ext4: warn if direct reclaim tries to writeback pages
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
ee64fc93 57/*
f3a310bc
MG
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
ee64fc93
MG
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
f3a310bc 65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
3e7d3449 66 * order-0 pages and then compact the zone
ee64fc93 67 */
f3a310bc
MG
68typedef unsigned __bitwise__ reclaim_mode_t;
69#define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70#define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71#define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72#define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73#define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
7d3579e8 74
1da177e4 75struct scan_control {
1da177e4
LT
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
a79311c1
RR
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
22fba335
KM
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
7b51755c
KM
85 unsigned long hibernation_mode;
86
1da177e4 87 /* This context's GFP mask */
6daa0e28 88 gfp_t gfp_mask;
1da177e4
LT
89
90 int may_writepage;
91
a6dc60f8
JW
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
f1fd1067 94
2e2e4259
KM
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
5ad333eb 98 int order;
66e1707b 99
5f53e762 100 /*
415b54e3
NK
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
5f53e762 103 */
f3a310bc 104 reclaim_mode_t reclaim_mode;
5f53e762 105
66e1707b
BS
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
108
327c0e96
KH
109 /*
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
112 */
113 nodemask_t *nodemask;
1da177e4
LT
114};
115
1da177e4
LT
116#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
117
118#ifdef ARCH_HAS_PREFETCH
119#define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132#ifdef ARCH_HAS_PREFETCHW
133#define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
137 \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
140 } \
141 } while (0)
142#else
143#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144#endif
145
146/*
147 * From 0 .. 100. Higher means more swappy.
148 */
149int vm_swappiness = 60;
bd1e22b8 150long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
151
152static LIST_HEAD(shrinker_list);
153static DECLARE_RWSEM(shrinker_rwsem);
154
00f0b825 155#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 156#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 157#else
e72e2bd6 158#define scanning_global_lru(sc) (1)
91a45470
KH
159#endif
160
6e901571
KM
161static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
163{
e72e2bd6 164 if (!scanning_global_lru(sc))
3e2f41f1
KM
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
166
6e901571
KM
167 return &zone->reclaim_stat;
168}
169
0b217676
VL
170static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
c9f299d9 172{
e72e2bd6 173 if (!scanning_global_lru(sc))
bb2a0de9
KH
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
a3d8e054 176
c9f299d9
KM
177 return zone_page_state(zone, NR_LRU_BASE + lru);
178}
179
180
1da177e4
LT
181/*
182 * Add a shrinker callback to be called from the vm
183 */
8e1f936b 184void register_shrinker(struct shrinker *shrinker)
1da177e4 185{
8e1f936b
RR
186 shrinker->nr = 0;
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
1da177e4 190}
8e1f936b 191EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
192
193/*
194 * Remove one
195 */
8e1f936b 196void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
197{
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
1da177e4 201}
8e1f936b 202EXPORT_SYMBOL(unregister_shrinker);
1da177e4 203
1495f230
YH
204static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
207{
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
210}
211
1da177e4
LT
212#define SHRINK_BATCH 128
213/*
214 * Call the shrink functions to age shrinkable caches
215 *
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
220 *
183ff22b 221 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
222 * slab to avoid swapping.
223 *
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225 *
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
b15e0905 229 *
230 * Returns the number of slab objects which we shrunk.
1da177e4 231 */
a09ed5e0 232unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 233 unsigned long nr_pages_scanned,
a09ed5e0 234 unsigned long lru_pages)
1da177e4
LT
235{
236 struct shrinker *shrinker;
69e05944 237 unsigned long ret = 0;
1da177e4 238
1495f230
YH
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 241
f06590bd
MK
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
246 }
1da177e4
LT
247
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 unsigned long total_scan;
7f8275d0 251 unsigned long max_pass;
09576073 252 int shrink_ret = 0;
acf92b48
DC
253 long nr;
254 long new_nr;
e9299f50
DC
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
1da177e4 257
acf92b48
DC
258 /*
259 * copy the current shrinker scan count into a local variable
260 * and zero it so that other concurrent shrinker invocations
261 * don't also do this scanning work.
262 */
263 do {
264 nr = shrinker->nr;
265 } while (cmpxchg(&shrinker->nr, nr, 0) != nr);
266
267 total_scan = nr;
1495f230
YH
268 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
269 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 270 delta *= max_pass;
1da177e4 271 do_div(delta, lru_pages + 1);
acf92b48
DC
272 total_scan += delta;
273 if (total_scan < 0) {
88c3bd70
DR
274 printk(KERN_ERR "shrink_slab: %pF negative objects to "
275 "delete nr=%ld\n",
acf92b48
DC
276 shrinker->shrink, total_scan);
277 total_scan = max_pass;
ea164d73
AA
278 }
279
3567b59a
DC
280 /*
281 * We need to avoid excessive windup on filesystem shrinkers
282 * due to large numbers of GFP_NOFS allocations causing the
283 * shrinkers to return -1 all the time. This results in a large
284 * nr being built up so when a shrink that can do some work
285 * comes along it empties the entire cache due to nr >>>
286 * max_pass. This is bad for sustaining a working set in
287 * memory.
288 *
289 * Hence only allow the shrinker to scan the entire cache when
290 * a large delta change is calculated directly.
291 */
292 if (delta < max_pass / 4)
293 total_scan = min(total_scan, max_pass / 2);
294
ea164d73
AA
295 /*
296 * Avoid risking looping forever due to too large nr value:
297 * never try to free more than twice the estimate number of
298 * freeable entries.
299 */
acf92b48
DC
300 if (total_scan > max_pass * 2)
301 total_scan = max_pass * 2;
1da177e4 302
acf92b48 303 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
304 nr_pages_scanned, lru_pages,
305 max_pass, delta, total_scan);
306
e9299f50 307 while (total_scan >= batch_size) {
b15e0905 308 int nr_before;
1da177e4 309
1495f230
YH
310 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
311 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 312 batch_size);
1da177e4
LT
313 if (shrink_ret == -1)
314 break;
b15e0905 315 if (shrink_ret < nr_before)
316 ret += nr_before - shrink_ret;
e9299f50
DC
317 count_vm_events(SLABS_SCANNED, batch_size);
318 total_scan -= batch_size;
1da177e4
LT
319
320 cond_resched();
321 }
322
acf92b48
DC
323 /*
324 * move the unused scan count back into the shrinker in a
325 * manner that handles concurrent updates. If we exhausted the
326 * scan, there is no need to do an update.
327 */
328 do {
329 nr = shrinker->nr;
330 new_nr = total_scan + nr;
331 if (total_scan <= 0)
332 break;
333 } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr);
334
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
336 }
337 up_read(&shrinker_rwsem);
f06590bd
MK
338out:
339 cond_resched();
b15e0905 340 return ret;
1da177e4
LT
341}
342
f3a310bc 343static void set_reclaim_mode(int priority, struct scan_control *sc,
7d3579e8
KM
344 bool sync)
345{
f3a310bc 346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
7d3579e8
KM
347
348 /*
3e7d3449
MG
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
7d3579e8 352 */
3e7d3449 353 if (COMPACTION_BUILD)
f3a310bc 354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
3e7d3449 355 else
f3a310bc 356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
7d3579e8
KM
357
358 /*
3e7d3449
MG
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
7d3579e8
KM
362 */
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
f3a310bc 364 sc->reclaim_mode |= syncmode;
7d3579e8 365 else if (sc->order && priority < DEF_PRIORITY - 2)
f3a310bc 366 sc->reclaim_mode |= syncmode;
7d3579e8 367 else
f3a310bc 368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
369}
370
f3a310bc 371static void reset_reclaim_mode(struct scan_control *sc)
7d3579e8 372{
f3a310bc 373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
7d3579e8
KM
374}
375
1da177e4
LT
376static inline int is_page_cache_freeable(struct page *page)
377{
ceddc3a5
JW
378 /*
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
382 */
edcf4748 383 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
384}
385
7d3579e8
KM
386static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
1da177e4 388{
930d9152 389 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
7d3579e8
KM
395
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
1da177e4
LT
399 return 0;
400}
401
402/*
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
406 *
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
410 *
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
413 */
414static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
416{
7eaceacc 417 lock_page(page);
3e9f45bd
GC
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
1da177e4
LT
420 unlock_page(page);
421}
422
04e62a29
CL
423/* possible outcome of pageout() */
424typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433} pageout_t;
434
1da177e4 435/*
1742f19f
AM
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
1da177e4 438 */
c661b078 439static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 440 struct scan_control *sc)
1da177e4
LT
441{
442 /*
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
448 *
6aceb53b 449 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
450 * this page's queue, we can perform writeback even if that
451 * will block.
452 *
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
457 */
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
461 /*
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
464 */
266cf658 465 if (page_has_private(page)) {
1da177e4
LT
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
d40cee24 468 printk("%s: orphaned page\n", __func__);
1da177e4
LT
469 return PAGE_CLEAN;
470 }
471 }
472 return PAGE_KEEP;
473 }
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
0e093d99 476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
477 return PAGE_KEEP;
478
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
484 .range_start = 0,
485 .range_end = LLONG_MAX,
1da177e4
LT
486 .for_reclaim = 1,
487 };
488
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
994fc28c 493 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
496 }
c661b078 497
1da177e4
LT
498 if (!PageWriteback(page)) {
499 /* synchronous write or broken a_ops? */
500 ClearPageReclaim(page);
501 }
755f0225 502 trace_mm_vmscan_writepage(page,
f3a310bc 503 trace_reclaim_flags(page, sc->reclaim_mode));
e129b5c2 504 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
505 return PAGE_SUCCESS;
506 }
507
508 return PAGE_CLEAN;
509}
510
a649fd92 511/*
e286781d
NP
512 * Same as remove_mapping, but if the page is removed from the mapping, it
513 * gets returned with a refcount of 0.
a649fd92 514 */
e286781d 515static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 516{
28e4d965
NP
517 BUG_ON(!PageLocked(page));
518 BUG_ON(mapping != page_mapping(page));
49d2e9cc 519
19fd6231 520 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 521 /*
0fd0e6b0
NP
522 * The non racy check for a busy page.
523 *
524 * Must be careful with the order of the tests. When someone has
525 * a ref to the page, it may be possible that they dirty it then
526 * drop the reference. So if PageDirty is tested before page_count
527 * here, then the following race may occur:
528 *
529 * get_user_pages(&page);
530 * [user mapping goes away]
531 * write_to(page);
532 * !PageDirty(page) [good]
533 * SetPageDirty(page);
534 * put_page(page);
535 * !page_count(page) [good, discard it]
536 *
537 * [oops, our write_to data is lost]
538 *
539 * Reversing the order of the tests ensures such a situation cannot
540 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541 * load is not satisfied before that of page->_count.
542 *
543 * Note that if SetPageDirty is always performed via set_page_dirty,
544 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 545 */
e286781d 546 if (!page_freeze_refs(page, 2))
49d2e9cc 547 goto cannot_free;
e286781d
NP
548 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549 if (unlikely(PageDirty(page))) {
550 page_unfreeze_refs(page, 2);
49d2e9cc 551 goto cannot_free;
e286781d 552 }
49d2e9cc
CL
553
554 if (PageSwapCache(page)) {
555 swp_entry_t swap = { .val = page_private(page) };
556 __delete_from_swap_cache(page);
19fd6231 557 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 558 swapcache_free(swap, page);
e286781d 559 } else {
6072d13c
LT
560 void (*freepage)(struct page *);
561
562 freepage = mapping->a_ops->freepage;
563
e64a782f 564 __delete_from_page_cache(page);
19fd6231 565 spin_unlock_irq(&mapping->tree_lock);
e767e056 566 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
567
568 if (freepage != NULL)
569 freepage(page);
49d2e9cc
CL
570 }
571
49d2e9cc
CL
572 return 1;
573
574cannot_free:
19fd6231 575 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
576 return 0;
577}
578
e286781d
NP
579/*
580 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
581 * someone else has a ref on the page, abort and return 0. If it was
582 * successfully detached, return 1. Assumes the caller has a single ref on
583 * this page.
584 */
585int remove_mapping(struct address_space *mapping, struct page *page)
586{
587 if (__remove_mapping(mapping, page)) {
588 /*
589 * Unfreezing the refcount with 1 rather than 2 effectively
590 * drops the pagecache ref for us without requiring another
591 * atomic operation.
592 */
593 page_unfreeze_refs(page, 1);
594 return 1;
595 }
596 return 0;
597}
598
894bc310
LS
599/**
600 * putback_lru_page - put previously isolated page onto appropriate LRU list
601 * @page: page to be put back to appropriate lru list
602 *
603 * Add previously isolated @page to appropriate LRU list.
604 * Page may still be unevictable for other reasons.
605 *
606 * lru_lock must not be held, interrupts must be enabled.
607 */
894bc310
LS
608void putback_lru_page(struct page *page)
609{
610 int lru;
611 int active = !!TestClearPageActive(page);
bbfd28ee 612 int was_unevictable = PageUnevictable(page);
894bc310
LS
613
614 VM_BUG_ON(PageLRU(page));
615
616redo:
617 ClearPageUnevictable(page);
618
619 if (page_evictable(page, NULL)) {
620 /*
621 * For evictable pages, we can use the cache.
622 * In event of a race, worst case is we end up with an
623 * unevictable page on [in]active list.
624 * We know how to handle that.
625 */
401a8e1c 626 lru = active + page_lru_base_type(page);
894bc310
LS
627 lru_cache_add_lru(page, lru);
628 } else {
629 /*
630 * Put unevictable pages directly on zone's unevictable
631 * list.
632 */
633 lru = LRU_UNEVICTABLE;
634 add_page_to_unevictable_list(page);
6a7b9548
JW
635 /*
636 * When racing with an mlock clearing (page is
637 * unlocked), make sure that if the other thread does
638 * not observe our setting of PG_lru and fails
639 * isolation, we see PG_mlocked cleared below and move
640 * the page back to the evictable list.
