zsmalloc: reorder function parameters
[deliverable/linux.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
32e7ba1e 19 * page->private: points to the first component (0-order) page
2db51dae
NG
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
32e7ba1e 29 * page->private: refers to the component page after the first page
7b60a685
MK
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
2db51dae
NG
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
8f958c98 40 * page->inuse: the number of objects that are used in this zspage
2db51dae
NG
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
759b26b2 61#include <linux/preempt.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169};
170
6fe5186f
SS
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
0f050d99
GM
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
57244594
SS
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
0f050d99
GM
183#endif
184
40f9fb8c
MG
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
0959c63f
SJ
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
6dd9737e 195 * f = fullness_threshold_frac
0959c63f
SJ
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
57244594
SS
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
0f050d99 216 struct zs_size_stat stats;
0959c63f 217
7dfa4612
WY
218 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 int pages_per_zspage;
57244594
SS
220 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 bool huge;
0959c63f
SJ
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, first_page->freelist gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
2e40e163
MK
231 union {
232 /*
233 * Position of next free chunk (encodes <PFN, obj_idx>)
234 * It's valid for non-allocated object
235 */
236 void *next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
0959c63f
SJ
242};
243
244struct zs_pool {
6f3526d6 245 const char *name;
0f050d99 246
40f9fb8c 247 struct size_class **size_class;
2e40e163 248 struct kmem_cache *handle_cachep;
0959c63f
SJ
249
250 gfp_t flags; /* allocation flags used when growing pool */
13de8933 251 atomic_long_t pages_allocated;
0f050d99 252
7d3f3938 253 struct zs_pool_stats stats;
ab9d306d
SS
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
0f050d99
GM
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
0959c63f 265};
61989a80
NG
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271#define CLASS_IDX_BITS 28
272#define FULLNESS_BITS 4
273#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
274#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
275
f553646a 276struct mapping_area {
1b945aee 277#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
278 struct vm_struct *vm; /* vm area for mapping object that span pages */
279#else
280 char *vm_buf; /* copy buffer for objects that span pages */
281#endif
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
2e40e163
MK
286static int create_handle_cache(struct zs_pool *pool)
287{
288 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 0, 0, NULL);
290 return pool->handle_cachep ? 0 : 1;
291}
292
293static void destroy_handle_cache(struct zs_pool *pool)
294{
cd10add0 295 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
296}
297
298static unsigned long alloc_handle(struct zs_pool *pool)
299{
300 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
301 pool->flags & ~__GFP_HIGHMEM);
302}
303
304static void free_handle(struct zs_pool *pool, unsigned long handle)
305{
306 kmem_cache_free(pool->handle_cachep, (void *)handle);
307}
308
309static void record_obj(unsigned long handle, unsigned long obj)
310{
c102f07c
JL
311 /*
312 * lsb of @obj represents handle lock while other bits
313 * represent object value the handle is pointing so
314 * updating shouldn't do store tearing.
315 */
316 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
317}
318
c795779d
DS
319/* zpool driver */
320
321#ifdef CONFIG_ZPOOL
322
6f3526d6 323static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 324 const struct zpool_ops *zpool_ops,
479305fd 325 struct zpool *zpool)
c795779d 326{
3eba0c6a 327 return zs_create_pool(name, gfp);
c795779d
DS
328}
329
330static void zs_zpool_destroy(void *pool)
331{
332 zs_destroy_pool(pool);
333}
334
335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
336 unsigned long *handle)
337{
338 *handle = zs_malloc(pool, size);
339 return *handle ? 0 : -1;
340}
341static void zs_zpool_free(void *pool, unsigned long handle)
342{
343 zs_free(pool, handle);
344}
345
346static int zs_zpool_shrink(void *pool, unsigned int pages,
347 unsigned int *reclaimed)
348{
349 return -EINVAL;
350}
351
352static void *zs_zpool_map(void *pool, unsigned long handle,
353 enum zpool_mapmode mm)
354{
355 enum zs_mapmode zs_mm;
356
357 switch (mm) {
358 case ZPOOL_MM_RO:
359 zs_mm = ZS_MM_RO;
360 break;
361 case ZPOOL_MM_WO:
362 zs_mm = ZS_MM_WO;
363 break;
364 case ZPOOL_MM_RW: /* fallthru */
365 default:
366 zs_mm = ZS_MM_RW;
367 break;
368 }
369
370 return zs_map_object(pool, handle, zs_mm);
371}
372static void zs_zpool_unmap(void *pool, unsigned long handle)
373{
374 zs_unmap_object(pool, handle);
375}
376
377static u64 zs_zpool_total_size(void *pool)
378{
722cdc17 379 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
380}
381
382static struct zpool_driver zs_zpool_driver = {
383 .type = "zsmalloc",
384 .owner = THIS_MODULE,
385 .create = zs_zpool_create,
386 .destroy = zs_zpool_destroy,
387 .malloc = zs_zpool_malloc,
388 .free = zs_zpool_free,
389 .shrink = zs_zpool_shrink,
390 .map = zs_zpool_map,
391 .unmap = zs_zpool_unmap,
392 .total_size = zs_zpool_total_size,
393};
394
137f8cff 395MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
396#endif /* CONFIG_ZPOOL */
397
248ca1b0
MK
398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
399{
400 return pages_per_zspage * PAGE_SIZE / size;
401}
402
61989a80
NG
403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
405
406static int is_first_page(struct page *page)
407{
a27545bf 408 return PagePrivate(page);
61989a80
NG
409}
410
411static int is_last_page(struct page *page)
412{
a27545bf 413 return PagePrivate2(page);
61989a80
NG
414}
415
a4209467
MK
416static void get_zspage_mapping(struct page *first_page,
417 unsigned int *class_idx,
61989a80
NG
418 enum fullness_group *fullness)
419{
420 unsigned long m;
830e4bc5 421 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 422
a4209467 423 m = (unsigned long)first_page->mapping;
61989a80
NG
424 *fullness = m & FULLNESS_MASK;
425 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
426}
427
a4209467
MK
428static void set_zspage_mapping(struct page *first_page,
429 unsigned int class_idx,
61989a80
NG
430 enum fullness_group fullness)
431{
432 unsigned long m;
830e4bc5 433 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
434
435 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
436 (fullness & FULLNESS_MASK);
a4209467 437 first_page->mapping = (struct address_space *)m;
61989a80
NG
438}
439
c3e3e88a
NC
440/*
441 * zsmalloc divides the pool into various size classes where each
442 * class maintains a list of zspages where each zspage is divided
443 * into equal sized chunks. Each allocation falls into one of these
444 * classes depending on its size. This function returns index of the
445 * size class which has chunk size big enough to hold the give size.
