mm/vmemmap: fix wrong use of virt_to_page
[deliverable/linux.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
c255a458 136#ifdef CONFIG_MEMCG
89b5fae5
JW
137static bool global_reclaim(struct scan_control *sc)
138{
f16015fb 139 return !sc->target_mem_cgroup;
89b5fae5 140}
91a45470 141#else
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
144 return true;
145}
91a45470
KH
146#endif
147
4d7dcca2 148static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 149{
c3c787e8 150 if (!mem_cgroup_disabled())
4d7dcca2 151 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 152
074291fe 153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
154}
155
1da177e4
LT
156/*
157 * Add a shrinker callback to be called from the vm
158 */
8e1f936b 159void register_shrinker(struct shrinker *shrinker)
1da177e4 160{
83aeeada 161 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
1da177e4 165}
8e1f936b 166EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
167
168/*
169 * Remove one
170 */
8e1f936b 171void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
172{
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
1da177e4 176}
8e1f936b 177EXPORT_SYMBOL(unregister_shrinker);
1da177e4 178
1495f230
YH
179static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182{
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185}
186
1da177e4
LT
187#define SHRINK_BATCH 128
188/*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
183ff22b 196 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
b15e0905 204 *
205 * Returns the number of slab objects which we shrunk.
1da177e4 206 */
a09ed5e0 207unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 208 unsigned long nr_pages_scanned,
a09ed5e0 209 unsigned long lru_pages)
1da177e4
LT
210{
211 struct shrinker *shrinker;
69e05944 212 unsigned long ret = 0;
1da177e4 213
1495f230
YH
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 216
f06590bd
MK
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
1da177e4
LT
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
635697c6
KK
225 long total_scan;
226 long max_pass;
09576073 227 int shrink_ret = 0;
acf92b48
DC
228 long nr;
229 long new_nr;
e9299f50
DC
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
1da177e4 232
635697c6
KK
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
acf92b48
DC
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
83aeeada 242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
243
244 total_scan = nr;
1495f230 245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 246 delta *= max_pass;
1da177e4 247 do_div(delta, lru_pages + 1);
acf92b48
DC
248 total_scan += delta;
249 if (total_scan < 0) {
88c3bd70
DR
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
acf92b48
DC
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
ea164d73
AA
254 }
255
3567b59a
DC
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
ea164d73
AA
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
acf92b48
DC
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
1da177e4 278
acf92b48 279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
e9299f50 283 while (total_scan >= batch_size) {
b15e0905 284 int nr_before;
1da177e4 285
1495f230
YH
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 288 batch_size);
1da177e4
LT
289 if (shrink_ret == -1)
290 break;
b15e0905 291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
e9299f50
DC
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
1da177e4
LT
295
296 cond_resched();
297 }
298
acf92b48
DC
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
83aeeada
KK
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
311 }
312 up_read(&shrinker_rwsem);
f06590bd
MK
313out:
314 cond_resched();
b15e0905 315 return ret;
1da177e4
LT
316}
317
1da177e4
LT
318static inline int is_page_cache_freeable(struct page *page)
319{
ceddc3a5
JW
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
edcf4748 325 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
326}
327
7d3579e8
KM
328static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
1da177e4 330{
930d9152 331 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338}
339
340/*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354{
7eaceacc 355 lock_page(page);
3e9f45bd
GC
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
1da177e4
LT
358 unlock_page(page);
359}
360
04e62a29
CL
361/* possible outcome of pageout() */
362typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371} pageout_t;
372
1da177e4 373/*
1742f19f
AM
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
1da177e4 376 */
c661b078 377static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 378 struct scan_control *sc)
1da177e4
LT
379{
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
6aceb53b 387 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
266cf658 403 if (page_has_private(page)) {
1da177e4
LT
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
d40cee24 406 printk("%s: orphaned page\n", __func__);
1da177e4
LT
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
0e093d99 414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
422 .range_start = 0,
423 .range_end = LLONG_MAX,
1da177e4
LT
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
994fc28c 431 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
c661b078 435
1da177e4
LT
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
23b9da55 440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446}
447
a649fd92 448/*
e286781d
NP
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
a649fd92 451 */
e286781d 452static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 453{
28e4d965
NP
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
49d2e9cc 456
19fd6231 457 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 458 /*
0fd0e6b0
NP
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 482 */
e286781d 483 if (!page_freeze_refs(page, 2))
49d2e9cc 484 goto cannot_free;
e286781d
NP
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
49d2e9cc 488 goto cannot_free;
e286781d 489 }
49d2e9cc
CL
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
19fd6231 494 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 495 swapcache_free(swap, page);
e286781d 496 } else {
6072d13c
LT
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
e64a782f 501 __delete_from_page_cache(page);
19fd6231 502 spin_unlock_irq(&mapping->tree_lock);
e767e056 503 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
504
505 if (freepage != NULL)
506 freepage(page);
49d2e9cc
CL
507 }
508
49d2e9cc
CL
509 return 1;
510
511cannot_free:
19fd6231 512 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
513 return 0;
514}
515
e286781d
NP
516/*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522int remove_mapping(struct address_space *mapping, struct page *page)
523{
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534}
535
894bc310
LS
536/**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
894bc310
LS
545void putback_lru_page(struct page *page)
546{
547 int lru;
548 int active = !!TestClearPageActive(page);
bbfd28ee 549 int was_unevictable = PageUnevictable(page);
894bc310
LS
550
551 VM_BUG_ON(PageLRU(page));
552
553redo:
554 ClearPageUnevictable(page);
555
39b5f29a 556 if (page_evictable(page)) {
894bc310
LS
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
401a8e1c 563 lru = active + page_lru_base_type(page);
894bc310
LS
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
6a7b9548 572 /*
21ee9f39
MK
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
24513264 576 * isolation/check_move_unevictable_pages,
21ee9f39 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
578 * the page back to the evictable list.
579 *
21ee9f39 580 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
581 */
582 smp_mb();
894bc310 583 }
894bc310
LS
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
39b5f29a 590 if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
894bc310
LS
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
bbfd28ee
LS
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
894bc310
LS
606 put_page(page); /* drop ref from isolate */
607}
608
dfc8d636
JW
609enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
64574746 612 PAGEREF_KEEP,
dfc8d636
JW
613 PAGEREF_ACTIVATE,
614};
615
616static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618{
64574746 619 int referenced_ptes, referenced_page;
dfc8d636 620 unsigned long vm_flags;
dfc8d636 621
c3ac9a8a
JW
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
64574746 624 referenced_page = TestClearPageReferenced(page);
dfc8d636 625
dfc8d636
JW
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
64574746 633 if (referenced_ptes) {
e4898273 634 if (PageSwapBacked(page))
64574746
JW
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
34dbc67a 652 if (referenced_page || referenced_ptes > 1)
64574746
JW
653 return PAGEREF_ACTIVATE;
654
c909e993
KK
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
64574746
JW
661 return PAGEREF_KEEP;
662 }
dfc8d636
JW
663
664 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 665 if (referenced_page && !PageSwapBacked(page))
64574746
JW
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
dfc8d636
JW
669}
670
1da177e4 671/*
1742f19f 672 * shrink_page_list() returns the number of reclaimed pages
1da177e4 673 */
1742f19f 674static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 675 struct zone *zone,
f84f6e2b 676 struct scan_control *sc,
02c6de8d 677 enum ttu_flags ttu_flags,
92df3a72 678 unsigned long *ret_nr_dirty,
02c6de8d
MK
679 unsigned long *ret_nr_writeback,
680 bool force_reclaim)
1da177e4
LT
681{
682 LIST_HEAD(ret_pages);
abe4c3b5 683 LIST_HEAD(free_pages);
1da177e4 684 int pgactivate = 0;
0e093d99
MG
685 unsigned long nr_dirty = 0;
686 unsigned long nr_congested = 0;
05ff5137 687 unsigned long nr_reclaimed = 0;
92df3a72 688 unsigned long nr_writeback = 0;
1da177e4
LT
689
690 cond_resched();
691
69980e31 692 mem_cgroup_uncharge_start();
1da177e4
LT
693 while (!list_empty(page_list)) {
694 struct address_space *mapping;
695 struct page *page;
696 int may_enter_fs;
02c6de8d 697 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1da177e4
LT
698
699 cond_resched();
700
701 page = lru_to_page(page_list);
702 list_del(&page->lru);
703
529ae9aa 704 if (!trylock_page(page))
1da177e4
LT
705 goto keep;
706
725d704e 707 VM_BUG_ON(PageActive(page));
6a18adb3 708 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
709
710 sc->nr_scanned++;
80e43426 711
39b5f29a 712 if (unlikely(!page_evictable(page)))
b291f000 713 goto cull_mlocked;
894bc310 714
a6dc60f8 715 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
716 goto keep_locked;
717
1da177e4
LT
718 /* Double the slab pressure for mapped and swapcache pages */
719 if (page_mapped(page) || PageSwapCache(page))
720 sc->nr_scanned++;
721
c661b078
AW
722 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
723 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
724
725 if (PageWriteback(page)) {
e62e384e
MH
726 /*
727 * memcg doesn't have any dirty pages throttling so we
728 * could easily OOM just because too many pages are in
c3b94f44 729 * writeback and there is nothing else to reclaim.
e62e384e 730 *
c3b94f44 731 * Check __GFP_IO, certainly because a loop driver
e62e384e
MH
732 * thread might enter reclaim, and deadlock if it waits
733 * on a page for which it is needed to do the write
734 * (loop masks off __GFP_IO|__GFP_FS for this reason);
735 * but more thought would probably show more reasons.
c3b94f44
HD
736 *
737 * Don't require __GFP_FS, since we're not going into
738 * the FS, just waiting on its writeback completion.
739 * Worryingly, ext4 gfs2 and xfs allocate pages with
740 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
741 * testing may_enter_fs here is liable to OOM on them.
e62e384e 742 */
c3b94f44
HD
743 if (global_reclaim(sc) ||
744 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
745 /*
746 * This is slightly racy - end_page_writeback()
747 * might have just cleared PageReclaim, then
748 * setting PageReclaim here end up interpreted
749 * as PageReadahead - but that does not matter
750 * enough to care. What we do want is for this
751 * page to have PageReclaim set next time memcg
752 * reclaim reaches the tests above, so it will
753 * then wait_on_page_writeback() to avoid OOM;
754 * and it's also appropriate in global reclaim.
755 */
756 SetPageReclaim(page);
e62e384e 757 nr_writeback++;
c3b94f44 758 goto keep_locked;
e62e384e 759 }
c3b94f44 760 wait_on_page_writeback(page);
c661b078 761 }
1da177e4 762
02c6de8d
MK
763 if (!force_reclaim)
764 references = page_check_references(page, sc);
765
dfc8d636
JW
766 switch (references) {
767 case PAGEREF_ACTIVATE:
1da177e4 768 goto activate_locked;
64574746
JW
769 case PAGEREF_KEEP:
770 goto keep_locked;
dfc8d636
JW
771 case PAGEREF_RECLAIM:
772 case PAGEREF_RECLAIM_CLEAN:
773 ; /* try to reclaim the page below */
774 }
1da177e4 775
1da177e4
LT
776 /*
777 * Anonymous process memory has backing store?
778 * Try to allocate it some swap space here.
779 */
b291f000 780 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
781 if (!(sc->gfp_mask & __GFP_IO))
782 goto keep_locked;
ac47b003 783 if (!add_to_swap(page))
1da177e4 784 goto activate_locked;
63eb6b93 785 may_enter_fs = 1;
b291f000 786 }
1da177e4
LT
787
788 mapping = page_mapping(page);
1da177e4
LT
789
790 /*
791 * The page is mapped into the page tables of one or more
792 * processes. Try to unmap it here.
793 */
794 if (page_mapped(page) && mapping) {
02c6de8d 795 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
796 case SWAP_FAIL:
797 goto activate_locked;
798 case SWAP_AGAIN:
799 goto keep_locked;
b291f000
NP
800 case SWAP_MLOCK:
801 goto cull_mlocked;
1da177e4
LT
802 case SWAP_SUCCESS:
803 ; /* try to free the page below */
804 }
805 }
806
807 if (PageDirty(page)) {
0e093d99
MG
808 nr_dirty++;
809
ee72886d
MG
810 /*
811 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
812 * avoid risk of stack overflow but do not writeback
813 * unless under significant pressure.
ee72886d 814 */
f84f6e2b 815 if (page_is_file_cache(page) &&
9e3b2f8c
KK
816 (!current_is_kswapd() ||
817 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
818 /*
819 * Immediately reclaim when written back.
820 * Similar in principal to deactivate_page()
821 * except we already have the page isolated
822 * and know it's dirty
823 */
824 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
825 SetPageReclaim(page);
826
ee72886d
MG
827 goto keep_locked;
828 }
829
dfc8d636 830 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 831 goto keep_locked;
4dd4b920 832 if (!may_enter_fs)
1da177e4 833 goto keep_locked;
52a8363e 834 if (!sc->may_writepage)
1da177e4
LT
835 goto keep_locked;
836
837 /* Page is dirty, try to write it out here */
7d3579e8 838 switch (pageout(page, mapping, sc)) {
1da177e4 839 case PAGE_KEEP:
0e093d99 840 nr_congested++;
1da177e4
LT
841 goto keep_locked;
842 case PAGE_ACTIVATE:
843 goto activate_locked;
844 case PAGE_SUCCESS:
7d3579e8 845 if (PageWriteback(page))
41ac1999 846 goto keep;
7d3579e8 847 if (PageDirty(page))
1da177e4 848 goto keep;
7d3579e8 849
1da177e4
LT
850 /*
851 * A synchronous write - probably a ramdisk. Go
852 * ahead and try to reclaim the page.