641 *
642 * The other side is TestClearPageMlocked().
643 */
644 smp_mb();
894bc310 645 }
894bc310
LS
646
647 /*
648 * page's status can change while we move it among lru. If an evictable
649 * page is on unevictable list, it never be freed. To avoid that,
650 * check after we added it to the list, again.
651 */
652 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
653 if (!isolate_lru_page(page)) {
654 put_page(page);
655 goto redo;
656 }
657 /* This means someone else dropped this page from LRU
658 * So, it will be freed or putback to LRU again. There is
659 * nothing to do here.
660 */
661 }
662
bbfd28ee
LS
663 if (was_unevictable && lru != LRU_UNEVICTABLE)
664 count_vm_event(UNEVICTABLE_PGRESCUED);
665 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
666 count_vm_event(UNEVICTABLE_PGCULLED);
667
894bc310
LS
668 put_page(page); /* drop ref from isolate */
669}
670
dfc8d636
JW
671enum page_references {
672 PAGEREF_RECLAIM,
673 PAGEREF_RECLAIM_CLEAN,
64574746 674 PAGEREF_KEEP,
dfc8d636
JW
675 PAGEREF_ACTIVATE,
676};
677
678static enum page_references page_check_references(struct page *page,
679 struct scan_control *sc)
680{
64574746 681 int referenced_ptes, referenced_page;
dfc8d636 682 unsigned long vm_flags;
dfc8d636 683
64574746
JW
684 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
685 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
686
687 /* Lumpy reclaim - ignore references */
f3a310bc 688 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
dfc8d636
JW
689 return PAGEREF_RECLAIM;
690
691 /*
692 * Mlock lost the isolation race with us. Let try_to_unmap()
693 * move the page to the unevictable list.
694 */
695 if (vm_flags & VM_LOCKED)
696 return PAGEREF_RECLAIM;
697
64574746
JW
698 if (referenced_ptes) {
699 if (PageAnon(page))
700 return PAGEREF_ACTIVATE;
701 /*
702 * All mapped pages start out with page table
703 * references from the instantiating fault, so we need
704 * to look twice if a mapped file page is used more
705 * than once.
706 *
707 * Mark it and spare it for another trip around the
708 * inactive list. Another page table reference will
709 * lead to its activation.
710 *
711 * Note: the mark is set for activated pages as well
712 * so that recently deactivated but used pages are
713 * quickly recovered.
714 */
715 SetPageReferenced(page);
716
717 if (referenced_page)
718 return PAGEREF_ACTIVATE;
719
720 return PAGEREF_KEEP;
721 }
dfc8d636
JW
722
723 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 724 if (referenced_page && !PageSwapBacked(page))
64574746
JW
725 return PAGEREF_RECLAIM_CLEAN;
726
727 return PAGEREF_RECLAIM;
dfc8d636
JW
728}
729
abe4c3b5
MG
730static noinline_for_stack void free_page_list(struct list_head *free_pages)
731{
732 struct pagevec freed_pvec;
733 struct page *page, *tmp;
734
735 pagevec_init(&freed_pvec, 1);
736
737 list_for_each_entry_safe(page, tmp, free_pages, lru) {
738 list_del(&page->lru);
739 if (!pagevec_add(&freed_pvec, page)) {
740 __pagevec_free(&freed_pvec);
741 pagevec_reinit(&freed_pvec);
742 }
743 }
744
745 pagevec_free(&freed_pvec);
746}
747
1da177e4 748/*
1742f19f 749 * shrink_page_list() returns the number of reclaimed pages
1da177e4 750 */
1742f19f 751static unsigned long shrink_page_list(struct list_head *page_list,
0e093d99 752 struct zone *zone,
7d3579e8 753 struct scan_control *sc)
1da177e4
LT
754{
755 LIST_HEAD(ret_pages);
abe4c3b5 756 LIST_HEAD(free_pages);
1da177e4 757 int pgactivate = 0;
0e093d99
MG
758 unsigned long nr_dirty = 0;
759 unsigned long nr_congested = 0;
05ff5137 760 unsigned long nr_reclaimed = 0;
1da177e4
LT
761
762 cond_resched();
763
1da177e4 764 while (!list_empty(page_list)) {
dfc8d636 765 enum page_references references;
1da177e4
LT
766 struct address_space *mapping;
767 struct page *page;
768 int may_enter_fs;
1da177e4
LT
769
770 cond_resched();
771
772 page = lru_to_page(page_list);
773 list_del(&page->lru);
774
529ae9aa 775 if (!trylock_page(page))
1da177e4
LT
776 goto keep;
777
725d704e 778 VM_BUG_ON(PageActive(page));
0e093d99 779 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
780
781 sc->nr_scanned++;
80e43426 782
b291f000
NP
783 if (unlikely(!page_evictable(page, NULL)))
784 goto cull_mlocked;
894bc310 785
a6dc60f8 786 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
787 goto keep_locked;
788
1da177e4
LT
789 /* Double the slab pressure for mapped and swapcache pages */
790 if (page_mapped(page) || PageSwapCache(page))
791 sc->nr_scanned++;
792
c661b078
AW
793 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
794 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
795
796 if (PageWriteback(page)) {
797 /*
a18bba06
MG
798 * Synchronous reclaim cannot queue pages for
799 * writeback due to the possibility of stack overflow
800 * but if it encounters a page under writeback, wait
801 * for the IO to complete.
c661b078 802 */
f3a310bc 803 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
7d3579e8 804 may_enter_fs)
c661b078 805 wait_on_page_writeback(page);
7d3579e8
KM
806 else {
807 unlock_page(page);
808 goto keep_lumpy;
809 }
c661b078 810 }
1da177e4 811
dfc8d636
JW
812 references = page_check_references(page, sc);
813 switch (references) {
814 case PAGEREF_ACTIVATE:
1da177e4 815 goto activate_locked;
64574746
JW
816 case PAGEREF_KEEP:
817 goto keep_locked;
dfc8d636
JW
818 case PAGEREF_RECLAIM:
819 case PAGEREF_RECLAIM_CLEAN:
820 ; /* try to reclaim the page below */
821 }
1da177e4 822
1da177e4
LT
823 /*
824 * Anonymous process memory has backing store?
825 * Try to allocate it some swap space here.
826 */
b291f000 827 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
828 if (!(sc->gfp_mask & __GFP_IO))
829 goto keep_locked;
ac47b003 830 if (!add_to_swap(page))
1da177e4 831 goto activate_locked;
63eb6b93 832 may_enter_fs = 1;
b291f000 833 }
1da177e4
LT
834
835 mapping = page_mapping(page);
1da177e4
LT
836
837 /*
838 * The page is mapped into the page tables of one or more
839 * processes. Try to unmap it here.
840 */
841 if (page_mapped(page) && mapping) {
14fa31b8 842 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
843 case SWAP_FAIL:
844 goto activate_locked;
845 case SWAP_AGAIN:
846 goto keep_locked;
b291f000
NP
847 case SWAP_MLOCK:
848 goto cull_mlocked;
1da177e4
LT
849 case SWAP_SUCCESS:
850 ; /* try to free the page below */
851 }
852 }
853
854 if (PageDirty(page)) {
0e093d99
MG
855 nr_dirty++;
856
ee72886d
MG
857 /*
858 * Only kswapd can writeback filesystem pages to
859 * avoid risk of stack overflow
860 */
861 if (page_is_file_cache(page) && !current_is_kswapd()) {
862 inc_zone_page_state(page, NR_VMSCAN_WRITE_SKIP);
863 goto keep_locked;
864 }
865
dfc8d636 866 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 867 goto keep_locked;
4dd4b920 868 if (!may_enter_fs)
1da177e4 869 goto keep_locked;
52a8363e 870 if (!sc->may_writepage)
1da177e4
LT
871 goto keep_locked;
872
873 /* Page is dirty, try to write it out here */
7d3579e8 874 switch (pageout(page, mapping, sc)) {
1da177e4 875 case PAGE_KEEP:
0e093d99 876 nr_congested++;
1da177e4
LT
877 goto keep_locked;
878 case PAGE_ACTIVATE:
879 goto activate_locked;
880 case PAGE_SUCCESS:
7d3579e8
KM
881 if (PageWriteback(page))
882 goto keep_lumpy;
883 if (PageDirty(page))
1da177e4 884 goto keep;
7d3579e8 885
1da177e4
LT
886 /*
887 * A synchronous write - probably a ramdisk. Go
888 * ahead and try to reclaim the page.
889 */
529ae9aa 890 if (!trylock_page(page))
1da177e4
LT
891 goto keep;
892 if (PageDirty(page) || PageWriteback(page))
893 goto keep_locked;
894 mapping = page_mapping(page);
895 case PAGE_CLEAN:
896 ; /* try to free the page below */
897 }
898 }
899
900 /*
901 * If the page has buffers, try to free the buffer mappings
902 * associated with this page. If we succeed we try to free
903 * the page as well.
904 *
905 * We do this even if the page is PageDirty().
906 * try_to_release_page() does not perform I/O, but it is
907 * possible for a page to have PageDirty set, but it is actually
908 * clean (all its buffers are clean). This happens if the
909 * buffers were written out directly, with submit_bh(). ext3
894bc310 910 * will do this, as well as the blockdev mapping.
1da177e4
LT
911 * try_to_release_page() will discover that cleanness and will
912 * drop the buffers and mark the page clean - it can be freed.
913 *
914 * Rarely, pages can have buffers and no ->mapping. These are
915 * the pages which were not successfully invalidated in
916 * truncate_complete_page(). We try to drop those buffers here
917 * and if that worked, and the page is no longer mapped into
918 * process address space (page_count == 1) it can be freed.
919 * Otherwise, leave the page on the LRU so it is swappable.
920 */
266cf658 921 if (page_has_private(page)) {
1da177e4
LT
922 if (!try_to_release_page(page, sc->gfp_mask))
923 goto activate_locked;
e286781d
NP
924 if (!mapping && page_count(page) == 1) {
925 unlock_page(page);
926 if (put_page_testzero(page))
927 goto free_it;
928 else {
929 /*
930 * rare race with speculative reference.
931 * the speculative reference will free
932 * this page shortly, so we may
933 * increment nr_reclaimed here (and
934 * leave it off the LRU).
935 */
936 nr_reclaimed++;
937 continue;
938 }
939 }
1da177e4
LT
940 }
941
e286781d 942 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 943 goto keep_locked;
1da177e4 944
a978d6f5
NP
945 /*
946 * At this point, we have no other references and there is
947 * no way to pick any more up (removed from LRU, removed
948 * from pagecache). Can use non-atomic bitops now (and
949 * we obviously don't have to worry about waking up a process
950 * waiting on the page lock, because there are no references.
951 */
952 __clear_page_locked(page);
e286781d 953free_it:
05ff5137 954 nr_reclaimed++;
abe4c3b5
MG
955
956 /*
957 * Is there need to periodically free_page_list? It would
958 * appear not as the counts should be low
959 */
960 list_add(&page->lru, &free_pages);
1da177e4
LT
961 continue;
962
b291f000 963cull_mlocked:
63d6c5ad
HD
964 if (PageSwapCache(page))
965 try_to_free_swap(page);
b291f000
NP
966 unlock_page(page);
967 putback_lru_page(page);
f3a310bc 968 reset_reclaim_mode(sc);
b291f000
NP
969 continue;
970
1da177e4 971activate_locked:
68a22394
RR
972 /* Not a candidate for swapping, so reclaim swap space. */
973 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 974 try_to_free_swap(page);
894bc310 975 VM_BUG_ON(PageActive(page));
1da177e4
LT
976 SetPageActive(page);
977 pgactivate++;
978keep_locked:
979 unlock_page(page);
980keep:
f3a310bc 981 reset_reclaim_mode(sc);
7d3579e8 982keep_lumpy:
1da177e4 983 list_add(&page->lru, &ret_pages);
b291f000 984 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 985 }
abe4c3b5 986
0e093d99
MG
987 /*
988 * Tag a zone as congested if all the dirty pages encountered were
989 * backed by a congested BDI. In this case, reclaimers should just
990 * back off and wait for congestion to clear because further reclaim
991 * will encounter the same problem
992 */
d6c438b6 993 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
0e093d99
MG
994 zone_set_flag(zone, ZONE_CONGESTED);
995
abe4c3b5
MG
996 free_page_list(&free_pages);
997
1da177e4 998 list_splice(&ret_pages, page_list);
f8891e5e 999 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 1000 return nr_reclaimed;
1da177e4
LT
1001}
1002
5ad333eb
AW
1003/*
1004 * Attempt to remove the specified page from its LRU. Only take this page
1005 * if it is of the appropriate PageActive status. Pages which are being
1006 * freed elsewhere are also ignored.
1007 *
1008 * page: page to consider
1009 * mode: one of the LRU isolation modes defined above
1010 *
1011 * returns 0 on success, -ve errno on failure.
1012 */
4356f21d 1013int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 1014{
4356f21d 1015 bool all_lru_mode;
5ad333eb
AW
1016 int ret = -EINVAL;
1017
1018 /* Only take pages on the LRU. */
1019 if (!PageLRU(page))
1020 return ret;
1021
4356f21d
MK
1022 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1023 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1024
5ad333eb
AW
1025 /*
1026 * When checking the active state, we need to be sure we are
1027 * dealing with comparible boolean values. Take the logical not
1028 * of each.
1029 */
4356f21d 1030 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
1031 return ret;
1032
4356f21d 1033 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
1034 return ret;
1035
894bc310
LS
1036 /*
1037 * When this function is being called for lumpy reclaim, we
1038 * initially look into all LRU pages, active, inactive and
1039 * unevictable; only give shrink_page_list evictable pages.