446 */
61989a80
NG
447static int get_size_class_index(int size)
448{
449 int idx = 0;
450
451 if (likely(size > ZS_MIN_ALLOC_SIZE))
452 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
453 ZS_SIZE_CLASS_DELTA);
454
7b60a685 455 return min(zs_size_classes - 1, idx);
61989a80
NG
456}
457
248ca1b0
MK
458static inline void zs_stat_inc(struct size_class *class,
459 enum zs_stat_type type, unsigned long cnt)
460{
6fe5186f
SS
461 if (type < NR_ZS_STAT_TYPE)
462 class->stats.objs[type] += cnt;
248ca1b0
MK
463}
464
465static inline void zs_stat_dec(struct size_class *class,
466 enum zs_stat_type type, unsigned long cnt)
467{
6fe5186f
SS
468 if (type < NR_ZS_STAT_TYPE)
469 class->stats.objs[type] -= cnt;
248ca1b0
MK
470}
471
472static inline unsigned long zs_stat_get(struct size_class *class,
473 enum zs_stat_type type)
474{
6fe5186f
SS
475 if (type < NR_ZS_STAT_TYPE)
476 return class->stats.objs[type];
477 return 0;
248ca1b0
MK
478}
479
57244594
SS
480#ifdef CONFIG_ZSMALLOC_STAT
481
248ca1b0
MK
482static int __init zs_stat_init(void)
483{
484 if (!debugfs_initialized())
485 return -ENODEV;
486
487 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
488 if (!zs_stat_root)
489 return -ENOMEM;
490
491 return 0;
492}
493
494static void __exit zs_stat_exit(void)
495{
496 debugfs_remove_recursive(zs_stat_root);
497}
498
1120ed54
SS
499static unsigned long zs_can_compact(struct size_class *class);
500
248ca1b0
MK
501static int zs_stats_size_show(struct seq_file *s, void *v)
502{
503 int i;
504 struct zs_pool *pool = s->private;
505 struct size_class *class;
506 int objs_per_zspage;
507 unsigned long class_almost_full, class_almost_empty;
1120ed54 508 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
509 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
510 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 511 unsigned long total_freeable = 0;
248ca1b0 512
1120ed54 513 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
514 "class", "size", "almost_full", "almost_empty",
515 "obj_allocated", "obj_used", "pages_used",
1120ed54 516 "pages_per_zspage", "freeable");
248ca1b0
MK
517
518 for (i = 0; i < zs_size_classes; i++) {
519 class = pool->size_class[i];
520
521 if (class->index != i)
522 continue;
523
524 spin_lock(&class->lock);
525 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
526 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
527 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
528 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 529 freeable = zs_can_compact(class);
248ca1b0
MK
530 spin_unlock(&class->lock);
531
532 objs_per_zspage = get_maxobj_per_zspage(class->size,
533 class->pages_per_zspage);
534 pages_used = obj_allocated / objs_per_zspage *
535 class->pages_per_zspage;
536
1120ed54
SS
537 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
538 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
539 i, class->size, class_almost_full, class_almost_empty,
540 obj_allocated, obj_used, pages_used,
1120ed54 541 class->pages_per_zspage, freeable);
248ca1b0
MK
542
543 total_class_almost_full += class_almost_full;
544 total_class_almost_empty += class_almost_empty;
545 total_objs += obj_allocated;
546 total_used_objs += obj_used;
547 total_pages += pages_used;
1120ed54 548 total_freeable += freeable;
248ca1b0
MK
549 }
550
551 seq_puts(s, "\n");
1120ed54 552 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
553 "Total", "", total_class_almost_full,
554 total_class_almost_empty, total_objs,
1120ed54 555 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
556
557 return 0;
558}
559
560static int zs_stats_size_open(struct inode *inode, struct file *file)
561{
562 return single_open(file, zs_stats_size_show, inode->i_private);
563}
564
565static const struct file_operations zs_stat_size_ops = {
566 .open = zs_stats_size_open,
567 .read = seq_read,
568 .llseek = seq_lseek,
569 .release = single_release,
570};
571
251cbb95 572static int zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
573{
574 struct dentry *entry;
575
576 if (!zs_stat_root)
577 return -ENODEV;
578
579 entry = debugfs_create_dir(name, zs_stat_root);
580 if (!entry) {
581 pr_warn("debugfs dir <%s> creation failed\n", name);
582 return -ENOMEM;
583 }
584 pool->stat_dentry = entry;
585
586 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
587 pool->stat_dentry, pool, &zs_stat_size_ops);
588 if (!entry) {
589 pr_warn("%s: debugfs file entry <%s> creation failed\n",
590 name, "classes");
591 return -ENOMEM;
592 }
593
594 return 0;
595}
596
597static void zs_pool_stat_destroy(struct zs_pool *pool)
598{
599 debugfs_remove_recursive(pool->stat_dentry);
600}
601
602#else /* CONFIG_ZSMALLOC_STAT */
248ca1b0
MK
603static int __init zs_stat_init(void)
604{
605 return 0;
606}
607
608static void __exit zs_stat_exit(void)
609{
610}
611
251cbb95 612static inline int zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
613{
614 return 0;
615}
616
617static inline void zs_pool_stat_destroy(struct zs_pool *pool)
618{
619}
248ca1b0
MK
620#endif
621
622
c3e3e88a
NC
623/*
624 * For each size class, zspages are divided into different groups
625 * depending on how "full" they are. This was done so that we could
626 * easily find empty or nearly empty zspages when we try to shrink
627 * the pool (not yet implemented). This function returns fullness
628 * status of the given page.
629 */
a4209467 630static enum fullness_group get_fullness_group(struct page *first_page)
61989a80
NG
631{
632 int inuse, max_objects;
633 enum fullness_group fg;
830e4bc5
MK
634
635 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 636
a4209467
MK
637 inuse = first_page->inuse;
638 max_objects = first_page->objects;
61989a80
NG
639
640 if (inuse == 0)
641 fg = ZS_EMPTY;
642 else if (inuse == max_objects)
643 fg = ZS_FULL;
d3d07c92 644 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
645 fg = ZS_ALMOST_EMPTY;
646 else
647 fg = ZS_ALMOST_FULL;
648
649 return fg;
650}
651
c3e3e88a
NC
652/*
653 * Each size class maintains various freelists and zspages are assigned
654 * to one of these freelists based on the number of live objects they
655 * have. This functions inserts the given zspage into the freelist
656 * identified by <class, fullness_group>.
657 */
251cbb95
MK
658static void insert_zspage(struct size_class *class,
659 enum fullness_group fullness,
660 struct page *first_page)
61989a80
NG
661{
662 struct page **head;
663
830e4bc5 664 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
665
666 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
667 return;
668
248ca1b0
MK
669 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
670 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
58f17117
SS
671
672 head = &class->fullness_list[fullness];
673 if (!*head) {
a4209467 674 *head = first_page;
58f17117
SS
675 return;
676 }
677
678 /*
679 * We want to see more ZS_FULL pages and less almost
680 * empty/full. Put pages with higher ->inuse first.
681 */
a4209467
MK
682 list_add_tail(&first_page->lru, &(*head)->lru);
683 if (first_page->inuse >= (*head)->inuse)
684 *head = first_page;
61989a80
NG
685}
686
c3e3e88a
NC
687/*
688 * This function removes the given zspage from the freelist identified
689 * by <class, fullness_group>.
690 */
251cbb95
MK
691static void remove_zspage(struct size_class *class,
692 enum fullness_group fullness,
693 struct page *first_page)
61989a80
NG
694{
695 struct page **head;
696
830e4bc5 697 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
698
699 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
700 return;
701
702 head = &class->fullness_list[fullness];
830e4bc5 703 VM_BUG_ON_PAGE(!*head, first_page);
61989a80
NG
704 if (list_empty(&(*head)->lru))
705 *head = NULL;
a4209467 706 else if (*head == first_page)
61989a80
NG
707 *head = (struct page *)list_entry((*head)->lru.next,
708 struct page, lru);
709
a4209467 710 list_del_init(&first_page->lru);
248ca1b0
MK
711 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
712 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
713}
714
c3e3e88a
NC
715/*
716 * Each size class maintains zspages in different fullness groups depending
717 * on the number of live objects they contain. When allocating or freeing
718 * objects, the fullness status of the page can change, say, from ALMOST_FULL
719 * to ALMOST_EMPTY when freeing an object. This function checks if such
720 * a status change has occurred for the given page and accordingly moves the
721 * page from the freelist of the old fullness group to that of the new
722 * fullness group.