853 */
529ae9aa 854 if (!trylock_page(page))
1da177e4
LT
855 goto keep;
856 if (PageDirty(page) || PageWriteback(page))
857 goto keep_locked;
858 mapping = page_mapping(page);
859 case PAGE_CLEAN:
860 ; /* try to free the page below */
861 }
862 }
863
864 /*
865 * If the page has buffers, try to free the buffer mappings
866 * associated with this page. If we succeed we try to free
867 * the page as well.
868 *
869 * We do this even if the page is PageDirty().
870 * try_to_release_page() does not perform I/O, but it is
871 * possible for a page to have PageDirty set, but it is actually
872 * clean (all its buffers are clean). This happens if the
873 * buffers were written out directly, with submit_bh(). ext3
894bc310 874 * will do this, as well as the blockdev mapping.
1da177e4
LT
875 * try_to_release_page() will discover that cleanness and will
876 * drop the buffers and mark the page clean - it can be freed.
877 *
878 * Rarely, pages can have buffers and no ->mapping. These are
879 * the pages which were not successfully invalidated in
880 * truncate_complete_page(). We try to drop those buffers here
881 * and if that worked, and the page is no longer mapped into
882 * process address space (page_count == 1) it can be freed.
883 * Otherwise, leave the page on the LRU so it is swappable.
884 */
266cf658 885 if (page_has_private(page)) {
1da177e4
LT
886 if (!try_to_release_page(page, sc->gfp_mask))
887 goto activate_locked;
e286781d
NP
888 if (!mapping && page_count(page) == 1) {
889 unlock_page(page);
890 if (put_page_testzero(page))
891 goto free_it;
892 else {
893 /*
894 * rare race with speculative reference.
895 * the speculative reference will free
896 * this page shortly, so we may
897 * increment nr_reclaimed here (and
898 * leave it off the LRU).
899 */
900 nr_reclaimed++;
901 continue;
902 }
903 }
1da177e4
LT
904 }
905
e286781d 906 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 907 goto keep_locked;
1da177e4 908
a978d6f5
NP
909 /*
910 * At this point, we have no other references and there is
911 * no way to pick any more up (removed from LRU, removed
912 * from pagecache). Can use non-atomic bitops now (and
913 * we obviously don't have to worry about waking up a process
914 * waiting on the page lock, because there are no references.
915 */
916 __clear_page_locked(page);
e286781d 917free_it:
05ff5137 918 nr_reclaimed++;
abe4c3b5
MG
919
920 /*
921 * Is there need to periodically free_page_list? It would
922 * appear not as the counts should be low
923 */
924 list_add(&page->lru, &free_pages);
1da177e4
LT
925 continue;
926
b291f000 927cull_mlocked:
63d6c5ad
HD
928 if (PageSwapCache(page))
929 try_to_free_swap(page);
b291f000
NP
930 unlock_page(page);
931 putback_lru_page(page);
932 continue;
933
1da177e4 934activate_locked:
68a22394
RR
935 /* Not a candidate for swapping, so reclaim swap space. */
936 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 937 try_to_free_swap(page);
894bc310 938 VM_BUG_ON(PageActive(page));
1da177e4
LT
939 SetPageActive(page);
940 pgactivate++;
941keep_locked:
942 unlock_page(page);
943keep:
944 list_add(&page->lru, &ret_pages);
b291f000 945 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 946 }
abe4c3b5 947
0e093d99
MG
948 /*
949 * Tag a zone as congested if all the dirty pages encountered were
950 * backed by a congested BDI. In this case, reclaimers should just
951 * back off and wait for congestion to clear because further reclaim
952 * will encounter the same problem
953 */
89b5fae5 954 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 955 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 956
cc59850e 957 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 958
1da177e4 959 list_splice(&ret_pages, page_list);
f8891e5e 960 count_vm_events(PGACTIVATE, pgactivate);
69980e31 961 mem_cgroup_uncharge_end();
92df3a72
MG
962 *ret_nr_dirty += nr_dirty;
963 *ret_nr_writeback += nr_writeback;
05ff5137 964 return nr_reclaimed;
1da177e4
LT
965}
966
02c6de8d
MK
967unsigned long reclaim_clean_pages_from_list(struct zone *zone,
968 struct list_head *page_list)
969{
970 struct scan_control sc = {
971 .gfp_mask = GFP_KERNEL,
972 .priority = DEF_PRIORITY,
973 .may_unmap = 1,
974 };
975 unsigned long ret, dummy1, dummy2;
976 struct page *page, *next;
977 LIST_HEAD(clean_pages);
978
979 list_for_each_entry_safe(page, next, page_list, lru) {
980 if (page_is_file_cache(page) && !PageDirty(page)) {
981 ClearPageActive(page);
982 list_move(&page->lru, &clean_pages);
983 }
984 }
985
986 ret = shrink_page_list(&clean_pages, zone, &sc,
987 TTU_UNMAP|TTU_IGNORE_ACCESS,
988 &dummy1, &dummy2, true);
989 list_splice(&clean_pages, page_list);
990 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
991 return ret;
992}
993
5ad333eb
AW
994/*
995 * Attempt to remove the specified page from its LRU. Only take this page
996 * if it is of the appropriate PageActive status. Pages which are being
997 * freed elsewhere are also ignored.
998 *
999 * page: page to consider
1000 * mode: one of the LRU isolation modes defined above
1001 *
1002 * returns 0 on success, -ve errno on failure.
1003 */
f3fd4a61 1004int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1005{
1006 int ret = -EINVAL;
1007
1008 /* Only take pages on the LRU. */
1009 if (!PageLRU(page))
1010 return ret;
1011
e46a2879
MK
1012 /* Compaction should not handle unevictable pages but CMA can do so */
1013 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1014 return ret;
1015
5ad333eb 1016 ret = -EBUSY;
08e552c6 1017
c8244935
MG
1018 /*
1019 * To minimise LRU disruption, the caller can indicate that it only
1020 * wants to isolate pages it will be able to operate on without
1021 * blocking - clean pages for the most part.
1022 *
1023 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1024 * is used by reclaim when it is cannot write to backing storage
1025 *
1026 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1027 * that it is possible to migrate without blocking
1028 */
1029 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1030 /* All the caller can do on PageWriteback is block */
1031 if (PageWriteback(page))
1032 return ret;
1033
1034 if (PageDirty(page)) {
1035 struct address_space *mapping;
1036
1037 /* ISOLATE_CLEAN means only clean pages */
1038 if (mode & ISOLATE_CLEAN)
1039 return ret;
1040
1041 /*
1042 * Only pages without mappings or that have a
1043 * ->migratepage callback are possible to migrate
1044 * without blocking
1045 */
1046 mapping = page_mapping(page);
1047 if (mapping && !mapping->a_ops->migratepage)
1048 return ret;
1049 }
1050 }
39deaf85 1051
f80c0673
MK
1052 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1053 return ret;
1054
5ad333eb
AW
1055 if (likely(get_page_unless_zero(page))) {
1056 /*
1057 * Be careful not to clear PageLRU until after we're
1058 * sure the page is not being freed elsewhere -- the
1059 * page release code relies on it.
1060 */
1061 ClearPageLRU(page);
1062 ret = 0;
1063 }
1064
1065 return ret;
1066}
1067
1da177e4
LT
1068/*
1069 * zone->lru_lock is heavily contended. Some of the functions that
1070 * shrink the lists perform better by taking out a batch of pages
1071 * and working on them outside the LRU lock.
1072 *
1073 * For pagecache intensive workloads, this function is the hottest
1074 * spot in the kernel (apart from copy_*_user functions).
1075 *
1076 * Appropriate locks must be held before calling this function.
1077 *
1078 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1079 * @lruvec: The LRU vector to pull pages from.
1da177e4 1080 * @dst: The temp list to put pages on to.
f626012d 1081 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1082 * @sc: The scan_control struct for this reclaim session
5ad333eb 1083 * @mode: One of the LRU isolation modes
3cb99451 1084 * @lru: LRU list id for isolating
1da177e4
LT
1085 *
1086 * returns how many pages were moved onto *@dst.
1087 */
69e05944 1088static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1089 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1090 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1091 isolate_mode_t mode, enum lru_list lru)
1da177e4 1092{
75b00af7 1093 struct list_head *src = &lruvec->lists[lru];
69e05944 1094 unsigned long nr_taken = 0;
c9b02d97 1095 unsigned long scan;
1da177e4 1096
c9b02d97 1097 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1098 struct page *page;
fa9add64 1099 int nr_pages;
5ad333eb 1100
1da177e4
LT
1101 page = lru_to_page(src);
1102 prefetchw_prev_lru_page(page, src, flags);
1103
725d704e 1104 VM_BUG_ON(!PageLRU(page));
8d438f96 1105
f3fd4a61 1106 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1107 case 0:
fa9add64
HD
1108 nr_pages = hpage_nr_pages(page);
1109 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1110 list_move(&page->lru, dst);
fa9add64 1111 nr_taken += nr_pages;
5ad333eb
AW
1112 break;
1113
1114 case -EBUSY:
1115 /* else it is being freed elsewhere */
1116 list_move(&page->lru, src);
1117 continue;
46453a6e 1118
5ad333eb
AW
1119 default:
1120 BUG();
1121 }
1da177e4
LT
1122 }
1123
f626012d 1124 *nr_scanned = scan;
75b00af7
HD
1125 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1126 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1127 return nr_taken;
1128}
1129
62695a84
NP
1130/**
1131 * isolate_lru_page - tries to isolate a page from its LRU list
1132 * @page: page to isolate from its LRU list
1133 *
1134 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1135 * vmstat statistic corresponding to whatever LRU list the page was on.
1136 *
1137 * Returns 0 if the page was removed from an LRU list.
1138 * Returns -EBUSY if the page was not on an LRU list.
1139 *
1140 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1141 * the active list, it will have PageActive set. If it was found on
1142 * the unevictable list, it will have the PageUnevictable bit set. That flag
1143 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1144 *
1145 * The vmstat statistic corresponding to the list on which the page was
1146 * found will be decremented.
1147 *
1148 * Restrictions:
1149 * (1) Must be called with an elevated refcount on the page. This is a
1150 * fundamentnal difference from isolate_lru_pages (which is called
1151 * without a stable reference).
1152 * (2) the lru_lock must not be held.
1153 * (3) interrupts must be enabled.
1154 */
1155int isolate_lru_page(struct page *page)
1156{
1157 int ret = -EBUSY;
1158
0c917313
KK
1159 VM_BUG_ON(!page_count(page));
1160
62695a84
NP
1161 if (PageLRU(page)) {
1162 struct zone *zone = page_zone(page);
fa9add64 1163 struct lruvec *lruvec;
62695a84
NP
1164
1165 spin_lock_irq(&zone->lru_lock);
fa9add64 1166 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1167 if (PageLRU(page)) {
894bc310 1168 int lru = page_lru(page);
0c917313 1169 get_page(page);
62695a84 1170 ClearPageLRU(page);
fa9add64
HD
1171 del_page_from_lru_list(page, lruvec, lru);
1172 ret = 0;
62695a84
NP
1173 }
1174 spin_unlock_irq(&zone->lru_lock);
1175 }
1176 return ret;
1177}
1178
35cd7815
RR
1179/*
1180 * Are there way too many processes in the direct reclaim path already?
1181 */
1182static int too_many_isolated(struct zone *zone, int file,
1183 struct scan_control *sc)
1184{
1185 unsigned long inactive, isolated;
1186
1187 if (current_is_kswapd())
1188 return 0;
1189
89b5fae5 1190 if (!global_reclaim(sc))
35cd7815
RR
1191 return 0;
1192
1193 if (file) {
1194 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1195 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1196 } else {
1197 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1198 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1199 }
1200
1201 return isolated > inactive;
1202}
1203
66635629 1204static noinline_for_stack void
75b00af7 1205putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1206{
27ac81d8
KK
1207 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1208 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1209 LIST_HEAD(pages_to_free);
66635629 1210
66635629
MG
1211 /*
1212 * Put back any unfreeable pages.
