked;
283aba9f
MG
927
928 /* Case 2 above */
929 } else if (global_reclaim(sc) ||
c3b94f44
HD
930 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
931 /*
932 * This is slightly racy - end_page_writeback()
933 * might have just cleared PageReclaim, then
934 * setting PageReclaim here end up interpreted
935 * as PageReadahead - but that does not matter
936 * enough to care. What we do want is for this
937 * page to have PageReclaim set next time memcg
938 * reclaim reaches the tests above, so it will
939 * then wait_on_page_writeback() to avoid OOM;
940 * and it's also appropriate in global reclaim.
941 */
942 SetPageReclaim(page);
e62e384e 943 nr_writeback++;
283aba9f 944
c3b94f44 945 goto keep_locked;
283aba9f
MG
946
947 /* Case 3 above */
948 } else {
949 wait_on_page_writeback(page);
e62e384e 950 }
c661b078 951 }
1da177e4 952
02c6de8d
MK
953 if (!force_reclaim)
954 references = page_check_references(page, sc);
955
dfc8d636
JW
956 switch (references) {
957 case PAGEREF_ACTIVATE:
1da177e4 958 goto activate_locked;
64574746
JW
959 case PAGEREF_KEEP:
960 goto keep_locked;
dfc8d636
JW
961 case PAGEREF_RECLAIM:
962 case PAGEREF_RECLAIM_CLEAN:
963 ; /* try to reclaim the page below */
964 }
1da177e4 965
1da177e4
LT
966 /*
967 * Anonymous process memory has backing store?
968 * Try to allocate it some swap space here.
969 */
b291f000 970 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
971 if (!(sc->gfp_mask & __GFP_IO))
972 goto keep_locked;
5bc7b8ac 973 if (!add_to_swap(page, page_list))
1da177e4 974 goto activate_locked;
63eb6b93 975 may_enter_fs = 1;
1da177e4 976
e2be15f6
MG
977 /* Adding to swap updated mapping */
978 mapping = page_mapping(page);
979 }
1da177e4
LT
980
981 /*
982 * The page is mapped into the page tables of one or more
983 * processes. Try to unmap it here.
984 */
985 if (page_mapped(page) && mapping) {
02c6de8d 986 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
987 case SWAP_FAIL:
988 goto activate_locked;
989 case SWAP_AGAIN:
990 goto keep_locked;
b291f000
NP
991 case SWAP_MLOCK:
992 goto cull_mlocked;
1da177e4
LT
993 case SWAP_SUCCESS:
994 ; /* try to free the page below */
995 }
996 }
997
998 if (PageDirty(page)) {
ee72886d
MG
999 /*
1000 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1001 * avoid risk of stack overflow but only writeback
1002 * if many dirty pages have been encountered.
ee72886d 1003 */
f84f6e2b 1004 if (page_is_file_cache(page) &&
9e3b2f8c 1005 (!current_is_kswapd() ||
57054651 1006 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1007 /*
1008 * Immediately reclaim when written back.
1009 * Similar in principal to deactivate_page()
1010 * except we already have the page isolated
1011 * and know it's dirty
1012 */
1013 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1014 SetPageReclaim(page);
1015
ee72886d
MG
1016 goto keep_locked;
1017 }
1018
dfc8d636 1019 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1020 goto keep_locked;
4dd4b920 1021 if (!may_enter_fs)
1da177e4 1022 goto keep_locked;
52a8363e 1023 if (!sc->may_writepage)
1da177e4
LT
1024 goto keep_locked;
1025
1026 /* Page is dirty, try to write it out here */
7d3579e8 1027 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1028 case PAGE_KEEP:
1029 goto keep_locked;
1030 case PAGE_ACTIVATE:
1031 goto activate_locked;
1032 case PAGE_SUCCESS:
7d3579e8 1033 if (PageWriteback(page))
41ac1999 1034 goto keep;
7d3579e8 1035 if (PageDirty(page))
1da177e4 1036 goto keep;
7d3579e8 1037
1da177e4
LT
1038 /*
1039 * A synchronous write - probably a ramdisk. Go
1040 * ahead and try to reclaim the page.
1041 */
529ae9aa 1042 if (!trylock_page(page))
1da177e4
LT
1043 goto keep;
1044 if (PageDirty(page) || PageWriteback(page))
1045 goto keep_locked;
1046 mapping = page_mapping(page);
1047 case PAGE_CLEAN:
1048 ; /* try to free the page below */
1049 }
1050 }
1051
1052 /*
1053 * If the page has buffers, try to free the buffer mappings
1054 * associated with this page. If we succeed we try to free
1055 * the page as well.
1056 *
1057 * We do this even if the page is PageDirty().
1058 * try_to_release_page() does not perform I/O, but it is
1059 * possible for a page to have PageDirty set, but it is actually
1060 * clean (all its buffers are clean). This happens if the
1061 * buffers were written out directly, with submit_bh(). ext3
894bc310 1062 * will do this, as well as the blockdev mapping.
1da177e4
LT
1063 * try_to_release_page() will discover that cleanness and will
1064 * drop the buffers and mark the page clean - it can be freed.
1065 *
1066 * Rarely, pages can have buffers and no ->mapping. These are
1067 * the pages which were not successfully invalidated in
1068 * truncate_complete_page(). We try to drop those buffers here
1069 * and if that worked, and the page is no longer mapped into
1070 * process address space (page_count == 1) it can be freed.
1071 * Otherwise, leave the page on the LRU so it is swappable.
1072 */
266cf658 1073 if (page_has_private(page)) {
1da177e4
LT
1074 if (!try_to_release_page(page, sc->gfp_mask))
1075 goto activate_locked;
e286781d
NP
1076 if (!mapping && page_count(page) == 1) {
1077 unlock_page(page);
1078 if (put_page_testzero(page))
1079 goto free_it;
1080 else {
1081 /*
1082 * rare race with speculative reference.
1083 * the speculative reference will free
1084 * this page shortly, so we may
1085 * increment nr_reclaimed here (and
1086 * leave it off the LRU).
1087 */
1088 nr_reclaimed++;
1089 continue;
1090 }
1091 }
1da177e4
LT
1092 }
1093
a528910e 1094 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1095 goto keep_locked;
1da177e4 1096
a978d6f5
NP
1097 /*
1098 * At this point, we have no other references and there is
1099 * no way to pick any more up (removed from LRU, removed
1100 * from pagecache). Can use non-atomic bitops now (and
1101 * we obviously don't have to worry about waking up a process
1102 * waiting on the page lock, because there are no references.
1103 */
1104 __clear_page_locked(page);
e286781d 1105free_it:
05ff5137 1106 nr_reclaimed++;
abe4c3b5
MG
1107
1108 /*
1109 * Is there need to periodically free_page_list? It would
1110 * appear not as the counts should be low
1111 */
1112 list_add(&page->lru, &free_pages);
1da177e4
LT
1113 continue;
1114
b291f000 1115cull_mlocked:
63d6c5ad
HD
1116 if (PageSwapCache(page))
1117 try_to_free_swap(page);
b291f000
NP
1118 unlock_page(page);
1119 putback_lru_page(page);
1120 continue;
1121
1da177e4 1122activate_locked:
68a22394
RR
1123 /* Not a candidate for swapping, so reclaim swap space. */
1124 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1125 try_to_free_swap(page);
309381fe 1126 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1127 SetPageActive(page);
1128 pgactivate++;
1129keep_locked:
1130 unlock_page(page);
1131keep:
1132 list_add(&page->lru, &ret_pages);
309381fe 1133 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1134 }
abe4c3b5 1135
747db954 1136 mem_cgroup_uncharge_list(&free_pages);
b745bc85 1137 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1138
1da177e4 1139 list_splice(&ret_pages, page_list);
f8891e5e 1140 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1141
8e950282
MG
1142 *ret_nr_dirty += nr_dirty;
1143 *ret_nr_congested += nr_congested;
d43006d5 1144 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1145 *ret_nr_writeback += nr_writeback;
b1a6f21e 1146 *ret_nr_immediate += nr_immediate;
05ff5137 1147 return nr_reclaimed;
1da177e4
LT
1148}
1149
02c6de8d
MK
1150unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1151 struct list_head *page_list)
1152{
1153 struct scan_control sc = {
1154 .gfp_mask = GFP_KERNEL,
1155 .priority = DEF_PRIORITY,
1156 .may_unmap = 1,
1157 };
8e950282 1158 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1159 struct page *page, *next;
1160 LIST_HEAD(clean_pages);
1161
1162 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1163 if (page_is_file_cache(page) && !PageDirty(page) &&
1164 !isolated_balloon_page(page)) {
02c6de8d
MK
1165 ClearPageActive(page);
1166 list_move(&page->lru, &clean_pages);
1167 }
1168 }
1169
1170 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1171 TTU_UNMAP|TTU_IGNORE_ACCESS,
1172 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1173 list_splice(&clean_pages, page_list);
83da7510 1174 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1175 return ret;
1176}
1177
5ad333eb
AW
1178/*
1179 * Attempt to remove the specified page from its LRU. Only take this page
1180 * if it is of the appropriate PageActive status. Pages which are being
1181 * freed elsewhere are also ignored.
1182 *
1183 * page: page to consider
1184 * mode: one of the LRU isolation modes defined above
1185 *
1186 * returns 0 on success, -ve errno on failure.
1187 */
f3fd4a61 1188int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1189{
1190 int ret = -EINVAL;
1191
1192 /* Only take pages on the LRU. */
1193 if (!PageLRU(page))
1194 return ret;
1195
e46a2879
MK
1196 /* Compaction should not handle unevictable pages but CMA can do so */
1197 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1198 return ret;
1199
5ad333eb 1200 ret = -EBUSY;
08e552c6 1201
c8244935
MG
1202 /*
1203 * To minimise LRU disruption, the caller can indicate that it only
1204 * wants to isolate pages it will be able to operate on without
1205 * blocking - clean pages for the most part.
1206 *
1207 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1208 * is used by reclaim when it is cannot write to backing storage
1209 *
1210 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1211 * that it is possible to migrate without blocking
1212 */
1213 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1214 /* All the caller can do on PageWriteback is block */
1215 if (PageWriteback(page))
1216 return ret;
1217
1218 if (PageDirty(page)) {
1219 struct address_space *mapping;
1220
1221 /* ISOLATE_CLEAN means only clean pages */
1222 if (mode & ISOLATE_CLEAN)
1223 return ret;
1224
1225 /*
1226 * Only pages without mappings or that have a
1227 * ->migratepage callback are possible to migrate
1228 * without blocking
1229 */
1230 mapping = page_mapping(page);
1231 if (mapping && !mapping->a_ops->migratepage)
1232 return ret;
1233 }
1234 }
39deaf85 1235
f80c0673
MK
1236 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1237 return ret;
1238
5ad333eb
AW
1239 if (likely(get_page_unless_zero(page))) {
1240 /*
1241 * Be careful not to clear PageLRU until after we're
1242 * sure the page is not being freed elsewhere -- the
1243 * page release code relies on it.
1244 */
1245 ClearPageLRU(page);
1246 ret = 0;
1247 }
1248
1249 return ret;
1250}
1251
1da177e4
LT
1252/*
1253 * zone->lru_lock is heavily contended. Some of the functions that
1254 * shrink the lists perform better by taking out a batch of pages
1255 * and working on them outside the LRU lock.
1256 *
1257 * For pagecache intensive workloads, this function is the hottest
1258 * spot in the kernel (apart from copy_*_user functions).
1259 *
1260 * Appropriate locks must be held before calling this function.
1261 *
1262 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1263 * @lruvec: The LRU vector to pull pages from.
1da177e4 1264 * @dst: The temp list to put pages on to.
f626012d 1265 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1266 * @sc: The scan_control struct for this reclaim session
5ad333eb 1267 * @mode: One of the LRU isolation modes
3cb99451 1268 * @lru: LRU list id for isolating
1da177e4
LT
1269 *
1270 * returns how many pages were moved onto *@dst.