723 */
c7806261 724static enum fullness_group fix_fullness_group(struct size_class *class,
a4209467 725 struct page *first_page)
61989a80
NG
726{
727 int class_idx;
61989a80
NG
728 enum fullness_group currfg, newfg;
729
a4209467
MK
730 get_zspage_mapping(first_page, &class_idx, &currfg);
731 newfg = get_fullness_group(first_page);
61989a80
NG
732 if (newfg == currfg)
733 goto out;
734
251cbb95
MK
735 remove_zspage(class, currfg, first_page);
736 insert_zspage(class, newfg, first_page);
a4209467 737 set_zspage_mapping(first_page, class_idx, newfg);
61989a80
NG
738
739out:
740 return newfg;
741}
742
743/*
744 * We have to decide on how many pages to link together
745 * to form a zspage for each size class. This is important
746 * to reduce wastage due to unusable space left at end of
747 * each zspage which is given as:
888fa374
YX
748 * wastage = Zp % class_size
749 * usage = Zp - wastage
61989a80
NG
750 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
751 *
752 * For example, for size class of 3/8 * PAGE_SIZE, we should
753 * link together 3 PAGE_SIZE sized pages to form a zspage
754 * since then we can perfectly fit in 8 such objects.
755 */
2e3b6154 756static int get_pages_per_zspage(int class_size)
61989a80
NG
757{
758 int i, max_usedpc = 0;
759 /* zspage order which gives maximum used size per KB */
760 int max_usedpc_order = 1;
761
84d4faab 762 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
763 int zspage_size;
764 int waste, usedpc;
765
766 zspage_size = i * PAGE_SIZE;
767 waste = zspage_size % class_size;
768 usedpc = (zspage_size - waste) * 100 / zspage_size;
769
770 if (usedpc > max_usedpc) {
771 max_usedpc = usedpc;
772 max_usedpc_order = i;
773 }
774 }
775
776 return max_usedpc_order;
777}
778
779/*
780 * A single 'zspage' is composed of many system pages which are
781 * linked together using fields in struct page. This function finds
782 * the first/head page, given any component page of a zspage.
783 */
784static struct page *get_first_page(struct page *page)
785{
786 if (is_first_page(page))
787 return page;
788 else
32e7ba1e 789 return (struct page *)page_private(page);
61989a80
NG
790}
791
792static struct page *get_next_page(struct page *page)
793{
794 struct page *next;
795
796 if (is_last_page(page))
797 next = NULL;
798 else if (is_first_page(page))
e842b976 799 next = (struct page *)page_private(page);
61989a80
NG
800 else
801 next = list_entry(page->lru.next, struct page, lru);
802
803 return next;
804}
805
67296874
OH
806/*
807 * Encode <page, obj_idx> as a single handle value.
312fcae2 808 * We use the least bit of handle for tagging.
67296874 809 */
312fcae2 810static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 811{
312fcae2 812 unsigned long obj;
61989a80
NG
813
814 if (!page) {
830e4bc5 815 VM_BUG_ON(obj_idx);
61989a80
NG
816 return NULL;
817 }
818
312fcae2
MK
819 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
820 obj |= ((obj_idx) & OBJ_INDEX_MASK);
821 obj <<= OBJ_TAG_BITS;
61989a80 822
312fcae2 823 return (void *)obj;
61989a80
NG
824}
825
67296874
OH
826/*
827 * Decode <page, obj_idx> pair from the given object handle. We adjust the
828 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 829 * location_to_obj().
67296874 830 */
312fcae2 831static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
832 unsigned long *obj_idx)
833{
312fcae2
MK
834 obj >>= OBJ_TAG_BITS;
835 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
836 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
837}
838
2e40e163
MK
839static unsigned long handle_to_obj(unsigned long handle)
840{
841 return *(unsigned long *)handle;
842}
843
7b60a685
MK
844static unsigned long obj_to_head(struct size_class *class, struct page *page,
845 void *obj)
312fcae2 846{
7b60a685 847 if (class->huge) {
830e4bc5 848 VM_BUG_ON_PAGE(!is_first_page(page), page);
12a7bfad 849 return page_private(page);
7b60a685
MK
850 } else
851 return *(unsigned long *)obj;
312fcae2
MK
852}
853
61989a80
NG
854static unsigned long obj_idx_to_offset(struct page *page,
855 unsigned long obj_idx, int class_size)
856{
857 unsigned long off = 0;
858
859 if (!is_first_page(page))
860 off = page->index;
861
862 return off + obj_idx * class_size;
863}
864
312fcae2
MK
865static inline int trypin_tag(unsigned long handle)
866{
867 unsigned long *ptr = (unsigned long *)handle;
868
869 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
870}
871
872static void pin_tag(unsigned long handle)
873{
874 while (!trypin_tag(handle));
875}
876
877static void unpin_tag(unsigned long handle)
878{
879 unsigned long *ptr = (unsigned long *)handle;
880
881 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
882}
883
f4477e90
NG
884static void reset_page(struct page *page)
885{
886 clear_bit(PG_private, &page->flags);
887 clear_bit(PG_private_2, &page->flags);
888 set_page_private(page, 0);
889 page->mapping = NULL;
890 page->freelist = NULL;
22b751c3 891 page_mapcount_reset(page);
f4477e90
NG
892}
893
61989a80
NG
894static void free_zspage(struct page *first_page)
895{
f4477e90 896 struct page *nextp, *tmp, *head_extra;
61989a80 897
830e4bc5
MK
898 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
899 VM_BUG_ON_PAGE(first_page->inuse, first_page);
61989a80 900
f4477e90 901 head_extra = (struct page *)page_private(first_page);
61989a80 902
f4477e90 903 reset_page(first_page);
61989a80
NG
904 __free_page(first_page);
905
906 /* zspage with only 1 system page */
f4477e90 907 if (!head_extra)
61989a80
NG
908 return;
909
f4477e90 910 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 911 list_del(&nextp->lru);
f4477e90 912 reset_page(nextp);
61989a80
NG
913 __free_page(nextp);
914 }
f4477e90
NG
915 reset_page(head_extra);
916 __free_page(head_extra);
61989a80
NG
917}
918
919/* Initialize a newly allocated zspage */
251cbb95 920static void init_zspage(struct size_class *class, struct page *first_page)
61989a80
NG
921{
922 unsigned long off = 0;
923 struct page *page = first_page;
924
830e4bc5
MK
925 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
926
61989a80
NG
927 while (page) {
928 struct page *next_page;
929 struct link_free *link;
5538c562 930 unsigned int i = 1;
af4ee5e9 931 void *vaddr;
61989a80
NG
932
933 /*
934 * page->index stores offset of first object starting
935 * in the page. For the first page, this is always 0,
936 * so we use first_page->index (aka ->freelist) to store
937 * head of corresponding zspage's freelist.