1040 */
1041 if (PageUnevictable(page))
1042 return ret;
1043
5ad333eb 1044 ret = -EBUSY;
08e552c6 1045
39deaf85
MK
1046 if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
1047 return ret;
1048
f80c0673
MK
1049 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1050 return ret;
1051
5ad333eb
AW
1052 if (likely(get_page_unless_zero(page))) {
1053 /*
1054 * Be careful not to clear PageLRU until after we're
1055 * sure the page is not being freed elsewhere -- the
1056 * page release code relies on it.
1057 */
1058 ClearPageLRU(page);
1059 ret = 0;
1060 }
1061
1062 return ret;
1063}
1064
1da177e4
LT
1065/*
1066 * zone->lru_lock is heavily contended. Some of the functions that
1067 * shrink the lists perform better by taking out a batch of pages
1068 * and working on them outside the LRU lock.
1069 *
1070 * For pagecache intensive workloads, this function is the hottest
1071 * spot in the kernel (apart from copy_*_user functions).
1072 *
1073 * Appropriate locks must be held before calling this function.
1074 *
1075 * @nr_to_scan: The number of pages to look through on the list.
1076 * @src: The LRU list to pull pages off.
1077 * @dst: The temp list to put pages on to.
1078 * @scanned: The number of pages that were scanned.
5ad333eb
AW
1079 * @order: The caller's attempted allocation order
1080 * @mode: One of the LRU isolation modes
4f98a2fe 1081 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1082 *
1083 * returns how many pages were moved onto *@dst.
1084 */
69e05944
AM
1085static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1086 struct list_head *src, struct list_head *dst,
4356f21d
MK
1087 unsigned long *scanned, int order, isolate_mode_t mode,
1088 int file)
1da177e4 1089{
69e05944 1090 unsigned long nr_taken = 0;
a8a94d15
MG
1091 unsigned long nr_lumpy_taken = 0;
1092 unsigned long nr_lumpy_dirty = 0;
1093 unsigned long nr_lumpy_failed = 0;
c9b02d97 1094 unsigned long scan;
1da177e4 1095
c9b02d97 1096 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
1097 struct page *page;
1098 unsigned long pfn;
1099 unsigned long end_pfn;
1100 unsigned long page_pfn;
1101 int zone_id;
1102
1da177e4
LT
1103 page = lru_to_page(src);
1104 prefetchw_prev_lru_page(page, src, flags);
1105
725d704e 1106 VM_BUG_ON(!PageLRU(page));
8d438f96 1107
4f98a2fe 1108 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
1109 case 0:
1110 list_move(&page->lru, dst);
2ffebca6 1111 mem_cgroup_del_lru(page);
2c888cfb 1112 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1113 break;
1114
1115 case -EBUSY:
1116 /* else it is being freed elsewhere */
1117 list_move(&page->lru, src);
2ffebca6 1118 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 1119 continue;
46453a6e 1120
5ad333eb
AW
1121 default:
1122 BUG();
1123 }
1124
1125 if (!order)
1126 continue;
1127
1128 /*
1129 * Attempt to take all pages in the order aligned region
1130 * surrounding the tag page. Only take those pages of
1131 * the same active state as that tag page. We may safely
1132 * round the target page pfn down to the requested order
25985edc 1133 * as the mem_map is guaranteed valid out to MAX_ORDER,
5ad333eb
AW
1134 * where that page is in a different zone we will detect
1135 * it from its zone id and abort this block scan.
1136 */
1137 zone_id = page_zone_id(page);
1138 page_pfn = page_to_pfn(page);
1139 pfn = page_pfn & ~((1 << order) - 1);
1140 end_pfn = pfn + (1 << order);
1141 for (; pfn < end_pfn; pfn++) {
1142 struct page *cursor_page;
1143
1144 /* The target page is in the block, ignore it. */
1145 if (unlikely(pfn == page_pfn))
1146 continue;
1147
1148 /* Avoid holes within the zone. */
1149 if (unlikely(!pfn_valid_within(pfn)))
1150 break;
1151
1152 cursor_page = pfn_to_page(pfn);
4f98a2fe 1153
5ad333eb
AW
1154 /* Check that we have not crossed a zone boundary. */
1155 if (unlikely(page_zone_id(cursor_page) != zone_id))
08fc468f 1156 break;
de2e7567
MK
1157
1158 /*
1159 * If we don't have enough swap space, reclaiming of
1160 * anon page which don't already have a swap slot is
1161 * pointless.
1162 */
1163 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
08fc468f
KM
1164 !PageSwapCache(cursor_page))
1165 break;
de2e7567 1166
ee993b13 1167 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1168 list_move(&cursor_page->lru, dst);
cb4cbcf6 1169 mem_cgroup_del_lru(cursor_page);
2c888cfb 1170 nr_taken += hpage_nr_pages(page);
a8a94d15
MG
1171 nr_lumpy_taken++;
1172 if (PageDirty(cursor_page))
1173 nr_lumpy_dirty++;
5ad333eb 1174 scan++;
a8a94d15 1175 } else {
d179e84b
AA
1176 /*
1177 * Check if the page is freed already.
1178 *
1179 * We can't use page_count() as that
1180 * requires compound_head and we don't
1181 * have a pin on the page here. If a
1182 * page is tail, we may or may not
1183 * have isolated the head, so assume
1184 * it's not free, it'd be tricky to
1185 * track the head status without a
1186 * page pin.
1187 */
1188 if (!PageTail(cursor_page) &&
1189 !atomic_read(&cursor_page->_count))
08fc468f
KM
1190 continue;
1191 break;
5ad333eb
AW
1192 }
1193 }
08fc468f
KM
1194
1195 /* If we break out of the loop above, lumpy reclaim failed */
1196 if (pfn < end_pfn)
1197 nr_lumpy_failed++;
1da177e4
LT
1198 }
1199
1200 *scanned = scan;
a8a94d15
MG
1201
1202 trace_mm_vmscan_lru_isolate(order,
1203 nr_to_scan, scan,
1204 nr_taken,
1205 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1206 mode);
1da177e4
LT
1207 return nr_taken;
1208}
1209
66e1707b
BS
1210static unsigned long isolate_pages_global(unsigned long nr,
1211 struct list_head *dst,
1212 unsigned long *scanned, int order,
4356f21d
MK
1213 isolate_mode_t mode,
1214 struct zone *z, int active, int file)
66e1707b 1215{
4f98a2fe 1216 int lru = LRU_BASE;
66e1707b 1217 if (active)
4f98a2fe
RR
1218 lru += LRU_ACTIVE;
1219 if (file)
1220 lru += LRU_FILE;
1221 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1222 mode, file);
66e1707b
BS
1223}
1224
5ad333eb
AW
1225/*
1226 * clear_active_flags() is a helper for shrink_active_list(), clearing
1227 * any active bits from the pages in the list.
1228 */
4f98a2fe
RR
1229static unsigned long clear_active_flags(struct list_head *page_list,
1230 unsigned int *count)
5ad333eb
AW
1231{
1232 int nr_active = 0;
4f98a2fe 1233 int lru;
5ad333eb
AW
1234 struct page *page;
1235
4f98a2fe 1236 list_for_each_entry(page, page_list, lru) {
2c888cfb 1237 int numpages = hpage_nr_pages(page);
401a8e1c 1238 lru = page_lru_base_type(page);
5ad333eb 1239 if (PageActive(page)) {
4f98a2fe 1240 lru += LRU_ACTIVE;
5ad333eb 1241 ClearPageActive(page);
2c888cfb 1242 nr_active += numpages;
5ad333eb 1243 }
1489fa14 1244 if (count)
2c888cfb 1245 count[lru] += numpages;
4f98a2fe 1246 }
5ad333eb
AW
1247
1248 return nr_active;
1249}
1250
62695a84
NP
1251/**
1252 * isolate_lru_page - tries to isolate a page from its LRU list
1253 * @page: page to isolate from its LRU list
1254 *
1255 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1256 * vmstat statistic corresponding to whatever LRU list the page was on.
1257 *
1258 * Returns 0 if the page was removed from an LRU list.
1259 * Returns -EBUSY if the page was not on an LRU list.
1260 *
1261 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1262 * the active list, it will have PageActive set. If it was found on
1263 * the unevictable list, it will have the PageUnevictable bit set. That flag
1264 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1265 *
1266 * The vmstat statistic corresponding to the list on which the page was
1267 * found will be decremented.
1268 *
1269 * Restrictions:
1270 * (1) Must be called with an elevated refcount on the page. This is a
1271 * fundamentnal difference from isolate_lru_pages (which is called
1272 * without a stable reference).
1273 * (2) the lru_lock must not be held.
1274 * (3) interrupts must be enabled.
1275 */
1276int isolate_lru_page(struct page *page)
1277{
1278 int ret = -EBUSY;
1279
0c917313
KK
1280 VM_BUG_ON(!page_count(page));
1281
62695a84
NP
1282 if (PageLRU(page)) {
1283 struct zone *zone = page_zone(page);
1284
1285 spin_lock_irq(&zone->lru_lock);
0c917313 1286 if (PageLRU(page)) {
894bc310 1287 int lru = page_lru(page);
62695a84 1288 ret = 0;
0c917313 1289 get_page(page);
62695a84 1290 ClearPageLRU(page);
4f98a2fe 1291
4f98a2fe 1292 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1293 }
1294 spin_unlock_irq(&zone->lru_lock);
1295 }
1296 return ret;
1297}
1298
35cd7815
RR
1299/*
1300 * Are there way too many processes in the direct reclaim path already?
1301 */
1302static int too_many_isolated(struct zone *zone, int file,
1303 struct scan_control *sc)
1304{
1305 unsigned long inactive, isolated;
1306
1307 if (current_is_kswapd())
1308 return 0;
1309
1310 if (!scanning_global_lru(sc))
1311 return 0;
1312
1313 if (file) {
1314 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1315 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1316 } else {
1317 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1318 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1319 }
1320
1321 return isolated > inactive;
1322}
1323
66635629
MG
1324/*
1325 * TODO: Try merging with migrations version of putback_lru_pages
1326 */
1327static noinline_for_stack void
1489fa14 1328putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1329 unsigned long nr_anon, unsigned long nr_file,
1330 struct list_head *page_list)
1331{
1332 struct page *page;
1333 struct pagevec pvec;
1489fa14 1334 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1335
1336 pagevec_init(&pvec, 1);
1337
1338 /*
1339 * Put back any unfreeable pages.
1340 */
1341 spin_lock(&zone->lru_lock);
1342 while (!list_empty(page_list)) {
1343 int lru;
1344 page = lru_to_page(page_list);
1345 VM_BUG_ON(PageLRU(page));
1346 list_del(&page->lru);
1347 if (unlikely(!page_evictable(page, NULL))) {
1348 spin_unlock_irq(&zone->lru_lock);
1349 putback_lru_page(page);
1350 spin_lock_irq(&zone->lru_lock);
1351 continue;
1352 }
7a608572 1353 SetPageLRU(page);
66635629 1354 lru = page_lru(page);
7a608572 1355 add_page_to_lru_list(zone, page, lru);
66635629
MG
1356 if (is_active_lru(lru)) {
1357 int file = is_file_lru(lru);
9992af10
RR
1358 int numpages = hpage_nr_pages(page);
1359 reclaim_stat->recent_rotated[file] += numpages;
66635629
MG
1360 }
1361 if (!pagevec_add(&pvec, page)) {
1362 spin_unlock_irq(&zone->lru_lock);
1363 __pagevec_release(&pvec);
1364 spin_lock_irq(&zone->lru_lock);
1365 }
1366 }
1367 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1368 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1369
1370 spin_unlock_irq(&zone->lru_lock);
1371 pagevec_release(&pvec);
1372}
1373
1489fa14
MG
1374static noinline_for_stack void update_isolated_counts(struct zone *zone,
1375 struct scan_control *sc,
1376 unsigned long *nr_anon,
1377 unsigned long *nr_file,
1378 struct list_head *isolated_list)
1379{
1380 unsigned long nr_active;
1381 unsigned int count[NR_LRU_LISTS] = { 0, };
1382 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1383
1384 nr_active = clear_active_flags(isolated_list, count);
1385 __count_vm_events(PGDEACTIVATE, nr_active);
1386
1387 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1388 -count[LRU_ACTIVE_FILE]);
1389 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1390 -count[LRU_INACTIVE_FILE]);
1391 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1392 -count[LRU_ACTIVE_ANON]);
1393 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1394 -count[LRU_INACTIVE_ANON]);
1395
1396 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1397 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1398 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1399 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1400
1401 reclaim_stat->recent_scanned[0] += *nr_anon;
1402 reclaim_stat->recent_scanned[1] += *nr_file;
1403}
1404
e31f3698 1405/*
a18bba06 1406 * Returns true if a direct reclaim should wait on pages under writeback.
e31f3698
WF
1407 *
1408 * If we are direct reclaiming for contiguous pages and we do not reclaim
1409 * everything in the list, try again and wait for writeback IO to complete.
1410 * This will stall high-order allocations noticeably. Only do that when really
1411 * need to free the pages under high memory pressure.
1412 */
1413static inline bool should_reclaim_stall(unsigned long nr_taken,
1414 unsigned long nr_freed,
1415 int priority,
1416 struct scan_control *sc)
1417{
1418 int lumpy_stall_priority;
1419
1420 /* kswapd should not stall on sync IO */
1421 if (current_is_kswapd())
1422 return false;
1423
1424 /* Only stall on lumpy reclaim */
f3a310bc 1425 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
e31f3698
WF
1426 return false;
1427
81d66c70 1428 /* If we have reclaimed everything on the isolated list, no stall */
e31f3698
WF
1429 if (nr_freed == nr_taken)
1430 return false;
1431
1432 /*
1433 * For high-order allocations, there are two stall thresholds.
1434 * High-cost allocations stall immediately where as lower
1435 * order allocations such as stacks require the scanning
1436 * priority to be much higher before stalling.