1271 */
69e05944 1272static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1273 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1274 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1275 isolate_mode_t mode, enum lru_list lru)
1da177e4 1276{
75b00af7 1277 struct list_head *src = &lruvec->lists[lru];
69e05944 1278 unsigned long nr_taken = 0;
c9b02d97 1279 unsigned long scan;
1da177e4 1280
c9b02d97 1281 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1282 struct page *page;
fa9add64 1283 int nr_pages;
5ad333eb 1284
1da177e4
LT
1285 page = lru_to_page(src);
1286 prefetchw_prev_lru_page(page, src, flags);
1287
309381fe 1288 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1289
f3fd4a61 1290 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1291 case 0:
fa9add64
HD
1292 nr_pages = hpage_nr_pages(page);
1293 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1294 list_move(&page->lru, dst);
fa9add64 1295 nr_taken += nr_pages;
5ad333eb
AW
1296 break;
1297
1298 case -EBUSY:
1299 /* else it is being freed elsewhere */
1300 list_move(&page->lru, src);
1301 continue;
46453a6e 1302
5ad333eb
AW
1303 default:
1304 BUG();
1305 }
1da177e4
LT
1306 }
1307
f626012d 1308 *nr_scanned = scan;
75b00af7
HD
1309 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1310 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1311 return nr_taken;
1312}
1313
62695a84
NP
1314/**
1315 * isolate_lru_page - tries to isolate a page from its LRU list
1316 * @page: page to isolate from its LRU list
1317 *
1318 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1319 * vmstat statistic corresponding to whatever LRU list the page was on.
1320 *
1321 * Returns 0 if the page was removed from an LRU list.
1322 * Returns -EBUSY if the page was not on an LRU list.
1323 *
1324 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1325 * the active list, it will have PageActive set. If it was found on
1326 * the unevictable list, it will have the PageUnevictable bit set. That flag
1327 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1328 *
1329 * The vmstat statistic corresponding to the list on which the page was
1330 * found will be decremented.
1331 *
1332 * Restrictions:
1333 * (1) Must be called with an elevated refcount on the page. This is a
1334 * fundamentnal difference from isolate_lru_pages (which is called
1335 * without a stable reference).
1336 * (2) the lru_lock must not be held.
1337 * (3) interrupts must be enabled.
1338 */
1339int isolate_lru_page(struct page *page)
1340{
1341 int ret = -EBUSY;
1342
309381fe 1343 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1344
62695a84
NP
1345 if (PageLRU(page)) {
1346 struct zone *zone = page_zone(page);
fa9add64 1347 struct lruvec *lruvec;
62695a84
NP
1348
1349 spin_lock_irq(&zone->lru_lock);
fa9add64 1350 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1351 if (PageLRU(page)) {
894bc310 1352 int lru = page_lru(page);
0c917313 1353 get_page(page);
62695a84 1354 ClearPageLRU(page);
fa9add64
HD
1355 del_page_from_lru_list(page, lruvec, lru);
1356 ret = 0;
62695a84
NP
1357 }
1358 spin_unlock_irq(&zone->lru_lock);
1359 }
1360 return ret;
1361}
1362
35cd7815 1363/*
d37dd5dc
FW
1364 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1365 * then get resheduled. When there are massive number of tasks doing page
1366 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1367 * the LRU list will go small and be scanned faster than necessary, leading to
1368 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1369 */
1370static int too_many_isolated(struct zone *zone, int file,
1371 struct scan_control *sc)
1372{
1373 unsigned long inactive, isolated;
1374
1375 if (current_is_kswapd())
1376 return 0;
1377
89b5fae5 1378 if (!global_reclaim(sc))
35cd7815
RR
1379 return 0;
1380
1381 if (file) {
1382 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1383 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1384 } else {
1385 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1386 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1387 }
1388
3cf23841
FW
1389 /*
1390 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1391 * won't get blocked by normal direct-reclaimers, forming a circular
1392 * deadlock.
1393 */
1394 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1395 inactive >>= 3;
1396
35cd7815
RR
1397 return isolated > inactive;
1398}
1399
66635629 1400static noinline_for_stack void
75b00af7 1401putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1402{
27ac81d8
KK
1403 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1404 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1405 LIST_HEAD(pages_to_free);
66635629 1406
66635629
MG
1407 /*
1408 * Put back any unfreeable pages.
1409 */
66635629 1410 while (!list_empty(page_list)) {
3f79768f 1411 struct page *page = lru_to_page(page_list);
66635629 1412 int lru;
3f79768f 1413
309381fe 1414 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1415 list_del(&page->lru);
39b5f29a 1416 if (unlikely(!page_evictable(page))) {
66635629
MG
1417 spin_unlock_irq(&zone->lru_lock);
1418 putback_lru_page(page);
1419 spin_lock_irq(&zone->lru_lock);
1420 continue;
1421 }
fa9add64
HD
1422
1423 lruvec = mem_cgroup_page_lruvec(page, zone);
1424
7a608572 1425 SetPageLRU(page);
66635629 1426 lru = page_lru(page);
fa9add64
HD
1427 add_page_to_lru_list(page, lruvec, lru);
1428
66635629
MG
1429 if (is_active_lru(lru)) {
1430 int file = is_file_lru(lru);
9992af10
RR
1431 int numpages = hpage_nr_pages(page);
1432 reclaim_stat->recent_rotated[file] += numpages;
66635629 1433 }
2bcf8879
HD
1434 if (put_page_testzero(page)) {
1435 __ClearPageLRU(page);
1436 __ClearPageActive(page);
fa9add64 1437 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1438
1439 if (unlikely(PageCompound(page))) {
1440 spin_unlock_irq(&zone->lru_lock);
747db954 1441 mem_cgroup_uncharge(page);
2bcf8879
HD
1442 (*get_compound_page_dtor(page))(page);
1443 spin_lock_irq(&zone->lru_lock);
1444 } else
1445 list_add(&page->lru, &pages_to_free);
66635629
MG
1446 }
1447 }
66635629 1448
3f79768f
HD
1449 /*
1450 * To save our caller's stack, now use input list for pages to free.
1451 */
1452 list_splice(&pages_to_free, page_list);
66635629
MG
1453}
1454
399ba0b9
N
1455/*
1456 * If a kernel thread (such as nfsd for loop-back mounts) services
1457 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1458 * In that case we should only throttle if the backing device it is
1459 * writing to is congested. In other cases it is safe to throttle.
1460 */
1461static int current_may_throttle(void)
1462{
1463 return !(current->flags & PF_LESS_THROTTLE) ||
1464 current->backing_dev_info == NULL ||
1465 bdi_write_congested(current->backing_dev_info);
1466}
1467
1da177e4 1468/*
1742f19f
AM
1469 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1470 * of reclaimed pages
1da177e4 1471 */
66635629 1472static noinline_for_stack unsigned long
1a93be0e 1473shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1474 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1475{
1476 LIST_HEAD(page_list);
e247dbce 1477 unsigned long nr_scanned;
05ff5137 1478 unsigned long nr_reclaimed = 0;
e247dbce 1479 unsigned long nr_taken;
8e950282
MG
1480 unsigned long nr_dirty = 0;
1481 unsigned long nr_congested = 0;
e2be15f6 1482 unsigned long nr_unqueued_dirty = 0;
92df3a72 1483 unsigned long nr_writeback = 0;
b1a6f21e 1484 unsigned long nr_immediate = 0;
f3fd4a61 1485 isolate_mode_t isolate_mode = 0;
3cb99451 1486 int file = is_file_lru(lru);
1a93be0e
KK
1487 struct zone *zone = lruvec_zone(lruvec);
1488 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1489
35cd7815 1490 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1491 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1492
1493 /* We are about to die and free our memory. Return now. */
1494 if (fatal_signal_pending(current))
1495 return SWAP_CLUSTER_MAX;
1496 }
1497
1da177e4 1498 lru_add_drain();
f80c0673
MK
1499
1500 if (!sc->may_unmap)
61317289 1501 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1502 if (!sc->may_writepage)
61317289 1503 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1504
1da177e4 1505 spin_lock_irq(&zone->lru_lock);
b35ea17b 1506
5dc35979
KK
1507 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1508 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1509
1510 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1511 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1512
89b5fae5 1513 if (global_reclaim(sc)) {
0d5d823a 1514 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1515 if (current_is_kswapd())
75b00af7 1516 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1517 else
75b00af7 1518 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1519 }
d563c050 1520 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1521
d563c050 1522 if (nr_taken == 0)
66635629 1523 return 0;
5ad333eb 1524
02c6de8d 1525 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1526 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1527 &nr_writeback, &nr_immediate,
1528 false);
c661b078 1529
3f79768f
HD
1530 spin_lock_irq(&zone->lru_lock);
1531
95d918fc 1532 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1533
904249aa
YH
1534 if (global_reclaim(sc)) {
1535 if (current_is_kswapd())
1536 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1537 nr_reclaimed);
1538 else
1539 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1540 nr_reclaimed);
1541 }
a74609fa 1542
27ac81d8 1543 putback_inactive_pages(lruvec, &page_list);
3f79768f 1544
95d918fc 1545 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1546
1547 spin_unlock_irq(&zone->lru_lock);
1548
747db954 1549 mem_cgroup_uncharge_list(&page_list);
b745bc85 1550 free_hot_cold_page_list(&page_list, true);
e11da5b4 1551
92df3a72
MG
1552 /*
1553 * If reclaim is isolating dirty pages under writeback, it implies
1554 * that the long-lived page allocation rate is exceeding the page
1555 * laundering rate. Either the global limits are not being effective
1556 * at throttling processes due to the page distribution throughout
1557 * zones or there is heavy usage of a slow backing device. The
1558 * only option is to throttle from reclaim context which is not ideal
1559 * as there is no guarantee the dirtying process is throttled in the
1560 * same way balance_dirty_pages() manages.
1561 *
8e950282
MG
1562 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1563 * of pages under pages flagged for immediate reclaim and stall if any
1564 * are encountered in the nr_immediate check below.
92df3a72 1565 */
918fc718 1566 if (nr_writeback && nr_writeback == nr_taken)
57054651 1567 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1568
d43006d5 1569 /*
b1a6f21e
MG
1570 * memcg will stall in page writeback so only consider forcibly
1571 * stalling for global reclaim
d43006d5 1572 */
b1a6f21e 1573 if (global_reclaim(sc)) {
8e950282
MG
1574 /*
1575 * Tag a zone as congested if all the dirty pages scanned were
1576 * backed by a congested BDI and wait_iff_congested will stall.
1577 */
1578 if (nr_dirty && nr_dirty == nr_congested)
57054651 1579 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1580
b1a6f21e
MG
1581 /*
1582 * If dirty pages are scanned that are not queued for IO, it
1583 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1584 * the zone ZONE_DIRTY and kswapd will start writing pages from
1585 * reclaim context.
b1a6f21e
MG
1586 */
1587 if (nr_unqueued_dirty == nr_taken)
57054651 1588 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1589
1590 /*
b738d764
LT
1591 * If kswapd scans pages marked marked for immediate
1592 * reclaim and under writeback (nr_immediate), it implies
1593 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1594 * they are written so also forcibly stall.
1595 */
b738d764 1596 if (nr_immediate && current_may_throttle())
b1a6f21e 1597 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1598 }
d43006d5 1599
8e950282
MG
1600 /*
1601 * Stall direct reclaim for IO completions if underlying BDIs or zone
1602 * is congested. Allow kswapd to continue until it starts encountering
1603 * unqueued dirty pages or cycling through the LRU too quickly.
1604 */
399ba0b9
N
1605 if (!sc->hibernation_mode && !current_is_kswapd() &&
1606 current_may_throttle())
8e950282
MG
1607 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1608
e11da5b4
MG
1609 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1610 zone_idx(zone),
1611 nr_scanned, nr_reclaimed,
9e3b2f8c 1612 sc->priority,
23b9da55 1613 trace_shrink_flags(file));
05ff5137 1614 return nr_reclaimed;
1da177e4
LT
1615}
1616
1617/*
1618 * This moves pages from the active list to the inactive list.
1619 *
1620 * We move them the other way if the page is referenced by one or more
1621 * processes, from rmap.
1622 *
1623 * If the pages are mostly unmapped, the processing is fast and it is
1624 * appropriate to hold zone->lru_lock across the whole operation. But if
1625 * the pages are mapped, the processing is slow (page_referenced()) so we
1626 * should drop zone->lru_lock around each page. It's impossible to balance
1627 * this, so instead we remove the pages from the LRU while processing them.