938 */
939 if (page != first_page)
940 page->index = off;
941
af4ee5e9
MK
942 vaddr = kmap_atomic(page);
943 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
944
945 while ((off += class->size) < PAGE_SIZE) {
312fcae2 946 link->next = location_to_obj(page, i++);
5538c562 947 link += class->size / sizeof(*link);
61989a80
NG
948 }
949
950 /*
951 * We now come to the last (full or partial) object on this
952 * page, which must point to the first object on the next
953 * page (if present)
954 */
955 next_page = get_next_page(page);
312fcae2 956 link->next = location_to_obj(next_page, 0);
af4ee5e9 957 kunmap_atomic(vaddr);
61989a80 958 page = next_page;
5538c562 959 off %= PAGE_SIZE;
61989a80
NG
960 }
961}
962
963/*
964 * Allocate a zspage for the given size class
965 */
966static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
967{
968 int i, error;
b4b700c5 969 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
970
971 /*
972 * Allocate individual pages and link them together as:
973 * 1. first page->private = first sub-page
974 * 2. all sub-pages are linked together using page->lru
32e7ba1e 975 * 3. each sub-page is linked to the first page using page->private
61989a80
NG
976 *
977 * For each size class, First/Head pages are linked together using
978 * page->lru. Also, we set PG_private to identify the first page
979 * (i.e. no other sub-page has this flag set) and PG_private_2 to
980 * identify the last page.
981 */
982 error = -ENOMEM;
2e3b6154 983 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 984 struct page *page;
61989a80
NG
985
986 page = alloc_page(flags);
987 if (!page)
988 goto cleanup;
989
990 INIT_LIST_HEAD(&page->lru);
991 if (i == 0) { /* first page */
a27545bf 992 SetPagePrivate(page);
61989a80
NG
993 set_page_private(page, 0);
994 first_page = page;
995 first_page->inuse = 0;
996 }
997 if (i == 1)
e842b976 998 set_page_private(first_page, (unsigned long)page);
61989a80 999 if (i >= 1)
32e7ba1e 1000 set_page_private(page, (unsigned long)first_page);
61989a80
NG
1001 if (i >= 2)
1002 list_add(&page->lru, &prev_page->lru);
2e3b6154 1003 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 1004 SetPagePrivate2(page);
61989a80
NG
1005 prev_page = page;
1006 }
1007
251cbb95 1008 init_zspage(class, first_page);
61989a80 1009
312fcae2 1010 first_page->freelist = location_to_obj(first_page, 0);
61989a80 1011 /* Maximum number of objects we can store in this zspage */
2e3b6154 1012 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
1013
1014 error = 0; /* Success */
1015
1016cleanup:
1017 if (unlikely(error) && first_page) {
1018 free_zspage(first_page);
1019 first_page = NULL;
1020 }
1021
1022 return first_page;
1023}
1024
1025static struct page *find_get_zspage(struct size_class *class)
1026{
1027 int i;
1028 struct page *page;
1029
1030 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1031 page = class->fullness_list[i];
1032 if (page)
1033 break;
1034 }
1035
1036 return page;
1037}
1038
1b945aee 1039#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1040static inline int __zs_cpu_up(struct mapping_area *area)
1041{
1042 /*
1043 * Make sure we don't leak memory if a cpu UP notification
1044 * and zs_init() race and both call zs_cpu_up() on the same cpu
1045 */
1046 if (area->vm)
1047 return 0;
1048 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1049 if (!area->vm)
1050 return -ENOMEM;
1051 return 0;
1052}
1053
1054static inline void __zs_cpu_down(struct mapping_area *area)
1055{
1056 if (area->vm)
1057 free_vm_area(area->vm);
1058 area->vm = NULL;
1059}
1060
1061static inline void *__zs_map_object(struct mapping_area *area,
1062 struct page *pages[2], int off, int size)
1063{
f6f8ed47 1064 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1065 area->vm_addr = area->vm->addr;
1066 return area->vm_addr + off;
1067}
1068
1069static inline void __zs_unmap_object(struct mapping_area *area,
1070 struct page *pages[2], int off, int size)
1071{
1072 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1073
d95abbbb 1074 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1075}
1076
1b945aee 1077#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1078
1079static inline int __zs_cpu_up(struct mapping_area *area)
1080{
1081 /*
1082 * Make sure we don't leak memory if a cpu UP notification
1083 * and zs_init() race and both call zs_cpu_up() on the same cpu
1084 */
1085 if (area->vm_buf)
1086 return 0;
40f9fb8c 1087 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1088 if (!area->vm_buf)
1089 return -ENOMEM;
1090 return 0;
1091}
1092
1093static inline void __zs_cpu_down(struct mapping_area *area)
1094{
40f9fb8c 1095 kfree(area->vm_buf);
f553646a
SJ
1096 area->vm_buf = NULL;
1097}
1098
1099static void *__zs_map_object(struct mapping_area *area,
1100 struct page *pages[2], int off, int size)
5f601902 1101{
5f601902
SJ
1102 int sizes[2];
1103 void *addr;
f553646a 1104 char *buf = area->vm_buf;
5f601902 1105
f553646a
SJ
1106 /* disable page faults to match kmap_atomic() return conditions */
1107 pagefault_disable();
1108
1109 /* no read fastpath */
1110 if (area->vm_mm == ZS_MM_WO)
1111 goto out;
5f601902
SJ
1112
1113 sizes[0] = PAGE_SIZE - off;
1114 sizes[1] = size - sizes[0];
1115
5f601902
SJ
1116 /* copy object to per-cpu buffer */
1117 addr = kmap_atomic(pages[0]);
1118 memcpy(buf, addr + off, sizes[0]);
1119 kunmap_atomic(addr);
1120 addr = kmap_atomic(pages[1]);
1121 memcpy(buf + sizes[0], addr, sizes[1]);
1122 kunmap_atomic(addr);
f553646a
SJ
1123out:
1124 return area->vm_buf;
5f601902
SJ
1125}
1126
f553646a
SJ
1127static void __zs_unmap_object(struct mapping_area *area,
1128 struct page *pages[2], int off, int size)
5f601902 1129{
5f601902
SJ
1130 int sizes[2];
1131 void *addr;
2e40e163 1132 char *buf;
5f601902 1133
f553646a
SJ
1134 /* no write fastpath */
1135 if (area->vm_mm == ZS_MM_RO)
1136 goto out;
5f601902 1137
7b60a685 1138 buf = area->vm_buf;
a82cbf07
YX
1139 buf = buf + ZS_HANDLE_SIZE;
1140 size -= ZS_HANDLE_SIZE;
1141 off += ZS_HANDLE_SIZE;
2e40e163 1142
5f601902
SJ
1143 sizes[0] = PAGE_SIZE - off;
1144 sizes[1] = size - sizes[0];
1145
1146 /* copy per-cpu buffer to object */
1147 addr = kmap_atomic(pages[0]);
1148 memcpy(addr + off, buf, sizes[0]);
1149 kunmap_atomic(addr);
1150 addr = kmap_atomic(pages[1]);
1151 memcpy(addr, buf + sizes[0], sizes[1]);
1152 kunmap_atomic(addr);
f553646a
SJ
1153
1154out:
1155 /* enable page faults to match kunmap_atomic() return conditions */
1156 pagefault_enable();
5f601902 1157}
61989a80 1158
1b945aee 1159#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1160
61989a80
NG
1161static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1162 void *pcpu)
1163{
f553646a 1164 int ret, cpu = (long)pcpu;
61989a80
NG
1165 struct mapping_area *area;
1166
1167 switch (action) {
1168 case CPU_UP_PREPARE:
1169 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1170 ret = __zs_cpu_up(area);