1437 */
1438 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1439 lumpy_stall_priority = DEF_PRIORITY;
1440 else
1441 lumpy_stall_priority = DEF_PRIORITY / 3;
1442
1443 return priority <= lumpy_stall_priority;
1444}
1445
1da177e4 1446/*
1742f19f
AM
1447 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1448 * of reclaimed pages
1da177e4 1449 */
66635629
MG
1450static noinline_for_stack unsigned long
1451shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1452 struct scan_control *sc, int priority, int file)
1da177e4
LT
1453{
1454 LIST_HEAD(page_list);
e247dbce 1455 unsigned long nr_scanned;
05ff5137 1456 unsigned long nr_reclaimed = 0;
e247dbce 1457 unsigned long nr_taken;
e247dbce
KM
1458 unsigned long nr_anon;
1459 unsigned long nr_file;
4356f21d 1460 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
78dc583d 1461
35cd7815 1462 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1463 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1464
1465 /* We are about to die and free our memory. Return now. */
1466 if (fatal_signal_pending(current))
1467 return SWAP_CLUSTER_MAX;
1468 }
1469
f3a310bc 1470 set_reclaim_mode(priority, sc, false);
4356f21d
MK
1471 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1472 reclaim_mode |= ISOLATE_ACTIVE;
1473
1da177e4 1474 lru_add_drain();
f80c0673
MK
1475
1476 if (!sc->may_unmap)
1477 reclaim_mode |= ISOLATE_UNMAPPED;
1478 if (!sc->may_writepage)
1479 reclaim_mode |= ISOLATE_CLEAN;
1480
1da177e4 1481 spin_lock_irq(&zone->lru_lock);
b35ea17b 1482
e247dbce 1483 if (scanning_global_lru(sc)) {
4356f21d
MK
1484 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1485 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
e247dbce
KM
1486 zone->pages_scanned += nr_scanned;
1487 if (current_is_kswapd())
1488 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1489 nr_scanned);
1490 else
1491 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1492 nr_scanned);
1493 } else {
4356f21d
MK
1494 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1495 &nr_scanned, sc->order, reclaim_mode, zone,
1496 sc->mem_cgroup, 0, file);
e247dbce
KM
1497 /*
1498 * mem_cgroup_isolate_pages() keeps track of
1499 * scanned pages on its own.
1500 */
1501 }
b35ea17b 1502
66635629
MG
1503 if (nr_taken == 0) {
1504 spin_unlock_irq(&zone->lru_lock);
1505 return 0;
1506 }
5ad333eb 1507
1489fa14 1508 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1509
e247dbce 1510 spin_unlock_irq(&zone->lru_lock);
c661b078 1511
0e093d99 1512 nr_reclaimed = shrink_page_list(&page_list, zone, sc);
c661b078 1513
e31f3698
WF
1514 /* Check if we should syncronously wait for writeback */
1515 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
f3a310bc 1516 set_reclaim_mode(priority, sc, true);
0e093d99 1517 nr_reclaimed += shrink_page_list(&page_list, zone, sc);
e247dbce 1518 }
b35ea17b 1519
e247dbce
KM
1520 local_irq_disable();
1521 if (current_is_kswapd())
1522 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1523 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1524
1489fa14 1525 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
e11da5b4
MG
1526
1527 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1528 zone_idx(zone),
1529 nr_scanned, nr_reclaimed,
1530 priority,
f3a310bc 1531 trace_shrink_flags(file, sc->reclaim_mode));
05ff5137 1532 return nr_reclaimed;
1da177e4
LT
1533}
1534
1535/*
1536 * This moves pages from the active list to the inactive list.
1537 *
1538 * We move them the other way if the page is referenced by one or more
1539 * processes, from rmap.
1540 *
1541 * If the pages are mostly unmapped, the processing is fast and it is
1542 * appropriate to hold zone->lru_lock across the whole operation. But if
1543 * the pages are mapped, the processing is slow (page_referenced()) so we
1544 * should drop zone->lru_lock around each page. It's impossible to balance
1545 * this, so instead we remove the pages from the LRU while processing them.
1546 * It is safe to rely on PG_active against the non-LRU pages in here because
1547 * nobody will play with that bit on a non-LRU page.
1548 *
1549 * The downside is that we have to touch page->_count against each page.
1550 * But we had to alter page->flags anyway.
1551 */
1cfb419b 1552
3eb4140f
WF
1553static void move_active_pages_to_lru(struct zone *zone,
1554 struct list_head *list,
1555 enum lru_list lru)
1556{
1557 unsigned long pgmoved = 0;
1558 struct pagevec pvec;
1559 struct page *page;
1560
1561 pagevec_init(&pvec, 1);
1562
1563 while (!list_empty(list)) {
1564 page = lru_to_page(list);
3eb4140f
WF
1565
1566 VM_BUG_ON(PageLRU(page));
1567 SetPageLRU(page);
1568
3eb4140f
WF
1569 list_move(&page->lru, &zone->lru[lru].list);
1570 mem_cgroup_add_lru_list(page, lru);
2c888cfb 1571 pgmoved += hpage_nr_pages(page);
3eb4140f
WF
1572
1573 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1574 spin_unlock_irq(&zone->lru_lock);
1575 if (buffer_heads_over_limit)
1576 pagevec_strip(&pvec);
1577 __pagevec_release(&pvec);
1578 spin_lock_irq(&zone->lru_lock);
1579 }
1580 }
1581 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1582 if (!is_active_lru(lru))
1583 __count_vm_events(PGDEACTIVATE, pgmoved);
1584}
1cfb419b 1585
1742f19f 1586static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1587 struct scan_control *sc, int priority, int file)
1da177e4 1588{
44c241f1 1589 unsigned long nr_taken;
69e05944 1590 unsigned long pgscanned;
6fe6b7e3 1591 unsigned long vm_flags;
1da177e4 1592 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1593 LIST_HEAD(l_active);
b69408e8 1594 LIST_HEAD(l_inactive);
1da177e4 1595 struct page *page;
6e901571 1596 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1597 unsigned long nr_rotated = 0;
f80c0673 1598 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1da177e4
LT
1599
1600 lru_add_drain();
f80c0673
MK
1601
1602 if (!sc->may_unmap)
1603 reclaim_mode |= ISOLATE_UNMAPPED;
1604 if (!sc->may_writepage)
1605 reclaim_mode |= ISOLATE_CLEAN;
1606
1da177e4 1607 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1608 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1609 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1610 &pgscanned, sc->order,
f80c0673 1611 reclaim_mode, zone,
8b25c6d2 1612 1, file);
1cfb419b 1613 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1614 } else {
1615 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1616 &pgscanned, sc->order,
f80c0673 1617 reclaim_mode, zone,
8b25c6d2
JW
1618 sc->mem_cgroup, 1, file);
1619 /*
1620 * mem_cgroup_isolate_pages() keeps track of
1621 * scanned pages on its own.
1622 */
4f98a2fe 1623 }
8b25c6d2 1624
b7c46d15 1625 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1626
3eb4140f 1627 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1628 if (file)
44c241f1 1629 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1630 else
44c241f1 1631 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1632 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1633 spin_unlock_irq(&zone->lru_lock);
1634
1da177e4
LT
1635 while (!list_empty(&l_hold)) {
1636 cond_resched();
1637 page = lru_to_page(&l_hold);
1638 list_del(&page->lru);
7e9cd484 1639
894bc310
LS
1640 if (unlikely(!page_evictable(page, NULL))) {
1641 putback_lru_page(page);
1642 continue;
1643 }
1644
64574746 1645 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
9992af10 1646 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1647 /*
1648 * Identify referenced, file-backed active pages and
1649 * give them one more trip around the active list. So
1650 * that executable code get better chances to stay in
1651 * memory under moderate memory pressure. Anon pages
1652 * are not likely to be evicted by use-once streaming
1653 * IO, plus JVM can create lots of anon VM_EXEC pages,
1654 * so we ignore them here.
1655 */
41e20983 1656 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1657 list_add(&page->lru, &l_active);
1658 continue;
1659 }
1660 }
7e9cd484 1661
5205e56e 1662 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1663 list_add(&page->lru, &l_inactive);
1664 }
1665
b555749a 1666 /*
8cab4754 1667 * Move pages back to the lru list.
b555749a 1668 */
2a1dc509 1669 spin_lock_irq(&zone->lru_lock);
556adecb 1670 /*
8cab4754
WF
1671 * Count referenced pages from currently used mappings as rotated,
1672 * even though only some of them are actually re-activated. This
1673 * helps balance scan pressure between file and anonymous pages in
1674 * get_scan_ratio.
7e9cd484 1675 */
b7c46d15 1676 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1677
3eb4140f
WF
1678 move_active_pages_to_lru(zone, &l_active,
1679 LRU_ACTIVE + file * LRU_FILE);
1680 move_active_pages_to_lru(zone, &l_inactive,
1681 LRU_BASE + file * LRU_FILE);
a731286d 1682 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1683 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1684}
1685
74e3f3c3 1686#ifdef CONFIG_SWAP
14797e23 1687static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1688{
1689 unsigned long active, inactive;
1690
1691 active = zone_page_state(zone, NR_ACTIVE_ANON);
1692 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1693
1694 if (inactive * zone->inactive_ratio < active)
1695 return 1;
1696
1697 return 0;
1698}
1699
14797e23
KM
1700/**
1701 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1702 * @zone: zone to check
1703 * @sc: scan control of this context
1704 *
1705 * Returns true if the zone does not have enough inactive anon pages,
1706 * meaning some active anon pages need to be deactivated.
1707 */
1708static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1709{
1710 int low;
1711
74e3f3c3
MK
1712 /*
1713 * If we don't have swap space, anonymous page deactivation
1714 * is pointless.
1715 */
1716 if (!total_swap_pages)
1717 return 0;
1718
e72e2bd6 1719 if (scanning_global_lru(sc))
14797e23
KM
1720 low = inactive_anon_is_low_global(zone);
1721 else
c772be93 1722 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1723 return low;
1724}
74e3f3c3
MK
1725#else
1726static inline int inactive_anon_is_low(struct zone *zone,
1727 struct scan_control *sc)
1728{
1729 return 0;
1730}
1731#endif
14797e23 1732
56e49d21
RR
1733static int inactive_file_is_low_global(struct zone *zone)
1734{
1735 unsigned long active, inactive;
1736
1737 active = zone_page_state(zone, NR_ACTIVE_FILE);
1738 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1739
1740 return (active > inactive);
1741}
1742
1743/**
1744 * inactive_file_is_low - check if file pages need to be deactivated
1745 * @zone: zone to check
1746 * @sc: scan control of this context
1747 *
1748 * When the system is doing streaming IO, memory pressure here
1749 * ensures that active file pages get deactivated, until more
1750 * than half of the file pages are on the inactive list.
1751 *
1752 * Once we get to that situation, protect the system's working
1753 * set from being evicted by disabling active file page aging.
1754 *
1755 * This uses a different ratio than the anonymous pages, because
1756 * the page cache uses a use-once replacement algorithm.
1757 */
1758static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1759{
1760 int low;
1761
1762 if (scanning_global_lru(sc))
1763 low = inactive_file_is_low_global(zone);
1764 else
1765 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1766 return low;
1767}
1768
b39415b2
RR
1769static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1770 int file)
1771{
1772 if (file)
1773 return inactive_file_is_low(zone, sc);
1774 else
1775 return inactive_anon_is_low(zone, sc);
1776}
1777
4f98a2fe 1778static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1779 struct zone *zone, struct scan_control *sc, int priority)
1780{
4f98a2fe
RR
1781 int file = is_file_lru(lru);
1782
b39415b2
RR
1783 if (is_active_lru(lru)) {
1784 if (inactive_list_is_low(zone, sc, file))
1785 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1786 return 0;
1787 }
1788
33c120ed 1789 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1790}
1791
1f4c025b
KH
1792static int vmscan_swappiness(struct scan_control *sc)
1793{
1794 if (scanning_global_lru(sc))
1795 return vm_swappiness;
1796 return mem_cgroup_swappiness(sc->mem_cgroup);
1797}
1798
4f98a2fe
RR
1799/*
1800 * Determine how aggressively the anon and file LRU lists should be
1801 * scanned. The relative value of each set of LRU lists is determined
1802 * by looking at the fraction of the pages scanned we did rotate back
1803 * onto the active list instead of evict.
1804 *
76a33fc3 1805 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1806 */
76a33fc3
SL
1807static void get_scan_count(struct zone *zone, struct scan_control *sc,
1808 unsigned long *nr, int priority)
4f98a2fe
RR
1809{
1810 unsigned long anon, file, free;
1811 unsigned long anon_prio, file_prio;
1812 unsigned long ap, fp;
6e901571 1813 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1814 u64 fraction[2], denominator;
1815 enum lru_list l;
1816 int noswap = 0;
a4d3e9e7 1817 bool force_scan = false;
246e87a9 1818
f11c0ca5
JW
1819 /*
1820 * If the zone or memcg is small, nr[l] can be 0. This
1821 * results in no scanning on this priority and a potential
1822 * priority drop. Global direct reclaim can go to the next
1823 * zone and tends to have no problems. Global kswapd is for
1824 * zone balancing and it needs to scan a minimum amount. When
1825 * reclaiming for a memcg, a priority drop can cause high
1826 * latencies, so it's better to scan a minimum amount there as
1827 * well.
1828 */
a4d3e9e7
JW
1829 if (scanning_global_lru(sc) && current_is_kswapd())
1830 force_scan = true;
a4d3e9e7
JW
1831 if (!scanning_global_lru(sc))
1832 force_scan = true;
76a33fc3
SL
1833
1834 /* If we have no swap space, do not bother scanning anon pages. */
1835 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1836 noswap = 1;
1837 fraction[0] = 0;
1838 fraction[1] = 1;
1839 denominator = 1;
1840 goto out;
1841 }
4f98a2fe 1842
a4d3e9e7
JW
1843 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1844 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1845 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1846 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1847
e72e2bd6 1848 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1849 free = zone_page_state(zone, NR_FREE_PAGES);
1850 /* If we have very few page cache pages,
1851 force-scan anon pages. */
41858966 1852 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1853 fraction[0] = 1;
1854 fraction[1] = 0;
1855 denominator = 1;
1856 goto out;
eeee9a8c 1857 }
4f98a2fe
RR
1858 }
1859
58c37f6e
KM
1860 /*
1861 * With swappiness at 100, anonymous and file have the same priority.