1628 * It is safe to rely on PG_active against the non-LRU pages in here because
1629 * nobody will play with that bit on a non-LRU page.
1630 *
1631 * The downside is that we have to touch page->_count against each page.
1632 * But we had to alter page->flags anyway.
1633 */
1cfb419b 1634
fa9add64 1635static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1636 struct list_head *list,
2bcf8879 1637 struct list_head *pages_to_free,
3eb4140f
WF
1638 enum lru_list lru)
1639{
fa9add64 1640 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1641 unsigned long pgmoved = 0;
3eb4140f 1642 struct page *page;
fa9add64 1643 int nr_pages;
3eb4140f 1644
3eb4140f
WF
1645 while (!list_empty(list)) {
1646 page = lru_to_page(list);
fa9add64 1647 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1648
309381fe 1649 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1650 SetPageLRU(page);
1651
fa9add64
HD
1652 nr_pages = hpage_nr_pages(page);
1653 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1654 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1655 pgmoved += nr_pages;
3eb4140f 1656
2bcf8879
HD
1657 if (put_page_testzero(page)) {
1658 __ClearPageLRU(page);
1659 __ClearPageActive(page);
fa9add64 1660 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1661
1662 if (unlikely(PageCompound(page))) {
1663 spin_unlock_irq(&zone->lru_lock);
747db954 1664 mem_cgroup_uncharge(page);
2bcf8879
HD
1665 (*get_compound_page_dtor(page))(page);
1666 spin_lock_irq(&zone->lru_lock);
1667 } else
1668 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1669 }
1670 }
1671 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1672 if (!is_active_lru(lru))
1673 __count_vm_events(PGDEACTIVATE, pgmoved);
1674}
1cfb419b 1675
f626012d 1676static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1677 struct lruvec *lruvec,
f16015fb 1678 struct scan_control *sc,
9e3b2f8c 1679 enum lru_list lru)
1da177e4 1680{
44c241f1 1681 unsigned long nr_taken;
f626012d 1682 unsigned long nr_scanned;
6fe6b7e3 1683 unsigned long vm_flags;
1da177e4 1684 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1685 LIST_HEAD(l_active);
b69408e8 1686 LIST_HEAD(l_inactive);
1da177e4 1687 struct page *page;
1a93be0e 1688 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1689 unsigned long nr_rotated = 0;
f3fd4a61 1690 isolate_mode_t isolate_mode = 0;
3cb99451 1691 int file = is_file_lru(lru);
1a93be0e 1692 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1693
1694 lru_add_drain();
f80c0673
MK
1695
1696 if (!sc->may_unmap)
61317289 1697 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1698 if (!sc->may_writepage)
61317289 1699 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1700
1da177e4 1701 spin_lock_irq(&zone->lru_lock);
925b7673 1702
5dc35979
KK
1703 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1704 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1705 if (global_reclaim(sc))
0d5d823a 1706 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1707
b7c46d15 1708 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1709
f626012d 1710 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1711 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1712 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1713 spin_unlock_irq(&zone->lru_lock);
1714
1da177e4
LT
1715 while (!list_empty(&l_hold)) {
1716 cond_resched();
1717 page = lru_to_page(&l_hold);
1718 list_del(&page->lru);
7e9cd484 1719
39b5f29a 1720 if (unlikely(!page_evictable(page))) {
894bc310
LS
1721 putback_lru_page(page);
1722 continue;
1723 }
1724
cc715d99
MG
1725 if (unlikely(buffer_heads_over_limit)) {
1726 if (page_has_private(page) && trylock_page(page)) {
1727 if (page_has_private(page))
1728 try_to_release_page(page, 0);
1729 unlock_page(page);
1730 }
1731 }
1732
c3ac9a8a
JW
1733 if (page_referenced(page, 0, sc->target_mem_cgroup,
1734 &vm_flags)) {
9992af10 1735 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1736 /*
1737 * Identify referenced, file-backed active pages and
1738 * give them one more trip around the active list. So
1739 * that executable code get better chances to stay in
1740 * memory under moderate memory pressure. Anon pages
1741 * are not likely to be evicted by use-once streaming
1742 * IO, plus JVM can create lots of anon VM_EXEC pages,
1743 * so we ignore them here.
1744 */
41e20983 1745 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1746 list_add(&page->lru, &l_active);
1747 continue;
1748 }
1749 }
7e9cd484 1750
5205e56e 1751 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1752 list_add(&page->lru, &l_inactive);
1753 }
1754
b555749a 1755 /*
8cab4754 1756 * Move pages back to the lru list.
b555749a 1757 */
2a1dc509 1758 spin_lock_irq(&zone->lru_lock);
556adecb 1759 /*
8cab4754
WF
1760 * Count referenced pages from currently used mappings as rotated,
1761 * even though only some of them are actually re-activated. This
1762 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1763 * get_scan_count.
7e9cd484 1764 */
b7c46d15 1765 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1766
fa9add64
HD
1767 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1768 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1769 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1770 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1771
747db954 1772 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1773 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1774}
1775
74e3f3c3 1776#ifdef CONFIG_SWAP
14797e23 1777static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1778{
1779 unsigned long active, inactive;
1780
1781 active = zone_page_state(zone, NR_ACTIVE_ANON);
1782 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1783
1784 if (inactive * zone->inactive_ratio < active)
1785 return 1;
1786
1787 return 0;
1788}
1789
14797e23
KM
1790/**
1791 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1792 * @lruvec: LRU vector to check
14797e23
KM
1793 *
1794 * Returns true if the zone does not have enough inactive anon pages,
1795 * meaning some active anon pages need to be deactivated.
1796 */
c56d5c7d 1797static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1798{
74e3f3c3
MK
1799 /*
1800 * If we don't have swap space, anonymous page deactivation
1801 * is pointless.
1802 */
1803 if (!total_swap_pages)
1804 return 0;
1805
c3c787e8 1806 if (!mem_cgroup_disabled())
c56d5c7d 1807 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1808
c56d5c7d 1809 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1810}
74e3f3c3 1811#else
c56d5c7d 1812static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1813{
1814 return 0;
1815}
1816#endif
14797e23 1817
56e49d21
RR
1818/**
1819 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1820 * @lruvec: LRU vector to check
56e49d21
RR
1821 *
1822 * When the system is doing streaming IO, memory pressure here
1823 * ensures that active file pages get deactivated, until more
1824 * than half of the file pages are on the inactive list.
1825 *
1826 * Once we get to that situation, protect the system's working
1827 * set from being evicted by disabling active file page aging.
1828 *
1829 * This uses a different ratio than the anonymous pages, because
1830 * the page cache uses a use-once replacement algorithm.
1831 */
c56d5c7d 1832static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1833{
e3790144
JW
1834 unsigned long inactive;
1835 unsigned long active;
1836
1837 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1838 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1839
e3790144 1840 return active > inactive;
56e49d21
RR
1841}
1842
75b00af7 1843static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1844{
75b00af7 1845 if (is_file_lru(lru))
c56d5c7d 1846 return inactive_file_is_low(lruvec);
b39415b2 1847 else
c56d5c7d 1848 return inactive_anon_is_low(lruvec);
b39415b2
RR
1849}
1850
4f98a2fe 1851static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1852 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1853{
b39415b2 1854 if (is_active_lru(lru)) {
75b00af7 1855 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1856 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1857 return 0;
1858 }
1859
1a93be0e 1860 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1861}
1862
9a265114
JW
1863enum scan_balance {
1864 SCAN_EQUAL,
1865 SCAN_FRACT,
1866 SCAN_ANON,
1867 SCAN_FILE,
1868};
1869
4f98a2fe
RR
1870/*
1871 * Determine how aggressively the anon and file LRU lists should be
1872 * scanned. The relative value of each set of LRU lists is determined
1873 * by looking at the fraction of the pages scanned we did rotate back
1874 * onto the active list instead of evict.
1875 *
be7bd59d
WL
1876 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1877 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1878 */
02695175 1879static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1880 struct scan_control *sc, unsigned long *nr,
1881 unsigned long *lru_pages)
4f98a2fe 1882{
9a265114
JW
1883 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1884 u64 fraction[2];
1885 u64 denominator = 0; /* gcc */
1886 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1887 unsigned long anon_prio, file_prio;
9a265114 1888 enum scan_balance scan_balance;
0bf1457f 1889 unsigned long anon, file;
9a265114 1890 bool force_scan = false;
4f98a2fe 1891 unsigned long ap, fp;
4111304d 1892 enum lru_list lru;
6f04f48d
SS
1893 bool some_scanned;
1894 int pass;
246e87a9 1895
f11c0ca5
JW
1896 /*
1897 * If the zone or memcg is small, nr[l] can be 0. This
1898 * results in no scanning on this priority and a potential
1899 * priority drop. Global direct reclaim can go to the next
1900 * zone and tends to have no problems. Global kswapd is for
1901 * zone balancing and it needs to scan a minimum amount. When
1902 * reclaiming for a memcg, a priority drop can cause high
1903 * latencies, so it's better to scan a minimum amount there as
1904 * well.
1905 */
90cbc250
VD
1906 if (current_is_kswapd()) {
1907 if (!zone_reclaimable(zone))
1908 force_scan = true;
1909 if (!mem_cgroup_lruvec_online(lruvec))
1910 force_scan = true;
1911 }
89b5fae5 1912 if (!global_reclaim(sc))
a4d3e9e7 1913 force_scan = true;
76a33fc3
SL
1914
1915 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1916 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1917 scan_balance = SCAN_FILE;
76a33fc3
SL
1918 goto out;
1919 }
4f98a2fe 1920
10316b31
JW
1921 /*
1922 * Global reclaim will swap to prevent OOM even with no
1923 * swappiness, but memcg users want to use this knob to
1924 * disable swapping for individual groups completely when
1925 * using the memory controller's swap limit feature would be
1926 * too expensive.
1927 */
02695175 1928 if (!global_reclaim(sc) && !swappiness) {
9a265114 1929 scan_balance = SCAN_FILE;
10316b31
JW
1930 goto out;
1931 }
1932
1933 /*
1934 * Do not apply any pressure balancing cleverness when the
1935 * system is close to OOM, scan both anon and file equally
1936 * (unless the swappiness setting disagrees with swapping).
1937 */
02695175 1938 if (!sc->priority && swappiness) {
9a265114 1939 scan_balance = SCAN_EQUAL;
10316b31
JW
1940 goto out;
1941 }
1942
62376251
JW
1943 /*
1944 * Prevent the reclaimer from falling into the cache trap: as
1945 * cache pages start out inactive, every cache fault will tip
1946 * the scan balance towards the file LRU. And as the file LRU
1947 * shrinks, so does the window for rotation from references.
1948 * This means we have a runaway feedback loop where a tiny
1949 * thrashing file LRU becomes infinitely more attractive than
1950 * anon pages. Try to detect this based on file LRU size.
1951 */
1952 if (global_reclaim(sc)) {
2ab051e1
JM
1953 unsigned long zonefile;
1954 unsigned long zonefree;
1955
1956 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1957 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1958 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 1959
2ab051e1 1960 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
1961 scan_balance = SCAN_ANON;
1962 goto out;
1963 }
1964 }
1965
7c5bd705
JW
1966 /*
1967 * There is enough inactive page cache, do not reclaim
1968 * anything from the anonymous working set right now.
1969 */
1970 if (!inactive_file_is_low(lruvec)) {
9a265114 1971 scan_balance = SCAN_FILE;
7c5bd705
JW
1972 goto out;
1973 }
1974
9a265114
JW
1975 scan_balance = SCAN_FRACT;
1976
58c37f6e
KM
1977 /*
1978 * With swappiness at 100, anonymous and file have the same priority.
1979 * This scanning priority is essentially the inverse of IO cost.
1980 */
02695175 1981 anon_prio = swappiness;
75b00af7 1982 file_prio = 200 - anon_prio;
58c37f6e 1983
4f98a2fe
RR
1984 /*
1985 * OK, so we have swap space and a fair amount of page cache
1986 * pages. We use the recently rotated / recently scanned
1987 * ratios to determine how valuable each cache is.