1171 if (ret)
1172 return notifier_from_errno(ret);
61989a80
NG
1173 break;
1174 case CPU_DEAD:
1175 case CPU_UP_CANCELED:
1176 area = &per_cpu(zs_map_area, cpu);
f553646a 1177 __zs_cpu_down(area);
61989a80
NG
1178 break;
1179 }
1180
1181 return NOTIFY_OK;
1182}
1183
1184static struct notifier_block zs_cpu_nb = {
1185 .notifier_call = zs_cpu_notifier
1186};
1187
b1b00a5b 1188static int zs_register_cpu_notifier(void)
61989a80 1189{
b1b00a5b 1190 int cpu, uninitialized_var(ret);
61989a80 1191
f0e71fcd
SB
1192 cpu_notifier_register_begin();
1193
1194 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1195 for_each_online_cpu(cpu) {
1196 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1197 if (notifier_to_errno(ret))
1198 break;
61989a80 1199 }
f0e71fcd
SB
1200
1201 cpu_notifier_register_done();
b1b00a5b
SS
1202 return notifier_to_errno(ret);
1203}
f0e71fcd 1204
66cdef66 1205static void zs_unregister_cpu_notifier(void)
40f9fb8c 1206{
66cdef66 1207 int cpu;
40f9fb8c 1208
66cdef66 1209 cpu_notifier_register_begin();
40f9fb8c 1210
66cdef66
GM
1211 for_each_online_cpu(cpu)
1212 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1213 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1214
66cdef66 1215 cpu_notifier_register_done();
b1b00a5b
SS
1216}
1217
66cdef66 1218static void init_zs_size_classes(void)
b1b00a5b 1219{
66cdef66 1220 int nr;
c795779d 1221
66cdef66
GM
1222 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1223 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1224 nr += 1;
40f9fb8c 1225
66cdef66 1226 zs_size_classes = nr;
61989a80
NG
1227}
1228
9eec4cd5
JK
1229static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1230{
1231 if (prev->pages_per_zspage != pages_per_zspage)
1232 return false;
1233
1234 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1235 != get_maxobj_per_zspage(size, pages_per_zspage))
1236 return false;
1237
1238 return true;
1239}
1240
a4209467 1241static bool zspage_full(struct page *first_page)
312fcae2 1242{
830e4bc5 1243 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
312fcae2 1244
a4209467 1245 return first_page->inuse == first_page->objects;
312fcae2
MK
1246}
1247
66cdef66
GM
1248unsigned long zs_get_total_pages(struct zs_pool *pool)
1249{
1250 return atomic_long_read(&pool->pages_allocated);
1251}
1252EXPORT_SYMBOL_GPL(zs_get_total_pages);
1253
4bbc0bc0 1254/**
66cdef66
GM
1255 * zs_map_object - get address of allocated object from handle.
1256 * @pool: pool from which the object was allocated
1257 * @handle: handle returned from zs_malloc
4bbc0bc0 1258 *
66cdef66
GM
1259 * Before using an object allocated from zs_malloc, it must be mapped using
1260 * this function. When done with the object, it must be unmapped using
1261 * zs_unmap_object.
4bbc0bc0 1262 *
66cdef66
GM
1263 * Only one object can be mapped per cpu at a time. There is no protection
1264 * against nested mappings.
1265 *
1266 * This function returns with preemption and page faults disabled.
4bbc0bc0 1267 */
66cdef66
GM
1268void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1269 enum zs_mapmode mm)
61989a80 1270{
66cdef66 1271 struct page *page;
2e40e163 1272 unsigned long obj, obj_idx, off;
61989a80 1273
66cdef66
GM
1274 unsigned int class_idx;
1275 enum fullness_group fg;
1276 struct size_class *class;
1277 struct mapping_area *area;
1278 struct page *pages[2];
2e40e163 1279 void *ret;
61989a80 1280
9eec4cd5 1281 /*
66cdef66
GM
1282 * Because we use per-cpu mapping areas shared among the
1283 * pools/users, we can't allow mapping in interrupt context
1284 * because it can corrupt another users mappings.
9eec4cd5 1285 */
830e4bc5 1286 WARN_ON_ONCE(in_interrupt());
61989a80 1287
312fcae2
MK
1288 /* From now on, migration cannot move the object */
1289 pin_tag(handle);
1290
2e40e163
MK
1291 obj = handle_to_obj(handle);
1292 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1293 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1294 class = pool->size_class[class_idx];
1295 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1296
66cdef66
GM
1297 area = &get_cpu_var(zs_map_area);
1298 area->vm_mm = mm;
1299 if (off + class->size <= PAGE_SIZE) {
1300 /* this object is contained entirely within a page */
1301 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1302 ret = area->vm_addr + off;
1303 goto out;
61989a80
NG
1304 }
1305
66cdef66
GM
1306 /* this object spans two pages */
1307 pages[0] = page;
1308 pages[1] = get_next_page(page);
1309 BUG_ON(!pages[1]);
9eec4cd5 1310
2e40e163
MK
1311 ret = __zs_map_object(area, pages, off, class->size);
1312out:
7b60a685
MK
1313 if (!class->huge)
1314 ret += ZS_HANDLE_SIZE;
1315
1316 return ret;
61989a80 1317}
66cdef66 1318EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1319
66cdef66 1320void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1321{
66cdef66 1322 struct page *page;
2e40e163 1323 unsigned long obj, obj_idx, off;
61989a80 1324
66cdef66
GM
1325 unsigned int class_idx;
1326 enum fullness_group fg;
1327 struct size_class *class;
1328 struct mapping_area *area;
9eec4cd5 1329
2e40e163
MK
1330 obj = handle_to_obj(handle);
1331 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1332 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1333 class = pool->size_class[class_idx];
1334 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1335
66cdef66
GM
1336 area = this_cpu_ptr(&zs_map_area);
1337 if (off + class->size <= PAGE_SIZE)
1338 kunmap_atomic(area->vm_addr);
1339 else {
1340 struct page *pages[2];
40f9fb8c 1341
66cdef66
GM
1342 pages[0] = page;
1343 pages[1] = get_next_page(page);
1344 BUG_ON(!pages[1]);
1345
1346 __zs_unmap_object(area, pages, off, class->size);
1347 }
1348 put_cpu_var(zs_map_area);
312fcae2 1349 unpin_tag(handle);
61989a80 1350}
66cdef66 1351EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1352
251cbb95
MK
1353static unsigned long obj_malloc(struct size_class *class,
1354 struct page *first_page, unsigned long handle)
c7806261
MK
1355{
1356 unsigned long obj;
1357 struct link_free *link;
1358
1359 struct page *m_page;
1360 unsigned long m_objidx, m_offset;
1361 void *vaddr;
1362
312fcae2 1363 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1364 obj = (unsigned long)first_page->freelist;
1365 obj_to_location(obj, &m_page, &m_objidx);
1366 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1367
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 first_page->freelist = link->next;
7b60a685
MK
1371 if (!class->huge)
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1374 else
1375 /* record handle in first_page->private */
1376 set_page_private(first_page, handle);
c7806261
MK
1377 kunmap_atomic(vaddr);
1378 first_page->inuse++;
1379 zs_stat_inc(class, OBJ_USED, 1);
1380
1381 return obj;
1382}
1383
1384
61989a80
NG
1385/**
1386 * zs_malloc - Allocate block of given size from pool.