1213 */
66635629 1214 while (!list_empty(page_list)) {
3f79768f 1215 struct page *page = lru_to_page(page_list);
66635629 1216 int lru;
3f79768f 1217
66635629
MG
1218 VM_BUG_ON(PageLRU(page));
1219 list_del(&page->lru);
39b5f29a 1220 if (unlikely(!page_evictable(page))) {
66635629
MG
1221 spin_unlock_irq(&zone->lru_lock);
1222 putback_lru_page(page);
1223 spin_lock_irq(&zone->lru_lock);
1224 continue;
1225 }
fa9add64
HD
1226
1227 lruvec = mem_cgroup_page_lruvec(page, zone);
1228
7a608572 1229 SetPageLRU(page);
66635629 1230 lru = page_lru(page);
fa9add64
HD
1231 add_page_to_lru_list(page, lruvec, lru);
1232
66635629
MG
1233 if (is_active_lru(lru)) {
1234 int file = is_file_lru(lru);
9992af10
RR
1235 int numpages = hpage_nr_pages(page);
1236 reclaim_stat->recent_rotated[file] += numpages;
66635629 1237 }
2bcf8879
HD
1238 if (put_page_testzero(page)) {
1239 __ClearPageLRU(page);
1240 __ClearPageActive(page);
fa9add64 1241 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1242
1243 if (unlikely(PageCompound(page))) {
1244 spin_unlock_irq(&zone->lru_lock);
1245 (*get_compound_page_dtor(page))(page);
1246 spin_lock_irq(&zone->lru_lock);
1247 } else
1248 list_add(&page->lru, &pages_to_free);
66635629
MG
1249 }
1250 }
66635629 1251
3f79768f
HD
1252 /*
1253 * To save our caller's stack, now use input list for pages to free.
1254 */
1255 list_splice(&pages_to_free, page_list);
66635629
MG
1256}
1257
1da177e4 1258/*
1742f19f
AM
1259 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1260 * of reclaimed pages
1da177e4 1261 */
66635629 1262static noinline_for_stack unsigned long
1a93be0e 1263shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1264 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1265{
1266 LIST_HEAD(page_list);
e247dbce 1267 unsigned long nr_scanned;
05ff5137 1268 unsigned long nr_reclaimed = 0;
e247dbce 1269 unsigned long nr_taken;
92df3a72
MG
1270 unsigned long nr_dirty = 0;
1271 unsigned long nr_writeback = 0;
f3fd4a61 1272 isolate_mode_t isolate_mode = 0;
3cb99451 1273 int file = is_file_lru(lru);
1a93be0e
KK
1274 struct zone *zone = lruvec_zone(lruvec);
1275 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1276
35cd7815 1277 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1278 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1279
1280 /* We are about to die and free our memory. Return now. */
1281 if (fatal_signal_pending(current))
1282 return SWAP_CLUSTER_MAX;
1283 }
1284
1da177e4 1285 lru_add_drain();
f80c0673
MK
1286
1287 if (!sc->may_unmap)
61317289 1288 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1289 if (!sc->may_writepage)
61317289 1290 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1291
1da177e4 1292 spin_lock_irq(&zone->lru_lock);
b35ea17b 1293
5dc35979
KK
1294 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1295 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1296
1297 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1298 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1299
89b5fae5 1300 if (global_reclaim(sc)) {
e247dbce
KM
1301 zone->pages_scanned += nr_scanned;
1302 if (current_is_kswapd())
75b00af7 1303 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1304 else
75b00af7 1305 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1306 }
d563c050 1307 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1308
d563c050 1309 if (nr_taken == 0)
66635629 1310 return 0;
5ad333eb 1311
02c6de8d
MK
1312 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1313 &nr_dirty, &nr_writeback, false);
c661b078 1314
3f79768f
HD
1315 spin_lock_irq(&zone->lru_lock);
1316
95d918fc 1317 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1318
904249aa
YH
1319 if (global_reclaim(sc)) {
1320 if (current_is_kswapd())
1321 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1322 nr_reclaimed);
1323 else
1324 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1325 nr_reclaimed);
1326 }
a74609fa 1327
27ac81d8 1328 putback_inactive_pages(lruvec, &page_list);
3f79768f 1329
95d918fc 1330 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1331
1332 spin_unlock_irq(&zone->lru_lock);
1333
1334 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1335
92df3a72
MG
1336 /*
1337 * If reclaim is isolating dirty pages under writeback, it implies
1338 * that the long-lived page allocation rate is exceeding the page
1339 * laundering rate. Either the global limits are not being effective
1340 * at throttling processes due to the page distribution throughout
1341 * zones or there is heavy usage of a slow backing device. The
1342 * only option is to throttle from reclaim context which is not ideal
1343 * as there is no guarantee the dirtying process is throttled in the
1344 * same way balance_dirty_pages() manages.
1345 *
1346 * This scales the number of dirty pages that must be under writeback
1347 * before throttling depending on priority. It is a simple backoff
1348 * function that has the most effect in the range DEF_PRIORITY to
1349 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1350 * in trouble and reclaim is considered to be in trouble.
1351 *
1352 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1353 * DEF_PRIORITY-1 50% must be PageWriteback
1354 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1355 * ...
1356 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1357 * isolated page is PageWriteback
1358 */
9e3b2f8c
KK
1359 if (nr_writeback && nr_writeback >=
1360 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1361 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1362
e11da5b4
MG
1363 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1364 zone_idx(zone),
1365 nr_scanned, nr_reclaimed,
9e3b2f8c 1366 sc->priority,
23b9da55 1367 trace_shrink_flags(file));
05ff5137 1368 return nr_reclaimed;
1da177e4
LT
1369}
1370
1371/*
1372 * This moves pages from the active list to the inactive list.
1373 *
1374 * We move them the other way if the page is referenced by one or more
1375 * processes, from rmap.
1376 *
1377 * If the pages are mostly unmapped, the processing is fast and it is
1378 * appropriate to hold zone->lru_lock across the whole operation. But if
1379 * the pages are mapped, the processing is slow (page_referenced()) so we
1380 * should drop zone->lru_lock around each page. It's impossible to balance
1381 * this, so instead we remove the pages from the LRU while processing them.
1382 * It is safe to rely on PG_active against the non-LRU pages in here because
1383 * nobody will play with that bit on a non-LRU page.
1384 *
1385 * The downside is that we have to touch page->_count against each page.
1386 * But we had to alter page->flags anyway.
1387 */
1cfb419b 1388
fa9add64 1389static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1390 struct list_head *list,
2bcf8879 1391 struct list_head *pages_to_free,
3eb4140f
WF
1392 enum lru_list lru)
1393{
fa9add64 1394 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1395 unsigned long pgmoved = 0;
3eb4140f 1396 struct page *page;
fa9add64 1397 int nr_pages;
3eb4140f 1398
3eb4140f
WF
1399 while (!list_empty(list)) {
1400 page = lru_to_page(list);
fa9add64 1401 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1402
1403 VM_BUG_ON(PageLRU(page));
1404 SetPageLRU(page);
1405
fa9add64
HD
1406 nr_pages = hpage_nr_pages(page);
1407 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1408 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1409 pgmoved += nr_pages;
3eb4140f 1410
2bcf8879
HD
1411 if (put_page_testzero(page)) {
1412 __ClearPageLRU(page);
1413 __ClearPageActive(page);
fa9add64 1414 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1415
1416 if (unlikely(PageCompound(page))) {
1417 spin_unlock_irq(&zone->lru_lock);
1418 (*get_compound_page_dtor(page))(page);
1419 spin_lock_irq(&zone->lru_lock);
1420 } else
1421 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1422 }
1423 }
1424 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1425 if (!is_active_lru(lru))
1426 __count_vm_events(PGDEACTIVATE, pgmoved);
1427}
1cfb419b 1428
f626012d 1429static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1430 struct lruvec *lruvec,
f16015fb 1431 struct scan_control *sc,
9e3b2f8c 1432 enum lru_list lru)
1da177e4 1433{
44c241f1 1434 unsigned long nr_taken;
f626012d 1435 unsigned long nr_scanned;
6fe6b7e3 1436 unsigned long vm_flags;
1da177e4 1437 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1438 LIST_HEAD(l_active);
b69408e8 1439 LIST_HEAD(l_inactive);
1da177e4 1440 struct page *page;
1a93be0e 1441 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1442 unsigned long nr_rotated = 0;
f3fd4a61 1443 isolate_mode_t isolate_mode = 0;
3cb99451 1444 int file = is_file_lru(lru);
1a93be0e 1445 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1446
1447 lru_add_drain();
f80c0673
MK
1448
1449 if (!sc->may_unmap)
61317289 1450 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1451 if (!sc->may_writepage)
61317289 1452 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1453
1da177e4 1454 spin_lock_irq(&zone->lru_lock);
925b7673 1455
5dc35979
KK
1456 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1457 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1458 if (global_reclaim(sc))
f626012d 1459 zone->pages_scanned += nr_scanned;
89b5fae5 1460
b7c46d15 1461 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1462
f626012d 1463 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1464 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1465 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1466 spin_unlock_irq(&zone->lru_lock);
1467
1da177e4
LT
1468 while (!list_empty(&l_hold)) {
1469 cond_resched();
1470 page = lru_to_page(&l_hold);
1471 list_del(&page->lru);
7e9cd484 1472
39b5f29a 1473 if (unlikely(!page_evictable(page))) {
894bc310
LS
1474 putback_lru_page(page);
1475 continue;
1476 }
1477
cc715d99
MG
1478 if (unlikely(buffer_heads_over_limit)) {
1479 if (page_has_private(page) && trylock_page(page)) {
1480 if (page_has_private(page))
1481 try_to_release_page(page, 0);
1482 unlock_page(page);
1483 }
1484 }
1485
c3ac9a8a
JW
1486 if (page_referenced(page, 0, sc->target_mem_cgroup,
1487 &vm_flags)) {
9992af10 1488 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1489 /*
1490 * Identify referenced, file-backed active pages and
1491 * give them one more trip around the active list. So
1492 * that executable code get better chances to stay in
1493 * memory under moderate memory pressure. Anon pages
1494 * are not likely to be evicted by use-once streaming
1495 * IO, plus JVM can create lots of anon VM_EXEC pages,
1496 * so we ignore them here.
1497 */
41e20983 1498 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1499 list_add(&page->lru, &l_active);
1500 continue;
1501 }
1502 }
7e9cd484 1503
5205e56e 1504 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1505 list_add(&page->lru, &l_inactive);
1506 }
1507
b555749a 1508 /*
8cab4754 1509 * Move pages back to the lru list.
b555749a 1510 */
2a1dc509 1511 spin_lock_irq(&zone->lru_lock);
556adecb 1512 /*
8cab4754
WF
1513 * Count referenced pages from currently used mappings as rotated,
1514 * even though only some of them are actually re-activated. This
1515 * helps balance scan pressure between file and anonymous pages in
1516 * get_scan_ratio.
7e9cd484 1517 */
b7c46d15 1518 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1519
fa9add64
HD
1520 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1521 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1522 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1523 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1524
1525 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1526}
1527
74e3f3c3 1528#ifdef CONFIG_SWAP
14797e23 1529static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1530{
1531 unsigned long active, inactive;
1532
1533 active = zone_page_state(zone, NR_ACTIVE_ANON);
1534 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1535
1536 if (inactive * zone->inactive_ratio < active)
1537 return 1;
1538
1539 return 0;
1540}
1541
14797e23
KM
1542/**
1543 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1544 * @lruvec: LRU vector to check
14797e23
KM
1545 *
1546 * Returns true if the zone does not have enough inactive anon pages,
1547 * meaning some active anon pages need to be deactivated.
1548 */
c56d5c7d 1549static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1550{
74e3f3c3
MK
1551 /*
1552 * If we don't have swap space, anonymous page deactivation
1553 * is pointless.
1554 */
1555 if (!total_swap_pages)
1556 return 0;
1557
c3c787e8 1558 if (!mem_cgroup_disabled())
c56d5c7d 1559 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1560
c56d5c7d 1561 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1562}
74e3f3c3 1563#else
c56d5c7d 1564static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1565{
1566 return 0;
1567}
1568#endif
14797e23 1569
56e49d21
RR
1570static int inactive_file_is_low_global(struct zone *zone)
1571{
1572 unsigned long active, inactive;
1573
1574 active = zone_page_state(zone, NR_ACTIVE_FILE);
1575 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1576
1577 return (active > inactive);
1578}
1579
1580/**
1581 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1582 * @lruvec: LRU vector to check
56e49d21
RR
1583 *
1584 * When the system is doing streaming IO, memory pressure here
1585 * ensures that active file pages get deactivated, until more
1586 * than half of the file pages are on the inactive list.
1587 *
1588 * Once we get to that situation, protect the system's working
1589 * set from being evicted by disabling active file page aging.
1590 *
1591 * This uses a different ratio than the anonymous pages, because
1592 * the page cache uses a use-once replacement algorithm.
1593 */
c56d5c7d 1594static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1595{
c3c787e8 1596 if (!mem_cgroup_disabled())
c56d5c7d 1597 return mem_cgroup_inactive_file_is_low(lruvec);
56e49d21 1598
c56d5c7d 1599 return inactive_file_is_low_global(lruvec_zone(lruvec));
56e49d21
RR
1600}
1601
75b00af7 1602static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1603{
75b00af7 1604 if (is_file_lru(lru))
c56d5c7d 1605 return inactive_file_is_low(lruvec);
b39415b2 1606 else
c56d5c7d 1607 return inactive_anon_is_low(lruvec);
b39415b2
RR
1608}
1609
4f98a2fe 1610static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1611 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1612{
b39415b2 1613 if (is_active_lru(lru)) {
75b00af7 1614 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1615 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1616 return 0;
1617 }
1618
1a93be0e 1619 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1620}
1621
3d58ab5c 1622static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1623{
89b5fae5 1624 if (global_reclaim(sc))
1f4c025b 1625 return vm_swappiness;
3d58ab5c 1626 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1627}
1628
4f98a2fe
RR
1629/*
1630 * Determine how aggressively the anon and file LRU lists should be
1631 * scanned. The relative value of each set of LRU lists is determined
1632 * by looking at the fraction of the pages scanned we did rotate back
1633 * onto the active list instead of evict.