1988 *
1989 * Because workloads change over time (and to avoid overflow)
1990 * we keep these statistics as a floating average, which ends
1991 * up weighing recent references more than old ones.
1992 *
1993 * anon in [0], file in [1]
1994 */
2ab051e1
JM
1995
1996 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1997 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1998 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1999 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2000
90126375 2001 spin_lock_irq(&zone->lru_lock);
6e901571 2002 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2003 reclaim_stat->recent_scanned[0] /= 2;
2004 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2005 }
2006
6e901571 2007 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2008 reclaim_stat->recent_scanned[1] /= 2;
2009 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2010 }
2011
4f98a2fe 2012 /*
00d8089c
RR
2013 * The amount of pressure on anon vs file pages is inversely
2014 * proportional to the fraction of recently scanned pages on
2015 * each list that were recently referenced and in active use.
4f98a2fe 2016 */
fe35004f 2017 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2018 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2019
fe35004f 2020 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2021 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2022 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2023
76a33fc3
SL
2024 fraction[0] = ap;
2025 fraction[1] = fp;
2026 denominator = ap + fp + 1;
2027out:
6f04f48d
SS
2028 some_scanned = false;
2029 /* Only use force_scan on second pass. */
2030 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2031 *lru_pages = 0;
6f04f48d
SS
2032 for_each_evictable_lru(lru) {
2033 int file = is_file_lru(lru);
2034 unsigned long size;
2035 unsigned long scan;
6e08a369 2036
6f04f48d
SS
2037 size = get_lru_size(lruvec, lru);
2038 scan = size >> sc->priority;
9a265114 2039
6f04f48d
SS
2040 if (!scan && pass && force_scan)
2041 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2042
6f04f48d
SS
2043 switch (scan_balance) {
2044 case SCAN_EQUAL:
2045 /* Scan lists relative to size */
2046 break;
2047 case SCAN_FRACT:
2048 /*
2049 * Scan types proportional to swappiness and
2050 * their relative recent reclaim efficiency.
2051 */
2052 scan = div64_u64(scan * fraction[file],
2053 denominator);
2054 break;
2055 case SCAN_FILE:
2056 case SCAN_ANON:
2057 /* Scan one type exclusively */
6b4f7799
JW
2058 if ((scan_balance == SCAN_FILE) != file) {
2059 size = 0;
6f04f48d 2060 scan = 0;
6b4f7799 2061 }
6f04f48d
SS
2062 break;
2063 default:
2064 /* Look ma, no brain */
2065 BUG();
2066 }
6b4f7799
JW
2067
2068 *lru_pages += size;
6f04f48d 2069 nr[lru] = scan;
6b4f7799 2070
9a265114 2071 /*
6f04f48d
SS
2072 * Skip the second pass and don't force_scan,
2073 * if we found something to scan.
9a265114 2074 */
6f04f48d 2075 some_scanned |= !!scan;
9a265114 2076 }
76a33fc3 2077 }
6e08a369 2078}
4f98a2fe 2079
9b4f98cd
JW
2080/*
2081 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2082 */
02695175 2083static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2084 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2085{
2086 unsigned long nr[NR_LRU_LISTS];
e82e0561 2087 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2088 unsigned long nr_to_scan;
2089 enum lru_list lru;
2090 unsigned long nr_reclaimed = 0;
2091 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2092 struct blk_plug plug;
1a501907 2093 bool scan_adjusted;
9b4f98cd 2094
6b4f7799 2095 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2096
e82e0561
MG
2097 /* Record the original scan target for proportional adjustments later */
2098 memcpy(targets, nr, sizeof(nr));
2099
1a501907
MG
2100 /*
2101 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2102 * event that can occur when there is little memory pressure e.g.
2103 * multiple streaming readers/writers. Hence, we do not abort scanning
2104 * when the requested number of pages are reclaimed when scanning at
2105 * DEF_PRIORITY on the assumption that the fact we are direct
2106 * reclaiming implies that kswapd is not keeping up and it is best to
2107 * do a batch of work at once. For memcg reclaim one check is made to
2108 * abort proportional reclaim if either the file or anon lru has already
2109 * dropped to zero at the first pass.
2110 */
2111 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2112 sc->priority == DEF_PRIORITY);
2113
9b4f98cd
JW
2114 blk_start_plug(&plug);
2115 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2116 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2117 unsigned long nr_anon, nr_file, percentage;
2118 unsigned long nr_scanned;
2119
9b4f98cd
JW
2120 for_each_evictable_lru(lru) {
2121 if (nr[lru]) {
2122 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2123 nr[lru] -= nr_to_scan;
2124
2125 nr_reclaimed += shrink_list(lru, nr_to_scan,
2126 lruvec, sc);
2127 }
2128 }
e82e0561
MG
2129
2130 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2131 continue;
2132
e82e0561
MG
2133 /*
2134 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2135 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2136 * proportionally what was requested by get_scan_count(). We
2137 * stop reclaiming one LRU and reduce the amount scanning
2138 * proportional to the original scan target.
2139 */
2140 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2141 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2142
1a501907
MG
2143 /*
2144 * It's just vindictive to attack the larger once the smaller
2145 * has gone to zero. And given the way we stop scanning the
2146 * smaller below, this makes sure that we only make one nudge
2147 * towards proportionality once we've got nr_to_reclaim.
2148 */
2149 if (!nr_file || !nr_anon)
2150 break;
2151
e82e0561
MG
2152 if (nr_file > nr_anon) {
2153 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2154 targets[LRU_ACTIVE_ANON] + 1;
2155 lru = LRU_BASE;
2156 percentage = nr_anon * 100 / scan_target;
2157 } else {
2158 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2159 targets[LRU_ACTIVE_FILE] + 1;
2160 lru = LRU_FILE;
2161 percentage = nr_file * 100 / scan_target;
2162 }
2163
2164 /* Stop scanning the smaller of the LRU */
2165 nr[lru] = 0;
2166 nr[lru + LRU_ACTIVE] = 0;
2167
2168 /*
2169 * Recalculate the other LRU scan count based on its original
2170 * scan target and the percentage scanning already complete
2171 */
2172 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2173 nr_scanned = targets[lru] - nr[lru];
2174 nr[lru] = targets[lru] * (100 - percentage) / 100;
2175 nr[lru] -= min(nr[lru], nr_scanned);
2176
2177 lru += LRU_ACTIVE;
2178 nr_scanned = targets[lru] - nr[lru];
2179 nr[lru] = targets[lru] * (100 - percentage) / 100;
2180 nr[lru] -= min(nr[lru], nr_scanned);
2181
2182 scan_adjusted = true;
9b4f98cd
JW
2183 }
2184 blk_finish_plug(&plug);
2185 sc->nr_reclaimed += nr_reclaimed;
2186
2187 /*
2188 * Even if we did not try to evict anon pages at all, we want to
2189 * rebalance the anon lru active/inactive ratio.
2190 */
2191 if (inactive_anon_is_low(lruvec))
2192 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2193 sc, LRU_ACTIVE_ANON);
2194
2195 throttle_vm_writeout(sc->gfp_mask);
2196}
2197
23b9da55 2198/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2199static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2200{
d84da3f9 2201 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2202 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2203 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2204 return true;
2205
2206 return false;
2207}
2208
3e7d3449 2209/*
23b9da55
MG
2210 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2211 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2212 * true if more pages should be reclaimed such that when the page allocator
2213 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2214 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2215 */
9b4f98cd 2216static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2217 unsigned long nr_reclaimed,
2218 unsigned long nr_scanned,
2219 struct scan_control *sc)
2220{
2221 unsigned long pages_for_compaction;
2222 unsigned long inactive_lru_pages;
2223
2224 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2225 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2226 return false;
2227
2876592f
MG
2228 /* Consider stopping depending on scan and reclaim activity */
2229 if (sc->gfp_mask & __GFP_REPEAT) {
2230 /*
2231 * For __GFP_REPEAT allocations, stop reclaiming if the
2232 * full LRU list has been scanned and we are still failing
2233 * to reclaim pages. This full LRU scan is potentially
2234 * expensive but a __GFP_REPEAT caller really wants to succeed
2235 */
2236 if (!nr_reclaimed && !nr_scanned)
2237 return false;
2238 } else {
2239 /*
2240 * For non-__GFP_REPEAT allocations which can presumably
2241 * fail without consequence, stop if we failed to reclaim
2242 * any pages from the last SWAP_CLUSTER_MAX number of
2243 * pages that were scanned. This will return to the
2244 * caller faster at the risk reclaim/compaction and
2245 * the resulting allocation attempt fails
2246 */
2247 if (!nr_reclaimed)
2248 return false;
2249 }
3e7d3449
MG
2250
2251 /*
2252 * If we have not reclaimed enough pages for compaction and the
2253 * inactive lists are large enough, continue reclaiming
2254 */
2255 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2256 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2257 if (get_nr_swap_pages() > 0)
9b4f98cd 2258 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2259 if (sc->nr_reclaimed < pages_for_compaction &&
2260 inactive_lru_pages > pages_for_compaction)
2261 return true;
2262
2263 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2264 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2265 case COMPACT_PARTIAL:
2266 case COMPACT_CONTINUE:
2267 return false;
2268 default:
2269 return true;
2270 }
2271}
2272
6b4f7799
JW
2273static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2274 bool is_classzone)
1da177e4 2275{
f0fdc5e8 2276 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2277 bool reclaimable = false;
1da177e4 2278
9b4f98cd
JW
2279 do {
2280 struct mem_cgroup *root = sc->target_mem_cgroup;
2281 struct mem_cgroup_reclaim_cookie reclaim = {
2282 .zone = zone,
2283 .priority = sc->priority,
2284 };
6b4f7799 2285 unsigned long zone_lru_pages = 0;
694fbc0f 2286 struct mem_cgroup *memcg;
3e7d3449 2287
9b4f98cd
JW
2288 nr_reclaimed = sc->nr_reclaimed;
2289 nr_scanned = sc->nr_scanned;
1da177e4 2290
694fbc0f
AM
2291 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2292 do {
6b4f7799 2293 unsigned long lru_pages;
9b4f98cd 2294 struct lruvec *lruvec;
02695175 2295 int swappiness;
5660048c 2296
9b4f98cd 2297 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2298 swappiness = mem_cgroup_swappiness(memcg);
f9be23d6 2299
6b4f7799
JW
2300 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2301 zone_lru_pages += lru_pages;
f16015fb 2302
9b4f98cd 2303 /*
a394cb8e
MH
2304 * Direct reclaim and kswapd have to scan all memory
2305 * cgroups to fulfill the overall scan target for the
9b4f98cd 2306 * zone.
a394cb8e
MH
2307 *
2308 * Limit reclaim, on the other hand, only cares about
2309 * nr_to_reclaim pages to be reclaimed and it will
2310 * retry with decreasing priority if one round over the
2311 * whole hierarchy is not sufficient.
9b4f98cd 2312 */
a394cb8e
MH
2313 if (!global_reclaim(sc) &&
2314 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2315 mem_cgroup_iter_break(root, memcg);
2316 break;
2317 }
694fbc0f
AM
2318 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2319 } while (memcg);
70ddf637 2320
6b4f7799
JW
2321 /*
2322 * Shrink the slab caches in the same proportion that
2323 * the eligible LRU pages were scanned.
2324 */
2325 if (global_reclaim(sc) && is_classzone) {
2326 struct reclaim_state *reclaim_state;
2327
2328 shrink_node_slabs(sc->gfp_mask, zone_to_nid(zone),
2329 sc->nr_scanned - nr_scanned,
2330 zone_lru_pages);
2331
2332 reclaim_state = current->reclaim_state;
2333 if (reclaim_state) {
2334 sc->nr_reclaimed +=
2335 reclaim_state->reclaimed_slab;
2336 reclaim_state->reclaimed_slab = 0;
2337 }
2338 }
2339
70ddf637
AV
2340 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2341 sc->nr_scanned - nr_scanned,
2342 sc->nr_reclaimed - nr_reclaimed);
2343
2344d7e4
JW
2344 if (sc->nr_reclaimed - nr_reclaimed)
2345 reclaimable = true;
2346
9b4f98cd
JW
2347 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2348 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2349
2350 return reclaimable;
f16015fb
JW
2351}
2352
53853e2d
VB
2353/*
2354 * Returns true if compaction should go ahead for a high-order request, or
2355 * the high-order allocation would succeed without compaction.