1387 * @pool: pool to allocate from
1388 * @size: size of block to allocate
61989a80 1389 *
00a61d86 1390 * On success, handle to the allocated object is returned,
c2344348 1391 * otherwise 0.
61989a80
NG
1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393 */
c2344348 1394unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1395{
2e40e163 1396 unsigned long handle, obj;
61989a80 1397 struct size_class *class;
c7806261 1398 struct page *first_page;
61989a80 1399
7b60a685 1400 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1401 return 0;
1402
1403 handle = alloc_handle(pool);
1404 if (!handle)
c2344348 1405 return 0;
61989a80 1406
2e40e163
MK
1407 /* extra space in chunk to keep the handle */
1408 size += ZS_HANDLE_SIZE;
9eec4cd5 1409 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1410
1411 spin_lock(&class->lock);
1412 first_page = find_get_zspage(class);
1413
1414 if (!first_page) {
1415 spin_unlock(&class->lock);
1416 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1417 if (unlikely(!first_page)) {
1418 free_handle(pool, handle);
c2344348 1419 return 0;
2e40e163 1420 }
61989a80
NG
1421
1422 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1423 atomic_long_add(class->pages_per_zspage,
1424 &pool->pages_allocated);
0f050d99 1425
61989a80 1426 spin_lock(&class->lock);
0f050d99
GM
1427 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1428 class->size, class->pages_per_zspage));
61989a80
NG
1429 }
1430
251cbb95 1431 obj = obj_malloc(class, first_page, handle);
61989a80 1432 /* Now move the zspage to another fullness group, if required */
c7806261 1433 fix_fullness_group(class, first_page);
2e40e163 1434 record_obj(handle, obj);
61989a80
NG
1435 spin_unlock(&class->lock);
1436
2e40e163 1437 return handle;
61989a80
NG
1438}
1439EXPORT_SYMBOL_GPL(zs_malloc);
1440
c7806261
MK
1441static void obj_free(struct zs_pool *pool, struct size_class *class,
1442 unsigned long obj)
61989a80
NG
1443{
1444 struct link_free *link;
1445 struct page *first_page, *f_page;
c7806261 1446 unsigned long f_objidx, f_offset;
af4ee5e9 1447 void *vaddr;
61989a80 1448
312fcae2 1449 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1450 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1451 first_page = get_first_page(f_page);
1452
61989a80
NG
1453 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1454
c7806261 1455 vaddr = kmap_atomic(f_page);
61989a80
NG
1456
1457 /* Insert this object in containing zspage's freelist */
af4ee5e9 1458 link = (struct link_free *)(vaddr + f_offset);
61989a80 1459 link->next = first_page->freelist;
7b60a685
MK
1460 if (class->huge)
1461 set_page_private(first_page, 0);
af4ee5e9 1462 kunmap_atomic(vaddr);
c2344348 1463 first_page->freelist = (void *)obj;
61989a80 1464 first_page->inuse--;
0f050d99 1465 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1466}
1467
1468void zs_free(struct zs_pool *pool, unsigned long handle)
1469{
1470 struct page *first_page, *f_page;
1471 unsigned long obj, f_objidx;
1472 int class_idx;
1473 struct size_class *class;
1474 enum fullness_group fullness;
1475
1476 if (unlikely(!handle))
1477 return;
1478
312fcae2 1479 pin_tag(handle);
c7806261 1480 obj = handle_to_obj(handle);
c7806261
MK
1481 obj_to_location(obj, &f_page, &f_objidx);
1482 first_page = get_first_page(f_page);
1483
1484 get_zspage_mapping(first_page, &class_idx, &fullness);
1485 class = pool->size_class[class_idx];
1486
1487 spin_lock(&class->lock);
1488 obj_free(pool, class, obj);
1489 fullness = fix_fullness_group(class, first_page);
312fcae2 1490 if (fullness == ZS_EMPTY) {
0f050d99
GM
1491 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1492 class->size, class->pages_per_zspage));
312fcae2
MK
1493 atomic_long_sub(class->pages_per_zspage,
1494 &pool->pages_allocated);
1495 free_zspage(first_page);
1496 }
61989a80 1497 spin_unlock(&class->lock);
312fcae2 1498 unpin_tag(handle);
61989a80 1499
312fcae2
MK
1500 free_handle(pool, handle);
1501}
1502EXPORT_SYMBOL_GPL(zs_free);
1503
251cbb95
MK
1504static void zs_object_copy(struct size_class *class, unsigned long dst,
1505 unsigned long src)
312fcae2
MK
1506{
1507 struct page *s_page, *d_page;
1508 unsigned long s_objidx, d_objidx;
1509 unsigned long s_off, d_off;
1510 void *s_addr, *d_addr;
1511 int s_size, d_size, size;
1512 int written = 0;
1513
1514 s_size = d_size = class->size;
1515
1516 obj_to_location(src, &s_page, &s_objidx);
1517 obj_to_location(dst, &d_page, &d_objidx);
1518
1519 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1520 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1521
1522 if (s_off + class->size > PAGE_SIZE)
1523 s_size = PAGE_SIZE - s_off;
1524
1525 if (d_off + class->size > PAGE_SIZE)
1526 d_size = PAGE_SIZE - d_off;
1527
1528 s_addr = kmap_atomic(s_page);
1529 d_addr = kmap_atomic(d_page);
1530
1531 while (1) {
1532 size = min(s_size, d_size);
1533 memcpy(d_addr + d_off, s_addr + s_off, size);
1534 written += size;
1535
1536 if (written == class->size)
1537 break;
1538
495819ea
SS
1539 s_off += size;
1540 s_size -= size;
1541 d_off += size;
1542 d_size -= size;
1543
1544 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1545 kunmap_atomic(d_addr);
1546 kunmap_atomic(s_addr);
1547 s_page = get_next_page(s_page);
312fcae2
MK
1548 s_addr = kmap_atomic(s_page);
1549 d_addr = kmap_atomic(d_page);
1550 s_size = class->size - written;
1551 s_off = 0;
312fcae2
MK
1552 }
1553
495819ea 1554 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1555 kunmap_atomic(d_addr);
1556 d_page = get_next_page(d_page);
312fcae2
MK
1557 d_addr = kmap_atomic(d_page);
1558 d_size = class->size - written;
1559 d_off = 0;
312fcae2
MK
1560 }
1561 }
1562
1563 kunmap_atomic(d_addr);
1564 kunmap_atomic(s_addr);
1565}
1566
1567/*
1568 * Find alloced object in zspage from index object and
1569 * return handle.