1634 *
be7bd59d
WL
1635 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1636 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1637 */
90126375 1638static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1639 unsigned long *nr)
4f98a2fe
RR
1640{
1641 unsigned long anon, file, free;
1642 unsigned long anon_prio, file_prio;
1643 unsigned long ap, fp;
90126375 1644 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
76a33fc3 1645 u64 fraction[2], denominator;
4111304d 1646 enum lru_list lru;
76a33fc3 1647 int noswap = 0;
a4d3e9e7 1648 bool force_scan = false;
90126375 1649 struct zone *zone = lruvec_zone(lruvec);
246e87a9 1650
f11c0ca5
JW
1651 /*
1652 * If the zone or memcg is small, nr[l] can be 0. This
1653 * results in no scanning on this priority and a potential
1654 * priority drop. Global direct reclaim can go to the next
1655 * zone and tends to have no problems. Global kswapd is for
1656 * zone balancing and it needs to scan a minimum amount. When
1657 * reclaiming for a memcg, a priority drop can cause high
1658 * latencies, so it's better to scan a minimum amount there as
1659 * well.
1660 */
90126375 1661 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1662 force_scan = true;
89b5fae5 1663 if (!global_reclaim(sc))
a4d3e9e7 1664 force_scan = true;
76a33fc3
SL
1665
1666 /* If we have no swap space, do not bother scanning anon pages. */
1667 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1668 noswap = 1;
1669 fraction[0] = 0;
1670 fraction[1] = 1;
1671 denominator = 1;
1672 goto out;
1673 }
4f98a2fe 1674
4d7dcca2
HD
1675 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1676 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1677 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1678 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1679
89b5fae5 1680 if (global_reclaim(sc)) {
90126375 1681 free = zone_page_state(zone, NR_FREE_PAGES);
eeee9a8c
KM
1682 /* If we have very few page cache pages,
1683 force-scan anon pages. */
90126375 1684 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1685 fraction[0] = 1;
1686 fraction[1] = 0;
1687 denominator = 1;
1688 goto out;
eeee9a8c 1689 }
4f98a2fe
RR
1690 }
1691
58c37f6e
KM
1692 /*
1693 * With swappiness at 100, anonymous and file have the same priority.
1694 * This scanning priority is essentially the inverse of IO cost.
1695 */
3d58ab5c 1696 anon_prio = vmscan_swappiness(sc);
75b00af7 1697 file_prio = 200 - anon_prio;
58c37f6e 1698
4f98a2fe
RR
1699 /*
1700 * OK, so we have swap space and a fair amount of page cache
1701 * pages. We use the recently rotated / recently scanned
1702 * ratios to determine how valuable each cache is.
1703 *
1704 * Because workloads change over time (and to avoid overflow)
1705 * we keep these statistics as a floating average, which ends
1706 * up weighing recent references more than old ones.
1707 *
1708 * anon in [0], file in [1]
1709 */
90126375 1710 spin_lock_irq(&zone->lru_lock);
6e901571 1711 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1712 reclaim_stat->recent_scanned[0] /= 2;
1713 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1714 }
1715
6e901571 1716 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1717 reclaim_stat->recent_scanned[1] /= 2;
1718 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1719 }
1720
4f98a2fe 1721 /*
00d8089c
RR
1722 * The amount of pressure on anon vs file pages is inversely
1723 * proportional to the fraction of recently scanned pages on
1724 * each list that were recently referenced and in active use.
4f98a2fe 1725 */
fe35004f 1726 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1727 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1728
fe35004f 1729 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1730 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1731 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1732
76a33fc3
SL
1733 fraction[0] = ap;
1734 fraction[1] = fp;
1735 denominator = ap + fp + 1;
1736out:
4111304d
HD
1737 for_each_evictable_lru(lru) {
1738 int file = is_file_lru(lru);
76a33fc3 1739 unsigned long scan;
6e08a369 1740
4d7dcca2 1741 scan = get_lru_size(lruvec, lru);
9e3b2f8c
KK
1742 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1743 scan >>= sc->priority;
f11c0ca5
JW
1744 if (!scan && force_scan)
1745 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1746 scan = div64_u64(scan * fraction[file], denominator);
1747 }
4111304d 1748 nr[lru] = scan;
76a33fc3 1749 }
6e08a369 1750}
4f98a2fe 1751
23b9da55 1752/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1753static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55
MG
1754{
1755 if (COMPACTION_BUILD && sc->order &&
1756 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1757 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1758 return true;
1759
1760 return false;
1761}
1762
3e7d3449 1763/*
23b9da55
MG
1764 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1765 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1766 * true if more pages should be reclaimed such that when the page allocator
1767 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1768 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1769 */
90bdcfaf 1770static inline bool should_continue_reclaim(struct lruvec *lruvec,
3e7d3449
MG
1771 unsigned long nr_reclaimed,
1772 unsigned long nr_scanned,
1773 struct scan_control *sc)
1774{
1775 unsigned long pages_for_compaction;
1776 unsigned long inactive_lru_pages;
1777
1778 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1779 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1780 return false;
1781
2876592f
MG
1782 /* Consider stopping depending on scan and reclaim activity */
1783 if (sc->gfp_mask & __GFP_REPEAT) {
1784 /*
1785 * For __GFP_REPEAT allocations, stop reclaiming if the
1786 * full LRU list has been scanned and we are still failing
1787 * to reclaim pages. This full LRU scan is potentially
1788 * expensive but a __GFP_REPEAT caller really wants to succeed
1789 */
1790 if (!nr_reclaimed && !nr_scanned)
1791 return false;
1792 } else {
1793 /*
1794 * For non-__GFP_REPEAT allocations which can presumably
1795 * fail without consequence, stop if we failed to reclaim
1796 * any pages from the last SWAP_CLUSTER_MAX number of
1797 * pages that were scanned. This will return to the
1798 * caller faster at the risk reclaim/compaction and
1799 * the resulting allocation attempt fails
1800 */
1801 if (!nr_reclaimed)
1802 return false;
1803 }
3e7d3449
MG
1804
1805 /*
1806 * If we have not reclaimed enough pages for compaction and the
1807 * inactive lists are large enough, continue reclaiming
1808 */
1809 pages_for_compaction = (2UL << sc->order);
4d7dcca2 1810 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
86cfd3a4 1811 if (nr_swap_pages > 0)
4d7dcca2 1812 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
3e7d3449
MG
1813 if (sc->nr_reclaimed < pages_for_compaction &&
1814 inactive_lru_pages > pages_for_compaction)
1815 return true;
1816
1817 /* If compaction would go ahead or the allocation would succeed, stop */
90bdcfaf 1818 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
3e7d3449
MG
1819 case COMPACT_PARTIAL:
1820 case COMPACT_CONTINUE:
1821 return false;
1822 default:
1823 return true;
1824 }
1825}
1826
1da177e4
LT
1827/*
1828 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1829 */
f9be23d6 1830static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1da177e4 1831{
b69408e8 1832 unsigned long nr[NR_LRU_LISTS];
8695949a 1833 unsigned long nr_to_scan;
4111304d 1834 enum lru_list lru;
f0fdc5e8 1835 unsigned long nr_reclaimed, nr_scanned;
22fba335 1836 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1837 struct blk_plug plug;
e0f79b8f 1838
3e7d3449
MG
1839restart:
1840 nr_reclaimed = 0;
f0fdc5e8 1841 nr_scanned = sc->nr_scanned;
90126375 1842 get_scan_count(lruvec, sc, nr);
1da177e4 1843
3da367c3 1844 blk_start_plug(&plug);
556adecb
RR
1845 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1846 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1847 for_each_evictable_lru(lru) {
1848 if (nr[lru]) {
ece74b2e 1849 nr_to_scan = min_t(unsigned long,
4111304d
HD
1850 nr[lru], SWAP_CLUSTER_MAX);
1851 nr[lru] -= nr_to_scan;
1da177e4 1852
4111304d 1853 nr_reclaimed += shrink_list(lru, nr_to_scan,
1a93be0e 1854 lruvec, sc);
b69408e8 1855 }
1da177e4 1856 }
a79311c1
RR
1857 /*
1858 * On large memory systems, scan >> priority can become
1859 * really large. This is fine for the starting priority;
1860 * we want to put equal scanning pressure on each zone.
1861 * However, if the VM has a harder time of freeing pages,
1862 * with multiple processes reclaiming pages, the total
1863 * freeing target can get unreasonably large.
1864 */
9e3b2f8c
KK
1865 if (nr_reclaimed >= nr_to_reclaim &&
1866 sc->priority < DEF_PRIORITY)
a79311c1 1867 break;
1da177e4 1868 }
3da367c3 1869 blk_finish_plug(&plug);
3e7d3449 1870 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1871
556adecb
RR
1872 /*
1873 * Even if we did not try to evict anon pages at all, we want to
1874 * rebalance the anon lru active/inactive ratio.
1875 */
c56d5c7d 1876 if (inactive_anon_is_low(lruvec))
1a93be0e 1877 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 1878 sc, LRU_ACTIVE_ANON);
556adecb 1879
3e7d3449 1880 /* reclaim/compaction might need reclaim to continue */
90bdcfaf 1881 if (should_continue_reclaim(lruvec, nr_reclaimed,
9e3b2f8c 1882 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1883 goto restart;
1884
232ea4d6 1885 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1886}
1887
9e3b2f8c 1888static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1889{
5660048c
JW
1890 struct mem_cgroup *root = sc->target_mem_cgroup;
1891 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1892 .zone = zone,
9e3b2f8c 1893 .priority = sc->priority,
f16015fb 1894 };
5660048c
JW
1895 struct mem_cgroup *memcg;
1896
5660048c
JW
1897 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1898 do {
f9be23d6
KK
1899 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1900
1901 shrink_lruvec(lruvec, sc);
f16015fb 1902
5660048c
JW
1903 /*
1904 * Limit reclaim has historically picked one memcg and
1905 * scanned it with decreasing priority levels until
1906 * nr_to_reclaim had been reclaimed. This priority
1907 * cycle is thus over after a single memcg.
b95a2f2d
JW
1908 *
1909 * Direct reclaim and kswapd, on the other hand, have
1910 * to scan all memory cgroups to fulfill the overall
1911 * scan target for the zone.
5660048c
JW
1912 */
1913 if (!global_reclaim(sc)) {
1914 mem_cgroup_iter_break(root, memcg);
1915 break;
1916 }
1917 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1918 } while (memcg);
f16015fb
JW
1919}
1920
fe4b1b24
MG
1921/* Returns true if compaction should go ahead for a high-order request */
1922static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1923{
1924 unsigned long balance_gap, watermark;
1925 bool watermark_ok;
1926
1927 /* Do not consider compaction for orders reclaim is meant to satisfy */
1928 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1929 return false;
1930
1931 /*
1932 * Compaction takes time to run and there are potentially other
1933 * callers using the pages just freed. Continue reclaiming until
1934 * there is a buffer of free pages available to give compaction
1935 * a reasonable chance of completing and allocating the page
1936 */
1937 balance_gap = min(low_wmark_pages(zone),
1938 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1939 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1940 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1941 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1942
1943 /*
1944 * If compaction is deferred, reclaim up to a point where
1945 * compaction will have a chance of success when re-enabled
1946 */
aff62249 1947 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1948 return watermark_ok;
1949
1950 /* If compaction is not ready to start, keep reclaiming */
1951 if (!compaction_suitable(zone, sc->order))
1952 return false;
1953
1954 return watermark_ok;
1955}
1956
1da177e4
LT
1957/*
1958 * This is the direct reclaim path, for page-allocating processes. We only
1959 * try to reclaim pages from zones which will satisfy the caller's allocation
1960 * request.
1961 *
41858966
MG
1962 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1963 * Because:
1da177e4
LT
1964 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1965 * allocation or
41858966
MG
1966 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1967 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1968 * zone defense algorithm.
1da177e4 1969 *
1da177e4
LT
1970 * If a zone is deemed to be full of pinned pages then just give it a light
1971 * scan then give up on it.
e0c23279
MG
1972 *
1973 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1974 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1975 * the caller that it should consider retrying the allocation instead of
1976 * further reclaim.
1da177e4 1977 */
9e3b2f8c 1978static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 1979{
dd1a239f 1980 struct zoneref *z;
54a6eb5c 1981 struct zone *zone;
d149e3b2
YH
1982 unsigned long nr_soft_reclaimed;
1983 unsigned long nr_soft_scanned;
0cee34fd 1984 bool aborted_reclaim = false;
1cfb419b 1985
cc715d99
MG
1986 /*
1987 * If the number of buffer_heads in the machine exceeds the maximum
1988 * allowed level, force direct reclaim to scan the highmem zone as
1989 * highmem pages could be pinning lowmem pages storing buffer_heads
1990 */
1991 if (buffer_heads_over_limit)
1992 sc->gfp_mask |= __GFP_HIGHMEM;
1993
d4debc66
MG
1994 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1995 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1996 if (!populated_zone(zone))
1da177e4 1997 continue;
1cfb419b
KH
1998 /*
1999 * Take care memory controller reclaiming has small influence
2000 * to global LRU.