2356 */
0b06496a 2357static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2358{
2359 unsigned long balance_gap, watermark;
2360 bool watermark_ok;
2361
fe4b1b24
MG
2362 /*
2363 * Compaction takes time to run and there are potentially other
2364 * callers using the pages just freed. Continue reclaiming until
2365 * there is a buffer of free pages available to give compaction
2366 * a reasonable chance of completing and allocating the page
2367 */
4be89a34
JZ
2368 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2369 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2370 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2371 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2372
2373 /*
2374 * If compaction is deferred, reclaim up to a point where
2375 * compaction will have a chance of success when re-enabled
2376 */
0b06496a 2377 if (compaction_deferred(zone, order))
fe4b1b24
MG
2378 return watermark_ok;
2379
53853e2d
VB
2380 /*
2381 * If compaction is not ready to start and allocation is not likely
2382 * to succeed without it, then keep reclaiming.
2383 */
ebff3980 2384 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2385 return false;
2386
2387 return watermark_ok;
2388}
2389
1da177e4
LT
2390/*
2391 * This is the direct reclaim path, for page-allocating processes. We only
2392 * try to reclaim pages from zones which will satisfy the caller's allocation
2393 * request.
2394 *
41858966
MG
2395 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2396 * Because:
1da177e4
LT
2397 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2398 * allocation or
41858966
MG
2399 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2400 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2401 * zone defense algorithm.
1da177e4 2402 *
1da177e4
LT
2403 * If a zone is deemed to be full of pinned pages then just give it a light
2404 * scan then give up on it.
2344d7e4
JW
2405 *
2406 * Returns true if a zone was reclaimable.
1da177e4 2407 */
2344d7e4 2408static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2409{
dd1a239f 2410 struct zoneref *z;
54a6eb5c 2411 struct zone *zone;
0608f43d
AM
2412 unsigned long nr_soft_reclaimed;
2413 unsigned long nr_soft_scanned;
619d0d76 2414 gfp_t orig_mask;
9bbc04ee 2415 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2416 bool reclaimable = false;
1cfb419b 2417
cc715d99
MG
2418 /*
2419 * If the number of buffer_heads in the machine exceeds the maximum
2420 * allowed level, force direct reclaim to scan the highmem zone as
2421 * highmem pages could be pinning lowmem pages storing buffer_heads
2422 */
619d0d76 2423 orig_mask = sc->gfp_mask;
cc715d99
MG
2424 if (buffer_heads_over_limit)
2425 sc->gfp_mask |= __GFP_HIGHMEM;
2426
d4debc66 2427 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2428 requested_highidx, sc->nodemask) {
2429 enum zone_type classzone_idx;
2430
f3fe6512 2431 if (!populated_zone(zone))
1da177e4 2432 continue;
6b4f7799
JW
2433
2434 classzone_idx = requested_highidx;
2435 while (!populated_zone(zone->zone_pgdat->node_zones +
2436 classzone_idx))
2437 classzone_idx--;
2438
1cfb419b
KH
2439 /*
2440 * Take care memory controller reclaiming has small influence
2441 * to global LRU.
2442 */
89b5fae5 2443 if (global_reclaim(sc)) {
344736f2
VD
2444 if (!cpuset_zone_allowed(zone,
2445 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2446 continue;
65ec02cb 2447
6e543d57
LD
2448 if (sc->priority != DEF_PRIORITY &&
2449 !zone_reclaimable(zone))
1cfb419b 2450 continue; /* Let kswapd poll it */
0b06496a
JW
2451
2452 /*
2453 * If we already have plenty of memory free for
2454 * compaction in this zone, don't free any more.
2455 * Even though compaction is invoked for any
2456 * non-zero order, only frequent costly order
2457 * reclamation is disruptive enough to become a
2458 * noticeable problem, like transparent huge
2459 * page allocations.
2460 */
2461 if (IS_ENABLED(CONFIG_COMPACTION) &&
2462 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2463 zonelist_zone_idx(z) <= requested_highidx &&
2464 compaction_ready(zone, sc->order)) {
2465 sc->compaction_ready = true;
2466 continue;
e0887c19 2467 }
0b06496a 2468
0608f43d
AM
2469 /*
2470 * This steals pages from memory cgroups over softlimit
2471 * and returns the number of reclaimed pages and
2472 * scanned pages. This works for global memory pressure
2473 * and balancing, not for a memcg's limit.
2474 */
2475 nr_soft_scanned = 0;
2476 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2477 sc->order, sc->gfp_mask,
2478 &nr_soft_scanned);
2479 sc->nr_reclaimed += nr_soft_reclaimed;
2480 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2481 if (nr_soft_reclaimed)
2482 reclaimable = true;
ac34a1a3 2483 /* need some check for avoid more shrink_zone() */
1cfb419b 2484 }
408d8544 2485
6b4f7799 2486 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2487 reclaimable = true;
2488
2489 if (global_reclaim(sc) &&
2490 !reclaimable && zone_reclaimable(zone))
2491 reclaimable = true;
1da177e4 2492 }
e0c23279 2493
619d0d76
WY
2494 /*
2495 * Restore to original mask to avoid the impact on the caller if we
2496 * promoted it to __GFP_HIGHMEM.
2497 */
2498 sc->gfp_mask = orig_mask;
d1908362 2499
2344d7e4 2500 return reclaimable;
1da177e4 2501}
4f98a2fe 2502
1da177e4
LT
2503/*
2504 * This is the main entry point to direct page reclaim.
2505 *
2506 * If a full scan of the inactive list fails to free enough memory then we
2507 * are "out of memory" and something needs to be killed.
2508 *
2509 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2510 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2511 * caller can't do much about. We kick the writeback threads and take explicit
2512 * naps in the hope that some of these pages can be written. But if the
2513 * allocating task holds filesystem locks which prevent writeout this might not
2514 * work, and the allocation attempt will fail.
a41f24ea
NA
2515 *
2516 * returns: 0, if no pages reclaimed
2517 * else, the number of pages reclaimed
1da177e4 2518 */
dac1d27b 2519static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2520 struct scan_control *sc)
1da177e4 2521{
69e05944 2522 unsigned long total_scanned = 0;
22fba335 2523 unsigned long writeback_threshold;
2344d7e4 2524 bool zones_reclaimable;
1da177e4 2525
873b4771
KK
2526 delayacct_freepages_start();
2527
89b5fae5 2528 if (global_reclaim(sc))
1cfb419b 2529 count_vm_event(ALLOCSTALL);
1da177e4 2530
9e3b2f8c 2531 do {
70ddf637
AV
2532 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2533 sc->priority);
66e1707b 2534 sc->nr_scanned = 0;
2344d7e4 2535 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2536
66e1707b 2537 total_scanned += sc->nr_scanned;
bb21c7ce 2538 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2539 break;
2540
2541 if (sc->compaction_ready)
2542 break;
1da177e4 2543
0e50ce3b
MK
2544 /*
2545 * If we're getting trouble reclaiming, start doing
2546 * writepage even in laptop mode.
2547 */
2548 if (sc->priority < DEF_PRIORITY - 2)
2549 sc->may_writepage = 1;
2550
1da177e4
LT
2551 /*
2552 * Try to write back as many pages as we just scanned. This
2553 * tends to cause slow streaming writers to write data to the
2554 * disk smoothly, at the dirtying rate, which is nice. But
2555 * that's undesirable in laptop mode, where we *want* lumpy
2556 * writeout. So in laptop mode, write out the whole world.
2557 */
22fba335
KM
2558 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2559 if (total_scanned > writeback_threshold) {
0e175a18
CW
2560 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2561 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2562 sc->may_writepage = 1;
1da177e4 2563 }
0b06496a 2564 } while (--sc->priority >= 0);
bb21c7ce 2565
873b4771
KK
2566 delayacct_freepages_end();
2567
bb21c7ce
KM
2568 if (sc->nr_reclaimed)
2569 return sc->nr_reclaimed;
2570
0cee34fd 2571 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2572 if (sc->compaction_ready)
7335084d
MG
2573 return 1;
2574
2344d7e4
JW
2575 /* Any of the zones still reclaimable? Don't OOM. */
2576 if (zones_reclaimable)
bb21c7ce
KM
2577 return 1;
2578
2579 return 0;
1da177e4
LT
2580}
2581
5515061d
MG
2582static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2583{
2584 struct zone *zone;
2585 unsigned long pfmemalloc_reserve = 0;
2586 unsigned long free_pages = 0;
2587 int i;
2588 bool wmark_ok;
2589
2590 for (i = 0; i <= ZONE_NORMAL; i++) {
2591 zone = &pgdat->node_zones[i];
675becce
MG
2592 if (!populated_zone(zone))
2593 continue;
2594
5515061d
MG
2595 pfmemalloc_reserve += min_wmark_pages(zone);
2596 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2597 }
2598
675becce
MG
2599 /* If there are no reserves (unexpected config) then do not throttle */
2600 if (!pfmemalloc_reserve)
2601 return true;
2602
5515061d
MG
2603 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2604
2605 /* kswapd must be awake if processes are being throttled */
2606 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2607 pgdat->classzone_idx = min(pgdat->classzone_idx,
2608 (enum zone_type)ZONE_NORMAL);
2609 wake_up_interruptible(&pgdat->kswapd_wait);
2610 }
2611
2612 return wmark_ok;
2613}
2614
2615/*
2616 * Throttle direct reclaimers if backing storage is backed by the network
2617 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2618 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2619 * when the low watermark is reached.
2620 *
2621 * Returns true if a fatal signal was delivered during throttling. If this
2622 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2623 */
50694c28 2624static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2625 nodemask_t *nodemask)
2626{
675becce 2627 struct zoneref *z;
5515061d 2628 struct zone *zone;
675becce 2629 pg_data_t *pgdat = NULL;
5515061d
MG
2630
2631 /*
2632 * Kernel threads should not be throttled as they may be indirectly
2633 * responsible for cleaning pages necessary for reclaim to make forward
2634 * progress. kjournald for example may enter direct reclaim while
2635 * committing a transaction where throttling it could forcing other
2636 * processes to block on log_wait_commit().
2637 */
2638 if (current->flags & PF_KTHREAD)
50694c28
MG
2639 goto out;
2640
2641 /*
2642 * If a fatal signal is pending, this process should not throttle.
2643 * It should return quickly so it can exit and free its memory
2644 */
2645 if (fatal_signal_pending(current))
2646 goto out;
5515061d 2647
675becce
MG
2648 /*
2649 * Check if the pfmemalloc reserves are ok by finding the first node
2650 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2651 * GFP_KERNEL will be required for allocating network buffers when
2652 * swapping over the network so ZONE_HIGHMEM is unusable.
2653 *
2654 * Throttling is based on the first usable node and throttled processes
2655 * wait on a queue until kswapd makes progress and wakes them. There
2656 * is an affinity then between processes waking up and where reclaim
2657 * progress has been made assuming the process wakes on the same node.
2658 * More importantly, processes running on remote nodes will not compete
2659 * for remote pfmemalloc reserves and processes on different nodes
2660 * should make reasonable progress.
2661 */
2662 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2663 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2664 if (zone_idx(zone) > ZONE_NORMAL)
2665 continue;
2666
2667 /* Throttle based on the first usable node */
2668 pgdat = zone->zone_pgdat;
2669 if (pfmemalloc_watermark_ok(pgdat))
2670 goto out;
2671 break;
2672 }
2673
2674 /* If no zone was usable by the allocation flags then do not throttle */
2675 if (!pgdat)
50694c28 2676 goto out;
5515061d 2677
68243e76
MG
2678 /* Account for the throttling */
2679 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2680
5515061d
MG
2681 /*
2682 * If the caller cannot enter the filesystem, it's possible that it
2683 * is due to the caller holding an FS lock or performing a journal
2684 * transaction in the case of a filesystem like ext[3|4]. In this case,
2685 * it is not safe to block on pfmemalloc_wait as kswapd could be
2686 * blocked waiting on the same lock. Instead, throttle for up to a
2687 * second before continuing.