1862 * This scanning priority is essentially the inverse of IO cost.
1863 */
1f4c025b
KH
1864 anon_prio = vmscan_swappiness(sc);
1865 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1866
4f98a2fe
RR
1867 /*
1868 * OK, so we have swap space and a fair amount of page cache
1869 * pages. We use the recently rotated / recently scanned
1870 * ratios to determine how valuable each cache is.
1871 *
1872 * Because workloads change over time (and to avoid overflow)
1873 * we keep these statistics as a floating average, which ends
1874 * up weighing recent references more than old ones.
1875 *
1876 * anon in [0], file in [1]
1877 */
58c37f6e 1878 spin_lock_irq(&zone->lru_lock);
6e901571 1879 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1880 reclaim_stat->recent_scanned[0] /= 2;
1881 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1882 }
1883
6e901571 1884 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1885 reclaim_stat->recent_scanned[1] /= 2;
1886 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1887 }
1888
4f98a2fe 1889 /*
00d8089c
RR
1890 * The amount of pressure on anon vs file pages is inversely
1891 * proportional to the fraction of recently scanned pages on
1892 * each list that were recently referenced and in active use.
4f98a2fe 1893 */
6e901571
KM
1894 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1895 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1896
6e901571
KM
1897 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1898 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1899 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1900
76a33fc3
SL
1901 fraction[0] = ap;
1902 fraction[1] = fp;
1903 denominator = ap + fp + 1;
1904out:
1905 for_each_evictable_lru(l) {
1906 int file = is_file_lru(l);
1907 unsigned long scan;
6e08a369 1908
76a33fc3
SL
1909 scan = zone_nr_lru_pages(zone, sc, l);
1910 if (priority || noswap) {
1911 scan >>= priority;
f11c0ca5
JW
1912 if (!scan && force_scan)
1913 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1914 scan = div64_u64(scan * fraction[file], denominator);
1915 }
246e87a9 1916 nr[l] = scan;
76a33fc3 1917 }
6e08a369 1918}
4f98a2fe 1919
3e7d3449
MG
1920/*
1921 * Reclaim/compaction depends on a number of pages being freed. To avoid
1922 * disruption to the system, a small number of order-0 pages continue to be
1923 * rotated and reclaimed in the normal fashion. However, by the time we get
1924 * back to the allocator and call try_to_compact_zone(), we ensure that
1925 * there are enough free pages for it to be likely successful
1926 */
1927static inline bool should_continue_reclaim(struct zone *zone,
1928 unsigned long nr_reclaimed,
1929 unsigned long nr_scanned,
1930 struct scan_control *sc)
1931{
1932 unsigned long pages_for_compaction;
1933 unsigned long inactive_lru_pages;
1934
1935 /* If not in reclaim/compaction mode, stop */
f3a310bc 1936 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
3e7d3449
MG
1937 return false;
1938
2876592f
MG
1939 /* Consider stopping depending on scan and reclaim activity */
1940 if (sc->gfp_mask & __GFP_REPEAT) {
1941 /*
1942 * For __GFP_REPEAT allocations, stop reclaiming if the
1943 * full LRU list has been scanned and we are still failing
1944 * to reclaim pages. This full LRU scan is potentially
1945 * expensive but a __GFP_REPEAT caller really wants to succeed
1946 */
1947 if (!nr_reclaimed && !nr_scanned)
1948 return false;
1949 } else {
1950 /*
1951 * For non-__GFP_REPEAT allocations which can presumably
1952 * fail without consequence, stop if we failed to reclaim
1953 * any pages from the last SWAP_CLUSTER_MAX number of
1954 * pages that were scanned. This will return to the
1955 * caller faster at the risk reclaim/compaction and
1956 * the resulting allocation attempt fails
1957 */
1958 if (!nr_reclaimed)
1959 return false;
1960 }
3e7d3449
MG
1961
1962 /*
1963 * If we have not reclaimed enough pages for compaction and the
1964 * inactive lists are large enough, continue reclaiming
1965 */
1966 pages_for_compaction = (2UL << sc->order);
1967 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) +
1968 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1969 if (sc->nr_reclaimed < pages_for_compaction &&
1970 inactive_lru_pages > pages_for_compaction)
1971 return true;
1972
1973 /* If compaction would go ahead or the allocation would succeed, stop */
1974 switch (compaction_suitable(zone, sc->order)) {
1975 case COMPACT_PARTIAL:
1976 case COMPACT_CONTINUE:
1977 return false;
1978 default:
1979 return true;
1980 }
1981}
1982
1da177e4
LT
1983/*
1984 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1985 */
a79311c1 1986static void shrink_zone(int priority, struct zone *zone,
05ff5137 1987 struct scan_control *sc)
1da177e4 1988{
b69408e8 1989 unsigned long nr[NR_LRU_LISTS];
8695949a 1990 unsigned long nr_to_scan;
b69408e8 1991 enum lru_list l;
f0fdc5e8 1992 unsigned long nr_reclaimed, nr_scanned;
22fba335 1993 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1994 struct blk_plug plug;
e0f79b8f 1995
3e7d3449
MG
1996restart:
1997 nr_reclaimed = 0;
f0fdc5e8 1998 nr_scanned = sc->nr_scanned;
76a33fc3 1999 get_scan_count(zone, sc, nr, priority);
1da177e4 2000
3da367c3 2001 blk_start_plug(&plug);
556adecb
RR
2002 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2003 nr[LRU_INACTIVE_FILE]) {
894bc310 2004 for_each_evictable_lru(l) {
b69408e8 2005 if (nr[l]) {
ece74b2e
KM
2006 nr_to_scan = min_t(unsigned long,
2007 nr[l], SWAP_CLUSTER_MAX);
b69408e8 2008 nr[l] -= nr_to_scan;
1da177e4 2009
01dbe5c9
KM
2010 nr_reclaimed += shrink_list(l, nr_to_scan,
2011 zone, sc, priority);
b69408e8 2012 }
1da177e4 2013 }
a79311c1
RR
2014 /*
2015 * On large memory systems, scan >> priority can become
2016 * really large. This is fine for the starting priority;
2017 * we want to put equal scanning pressure on each zone.
2018 * However, if the VM has a harder time of freeing pages,
2019 * with multiple processes reclaiming pages, the total
2020 * freeing target can get unreasonably large.
2021 */
338fde90 2022 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 2023 break;
1da177e4 2024 }
3da367c3 2025 blk_finish_plug(&plug);
3e7d3449 2026 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 2027
556adecb
RR
2028 /*
2029 * Even if we did not try to evict anon pages at all, we want to
2030 * rebalance the anon lru active/inactive ratio.
2031 */
74e3f3c3 2032 if (inactive_anon_is_low(zone, sc))
556adecb
RR
2033 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2034
3e7d3449
MG
2035 /* reclaim/compaction might need reclaim to continue */
2036 if (should_continue_reclaim(zone, nr_reclaimed,
2037 sc->nr_scanned - nr_scanned, sc))
2038 goto restart;
2039
232ea4d6 2040 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
2041}
2042
2043/*
2044 * This is the direct reclaim path, for page-allocating processes. We only
2045 * try to reclaim pages from zones which will satisfy the caller's allocation
2046 * request.
2047 *
41858966
MG
2048 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2049 * Because:
1da177e4
LT
2050 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2051 * allocation or
41858966
MG
2052 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2053 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2054 * zone defense algorithm.
1da177e4 2055 *
1da177e4
LT
2056 * If a zone is deemed to be full of pinned pages then just give it a light
2057 * scan then give up on it.
2058 */
ac34a1a3 2059static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2060 struct scan_control *sc)
1da177e4 2061{
dd1a239f 2062 struct zoneref *z;
54a6eb5c 2063 struct zone *zone;
d149e3b2
YH
2064 unsigned long nr_soft_reclaimed;
2065 unsigned long nr_soft_scanned;
1cfb419b 2066
d4debc66
MG
2067 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2068 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2069 if (!populated_zone(zone))
1da177e4 2070 continue;
1cfb419b
KH
2071 /*
2072 * Take care memory controller reclaiming has small influence
2073 * to global LRU.
2074 */
e72e2bd6 2075 if (scanning_global_lru(sc)) {
1cfb419b
KH
2076 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2077 continue;
93e4a89a 2078 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2079 continue; /* Let kswapd poll it */
ac34a1a3
KH
2080 /*
2081 * This steals pages from memory cgroups over softlimit
2082 * and returns the number of reclaimed pages and
2083 * scanned pages. This works for global memory pressure
2084 * and balancing, not for a memcg's limit.
2085 */
2086 nr_soft_scanned = 0;
2087 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2088 sc->order, sc->gfp_mask,
2089 &nr_soft_scanned);
2090 sc->nr_reclaimed += nr_soft_reclaimed;
2091 sc->nr_scanned += nr_soft_scanned;
2092 /* need some check for avoid more shrink_zone() */
1cfb419b 2093 }
408d8544 2094
a79311c1 2095 shrink_zone(priority, zone, sc);
1da177e4 2096 }
d1908362
MK
2097}
2098
2099static bool zone_reclaimable(struct zone *zone)
2100{
2101 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2102}
2103
929bea7c 2104/* All zones in zonelist are unreclaimable? */
d1908362
MK
2105static bool all_unreclaimable(struct zonelist *zonelist,
2106 struct scan_control *sc)
2107{
2108 struct zoneref *z;
2109 struct zone *zone;
d1908362
MK
2110
2111 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2112 gfp_zone(sc->gfp_mask), sc->nodemask) {
2113 if (!populated_zone(zone))
2114 continue;
2115 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2116 continue;
929bea7c
KM
2117 if (!zone->all_unreclaimable)
2118 return false;
d1908362
MK
2119 }
2120
929bea7c 2121 return true;
1da177e4 2122}
4f98a2fe 2123
1da177e4
LT
2124/*
2125 * This is the main entry point to direct page reclaim.
2126 *
2127 * If a full scan of the inactive list fails to free enough memory then we
2128 * are "out of memory" and something needs to be killed.
2129 *
2130 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2131 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2132 * caller can't do much about. We kick the writeback threads and take explicit
2133 * naps in the hope that some of these pages can be written. But if the
2134 * allocating task holds filesystem locks which prevent writeout this might not
2135 * work, and the allocation attempt will fail.
a41f24ea
NA
2136 *
2137 * returns: 0, if no pages reclaimed
2138 * else, the number of pages reclaimed
1da177e4 2139 */
dac1d27b 2140static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2141 struct scan_control *sc,
2142 struct shrink_control *shrink)
1da177e4
LT
2143{
2144 int priority;
69e05944 2145 unsigned long total_scanned = 0;
1da177e4 2146 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2147 struct zoneref *z;
54a6eb5c 2148 struct zone *zone;
22fba335 2149 unsigned long writeback_threshold;
1da177e4 2150
c0ff7453 2151 get_mems_allowed();
873b4771
KK
2152 delayacct_freepages_start();
2153
e72e2bd6 2154 if (scanning_global_lru(sc))
1cfb419b 2155 count_vm_event(ALLOCSTALL);
1da177e4
LT
2156
2157 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2158 sc->nr_scanned = 0;
f7b7fd8f 2159 if (!priority)
a433658c 2160 disable_swap_token(sc->mem_cgroup);
ac34a1a3 2161 shrink_zones(priority, zonelist, sc);
66e1707b
BS
2162 /*
2163 * Don't shrink slabs when reclaiming memory from
2164 * over limit cgroups
2165 */
e72e2bd6 2166 if (scanning_global_lru(sc)) {
c6a8a8c5 2167 unsigned long lru_pages = 0;
d4debc66
MG
2168 for_each_zone_zonelist(zone, z, zonelist,
2169 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2170 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2171 continue;
2172
2173 lru_pages += zone_reclaimable_pages(zone);
2174 }
2175
1495f230 2176 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2177 if (reclaim_state) {
a79311c1 2178 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2179 reclaim_state->reclaimed_slab = 0;
2180 }
1da177e4 2181 }
66e1707b 2182 total_scanned += sc->nr_scanned;
bb21c7ce 2183 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2184 goto out;
1da177e4
LT
2185
2186 /*
2187 * Try to write back as many pages as we just scanned. This
2188 * tends to cause slow streaming writers to write data to the
2189 * disk smoothly, at the dirtying rate, which is nice. But
2190 * that's undesirable in laptop mode, where we *want* lumpy
2191 * writeout. So in laptop mode, write out the whole world.
2192 */
22fba335
KM
2193 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2194 if (total_scanned > writeback_threshold) {
03ba3782 2195 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 2196 sc->may_writepage = 1;
1da177e4
LT
2197 }
2198
2199 /* Take a nap, wait for some writeback to complete */
7b51755c 2200 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2201 priority < DEF_PRIORITY - 2) {
2202 struct zone *preferred_zone;
2203
2204 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2205 &cpuset_current_mems_allowed,
2206 &preferred_zone);
0e093d99
MG
2207 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2208 }
1da177e4 2209 }
bb21c7ce 2210
1da177e4 2211out:
873b4771 2212 delayacct_freepages_end();
c0ff7453 2213 put_mems_allowed();
873b4771 2214
bb21c7ce
KM
2215 if (sc->nr_reclaimed)
2216 return sc->nr_reclaimed;
2217
929bea7c
KM
2218 /*
2219 * As hibernation is going on, kswapd is freezed so that it can't mark
2220 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2221 * check.