1570 */
251cbb95
MK
1571static unsigned long find_alloced_obj(struct size_class *class,
1572 struct page *page, int index)
312fcae2
MK
1573{
1574 unsigned long head;
1575 int offset = 0;
1576 unsigned long handle = 0;
1577 void *addr = kmap_atomic(page);
1578
1579 if (!is_first_page(page))
1580 offset = page->index;
1581 offset += class->size * index;
1582
1583 while (offset < PAGE_SIZE) {
7b60a685 1584 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1585 if (head & OBJ_ALLOCATED_TAG) {
1586 handle = head & ~OBJ_ALLOCATED_TAG;
1587 if (trypin_tag(handle))
1588 break;
1589 handle = 0;
1590 }
1591
1592 offset += class->size;
1593 index++;
1594 }
1595
1596 kunmap_atomic(addr);
1597 return handle;
1598}
1599
1600struct zs_compact_control {
1601 /* Source page for migration which could be a subpage of zspage. */
1602 struct page *s_page;
1603 /* Destination page for migration which should be a first page
1604 * of zspage. */
1605 struct page *d_page;
1606 /* Starting object index within @s_page which used for live object
1607 * in the subpage. */
1608 int index;
312fcae2
MK
1609};
1610
1611static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1612 struct zs_compact_control *cc)
1613{
1614 unsigned long used_obj, free_obj;
1615 unsigned long handle;
1616 struct page *s_page = cc->s_page;
1617 struct page *d_page = cc->d_page;
1618 unsigned long index = cc->index;
312fcae2
MK
1619 int ret = 0;
1620
1621 while (1) {
251cbb95 1622 handle = find_alloced_obj(class, s_page, index);
312fcae2
MK
1623 if (!handle) {
1624 s_page = get_next_page(s_page);
1625 if (!s_page)
1626 break;
1627 index = 0;
1628 continue;
1629 }
1630
1631 /* Stop if there is no more space */
1632 if (zspage_full(d_page)) {
1633 unpin_tag(handle);
1634 ret = -ENOMEM;
1635 break;
1636 }
1637
1638 used_obj = handle_to_obj(handle);
251cbb95
MK
1639 free_obj = obj_malloc(class, d_page, handle);
1640 zs_object_copy(class, free_obj, used_obj);
312fcae2 1641 index++;
c102f07c
JL
1642 /*
1643 * record_obj updates handle's value to free_obj and it will
1644 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1645 * breaks synchronization using pin_tag(e,g, zs_free) so
1646 * let's keep the lock bit.
1647 */
1648 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1649 record_obj(handle, free_obj);
1650 unpin_tag(handle);
1651 obj_free(pool, class, used_obj);
312fcae2
MK
1652 }
1653
1654 /* Remember last position in this iteration */
1655 cc->s_page = s_page;
1656 cc->index = index;
312fcae2
MK
1657
1658 return ret;
1659}
1660
0dc63d48 1661static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1662{
1663 int i;
1664 struct page *page;
1665
1666 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1667 page = class->fullness_list[i];
1668 if (page) {
251cbb95 1669 remove_zspage(class, i, page);
312fcae2
MK
1670 break;
1671 }
1672 }
1673
1674 return page;
1675}
1676
860c707d
SS
1677/*
1678 * putback_zspage - add @first_page into right class's fullness list
1679 * @pool: target pool
1680 * @class: destination class
1681 * @first_page: target page
1682 *
1683 * Return @fist_page's fullness_group
1684 */
1685static enum fullness_group putback_zspage(struct zs_pool *pool,
1686 struct size_class *class,
1687 struct page *first_page)
312fcae2 1688{
312fcae2
MK
1689 enum fullness_group fullness;
1690
839373e6 1691 fullness = get_fullness_group(first_page);
251cbb95 1692 insert_zspage(class, fullness, first_page);
839373e6
MK
1693 set_zspage_mapping(first_page, class->index, fullness);
1694
13de8933 1695 if (fullness == ZS_EMPTY) {
312fcae2
MK
1696 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1697 class->size, class->pages_per_zspage));
13de8933
MK
1698 atomic_long_sub(class->pages_per_zspage,
1699 &pool->pages_allocated);
312fcae2 1700
61989a80 1701 free_zspage(first_page);
13de8933 1702 }
860c707d
SS
1703
1704 return fullness;
61989a80 1705}
312fcae2
MK
1706
1707static struct page *isolate_source_page(struct size_class *class)
1708{
ad9d5e17
MK
1709 int i;
1710 struct page *page = NULL;
1711
1712 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1713 page = class->fullness_list[i];
1714 if (!page)
1715 continue;
312fcae2 1716
251cbb95 1717 remove_zspage(class, i, page);
ad9d5e17
MK
1718 break;
1719 }
312fcae2
MK
1720
1721 return page;
1722}
1723
04f05909
SS
1724/*
1725 *
1726 * Based on the number of unused allocated objects calculate
1727 * and return the number of pages that we can free.
04f05909
SS
1728 */
1729static unsigned long zs_can_compact(struct size_class *class)
1730{
1731 unsigned long obj_wasted;
44f43e99
SS
1732 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1733 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 1734
44f43e99
SS
1735 if (obj_allocated <= obj_used)
1736 return 0;
04f05909 1737
44f43e99 1738 obj_wasted = obj_allocated - obj_used;
04f05909
SS
1739 obj_wasted /= get_maxobj_per_zspage(class->size,
1740 class->pages_per_zspage);
1741
6cbf16b3 1742 return obj_wasted * class->pages_per_zspage;
04f05909
SS
1743}
1744
7d3f3938 1745static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1746{
312fcae2
MK
1747 struct zs_compact_control cc;
1748 struct page *src_page;
1749 struct page *dst_page = NULL;
312fcae2 1750
312fcae2
MK
1751 spin_lock(&class->lock);
1752 while ((src_page = isolate_source_page(class))) {
1753
04f05909
SS
1754 if (!zs_can_compact(class))
1755 break;
1756
312fcae2
MK
1757 cc.index = 0;
1758 cc.s_page = src_page;
1759
0dc63d48 1760 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1761 cc.d_page = dst_page;
1762 /*
0dc63d48
SS
1763 * If there is no more space in dst_page, resched
1764 * and see if anyone had allocated another zspage.
312fcae2
MK
1765 */
1766 if (!migrate_zspage(pool, class, &cc))
1767 break;
1768
1769 putback_zspage(pool, class, dst_page);
312fcae2
MK
1770 }
1771
1772 /* Stop if we couldn't find slot */
1773 if (dst_page == NULL)
1774 break;
1775
1776 putback_zspage(pool, class, dst_page);
860c707d 1777 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
6cbf16b3 1778 pool->stats.pages_compacted += class->pages_per_zspage;
312fcae2 1779 spin_unlock(&class->lock);
312fcae2
MK
1780 cond_resched();
1781 spin_lock(&class->lock);
1782 }
1783
1784 if (src_page)
1785 putback_zspage(pool, class, src_page);
1786
7d3f3938 1787 spin_unlock(&class->lock);
312fcae2
MK
1788}
1789
1790unsigned long zs_compact(struct zs_pool *pool)
1791{
1792 int i;
312fcae2
MK
1793 struct size_class *class;
1794
1795 for (i = zs_size_classes - 1; i >= 0; i--) {
1796 class = pool->size_class[i];
1797 if (!class)
1798 continue;
1799 if (class->index != i)
1800 continue;
7d3f3938 1801 __zs_compact(pool, class);
312fcae2
MK
1802 }
1803
860c707d 1804 return pool->stats.pages_compacted;
312fcae2
MK
1805}
1806EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1807
7d3f3938
SS
1808void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1809{
1810 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1811}
1812EXPORT_SYMBOL_GPL(zs_pool_stats);
1813
ab9d306d
SS
1814static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1815 struct shrink_control *sc)
1816{
1817 unsigned long pages_freed;
1818 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1819 shrinker);
1820
1821 pages_freed = pool->stats.pages_compacted;
1822 /*
1823 * Compact classes and calculate compaction delta.
1824 * Can run concurrently with a manually triggered
1825 * (by user) compaction.