2688 */
2689 if (!(gfp_mask & __GFP_FS)) {
2690 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2691 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2692
2693 goto check_pending;
5515061d
MG
2694 }
2695
2696 /* Throttle until kswapd wakes the process */
2697 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2698 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2699
2700check_pending:
2701 if (fatal_signal_pending(current))
2702 return true;
2703
2704out:
2705 return false;
5515061d
MG
2706}
2707
dac1d27b 2708unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2709 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2710{
33906bc5 2711 unsigned long nr_reclaimed;
66e1707b 2712 struct scan_control sc = {
ee814fe2 2713 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2714 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2715 .order = order,
2716 .nodemask = nodemask,
2717 .priority = DEF_PRIORITY,
66e1707b 2718 .may_writepage = !laptop_mode,
a6dc60f8 2719 .may_unmap = 1,
2e2e4259 2720 .may_swap = 1,
66e1707b
BS
2721 };
2722
5515061d 2723 /*
50694c28
MG
2724 * Do not enter reclaim if fatal signal was delivered while throttled.
2725 * 1 is returned so that the page allocator does not OOM kill at this
2726 * point.
5515061d 2727 */
50694c28 2728 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2729 return 1;
2730
33906bc5
MG
2731 trace_mm_vmscan_direct_reclaim_begin(order,
2732 sc.may_writepage,
2733 gfp_mask);
2734
3115cd91 2735 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2736
2737 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2738
2739 return nr_reclaimed;
66e1707b
BS
2740}
2741
c255a458 2742#ifdef CONFIG_MEMCG
66e1707b 2743
72835c86 2744unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2745 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2746 struct zone *zone,
2747 unsigned long *nr_scanned)
4e416953
BS
2748{
2749 struct scan_control sc = {
b8f5c566 2750 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2751 .target_mem_cgroup = memcg,
4e416953
BS
2752 .may_writepage = !laptop_mode,
2753 .may_unmap = 1,
2754 .may_swap = !noswap,
4e416953 2755 };
f9be23d6 2756 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2757 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2758 unsigned long lru_pages;
0ae5e89c 2759
4e416953
BS
2760 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2761 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2762
9e3b2f8c 2763 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2764 sc.may_writepage,
2765 sc.gfp_mask);
2766
4e416953
BS
2767 /*
2768 * NOTE: Although we can get the priority field, using it
2769 * here is not a good idea, since it limits the pages we can scan.
2770 * if we don't reclaim here, the shrink_zone from balance_pgdat
2771 * will pick up pages from other mem cgroup's as well. We hack
2772 * the priority and make it zero.
2773 */
6b4f7799 2774 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2775
2776 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2777
0ae5e89c 2778 *nr_scanned = sc.nr_scanned;
4e416953
BS
2779 return sc.nr_reclaimed;
2780}
2781
72835c86 2782unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2783 unsigned long nr_pages,
a7885eb8 2784 gfp_t gfp_mask,
b70a2a21 2785 bool may_swap)
66e1707b 2786{
4e416953 2787 struct zonelist *zonelist;
bdce6d9e 2788 unsigned long nr_reclaimed;
889976db 2789 int nid;
66e1707b 2790 struct scan_control sc = {
b70a2a21 2791 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2792 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2793 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2794 .target_mem_cgroup = memcg,
2795 .priority = DEF_PRIORITY,
2796 .may_writepage = !laptop_mode,
2797 .may_unmap = 1,
b70a2a21 2798 .may_swap = may_swap,
a09ed5e0 2799 };
66e1707b 2800
889976db
YH
2801 /*
2802 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2803 * take care of from where we get pages. So the node where we start the
2804 * scan does not need to be the current node.
2805 */
72835c86 2806 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2807
2808 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2809
2810 trace_mm_vmscan_memcg_reclaim_begin(0,
2811 sc.may_writepage,
2812 sc.gfp_mask);
2813
3115cd91 2814 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2815
2816 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2817
2818 return nr_reclaimed;
66e1707b
BS
2819}
2820#endif
2821
9e3b2f8c 2822static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2823{
b95a2f2d 2824 struct mem_cgroup *memcg;
f16015fb 2825
b95a2f2d
JW
2826 if (!total_swap_pages)
2827 return;
2828
2829 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2830 do {
c56d5c7d 2831 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2832
c56d5c7d 2833 if (inactive_anon_is_low(lruvec))
1a93be0e 2834 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2835 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2836
2837 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2838 } while (memcg);
f16015fb
JW
2839}
2840
60cefed4
JW
2841static bool zone_balanced(struct zone *zone, int order,
2842 unsigned long balance_gap, int classzone_idx)
2843{
2844 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2845 balance_gap, classzone_idx, 0))
2846 return false;
2847
ebff3980
VB
2848 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2849 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2850 return false;
2851
2852 return true;
2853}
2854
1741c877 2855/*
4ae0a48b
ZC
2856 * pgdat_balanced() is used when checking if a node is balanced.
2857 *
2858 * For order-0, all zones must be balanced!
2859 *
2860 * For high-order allocations only zones that meet watermarks and are in a
2861 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2862 * total of balanced pages must be at least 25% of the zones allowed by
2863 * classzone_idx for the node to be considered balanced. Forcing all zones to
2864 * be balanced for high orders can cause excessive reclaim when there are
2865 * imbalanced zones.
1741c877
MG
2866 * The choice of 25% is due to
2867 * o a 16M DMA zone that is balanced will not balance a zone on any
2868 * reasonable sized machine
2869 * o On all other machines, the top zone must be at least a reasonable
25985edc 2870 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2871 * would need to be at least 256M for it to be balance a whole node.
2872 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2873 * to balance a node on its own. These seemed like reasonable ratios.
2874 */
4ae0a48b 2875static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2876{
b40da049 2877 unsigned long managed_pages = 0;
4ae0a48b 2878 unsigned long balanced_pages = 0;
1741c877
MG
2879 int i;
2880
4ae0a48b
ZC
2881 /* Check the watermark levels */
2882 for (i = 0; i <= classzone_idx; i++) {
2883 struct zone *zone = pgdat->node_zones + i;
1741c877 2884
4ae0a48b
ZC
2885 if (!populated_zone(zone))
2886 continue;
2887
b40da049 2888 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2889
2890 /*
2891 * A special case here:
2892 *
2893 * balance_pgdat() skips over all_unreclaimable after
2894 * DEF_PRIORITY. Effectively, it considers them balanced so
2895 * they must be considered balanced here as well!
2896 */
6e543d57 2897 if (!zone_reclaimable(zone)) {
b40da049 2898 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2899 continue;
2900 }
2901
2902 if (zone_balanced(zone, order, 0, i))
b40da049 2903 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2904 else if (!order)
2905 return false;
2906 }
2907
2908 if (order)
b40da049 2909 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2910 else
2911 return true;
1741c877
MG
2912}
2913
5515061d
MG
2914/*
2915 * Prepare kswapd for sleeping. This verifies that there are no processes
2916 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2917 *
2918 * Returns true if kswapd is ready to sleep
2919 */
2920static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2921 int classzone_idx)
f50de2d3 2922{
f50de2d3
MG
2923 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2924 if (remaining)
5515061d
MG
2925 return false;
2926
2927 /*
9e5e3661
VB
2928 * The throttled processes are normally woken up in balance_pgdat() as
2929 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2930 * race between when kswapd checks the watermarks and a process gets
2931 * throttled. There is also a potential race if processes get
2932 * throttled, kswapd wakes, a large process exits thereby balancing the
2933 * zones, which causes kswapd to exit balance_pgdat() before reaching
2934 * the wake up checks. If kswapd is going to sleep, no process should
2935 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2936 * the wake up is premature, processes will wake kswapd and get
2937 * throttled again. The difference from wake ups in balance_pgdat() is
2938 * that here we are under prepare_to_wait().
5515061d 2939 */
9e5e3661
VB
2940 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2941 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 2942
4ae0a48b 2943 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2944}
2945
75485363
MG
2946/*
2947 * kswapd shrinks the zone by the number of pages required to reach
2948 * the high watermark.
b8e83b94
MG
2949 *
2950 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2951 * reclaim or if the lack of progress was due to pages under writeback.
2952 * This is used to determine if the scanning priority needs to be raised.
75485363 2953 */
b8e83b94 2954static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2955 int classzone_idx,
75485363 2956 struct scan_control *sc,
2ab44f43 2957 unsigned long *nr_attempted)
75485363 2958{
7c954f6d
MG
2959 int testorder = sc->order;
2960 unsigned long balance_gap;
7c954f6d 2961 bool lowmem_pressure;
75485363
MG
2962
2963 /* Reclaim above the high watermark. */
2964 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2965
2966 /*
2967 * Kswapd reclaims only single pages with compaction enabled. Trying
2968 * too hard to reclaim until contiguous free pages have become
2969 * available can hurt performance by evicting too much useful data
2970 * from memory. Do not reclaim more than needed for compaction.
2971 */
2972 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
2973 compaction_suitable(zone, sc->order, 0, classzone_idx)
2974 != COMPACT_SKIPPED)
7c954f6d
MG
2975 testorder = 0;
2976
2977 /*
2978 * We put equal pressure on every zone, unless one zone has way too
2979 * many pages free already. The "too many pages" is defined as the
2980 * high wmark plus a "gap" where the gap is either the low
2981 * watermark or 1% of the zone, whichever is smaller.
2982 */
4be89a34
JZ
2983 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2984 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2985
2986 /*
2987 * If there is no low memory pressure or the zone is balanced then no
2988 * reclaim is necessary
2989 */
2990 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2991 if (!lowmem_pressure && zone_balanced(zone, testorder,
2992 balance_gap, classzone_idx))
2993 return true;
2994
6b4f7799 2995 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 2996
2ab44f43
MG
2997 /* Account for the number of pages attempted to reclaim */
2998 *nr_attempted += sc->nr_to_reclaim;
2999
57054651 3000 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3001
7c954f6d
MG
3002 /*
3003 * If a zone reaches its high watermark, consider it to be no longer
3004 * congested. It's possible there are dirty pages backed by congested
3005 * BDIs but as pressure is relieved, speculatively avoid congestion
3006 * waits.
3007 */
6e543d57 3008 if (zone_reclaimable(zone) &&
7c954f6d 3009 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3010 clear_bit(ZONE_CONGESTED, &zone->flags);
3011 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3012 }
3013
b8e83b94 3014 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3015}
3016
1da177e4
LT
3017/*
3018 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3019 * they are all at high_wmark_pages(zone).
1da177e4 3020 *
0abdee2b 3021 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3022 *
3023 * There is special handling here for zones which are full of pinned pages.
3024 * This can happen if the pages are all mlocked, or if they are all used by
3025 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3026 * What we do is to detect the case where all pages in the zone have been
3027 * scanned twice and there has been zero successful reclaim. Mark the zone as
3028 * dead and from now on, only perform a short scan. Basically we're polling
3029 * the zone for when the problem goes away.
3030 *
3031 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3032 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3033 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3034 * lower zones regardless of the number of free pages in the lower zones. This
3035 * interoperates with the page allocator fallback scheme to ensure that aging
3036 * of pages is balanced across the zones.
1da177e4 3037 */
99504748 3038static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3039 int *classzone_idx)
1da177e4 3040{
1da177e4 3041 int i;
99504748 3042 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3043 unsigned long nr_soft_reclaimed;
3044 unsigned long nr_soft_scanned;
179e9639
AM
3045 struct scan_control sc = {
3046 .gfp_mask = GFP_KERNEL,
ee814fe2 3047 .order = order,
b8e83b94 3048 .priority = DEF_PRIORITY,
ee814fe2 3049 .may_writepage = !laptop_mode,
a6dc60f8 3050 .may_unmap = 1,
2e2e4259 3051 .may_swap = 1,
179e9639 3052 };
f8891e5e 3053 count_vm_event(PAGEOUTRUN);
1da177e4 3054
9e3b2f8c 3055 do {
2ab44f43 3056 unsigned long nr_attempted = 0;
b8e83b94 3057 bool raise_priority = true;
2ab44f43 3058 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3059
3060 sc.nr_reclaimed = 0;
1da177e4 3061
d6277db4
RW
3062 /*
3063 * Scan in the highmem->dma direction for the highest
3064 * zone which needs scanning
3065 */
3066 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3067 struct zone *zone = pgdat->node_zones + i;
1da177e4 3068
d6277db4
RW
3069 if (!populated_zone(zone))
3070 continue;
1da177e4 3071
6e543d57
LD
3072 if (sc.priority != DEF_PRIORITY &&
3073 !zone_reclaimable(zone))
d6277db4 3074 continue;
1da177e4 3075
556adecb
RR
3076 /*
3077 * Do some background aging of the anon list, to give
3078 * pages a chance to be referenced before reclaiming.