2222 */
2223 if (oom_killer_disabled)
2224 return 0;
2225
bb21c7ce 2226 /* top priority shrink_zones still had more to do? don't OOM, then */
d1908362 2227 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2228 return 1;
2229
2230 return 0;
1da177e4
LT
2231}
2232
dac1d27b 2233unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2234 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2235{
33906bc5 2236 unsigned long nr_reclaimed;
66e1707b
BS
2237 struct scan_control sc = {
2238 .gfp_mask = gfp_mask,
2239 .may_writepage = !laptop_mode,
22fba335 2240 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2241 .may_unmap = 1,
2e2e4259 2242 .may_swap = 1,
66e1707b
BS
2243 .order = order,
2244 .mem_cgroup = NULL,
327c0e96 2245 .nodemask = nodemask,
66e1707b 2246 };
a09ed5e0
YH
2247 struct shrink_control shrink = {
2248 .gfp_mask = sc.gfp_mask,
2249 };
66e1707b 2250
33906bc5
MG
2251 trace_mm_vmscan_direct_reclaim_begin(order,
2252 sc.may_writepage,
2253 gfp_mask);
2254
a09ed5e0 2255 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2256
2257 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2258
2259 return nr_reclaimed;
66e1707b
BS
2260}
2261
00f0b825 2262#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2263
4e416953
BS
2264unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2265 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2266 struct zone *zone,
2267 unsigned long *nr_scanned)
4e416953
BS
2268{
2269 struct scan_control sc = {
0ae5e89c 2270 .nr_scanned = 0,
b8f5c566 2271 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2272 .may_writepage = !laptop_mode,
2273 .may_unmap = 1,
2274 .may_swap = !noswap,
4e416953
BS
2275 .order = 0,
2276 .mem_cgroup = mem,
4e416953 2277 };
0ae5e89c 2278
4e416953
BS
2279 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2280 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2281
2282 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2283 sc.may_writepage,
2284 sc.gfp_mask);
2285
4e416953
BS
2286 /*
2287 * NOTE: Although we can get the priority field, using it
2288 * here is not a good idea, since it limits the pages we can scan.
2289 * if we don't reclaim here, the shrink_zone from balance_pgdat
2290 * will pick up pages from other mem cgroup's as well. We hack
2291 * the priority and make it zero.
2292 */
2293 shrink_zone(0, zone, &sc);
bdce6d9e
KM
2294
2295 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2296
0ae5e89c 2297 *nr_scanned = sc.nr_scanned;
4e416953
BS
2298 return sc.nr_reclaimed;
2299}
2300
e1a1cd59 2301unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8 2302 gfp_t gfp_mask,
185efc0f 2303 bool noswap)
66e1707b 2304{
4e416953 2305 struct zonelist *zonelist;
bdce6d9e 2306 unsigned long nr_reclaimed;
889976db 2307 int nid;
66e1707b 2308 struct scan_control sc = {
66e1707b 2309 .may_writepage = !laptop_mode,
a6dc60f8 2310 .may_unmap = 1,
2e2e4259 2311 .may_swap = !noswap,
22fba335 2312 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b
BS
2313 .order = 0,
2314 .mem_cgroup = mem_cont,
327c0e96 2315 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2316 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2317 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2318 };
2319 struct shrink_control shrink = {
2320 .gfp_mask = sc.gfp_mask,
66e1707b 2321 };
66e1707b 2322
889976db
YH
2323 /*
2324 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2325 * take care of from where we get pages. So the node where we start the
2326 * scan does not need to be the current node.
2327 */
2328 nid = mem_cgroup_select_victim_node(mem_cont);
2329
2330 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2331
2332 trace_mm_vmscan_memcg_reclaim_begin(0,
2333 sc.may_writepage,
2334 sc.gfp_mask);
2335
a09ed5e0 2336 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2337
2338 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2339
2340 return nr_reclaimed;
66e1707b
BS
2341}
2342#endif
2343
1741c877
MG
2344/*
2345 * pgdat_balanced is used when checking if a node is balanced for high-order
2346 * allocations. Only zones that meet watermarks and are in a zone allowed
2347 * by the callers classzone_idx are added to balanced_pages. The total of
2348 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2349 * for the node to be considered balanced. Forcing all zones to be balanced
2350 * for high orders can cause excessive reclaim when there are imbalanced zones.
2351 * The choice of 25% is due to
2352 * o a 16M DMA zone that is balanced will not balance a zone on any
2353 * reasonable sized machine
2354 * o On all other machines, the top zone must be at least a reasonable
25985edc 2355 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2356 * would need to be at least 256M for it to be balance a whole node.
2357 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2358 * to balance a node on its own. These seemed like reasonable ratios.
2359 */
2360static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2361 int classzone_idx)
2362{
2363 unsigned long present_pages = 0;
2364 int i;
2365
2366 for (i = 0; i <= classzone_idx; i++)
2367 present_pages += pgdat->node_zones[i].present_pages;
2368
4746efde
SL
2369 /* A special case here: if zone has no page, we think it's balanced */
2370 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2371}
2372
f50de2d3 2373/* is kswapd sleeping prematurely? */
dc83edd9
MG
2374static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2375 int classzone_idx)
f50de2d3 2376{
bb3ab596 2377 int i;
1741c877
MG
2378 unsigned long balanced = 0;
2379 bool all_zones_ok = true;
f50de2d3
MG
2380
2381 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2382 if (remaining)
dc83edd9 2383 return true;
f50de2d3 2384
0abdee2b 2385 /* Check the watermark levels */
08951e54 2386 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2387 struct zone *zone = pgdat->node_zones + i;
2388
2389 if (!populated_zone(zone))
2390 continue;
2391
355b09c4
MG
2392 /*
2393 * balance_pgdat() skips over all_unreclaimable after
2394 * DEF_PRIORITY. Effectively, it considers them balanced so
2395 * they must be considered balanced here as well if kswapd
2396 * is to sleep
2397 */
2398 if (zone->all_unreclaimable) {
2399 balanced += zone->present_pages;
de3fab39 2400 continue;
355b09c4 2401 }
de3fab39 2402
88f5acf8 2403 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2404 i, 0))
1741c877
MG
2405 all_zones_ok = false;
2406 else
2407 balanced += zone->present_pages;
bb3ab596 2408 }
f50de2d3 2409
1741c877
MG
2410 /*
2411 * For high-order requests, the balanced zones must contain at least
2412 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2413 * must be balanced
2414 */
2415 if (order)
afc7e326 2416 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2417 else
2418 return !all_zones_ok;
f50de2d3
MG
2419}
2420
1da177e4
LT
2421/*
2422 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2423 * they are all at high_wmark_pages(zone).
1da177e4 2424 *
0abdee2b 2425 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2426 *
2427 * There is special handling here for zones which are full of pinned pages.
2428 * This can happen if the pages are all mlocked, or if they are all used by
2429 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2430 * What we do is to detect the case where all pages in the zone have been
2431 * scanned twice and there has been zero successful reclaim. Mark the zone as
2432 * dead and from now on, only perform a short scan. Basically we're polling
2433 * the zone for when the problem goes away.
2434 *
2435 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2436 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2437 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2438 * lower zones regardless of the number of free pages in the lower zones. This
2439 * interoperates with the page allocator fallback scheme to ensure that aging
2440 * of pages is balanced across the zones.
1da177e4 2441 */
99504748 2442static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2443 int *classzone_idx)
1da177e4 2444{
1da177e4 2445 int all_zones_ok;
1741c877 2446 unsigned long balanced;
1da177e4
LT
2447 int priority;
2448 int i;
99504748 2449 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2450 unsigned long total_scanned;
1da177e4 2451 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2452 unsigned long nr_soft_reclaimed;
2453 unsigned long nr_soft_scanned;
179e9639
AM
2454 struct scan_control sc = {
2455 .gfp_mask = GFP_KERNEL,
a6dc60f8 2456 .may_unmap = 1,
2e2e4259 2457 .may_swap = 1,
22fba335
KM
2458 /*
2459 * kswapd doesn't want to be bailed out while reclaim. because
2460 * we want to put equal scanning pressure on each zone.
2461 */
2462 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2463 .order = order,
66e1707b 2464 .mem_cgroup = NULL,
179e9639 2465 };
a09ed5e0
YH
2466 struct shrink_control shrink = {
2467 .gfp_mask = sc.gfp_mask,
2468 };
1da177e4
LT
2469loop_again:
2470 total_scanned = 0;
a79311c1 2471 sc.nr_reclaimed = 0;
c0bbbc73 2472 sc.may_writepage = !laptop_mode;
f8891e5e 2473 count_vm_event(PAGEOUTRUN);
1da177e4 2474
1da177e4 2475 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2476 unsigned long lru_pages = 0;
bb3ab596 2477 int has_under_min_watermark_zone = 0;
1da177e4 2478
f7b7fd8f
RR
2479 /* The swap token gets in the way of swapout... */
2480 if (!priority)
a433658c 2481 disable_swap_token(NULL);
f7b7fd8f 2482
1da177e4 2483 all_zones_ok = 1;
1741c877 2484 balanced = 0;
1da177e4 2485
d6277db4
RW
2486 /*
2487 * Scan in the highmem->dma direction for the highest
2488 * zone which needs scanning
2489 */
2490 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2491 struct zone *zone = pgdat->node_zones + i;
1da177e4 2492
d6277db4
RW
2493 if (!populated_zone(zone))
2494 continue;
1da177e4 2495
93e4a89a 2496 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2497 continue;
1da177e4 2498
556adecb
RR
2499 /*
2500 * Do some background aging of the anon list, to give
2501 * pages a chance to be referenced before reclaiming.
2502 */
14797e23 2503 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2504 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2505 &sc, priority, 0);
2506
88f5acf8 2507 if (!zone_watermark_ok_safe(zone, order,
41858966 2508 high_wmark_pages(zone), 0, 0)) {
d6277db4 2509 end_zone = i;
e1dbeda6 2510 break;
439423f6
SL
2511 } else {
2512 /* If balanced, clear the congested flag */
2513 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2514 }
1da177e4 2515 }
e1dbeda6
AM
2516 if (i < 0)
2517 goto out;
2518
1da177e4
LT
2519 for (i = 0; i <= end_zone; i++) {
2520 struct zone *zone = pgdat->node_zones + i;
2521
adea02a1 2522 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2523 }
2524
2525 /*
2526 * Now scan the zone in the dma->highmem direction, stopping
2527 * at the last zone which needs scanning.
2528 *
2529 * We do this because the page allocator works in the opposite
2530 * direction. This prevents the page allocator from allocating
2531 * pages behind kswapd's direction of progress, which would
2532 * cause too much scanning of the lower zones.
2533 */
2534 for (i = 0; i <= end_zone; i++) {
2535 struct zone *zone = pgdat->node_zones + i;
b15e0905 2536 int nr_slab;
8afdcece 2537 unsigned long balance_gap;
1da177e4 2538
f3fe6512 2539 if (!populated_zone(zone))
1da177e4
LT
2540 continue;
2541
93e4a89a 2542 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2543 continue;
2544
1da177e4 2545 sc.nr_scanned = 0;
4e416953 2546
0ae5e89c 2547 nr_soft_scanned = 0;
4e416953
BS
2548 /*
2549 * Call soft limit reclaim before calling shrink_zone.
4e416953 2550 */
0ae5e89c
YH
2551 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2552 order, sc.gfp_mask,
2553 &nr_soft_scanned);
2554 sc.nr_reclaimed += nr_soft_reclaimed;
2555 total_scanned += nr_soft_scanned;
00918b6a 2556
32a4330d 2557 /*
8afdcece
MG
2558 * We put equal pressure on every zone, unless
2559 * one zone has way too many pages free
2560 * already. The "too many pages" is defined
2561 * as the high wmark plus a "gap" where the
2562 * gap is either the low watermark or 1%
2563 * of the zone, whichever is smaller.
32a4330d 2564 */
8afdcece
MG
2565 balance_gap = min(low_wmark_pages(zone),
2566 (zone->present_pages +
2567 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2568 KSWAPD_ZONE_BALANCE_GAP_RATIO);
88f5acf8 2569 if (!zone_watermark_ok_safe(zone, order,
8afdcece 2570 high_wmark_pages(zone) + balance_gap,
d7868dae 2571 end_zone, 0)) {
a79311c1 2572 shrink_zone(priority, zone, &sc);
5a03b051 2573
d7868dae
MG
2574 reclaim_state->reclaimed_slab = 0;
2575 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2576 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2577 total_scanned += sc.nr_scanned;
2578
2579 if (nr_slab == 0 && !zone_reclaimable(zone))
2580 zone->all_unreclaimable = 1;
2581 }
2582
1da177e4
LT
2583 /*
2584 * If we've done a decent amount of scanning and
2585 * the reclaim ratio is low, start doing writepage
2586 * even in laptop mode
2587 */
2588 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2589 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2590 sc.may_writepage = 1;
bb3ab596 2591
215ddd66
MG
2592 if (zone->all_unreclaimable) {
2593 if (end_zone && end_zone == i)
2594 end_zone--;
d7868dae 2595 continue;
215ddd66 2596 }
d7868dae 2597
88f5acf8 2598 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2599 high_wmark_pages(zone), end_zone, 0)) {
2600 all_zones_ok = 0;
2601 /*
2602 * We are still under min water mark. This
2603 * means that we have a GFP_ATOMIC allocation
2604 * failure risk. Hurry up!
2605 */
88f5acf8 2606 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2607 min_wmark_pages(zone), end_zone, 0))
2608 has_under_min_watermark_zone = 1;
0e093d99
MG
2609 } else {
2610 /*
2611 * If a zone reaches its high watermark,
2612 * consider it to be no longer congested. It's
2613 * possible there are dirty pages backed by
2614 * congested BDIs but as pressure is relieved,
2615 * spectulatively avoid congestion waits
2616 */
2617 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2618 if (i <= *classzone_idx)
1741c877 2619 balanced += zone->present_pages;
45973d74 2620 }
bb3ab596 2621
1da177e4 2622 }
dc83edd9 2623 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2624 break; /* kswapd: all done */
2625 /*
2626 * OK, kswapd is getting into trouble. Take a nap, then take
2627 * another pass across the zones.