2001 */
89b5fae5 2002 if (global_reclaim(sc)) {
1cfb419b
KH
2003 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2004 continue;
9e3b2f8c
KK
2005 if (zone->all_unreclaimable &&
2006 sc->priority != DEF_PRIORITY)
1cfb419b 2007 continue; /* Let kswapd poll it */
e0887c19
RR
2008 if (COMPACTION_BUILD) {
2009 /*
e0c23279
MG
2010 * If we already have plenty of memory free for
2011 * compaction in this zone, don't free any more.
2012 * Even though compaction is invoked for any
2013 * non-zero order, only frequent costly order
2014 * reclamation is disruptive enough to become a
c7cfa37b
CA
2015 * noticeable problem, like transparent huge
2016 * page allocations.
e0887c19 2017 */
fe4b1b24 2018 if (compaction_ready(zone, sc)) {
0cee34fd 2019 aborted_reclaim = true;
e0887c19 2020 continue;
e0c23279 2021 }
e0887c19 2022 }
ac34a1a3
KH
2023 /*
2024 * This steals pages from memory cgroups over softlimit
2025 * and returns the number of reclaimed pages and
2026 * scanned pages. This works for global memory pressure
2027 * and balancing, not for a memcg's limit.
2028 */
2029 nr_soft_scanned = 0;
2030 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2031 sc->order, sc->gfp_mask,
2032 &nr_soft_scanned);
2033 sc->nr_reclaimed += nr_soft_reclaimed;
2034 sc->nr_scanned += nr_soft_scanned;
2035 /* need some check for avoid more shrink_zone() */
1cfb419b 2036 }
408d8544 2037
9e3b2f8c 2038 shrink_zone(zone, sc);
1da177e4 2039 }
e0c23279 2040
0cee34fd 2041 return aborted_reclaim;
d1908362
MK
2042}
2043
2044static bool zone_reclaimable(struct zone *zone)
2045{
2046 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2047}
2048
929bea7c 2049/* All zones in zonelist are unreclaimable? */
d1908362
MK
2050static bool all_unreclaimable(struct zonelist *zonelist,
2051 struct scan_control *sc)
2052{
2053 struct zoneref *z;
2054 struct zone *zone;
d1908362
MK
2055
2056 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2057 gfp_zone(sc->gfp_mask), sc->nodemask) {
2058 if (!populated_zone(zone))
2059 continue;
2060 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2061 continue;
929bea7c
KM
2062 if (!zone->all_unreclaimable)
2063 return false;
d1908362
MK
2064 }
2065
929bea7c 2066 return true;
1da177e4 2067}
4f98a2fe 2068
1da177e4
LT
2069/*
2070 * This is the main entry point to direct page reclaim.
2071 *
2072 * If a full scan of the inactive list fails to free enough memory then we
2073 * are "out of memory" and something needs to be killed.
2074 *
2075 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2076 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2077 * caller can't do much about. We kick the writeback threads and take explicit
2078 * naps in the hope that some of these pages can be written. But if the
2079 * allocating task holds filesystem locks which prevent writeout this might not
2080 * work, and the allocation attempt will fail.
a41f24ea
NA
2081 *
2082 * returns: 0, if no pages reclaimed
2083 * else, the number of pages reclaimed
1da177e4 2084 */
dac1d27b 2085static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2086 struct scan_control *sc,
2087 struct shrink_control *shrink)
1da177e4 2088{
69e05944 2089 unsigned long total_scanned = 0;
1da177e4 2090 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2091 struct zoneref *z;
54a6eb5c 2092 struct zone *zone;
22fba335 2093 unsigned long writeback_threshold;
0cee34fd 2094 bool aborted_reclaim;
1da177e4 2095
873b4771
KK
2096 delayacct_freepages_start();
2097
89b5fae5 2098 if (global_reclaim(sc))
1cfb419b 2099 count_vm_event(ALLOCSTALL);
1da177e4 2100
9e3b2f8c 2101 do {
66e1707b 2102 sc->nr_scanned = 0;
9e3b2f8c 2103 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2104
66e1707b
BS
2105 /*
2106 * Don't shrink slabs when reclaiming memory from
2107 * over limit cgroups
2108 */
89b5fae5 2109 if (global_reclaim(sc)) {
c6a8a8c5 2110 unsigned long lru_pages = 0;
d4debc66
MG
2111 for_each_zone_zonelist(zone, z, zonelist,
2112 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2113 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2114 continue;
2115
2116 lru_pages += zone_reclaimable_pages(zone);
2117 }
2118
1495f230 2119 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2120 if (reclaim_state) {
a79311c1 2121 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2122 reclaim_state->reclaimed_slab = 0;
2123 }
1da177e4 2124 }
66e1707b 2125 total_scanned += sc->nr_scanned;
bb21c7ce 2126 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2127 goto out;
1da177e4
LT
2128
2129 /*
2130 * Try to write back as many pages as we just scanned. This
2131 * tends to cause slow streaming writers to write data to the
2132 * disk smoothly, at the dirtying rate, which is nice. But
2133 * that's undesirable in laptop mode, where we *want* lumpy
2134 * writeout. So in laptop mode, write out the whole world.
2135 */
22fba335
KM
2136 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2137 if (total_scanned > writeback_threshold) {
0e175a18
CW
2138 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2139 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2140 sc->may_writepage = 1;
1da177e4
LT
2141 }
2142
2143 /* Take a nap, wait for some writeback to complete */
7b51755c 2144 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2145 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2146 struct zone *preferred_zone;
2147
2148 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2149 &cpuset_current_mems_allowed,
2150 &preferred_zone);
0e093d99
MG
2151 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2152 }
9e3b2f8c 2153 } while (--sc->priority >= 0);
bb21c7ce 2154
1da177e4 2155out:
873b4771
KK
2156 delayacct_freepages_end();
2157
bb21c7ce
KM
2158 if (sc->nr_reclaimed)
2159 return sc->nr_reclaimed;
2160
929bea7c
KM
2161 /*
2162 * As hibernation is going on, kswapd is freezed so that it can't mark
2163 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2164 * check.
2165 */
2166 if (oom_killer_disabled)
2167 return 0;
2168
0cee34fd
MG
2169 /* Aborted reclaim to try compaction? don't OOM, then */
2170 if (aborted_reclaim)
7335084d
MG
2171 return 1;
2172
bb21c7ce 2173 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2174 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2175 return 1;
2176
2177 return 0;
1da177e4
LT
2178}
2179
5515061d
MG
2180static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2181{
2182 struct zone *zone;
2183 unsigned long pfmemalloc_reserve = 0;
2184 unsigned long free_pages = 0;
2185 int i;
2186 bool wmark_ok;
2187
2188 for (i = 0; i <= ZONE_NORMAL; i++) {
2189 zone = &pgdat->node_zones[i];
2190 pfmemalloc_reserve += min_wmark_pages(zone);
2191 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2192 }
2193
2194 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2195
2196 /* kswapd must be awake if processes are being throttled */
2197 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2198 pgdat->classzone_idx = min(pgdat->classzone_idx,
2199 (enum zone_type)ZONE_NORMAL);
2200 wake_up_interruptible(&pgdat->kswapd_wait);
2201 }
2202
2203 return wmark_ok;
2204}
2205
2206/*
2207 * Throttle direct reclaimers if backing storage is backed by the network
2208 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2209 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2210 * when the low watermark is reached.
2211 *
2212 * Returns true if a fatal signal was delivered during throttling. If this
2213 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2214 */
50694c28 2215static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2216 nodemask_t *nodemask)
2217{
2218 struct zone *zone;
2219 int high_zoneidx = gfp_zone(gfp_mask);
2220 pg_data_t *pgdat;
2221
2222 /*
2223 * Kernel threads should not be throttled as they may be indirectly
2224 * responsible for cleaning pages necessary for reclaim to make forward
2225 * progress. kjournald for example may enter direct reclaim while
2226 * committing a transaction where throttling it could forcing other
2227 * processes to block on log_wait_commit().
2228 */
2229 if (current->flags & PF_KTHREAD)
50694c28
MG
2230 goto out;
2231
2232 /*
2233 * If a fatal signal is pending, this process should not throttle.
2234 * It should return quickly so it can exit and free its memory
2235 */
2236 if (fatal_signal_pending(current))
2237 goto out;
5515061d
MG
2238
2239 /* Check if the pfmemalloc reserves are ok */
2240 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2241 pgdat = zone->zone_pgdat;
2242 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2243 goto out;
5515061d 2244
68243e76
MG
2245 /* Account for the throttling */
2246 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2247
5515061d
MG
2248 /*
2249 * If the caller cannot enter the filesystem, it's possible that it
2250 * is due to the caller holding an FS lock or performing a journal
2251 * transaction in the case of a filesystem like ext[3|4]. In this case,
2252 * it is not safe to block on pfmemalloc_wait as kswapd could be
2253 * blocked waiting on the same lock. Instead, throttle for up to a
2254 * second before continuing.
2255 */
2256 if (!(gfp_mask & __GFP_FS)) {
2257 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2258 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2259
2260 goto check_pending;
5515061d
MG
2261 }
2262
2263 /* Throttle until kswapd wakes the process */
2264 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2265 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2266
2267check_pending:
2268 if (fatal_signal_pending(current))
2269 return true;
2270
2271out:
2272 return false;
5515061d
MG
2273}
2274
dac1d27b 2275unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2276 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2277{
33906bc5 2278 unsigned long nr_reclaimed;
66e1707b
BS
2279 struct scan_control sc = {
2280 .gfp_mask = gfp_mask,
2281 .may_writepage = !laptop_mode,
22fba335 2282 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2283 .may_unmap = 1,
2e2e4259 2284 .may_swap = 1,
66e1707b 2285 .order = order,
9e3b2f8c 2286 .priority = DEF_PRIORITY,
f16015fb 2287 .target_mem_cgroup = NULL,
327c0e96 2288 .nodemask = nodemask,
66e1707b 2289 };
a09ed5e0
YH
2290 struct shrink_control shrink = {
2291 .gfp_mask = sc.gfp_mask,
2292 };
66e1707b 2293
5515061d 2294 /*
50694c28
MG
2295 * Do not enter reclaim if fatal signal was delivered while throttled.
2296 * 1 is returned so that the page allocator does not OOM kill at this
2297 * point.
5515061d 2298 */
50694c28 2299 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2300 return 1;
2301
33906bc5
MG
2302 trace_mm_vmscan_direct_reclaim_begin(order,
2303 sc.may_writepage,
2304 gfp_mask);
2305
a09ed5e0 2306 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2307
2308 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2309
2310 return nr_reclaimed;
66e1707b
BS
2311}
2312
c255a458 2313#ifdef CONFIG_MEMCG
66e1707b 2314
72835c86 2315unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2316 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2317 struct zone *zone,
2318 unsigned long *nr_scanned)
4e416953
BS
2319{
2320 struct scan_control sc = {
0ae5e89c 2321 .nr_scanned = 0,
b8f5c566 2322 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2323 .may_writepage = !laptop_mode,
2324 .may_unmap = 1,
2325 .may_swap = !noswap,
4e416953 2326 .order = 0,
9e3b2f8c 2327 .priority = 0,
72835c86 2328 .target_mem_cgroup = memcg,
4e416953 2329 };
f9be23d6 2330 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2331
4e416953
BS
2332 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2333 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2334
9e3b2f8c 2335 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2336 sc.may_writepage,
2337 sc.gfp_mask);
2338
4e416953
BS
2339 /*
2340 * NOTE: Although we can get the priority field, using it
2341 * here is not a good idea, since it limits the pages we can scan.
2342 * if we don't reclaim here, the shrink_zone from balance_pgdat
2343 * will pick up pages from other mem cgroup's as well. We hack
2344 * the priority and make it zero.
2345 */
f9be23d6 2346 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2347
2348 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2349
0ae5e89c 2350 *nr_scanned = sc.nr_scanned;
4e416953
BS
2351 return sc.nr_reclaimed;
2352}
2353
72835c86 2354unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2355 gfp_t gfp_mask,
185efc0f 2356 bool noswap)
66e1707b 2357{
4e416953 2358 struct zonelist *zonelist;
bdce6d9e 2359 unsigned long nr_reclaimed;
889976db 2360 int nid;
66e1707b 2361 struct scan_control sc = {
66e1707b 2362 .may_writepage = !laptop_mode,
a6dc60f8 2363 .may_unmap = 1,
2e2e4259 2364 .may_swap = !noswap,
22fba335 2365 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2366 .order = 0,
9e3b2f8c 2367 .priority = DEF_PRIORITY,
72835c86 2368 .target_mem_cgroup = memcg,
327c0e96 2369 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2370 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2371 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2372 };
2373 struct shrink_control shrink = {
2374 .gfp_mask = sc.gfp_mask,
66e1707b 2375 };
66e1707b 2376
889976db
YH
2377 /*
2378 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2379 * take care of from where we get pages. So the node where we start the
2380 * scan does not need to be the current node.