3079 */
9e3b2f8c 3080 age_active_anon(zone, &sc);
556adecb 3081
cc715d99
MG
3082 /*
3083 * If the number of buffer_heads in the machine
3084 * exceeds the maximum allowed level and this node
3085 * has a highmem zone, force kswapd to reclaim from
3086 * it to relieve lowmem pressure.
3087 */
3088 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3089 end_zone = i;
3090 break;
3091 }
3092
60cefed4 3093 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3094 end_zone = i;
e1dbeda6 3095 break;
439423f6 3096 } else {
d43006d5
MG
3097 /*
3098 * If balanced, clear the dirty and congested
3099 * flags
3100 */
57054651
JW
3101 clear_bit(ZONE_CONGESTED, &zone->flags);
3102 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3103 }
1da177e4 3104 }
dafcb73e 3105
b8e83b94 3106 if (i < 0)
e1dbeda6
AM
3107 goto out;
3108
1da177e4
LT
3109 for (i = 0; i <= end_zone; i++) {
3110 struct zone *zone = pgdat->node_zones + i;
3111
2ab44f43
MG
3112 if (!populated_zone(zone))
3113 continue;
3114
2ab44f43
MG
3115 /*
3116 * If any zone is currently balanced then kswapd will
3117 * not call compaction as it is expected that the
3118 * necessary pages are already available.
3119 */
3120 if (pgdat_needs_compaction &&
3121 zone_watermark_ok(zone, order,
3122 low_wmark_pages(zone),
3123 *classzone_idx, 0))
3124 pgdat_needs_compaction = false;
1da177e4
LT
3125 }
3126
b7ea3c41
MG
3127 /*
3128 * If we're getting trouble reclaiming, start doing writepage
3129 * even in laptop mode.
3130 */
3131 if (sc.priority < DEF_PRIORITY - 2)
3132 sc.may_writepage = 1;
3133
1da177e4
LT
3134 /*
3135 * Now scan the zone in the dma->highmem direction, stopping
3136 * at the last zone which needs scanning.
3137 *
3138 * We do this because the page allocator works in the opposite
3139 * direction. This prevents the page allocator from allocating
3140 * pages behind kswapd's direction of progress, which would
3141 * cause too much scanning of the lower zones.
3142 */
3143 for (i = 0; i <= end_zone; i++) {
3144 struct zone *zone = pgdat->node_zones + i;
3145
f3fe6512 3146 if (!populated_zone(zone))
1da177e4
LT
3147 continue;
3148
6e543d57
LD
3149 if (sc.priority != DEF_PRIORITY &&
3150 !zone_reclaimable(zone))
1da177e4
LT
3151 continue;
3152
1da177e4 3153 sc.nr_scanned = 0;
4e416953 3154
0608f43d
AM
3155 nr_soft_scanned = 0;
3156 /*
3157 * Call soft limit reclaim before calling shrink_zone.
3158 */
3159 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3160 order, sc.gfp_mask,
3161 &nr_soft_scanned);
3162 sc.nr_reclaimed += nr_soft_reclaimed;
3163
32a4330d 3164 /*
7c954f6d
MG
3165 * There should be no need to raise the scanning
3166 * priority if enough pages are already being scanned
3167 * that that high watermark would be met at 100%
3168 * efficiency.
fe2c2a10 3169 */
6b4f7799
JW
3170 if (kswapd_shrink_zone(zone, end_zone,
3171 &sc, &nr_attempted))
7c954f6d 3172 raise_priority = false;
1da177e4 3173 }
5515061d
MG
3174
3175 /*
3176 * If the low watermark is met there is no need for processes
3177 * to be throttled on pfmemalloc_wait as they should not be
3178 * able to safely make forward progress. Wake them
3179 */
3180 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3181 pfmemalloc_watermark_ok(pgdat))
cfc51155 3182 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3183
1da177e4 3184 /*
b8e83b94
MG
3185 * Fragmentation may mean that the system cannot be rebalanced
3186 * for high-order allocations in all zones. If twice the
3187 * allocation size has been reclaimed and the zones are still
3188 * not balanced then recheck the watermarks at order-0 to
3189 * prevent kswapd reclaiming excessively. Assume that a
3190 * process requested a high-order can direct reclaim/compact.
1da177e4 3191 */
b8e83b94
MG
3192 if (order && sc.nr_reclaimed >= 2UL << order)
3193 order = sc.order = 0;
8357376d 3194
b8e83b94
MG
3195 /* Check if kswapd should be suspending */
3196 if (try_to_freeze() || kthread_should_stop())
3197 break;
8357376d 3198
2ab44f43
MG
3199 /*
3200 * Compact if necessary and kswapd is reclaiming at least the
3201 * high watermark number of pages as requsted
3202 */
3203 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3204 compact_pgdat(pgdat, order);
3205
73ce02e9 3206 /*
b8e83b94
MG
3207 * Raise priority if scanning rate is too low or there was no
3208 * progress in reclaiming pages
73ce02e9 3209 */
b8e83b94
MG
3210 if (raise_priority || !sc.nr_reclaimed)
3211 sc.priority--;
9aa41348 3212 } while (sc.priority >= 1 &&
b8e83b94 3213 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3214
b8e83b94 3215out:
0abdee2b 3216 /*
5515061d 3217 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3218 * makes a decision on the order we were last reclaiming at. However,
3219 * if another caller entered the allocator slow path while kswapd
3220 * was awake, order will remain at the higher level
3221 */
dc83edd9 3222 *classzone_idx = end_zone;
0abdee2b 3223 return order;
1da177e4
LT
3224}
3225
dc83edd9 3226static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3227{
3228 long remaining = 0;
3229 DEFINE_WAIT(wait);
3230
3231 if (freezing(current) || kthread_should_stop())
3232 return;
3233
3234 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3235
3236 /* Try to sleep for a short interval */
5515061d 3237 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3238 remaining = schedule_timeout(HZ/10);
3239 finish_wait(&pgdat->kswapd_wait, &wait);
3240 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3241 }
3242
3243 /*
3244 * After a short sleep, check if it was a premature sleep. If not, then
3245 * go fully to sleep until explicitly woken up.
3246 */
5515061d 3247 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3248 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3249
3250 /*
3251 * vmstat counters are not perfectly accurate and the estimated
3252 * value for counters such as NR_FREE_PAGES can deviate from the
3253 * true value by nr_online_cpus * threshold. To avoid the zone
3254 * watermarks being breached while under pressure, we reduce the
3255 * per-cpu vmstat threshold while kswapd is awake and restore
3256 * them before going back to sleep.
3257 */
3258 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3259
62997027
MG
3260 /*
3261 * Compaction records what page blocks it recently failed to
3262 * isolate pages from and skips them in the future scanning.
3263 * When kswapd is going to sleep, it is reasonable to assume
3264 * that pages and compaction may succeed so reset the cache.
3265 */
3266 reset_isolation_suitable(pgdat);
3267
1c7e7f6c
AK
3268 if (!kthread_should_stop())
3269 schedule();
3270
f0bc0a60
KM
3271 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3272 } else {
3273 if (remaining)
3274 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3275 else
3276 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3277 }
3278 finish_wait(&pgdat->kswapd_wait, &wait);
3279}
3280
1da177e4
LT
3281/*
3282 * The background pageout daemon, started as a kernel thread
4f98a2fe 3283 * from the init process.
1da177e4
LT
3284 *
3285 * This basically trickles out pages so that we have _some_
3286 * free memory available even if there is no other activity
3287 * that frees anything up. This is needed for things like routing
3288 * etc, where we otherwise might have all activity going on in
3289 * asynchronous contexts that cannot page things out.
3290 *
3291 * If there are applications that are active memory-allocators
3292 * (most normal use), this basically shouldn't matter.
3293 */
3294static int kswapd(void *p)
3295{
215ddd66 3296 unsigned long order, new_order;
d2ebd0f6 3297 unsigned balanced_order;
215ddd66 3298 int classzone_idx, new_classzone_idx;
d2ebd0f6 3299 int balanced_classzone_idx;
1da177e4
LT
3300 pg_data_t *pgdat = (pg_data_t*)p;
3301 struct task_struct *tsk = current;
f0bc0a60 3302
1da177e4
LT
3303 struct reclaim_state reclaim_state = {
3304 .reclaimed_slab = 0,
3305 };
a70f7302 3306 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3307
cf40bd16
NP
3308 lockdep_set_current_reclaim_state(GFP_KERNEL);
3309
174596a0 3310 if (!cpumask_empty(cpumask))
c5f59f08 3311 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3312 current->reclaim_state = &reclaim_state;
3313
3314 /*
3315 * Tell the memory management that we're a "memory allocator",
3316 * and that if we need more memory we should get access to it
3317 * regardless (see "__alloc_pages()"). "kswapd" should
3318 * never get caught in the normal page freeing logic.
3319 *
3320 * (Kswapd normally doesn't need memory anyway, but sometimes
3321 * you need a small amount of memory in order to be able to
3322 * page out something else, and this flag essentially protects
3323 * us from recursively trying to free more memory as we're
3324 * trying to free the first piece of memory in the first place).
3325 */
930d9152 3326 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3327 set_freezable();
1da177e4 3328
215ddd66 3329 order = new_order = 0;
d2ebd0f6 3330 balanced_order = 0;
215ddd66 3331 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3332 balanced_classzone_idx = classzone_idx;
1da177e4 3333 for ( ; ; ) {
6f6313d4 3334 bool ret;
3e1d1d28 3335
215ddd66
MG
3336 /*
3337 * If the last balance_pgdat was unsuccessful it's unlikely a
3338 * new request of a similar or harder type will succeed soon
3339 * so consider going to sleep on the basis we reclaimed at
3340 */
d2ebd0f6
AS
3341 if (balanced_classzone_idx >= new_classzone_idx &&
3342 balanced_order == new_order) {
215ddd66
MG
3343 new_order = pgdat->kswapd_max_order;
3344 new_classzone_idx = pgdat->classzone_idx;
3345 pgdat->kswapd_max_order = 0;
3346 pgdat->classzone_idx = pgdat->nr_zones - 1;
3347 }
3348
99504748 3349 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3350 /*
3351 * Don't sleep if someone wants a larger 'order'
99504748 3352 * allocation or has tigher zone constraints
1da177e4
LT
3353 */
3354 order = new_order;
99504748 3355 classzone_idx = new_classzone_idx;
1da177e4 3356 } else {
d2ebd0f6
AS
3357 kswapd_try_to_sleep(pgdat, balanced_order,
3358 balanced_classzone_idx);
1da177e4 3359 order = pgdat->kswapd_max_order;
99504748 3360 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3361 new_order = order;
3362 new_classzone_idx = classzone_idx;
4d40502e 3363 pgdat->kswapd_max_order = 0;
215ddd66 3364 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3365 }
1da177e4 3366
8fe23e05
DR
3367 ret = try_to_freeze();
3368 if (kthread_should_stop())
3369 break;
3370
3371 /*
3372 * We can speed up thawing tasks if we don't call balance_pgdat
3373 * after returning from the refrigerator
3374 */
33906bc5
MG
3375 if (!ret) {
3376 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3377 balanced_classzone_idx = classzone_idx;
3378 balanced_order = balance_pgdat(pgdat, order,
3379 &balanced_classzone_idx);
33906bc5 3380 }
1da177e4 3381 }
b0a8cc58 3382
71abdc15 3383 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3384 current->reclaim_state = NULL;
71abdc15
JW
3385 lockdep_clear_current_reclaim_state();
3386
1da177e4
LT
3387 return 0;
3388}
3389
3390/*
3391 * A zone is low on free memory, so wake its kswapd task to service it.