2628 */
bb3ab596
KM
2629 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2630 if (has_under_min_watermark_zone)
2631 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2632 else
2633 congestion_wait(BLK_RW_ASYNC, HZ/10);
2634 }
1da177e4
LT
2635
2636 /*
2637 * We do this so kswapd doesn't build up large priorities for
2638 * example when it is freeing in parallel with allocators. It
2639 * matches the direct reclaim path behaviour in terms of impact
2640 * on zone->*_priority.
2641 */
a79311c1 2642 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2643 break;
2644 }
2645out:
99504748
MG
2646
2647 /*
2648 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2649 * high-order: Balanced zones must make up at least 25% of the node
2650 * for the node to be balanced
99504748 2651 */
dc83edd9 2652 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2653 cond_resched();
8357376d
RW
2654
2655 try_to_freeze();
2656
73ce02e9
KM
2657 /*
2658 * Fragmentation may mean that the system cannot be
2659 * rebalanced for high-order allocations in all zones.
2660 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2661 * it means the zones have been fully scanned and are still
2662 * not balanced. For high-order allocations, there is
2663 * little point trying all over again as kswapd may
2664 * infinite loop.
2665 *
2666 * Instead, recheck all watermarks at order-0 as they
2667 * are the most important. If watermarks are ok, kswapd will go
2668 * back to sleep. High-order users can still perform direct
2669 * reclaim if they wish.
2670 */
2671 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2672 order = sc.order = 0;
2673
1da177e4
LT
2674 goto loop_again;
2675 }
2676
99504748
MG
2677 /*
2678 * If kswapd was reclaiming at a higher order, it has the option of
2679 * sleeping without all zones being balanced. Before it does, it must
2680 * ensure that the watermarks for order-0 on *all* zones are met and
2681 * that the congestion flags are cleared. The congestion flag must
2682 * be cleared as kswapd is the only mechanism that clears the flag
2683 * and it is potentially going to sleep here.
2684 */
2685 if (order) {
2686 for (i = 0; i <= end_zone; i++) {
2687 struct zone *zone = pgdat->node_zones + i;
2688
2689 if (!populated_zone(zone))
2690 continue;
2691
2692 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2693 continue;
2694
2695 /* Confirm the zone is balanced for order-0 */
2696 if (!zone_watermark_ok(zone, 0,
2697 high_wmark_pages(zone), 0, 0)) {
2698 order = sc.order = 0;
2699 goto loop_again;
2700 }
2701
2702 /* If balanced, clear the congested flag */
2703 zone_clear_flag(zone, ZONE_CONGESTED);
2704 }
2705 }
2706
0abdee2b
MG
2707 /*
2708 * Return the order we were reclaiming at so sleeping_prematurely()
2709 * makes a decision on the order we were last reclaiming at. However,
2710 * if another caller entered the allocator slow path while kswapd
2711 * was awake, order will remain at the higher level
2712 */
dc83edd9 2713 *classzone_idx = end_zone;
0abdee2b 2714 return order;
1da177e4
LT
2715}
2716
dc83edd9 2717static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2718{
2719 long remaining = 0;
2720 DEFINE_WAIT(wait);
2721
2722 if (freezing(current) || kthread_should_stop())
2723 return;
2724
2725 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2726
2727 /* Try to sleep for a short interval */
dc83edd9 2728 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2729 remaining = schedule_timeout(HZ/10);
2730 finish_wait(&pgdat->kswapd_wait, &wait);
2731 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2732 }
2733
2734 /*
2735 * After a short sleep, check if it was a premature sleep. If not, then
2736 * go fully to sleep until explicitly woken up.
2737 */
dc83edd9 2738 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2739 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2740
2741 /*
2742 * vmstat counters are not perfectly accurate and the estimated
2743 * value for counters such as NR_FREE_PAGES can deviate from the
2744 * true value by nr_online_cpus * threshold. To avoid the zone
2745 * watermarks being breached while under pressure, we reduce the
2746 * per-cpu vmstat threshold while kswapd is awake and restore
2747 * them before going back to sleep.
2748 */
2749 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2750 schedule();
2751 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2752 } else {
2753 if (remaining)
2754 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2755 else
2756 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2757 }
2758 finish_wait(&pgdat->kswapd_wait, &wait);
2759}
2760
1da177e4
LT
2761/*
2762 * The background pageout daemon, started as a kernel thread
4f98a2fe 2763 * from the init process.
1da177e4
LT
2764 *
2765 * This basically trickles out pages so that we have _some_
2766 * free memory available even if there is no other activity
2767 * that frees anything up. This is needed for things like routing
2768 * etc, where we otherwise might have all activity going on in
2769 * asynchronous contexts that cannot page things out.
2770 *
2771 * If there are applications that are active memory-allocators
2772 * (most normal use), this basically shouldn't matter.
2773 */
2774static int kswapd(void *p)
2775{
215ddd66
MG
2776 unsigned long order, new_order;
2777 int classzone_idx, new_classzone_idx;
1da177e4
LT
2778 pg_data_t *pgdat = (pg_data_t*)p;
2779 struct task_struct *tsk = current;
f0bc0a60 2780
1da177e4
LT
2781 struct reclaim_state reclaim_state = {
2782 .reclaimed_slab = 0,
2783 };
a70f7302 2784 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2785
cf40bd16
NP
2786 lockdep_set_current_reclaim_state(GFP_KERNEL);
2787
174596a0 2788 if (!cpumask_empty(cpumask))
c5f59f08 2789 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2790 current->reclaim_state = &reclaim_state;
2791
2792 /*
2793 * Tell the memory management that we're a "memory allocator",
2794 * and that if we need more memory we should get access to it
2795 * regardless (see "__alloc_pages()"). "kswapd" should
2796 * never get caught in the normal page freeing logic.
2797 *
2798 * (Kswapd normally doesn't need memory anyway, but sometimes
2799 * you need a small amount of memory in order to be able to
2800 * page out something else, and this flag essentially protects
2801 * us from recursively trying to free more memory as we're
2802 * trying to free the first piece of memory in the first place).
2803 */
930d9152 2804 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2805 set_freezable();
1da177e4 2806
215ddd66
MG
2807 order = new_order = 0;
2808 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
1da177e4 2809 for ( ; ; ) {
8fe23e05 2810 int ret;
3e1d1d28 2811
215ddd66
MG
2812 /*
2813 * If the last balance_pgdat was unsuccessful it's unlikely a
2814 * new request of a similar or harder type will succeed soon
2815 * so consider going to sleep on the basis we reclaimed at
2816 */
2817 if (classzone_idx >= new_classzone_idx && order == new_order) {
2818 new_order = pgdat->kswapd_max_order;
2819 new_classzone_idx = pgdat->classzone_idx;
2820 pgdat->kswapd_max_order = 0;
2821 pgdat->classzone_idx = pgdat->nr_zones - 1;
2822 }
2823
99504748 2824 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2825 /*
2826 * Don't sleep if someone wants a larger 'order'
99504748 2827 * allocation or has tigher zone constraints
1da177e4
LT
2828 */
2829 order = new_order;
99504748 2830 classzone_idx = new_classzone_idx;
1da177e4 2831 } else {
dc83edd9 2832 kswapd_try_to_sleep(pgdat, order, classzone_idx);
1da177e4 2833 order = pgdat->kswapd_max_order;
99504748 2834 classzone_idx = pgdat->classzone_idx;
4d40502e 2835 pgdat->kswapd_max_order = 0;
215ddd66 2836 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2837 }
1da177e4 2838
8fe23e05
DR
2839 ret = try_to_freeze();
2840 if (kthread_should_stop())
2841 break;
2842
2843 /*
2844 * We can speed up thawing tasks if we don't call balance_pgdat
2845 * after returning from the refrigerator
2846 */
33906bc5
MG
2847 if (!ret) {
2848 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
dc83edd9 2849 order = balance_pgdat(pgdat, order, &classzone_idx);
33906bc5 2850 }
1da177e4
LT
2851 }
2852 return 0;
2853}
2854
2855/*
2856 * A zone is low on free memory, so wake its kswapd task to service it.
2857 */
99504748 2858void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2859{
2860 pg_data_t *pgdat;
2861
f3fe6512 2862 if (!populated_zone(zone))
1da177e4
LT
2863 return;
2864
88f5acf8 2865 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2866 return;
88f5acf8 2867 pgdat = zone->zone_pgdat;
99504748 2868 if (pgdat->kswapd_max_order < order) {
1da177e4 2869 pgdat->kswapd_max_order = order;
99504748
MG
2870 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2871 }
8d0986e2 2872 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2873 return;
88f5acf8
MG
2874 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2875 return;
2876
2877 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2878 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2879}
2880
adea02a1
WF
2881/*
2882 * The reclaimable count would be mostly accurate.
2883 * The less reclaimable pages may be
2884 * - mlocked pages, which will be moved to unevictable list when encountered
2885 * - mapped pages, which may require several travels to be reclaimed
2886 * - dirty pages, which is not "instantly" reclaimable
2887 */
2888unsigned long global_reclaimable_pages(void)
4f98a2fe 2889{
adea02a1
WF
2890 int nr;
2891
2892 nr = global_page_state(NR_ACTIVE_FILE) +
2893 global_page_state(NR_INACTIVE_FILE);
2894
2895 if (nr_swap_pages > 0)
2896 nr += global_page_state(NR_ACTIVE_ANON) +
2897 global_page_state(NR_INACTIVE_ANON);
2898
2899 return nr;
2900}
2901
2902unsigned long zone_reclaimable_pages(struct zone *zone)
2903{
2904 int nr;
2905
2906 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2907 zone_page_state(zone, NR_INACTIVE_FILE);
2908
2909 if (nr_swap_pages > 0)
2910 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2911 zone_page_state(zone, NR_INACTIVE_ANON);
2912
2913 return nr;
4f98a2fe
RR
2914}
2915
c6f37f12 2916#ifdef CONFIG_HIBERNATION
1da177e4 2917/*
7b51755c 2918 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2919 * freed pages.
2920 *
2921 * Rather than trying to age LRUs the aim is to preserve the overall
2922 * LRU order by reclaiming preferentially
2923 * inactive > active > active referenced > active mapped
1da177e4 2924 */
7b51755c 2925unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2926{
d6277db4 2927 struct reclaim_state reclaim_state;
d6277db4 2928 struct scan_control sc = {
7b51755c
KM
2929 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2930 .may_swap = 1,
2931 .may_unmap = 1,
d6277db4 2932 .may_writepage = 1,
7b51755c
KM
2933 .nr_to_reclaim = nr_to_reclaim,
2934 .hibernation_mode = 1,
7b51755c 2935 .order = 0,
1da177e4 2936 };
a09ed5e0
YH
2937 struct shrink_control shrink = {
2938 .gfp_mask = sc.gfp_mask,
2939 };
2940 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2941 struct task_struct *p = current;
2942 unsigned long nr_reclaimed;
1da177e4 2943
7b51755c
KM
2944 p->flags |= PF_MEMALLOC;
2945 lockdep_set_current_reclaim_state(sc.gfp_mask);
2946 reclaim_state.reclaimed_slab = 0;
2947 p->reclaim_state = &reclaim_state;
d6277db4 2948
a09ed5e0 2949 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2950
7b51755c
KM
2951 p->reclaim_state = NULL;
2952 lockdep_clear_current_reclaim_state();
2953 p->flags &= ~PF_MEMALLOC;
d6277db4 2954
7b51755c 2955 return nr_reclaimed;
1da177e4 2956}
c6f37f12 2957#endif /* CONFIG_HIBERNATION */
1da177e4 2958
1da177e4
LT
2959/* It's optimal to keep kswapds on the same CPUs as their memory, but
2960 not required for correctness. So if the last cpu in a node goes
2961 away, we get changed to run anywhere: as the first one comes back,
2962 restore their cpu bindings. */
9c7b216d 2963static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2964 unsigned long action, void *hcpu)
1da177e4 2965{
58c0a4a7 2966 int nid;
1da177e4 2967
8bb78442 2968 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2969 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2970 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2971 const struct cpumask *mask;
2972
2973 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2974
3e597945 2975 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2976 /* One of our CPUs online: restore mask */
c5f59f08 2977 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2978 }
2979 }
2980 return NOTIFY_OK;
2981}
1da177e4 2982
3218ae14
YG
2983/*
2984 * This kswapd start function will be called by init and node-hot-add.
2985 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2986 */
2987int kswapd_run(int nid)
2988{
2989 pg_data_t *pgdat = NODE_DATA(nid);
2990 int ret = 0;
2991
2992 if (pgdat->kswapd)
2993 return 0;
2994
2995 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2996 if (IS_ERR(pgdat->kswapd)) {
2997 /* failure at boot is fatal */
2998 BUG_ON(system_state == SYSTEM_BOOTING);
2999 printk("Failed to start kswapd on node %d\n",nid);
3000 ret = -1;
3001 }
3002 return ret;
3003}
3004
8fe23e05
DR
3005/*
3006 * Called by memory hotplug when all memory in a node is offlined.
3007 */
3008void kswapd_stop(int nid)
3009{
3010 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3011
3012 if (kswapd)
3013 kthread_stop(kswapd);
3014}
3015
1da177e4
LT
3016static int __init kswapd_init(void)
3017{
3218ae14 3018 int nid;
69e05944 3019
1da177e4 3020 swap_setup();
9422ffba 3021 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3022 kswapd_run(nid);
1da177e4
LT
3023 hotcpu_notifier(cpu_callback, 0);
3024 return 0;
3025}
3026
3027module_init(kswapd_init)
9eeff239
CL
3028
3029#ifdef CONFIG_NUMA
3030/*
3031 * Zone reclaim mode
3032 *
3033 * If non-zero call zone_reclaim when the number of free pages falls below
3034 * the watermarks.