2381 */
72835c86 2382 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2383
2384 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2385
2386 trace_mm_vmscan_memcg_reclaim_begin(0,
2387 sc.may_writepage,
2388 sc.gfp_mask);
2389
a09ed5e0 2390 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2391
2392 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2393
2394 return nr_reclaimed;
66e1707b
BS
2395}
2396#endif
2397
9e3b2f8c 2398static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2399{
b95a2f2d 2400 struct mem_cgroup *memcg;
f16015fb 2401
b95a2f2d
JW
2402 if (!total_swap_pages)
2403 return;
2404
2405 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2406 do {
c56d5c7d 2407 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2408
c56d5c7d 2409 if (inactive_anon_is_low(lruvec))
1a93be0e 2410 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2411 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2412
2413 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2414 } while (memcg);
f16015fb
JW
2415}
2416
1741c877
MG
2417/*
2418 * pgdat_balanced is used when checking if a node is balanced for high-order
2419 * allocations. Only zones that meet watermarks and are in a zone allowed
2420 * by the callers classzone_idx are added to balanced_pages. The total of
2421 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2422 * for the node to be considered balanced. Forcing all zones to be balanced
2423 * for high orders can cause excessive reclaim when there are imbalanced zones.
2424 * The choice of 25% is due to
2425 * o a 16M DMA zone that is balanced will not balance a zone on any
2426 * reasonable sized machine
2427 * o On all other machines, the top zone must be at least a reasonable
25985edc 2428 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2429 * would need to be at least 256M for it to be balance a whole node.
2430 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2431 * to balance a node on its own. These seemed like reasonable ratios.
2432 */
2433static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2434 int classzone_idx)
2435{
2436 unsigned long present_pages = 0;
2437 int i;
2438
2439 for (i = 0; i <= classzone_idx; i++)
2440 present_pages += pgdat->node_zones[i].present_pages;
2441
4746efde
SL
2442 /* A special case here: if zone has no page, we think it's balanced */
2443 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2444}
2445
5515061d
MG
2446/*
2447 * Prepare kswapd for sleeping. This verifies that there are no processes
2448 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2449 *
2450 * Returns true if kswapd is ready to sleep
2451 */
2452static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2453 int classzone_idx)
f50de2d3 2454{
bb3ab596 2455 int i;
1741c877
MG
2456 unsigned long balanced = 0;
2457 bool all_zones_ok = true;
f50de2d3
MG
2458
2459 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2460 if (remaining)
5515061d
MG
2461 return false;
2462
2463 /*
2464 * There is a potential race between when kswapd checks its watermarks
2465 * and a process gets throttled. There is also a potential race if
2466 * processes get throttled, kswapd wakes, a large process exits therby
2467 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2468 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2469 * so wake them now if necessary. If necessary, processes will wake
2470 * kswapd and get throttled again
2471 */
2472 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2473 wake_up(&pgdat->pfmemalloc_wait);
2474 return false;
2475 }
f50de2d3 2476
0abdee2b 2477 /* Check the watermark levels */
08951e54 2478 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2479 struct zone *zone = pgdat->node_zones + i;
2480
2481 if (!populated_zone(zone))
2482 continue;
2483
355b09c4
MG
2484 /*
2485 * balance_pgdat() skips over all_unreclaimable after
2486 * DEF_PRIORITY. Effectively, it considers them balanced so
2487 * they must be considered balanced here as well if kswapd
2488 * is to sleep
2489 */
2490 if (zone->all_unreclaimable) {
2491 balanced += zone->present_pages;
de3fab39 2492 continue;
355b09c4 2493 }
de3fab39 2494
88f5acf8 2495 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2496 i, 0))
1741c877
MG
2497 all_zones_ok = false;
2498 else
2499 balanced += zone->present_pages;
bb3ab596 2500 }
f50de2d3 2501
1741c877
MG
2502 /*
2503 * For high-order requests, the balanced zones must contain at least
2504 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2505 * must be balanced
2506 */
2507 if (order)
5515061d 2508 return pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877 2509 else
5515061d 2510 return all_zones_ok;
f50de2d3
MG
2511}
2512
1da177e4
LT
2513/*
2514 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2515 * they are all at high_wmark_pages(zone).
1da177e4 2516 *
0abdee2b 2517 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2518 *
2519 * There is special handling here for zones which are full of pinned pages.
2520 * This can happen if the pages are all mlocked, or if they are all used by
2521 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2522 * What we do is to detect the case where all pages in the zone have been
2523 * scanned twice and there has been zero successful reclaim. Mark the zone as
2524 * dead and from now on, only perform a short scan. Basically we're polling
2525 * the zone for when the problem goes away.
2526 *
2527 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2528 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2529 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2530 * lower zones regardless of the number of free pages in the lower zones. This
2531 * interoperates with the page allocator fallback scheme to ensure that aging
2532 * of pages is balanced across the zones.
1da177e4 2533 */
99504748 2534static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2535 int *classzone_idx)
1da177e4 2536{
1da177e4 2537 int all_zones_ok;
1741c877 2538 unsigned long balanced;
1da177e4 2539 int i;
99504748 2540 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2541 unsigned long total_scanned;
1da177e4 2542 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2543 unsigned long nr_soft_reclaimed;
2544 unsigned long nr_soft_scanned;
179e9639
AM
2545 struct scan_control sc = {
2546 .gfp_mask = GFP_KERNEL,
a6dc60f8 2547 .may_unmap = 1,
2e2e4259 2548 .may_swap = 1,
22fba335
KM
2549 /*
2550 * kswapd doesn't want to be bailed out while reclaim. because
2551 * we want to put equal scanning pressure on each zone.
2552 */
2553 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2554 .order = order,
f16015fb 2555 .target_mem_cgroup = NULL,
179e9639 2556 };
a09ed5e0
YH
2557 struct shrink_control shrink = {
2558 .gfp_mask = sc.gfp_mask,
2559 };
1da177e4
LT
2560loop_again:
2561 total_scanned = 0;
9e3b2f8c 2562 sc.priority = DEF_PRIORITY;
a79311c1 2563 sc.nr_reclaimed = 0;
c0bbbc73 2564 sc.may_writepage = !laptop_mode;
f8891e5e 2565 count_vm_event(PAGEOUTRUN);
1da177e4 2566
9e3b2f8c 2567 do {
1da177e4 2568 unsigned long lru_pages = 0;
bb3ab596 2569 int has_under_min_watermark_zone = 0;
1da177e4
LT
2570
2571 all_zones_ok = 1;
1741c877 2572 balanced = 0;
1da177e4 2573
d6277db4
RW
2574 /*
2575 * Scan in the highmem->dma direction for the highest
2576 * zone which needs scanning
2577 */
2578 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2579 struct zone *zone = pgdat->node_zones + i;
1da177e4 2580
d6277db4
RW
2581 if (!populated_zone(zone))
2582 continue;
1da177e4 2583
9e3b2f8c
KK
2584 if (zone->all_unreclaimable &&
2585 sc.priority != DEF_PRIORITY)
d6277db4 2586 continue;
1da177e4 2587
556adecb
RR
2588 /*
2589 * Do some background aging of the anon list, to give
2590 * pages a chance to be referenced before reclaiming.
2591 */
9e3b2f8c 2592 age_active_anon(zone, &sc);
556adecb 2593
cc715d99
MG
2594 /*
2595 * If the number of buffer_heads in the machine
2596 * exceeds the maximum allowed level and this node
2597 * has a highmem zone, force kswapd to reclaim from
2598 * it to relieve lowmem pressure.
2599 */
2600 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2601 end_zone = i;
2602 break;
2603 }
2604
88f5acf8 2605 if (!zone_watermark_ok_safe(zone, order,
41858966 2606 high_wmark_pages(zone), 0, 0)) {
d6277db4 2607 end_zone = i;
e1dbeda6 2608 break;
439423f6
SL
2609 } else {
2610 /* If balanced, clear the congested flag */
2611 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2612 }
1da177e4 2613 }
e1dbeda6
AM
2614 if (i < 0)
2615 goto out;
2616
1da177e4
LT
2617 for (i = 0; i <= end_zone; i++) {
2618 struct zone *zone = pgdat->node_zones + i;
2619
adea02a1 2620 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2621 }
2622
2623 /*
2624 * Now scan the zone in the dma->highmem direction, stopping
2625 * at the last zone which needs scanning.
2626 *
2627 * We do this because the page allocator works in the opposite
2628 * direction. This prevents the page allocator from allocating
2629 * pages behind kswapd's direction of progress, which would
2630 * cause too much scanning of the lower zones.
2631 */
2632 for (i = 0; i <= end_zone; i++) {
2633 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2634 int nr_slab, testorder;
8afdcece 2635 unsigned long balance_gap;
1da177e4 2636
f3fe6512 2637 if (!populated_zone(zone))
1da177e4
LT
2638 continue;
2639
9e3b2f8c
KK
2640 if (zone->all_unreclaimable &&
2641 sc.priority != DEF_PRIORITY)
1da177e4
LT
2642 continue;
2643
1da177e4 2644 sc.nr_scanned = 0;
4e416953 2645
0ae5e89c 2646 nr_soft_scanned = 0;
4e416953
BS
2647 /*
2648 * Call soft limit reclaim before calling shrink_zone.
4e416953 2649 */
0ae5e89c
YH
2650 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2651 order, sc.gfp_mask,
2652 &nr_soft_scanned);
2653 sc.nr_reclaimed += nr_soft_reclaimed;
2654 total_scanned += nr_soft_scanned;
00918b6a 2655
32a4330d 2656 /*
8afdcece
MG
2657 * We put equal pressure on every zone, unless
2658 * one zone has way too many pages free
2659 * already. The "too many pages" is defined
2660 * as the high wmark plus a "gap" where the
2661 * gap is either the low watermark or 1%
2662 * of the zone, whichever is smaller.
32a4330d 2663 */
8afdcece
MG
2664 balance_gap = min(low_wmark_pages(zone),
2665 (zone->present_pages +
2666 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2667 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2668 /*
2669 * Kswapd reclaims only single pages with compaction
2670 * enabled. Trying too hard to reclaim until contiguous
2671 * free pages have become available can hurt performance
2672 * by evicting too much useful data from memory.
2673 * Do not reclaim more than needed for compaction.
2674 */
2675 testorder = order;
2676 if (COMPACTION_BUILD && order &&
2677 compaction_suitable(zone, order) !=
2678 COMPACT_SKIPPED)
2679 testorder = 0;
2680
cc715d99 2681 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2682 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2683 high_wmark_pages(zone) + balance_gap,
d7868dae 2684 end_zone, 0)) {
9e3b2f8c 2685 shrink_zone(zone, &sc);
5a03b051 2686
d7868dae
MG
2687 reclaim_state->reclaimed_slab = 0;
2688 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2689 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2690 total_scanned += sc.nr_scanned;
2691
2692 if (nr_slab == 0 && !zone_reclaimable(zone))
2693 zone->all_unreclaimable = 1;
2694 }
2695
1da177e4
LT
2696 /*
2697 * If we've done a decent amount of scanning and
2698 * the reclaim ratio is low, start doing writepage
2699 * even in laptop mode
2700 */
2701 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2702 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2703 sc.may_writepage = 1;
bb3ab596 2704
215ddd66
MG
2705 if (zone->all_unreclaimable) {
2706 if (end_zone && end_zone == i)
2707 end_zone--;
d7868dae 2708 continue;
215ddd66 2709 }
d7868dae 2710
fe2c2a10 2711 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2712 high_wmark_pages(zone), end_zone, 0)) {
2713 all_zones_ok = 0;
2714 /*
2715 * We are still under min water mark. This
2716 * means that we have a GFP_ATOMIC allocation
2717 * failure risk. Hurry up!
2718 */
88f5acf8 2719 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2720 min_wmark_pages(zone), end_zone, 0))
2721 has_under_min_watermark_zone = 1;
0e093d99
MG
2722 } else {
2723 /*
2724 * If a zone reaches its high watermark,
2725 * consider it to be no longer congested. It's
2726 * possible there are dirty pages backed by
2727 * congested BDIs but as pressure is relieved,
ab8704b8 2728 * speculatively avoid congestion waits
0e093d99
MG
2729 */
2730 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2731 if (i <= *classzone_idx)
1741c877 2732 balanced += zone->present_pages;
45973d74 2733 }
bb3ab596 2734
1da177e4 2735 }
5515061d
MG
2736
2737 /*
2738 * If the low watermark is met there is no need for processes
2739 * to be throttled on pfmemalloc_wait as they should not be
2740 * able to safely make forward progress. Wake them
2741 */
2742 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2743 pfmemalloc_watermark_ok(pgdat))
2744 wake_up(&pgdat->pfmemalloc_wait);
2745
dc83edd9 2746 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2747 break; /* kswapd: all done */
2748 /*
2749 * OK, kswapd is getting into trouble. Take a nap, then take
2750 * another pass across the zones.
2751 */
9e3b2f8c 2752 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2753 if (has_under_min_watermark_zone)
2754 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2755 else
2756 congestion_wait(BLK_RW_ASYNC, HZ/10);
2757 }
1da177e4
LT
2758
2759 /*
2760 * We do this so kswapd doesn't build up large priorities for
2761 * example when it is freeing in parallel with allocators. It
2762 * matches the direct reclaim path behaviour in terms of impact
2763 * on zone->*_priority.