1826 */
1827 pages_freed = zs_compact(pool) - pages_freed;
1828
1829 return pages_freed ? pages_freed : SHRINK_STOP;
1830}
1831
1832static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1833 struct shrink_control *sc)
1834{
1835 int i;
1836 struct size_class *class;
1837 unsigned long pages_to_free = 0;
1838 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1839 shrinker);
1840
ab9d306d
SS
1841 for (i = zs_size_classes - 1; i >= 0; i--) {
1842 class = pool->size_class[i];
1843 if (!class)
1844 continue;
1845 if (class->index != i)
1846 continue;
1847
ab9d306d 1848 pages_to_free += zs_can_compact(class);
ab9d306d
SS
1849 }
1850
1851 return pages_to_free;
1852}
1853
1854static void zs_unregister_shrinker(struct zs_pool *pool)
1855{
1856 if (pool->shrinker_enabled) {
1857 unregister_shrinker(&pool->shrinker);
1858 pool->shrinker_enabled = false;
1859 }
1860}
1861
1862static int zs_register_shrinker(struct zs_pool *pool)
1863{
1864 pool->shrinker.scan_objects = zs_shrinker_scan;
1865 pool->shrinker.count_objects = zs_shrinker_count;
1866 pool->shrinker.batch = 0;
1867 pool->shrinker.seeks = DEFAULT_SEEKS;
1868
1869 return register_shrinker(&pool->shrinker);
1870}
1871
00a61d86 1872/**
66cdef66
GM
1873 * zs_create_pool - Creates an allocation pool to work from.
1874 * @flags: allocation flags used to allocate pool metadata
166cfda7 1875 *
66cdef66
GM
1876 * This function must be called before anything when using
1877 * the zsmalloc allocator.
166cfda7 1878 *
66cdef66
GM
1879 * On success, a pointer to the newly created pool is returned,
1880 * otherwise NULL.
396b7fd6 1881 */
6f3526d6 1882struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
61989a80 1883{
66cdef66
GM
1884 int i;
1885 struct zs_pool *pool;
1886 struct size_class *prev_class = NULL;
61989a80 1887
66cdef66
GM
1888 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1889 if (!pool)
1890 return NULL;
61989a80 1891
66cdef66
GM
1892 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1893 GFP_KERNEL);
1894 if (!pool->size_class) {
1895 kfree(pool);
1896 return NULL;
1897 }
61989a80 1898
2e40e163
MK
1899 pool->name = kstrdup(name, GFP_KERNEL);
1900 if (!pool->name)
1901 goto err;
1902
1903 if (create_handle_cache(pool))
1904 goto err;
1905
c60369f0 1906 /*
66cdef66
GM
1907 * Iterate reversly, because, size of size_class that we want to use
1908 * for merging should be larger or equal to current size.
c60369f0 1909 */
66cdef66
GM
1910 for (i = zs_size_classes - 1; i >= 0; i--) {
1911 int size;
1912 int pages_per_zspage;
1913 struct size_class *class;
c60369f0 1914
66cdef66
GM
1915 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1916 if (size > ZS_MAX_ALLOC_SIZE)
1917 size = ZS_MAX_ALLOC_SIZE;
1918 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1919
66cdef66
GM
1920 /*
1921 * size_class is used for normal zsmalloc operation such
1922 * as alloc/free for that size. Although it is natural that we
1923 * have one size_class for each size, there is a chance that we
1924 * can get more memory utilization if we use one size_class for
1925 * many different sizes whose size_class have same
1926 * characteristics. So, we makes size_class point to
1927 * previous size_class if possible.
1928 */
1929 if (prev_class) {
1930 if (can_merge(prev_class, size, pages_per_zspage)) {
1931 pool->size_class[i] = prev_class;
1932 continue;
1933 }
1934 }
1935
1936 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1937 if (!class)
1938 goto err;
1939
1940 class->size = size;
1941 class->index = i;
1942 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1943 if (pages_per_zspage == 1 &&
1944 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1945 class->huge = true;
66cdef66
GM
1946 spin_lock_init(&class->lock);
1947 pool->size_class[i] = class;
1948
1949 prev_class = class;
61989a80
NG
1950 }
1951
66cdef66 1952 pool->flags = flags;
b7418510 1953
251cbb95 1954 if (zs_pool_stat_create(pool, name))
0f050d99
GM
1955 goto err;
1956
ab9d306d
SS
1957 /*
1958 * Not critical, we still can use the pool
1959 * and user can trigger compaction manually.
1960 */
1961 if (zs_register_shrinker(pool) == 0)
1962 pool->shrinker_enabled = true;
66cdef66
GM
1963 return pool;
1964
1965err:
1966 zs_destroy_pool(pool);
1967 return NULL;
61989a80 1968}
66cdef66 1969EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1970
66cdef66 1971void zs_destroy_pool(struct zs_pool *pool)
61989a80 1972{
66cdef66 1973 int i;
61989a80 1974
ab9d306d 1975 zs_unregister_shrinker(pool);
0f050d99
GM
1976 zs_pool_stat_destroy(pool);
1977
66cdef66
GM
1978 for (i = 0; i < zs_size_classes; i++) {
1979 int fg;
1980 struct size_class *class = pool->size_class[i];
61989a80 1981
66cdef66
GM
1982 if (!class)
1983 continue;
61989a80 1984
66cdef66
GM
1985 if (class->index != i)
1986 continue;
61989a80 1987
66cdef66
GM
1988 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1989 if (class->fullness_list[fg]) {
1990 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1991 class->size, fg);
1992 }
1993 }
1994 kfree(class);
1995 }
f553646a 1996
2e40e163 1997 destroy_handle_cache(pool);
66cdef66 1998 kfree(pool->size_class);
0f050d99 1999 kfree(pool->name);
66cdef66
GM
2000 kfree(pool);
2001}
2002EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2003
66cdef66
GM
2004static int __init zs_init(void)
2005{
2006 int ret = zs_register_cpu_notifier();
2007
0f050d99
GM
2008 if (ret)
2009 goto notifier_fail;
66cdef66
GM
2010
2011 init_zs_size_classes();
2012
2013#ifdef CONFIG_ZPOOL
2014 zpool_register_driver(&zs_zpool_driver);
2015#endif
0f050d99
GM
2016
2017 ret = zs_stat_init();
2018 if (ret) {
2019 pr_err("zs stat initialization failed\n");
2020 goto stat_fail;
2021 }
66cdef66 2022 return 0;
0f050d99
GM
2023
2024stat_fail:
2025#ifdef CONFIG_ZPOOL
2026 zpool_unregister_driver(&zs_zpool_driver);
2027#endif
2028notifier_fail:
2029 zs_unregister_cpu_notifier();
2030
2031 return ret;
61989a80 2032}
61989a80 2033
66cdef66 2034static void __exit zs_exit(void)
61989a80 2035{
66cdef66
GM
2036#ifdef CONFIG_ZPOOL
2037 zpool_unregister_driver(&zs_zpool_driver);
2038#endif
2039 zs_unregister_cpu_notifier();
0f050d99
GM
2040
2041 zs_stat_exit();
61989a80 2042}
069f101f
BH
2043
2044module_init(zs_init);
2045module_exit(zs_exit);
2046
2047MODULE_LICENSE("Dual BSD/GPL");
2048MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
This page took 0.492303 seconds and 5 git commands to generate.