9eeff239
CL
3035 */
3036int zone_reclaim_mode __read_mostly;
3037
1b2ffb78 3038#define RECLAIM_OFF 0
7d03431c 3039#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3040#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3041#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3042
a92f7126
CL
3043/*
3044 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3045 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3046 * a zone.
3047 */
3048#define ZONE_RECLAIM_PRIORITY 4
3049
9614634f
CL
3050/*
3051 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3052 * occur.
3053 */
3054int sysctl_min_unmapped_ratio = 1;
3055
0ff38490
CL
3056/*
3057 * If the number of slab pages in a zone grows beyond this percentage then
3058 * slab reclaim needs to occur.
3059 */
3060int sysctl_min_slab_ratio = 5;
3061
90afa5de
MG
3062static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3063{
3064 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3065 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3066 zone_page_state(zone, NR_ACTIVE_FILE);
3067
3068 /*
3069 * It's possible for there to be more file mapped pages than
3070 * accounted for by the pages on the file LRU lists because
3071 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3072 */
3073 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3074}
3075
3076/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3077static long zone_pagecache_reclaimable(struct zone *zone)
3078{
3079 long nr_pagecache_reclaimable;
3080 long delta = 0;
3081
3082 /*
3083 * If RECLAIM_SWAP is set, then all file pages are considered
3084 * potentially reclaimable. Otherwise, we have to worry about
3085 * pages like swapcache and zone_unmapped_file_pages() provides
3086 * a better estimate
3087 */
3088 if (zone_reclaim_mode & RECLAIM_SWAP)
3089 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3090 else
3091 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3092
3093 /* If we can't clean pages, remove dirty pages from consideration */
3094 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3095 delta += zone_page_state(zone, NR_FILE_DIRTY);
3096
3097 /* Watch for any possible underflows due to delta */
3098 if (unlikely(delta > nr_pagecache_reclaimable))
3099 delta = nr_pagecache_reclaimable;
3100
3101 return nr_pagecache_reclaimable - delta;
3102}
3103
9eeff239
CL
3104/*
3105 * Try to free up some pages from this zone through reclaim.
3106 */
179e9639 3107static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3108{
7fb2d46d 3109 /* Minimum pages needed in order to stay on node */
69e05944 3110 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3111 struct task_struct *p = current;
3112 struct reclaim_state reclaim_state;
8695949a 3113 int priority;
179e9639
AM
3114 struct scan_control sc = {
3115 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3116 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3117 .may_swap = 1,
22fba335
KM
3118 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3119 SWAP_CLUSTER_MAX),
179e9639 3120 .gfp_mask = gfp_mask,
bd2f6199 3121 .order = order,
179e9639 3122 };
a09ed5e0
YH
3123 struct shrink_control shrink = {
3124 .gfp_mask = sc.gfp_mask,
3125 };
15748048 3126 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3127
9eeff239 3128 cond_resched();
d4f7796e
CL
3129 /*
3130 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3131 * and we also need to be able to write out pages for RECLAIM_WRITE
3132 * and RECLAIM_SWAP.
3133 */
3134 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3135 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3136 reclaim_state.reclaimed_slab = 0;
3137 p->reclaim_state = &reclaim_state;
c84db23c 3138
90afa5de 3139 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3140 /*
3141 * Free memory by calling shrink zone with increasing
3142 * priorities until we have enough memory freed.
3143 */
3144 priority = ZONE_RECLAIM_PRIORITY;
3145 do {
a79311c1 3146 shrink_zone(priority, zone, &sc);
0ff38490 3147 priority--;
a79311c1 3148 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3149 }
c84db23c 3150
15748048
KM
3151 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3152 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3153 /*
7fb2d46d 3154 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3155 * many pages were freed in this zone. So we take the current
3156 * number of slab pages and shake the slab until it is reduced
3157 * by the same nr_pages that we used for reclaiming unmapped
3158 * pages.
2a16e3f4 3159 *
0ff38490
CL
3160 * Note that shrink_slab will free memory on all zones and may
3161 * take a long time.
2a16e3f4 3162 */
4dc4b3d9
KM
3163 for (;;) {
3164 unsigned long lru_pages = zone_reclaimable_pages(zone);
3165
3166 /* No reclaimable slab or very low memory pressure */
1495f230 3167 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3168 break;
3169
3170 /* Freed enough memory */
3171 nr_slab_pages1 = zone_page_state(zone,
3172 NR_SLAB_RECLAIMABLE);
3173 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3174 break;
3175 }
83e33a47
CL
3176
3177 /*
3178 * Update nr_reclaimed by the number of slab pages we
3179 * reclaimed from this zone.
3180 */
15748048
KM
3181 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3182 if (nr_slab_pages1 < nr_slab_pages0)
3183 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3184 }
3185
9eeff239 3186 p->reclaim_state = NULL;
d4f7796e 3187 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3188 lockdep_clear_current_reclaim_state();
a79311c1 3189 return sc.nr_reclaimed >= nr_pages;
9eeff239 3190}
179e9639
AM
3191
3192int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3193{
179e9639 3194 int node_id;
d773ed6b 3195 int ret;
179e9639
AM
3196
3197 /*
0ff38490
CL
3198 * Zone reclaim reclaims unmapped file backed pages and
3199 * slab pages if we are over the defined limits.
34aa1330 3200 *
9614634f
CL
3201 * A small portion of unmapped file backed pages is needed for
3202 * file I/O otherwise pages read by file I/O will be immediately
3203 * thrown out if the zone is overallocated. So we do not reclaim
3204 * if less than a specified percentage of the zone is used by
3205 * unmapped file backed pages.
179e9639 3206 */
90afa5de
MG
3207 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3208 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3209 return ZONE_RECLAIM_FULL;
179e9639 3210
93e4a89a 3211 if (zone->all_unreclaimable)
fa5e084e 3212 return ZONE_RECLAIM_FULL;
d773ed6b 3213
179e9639 3214 /*
d773ed6b 3215 * Do not scan if the allocation should not be delayed.
179e9639 3216 */
d773ed6b 3217 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3218 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3219
3220 /*
3221 * Only run zone reclaim on the local zone or on zones that do not
3222 * have associated processors. This will favor the local processor
3223 * over remote processors and spread off node memory allocations
3224 * as wide as possible.
3225 */
89fa3024 3226 node_id = zone_to_nid(zone);
37c0708d 3227 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3228 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3229
3230 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3231 return ZONE_RECLAIM_NOSCAN;
3232
d773ed6b
DR
3233 ret = __zone_reclaim(zone, gfp_mask, order);
3234 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3235
24cf7251
MG
3236 if (!ret)
3237 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3238
d773ed6b 3239 return ret;
179e9639 3240}
9eeff239 3241#endif
894bc310 3242
894bc310
LS
3243/*
3244 * page_evictable - test whether a page is evictable
3245 * @page: the page to test
3246 * @vma: the VMA in which the page is or will be mapped, may be NULL
3247 *
3248 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3249 * lists vs unevictable list. The vma argument is !NULL when called from the
3250 * fault path to determine how to instantate a new page.
894bc310
LS
3251 *
3252 * Reasons page might not be evictable:
ba9ddf49 3253 * (1) page's mapping marked unevictable
b291f000 3254 * (2) page is part of an mlocked VMA
ba9ddf49 3255 *
894bc310
LS
3256 */
3257int page_evictable(struct page *page, struct vm_area_struct *vma)
3258{
3259
ba9ddf49
LS
3260 if (mapping_unevictable(page_mapping(page)))
3261 return 0;
3262
b291f000
NP
3263 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3264 return 0;
894bc310
LS
3265
3266 return 1;
3267}
89e004ea
LS
3268
3269/**
3270 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3271 * @page: page to check evictability and move to appropriate lru list
3272 * @zone: zone page is in
3273 *
3274 * Checks a page for evictability and moves the page to the appropriate
3275 * zone lru list.
3276 *
3277 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3278 * have PageUnevictable set.
3279 */
3280static void check_move_unevictable_page(struct page *page, struct zone *zone)
3281{
3282 VM_BUG_ON(PageActive(page));
3283
3284retry:
3285 ClearPageUnevictable(page);
3286 if (page_evictable(page, NULL)) {
401a8e1c 3287 enum lru_list l = page_lru_base_type(page);
af936a16 3288
89e004ea
LS
3289 __dec_zone_state(zone, NR_UNEVICTABLE);
3290 list_move(&page->lru, &zone->lru[l].list);
08e552c6 3291 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
3292 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3293 __count_vm_event(UNEVICTABLE_PGRESCUED);
3294 } else {
3295 /*
3296 * rotate unevictable list
3297 */
3298 SetPageUnevictable(page);
3299 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 3300 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
3301 if (page_evictable(page, NULL))
3302 goto retry;
3303 }
3304}
3305
3306/**
3307 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3308 * @mapping: struct address_space to scan for evictable pages
3309 *
3310 * Scan all pages in mapping. Check unevictable pages for
3311 * evictability and move them to the appropriate zone lru list.
3312 */
3313void scan_mapping_unevictable_pages(struct address_space *mapping)
3314{
3315 pgoff_t next = 0;
3316 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3317 PAGE_CACHE_SHIFT;
3318 struct zone *zone;
3319 struct pagevec pvec;
3320
3321 if (mapping->nrpages == 0)
3322 return;
3323
3324 pagevec_init(&pvec, 0);
3325 while (next < end &&
3326 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3327 int i;
3328 int pg_scanned = 0;
3329
3330 zone = NULL;
3331
3332 for (i = 0; i < pagevec_count(&pvec); i++) {
3333 struct page *page = pvec.pages[i];
3334 pgoff_t page_index = page->index;
3335 struct zone *pagezone = page_zone(page);
3336
3337 pg_scanned++;
3338 if (page_index > next)
3339 next = page_index;
3340 next++;
3341
3342 if (pagezone != zone) {
3343 if (zone)
3344 spin_unlock_irq(&zone->lru_lock);
3345 zone = pagezone;
3346 spin_lock_irq(&zone->lru_lock);
3347 }
3348
3349 if (PageLRU(page) && PageUnevictable(page))
3350 check_move_unevictable_page(page, zone);
3351 }
3352 if (zone)
3353 spin_unlock_irq(&zone->lru_lock);
3354 pagevec_release(&pvec);
3355
3356 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3357 }
3358
3359}
af936a16
LS
3360
3361/**
3362 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3363 * @zone - zone of which to scan the unevictable list
3364 *
3365 * Scan @zone's unevictable LRU lists to check for pages that have become
3366 * evictable. Move those that have to @zone's inactive list where they
3367 * become candidates for reclaim, unless shrink_inactive_zone() decides
3368 * to reactivate them. Pages that are still unevictable are rotated
3369 * back onto @zone's unevictable list.
3370 */
3371#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 3372static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
3373{
3374 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
3375 unsigned long scan;
3376 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
3377
3378 while (nr_to_scan > 0) {
3379 unsigned long batch_size = min(nr_to_scan,
3380 SCAN_UNEVICTABLE_BATCH_SIZE);
3381
3382 spin_lock_irq(&zone->lru_lock);
3383 for (scan = 0; scan < batch_size; scan++) {
3384 struct page *page = lru_to_page(l_unevictable);
3385
3386 if (!trylock_page(page))
3387 continue;
3388
3389 prefetchw_prev_lru_page(page, l_unevictable, flags);
3390
3391 if (likely(PageLRU(page) && PageUnevictable(page)))
3392 check_move_unevictable_page(page, zone);
3393
3394 unlock_page(page);
3395 }
3396 spin_unlock_irq(&zone->lru_lock);
3397
3398 nr_to_scan -= batch_size;
3399 }
3400}
3401
3402
3403/**
3404 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3405 *
3406 * A really big hammer: scan all zones' unevictable LRU lists to check for
3407 * pages that have become evictable. Move those back to the zones'
3408 * inactive list where they become candidates for reclaim.
3409 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3410 * and we add swap to the system. As such, it runs in the context of a task
3411 * that has possibly/probably made some previously unevictable pages
3412 * evictable.
3413 */
ff30153b 3414static void scan_all_zones_unevictable_pages(void)
af936a16
LS
3415{
3416 struct zone *zone;
3417
3418 for_each_zone(zone) {
3419 scan_zone_unevictable_pages(zone);
3420 }
3421}
3422
3423/*
3424 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3425 * all nodes' unevictable lists for evictable pages
3426 */
3427unsigned long scan_unevictable_pages;
3428
3429int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3430 void __user *buffer,
af936a16
LS
3431 size_t *length, loff_t *ppos)
3432{
8d65af78 3433 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3434
3435 if (write && *(unsigned long *)table->data)
3436 scan_all_zones_unevictable_pages();
3437
3438 scan_unevictable_pages = 0;
3439 return 0;
3440}
3441
e4455abb 3442#ifdef CONFIG_NUMA
af936a16
LS
3443/*
3444 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3445 * a specified node's per zone unevictable lists for evictable pages.
3446 */
3447
3448static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3449 struct sysdev_attribute *attr,
3450 char *buf)
3451{
3452 return sprintf(buf, "0\n"); /* always zero; should fit... */
3453}
3454
3455static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3456 struct sysdev_attribute *attr,
3457 const char *buf, size_t count)
3458{
3459 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
3460 struct zone *zone;
3461 unsigned long res;
3462 unsigned long req = strict_strtoul(buf, 10, &res);
3463
3464 if (!req)
3465 return 1; /* zero is no-op */
3466
3467 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
3468 if (!populated_zone(zone))
3469 continue;
3470 scan_zone_unevictable_pages(zone);
3471 }
3472 return 1;
3473}
3474
3475
3476static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3477 read_scan_unevictable_node,
3478 write_scan_unevictable_node);
3479
3480int scan_unevictable_register_node(struct node *node)
3481{
3482 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3483}
3484
3485void scan_unevictable_unregister_node(struct node *node)
3486{
3487 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3488}
e4455abb 3489#endif
This page took 0.980117 seconds and 5 git commands to generate.