2764 */
a79311c1 2765 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2766 break;
9e3b2f8c 2767 } while (--sc.priority >= 0);
1da177e4 2768out:
99504748
MG
2769
2770 /*
2771 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2772 * high-order: Balanced zones must make up at least 25% of the node
2773 * for the node to be balanced
99504748 2774 */
dc83edd9 2775 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2776 cond_resched();
8357376d
RW
2777
2778 try_to_freeze();
2779
73ce02e9
KM
2780 /*
2781 * Fragmentation may mean that the system cannot be
2782 * rebalanced for high-order allocations in all zones.
2783 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2784 * it means the zones have been fully scanned and are still
2785 * not balanced. For high-order allocations, there is
2786 * little point trying all over again as kswapd may
2787 * infinite loop.
2788 *
2789 * Instead, recheck all watermarks at order-0 as they
2790 * are the most important. If watermarks are ok, kswapd will go
2791 * back to sleep. High-order users can still perform direct
2792 * reclaim if they wish.
2793 */
2794 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2795 order = sc.order = 0;
2796
1da177e4
LT
2797 goto loop_again;
2798 }
2799
99504748
MG
2800 /*
2801 * If kswapd was reclaiming at a higher order, it has the option of
2802 * sleeping without all zones being balanced. Before it does, it must
2803 * ensure that the watermarks for order-0 on *all* zones are met and
2804 * that the congestion flags are cleared. The congestion flag must
2805 * be cleared as kswapd is the only mechanism that clears the flag
2806 * and it is potentially going to sleep here.
2807 */
2808 if (order) {
7be62de9
RR
2809 int zones_need_compaction = 1;
2810
99504748
MG
2811 for (i = 0; i <= end_zone; i++) {
2812 struct zone *zone = pgdat->node_zones + i;
2813
2814 if (!populated_zone(zone))
2815 continue;
2816
9e3b2f8c
KK
2817 if (zone->all_unreclaimable &&
2818 sc.priority != DEF_PRIORITY)
99504748
MG
2819 continue;
2820
fe2c2a10 2821 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2822 if (COMPACTION_BUILD &&
2823 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2824 goto loop_again;
2825
99504748
MG
2826 /* Confirm the zone is balanced for order-0 */
2827 if (!zone_watermark_ok(zone, 0,
2828 high_wmark_pages(zone), 0, 0)) {
2829 order = sc.order = 0;
2830 goto loop_again;
2831 }
2832
7be62de9
RR
2833 /* Check if the memory needs to be defragmented. */
2834 if (zone_watermark_ok(zone, order,
2835 low_wmark_pages(zone), *classzone_idx, 0))
2836 zones_need_compaction = 0;
2837
99504748
MG
2838 /* If balanced, clear the congested flag */
2839 zone_clear_flag(zone, ZONE_CONGESTED);
2840 }
7be62de9
RR
2841
2842 if (zones_need_compaction)
2843 compact_pgdat(pgdat, order);
99504748
MG
2844 }
2845
0abdee2b 2846 /*
5515061d 2847 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
2848 * makes a decision on the order we were last reclaiming at. However,
2849 * if another caller entered the allocator slow path while kswapd
2850 * was awake, order will remain at the higher level
2851 */
dc83edd9 2852 *classzone_idx = end_zone;
0abdee2b 2853 return order;
1da177e4
LT
2854}
2855
dc83edd9 2856static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2857{
2858 long remaining = 0;
2859 DEFINE_WAIT(wait);
2860
2861 if (freezing(current) || kthread_should_stop())
2862 return;
2863
2864 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2865
2866 /* Try to sleep for a short interval */
5515061d 2867 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2868 remaining = schedule_timeout(HZ/10);
2869 finish_wait(&pgdat->kswapd_wait, &wait);
2870 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2871 }
2872
2873 /*
2874 * After a short sleep, check if it was a premature sleep. If not, then
2875 * go fully to sleep until explicitly woken up.
2876 */
5515061d 2877 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2878 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2879
2880 /*
2881 * vmstat counters are not perfectly accurate and the estimated
2882 * value for counters such as NR_FREE_PAGES can deviate from the
2883 * true value by nr_online_cpus * threshold. To avoid the zone
2884 * watermarks being breached while under pressure, we reduce the
2885 * per-cpu vmstat threshold while kswapd is awake and restore
2886 * them before going back to sleep.
2887 */
2888 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 2889
62997027
MG
2890 /*
2891 * Compaction records what page blocks it recently failed to
2892 * isolate pages from and skips them in the future scanning.
2893 * When kswapd is going to sleep, it is reasonable to assume
2894 * that pages and compaction may succeed so reset the cache.
2895 */
2896 reset_isolation_suitable(pgdat);
2897
1c7e7f6c
AK
2898 if (!kthread_should_stop())
2899 schedule();
2900
f0bc0a60
KM
2901 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2902 } else {
2903 if (remaining)
2904 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2905 else
2906 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2907 }
2908 finish_wait(&pgdat->kswapd_wait, &wait);
2909}
2910
1da177e4
LT
2911/*
2912 * The background pageout daemon, started as a kernel thread
4f98a2fe 2913 * from the init process.
1da177e4
LT
2914 *
2915 * This basically trickles out pages so that we have _some_
2916 * free memory available even if there is no other activity
2917 * that frees anything up. This is needed for things like routing
2918 * etc, where we otherwise might have all activity going on in
2919 * asynchronous contexts that cannot page things out.
2920 *
2921 * If there are applications that are active memory-allocators
2922 * (most normal use), this basically shouldn't matter.
2923 */
2924static int kswapd(void *p)
2925{
215ddd66 2926 unsigned long order, new_order;
d2ebd0f6 2927 unsigned balanced_order;
215ddd66 2928 int classzone_idx, new_classzone_idx;
d2ebd0f6 2929 int balanced_classzone_idx;
1da177e4
LT
2930 pg_data_t *pgdat = (pg_data_t*)p;
2931 struct task_struct *tsk = current;
f0bc0a60 2932
1da177e4
LT
2933 struct reclaim_state reclaim_state = {
2934 .reclaimed_slab = 0,
2935 };
a70f7302 2936 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2937
cf40bd16
NP
2938 lockdep_set_current_reclaim_state(GFP_KERNEL);
2939
174596a0 2940 if (!cpumask_empty(cpumask))
c5f59f08 2941 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2942 current->reclaim_state = &reclaim_state;
2943
2944 /*
2945 * Tell the memory management that we're a "memory allocator",
2946 * and that if we need more memory we should get access to it
2947 * regardless (see "__alloc_pages()"). "kswapd" should
2948 * never get caught in the normal page freeing logic.
2949 *
2950 * (Kswapd normally doesn't need memory anyway, but sometimes
2951 * you need a small amount of memory in order to be able to
2952 * page out something else, and this flag essentially protects
2953 * us from recursively trying to free more memory as we're
2954 * trying to free the first piece of memory in the first place).
2955 */
930d9152 2956 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2957 set_freezable();
1da177e4 2958
215ddd66 2959 order = new_order = 0;
d2ebd0f6 2960 balanced_order = 0;
215ddd66 2961 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2962 balanced_classzone_idx = classzone_idx;
1da177e4 2963 for ( ; ; ) {
8fe23e05 2964 int ret;
3e1d1d28 2965
215ddd66
MG
2966 /*
2967 * If the last balance_pgdat was unsuccessful it's unlikely a
2968 * new request of a similar or harder type will succeed soon
2969 * so consider going to sleep on the basis we reclaimed at
2970 */
d2ebd0f6
AS
2971 if (balanced_classzone_idx >= new_classzone_idx &&
2972 balanced_order == new_order) {
215ddd66
MG
2973 new_order = pgdat->kswapd_max_order;
2974 new_classzone_idx = pgdat->classzone_idx;
2975 pgdat->kswapd_max_order = 0;
2976 pgdat->classzone_idx = pgdat->nr_zones - 1;
2977 }
2978
99504748 2979 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2980 /*
2981 * Don't sleep if someone wants a larger 'order'
99504748 2982 * allocation or has tigher zone constraints
1da177e4
LT
2983 */
2984 order = new_order;
99504748 2985 classzone_idx = new_classzone_idx;
1da177e4 2986 } else {
d2ebd0f6
AS
2987 kswapd_try_to_sleep(pgdat, balanced_order,
2988 balanced_classzone_idx);
1da177e4 2989 order = pgdat->kswapd_max_order;
99504748 2990 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2991 new_order = order;
2992 new_classzone_idx = classzone_idx;
4d40502e 2993 pgdat->kswapd_max_order = 0;
215ddd66 2994 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2995 }
1da177e4 2996
8fe23e05
DR
2997 ret = try_to_freeze();
2998 if (kthread_should_stop())
2999 break;
3000
3001 /*
3002 * We can speed up thawing tasks if we don't call balance_pgdat
3003 * after returning from the refrigerator
3004 */
33906bc5
MG
3005 if (!ret) {
3006 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3007 balanced_classzone_idx = classzone_idx;
3008 balanced_order = balance_pgdat(pgdat, order,
3009 &balanced_classzone_idx);
33906bc5 3010 }
1da177e4 3011 }
b0a8cc58
TY
3012
3013 current->reclaim_state = NULL;
1da177e4
LT
3014 return 0;
3015}
3016
3017/*
3018 * A zone is low on free memory, so wake its kswapd task to service it.
3019 */
99504748 3020void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3021{
3022 pg_data_t *pgdat;
3023
f3fe6512 3024 if (!populated_zone(zone))
1da177e4
LT
3025 return;
3026
88f5acf8 3027 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3028 return;
88f5acf8 3029 pgdat = zone->zone_pgdat;
99504748 3030 if (pgdat->kswapd_max_order < order) {
1da177e4 3031 pgdat->kswapd_max_order = order;
99504748
MG
3032 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3033 }
8d0986e2 3034 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3035 return;
88f5acf8
MG
3036 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3037 return;
3038
3039 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3040 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3041}
3042
adea02a1
WF
3043/*
3044 * The reclaimable count would be mostly accurate.
3045 * The less reclaimable pages may be
3046 * - mlocked pages, which will be moved to unevictable list when encountered
3047 * - mapped pages, which may require several travels to be reclaimed
3048 * - dirty pages, which is not "instantly" reclaimable
3049 */
3050unsigned long global_reclaimable_pages(void)
4f98a2fe 3051{
adea02a1
WF
3052 int nr;
3053
3054 nr = global_page_state(NR_ACTIVE_FILE) +
3055 global_page_state(NR_INACTIVE_FILE);
3056
3057 if (nr_swap_pages > 0)
3058 nr += global_page_state(NR_ACTIVE_ANON) +
3059 global_page_state(NR_INACTIVE_ANON);
3060
3061 return nr;
3062}
3063
3064unsigned long zone_reclaimable_pages(struct zone *zone)
3065{
3066 int nr;
3067
3068 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3069 zone_page_state(zone, NR_INACTIVE_FILE);
3070
3071 if (nr_swap_pages > 0)
3072 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3073 zone_page_state(zone, NR_INACTIVE_ANON);
3074
3075 return nr;
4f98a2fe
RR
3076}
3077
c6f37f12 3078#ifdef CONFIG_HIBERNATION
1da177e4 3079/*
7b51755c 3080 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3081 * freed pages.
3082 *
3083 * Rather than trying to age LRUs the aim is to preserve the overall
3084 * LRU order by reclaiming preferentially
3085 * inactive > active > active referenced > active mapped
1da177e4 3086 */
7b51755c 3087unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3088{
d6277db4 3089 struct reclaim_state reclaim_state;
d6277db4 3090 struct scan_control sc = {
7b51755c
KM
3091 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3092 .may_swap = 1,
3093 .may_unmap = 1,
d6277db4 3094 .may_writepage = 1,
7b51755c
KM
3095 .nr_to_reclaim = nr_to_reclaim,
3096 .hibernation_mode = 1,
7b51755c 3097 .order = 0,
9e3b2f8c 3098 .priority = DEF_PRIORITY,
1da177e4 3099 };
a09ed5e0
YH
3100 struct shrink_control shrink = {
3101 .gfp_mask = sc.gfp_mask,
3102 };
3103 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3104 struct task_struct *p = current;
3105 unsigned long nr_reclaimed;
1da177e4 3106
7b51755c
KM
3107 p->flags |= PF_MEMALLOC;
3108 lockdep_set_current_reclaim_state(sc.gfp_mask);
3109 reclaim_state.reclaimed_slab = 0;
3110 p->reclaim_state = &reclaim_state;
d6277db4 3111
a09ed5e0 3112 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3113
7b51755c
KM
3114 p->reclaim_state = NULL;
3115 lockdep_clear_current_reclaim_state();
3116 p->flags &= ~PF_MEMALLOC;
d6277db4 3117
7b51755c 3118 return nr_reclaimed;
1da177e4 3119}
c6f37f12 3120#endif /* CONFIG_HIBERNATION */
1da177e4 3121
1da177e4
LT
3122/* It's optimal to keep kswapds on the same CPUs as their memory, but
3123 not required for correctness. So if the last cpu in a node goes
3124 away, we get changed to run anywhere: as the first one comes back,
3125 restore their cpu bindings. */
9c7b216d 3126static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3127 unsigned long action, void *hcpu)
1da177e4 3128{
58c0a4a7 3129 int nid;
1da177e4 3130
8bb78442 3131 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3132 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3133 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3134 const struct cpumask *mask;
3135
3136 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3137
3e597945 3138 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3139 /* One of our CPUs online: restore mask */
c5f59f08 3140 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3141 }
3142 }
3143 return NOTIFY_OK;
3144}
1da177e4 3145
3218ae14
YG
3146/*
3147 * This kswapd start function will be called by init and node-hot-add.