3392 */
99504748 3393void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3394{
3395 pg_data_t *pgdat;
3396
f3fe6512 3397 if (!populated_zone(zone))
1da177e4
LT
3398 return;
3399
344736f2 3400 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3401 return;
88f5acf8 3402 pgdat = zone->zone_pgdat;
99504748 3403 if (pgdat->kswapd_max_order < order) {
1da177e4 3404 pgdat->kswapd_max_order = order;
99504748
MG
3405 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3406 }
8d0986e2 3407 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3408 return;
892f795d 3409 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3410 return;
3411
3412 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3413 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3414}
3415
c6f37f12 3416#ifdef CONFIG_HIBERNATION
1da177e4 3417/*
7b51755c 3418 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3419 * freed pages.
3420 *
3421 * Rather than trying to age LRUs the aim is to preserve the overall
3422 * LRU order by reclaiming preferentially
3423 * inactive > active > active referenced > active mapped
1da177e4 3424 */
7b51755c 3425unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3426{
d6277db4 3427 struct reclaim_state reclaim_state;
d6277db4 3428 struct scan_control sc = {
ee814fe2 3429 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3430 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3431 .priority = DEF_PRIORITY,
d6277db4 3432 .may_writepage = 1,
ee814fe2
JW
3433 .may_unmap = 1,
3434 .may_swap = 1,
7b51755c 3435 .hibernation_mode = 1,
1da177e4 3436 };
a09ed5e0 3437 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3438 struct task_struct *p = current;
3439 unsigned long nr_reclaimed;
1da177e4 3440
7b51755c
KM
3441 p->flags |= PF_MEMALLOC;
3442 lockdep_set_current_reclaim_state(sc.gfp_mask);
3443 reclaim_state.reclaimed_slab = 0;
3444 p->reclaim_state = &reclaim_state;
d6277db4 3445
3115cd91 3446 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3447
7b51755c
KM
3448 p->reclaim_state = NULL;
3449 lockdep_clear_current_reclaim_state();
3450 p->flags &= ~PF_MEMALLOC;
d6277db4 3451
7b51755c 3452 return nr_reclaimed;
1da177e4 3453}
c6f37f12 3454#endif /* CONFIG_HIBERNATION */
1da177e4 3455
1da177e4
LT
3456/* It's optimal to keep kswapds on the same CPUs as their memory, but
3457 not required for correctness. So if the last cpu in a node goes
3458 away, we get changed to run anywhere: as the first one comes back,
3459 restore their cpu bindings. */
fcb35a9b
GKH
3460static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3461 void *hcpu)
1da177e4 3462{
58c0a4a7 3463 int nid;
1da177e4 3464
8bb78442 3465 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3466 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3467 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3468 const struct cpumask *mask;
3469
3470 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3471
3e597945 3472 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3473 /* One of our CPUs online: restore mask */
c5f59f08 3474 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3475 }
3476 }
3477 return NOTIFY_OK;
3478}
1da177e4 3479
3218ae14
YG
3480/*
3481 * This kswapd start function will be called by init and node-hot-add.
3482 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3483 */
3484int kswapd_run(int nid)
3485{
3486 pg_data_t *pgdat = NODE_DATA(nid);
3487 int ret = 0;
3488
3489 if (pgdat->kswapd)
3490 return 0;
3491
3492 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3493 if (IS_ERR(pgdat->kswapd)) {
3494 /* failure at boot is fatal */
3495 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3496 pr_err("Failed to start kswapd on node %d\n", nid);
3497 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3498 pgdat->kswapd = NULL;
3218ae14
YG
3499 }
3500 return ret;
3501}
3502
8fe23e05 3503/*
d8adde17 3504 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3505 * hold mem_hotplug_begin/end().
8fe23e05
DR
3506 */
3507void kswapd_stop(int nid)
3508{
3509 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3510
d8adde17 3511 if (kswapd) {
8fe23e05 3512 kthread_stop(kswapd);
d8adde17
JL
3513 NODE_DATA(nid)->kswapd = NULL;
3514 }
8fe23e05
DR
3515}
3516
1da177e4
LT
3517static int __init kswapd_init(void)
3518{
3218ae14 3519 int nid;
69e05944 3520
1da177e4 3521 swap_setup();
48fb2e24 3522 for_each_node_state(nid, N_MEMORY)
3218ae14 3523 kswapd_run(nid);
1da177e4
LT
3524 hotcpu_notifier(cpu_callback, 0);
3525 return 0;
3526}
3527
3528module_init(kswapd_init)
9eeff239
CL
3529
3530#ifdef CONFIG_NUMA
3531/*
3532 * Zone reclaim mode
3533 *
3534 * If non-zero call zone_reclaim when the number of free pages falls below
3535 * the watermarks.
9eeff239
CL
3536 */
3537int zone_reclaim_mode __read_mostly;
3538
1b2ffb78 3539#define RECLAIM_OFF 0
7d03431c 3540#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3541#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3542#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3543
a92f7126
CL
3544/*
3545 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3546 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3547 * a zone.
3548 */
3549#define ZONE_RECLAIM_PRIORITY 4
3550
9614634f
CL
3551/*
3552 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3553 * occur.
3554 */
3555int sysctl_min_unmapped_ratio = 1;
3556
0ff38490
CL
3557/*
3558 * If the number of slab pages in a zone grows beyond this percentage then
3559 * slab reclaim needs to occur.
3560 */
3561int sysctl_min_slab_ratio = 5;
3562
90afa5de
MG
3563static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3564{
3565 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3566 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3567 zone_page_state(zone, NR_ACTIVE_FILE);
3568
3569 /*
3570 * It's possible for there to be more file mapped pages than
3571 * accounted for by the pages on the file LRU lists because
3572 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3573 */
3574 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3575}
3576
3577/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3578static long zone_pagecache_reclaimable(struct zone *zone)
3579{
3580 long nr_pagecache_reclaimable;
3581 long delta = 0;
3582
3583 /*
3584 * If RECLAIM_SWAP is set, then all file pages are considered
3585 * potentially reclaimable. Otherwise, we have to worry about
3586 * pages like swapcache and zone_unmapped_file_pages() provides
3587 * a better estimate
3588 */
3589 if (zone_reclaim_mode & RECLAIM_SWAP)
3590 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3591 else
3592 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3593
3594 /* If we can't clean pages, remove dirty pages from consideration */
3595 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3596 delta += zone_page_state(zone, NR_FILE_DIRTY);
3597
3598 /* Watch for any possible underflows due to delta */
3599 if (unlikely(delta > nr_pagecache_reclaimable))
3600 delta = nr_pagecache_reclaimable;
3601
3602 return nr_pagecache_reclaimable - delta;
3603}
3604
9eeff239
CL
3605/*
3606 * Try to free up some pages from this zone through reclaim.
3607 */
179e9639 3608static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3609{
7fb2d46d 3610 /* Minimum pages needed in order to stay on node */
69e05944 3611 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3612 struct task_struct *p = current;
3613 struct reclaim_state reclaim_state;
179e9639 3614 struct scan_control sc = {
62b726c1 3615 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3616 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3617 .order = order,
9e3b2f8c 3618 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3619 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3620 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3621 .may_swap = 1,
179e9639 3622 };
9eeff239 3623
9eeff239 3624 cond_resched();
d4f7796e
CL
3625 /*
3626 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3627 * and we also need to be able to write out pages for RECLAIM_WRITE
3628 * and RECLAIM_SWAP.
3629 */
3630 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3631 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3632 reclaim_state.reclaimed_slab = 0;
3633 p->reclaim_state = &reclaim_state;
c84db23c 3634
90afa5de 3635 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3636 /*
3637 * Free memory by calling shrink zone with increasing
3638 * priorities until we have enough memory freed.
3639 */
0ff38490 3640 do {
6b4f7799 3641 shrink_zone(zone, &sc, true);
9e3b2f8c 3642 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3643 }
c84db23c 3644
9eeff239 3645 p->reclaim_state = NULL;
d4f7796e 3646 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3647 lockdep_clear_current_reclaim_state();
a79311c1 3648 return sc.nr_reclaimed >= nr_pages;
9eeff239 3649}
179e9639
AM
3650
3651int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3652{
179e9639 3653 int node_id;
d773ed6b 3654 int ret;
179e9639
AM
3655
3656 /*
0ff38490
CL
3657 * Zone reclaim reclaims unmapped file backed pages and
3658 * slab pages if we are over the defined limits.
34aa1330 3659 *
9614634f
CL
3660 * A small portion of unmapped file backed pages is needed for
3661 * file I/O otherwise pages read by file I/O will be immediately
3662 * thrown out if the zone is overallocated. So we do not reclaim
3663 * if less than a specified percentage of the zone is used by
3664 * unmapped file backed pages.
179e9639 3665 */
90afa5de
MG
3666 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3667 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3668 return ZONE_RECLAIM_FULL;
179e9639 3669
6e543d57 3670 if (!zone_reclaimable(zone))
fa5e084e 3671 return ZONE_RECLAIM_FULL;
d773ed6b 3672
179e9639 3673 /*
d773ed6b 3674 * Do not scan if the allocation should not be delayed.
179e9639 3675 */
d773ed6b 3676 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3677 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3678
3679 /*
3680 * Only run zone reclaim on the local zone or on zones that do not
3681 * have associated processors. This will favor the local processor
3682 * over remote processors and spread off node memory allocations
3683 * as wide as possible.
3684 */
89fa3024 3685 node_id = zone_to_nid(zone);
37c0708d 3686 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3687 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3688
57054651 3689 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3690 return ZONE_RECLAIM_NOSCAN;
3691
d773ed6b 3692 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3693 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3694
24cf7251
MG
3695 if (!ret)
3696 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3697
d773ed6b 3698 return ret;
179e9639 3699}
9eeff239 3700#endif
894bc310 3701
894bc310
LS
3702/*
3703 * page_evictable - test whether a page is evictable
3704 * @page: the page to test
894bc310
LS
3705 *
3706 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3707 * lists vs unevictable list.
894bc310
LS
3708 *
3709 * Reasons page might not be evictable:
ba9ddf49 3710 * (1) page's mapping marked unevictable
b291f000 3711 * (2) page is part of an mlocked VMA
ba9ddf49 3712 *
894bc310 3713 */
39b5f29a 3714int page_evictable(struct page *page)
894bc310 3715{
39b5f29a 3716 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3717}
89e004ea 3718
85046579 3719#ifdef CONFIG_SHMEM
89e004ea 3720/**
24513264
HD
3721 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3722 * @pages: array of pages to check
3723 * @nr_pages: number of pages to check
89e004ea 3724 *
24513264 3725 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3726 *
3727 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3728 */
24513264 3729void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3730{
925b7673 3731 struct lruvec *lruvec;
24513264
HD
3732 struct zone *zone = NULL;
3733 int pgscanned = 0;
3734 int pgrescued = 0;
3735 int i;
89e004ea 3736
24513264
HD
3737 for (i = 0; i < nr_pages; i++) {
3738 struct page *page = pages[i];
3739 struct zone *pagezone;
89e004ea 3740
24513264
HD
3741 pgscanned++;
3742 pagezone = page_zone(page);
3743 if (pagezone != zone) {
3744 if (zone)
3745 spin_unlock_irq(&zone->lru_lock);
3746 zone = pagezone;
3747 spin_lock_irq(&zone->lru_lock);
3748 }
fa9add64 3749 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3750
24513264
HD
3751 if (!PageLRU(page) || !PageUnevictable(page))
3752 continue;
89e004ea 3753
39b5f29a 3754 if (page_evictable(page)) {
24513264
HD
3755 enum lru_list lru = page_lru_base_type(page);
3756
309381fe 3757 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3758 ClearPageUnevictable(page);
fa9add64
HD
3759 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3760 add_page_to_lru_list(page, lruvec, lru);
24513264 3761 pgrescued++;
89e004ea 3762 }
24513264 3763 }
89e004ea 3764
24513264
HD
3765 if (zone) {
3766 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3767 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3768 spin_unlock_irq(&zone->lru_lock);
89e004ea 3769 }
89e004ea 3770}
85046579 3771#endif /* CONFIG_SHMEM */
This page took 1.624314 seconds and 5 git commands to generate.