3148 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3149 */
3150int kswapd_run(int nid)
3151{
3152 pg_data_t *pgdat = NODE_DATA(nid);
3153 int ret = 0;
3154
3155 if (pgdat->kswapd)
3156 return 0;
3157
3158 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3159 if (IS_ERR(pgdat->kswapd)) {
3160 /* failure at boot is fatal */
3161 BUG_ON(system_state == SYSTEM_BOOTING);
18b48d58 3162 pgdat->kswapd = NULL;
d5dc0ad9
GS
3163 pr_err("Failed to start kswapd on node %d\n", nid);
3164 ret = PTR_ERR(pgdat->kswapd);
3218ae14
YG
3165 }
3166 return ret;
3167}
3168
8fe23e05 3169/*
d8adde17
JL
3170 * Called by memory hotplug when all memory in a node is offlined. Caller must
3171 * hold lock_memory_hotplug().
8fe23e05
DR
3172 */
3173void kswapd_stop(int nid)
3174{
3175 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3176
d8adde17 3177 if (kswapd) {
8fe23e05 3178 kthread_stop(kswapd);
d8adde17
JL
3179 NODE_DATA(nid)->kswapd = NULL;
3180 }
8fe23e05
DR
3181}
3182
1da177e4
LT
3183static int __init kswapd_init(void)
3184{
3218ae14 3185 int nid;
69e05944 3186
1da177e4 3187 swap_setup();
9422ffba 3188 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3189 kswapd_run(nid);
1da177e4
LT
3190 hotcpu_notifier(cpu_callback, 0);
3191 return 0;
3192}
3193
3194module_init(kswapd_init)
9eeff239
CL
3195
3196#ifdef CONFIG_NUMA
3197/*
3198 * Zone reclaim mode
3199 *
3200 * If non-zero call zone_reclaim when the number of free pages falls below
3201 * the watermarks.
9eeff239
CL
3202 */
3203int zone_reclaim_mode __read_mostly;
3204
1b2ffb78 3205#define RECLAIM_OFF 0
7d03431c 3206#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3207#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3208#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3209
a92f7126
CL
3210/*
3211 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3212 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3213 * a zone.
3214 */
3215#define ZONE_RECLAIM_PRIORITY 4
3216
9614634f
CL
3217/*
3218 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3219 * occur.
3220 */
3221int sysctl_min_unmapped_ratio = 1;
3222
0ff38490
CL
3223/*
3224 * If the number of slab pages in a zone grows beyond this percentage then
3225 * slab reclaim needs to occur.
3226 */
3227int sysctl_min_slab_ratio = 5;
3228
90afa5de
MG
3229static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3230{
3231 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3232 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3233 zone_page_state(zone, NR_ACTIVE_FILE);
3234
3235 /*
3236 * It's possible for there to be more file mapped pages than
3237 * accounted for by the pages on the file LRU lists because
3238 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3239 */
3240 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3241}
3242
3243/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3244static long zone_pagecache_reclaimable(struct zone *zone)
3245{
3246 long nr_pagecache_reclaimable;
3247 long delta = 0;
3248
3249 /*
3250 * If RECLAIM_SWAP is set, then all file pages are considered
3251 * potentially reclaimable. Otherwise, we have to worry about
3252 * pages like swapcache and zone_unmapped_file_pages() provides
3253 * a better estimate
3254 */
3255 if (zone_reclaim_mode & RECLAIM_SWAP)
3256 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3257 else
3258 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3259
3260 /* If we can't clean pages, remove dirty pages from consideration */
3261 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3262 delta += zone_page_state(zone, NR_FILE_DIRTY);
3263
3264 /* Watch for any possible underflows due to delta */
3265 if (unlikely(delta > nr_pagecache_reclaimable))
3266 delta = nr_pagecache_reclaimable;
3267
3268 return nr_pagecache_reclaimable - delta;
3269}
3270
9eeff239
CL
3271/*
3272 * Try to free up some pages from this zone through reclaim.
3273 */
179e9639 3274static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3275{
7fb2d46d 3276 /* Minimum pages needed in order to stay on node */
69e05944 3277 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3278 struct task_struct *p = current;
3279 struct reclaim_state reclaim_state;
179e9639
AM
3280 struct scan_control sc = {
3281 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3282 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3283 .may_swap = 1,
22fba335
KM
3284 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3285 SWAP_CLUSTER_MAX),
179e9639 3286 .gfp_mask = gfp_mask,
bd2f6199 3287 .order = order,
9e3b2f8c 3288 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3289 };
a09ed5e0
YH
3290 struct shrink_control shrink = {
3291 .gfp_mask = sc.gfp_mask,
3292 };
15748048 3293 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3294
9eeff239 3295 cond_resched();
d4f7796e
CL
3296 /*
3297 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3298 * and we also need to be able to write out pages for RECLAIM_WRITE
3299 * and RECLAIM_SWAP.
3300 */
3301 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3302 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3303 reclaim_state.reclaimed_slab = 0;
3304 p->reclaim_state = &reclaim_state;
c84db23c 3305
90afa5de 3306 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3307 /*
3308 * Free memory by calling shrink zone with increasing
3309 * priorities until we have enough memory freed.
3310 */
0ff38490 3311 do {
9e3b2f8c
KK
3312 shrink_zone(zone, &sc);
3313 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3314 }
c84db23c 3315
15748048
KM
3316 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3317 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3318 /*
7fb2d46d 3319 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3320 * many pages were freed in this zone. So we take the current
3321 * number of slab pages and shake the slab until it is reduced
3322 * by the same nr_pages that we used for reclaiming unmapped
3323 * pages.
2a16e3f4 3324 *
0ff38490
CL
3325 * Note that shrink_slab will free memory on all zones and may
3326 * take a long time.
2a16e3f4 3327 */
4dc4b3d9
KM
3328 for (;;) {
3329 unsigned long lru_pages = zone_reclaimable_pages(zone);
3330
3331 /* No reclaimable slab or very low memory pressure */
1495f230 3332 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3333 break;
3334
3335 /* Freed enough memory */
3336 nr_slab_pages1 = zone_page_state(zone,
3337 NR_SLAB_RECLAIMABLE);
3338 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3339 break;
3340 }
83e33a47
CL
3341
3342 /*
3343 * Update nr_reclaimed by the number of slab pages we
3344 * reclaimed from this zone.
3345 */
15748048
KM
3346 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3347 if (nr_slab_pages1 < nr_slab_pages0)
3348 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3349 }
3350
9eeff239 3351 p->reclaim_state = NULL;
d4f7796e 3352 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3353 lockdep_clear_current_reclaim_state();
a79311c1 3354 return sc.nr_reclaimed >= nr_pages;
9eeff239 3355}
179e9639
AM
3356
3357int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3358{
179e9639 3359 int node_id;
d773ed6b 3360 int ret;
179e9639
AM
3361
3362 /*
0ff38490
CL
3363 * Zone reclaim reclaims unmapped file backed pages and
3364 * slab pages if we are over the defined limits.
34aa1330 3365 *
9614634f
CL
3366 * A small portion of unmapped file backed pages is needed for
3367 * file I/O otherwise pages read by file I/O will be immediately
3368 * thrown out if the zone is overallocated. So we do not reclaim
3369 * if less than a specified percentage of the zone is used by
3370 * unmapped file backed pages.
179e9639 3371 */
90afa5de
MG
3372 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3373 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3374 return ZONE_RECLAIM_FULL;
179e9639 3375
93e4a89a 3376 if (zone->all_unreclaimable)
fa5e084e 3377 return ZONE_RECLAIM_FULL;
d773ed6b 3378
179e9639 3379 /*
d773ed6b 3380 * Do not scan if the allocation should not be delayed.
179e9639 3381 */
d773ed6b 3382 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3383 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3384
3385 /*
3386 * Only run zone reclaim on the local zone or on zones that do not
3387 * have associated processors. This will favor the local processor
3388 * over remote processors and spread off node memory allocations
3389 * as wide as possible.
3390 */
89fa3024 3391 node_id = zone_to_nid(zone);
37c0708d 3392 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3393 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3394
3395 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3396 return ZONE_RECLAIM_NOSCAN;
3397
d773ed6b
DR
3398 ret = __zone_reclaim(zone, gfp_mask, order);
3399 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3400
24cf7251
MG
3401 if (!ret)
3402 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3403
d773ed6b 3404 return ret;
179e9639 3405}
9eeff239 3406#endif
894bc310 3407
894bc310
LS
3408/*
3409 * page_evictable - test whether a page is evictable
3410 * @page: the page to test
894bc310
LS
3411 *
3412 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3413 * lists vs unevictable list.
894bc310
LS
3414 *
3415 * Reasons page might not be evictable:
ba9ddf49 3416 * (1) page's mapping marked unevictable
b291f000 3417 * (2) page is part of an mlocked VMA
ba9ddf49 3418 *
894bc310 3419 */
39b5f29a 3420int page_evictable(struct page *page)
894bc310 3421{
39b5f29a 3422 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3423}
89e004ea 3424
85046579 3425#ifdef CONFIG_SHMEM
89e004ea 3426/**
24513264
HD
3427 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3428 * @pages: array of pages to check
3429 * @nr_pages: number of pages to check
89e004ea 3430 *
24513264 3431 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3432 *
3433 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3434 */
24513264 3435void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3436{
925b7673 3437 struct lruvec *lruvec;
24513264
HD
3438 struct zone *zone = NULL;
3439 int pgscanned = 0;
3440 int pgrescued = 0;
3441 int i;
89e004ea 3442
24513264
HD
3443 for (i = 0; i < nr_pages; i++) {
3444 struct page *page = pages[i];
3445 struct zone *pagezone;
89e004ea 3446
24513264
HD
3447 pgscanned++;
3448 pagezone = page_zone(page);
3449 if (pagezone != zone) {
3450 if (zone)
3451 spin_unlock_irq(&zone->lru_lock);
3452 zone = pagezone;
3453 spin_lock_irq(&zone->lru_lock);
3454 }
fa9add64 3455 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3456
24513264
HD
3457 if (!PageLRU(page) || !PageUnevictable(page))
3458 continue;
89e004ea 3459
39b5f29a 3460 if (page_evictable(page)) {
24513264
HD
3461 enum lru_list lru = page_lru_base_type(page);
3462
3463 VM_BUG_ON(PageActive(page));
3464 ClearPageUnevictable(page);
fa9add64
HD
3465 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3466 add_page_to_lru_list(page, lruvec, lru);
24513264 3467 pgrescued++;
89e004ea 3468 }
24513264 3469 }
89e004ea 3470
24513264
HD
3471 if (zone) {
3472 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3473 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3474 spin_unlock_irq(&zone->lru_lock);
89e004ea 3475 }
89e004ea 3476}
85046579 3477#endif /* CONFIG_SHMEM */
af936a16 3478
264e56d8 3479static void warn_scan_unevictable_pages(void)
af936a16 3480{
264e56d8 3481 printk_once(KERN_WARNING
25bd91bd 3482 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3483 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3484 "one, please send an email to linux-mm@kvack.org.\n",
3485 current->comm);
af936a16
LS
3486}
3487
3488/*
3489 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3490 * all nodes' unevictable lists for evictable pages
3491 */
3492unsigned long scan_unevictable_pages;
3493
3494int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3495 void __user *buffer,
af936a16
LS
3496 size_t *length, loff_t *ppos)
3497{
264e56d8 3498 warn_scan_unevictable_pages();
8d65af78 3499 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3500 scan_unevictable_pages = 0;
3501 return 0;
3502}
3503
e4455abb 3504#ifdef CONFIG_NUMA
af936a16
LS
3505/*
3506 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3507 * a specified node's per zone unevictable lists for evictable pages.
3508 */
3509
10fbcf4c
KS
3510static ssize_t read_scan_unevictable_node(struct device *dev,
3511 struct device_attribute *attr,
af936a16
LS
3512 char *buf)
3513{
264e56d8 3514 warn_scan_unevictable_pages();
af936a16
LS
3515 return sprintf(buf, "0\n"); /* always zero; should fit... */
3516}
3517
10fbcf4c
KS
3518static ssize_t write_scan_unevictable_node(struct device *dev,
3519 struct device_attribute *attr,
af936a16
LS
3520 const char *buf, size_t count)
3521{
264e56d8 3522 warn_scan_unevictable_pages();
af936a16
LS
3523 return 1;
3524}
3525
3526
10fbcf4c 3527static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3528 read_scan_unevictable_node,
3529 write_scan_unevictable_node);
3530
3531int scan_unevictable_register_node(struct node *node)
3532{
10fbcf4c 3533 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3534}
3535
3536void scan_unevictable_unregister_node(struct node *node)
3537{
10fbcf4c 3538 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3539}
e4455abb 3540#endif
This page took 1.02531 seconds and 5 git commands to generate.